
Dissertation

Knowledge-based Technologies for

Wiki Environments

Stefan Reiterer

Graz, 2015

Institute for Software Technology

Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Alexander Felfernig

Second reviewer: Assoc.Prof. David Benavides, Ph.D.

Abstract (English)

Knowledge-based recommendation and configuration systems support users in identifying relevant

solutions from large solution spaces. In this context users enter requirements and, with respect to the

constraints of a knowledge base, the solution space is restricted to a subset of solutions. Such systems

are applicable in different domains such as consulting-intensive products, services, and industrial pro-

duction. In the context of knowledge-based systems, this thesis introduces approaches to support the

efficient creation of knowledge bases as well as the efficient handling of inconsistent user require-

ments. It is shown how diagnosis algorithms can be personalized and how these algorithms can be

applied to support users (a) in the development of knowledge bases and (b) when interacting with

recommender or configuration systems.

The process of acquiring knowledge for building knowledge bases is complex and time-consuming -

this phenomenon is called the Knowledge Acquisition Bottleneck. This thesis introduces techniques to

reduce the knowledge acquisition bottleneck: On the one hand by supporting users in tackling challen-

ges that arise during the knowledge acquisition process by applying model-based diagnosis concepts.

On the other hand by showing how to exploit wiki technologies for community-based knowledge base

construction. The MediaWiki extension WEEVIS that was developed in the scope of this thesis allows

users to embed knowledge-based recommenders into wiki pages.

During the interaction with knowledge-based systems, inconsistencies between the user require-

ments and the knowledge base can occur. Furthermore, inconsistencies of constraints with test cases

and redundancies can arise during the creation of knowledge bases. The aim of this work is to help

users of knowledge-based systems such as WEEVIS in such situations. For this purpose, we demon-

strate how diagnosis techniques can be exploited to support knowledge engineers in collaboratively

developing knowledge bases as well as to support users when interacting with recommender and con-

figuration systems.

i

ii

Abstract (German)

Wissensbasierte Empfehlungs- und Konfigurationssysteme unterstützen Benutzer beim Finden von

relevanten Lösungen in großen Lösungsräumen. In diesem Kontext können Benutzer ihre Anforderun-

gen eingeben und unter Beachtung der in einer Wissensbasis festgelegten Regeln wird der Lösungs-

raum auf eine Untermenge von Lösungen eingeschränkt. Derartige Systeme sind in verschiedenen

Domänen wie zum Beispiel für beratungsintensive Produkte und Services sowie in der industriellen

Fertigung einsetzbar. Im Kontext von wissensbasierten Systemen zeigt diese Arbeit Ansätze zur effi-

zienten Erstellung von Wissensbasen, sowie zum effizienten Umgang mit inkonsistenten Kundenan-

forderungen. Es wird gezeigt, wie Diagnosealgorithmen personalisiert und zur Unterstützung von Be-

nutzern (a) während der Entwicklung von Wissensbasen und (b) während der Interaktion mit einem

Empfehlungs- oder Konfigurationssystem verwendet werden können.

Das Erstellen von Wissensbasen ist eine komplexe und zeitaufwändige Tätigkeit - dieses Phänomen

wird auch Knowledge Acquisition Bottleneck genannt. In dieser Arbeit werden Techniken präsentiert

mit welchen der Knowledge Acquisition Bottleneck reduziert werden kann: Zum einen werden Be-

nutzer aktiv bei Herausforderungen, die im Kontext der Wissensakquisition entstehen durch das An-

wenden von modellbasierter Diagnose unterstützt. Zum anderen wird eine Community von Benutzern

herangezogen, um auf Basis von wiki Technologien Wissensbasen zu bauen. Dazu wurde im Rahmen

dieser Arbeit WEEVIS entwickelt, eine MediaWiki Erweiterung, die es ermöglicht, wissensbasierte

Empfehlungs- und Konfigurationssysteme in wiki Seiten einzubetten.

Beim Verwenden von wissensbasierten Systemen können beispielsweise Inkonsistenzen zwischen

Anforderungen des Benutzers und der Wissensbasis auftreten. Weiters kommen bereits während der

Erzeugung von Wissensbasen Inkonsistenzen mit Testfällen sowie Redundanzen vor. Ziel dieser Ar-

beit ist es, Benutzer von wissensbasierten Systemen wie zum Beispiel WEEVIS in derartigen Situa-

tionen zu unterstützen. Dazu zeigen wir, wie Diagnosetechnologien eingesetzt werden können, um

Knowledge Engineers bei der kollaborativen Entwicklung von Wissensbasen zu helfen und um Be-

nutzer während der Interaktion mit Empfehlungs- und Konfigurationssystemen zu unterstützen.

iii

iv

Acknowledgement

First and foremost I want to thank my supervisor Univ.-Prof. Dipl.-Ing. Dr.techn. Alexander Felfernig

for the continuous support, his motivation and his prolific suggestions during the origin of this thesis. I

also want to gratefully acknowledge the support of my colleagues Dipl.-Ing. Martin Stettinger, Micha-

el Jeran, Dipl.-Ing. Gerald Ninaus, Dipl.-Ing Florian Reinfrank, Dipl.-Ing. Dr.techn. Monika Mandl,

Dipl.-Ing. Dr.techn. Monika Schubert, Dr. Paul Blazek, Dipl.-Ing. Manfred Wundara, FH-Prof. Dr.

Wolfgang Eixelsberger, Dipl.-Ing. Klaus Isak and Assoc.Prof. Mag. Dr. Gerhard Leitner.

Lastly, I would like to thank my family who supported me during the years of study. Especially I

want to thank my father Ing. Werner Reiterer without whom I may have never stepped into the field

of computer science.

Stefan Reiterer

Graz, 2015

v

vi

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

Graz,

Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die an-

gegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich

entnommene Stellen als solche kenntlich gemacht habe.

Graz, am

Ort, Datum Unterschrift

vii

viii

Contents

1. Introduction 1

1.1. Motivation . 3

1.2. Research Objectives . 5

1.3. Contributions . 7

1.4. Thesis Outline . 9

2. Toward the Next Generation of

Recommender Systems:

Applications and Research Challenges 11

2.1. Abstract . 11

2.2. Introduction . 11

2.3. Recommender Systems in Software Engineering . 13

2.4. Recommender Systems in Data & Knowledge Engineering 17

2.5. Recommender Systems for Configurable Items . 19

2.6. Recommender Systems for Persuasive Technologies 20

2.7. Further Applications . 21

2.8. Issues for Future Research . 24

2.9. Conclusions . 25

3. Conflict Detection and Diagnosis Techniques for Anomaly Management 27

3.1. Abstract . 27

3.2. Introduction . 27

3.3. Example . 28

3.4. Determining Minimal Conflict Sets . 29

3.4.1. Simple Conflict Detection . 30

3.4.2. QuickXPlain . 31

3.4.3. Runtime Performance of Conflict Detection Algorithms 33

ix

Contents

3.5. Determining Minimal Diagnoses . 34

3.5.1. Hitting Set Directed Acyclic Graph (HSDAG) 35

3.5.2. FastDiag . 37

3.5.3. Further Approaches . 39

3.6. Conclusion . 41

4. Personalized Diagnosis for Over-Constrained Problems 43

4.1. Abstract . 43

4.2. Introduction . 43

4.3. Working Example . 45

4.4. Calculating Personalized Diagnoses . 46

4.5. Evaluation . 52

4.6. Related Work . 54

4.7. Conclusions . 55

5. WeeVis 57

5.1. Abstract . 57

5.2. Introduction . 57

5.3. Modeling of the Working Example . 59

5.4. User Interface . 62

5.5. Related Work . 63

5.6. Conclusion . 65

6. An Overview of Direct Diagnosis and Repair Techniques

in the WEEVIS Environment 67

6.1. Abstract . 67

6.2. Introduction . 67

6.3. Working Example . 69

6.4. Diagnosis and Repair of Requirements . 71

6.5. Knowledge Base Diagnosis . 73

6.6. Related and Future Work . 75

6.7. Conclusions . 76

7. The WEEVIS Environment applied in the E-Government Domain 77

7.1. Abstract . 77

7.2. Introduction . 77

7.3. WEEVIS Overview . 79

7.3.1. WEEVIS User Interface . 80

7.3.2. WEEVIS Syntax . 81

7.3.3. Recommender Knowledge Base . 82

x

Contents

7.3.4. Diagnosis and Repair of Requirements . 83

7.4. Performance Evaluation . 84

7.4.1. Description of the evaluation . 84

7.4.2. Results of the evaluation . 84

7.5. Conclusion . 86

8. Conclusions 87

9. Future Work 91

9.1. Learning Requirements Preferences From Interaction Logs 91

9.2. Considering Serial Positioning Effects in the List of Solutions 91

9.3. Analyzing the Evolution of the Knowledge Base Construction Process 92

9.4. Data Extraction from Existing Wiki Pages . 92

9.5. Parallelized Direct Diagnosis . 93

List of Figures 95

List of Tables 97

Bibliography 101

xi

xii

Chapter 1
Introduction

Nowadays, users of online stores have become accustomed to a list of items entitled Products that

may be of interest to you This list represents a personalized selection of items from an assortment

of millions of products offered, for example, on Amazon.com∗. The filtering of these items can be

done by different kinds of recommender systems. Nowadays, recommender systems have become

indispensable for online stores (see Jannach et al. (2010)). In 2009 the streaming platform Netflix†

awarded one million dollars to dedicated researchers in a contest‡ with the goal to improve the predic-

tion quality of the Netflix recommender system by 10%. The high prize money and the fact that about

three-fourths of the films sold by Netflix are a direct result of recommendations (Mayer-Schönberger

and Cukier (2013)) underlines the importance of recommender systems today.

The aforementioned recommendation of Products that may be of interest to you... relies for many

online stores on a collaborative filtering strategy (Schafer et al. (2007) and Goldberg et al. (1992)).

The Netflix online store, for example, offers a portfolio of film streams. For collaboratively recom-

mending a film to a user, let’s give her the name Alice, the following steps are necessary: First, users

(nearest neighbors), who have similar preferences to Alice must be identified. Based on the pref-

erences of these users, a prediction of the preference of candidate films can be calculated. Another

approach for recommending items is content-based filtering. Content-based recommenders (see e.g.

Pazzani and Billsus (2007)) identify similar products by analyzing and comparing the meta data of

other products to those of a given one. A basic goal of this type of recommendation is to recommend

more of the same. Both strategies tend to have ramp up problems (Felfernig et al. (2014a)): Collab-

orative filtering is only applicable if each user has rated enough items. For applying content-based

filtering, users must have selected (or purchased) at least one item.

Collaborative- and content-based filtering are applicable to simple items but are not directly ap-

∗http://www.amazon.com
†http://www.netflix.com
‡http://www.netflixprize.com

1

Chapter 1. Introduction

plicable to the recommendation of complex products and services (Felfernig and Burke (2008)). To

provide recommendation functionality for complex item domains such as financial services (Felfernig

et al. (2007a)), diet plans (Reiterer et al. (2015b)), or digital cameras a different recommendation ap-

proach is needed. Knowledge-based recommenders (Burke (2000), Felfernig et al. (2006a)) provide

dialog-based user interfaces for customers to specify their requirements. After entering the require-

ments, the system identifies items that fit the customers needs. This approach requires a knowledge

base that describes the relation between items, their attributes, and the articulated requirements. The

resulting solutions have to fulfill the users needs as well as to respect the constraints defined in the

knowledge base. Knowledge-based recommenders help users to find the best fitting product within a

large solution space.

In contrast to knowledge-based recommenders, where users receive recommendations from a list of

predefined products, knowledge-based configuration systems (see Felfernig et al. (2014b) and Stumpt-

ner (1997)) help users building a custom product based on components and corresponding attributes.

The different components fit together according to rules represented in a knowledge base. A config-

uration knowledge-base should be used to represent an item set if the amount of valid solutions is

hardly enumerable, otherwise a recommendation knowledge base in terms of a list of products can

be chosen (Falkner et al. (2011)). According to the constraints of the knowledge base and the user

requirements, a constraint solver (like Choco§ or JaCoP¶) is able to determine a list of possible con-

figurations. Knowledge-based configuration is a key tool to enable mass customization (Aldanondo

and Vareilles (2008) and Felfernig et al. (2014b)).

Knowledge-based configuration and recommendation systems can be considered from two differ-

ent angles: On the one hand there is the creation process of the knowledge base, where knowledge

engineers and domain experts are involved in creating the back end of the system. On the other hand

there is the consumption part, where the end user engages with the system which is either used to

identify solutions or to check the consistency of a given configuration.

Wiki environments such as MediaWiki‖ can also be considered from these two angles: On the one

hand wikis enable users to collaboratively build wiki pages (see Scardamalia and Bereiter (2003)). On

the other hand the created pages are consumed for individual learning (see Kimmerle et al. (2009)).

Knowledge building takes place when users extend/revise the content of a wiki page that was created

by other users. Individual learning on the other hand takes place when a user acquires knowledge from

a wiki page. The most prominent application of MediaWiki is Wikipedia∗∗, the most popular general

reference work (with nearly five million wiki pages). Wikis are used for knowledge management and

are applied in different domains. Each wiki page can be seen as a natural language knowledge base.

A wiki page can be created and edited as well as consumed by users of the wiki system. The wiki

§http://choco-solver.org
¶http://www.jacop.eu
‖http://www.mediawiki.org
∗∗http://www.wikipedia.org

2

1.1. Motivation

environment is simple enough for a domain expert to structure a wiki page and fill it with knowledge.

The wiki syntax is easy to learn and to understand which is the reason why many people all over the

world have become contributors to Wikipedia.

In the line of the wiki principles, recommender and configuration knowledge bases can be created

the same way as wiki pages. With a simple description language for knowledge bases, a community

of domain experts can create and maintain knowledge bases within wiki pages. Considering the

consumption of the created knowledge bases, an interactive user interface that guides users to the

solution based on the stated requirements can be integrated into the wiki environment. With the

inclusion of knowledge bases, natural language wiki pages can be enhanced by recommendation and

configuration functionalities.

The guidance provided by knowledge-based systems can be taken even one step further by enrich-

ing them with the concept of model-based diagnosis (see Felfernig et al. (2004) and Reiter (1987)).

Diagnosis algorithms are able to support users during the recommendation (or configuration) process

if a situation occurs where the system is unable to come up with solutions for the given requirements.

The situation is also known as the no solution could be found dilemma. In this case diagnosis algo-

rithms such as FASTDIAG (see Felfernig et al. (2012a)) can be used to calculate diagnoses for the

presentation of alternative solutions.

The remainder of this chapter is organized as follows: Section 1.1 motivates the research presented

in this thesis. In Section 1.2 a detailed explanation of each research objective is presented. Section 1.3

contains the contributions to each of the aforementioned research objectives and Section 1.4 provides

an outline of the following chapters.

1.1. Motivation

Knowledge-based configuration systems are applied in many domains for the purpose of supporting

mass customization (Felfernig et al. (2014b)). With a configuration system a set of predefined compo-

nents can be composed in such a way that user requirements as well as the constraints of a knowledge

base are taken into account. A knowledge-based recommender system (Burke (2000)) relies on an

assortment of explicitly defined solutions (items) that can easily be enumerated - in contrast to a con-

figuration system that can deal with solution spaces that can’t be represented explicitly in an efficient

fashion. In the configuration process as well as in the recommendation process, user requirements

and the knowledge base restrict the number of possible solutions (items) (see Falkner et al. (2011)).

These systems support customers and companies by offering an interactive access to the background

knowledge related to products and services. Model-based diagnosis (Reiter (1987)) improves the ap-

plicability of these systems by supporting users in the engineering process of knowledge bases as well

as end users in the application of the recommender or configuration system (Felfernig et al. (2014b)).

The motivation for this thesis is to help users in building and using knowledge bases with the sup-

3

Chapter 1. Introduction

port of personalized diagnosis algorithms on the basis of wiki environments. In this context two main

challenges had to be tackled:

1. How to exploit a wiki environment for engineering configuration and recommendation knowl-

edge?

2. How to support (a) end users during the interaction with knowledge bases and (b) domain

experts during knowledge base development, both in a personalized fashion?

1. Expoiting Wikis for engineering configuration and recommendation knowledge.
As a consequence of the rise of Web 2.0, social collaboration tools such as wikis emerged (see Cress

and Kimmerle (2008)). Since Wikipedia became the worlds largest encyclopedia, nearly every world

wide web user used the MediaWiki environment, the platform that serves as basis for Wikipedia. In

the last decade many different wikis became popular, for example, DokuWiki††, a wiki derivative

especially useful for companies to serve as an internal knowledge base. Therefore the term Enter-

prise Wiki evolved as an umbrella term for wikis used for knowledge management in the intra-net

of companies. The main goal of each wiki is to serve as a platform for knowledge exchange within

a community. Domain experts can share their knowledge by creating an article (wiki page). Wikis

are especially useful tools for managing knowledge transfer. Every created page acts as a source of

knowledge for other users. Wiki platforms provide features to enhance the collaboration of multiple

domain experts for the creation and maintenance of wiki pages. For example, wikis provide a forum to

discuss contents and the relevance of articles. Mechanisms such as versioning make it easy to manage

contents and also change articles without loosing contents.

However, wikis don’t provide the ability to retrieve the content of a page in a personalized and

goal-oriented way. For example, a wiki page that informs users about weight loss diets, such as the

low carb diet, the ketogenic diet or others doesn’t provide a functionality to support the user in receiv-

ing customized diet information from the page. Knowledge-based recommenders (e.g. Felfernig et al.

(2006a)) in contrast are designed to support users in identifying items of interest in a personalized

and efficient fashion. Available environments for knowledge base development such as the CWAdvi-

sor (see Felfernig et al. (2006a)) and configurator environments such as presented in Blumöhr et al.

(2010) and Tiihonen et al. (2013) are either too complex for mainstream users or only dedicated to

commercial use.

2. Supporting (a) end users during the interaction with knowledge bases and (b) domain ex-
perts during knowledge base development, both in a personalized fashion.
Model-based diagnosis algorithms (Reiter (1987)) can help to identify explanations for unintended

behavior. Diagnoses can be seen as a special kind of explanation for over-constrained problems

(O’Sullivan et al. (2007) and Felfernig et al. (2004)). Diagnosis algorithms can be applied in dif-

ferent contexts when using, creating, and maintaining knowledge bases:

††https://www.dokuwiki.org/

4

1.2. Research Objectives

• During the interaction with knowledge-based recommender and configuration systems users

can end up in a so-called no solution could be found dilemma (Felfernig et al. (2009b)). This

situation occurs if the user requirements are inconsistent with the knowledge base.

• During the creation and maintenance of a knowledge base. In this phase, anomalies such as

redundant constraints or inconsistencies between the knowledge base and test cases can occur

(Felfernig et al. (2012b)).

In each of these contexts, model-based diagnosis supports the user by presenting constraints that

can be either removed from the knowledge base or repaired. Depending on the size of the knowledge

base and the number of faulty constraints, often many different diagnoses are available for resolving

inconsistencies. The easiest way to restrict the amount of diagnoses is to calculate only minimal

ones (there is no other diagnosis set ∆1 that is a subset of the minimal diagnosis set ∆ (see Felfernig

et al. (2004)). But even then, for large knowledge bases it can be a difficult task to identify the best

fitting diagnosis from the large set of minimal diagnoses (too many options lead to a phenomenon

of information overload (Byung-Kwan and Wei-Na (2004))). A way to counteract the information

overload is to order diagnoses in a way that the user will most likely be able to identify at least one

acceptable diagnosis within the top elements of the list. The goal is to improve the prediction quality

which increases the likelihood of presented diagnoses to be chosen by the user. Due to the fact that

identifying all possible diagnoses and afterwards selecting the preferred ones is in most of the cases

computationally inefficient (Felfernig et al. (2009a)), an alternative approach to the determination of

diagnoses is introduced in this thesis.

1.2. Research Objectives

The mentioned challenges in the fields of collaborative knowledge acquisition and personalized diag-

nosis are a basis for the following research objectives:

1. Exploiting the wisdom of the crowds for knowledge base development.

Wiki environments such as Wikipedia are platforms that enable a large author base to col-

laboratively build wiki pages. A comparison of Wikipedia with the Encyclopedia Britannica,

where the source of wisdom are individual experts, demonstrates the power of the so-called

wisdom of the crowds (see Surowiecki (2005) and Arazy et al. (2006)). Giles (2005) conducted

a study where experts peer-reviewed articles from Wikipedia and the Encyclopedia Britannica

that shows evidence of the high quality of Wikipedia. In the line of the Wikipedia idea, in every

wiki users are collaboratively building on the knowledge of each other (see Scardamalia and

Bereiter (2003)). Knowledge-based systems like recommenders and configurators can also be

seen as a source of wisdom, but in comparison to wikis the knowledge is formalized. Due to

this restriction, knowledge acquisition is more complex: not only domain experts are involved

5

Chapter 1. Introduction

in the process but also knowledge engineers. Most established knowledge acquisition tools are

based on the knowledge of individuals (e.g. Felfernig et al. (2007a) and Felfernig et al. (2006a))

and do not provide community support. Since knowledge acquisition using the wisdom of the

crowds works for natural language wiki pages, the same idea can also be applied to knowledge

base construction in the context of wiki pages, consequently the following research question

emerges:

(Q1) How to exploit the wisdom of the crowds for building knowledge bases?

2. Supporting users during the collaborative knowledge acquisition process in situations with
a high cognitive load.

Building and maintaining knowledge bases is a very error-prone task. Especially, if many users

collaborate to build or maintain the same knowledge base, inconsistencies and redundancies

occur (see Reiterer (2015)). In software engineering it’s common to use, for example, regres-

sion tests to prevent new faults in already tested software segments (see Liggesmeyer (2009)).

These faults often occur if small updates or changes are made in code segments especially if

many people collaborate in the development process. The same applies to knowledge bases: For

example, if a constraint is initially integrated into the knowledge base, the solution set can be

influenced accidentally by a new constraint integrated by another user who extends the knowl-

edge base. Thus, development and maintenance of knowledge bases have similar challenges

concerning faults. Additionally, knowledge bases can contain redundancies. The problem with

redundancies is that they lead to a knowledge base that is unnecessary complex and decreases

the execution speed of the underlying reasoning algorithms (see Felfernig et al. (2011a)). Con-

sequently, the intelligent handling of inconsistencies and redundancies is inevitable for collab-

orative knowledge engineering, which leads to the next research question:

(Q2) How to support users in managing anomalies (e.g., redundancies and inconsistencies) in

knowledge bases during a collaborative knowledge engineering process?

3. Increasing the performance of identifying alternative solutions in interactive settings.

The common way of identifying diagnoses is calculating conflict sets in the first place (Junker

(2004)) and afterwards using the hitting set algorithm (Reiter (1987)), which is NP-hard (see

Friedrich et al. (1990)) for identifying diagnoses. The basic node expansion strategy for the

hitting set algorithm is breath-first, which results in the identification of all minimal diagnoses.

Felfernig et al. (2009a) describe how to use best-first search for identifying preferred diagnoses,

again with conflict detection in advance and afterwards determining diagnoses. Felfernig et al.

(2012a) introduced the direct diagnosis algorithm FASTDIAG which is able to calculate exactly

one minimal diagnosis at a time. This approach doesn’t rely on conflict detection before deter-

mining the diagnosis. Users have very high expectations concerning the response time of user

interfaces (see Nielsen (1994)). In WEEVIS the goal is to present not only diagnoses but also

alternative products, which means that the system has to identify at least one minimal diagnosis

6

1.3. Contributions

in a first step, possible repair options in a second step, and the resulting alternative solutions in

the last step. This scenario leads us to the following research question:

(Q3) How to optimize the performance of calculating diagnoses for interactive scenarios?

4. Improving the prediction quality of personalized diagnosis as a way out of the no solution
could be found dilemma.

Knowledge-based systems such as configurators and recommenders support users in construct-

ing their preferences in a dialog-based fashion. Oftentimes during the preference construction

phase, inconsistencies between user requirements and the knowledge base occur. Diagnosis

algorithms support users in such situations by identifying a set of requirements (the diagnosis)

which are the cause for the inconsistencies. Depending on the size of the set of requirements,

there are often many diagnoses that can resolve the inconsistencies. The challenge of presenting

diagnoses to the user is on the one hand to identify diagnoses which will most likely be accepted

by the user and on the other hand to deliver diagnoses fast enough to be suitable for interac-

tive settings. A common way of calculating diagnoses is conflict detection (Junker (2004))

and afterwards using the hitting set approach (Reiter (1987)) to detect minimal diagnoses in

a breath-first manner. Using breath-first search is useful for delivering all possible minimal

diagnoses but according to the large solution space breath-first strategies will often lead to in-

formation overload. The task of identifying a diagnosis by hand can be substituted by the task

of automatically selecting the right diagnosis from a large list of possible diagnoses. The chal-

lenge of calculating diagnoses in a personalized fashion by integrating multiple personalization

strategies into one ensemble leads to research Question 4.1. The last research question (4.2)

addresses the applicability of the ensemble-based approach in interactive settings:

(Q4.1) How to improve the prediction quality of personalized diagnoses by applying the

ensemble-based approach?

(Q4.2) Is the performance of calculating personalized diagnoses applicable for interactive set-

tings?

1.3. Contributions

This section summarizes the contributions of this thesis. The focus of this thesis is on extending a wiki

platform with knowledge-based technologies. The exploitation of wiki functionalities is explained and

the extension WEEVIS for integrating knowledge bases into wiki pages is presented. Additionally,

integrated diagnosis algorithms support users in resolving inconsistencies when building knowledge

bases as well as applying them in configuration and recommender applications. To increase the accept-

ability of the presented diagnoses, personalization approaches are exploited to identify personalized

diagnoses with a high predictive performance.

7

Chapter 1. Introduction

Research Question Contribution

(Q1) How to exploit the wisdom

of the crowds for building knowl-

edge bases?

In this work we present WEEVIS, a MediaWiki-based

knowledge acquisition environment (see Felfernig et al.

(2014b)). The developed platform can be integrated seam-

lessly as an extension into the MediaWiki platform. With the

extension, each wiki page can be extended by a knowledge

base. After the knowledge base was built collaboratively, in-

dividual users can receive recommendations on the topic of

the wiki page. The abilities of MediaWiki are exploited to

support the collaborative knowledge acquisition process.

(Q2) How to support users in

managing anomalies (e.g., redun-

dancies and inconsistencies) in

knowledge bases during a col-

laborative knowledge engineer-

ing process?

Anomaly management is crucial for efficient knowledge ac-

quisition. In this thesis we focus on handling two types

of anomalies in WeeVis (see Reiterer (2015) and Felfernig

et al. (2014c)): The identification of inconsistencies and the

identification of redundancies (see Felfernig et al. (2011a))

within knowledge bases. It’s especially valuable to provide

support for detecting these anomalies, because their han-

dling is very time-consuming on the one hand and also leads

to high cognitive overloads (Reiterer (2015)).

(Q3) How to optimize the perfor-

mance of calculating diagnoses

for interactive scenarios?

Direct diagnosis algorithms such as FASTDIAG (Felfernig

et al. (2012a)) boost the performance of diagnosis calcula-

tion. However, the more diagnoses are taken into account,

the more alternative products have to be calculated (see Re-

iterer et al. (2015a)). In this work we present a performance

analysis of FASTDIAG when the algorithm is integrated with

an approach to identify alternative products.

8

1.4. Thesis Outline

(Q4.1) How to improve the

prediction quality of personal-

ized diagnoses by applying the

ensemble-based approach?

In this work we propose different personalized diagnosis

algorithms for achieving a significant increase of the pre-

diction quality (Felfernig et al. (2013a)). Similarity-based,

utility-based, and probability-based prediction approaches

are exploited for calculating personalized diagnoses. To

demonstrate the results of our developments, we present an

evaluation of an ensemble-based diagnosis approach on the

basis of two datasets. The evaluation shows the benefits of

the presented approach in terms of prediction quality.

(Q4.2) Is the performance of cal-

culating personalized diagnoses

applicable for interactive set-

tings?

The PDIAG (Felfernig et al. (2013a)) algorithm presented in

this thesis is based on the hitting set algorithm introduced

in (Reiter (1987)). Although the algorithm is NP-hard (see

Friedrich et al. (1990)), according to our evaluation the per-

sonalized diagnosis approach with the best first node expan-

sion strategy can be applied in interactive settings. Further-

more a performance analysis that compares the run-times of

the ensemble-based diagnosis and other personalization ap-

proaches is presented.

Table 1.1.: Overview of the research objectives and the corresponding contributions of this thesis.

1.4. Thesis Outline

This thesis consists of eight chapters:

Chapter 1 provides an introduction and motivation of the topics of this thesis. The research ques-

tions related to the fields of model-based diagnosis, personalization strategies, and collaborative

knowledge acquisition are outlined. Finally, the chapter ends with a discussion of related research

objectives.

Chapter 2 gives an overview of the topic of recommender systems and different types of recommen-

dation approaches such as collaborative filtering, content-based filtering, knowledge-based recom-

mendation, and group-based recommendation. Related applications are discussed and future research

is outlined.

Chapter 3 introduces conflict detection and diagnosis methods for managing anomalies in knowl-

edge bases. The algorithms and strategies in this chapter are key technologies for knowledge-based

9

Chapter 1. Introduction

recommendation and configuration. Based on an example, algorithms for conflict detection and for

determining diagnoses are explained in detail as well as their performance is discussed.

In Chapter 4 different strategies for personalized diagnosis are presented. These strategies are

necessary for supporting users in finding a way out of the no solution could be found dilemma in a

personalized fashion. The focus of this chapter is to combine different personalization strategies to

one ensemble-based approach which is evaluated in terms of performance and prediction quality.

Chapter 5 is about WEEVIS, a wiki-based knowledge engineering platform for integrating knowl-

edge bases into wiki pages. This chapter describes the WEEVIS syntax and advantages and limitations

of the knowledge engineering environment.

In Chapter 6, the diagnosis and repair techniques of WEEVIS are presented in detail. The chapter

outlines how the WEEVIS environment supports users in case of the no solution could be found

dilemma.

Chapter 7 shows a practical application of the WEEVIS environment using an example from the

e-government domain. The chapter also conducts a performance evaluation of WEEVIS.

With Chapter 8 this thesis is rounded up by a reflection on the research questions and contributions

as well as topics for future research such as the parallelization of diagnosis algorithms and adopting

further strategies for using the wisdom of the crowd for knowledge creation.

10

Chapter 2
Toward the Next Generation of
Recommender Systems:
Applications and Research Challenges

This chapter is based on the results documented in Felfernig et al. (2013b).

The author of this thesis contributed

the analysis of related work and wrote major parts of the above mentioned paper.

2.1. Abstract

Recommender systems are assisting users in the process of identifying items that fulfill their wishes

and needs. These systems are successfully applied in different e-commerce settings, for example,

to the recommendation of news, movies, music, books, and digital cameras. The major goal of this

chapter is to discuss new and upcoming applications of recommendation technologies and to provide

an outlook on major characteristics of future technological developments. Based on a literature anal-

ysis, we discuss new and upcoming applications in domains such as software engineering, data &

knowledge engineering, configurable items, and persuasive technologies. Thereafter we sketch major

properties of the next generation of recommendation technologies.

2.2. Introduction

Recommender systems support users in the identification of items that fulfill their wishes and needs.

As a research discipline, recommender systems has been established in the early 1990’s (see, e.g.,

11

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

Goldberg et al. (1992)) and since then has grown enormously in terms of algorithmic developments

as well as in terms of deployed applications. A recommender system can be defined as a system

that guides users in a personalized way to interesting or useful objects in a large space of possible

objects or produces such objects as output (Burke (2000); Konstan and Riedl (2012)). Practical ex-

periences from the successful deployment of recommendation technologies in e-commerce contexts

(e.g., amazon.com Linden et al. (2003) and netflix.com Tuzhilin and Koren (2008)) contributed to

the development of recommenders in new application domains. Especially such new and upcoming

application domains are within the major focus of this chapter.

On an algorithmic level, there exist four basic recommendation approaches. First, content-based

filtering (Pazzani and Billsus (1997)) is an information filtering approach where features of items a

user liked in the past are exploited for the determination of new recommendations. Content-based

filtering recommendation is applied, for example, by amazon.com for the recommendation of items

which are similar to those that have already been purchased by the user. If a user has already purchased

a book related to the Linux operating system, new (and similar) books will be recommended to her/him

in the future.

Second, collaborative filtering is applied to the recommendation of items such as music and movies

(Konstan et al. (1997); Koren et al. (2009); Linden et al. (2003)). It is based on the concept of analyz-

ing the preferences of users with a similar item rating behavior. As such, it is a basic implementation

of word-of-mouth promotion with the idea that a purchase decision is influenced by the opinions of

friends and relatives. For example, if user Joe has purchased movies similar to the ones that have been

purchased by user Mary then amazon.com would recommend items to Joe which have been purchased

by Mary but not by Joe up to now. The major differences compared to content-based filtering are (a)

no need of additional item information (in terms of categories or keywords describing the items) and

(b) the need of information about the rating behavior of other users.

Third, high-involvement items such as cars, apartments, and financial services are typically rec-

ommended on the basis of knowledge-based recommendation technologies (Burke (2000); Felfernig

et al. (2006a)). These technologies are based on the idea of exploiting explicitly defined recommenda-

tion knowledge (defined in terms of deep recommendation knowledge, e.g., as rules and constraints)

for the determination of new recommendations. Rating-based recommendation approaches such as

collaborative filtering and content-based filtering are not applicable in this context since items are

not purchased very frequently. A consequence of this is that no up-to-date rating data of items is

available. Since knowledge-based recommendation approaches rely on explicit knowledge represen-

tations the so-called knowledge acquisition bottleneck becomes a major challenge when developing

and maintaining such systems (Felfernig et al. (2006a)).

Finally, group recommendation (Masthoff (2011)) is applied in situations where there is a need of

recommendations dedicated to a group of users, for example, movies to be watched by a group of

friends or software requirements to be implemented by a development team. The major difference

12

2.3. Recommender Systems in Software Engineering

compared to the afore mentioned recommendation approaches lies in the criteria used for determining

recommendations: while in the case of content-based filtering, collaborative filtering, and knowledge-

based recommendation the major goal is to identify recommendations that perfectly fit the preferences

of the current user, group recommendation approaches have to find ways to satisfy the preferences of

a user group.

The major focus of this chapter is to give an overview of new and upcoming applications of recom-

mendation technologies and to provide insights into major requirements regarding the development

of the next generation of recommender systems. Our work is based on an analysis of research pub-

lished in workshops, conferences, and journals summarized in Table 2.1. In this context we do not

attempt to provide an in-depth analysis of state-of-the-art recommendation algorithms (Adomavicius

and Tuzhilin (2005); Jannach et al. (2010)) and traditional applications of recommendation technolo-

gies (Schafer et al. (2011)) but focus on the aspect of new and upcoming applications (Ducheneaut

et al. (2009); Konstan and Riedl (2012)). An overview of these applications is given in Table 2.2.

The remainder of this chapter is organized as follows. In Sections 2.3–2.7 we provide an overview

of new types of applications of recommendation technologies and give working examples. In Sec-

tion 2.8 we sketch the upcoming generation of recommender systems as Personal Assistants which

significantly improve the overall quality of recommendations in terms of better taking into account

preferences of users – in this context we discuss major issues for future research.

Table 2.1.: Overview of journals and conferences (including workshops) used as the basis for the
literature analysis (papers on recommender system applications 2005–2012).

Journals and Conferences
International Journal of Electronic Commerce (IJEC)

Journal of User Modeling and User-Adapted Interaction (UMUAI)
AI Magazine

IEEE Intelligent Systems
Communications of the ACM

Expert Systems with Applications
ACM Recommender Systems (RecSys)

User Modeling, Adaptation, and Personalization (UMAP)
ACM Symposium on Applied Computing (ACM SAC)

ACM International Conference on Intelligent User Interfaces (IUI)

2.3. Recommender Systems in Software Engineering

Recommender systems can support stakeholders in software projects by efficiently tackling the infor-

mation overload immanent in software projects (Robillard et al. (2010)). They can provide stakeholder

support throughout the whole software development process – examples are the recommendation of

13

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

methodological knowledge (Burke and Ramezani (2010); Peischl et al. (2010)), the recommendation

of requirements (Felfernig et al. (2011b); Mobasher and Cleland-Huang (2011)), and the recommen-

dation of code (Cubranic et al. (2005); McCarey et al. (2005)).

Recommendation of Methodological Knowledge. Appropriate method selection is crucial for suc-

cessful software projects, for example, the waterfall process is only applicable for risk-free types of

projects but not applicable for high risk projects. Method recommendation is already applied in the

context of different types of development activities such as the domain-dependent recommendation

of algorithmic problem solving approaches (Burke and Ramezani (2010)) and the recommendation

of appropriate effort estimation methods (Peischl et al. (2010)). These approaches are based on the

knowledge-based recommendation paradigm (Burke (2000); Felfernig et al. (2006a)) since recom-

mendations do not rely on the taste of users but on well-defined rules defining the criteria for method

selection.

Recommendation of Code. Due to frequently changing development teams, the intelligent sup-

port of discovering, locating, and understanding code is crucial for efficient software development

(McCarey et al. (2005)). Code recommendation can be applied, for example, in the context of (col-

laborative) call completion (which API methods from a large set of options are relevant in a certain

context?) (McCarey et al. (2005)), recommending relevant example code fragments (which sequence

of methods is needed in the current context?) (Holmes et al. (2006)), tailoring the displayed software

artifacts to the current development context (Kersten and Murphy (2010)), and classification-based

defect prediction (Misirli et al. (2011)). For an in-depth discussion of different types of code rec-

ommendation approaches and strategies we refer the reader to (Happel and Maalej (2008); Robillard

et al. (2010)).

Table 2.2.: Overview of identified recommender applications not in the mainstream of e-commerce

applications (Knowledge-based Recommendation: KBR, Collaborative Filtering: CF,

Content-based Recommendation: CBR, Machine Learning: ML, Group Recommenda-

tion: GR, Probability-based Recommendation: PR, Data Mining: DM).

Domain Recommended Items Recommendation Approach

Software effort estimation methods KBR Peischl et al. (2010)

Engineering problem solving approaches KBR Burke and Ramezani (2010)

API call completions CF McCarey et al. (2005)

example code fragments CBR Holmes et al. (2006)

software defects ML Misirli et al. (2011)

requirements prioritizations GR Felfernig et al. (2011b)

software requirements CF Mobasher and Cleland-Huang

(2011)

14

2.3. Recommender Systems in Software Engineering

Domain Recommended Items Recommendation Approach

Data & Knowledge related constraints KBR Felfernig et al. (2012b, 2011a)

Engineering explanations (hitting sets) KBR Felfernig et al. (2012a)

constraint rewritings KBR Felfernig et al. (2010)

database queries CF Chatzopoulou et al. (2009)

CBF Fakhraee and Fotouhi (2011)

Knowledge-based relevant features CF Felfernig and Burke (2008)

Configuration requirements repairs CBF Felfernig et al. (2009a)

Persuasive game task complexities CF Berkovsky et al. (2010)

Technologies development practices KBR Pribik and Felfernig (2012)

Smart Homes equipment configurations KBR Leitner et al. (2012)

smart home control actions CF LeMay et al. (2009d)

People criminals PR Tayebi et al. (2011)

reviewers CF Kapoor et al. (2007)

physicians CF Hoens et al. (2010)

Points of Interest tourism services CF Huang et al. (2010)

passenger hotspots PR Yuan et al. (2012)

Help Services schools CBR Wilson et al. (2009)

financial services KBR Fano and Kurth (2003)

lifestyles KBR Hammer et al. (2010)

receipes CBR Pinxteren et al. (2011)

health information CBR Wiesner and Pfeifer (2010)

Innovation innovation teams KBR Brocco and Groh (2009)

Management business plans KBR Jannach and Bundgaard-Joergensen

(2007)

ideas DM Thorleuchter et al. (2010)

Recommendation of Requirements. Requirements engineering is one of the most critical phases

of a software development process and poorly implemented requirements engineering is one of the

major reasons for project failure (Hofmann and Lehner (2001)). Core requirements engineering activ-

ities are elicitation & definition, quality assurance, negotiation, and release planning (Sommerville

(2007)). All of these activities can be supported by recommendation technologies, for example,

the (collaborative) recommendation of requirements to stakeholders working on similar requirements

(Mobasher and Cleland-Huang (2011)) and the group-based recommendation of requirements priori-

tizations (Felfernig et al. (2011b); Ninaus et al. (2014)).

15

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

Example: Content-based Recommendation of Similar Requirements. In the following, we will

exemplify the application of content-based filtering (Pazzani and Billsus (1997)) in the context of

requirements engineering. A recommender can support stakeholders, for example, by recommending

requirements that have been defined in already completed software projects (requirements reuse) or

have been defined by other stakeholders of the same project (redundancy and dependency detection).

Table 2.3 provides an overview of requirements defined in a software project. Each requirement reqi

is characterized by a category, the number of estimated person days to implement the requirement,

and a textual description.

Table 2.3.: Example of a content-based filtering recommendation problem: recommendation of sim-
ilar requirements based on category and/or keyword information.

requirement category person days description
req1 database 170 store component configuration in DB
req2 user interface 65 user interface with online help available
req3 database 280 separate tier for DB independence
req4 user interface 40 user interface with corporate identity

If we assume that the stakeholder currently interacting with the requirements engineering environ-

ment has already investigated the requirement req1 (assigned to the category database), a content-

based recommender system would recommend the requirement req3 (if this one has not been inves-

tigated by the stakeholder up to now). If no explicitly defined categories are available, the textual

description of each requirement can be exploited for the extraction of keywords which serve for the

characterization of the requirement. Extracted keywords can then be used for the determination of

similar requirements (R. Mooney (2004)). A basic metric for determining the similarity between

two requirements is given in Formula 2.1. For example, sim(req1, req3) = 0.17, if we assume key-

words(req1) = {store, component, configuration, DB} and keywords(req3) = {tier, DB, independence}.

sim(req1,req2) =
|keywords(req1)∩ keywords(req2)|
|keywords(req1)∪ keywords(req2)|

(2.1)

Example: Group-based Recommendation of Requirements Prioritizations. Group recommenders

include heuristics (Masthoff (2011)) that can help to find solution alternatives which will be accepted

by the members of a group (with a high probability). Requirements prioritization is the task of decid-

ing which of a given set of requirements should be implemented within the scope of the next software

release – as such, this task has a clear need of group decision support: a stakeholder group has to

decide which requirements should be taken into account. Different heuristics for coming up with a

group recommendation are possible, for example, the majority heuristic proposes a recommendation

that takes the majority of requirements-individual votes as group recommendation (see Table 2.4). In

contrast, the least misery heuristic recommends the minimum of the requirements-individual ratings

16

2.4. Recommender Systems in Data & Knowledge Engineering

to avoid misery for individual group members. For a detailed discussion of different possible group

recommendation heuristics we refer the reader to (Masthoff (2011)).

Table 2.4.: Example of a group recommendation problem: recommendation of requirements prioriti-
zations to a group of stakeholders (used heuristics = majority voting).

requirement stakeholder1 stakeholder2 stakeholder3 stakeholder4 recommendation
req1 1 1 1 2 1
req2 5 4 5 5 5
req3 3 3 2 3 3
req4 5 5 4 5 5

2.4. Recommender Systems in Data & Knowledge Engineering

Similar to conventional software development, knowledge-based systems development suffers from

continuously changing organizational environments and personal. In this context, recommender sys-

tems can help database & knowledge engineers to better cope with the size and complexity of knowl-

edge structures (Chatzopoulou et al. (2009); Felfernig et al. (2009a)). For example, recommender

systems can support an improved understanding of the knowledge base by actively suggesting those

parts of the knowledge base which are candidates for increased testing and debugging (Felfernig et al.

(2009a, 2012b)). Furthermore, recommender systems can propose repair and refactoring actions for

faulty and ill-formed knowledge bases (Felfernig et al. (2010, 2011a)). In the context of informa-

tion search, recommender systems can improve the accessibility of databases (knowledge bases) by

recommending queries (Chatzopoulou et al. (2009)).

Knowledge Base Understanding. Understanding the basic elements and the organizational structure

of a knowledge base is a major precondition for efficient knowledge base development and mainte-

nance. In this context, recommender systems can be applied for supporting knowledge engineers, for

example, by (collaboratively) recommending constraints to be investigated when analyzing a knowl-

edge base (recommendation of navigation paths through a knowledge base) or by recommending

constraints which are related to each other, i.e., are referring to common variables (Felfernig et al.

(2012b)).

Knowledge Base Testing and Debugging. Knowledge bases are frequently adapted and extended

due to the fact that changes in the application domain have to be integrated into the corresponding

knowledge base. Integrating such changes into a knowledge base in a consistent fashion is time-

critical (Felfernig et al. (2006a)). Recommender systems can be applied for improving the efficiency

of knowledge base testing and debugging by recommending minimal sets of changes to knowledge

bases which allow to restore consistency (Felfernig et al. (2009a, 2012a)). Popular approaches to the

identification of such hitting sets are model-based diagnosis introduced by Reiter (Reiter (1987)) and

different variants thereof (Felfernig et al. (2012a)).

17

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

Knowledge Base Refactoring. Understandability and maintainability of knowledge bases are im-

portant quality characteristics which have to be taken into account within the scope of knowledge

base development and maintenance processes (Barker et al. (1989)). Low quality knowledge struc-

tures can lead to enormous maintenance costs and thus have to be avoided by all available means.

In this context, recommender systems can be applied for recommending relevant refactorings, i.e.,

semantics-preserving structural changes of the knowledge base. Such refactorings can be represented

by simple constraint rewritings (Felfernig et al. (2010)) or by simplifications in terms of recommended

removals of redundant constraints, i.e., constraints which do not have an impact on the semantics of

the knowledge base (Felfernig et al. (2011a)).

Recommender Systems in Databases. Chatzopoulou et al. (2009) introduce a recommender appli-

cation that supports users when interactively exploring relational databases (complex SQL queries).

This application is based on collaborative filtering where information about the navigation behav-

ior of the current user is exploited for the recommendation of relevant queries. These queries are

generated on the basis of the similarity of the current user’s navigation behavior and the navigation

behavior of nearest neighbors (other users with a similar navigation behavior who already searched

the database). Fakhraee and Fotouhi (2011) focus on recommending database queries which are de-

rived from those database attributes that contain the keywords part of the initial user query. In contrast

to Chatzopoulou et al. (2009), Fakhraee and Fotouhi (2011) do not support the recommendation of

complex SQL queries but focus on basic lists of keywords (keyword-based database queries).

Example: Collaborative Recommendation of Relevant Constraints. When knowledge engineers try

to understand a given set of constraints part of a knowledge base, recommender systems can provide

support in terms of showing related constraints, for example, constraints that have been analyzed by

knowledge engineers in a similar navigation context. In Table 2.5, the constraints {constraint1..4}
have already partially been investigated by the knowledge engineers {knowledge engineer1..3}. For

example, knowledge engineer1 has already investigated the constraints constraint1 and constraint3.

Collaborative filtering (CF) can exploit the ratings (the rating = 1 if a knowledge engineer has already

investigated a constraint and it is 0 if the constraint has not been investigated up to now) for identifying

additional constraints relevant for the knowledge engineer.

Table 2.5.: Example of a collaborative recommendation problem. The entry ij with value 1 (0) denotes
that fact that knowledge engineeri has (not) inspected constraint j.

constraint1 constraint2 constraint3 constraint4
knowledge engineer1 1 0 1 ?
knowledge engineer2 1 0 1 1
knowledge engineer3 1 1 0 1

User-based CF (Konstan et al. (1997)) identifies the k-nearest neighbors (knowledge engineers with

a similar knowledge navigation behavior) and determines a prediction for the rating of a constraint the

knowledge engineer had not to deal with up to now. This prediction can be determined, for exam-

18

2.5. Recommender Systems for Configurable Items

ple, on the basis of the majority of the k-nearest neighbors. In the example of Table 2.5 knowledge

engineer2 is the nearest neighbor (if we set k=1) since knowledge engineer2 has analyzed (or changed)

all the constraints investigated by knowledge engineer1. At the same time, knowledge engineer1 did

not analyze (change) the constraint constraint4. In our example, CF would recommend the constraint4
to knowledge engineer1.

2.5. Recommender Systems for Configurable Items

Configuration can be defined as a basic form of design activity where a target product is composed

from a set of predefined components in such a way that it is consistent with a set of predefined con-

straints (Sabin and Weigel (1998)). Similar to knowledge-based recommender systems (Burke (2000);

Felfernig et al. (2006a)), configuration systems support users in specifying their requirements and give

feedback in terms of solutions and corresponding explanations (Falkner et al. (2011)). The major dif-

ference between configuration and recommender systems is the way in which these systems represent

the product (configuration) knowledge: configurators are exploiting a configuration knowledge base

whereas (knowledge-based) recommender systems are relying on a set of enumerated solution alter-

natives (items). Configuration knowledge bases are especially useful in scenarios with a large number

of solution alternatives which would make an explicit representation extremely inefficient (Falkner

et al. (2011)).

In many cases, the amount and complexity of options presented by a configurator outstrips the

capability of a user to identify an appropriate solution. Recommendation technologies can be applied

in various ways to improve the usability of configuration systems, for example, filtering out product

features which are relevant for the user (Falkner et al. (2011); Garcia-Molina et al. (2011)), proposing

concrete feature values and thus helping the user in situations where knowledge about certain product

properties is not available (Falkner et al. (2011)), and by determining plausible repairs for inconsistent

user requirements (Felfernig et al. (2009a)).

Selecting Relevant Features. In many cases users are not interested in specifying all the features

offered by a configurator interface, for example, some users may be interested in the GPS function-

ality of digital cameras whereas this functionality is completely uninteresting for other users. In this

context, recommender systems can help to determine features of relevance for the user, i.e., features

the user is interested to specify. Such a feature recommendation can be implemented, for example, on

the basis of collaborative filtering (Felfernig and Burke (2008)).

Determining Relevant Feature Values. Users try to avoid to specify features they are not interested

in or about which they do not have the needed technical knowledge (Falkner et al. (2011)). In such

a context, recommender systems can automatically recommend feature values and thus reduce the

burden of interaction for the user. Feature value recommendation can be implemented, for example,

on the basis of collaborative filtering (Falkner et al. (2011); Konstan et al. (1997)). Note that feature

19

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

value recommendation can trigger biasing effects and – as a consequence – could also be exploited

for manipulating users to select services which are not necessarily needed (Mandl et al. (2011)).

Determining Plausible Repairs for Inconsistent Requirements. In situations where no solution can

be found for a given set of customer requirements, configuration systems determine a set of repair

alternatives which guarantee the recovery of consistency. Typically many different repair actions are

determined by the configurator which makes it nearly infeasible for the user to find one which exactly

fits his/her wishes and needs. In such a situation, knowledge-based and collaborative recommendation

technologies can be exploited for personalizing the user requirements repair search process (Felfernig

et al. (2009a)).

Example: Collaborative Recommendation of Features. Table 2.6 represents an interaction log

which indicates in which session which features have been selected by the user (in which order) –

in session1, feature1 was selected first, then feature3 and feature2, and finally feature4. One approach

to determine relevant features for (the current) user in session5 is to apply collaborative filtering.

Assuming that the user in session5 has specified the features1,2, the most similar session would be

session2 and feature3 would be recommended to the user since it had been selected by the nearest

neighbor (user in session2). For a discussion of further feature selection approaches we refer the

reader to Falkner et al. (2011).

Table 2.6.: Example of collaboratively recommending relevant features. A table entry x denotes the
order in which a user specified values for the given features.

feature1 feature2 feature3 feature4

session1 1 3 2 4
session2 1 2 3 4
session3 1 1 4 3
session4 1 3 2 4
session5 1 2 ? ?

2.6. Recommender Systems for Persuasive Technologies

Persuasive technologies (Fogg (2003)) aim to trigger changes in a user’s attitudes and behavior on

the basis of the concepts of human computer interaction. The impact of persuasive technologies can

be significantly increased by additionally integrating recommendation technologies into the design of

persuasive systems. Such an approach moves persuasive technologies forward from a one-size-fits

all approach to a personalized environment where user-specific circumstances are taken into account

when generating persuasive messages (Berkovsky et al. (2012)). Examples of the application of rec-

ommendation technologies in the context of persuasive systems are the enforcement of physical ac-

tivity while playing computer games (Berkovsky et al. (2010)) and encouraging software developers

to improve the quality of their software components (Pribik and Felfernig (2012)).

20

2.7. Further Applications

Persuasive Games. Games focusing on the motivation of physical activities include additional re-

ward mechanisms to encourage players to perform real physical activities. Berkovsky et al. (2010)

show the successful application of collaborative filtering recommendation technologies (Konstan et al.

(1997)) for estimating the personal difficulty of playing. This recommendation (estimation) is ex-

ploited to adapt the difficulty level of the current game session since the perceived degree of difficulty

is correlated with the preparedness of a user to perform physical activities.

Persuasive Software Development Environments. Software development teams are often under the

gun of developing software components under high time pressure which often has a direct impact

on the corresponding software quality. However, in the long term software quality is strongly cor-

related with the degree of understandability and maintainability. In this context, software quality

improvements can be achieved by recommendation technologies, for example, knowledge-based rec-

ommenders can be applied to inform programmers about critical code segments and also recommend

actions to be performed in order to increase the software quality. Pribik and Felfernig (2012) introduce

such an environment which has been implemented as an Eclipse plugin (www.eclipse.org).

Example: Collaborative Estimation of Personal Game Level Difficulties. Table 2.7 depicts a simple

example of the application of collaborative filtering to the determination of personal difficulty levels.

Let us assume that the current user in session5 has already completed the tasks 1..3; by determining

the nearest neighbor of session5 we can infer a probable duration of task4: session1 is the nearest

neighbor of session5 and the user of session1 needed 7 time units to complete task4. This knowledge

about the probable time efforts needed to complete a task can be exploited to automatically adapt the

complexity level of the game (with the goal to increase the level of physical activity (Berkovsky et al.

(2010))).

Table 2.7.: Collaborative filtering based determination of personal game difficulty levels. A table
entry x denotes the time a user needed to complete a certain game task.

task1 task2 task3 task4

session1 4 6 5 7
session2 1 2 2 2
session3 4 5 5 6
session4 1 1 1 2
session5 4 6 4 ?

2.7. Further Applications

Up to now we discussed a couple of new and innovative application domains for recommendation

technologies. Admittedly, this enumeration is incomplete since it does not reflect wide-spread e-

commerce applications – for a corresponding overview the interested reader is referred to Linden

et al. (2003); Schafer et al. (2011). In this section we discuss further new and upcoming application

21

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

domains for recommendation technologies that have been identified within the scope of our literature

analysis.

Recommender Systems for Smart Homes. Smart homes are exploiting information technologies to

improve the quality of life inside the home. Leitner et al. (2012) show the application of knowledge-

based recommendation technologies in the context of ambient assisted living (AAL) scenarios where

on the one hand recommenders are applied to the design a smart home, on the other hand to control

the smart home equipment. During the design phase of a smart home, the user is guided through a

preference construction process with the final outcome of a recommendation of the needed technical

equipment for the envisioned smart home. For already deployed smart home installations recommen-

dation technologies support the people living in the smart home by recommending certain activities

such as activating the air conditioning or informing other relatives about dangerous situations (e.g.,

for some relevant time period the status of the elderly people living in the house is unclear). A further

application of recommendation technologies within the context of AAL is reported by LeMay et al.

(2009d) who introduce an application of collaborative recommendation technologies for supporting

the control of complex smart home installations.

People Recommender. Social networks such as facebook.com or linkedin.com are increasingly pop-

ular communication platforms. These platforms also include different types of recommender appli-

cations that support users in retrieving interesting music, travel destinations, and connecting to other

people. Recommendations determined by these platforms are often exploiting the information con-

tained in the underlying social network (Golbeck (2009)). A new and upcoming application which

exploits the information of social networks is the identification of crime suspects. In this context,

social networks are representing the relationships between criminals. The CrimeWalker system intro-

duced by Tayebi et al. (2011) is based on a random-walk based method which recommends (provides)

a list of the top-k potential suspects of a crime. Similar to CrimeWalker, TechLens is a recommender

system which focuses on the recommendation of persons who could act – for example – as review-

ers within the scope of a scientific conference organization. In contrast to CrimeWalker, the current

version of TechLens does not exploit information from social networks – it is based on a collaborative

filtering recommendation approach. Yuan et al. (2012) present their approach to the recommenda-

tion of passenger hotspots, i.e., the recommender system is responsible for improving the prediction

quality of hotspots and with this decreases the idle time of taxi drivers. Finally, Hoens et al. (2010)

present their approach to the recommendation of physicians – the major goal behind this application

is to provide mechanisms which improve the quality of physician selection which otherwise is based

on simple heuristics such as the opinion of friends or the information found on websites.

RFID based Recommenders. Personalized services become ubiquitous, for example, in tourism

many destinations such as museums and art galleries are providing personalized access to help cus-

tomers to better cope with the large amount of available services. An alternative to force users to

explicitly declare their preferences before receiving a recommendation of potentially interesting ser-

vices is to observe a user’s navigation behavior and – on the basis of this information – to infer

22

2.7. Further Applications

plausible recommendations. Such a recommendation approach is in the need of location and object

information in order to be able to store the user navigation behavior. A collaborative filtering based

handheld guide for art museums is introduced in Huang et al. (2010) where Radiofrequency Identifi-

cation (RFID) serves as a basis for preference data acquisition. RFID is a non-contact tracking system

which exploits radio-frequency electromagnetic fields to transfer tag data for the purposes of object

identification and object tracking (Thiesse and Michahelles (2009)).

Help Agents. Howto’s are an important mechanism to provide guidance for users who are non-

experts in a certain problem domain – such a support can be implemented, for example, on the basis

of recommendation technologies (Terveen and Hill (2001)). One example for such a type of help

agent is SmartChoice which is a (content-based) recommender system that supports representatives

of low-income families in the choice of a public school for their children. Such a recommendation

support is crucial since in many cases (a) parents do not dispose of detailed knowledge about the

advantages and disadvantages of the different school types and (b) a false decision can have a very

negative impact on the future life of the children. Another example of a help agent is Personal Choice

Point (Fano and Kurth (2003)) which is a financial service recommendation environment focusing on

the visualization of the impact of different financial decisions on a user’s life. Hammer et al. (2010)

present MED-StyleR which is a lifestyle recommender dedicated to the support of diabetes patients

with the goal of improving care provision, enhancing the quality of a patient’s life, and also to lower

costs of public health institutions and patients. Another lifestyle related recommender application is

presented by Pinxteren et al. (2011) which focuses on determining health-supporting recipes that also

fit the lifestyle of the user. In the same line, Wiesner and Pfeifer (2010) introduce a content-based

recommender application dedicated to the identification of relevant health information for a specific

user.

Recommender Systems in Open Innovation. Integrating consumer knowledge into a company’s in-

novation processes (also denoted as Open Innovation (Chesbrough (2003))) is in many cases crucial

for efficient new product and service development. Innovation process quality has a huge impact

on the ability of a company to achieve sustainable growth. Innovations are very often triggered by

consumers who are becoming active contributors in the process of developing new products. Plat-

forms such as sourceforge.net or ideastorm.com confirm this trend of progressive customer integra-

tion. These platforms exploit community knowledge and preferences to come up with new require-

ments, ideas, and products. In this context, the size and complexity of the generated knowledge

(informal descriptions of requirements and ideas as well as knowledge bases describing new products

on a formal level) outstrips the capability of community members to retain a clear view. Recom-

mender systems can provide help in terms of finding other users with similar interests and ideas (team

recommendation (Brocco and Groh (2009))) and to (semi-) automatically filter out the most promising

ideas (idea mining (Jannach and Bundgaard-Joergensen (2007); Thorleuchter et al. (2010))).

23

Chapter 2. Toward the Next Generation ofRecommender Systems:Applications and Research Challenges

2.8. Issues for Future Research

Recommendation technologies have been successfully applied for almost two decades primarily with

the goal of increasing the revenue of different types of online services. In most of the existing systems

the primary focus is to help to achieve business goals, rarely the viewpoint of the customer is taken into

account in the first place (Martin et al. (2011)). For example, amazon.com recommenders inform users

about new books of interest for them; a more customer-centered recommendation approach would also

take into account (if available) information about books that have been bought by friends or relatives

and thus are potentially available for the customer (Martin et al. (2011)). As a consequence, we are

in the need of new recommendation technologies that allow more customer-centered recommendation

approaches. In this context, the following research challenges have to tackled.

Focusing on the User Perspective. There are many other scenarios quite similar to the above men-

tioned amazon.com one where the recommender system is clearly focused on increasing business

revenues. For example, consumer packaged goods (CPG) are already offered on the basis of recom-

mender systems (Dias et al. (2008)), however, these systems are domain-specific, i.e., do not take into

account information regarding goods and services offered by the grocer nearby. Digital camera rec-

ommenders recommend the newest technology but in most cases do not take into account the current

portfolio of the user, for example, if a user has a complete lens assortment of camera provider X it

does not make sense to recommend a new camera of provider Y in the first place. An approach which

is in the line of the idea of a stronger focus on the quality of user support is the RADAR personal

assistant introduced by Faulring et al. (2009) that supports multi-task coordination of personal emails.

Sharing Recommendation Knowledge. Besides commercial interests, one of the major reasons for

the low level of customer orientation of todays recommender solutions is the lack of the needed rec-

ommendation knowledge. In order to recommend books already read by friends the recommender

would need the information of the social network of the customer. The global availability of CPG

goods information seems to be theoretically possible but is definitely in the need of a corresponding

cloud and mobile computing infrastructure. More customer-centered recommender systems will fol-

low the paradigm of personal assistants which does not focus on specific recommendation services but

rather provides an integrated and multi-domain recommendation service (Chung et al. (2007); Martin

et al. (2011)). Following the idea of ambient intelligence (Ramos et al. (2008)), such systems will be

based on global object information (Ramiez-Gonzales et al. (2010); Thiesse and Michahelles (2009))

and support users in different application contexts in a cross-domain fashion.

Context Awareness. New recommendation technologies will intensively exploit the infrastructure

of mobile services to determine and take into account the context of the current user (Adomavicius

and Tuzhilin (2005)). Information such as the users shorttime and longterm preferences, geographical

position, movement data, calendar information, information from social networks can be exploited for

detecting the current context of the person and exploit this information for coming up with intelligent

recommendations (Ballatore et al. (2010)).

24

2.9. Conclusions

Unobtrusive Preference Identification. Knowledge about user preferences is a key preliminary for

determining recommendations of relevance for the user. A major issue in this context is the develop-

ment of new technologies which allow the elicitation of preferences in an unobtrusive fashion (Foster

and Oberlander (2010); Lee et al. (2008); Winoto and Tang (2010)). The three major modalities to

support such a type of preference elicitation are the detection of facial expressions, the interpretation

of recorded speech, and the analysis of physiological signals. An example of the derivation of user

preferences from the analysis of eye tracking patterns is presented by Xu et al. (2008) who exploit

eye tracking technologies by interpreting attention times to improve the quality of a content-based

filtering recommender. An approach to preference elicitation from physiological signals is presented

by Janssen et al. (2011) who exploit the information about skin temperature for measuring valence

which is applicable to mood measurement.

Psychological Aspects of Recommender Systems. Building efficient recommendation algorithms

and the corresponding user interfaces requires a deep understanding of human decision processes.

This goal can be achieved by analyzing existing psychological theories of human decision making

and their impact on the construction of recommender systems. Cosley et al. (2003) already showed

that the style of item rating presentation has a direct impact on a users’ rating behavior. Adomavicius

et al. (2011) showed the existence of anchoring effects in different collaborative filtering scenarios.

With their work, Adomavicius et al. (2011) confirm the results presented by Cosley et al. (2003)

but they show in more detail in which way rating drifts can have an impact on the rating behavior

of a user. As already mentioned, recommendation technologies improve the quality of persuasive

interfaces (Berkovsky et al. (2010); Pribik and Felfernig (2012)). Future recommenders should exploit

the information provided by the mentioned preference elicitation methods (Janssen et al. (2011)).

2.9. Conclusions

With this chapter we provide an overview of new and upcoming applications of recommendation

technologies. This overview does not claim to be complete but is the result of an analysis of work

published in recommender systems related workshops, conferences, and journals. Beside providing

insights into new and upcoming applications of recommendation technologies we also provide a dis-

cussion of issues for future research with the goal of advancing the state of the art in recommender

systems which is characterized by a more user-focused and personal assistance based recommendation

paradigm.

25

26

Chapter 3
Conflict Detection and Diagnosis
Techniques for Anomaly Management

This chapter is based on the results documented in Felfernig et al. (2014d).

Besides writing major parts of the above mentioned paper, the author of this thesis contributed

the examples and the empirical evaluation.

3.1. Abstract

The widespread industrial application of configuration technologies triggers an increasing demand

for intelligent techniques that efficiently support anomaly management operations for configuration

knowledge bases. Examples of such operations are the testing and debugging of faulty knowledge

bases (see (Friedrich et al., 2014)) and the detection of redundancies in configuration knowledge

bases (see (Felfernig et al., 2014e)). The goal of this chapter is to discuss techniques and algorithms

which form the technological basis for the aforementioned anomaly management operations.

3.2. Introduction

Anomalies can be characterized as parts of a knowledge base that conform to a defined pattern of un-

intended structures – see also (Chandola et al., 2009). Anomaly management operations presented in

this chapter are the automated testing and debugging of configuration knowledge bases (see (Friedrich

et al., 2014)) and the automated detection of redundancies in configuration knowledge bases (see

(Felfernig et al., 2014e)). Anomaly management operations are very important since configuration

27

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

knowledge bases are often complex and subject to frequent changes (Barker et al., 1989; Fleischan-

derl et al., 1998).

The foundation for anomaly management are conflict detection and diagnosis algorithms that help

to detect (a) minimal subsets of the knowledge base that are responsible for a faulty behavior (Junker,

2004; Felfernig et al., 2004, 2012b, 2013c) and (b) maximal subsets of the knowledge base which are

redundancy-free (Felfernig et al., 2011a). More precisely, conflict detection algorithms are able to

determine minimal sets of constraints that are inconsistent, i.e., do not allow the determination of a

solution (configuration). In addition, diagnosis algorithms can determine minimal sets of constraints

in the configuration knowledge base that have to be deleted or adapted such that the remaining set of

constraints is consistent (see (Friedrich et al., 2014)), i.e., a solution can be determined. Typically,

diagnoses are determined from a given set of (minimal) conflicts and – vice-versa – minimal conflicts

can as well be determined on the basis of a given set of (minimal) diagnoses (see Section 3.5).

The major focus of this chapter is to provide an introduction to some of the existing conflict detec-

tion and diagnosis techniques which are the foundation for the aforementioned anomaly management

operations. The remainder of this chapter is organized as follows. In Section 3.3, we introduce the

working example used in this chapter – it is a simplified version of the example configuration knowl-

edge base introduced in (Hotz et al., 2014). We discuss selected conflict detection algorithms in

Section 3.4 and the corresponding diagnosis algorithms in Section 3.5. On the basis of the results of a

performance analysis, we discuss the advantages and disadvantages of the presented conflict detection

and diagnosis algorithms. Section 3.6 concludes this chapter.

3.3. Example

We introduce a working example which is based on the configuration knowledge base introduced in

(Hotz et al., 2014). For the following discussions we introduce the configuration knowledge base

(CKB) of a fragment of a personal computer (PC) which consists of the component types MB (mother-

board) and CPU (central processing unit) and their specific subtypes {MBSilver, MBDiamond} and {CPUS,

CPUD}.

The following personal computer (PC) configuration knowledge base (configuration model) is in-

consistent, i.e., it does not allow the calculation of a solution (configuration). Such situations often

occur as a result of maintenance operations in a knowledge base where, for example, conflicts are

introduced due to the insertion of new elements or due to the adaptation of existing ones. In our

working example we assume that constraint c2 (CPUS requires MBSilver) has been added by the knowl-

edge engineer in order to replace the faulty constraint c1 (CPUS requires MBDiamond). Unfortunately, the

knowledge engineer inserted c2 without deleting c1. Our example also assumes that a constraint c5

(instances of the component type CPUD should not be part of any configuration) was introduced ear-

lier for testing purpose with no intent to have it pertaining to the configuration model. However the

28

3.4. Determining Minimal Conflict Sets

knowledge engineer forgot to disable it after testing the model. Constraint c3 states that an MBSilver

must not be combined with a CPUD and constraint c4 states that an MBDiamond must not be combined

with a CPUS.

CKB = {

cα : ∀X : MB(X)→∃1
1Y : cpu-of-mb(Y,X).

cβ : ∀X : CPU(X)→∃1
1Y : mb-of-cpu(Y,X).

cγ : ∀X : MB(X)↔MBSilver(X)∨MBDiamond(X).

cδ : ∀X : ¬MBSilver(X)∨¬MBDiamond(X).

cε : ∀X : CPU(X)↔CPUD(X)∨CPUS(X).

cφ : ∀X ,Y : cpu-of-mb(X,Y)↔mb-of-cpu(Y,X).

cι : ∀X : ¬CPUD(X)∨¬CPUS(X).

c1 : ∀X ,Y : cpu-of-mb(Y,X)∧CPUS(Y)→MBDiamond(X).

c2 : ∀X ,Y : cpu-of-mb(Y,X)∧CPUS(Y)→MBSilver(X).

c3 : ∀X ,Y : cpu-of-mb(Y,X)∧CPUD(Y) ∧ MBSilver(X)→ f alse.

c4 : ∀X ,Y : cpu-of-mb(Y,X)∧CPUS(Y) ∧ MBDiamond(X)→ f alse.

c5 : ∀X : CPUD(X)→ f alse.

}

We will now start with a discussion of algorithms that focus on conflict detection and then show

how to exploit identified minimal conflict sets in order to determine corresponding diagnoses.

3.4. Determining Minimal Conflict Sets

Before discussing basic conflict detection algorithms useful for (but not limited to) configuration

scenarios, we introduce the definition of a conflict (conflict set) in the context of an inconsistent

configuration knowledge base.

Definition (Minimal Conflict Set) A conflict set CS = {ca,cb, ...,cz} is a subset of C such that

inconsistent(B ∪CS). AC = B ∪C represents the set of all constraints in the knowledge base

(AC = {c1,c2, ...,cn}), B represents the background knowledge (no conflict elements are assumed

to be included in B), and C represents the set of constraints subject of conflict search. A conflict set

CS is minimal if there does not exist a CS′ ⊂CS which has the conflict property.

29

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

Note that if we want to analyse the whole knowledge base (taking into account the complete set of

constraints in conflict set search), we simply have to define C = AC and – as a consequence – B = /0.

In our working example we are able to identify the following minimal conflict sets: CS1 =

{c1,c4,c5} and CS2 = {c1,c2,c5}. These sets do not allow the determination of a solution, i.e., incon-

sistent({c1,c4,c5}∪B) and inconsistent({c1,c2,c5}∪B). CS1 and CS2 are minimal since none of their

subsets fulfills the conflict set property. Each minimal conflict set (conflict) can simply be resolved by

deleting one of it’s elements. This approach is used by some of the diagnosis algorithms discussed in

Section 3.5.

In the remainder of this section we introduce and evaluate two basic conflict detection algorithms:

SIMPLECONFLICTDETECTION and QUICKXPLAIN.

3.4.1. Simple Conflict Detection

The first approach to the determination of minimal conflict sets is SIMPLECONFLICTDETECTION

(see Algorithm 1). Conform with the introduced definition of a conflict set, the algorithm focuses

the search for a minimal conflict by explicitly specifying the set of constraints C ⊆ AC which might

induce a conflict. Note that SIMPLECONFLICTDETECTION determines exactly one conflict set per

computation. In order to identify all minimal conflicts in C, this algorithm has to be combined with a

HSDAG-based diagnosis algorithm (see Section 3.5).

Algorithm 1 − SIMPLECONFLICTDETECTION

1 func SIMPLECONFLICTDETECTION(C ⊆ AC,B = AC−C}) : CS
2 CS← /0;
3 if inconsistent(B) or consistent(B∪C) return(/0);
4 else
5 repeat
6 Φ =CS;
7 repeat
8 c← element(C−Φ);
9 Φ←Φ∪{c};

10 until inconsistent(Φ)
11 CS←CS∪{c};
12 until inconsistent(CS)
13 return(CS);

The set CS collects all relevant elements (constraints) of the minimal conflict. If the deletion of all

constraints of C does not allow the determination of a solution (inconsistent(B)) or AC (B∪C) itself

is consistent, there is no need for searching for a conflict (the empty set /0 is returned). In all other

cases, the algorithm tries to identify a minimal conflict. In order to achieve this goal, elements ci of C

30

3.4. Determining Minimal Conflict Sets

are extracted and used to figure out whether they are triggering a conflict. If such an element has been

identified, it is stored in the set CS which collects the set of elements contributing to the conflict.

In order to demonstrate the functionality of SIMPLECONFLICTDETECTION, the basic steps of

this algorithm are shown in Table 3.1. For this example (see also Figure 3.1) we take the

constraints of our domain description (DD) and assume that C = {c1,c2,c3,c4,c5} and AC =

{cα,cβ,cγ,cδ,cε,cφ,cι,c1,c2,c3,c4,c5} (B = {cα,cβ,cγ,cδ,cε,cφ,cι}). The inner loop is responsible

for detecting individual elements that participate in the conflict, the outer loop is responsible for

checking wether the generated set CS is already inconsistent, i.e., a minimal conflict set could be

found.

Figure 3.1.: A conflict set CS is a subset of C (AC =C∪B) which is inconsistent with B. CS is minimal
if no subset of CS fulfills the conflict set property. In this context, B is the background
knowledge which includes all constraints considered correct. An example conflict set is
CS1 = {c1,c4,c5}.

Algorithm Analysis. If a minimal conflict set can be determined (AC−C consistent and AC incon-

sistent), SIMPLECONFLICTDETECTION needs O(2) additional consistency checks in the best case (a

constraint ca that represents a singleton conflict and is located at the first position of the constraint

list C). In the worst case, each element of C is also part of the minimal conflict – in this case,

O((n×(n+1))
2 +n) additional consistency checks are needed.

3.4.2. QuickXPlain

A more efficient approach to the determination of minimal conflict sets is QUICKXPLAIN introduced

by Junker (Junker, 2004) (see Algorithm 2). This algorithm is based on the concept of divide and

conquer: each time it detects that the first half of a constraint set C is already inconsistent, the second

half of the constraint set is omitted, i.e., not further taken into account when determining the conflict.

This is an efficient way to get rid of constraints that do not participate in the conflict.

QUICKXPLAIN determines exactly one conflict set per computation. In order to identify all mini-

mal conflicts in C, this algorithm has to be combined with a HSDAG-based diagnosis algorithm (see

31

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

step CS c Φ

1 /0 c5 {c5}
2 /0 c4 {c5,c4}
3 /0 c3 {c5,c4,c3}
4 /0 c2 {c5,c4,c3,c2}
5 /0 c1 {c5,c4,c3,c2,c1}
6 {c1} c5 {c1,c5}
7 {c1} c4 {c1,c5,c4}
8 {c1,c4} c5 {c1,c4,c5}
9 {c1,c4,c5} – –

Table 3.1.: Example of the application of SIMPLECONFLICTDETECTION. CS = {c1,c4,c5}
is returned as minimal conflict set (CS) for C = {c5,c4,c3,c2,c1} and B =
{cα,cβ,cγ,cδ,cε,cφ,cι}.

Algorithm 2 − QUICKXPLAIN

1 func QUICKXPLAIN(C ⊆ AC,B = AC−C) : CS
2 if isEmpty(C) or inconsistent(B) return /0;
3 else return QX(/0,C,B);

4 func QX(D,C = {c1..cq},B) : CS
5 if D 6= /0 and inconsistent(B) return /0;
6 if singleton(C) return C;
7 k = dq

2
e;

8 C1 = {c1..ck};C2 = {ck+1..cq};
9 CS1 = QX(C2,C1,B∪C2);

10 CS2 = QX(CS1,C2,B∪CS1);
11 return(CS1∪CS2);

Section 3.5). How QUICKXPLAIN determines a minimal conflict can best be explained on the basis

of our working example (see Table 3.2). The activation hierarchy for the recursive function QX is

depicted in Figure 3.2.

The function QX adds additional constraints (from C2) to the background knowledge as long as

the resulting constraint set remains consistent. If it becomes inconsistent, the algorithm leaves out the

remaining constraints. For example, in Table 3.2 (step 5) the set {c1,c3,c4,c5} is inconsistent and the

remaining constraint c2 can be left out. On the other hand, if the background knowledge is consistent

and only one constraint remains that induces the inconsistency, this constraint must be part of the

conflict set. For example, in Table 3.2 (step 4) the background knowledge consists of the constraints

{c2, ...,c5} and c1 remains as single constraint. It is clear that c1 is part of the conflict since {c2, ...,c5}
is consistent but {c2, ...,c5} ∪ {c1} is inconsistent.

Algorithm Analysis. When comparing the performance of SIMPLECONFLICTDETECTION with

QUICKXPLAIN we can see that QUICKXPLAIN has the potential to reduce the number of needed

32

3.4. Determining Minimal Conflict Sets

step D C B C1 C2 return
1 /0 {c1, ...,c5} Γ {c1,c2,c3} {c4,c5} {c1,c4,c5}
2 {c4,c5} {c1,c2,c3} Γ∪{c4,c5} {c1,c2} {c3} {c1}
3 {c3} {c1,c2} Γ∪{c3, ...,c5} {c1} {c2} {c1}
4 {c2} {c1} Γ∪{c2, ...,c5} /0 /0 {c1}
5 {c1} {c2} Γ∪{c1,c3,c4,c5} /0 /0 /0

6 {c1} {c3} Γ∪{c1,c4,c5} /0 /0 /0

7 {c1} {c4,c5} Γ∪{c1} {c4} {c5} {c4,c5}
8 {c5} {c4} Γ∪{c1,c5} /0 /0 {c4}
9 {c4} {c5} Γ∪{c1,c4} /0 /0 {c5}

Table 3.2.: Example of QUICKXPLAIN: Γ = {cα,cβ,cγ,cδ,cε,cφ,cι} is the (original) background
knowledge and CS = {c1,c4,c5} is the returned conflict set. The sequence of the different
QX activations is depicted in Figure 3.2.

Figure 3.2.: Activation sequence of the different QUICKXPLAIN instances (for details see Table 3.2).

consistency checks. In our working example, SIMPLECONFLICTDETECTION needs 11 consistency

checks whereas QUICKXPLAIN only needs 8 consistency checks. In the worst case, the algorithm

needs 2k× log2(
n
k)+ 2k where k is the set size of the minimal conflict and n is the number of con-

straints in C (Junker, 2004). The best case complexity with regard to the number of consistency checks

is log2(
n
k)+2k.

Note that both of the presented conflict detection algorithms determine conflicts depending on the

constraint ordering. If we reverse the ordering of the constraints of both algorithms, we would receive

the conflict set CS2 = {c1,c2,c5} first. For a more detailed discussion of issues related to constraint

orderings and their role in conflict detection we refer the reader to (Junker, 2004).

3.4.3. Runtime Performance of Conflict Detection Algorithms

We conclude our discussion of conflict detection issues with an analysis of the runtime performance of

the presented algorithms when executed on real-world configuration datasets taken from www.splot-

research.org. The average runtime of the two algorithms was measured in milliseconds (ms) where in

each setting the ordering of the constraints was randomized and each setting was executed 100 times.

33

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

It becomes clear that QUICKXPLAIN clearly outperforms SIMPLECONFLICTDETECTION in all of the

analyzed settings (see Table 3.3).

domain #con. #var. QUICKXPLAIN (ms) SCD (ms)
DELL laptops 285 47 75.7 643.2
smarthomes 73 55 42.6 89.6

cars 150 73 42.9 406.2
Xerox printers 242 158 78.1 812.2

Table 3.3.: Runtime evaluation: the average runtime in milliseconds (ms) needed by SIMPLECON-
FLICTDETECTION (SCD) and QUICKXPLAIN to calculate one minimal conflict set (on
a standard PC). The basis for this evaluation are knowledge bases from www.splot-
research.org.

A major influence factor for the performance of QUICKXPLAIN is the size of conflict sets – the

more elements in the conflicts, the more consistency checks are needed for determining one minimal

conflict set. Another factor that has an impact on the performance of QUICKXPLAIN is ordering of

the constraints in the consideration set C. The more these constraints are spread over C the more con-

sistency checks can be expected since less constraints can be omitted in early phases of QX execution.

3.5. Determining Minimal Diagnoses

Conflict sets help to identify areas of inconsistencies within a set of constraints. If we want to know

the minimal set of constraints that have to be adapted (or deleted from the configuration knowledge

base) such that a solution can be found for the given configuration task, we need to determine the

(minimal) diagnoses with regard to the determined conflict sets. Based on our definition of a conflict

set in Section 3.4, we now introduce the definition of a diagnosis task and the corresponding diagnosis

(solution).

Definition (Diagnosis Task) A diagnosis task can be defined by the tuple (C,AC) where AC = B∪C,

B is the background knowledge, and C is the set of constraints to be analyzed.

Before discussing potential algorithms that support the calculation of minimal diagnoses, we intro-

duce the definition of a diagnosis which represents a solution to a given diagnosis task (C,AC). The

basic idea of diagnosis determination is depicted in Figure 3.3.

Definition (Diagnosis) A diagnosis for a given diagnosis task (C,AC) is a set of constraints ∆ ⊆ C

such that B∪C−∆ is consistent. A diagnosis ∆ is minimal if there does not exist a diagnosis ∆′ ⊂
∆ with the diagnosis property. Finally, a minimal diagnosis ∆ is denoted as minimal cardinality

diagnosis if there does not exist a minimal diagnosis ∆′ with |∆′|< |∆|.

34

3.5. Determining Minimal Diagnoses

Figure 3.3.: A diagnosis ∆ is a subset of C (AC = C∪B) such that B∪C−∆ is consistent. ∆ is min-
imal if no subset of ∆ fulfills the diagnosis property. B again represents the background
knowledge. An example diagnosis is ∆1 = {c1}.

A widespread approach to the determination of diagnoses (hitting sets) is the construction of a

HSDAG. The algorithm is known as hitting set directed acyclic graph algorithm which has been

introduced by (Reiter, 1987).

3.5.1. Hitting Set Directed Acyclic Graph (HSDAG)

The HSDAG algorithm supports the determination of minimal diagnoses. Since the algorithm per-

forms diagnosis search typically in breadth-first fashion, it supports the determination of minimal car-

dinality diagnoses, i.e., minimal diagnoses with the lowest possible number of included constraints.

However, the algorithm is complete, i.e., after returning minimal cardinality diagnoses, it returns

all other diagnoses contained in the consideration set C. HSDAG structures can be established by

repeatedly activating a conflict detection algorithm (e.g., SIMPLECONFLICTDETECTION or QUICK-

XPLAIN) and to analyze the different possibilities to resolve the returned conflict. Since this is a

simple implementation of a breadth-first search strategy, we do not provide an algorithm here.

For example, in Figure 3.4 the first minimal conflict set returned by the conflict detection algorithm

is CS1 : {c1,c4,c5}. If we resolve the conflict CS1, by deleting the constraint c4, another conflict set

will be identified – CS2 : {c1,c2,c5}.

Due to the minimality of CS1 we have exactly three different alternatives to resolve the conflict

(by deleting one of its elements). The HSDAG algorithm is complete, i.e., all different alternatives

to resolve the given conflicts are analyzed. For example, if we delete c1 from CS1, we have already

determined our first diagnosis which is ∆1 = {c1}. The second minimal cardinality diagnosis that can

be derived from the HSDAG is ∆2 = {c5}. There is a third minimal diagnosis (which is not a minimal

cardinality one): ∆3 = {c2,c4}.

The HSDAG algorithm (Reiter, 1987) does not only support the determination of hitting sets in

35

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

Figure 3.4.: Breadth-first based search for diagnoses on the basis of the minimal conflict sets CS1 =
{c1,c4,c5} and CS2 = {c1,c2,c5}. The resulting minimal diagnoses are ∆1 = {c1}, ∆2 =
{c5}, and ∆3 = {c2,c4}.

terms of diagnoses. Given a predefined set of diagnoses we are also able to derive all corresponding

minimal conflicts (see, e.g., Figure 3.5). Typical HSDAG implementations are based on a number

of additional concepts which help to improve the performance of diagnosis (conflict set) detection.

First, conflicts (diagnoses) can be reused in the sense that already determined conflicts (diagnoses)

can be reused for those paths of the HSDAG which do not include the corresponding elements. In our

working example (see Figure 3.5) there is no possibility to reuse a conflict set due to the fact that there

is only one path to the leaf node of the HSDAG.

Figure 3.5.: Breadth-first based search for conflicts on the basis of the minimal diagnoses ∆1 = {c1},
∆2 = {c5}, and ∆3 = {c2,c4}. The resulting minimal conflict sets are CS1 = {c1,c2,c5},
CS2 = {c1,c4,c5}.

A second possibility to improve the performance of diagnosis search is to close specific paths in the

tree which have already been expanded in other parts of the tree. In our working example (see Figure

3.3), the path {c1} directly leads to a diagnosis. For this reason it does not make sense to further

expand other paths that include c1. We can also take into account situations where two paths contain

the same set of elements. In such a situation, one of these paths can be closed, i.e., does not have to

be expanded further.

36

3.5. Determining Minimal Diagnoses

3.5.2. FastDiag

There are many situations where not all the existing diagnoses are of relevance for the user. For exam-

ple, when interacting with a configurator, the user is not interested in having to handle a possible huge

number of alternative diagnoses. There is a need for algorithms that are able to determine so-called

leading diagnoses quickly which can then be analyzed and evaluated by the user. Since in many cases

not all possible diagnoses can be determined (for performance reasons), diagnoses assumed to be

relevant for the user are determined first – these diagnoses are denoted as leading diagnoses. FAST-

DIAG is an algorithm that efficiently determines leading diagnoses without the additional overhead

of determining conflict sets. It is easy to implement (no conflict detection and HSDAG algorithm are

needed for determining one diagnosis) and is specifically useful in interactive configuration settings,

for example, to support the user in situations where no solution can be found (Felfernig et al., 2012b).

In the line of QUICKXPLAIN, FASTDIAG heavily relies on the concept of divide and conquer.

Assuming that the set AC is inconsistent, the major idea is to divide the set of constraints C into

two different subsets C1 and C2. If, for example, AC−C1 is consistent, we already know that the

set C1 includes a diagnosis and – as a consequence – there is no need to further analyze C2 with

regard to further diagnosis elements. A major advantage of FASTDIAG is that it is based on conflict-

independent search strategies, i.e., no conflicts are needed for determining a diagnosis. FASTDIAG

determines exactly one diagnosis at a time (if one exists). If we are interested in all diagnosis for a

given set of constraints AC, we have to combine FASTDIAG with a corresponding HSDAG algorithm

(see the example in Figure 3.5).

Algorithm 3 − FASTDIAG

1 func FASTDIAG(C ⊆ AC,AC = {c1..ct}) : diagnosis ∆

2 if isEmpty(C) or inconsistent(AC−C) return /0

3 else return FD(/0,C,AC);

4 func FD(D,C = {c1..cq},AC) : diagnosis ∆

5 if D 6= /0 and consistent(AC) return /0;
6 if singleton(C) return C;
7 k =

q
2

;

8 C1 = {c1..ck};C2 = {ck+1..cq};
9 D1 = FD(C2,C1,AC−C2);

10 D2 = FD(D1,C2,AC−D1);
11 return(D1∪D2);

How FASTDIAG determines minimal diagnoses can best be explained using our working exam-

ple (see Table 3.4). The activation hierarchy for the FASTDIAG function is depicted in Figure 3.6.

The algorithm checks whether the deletion of constraints (from AC) makes the remaining constraints

consistent. For example, if we delete C2 from AC in step 1 (Table 3.4) we are able to restore the

consistency. At the same time we also know that there must be a diagnosis in C2 since its deletion

37

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

from AC contributed to the restoration of consistency. Furthermore, there is no need to search for a

diagnosis in C1.

step D C AC C1 C2 return
1 /0 {c1, ...,c5} Γ∪{c1, ...,c5} {c1,c2,c3} {c4,c5} c5

2 {c4,c5} {c1,c2,c3} Γ∪{c1,c2,c3} /0 /0 /0

3 /0 {c4,c5} Γ∪{c1, ...,c5} {c4} {c5} c5

4 {c5} {c4} Γ∪{c1, ...,c4} /0 /0 /0

5 /0 {c5} Γ∪{c1, ...,c5} /0 /0 c5

Table 3.4.: Example of FASTDIAG: Γ = {cα,cβ,cγ,cδ,cε,cφ,cι} is the (original) background knowl-
edge and ∆ = {c5} is the returned diagnosis. The activation sequence of the different
FASTDIAG instances is depicted in Figure 3.6.

Figure 3.6.: Activation sequence of the different FASTDIAG instances (for the details see Table 3.4).

Algorithm Analysis. When comparing the performance of HSDAG with FASTDIAG we can see

that FASTDIAG has the potential the reduce the number of needed consistency checks especially in

scenarios where there is a need for identifying so-called leading diagnoses (i.e., not the complete set

of diagnoses). In the worst case, FASTDIAG needs 2d× log2(
n
d)+ 2d where d is the set size of the

minimal diagnosis and n is the number of constraints in C (Junker, 2004). The best case complexity

with regard to the number of consistency checks is log2(
n
d)+2d.

The efficiency of FASTDIAG can best be documented by the fact that the number of consistency

checks needed for determining one diagnosis is similar to the number of consistency checks needed

by QUICKXPLAIN to determine exactly one conflict set. Typically, there is more than one conflict

set in an inconsistent configuration knowledge base. Let ncs be the number of minimal conflict sets

in a constraint set and ndiag be the number of minimal diagnoses, then we need exactly ndiag calls

of the function FD (see Algorithm 3) plus ncs additional consistency checks and ncs activations of

QUICKXPLAIN with ndiag additional consistency checks for determining all diagnoses. The results of

a performance evaluation (comparison of the HSDAG-based approach with FASTDIAG) are depicted

in Table 3.5.

38

3.5. Determining Minimal Diagnoses

domain #con. #var. FASTDIAG (ms) HSDAG (ms)
#∆i 1 5 10 1 5 10

laptops 285 47 1638.7 2792.3 3464.1 2668.9 4977.6 5336.3
homes 73 55 593.1 2433.5 3167.8 2074.2 2151.4 2241.2

cars 150 73 1404.4 2730.8 3606.0 5741.1 6347.9 6942.0
printers 242 158 2871.9 6927.2 12091.0 >100k >100k >100k

Table 3.5.: Runtime evaluation: the average runtime in milliseconds (ms) needed by HSDAG and
FASTDIAG to calculate one minimal diagnosis (on a standard PC). The basis for this
evaluation are knowledge bases from www.splot-research.org (Dell laptops (laptops),
smarthomes (homes), cars, and Xerox printers (printers).

3.5.3. Further Approaches

We now sketch two further approaches than can be used for the determination of diagnoses. First,

we show how to represent the task of identifying minimal cardinality diagnoses as an optimization

problem – this approach is based on the assumption that all minimal conflicts have been determined

before the start of the diagnosis process – see, for example, (Fijany and Vatan, 2004). Second, we

show how to determine minimal cardinality diagnoses in the simple case that the complete set of

possible configurations is available – in this case, all diagnoses are known beforehand and the task is

to identify the minimal ones – see, for example, (Jannach, 2008; Schubert et al., 2010; Schubert and

Felfernig, 2011).

Diagnosis as Optimization Problem. We explain the approach to represent a diagnosis task as an

optimization problem on the basis of the example depicted in Table 3.6. Each minimal conflict set CSi

is represented by a tuple that describes for each constraint ci whether it is part of the conflict set or not

(1 = ci is part of the conflict set, 0 = ci is not part of the conflict set).

Conflict Set c1 c2 c3 c4 c5

CS1 1 0 0 1 1
CS2 1 1 0 0 0
CS3 1 0 1 0 0
CS4 0 1 1 0 0

Table 3.6.: Representation of a diagnosis task as optimization problem – in this case, all minimal
conflict sets (CS1, ...,CS4) have to be determined before the optimization can start (1 (0)
denotes the fact that ci is part (not part) of the minimal conflict set).

On the basis of this information we are able to define a corresponding optimization problem. Each

constraint ci of Table 3.6 is represented by a corresponding variable xi with dom(xi)={0,1}. The

conflict sets CSi are represented in the form of constaints csi, for example, cs1 : x1 + x4 + x5 ≥ 1

requires that at least one constraint out of {x1,x4,x5} has to be deactivated, i.e., xi = 1 denotes that

fact that constraint ci is inactive (which also means that the corresponding conflict has been resolved).

39

Chapter 3. Conflict Detection and Diagnosis Techniques for Anomaly Management

The complete set of constraints that corresponds to the conflict sets in Table 3.6 is the following.

cs1 : x1 + x4 + x5 ≥ 1.

cs2 : x1 + x2 ≥ 1.

cs3 : x1 + x3 ≥ 1.

cs4 : x2 + x3 ≥ 1.

To complete the definition of the optimization problem, we introduce an optimization criterion.

This criterion (see Formula 3.1) expresses the fact that the number of constraints part of at least one

minimal conflict set and that are deactivated should be minimized. For further details on optimization-

based diagnosis we refer the reader to (Fijany and Vatan, 2004).

minimize : x1 + x2 + x3 + x4 + x5. (3.1)

Filtering Minimal Cardinality Diagnoses. We explain the approach to determine minimal cardinal-

ity diagnoses in the case that all possible configurations are already available – see the information in

Tables 3.7 and 3.8. Table 3.7 depicts the definition of a configuration task defined by a set of vari-

ables (V), their domains (dom(vi)), and a constraint cp that describes the set of possible configurations

(cp = con f1∨ con f2∨ con f3∨ con f4).

Variables con f1 con f2 con f3 con f4

v1 1 3 1 1
v2 2 2 2 2
v3 3 1 2 1

Table 3.7.: A simple configuration problem defined by the variables V = {v1,v2,v3}, dom(vi) =
{1,2,3}, and the constraint cp = con f1∨ con f2∨ con f3∨ con f4 ∈CKB.

and each configuration (con fi) whether the requirement is supported by con fi or not (see Table 3.8).

The support value indicates how many of the user requirements are supported by the configuration,

for example, configuration con f1 supports the user requirement v1 = 1 but not the remaining ones;

consequently the support of con f1 = 1. It should be clear now that we are interested in diagnoses for

the given set of requirements, i.e., which is the minimal (cardinality) set of requirements that have to

be deleted such that a solution can be identified.

On the basis of the intermediate representation (see Table 3.8) it is straightforward to determine, for

example, one minimal cardinality diagnosis. The configuration con fi with the maximum support also

defines a minimal cardinality diagnosis ∆ since there does not exist a diagnosis ∆′ with |∆′| < |∆| (if
this would be the case then ∆ would not have the maximum support value). In our working example,

the only minimal cardinality diagnosis is ∆ = {v2 = 1}.

40

3.6. Conclusion

User Requirements con f1 con f2 con f3 con f4

v1 = 1 1 0 1 1
v2 = 1 0 0 0 0
v3 = 1 0 1 0 1
support 1 1 1 2

Table 3.8.: Example user requirements CR and their relationship to the configurations con f1, ...,con f4
(1 = requirement supported, 0 = not supported).

3.6. Conclusion

In this chapter, we sketched major concepts, techniques, and algorithms that support anomaly manage-

ment in constraint-based application development, especially configurator application development.

These concepts are the basis for other chapters in this thesis (see the Chapter 4 and Chapter 6).

41

42

Chapter 4
Personalized Diagnosis for
Over-Constrained Problems

This chapter is based on the results documented in Felfernig et al. (2013a).

The author of this thesis contributed the development of the ensemble-based approach and

wrote major parts of the above mentioned paper.

4.1. Abstract

Constraint-based applications such as configurators, recommenders, and scheduling systems support

users in complex decision making scenarios. Typically, these systems try to identify a solution that

satisfies all articulated user requirements. If the requirements are inconsistent with the underlying

constraint set, users have to be actively supported in finding a way out from the no solution could

be found dilemma. In this chapter we introduce techniques that support the calculation of personal-

ized diagnoses for inconsistent constraint sets. These techniques significantly improve the diagnosis

prediction quality compared to approaches based on the calculation of minimal cardinality diagnoses.

In order to show the applicability of our approach we present the results of an empirical study and a

corresponding performance analysis.

4.2. Introduction

Constraint-based applications such as configurators, recommenders, and scheduling systems support

users in complex decision making scenarios. Interacting with constraint-based applications often

43

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

means to specify a set of requirements (e.g., when interacting with a car configurator, required compo-

nents such as car type and park distance control), to adapt inconsistent requirements, and to evaluate

different alternative solutions. In this chapter we focus on situations where the constraint solver is

not able to identify a solution and it is difficult for the user (customer) to identify minimal sets of

requirements that need to be changed such that a solution for the underlying constraint satisfaction

problem (CSP) can be identified. In order to improve the prediction quality of diagnosis algorithms in

such contexts, we show how to exploit personalization techniques (Felfernig et al. (2007b)).

Existing approaches to the determination of diagnoses for inconsistent requirements are primar-

ily focusing on minimal-cardinality diagnoses (Felfernig et al. (2004)) which are determined on the

basis of breadth-first search. In the context of recommender systems (Felfernig et al. (2007b)) the

complement of a diagnosis is denoted as maximally successful sub-query (Godfrey (1997); McSherry

(2004)). Such a maximally successful subquery contains maximal sets of elements (requirements) that

guarantee the identification of a solution, i.e., elements which are not part of the minimal diagnosis.

In the context of constraint-based systems (Tsang (1993)) diagnoses are also interpreted as a specific

type of explanation (O’Sullivan et al. (2007)).

Especially in interactive settings the determination of all diagnoses is infeasible due to unacceptable

run times of the underlying diagnosis algorithms (Felfernig et al. (2009a)). Furthermore, we are not

able to guarantee that standard breadth-first search leads us to explanations that are acceptable for

the user (O’Sullivan et al. (2007)). The work of (O’Sullivan et al. (2007)) contributes to the tailoring

of diagnoses in a way that makes the identification of acceptable diagnoses easier for the user –

O’Sullivan et al. (2007) denote this type of diagnosis representative explanations. Representative

explanations are diagnosis sets that fulfill the criteria that each element contained in at least one

diagnosis is also contained in the set of diagnoses presented to the user. Felfernig et al. (2009a) show

how to exploit concepts of collaborative recommendation for improving diagnosis prediction quality

– the concepts have been developed for a knowledge-based recommendation environment (Burke

(2000)).

On the basis of this existing work, we show how to exploit different recommendation algorithms for

the personalized identification of diagnoses. In our approach we exploit these algorithms for guiding

best-first search in the construction of Hitting Set Directed Acyclic Graphs (HSDAGs). The major

contribution of this chapter is the significant improvement of diagnosis prediction quality by the in-

tegration of state-of-the-art recommendation approaches (similarity-based, utility-based, probability-

based, ensemble-based) with standard model-based diagnosis (Reiter (1987); DeKleer et al. (1992)).

Furthermore, we provide an empirical evaluation on the basis of two configuration datasets.

The remainder of this chapter is organized as follows. In Section 4.3 we introduce a working exam-

ple from the domain of car configuration. In Section 4.4 we show how recommendation algorithms

can be exploited for personalized model-based diagnosis. In Section 4.5 we present the results of eval-

uations conducted with two datasets. In Section 4.6 we discuss related work. The chapter is concluded

44

4.3. Working Example

with Section 4.7.

4.3. Working Example

The configuration of cars will serve for illustration purposes throughout this chapter. A configuration

task can be defined as a constraint satisfaction problem (CSP) (Tsang (1993)):∗

Definition 1 (Configuration Task). A configuration task can be defined as a CSP (V, D, C). V

= {v1,v2, . . . ,vn} represents a set of finite domain variables. D = {dom(v1), dom(v2), . . . , dom(vn)}
represents a set of variable domains dom(vk) where dom(vk) represents the domain of variable vk. C

= CKB ∪ CR where CKB = {c1,c2, . . . ,cq} is a set of domain specific constraints (the configuration

knowledge base) that restrict the possible combinations of values assigned to the variables in V. CR =

{cq+1,cq+2, . . . ,ct} is a set of customer requirements also represented as constraints.

A simple example of a configuration task is the following. The variable type represents the car type,

pdc is the parc distance control feature, fuel represents the average fuel consumption per 100 kilome-

ters, a skibag supports a convenient ski stowage inside a car, and 4-wheel represents the actuation type

(4-wheel supported or not supported). These variables are representing all possible user (customer)

requirements. The possible combinations of customer requirements are restricted by CKB which is in

our case {c1,c2,c3,c4,c5}. Finally, we assume CR to be {c6,c7,c8,c9,c10}.

• V = {type, fuel, skibag, 4-wheel, pdc}

• D = {dom(type)={city, limo, combi, xdrive},
dom(fuel) = {4l, 6l, 10l}, dom(skibag)={yes, no},
dom(4-wheel)={yes, no}, dom(pdc)= {yes, no}}

• CKB = {c1: 4-wheel = yes⇒ type = xdrive, c2: skibag = yes⇒ type 6= city, c3: fuel = 4l⇒ type
= city, c4: fuel = 6l⇒ type 6= xdrive, c5: type = city⇒ fuel 6= 10l}

• CR = {c6: 4-wheel = yes, c7: fuel = 6l, c8: type = city, c9: skibag = yes, c10: pdc = yes}

On the basis of this simple example of a configuration task, we can now introduce the definition of

a corresponding configuration (solution to a configuration task).

Definition 2 (Configuration). A configuration for a given configuration task (V, D, C) is an instan-

tiation I = {v1=ins1, v2=ins2, . . . , vn=insn} where insk ∈ dom(vk).

A solution (configuration) for a given configuration task is consistent if the assignments in I are

consistent with the
⋃

ci ∈ C. A solution is complete if all vi ∈ V are instantiated. Finally, a solution is

valid if it is consistent and complete.

∗Note that the presented concepts are applicable to different knowledge representations such as SAT solving (Marques-
Silva and Sakallah (1996)) and description logics (Friedrich and Shchekotykhin (2005)).

45

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

4.4. Calculating Personalized Diagnoses

Users do not want and are not able to evaluate large sets of diagnosis alternatives. For this reason we

are now introducing alternative approaches that help to systematically reduce the number of diagnosis

alternatives. Our goal is to identify diagnoses that are relevant for users and thus keep the process of

evaluating and selecting diagnoses as simple as possible. The first approach to reduce the number of

diagnoses (which is the only non-personalized one we consider here) is to perform breadth first search

which returns minimal cardinality diagnoses first (Reiter (1987)). In addition to this breadth first

search approach we will discuss four approaches to the personalized ranking of diagnoses: similarity-

based, utility-based, probability-based, and ensemble-based search.

Cardinality-based diagnosis (not personalized). Our example configuration task (car config-

uration) is defined in a way which does not allow the calculation of a solution, for example, the

requirements c6 and c8 are incompatible. For identifying minimal sets of constraints which have to be

deleted from the given set of customer requirements we use the concepts of Model-Based Diagnosis

(MBD) (Reiter (1987); DeKleer et al. (1992)). MBD diagnosis exploits the description of a system

– in our case the configuration knowledge base CKB which describes a set of possible configurations

(solutions). If we detect that the behavior of the system conflicts with its intended behavior (at least

one solution can be identified), the task of a diagnosis component is to determine components (con-

straints) in the given set of customer requirements (CR) which, when assumed to function abnormally,

sufficiently explain the discrepancy between actual and expected system behavior. An identified min-

imal diagnosis is a minimal set of faulty constraints that need to be relaxed or deleted in order to be

able to calculate a configuration.

Assuming the existence of CKB = {c1,c2, ...,cq} and CR = {cq+1,cq+2, ...,ct} which is inconsis-

tent with CKB, breadth first search based diagnosis algorithms (Reiter (1987); DeKleer et al. (1992))

determine minimal diagnoses DIAGS = {∆1,∆2, ...,∆k} in the order of their cardinality such that

∀∆i ∈ DIAGS : CKB ∪ (CR - ∆i) is consistent. A User Requirements Diagnosis Problem (UR Di-

agnosis Problem) can be defined as follows:

Definition 3 (User Requirements (UR) Diagnosis Problem): A UR Diagnosis Problem is defined

as a tuple (CKB,CR); CKB represents the constraints of the configuration knowledge base and CR is a

set of user requirements.

Based on the definition of a UR Diagnosis Problem, a UR Diagnosis can be defined as follows:

Definition 4 (UR Diagnosis): A User Requirements Diagnosis (UR Diagnosis) for (CKB,CR) is a

set of constraints ∆ ⊆ CR such that CKB ∪ (CR−∆) is consistent. A diagnosis ∆ is minimal iff there

does not exist a diagnosis ∆′ ⊂ ∆ s.t. CKB∪ (CR−∆′) is consistent.

Following the basic principles of Model-Based Diagnosis (MBD) (Reiter (1987); DeKleer et al.

(1992)), the calculation of diagnoses is based on the identification and resolution of conflict sets. A

conflict set in CR can be defined as follows:

46

4.4. Calculating Personalized Diagnoses

Definition 5 (UR Conflict Set): A User Requirements Conflict Set (UR Conflict Set) is defined as

CS ⊆CR s.t. CS∪CKB is inconsistent. CS is minimal iff there does not exist a conflict set CS’ with

CS’ ⊂ CS.

In our working configuration example, CR = {c6, ..,c10} is inconsistent with CKB = {c1, ..,c5}, i.e.,

there does not exist a configuration (solution) that completely fulfills the requirements in CR. The

minimal conflict sets are CS1 = {c6,c7}, CS2 = {c8,c9}, and CS3 = {c6,c8} since each of these conflict

sets is inconsistent with CKB and there do not exist conflict sets CS1’, CS2’, and CS3’ with CS1’⊂CS1,

CS2’ ⊂CS2, and CS3’ ⊂CS3.

In MBD (Reiter (1987); DeKleer et al. (1992)), the standard algorithm for determining minimal di-

agnoses is the hitting set directed acyclic graph (HSDAG). UR diagnoses ∆i ∈DIAGS are determined

by conflict resolution in the set of requirements CR. Due to its minimality property, one conflict can

simple be resolved by deleting one of the elements from the conflict set. After one element has been

retracted from each of the given conflict sets, we are able to present a corresponding diagnosis. The

original HSDAG approach employs breadth-first search. In our example, the diagnoses derived from

CS1, CS2, and CS3 are DIAGS = {∆1 : {c6,c8},∆2 : {c6,c9},∆3 : {c7,c8}}.

The HSDAG construction for our working example is shown in Figure 7.1. In our implementa-

tion we employ the QUICKXPLAIN conflict detection algorithm which has been developed by Junker

(2004). Following a strict breadth first search regime, we resolve the first conflict set (CS1) by check-

ing whether one of its elements already represents a diagnosis. Both alternatives (c6 and c7) do not

lead to a diagnosis due to the inconsistency of (CR - {c6}) ∪ CKB and (CR - {c7}) ∪ CKB. The next

minimal conflict set returned by QUICKXPLAIN is CS2 = {c8,c9}. CR - ({c6}∪{c8})) ∪ CKB allows

the determination of a solution; consequently we have identified the first minimal diagnosis: ∆1 =

{c6,c8}.

[1] CS1 : {c6,c7}
c6 c7

[2] CS2 : {c8,c9}
c8 c9

[5] CS2 : {c8,c9}
c8 c9

[3] ∆1 :
{c6,c8}

√ [4] ∆2 :
{c6,c9}

√ [6] ∆3 :
{c7,c8}

√ [7] CS3 :
{c6,c8}×

Figure 4.1.: Cardinality-based diagnosis (breadth-first): the diagnoses ranking is {∆1,∆2,∆3}. The
expression [{c6,c8} ×] denotes containment, i.e., the node can be closed.

Similarity-based diagnosis. The similarity-based ranking of diagnoses is based on the idea of

preferring minimal diagnoses which lead to solutions (configurations) that resemble the orginial set

of requirements as much as possible. In this context we exploit the information contained in already

existing configurations (see, e.g., Table 4.1). For each configuration contained in this table we deter-

47

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

Algorithm 4 PDIAG(CR, CKB, H, crit): ∆

{CR: user requirements}
{CKB: configuration knowledge base}
{H: paths of the diagnosis search tree (initially empty)}
{crit: expansion criteria (card, sim, utility, prob)}
{∆: identified diagnosis}
∆← f irst(H)
CS← T P((CR−∆)∪CKB)
if isEmpty(CS) then

return ∆

else
for all X in CS do

H← H ∪{∆∪{X}}
end for
H← delete(∆,H)
H← sort(H,crit)
PDIAG(CR, CKB, H, crit)

end if

mine its similarity with the given set of requirements – the similarity values of our working example

are depicted in Table 4.3. The similarity-based determination of diagnoses is based on Algorithm

1 – a generic algorithm which is applicable with different node expansion strategies (in our case,

cardinality, similarity, utility, and probability-based search).

[1] CS1 : {c6,c7}
¬c6→0.6 ¬c7→0.6

[2] CS2 : {c8,c9}
¬c6,¬c8→0.13 ¬c6,¬c9→0.6

[4] CS2 : {c8,c9}
¬c7,¬c8→0.35 ¬c7,¬c9→0.6

[7] ∆1 :
{c6,c8}

√ [3] ∆2 :
{c6,c9}

√ [6] ∆3 :
{c7,c8}

√ [5] CS3 :
{c6,c8}×

Figure 4.2.: Similarity-based diagnosis: the diagnoses order is {∆2,∆3,∆1}. The term ¬c6 → 0.6
denotes the fact that the highest similarity between CR and the tuples of the sessions si in
Table 1 consistent with ¬c6 is 0.6 (in our case i = 1).

We determine similarity values based on three different attribute-level similarity measures which

are predominantly applied in knowledge-based recommender applications (McSherry (2004)). The

attribute-level measures determine the similiarity of each attribute value ai of session sk and the cor-

responding requirement ci (e.g., the similarity between the attribute type of session s1 and the cor-

responding requirement c8). Depending on the characteristics of the attribute, one of the following

attribute-level similarity measures has to be selected (see Formulae 4.1–4.3): More-Is-Better (MIB),

Less-Is-Better (LIB) or Nearer-Is-Better (NIB) (McSherry (2004)). The overall similiarity between

c =CR and a tuple a in Table 1 is defined by Formula 4.4. The similarity between CR (c) and a tuple

48

4.4. Calculating Personalized Diagnoses

Table 4.1.: Example user interaction data from already completed configuration sessions.
SESSION si TYPE FUEL SKIBAG 4-WHEEL PDC

s1 city 4l no no yes
s2 city 4l no no no
s3 xdrive 10l yes yes yes
s4 limo 6l no no yes
s5 combi 6l no no no
s6 xdrive 10l no yes yes
s7 limo 6l yes no no
s8 combi 6l yes no no

Table 4.2.: Example importance values (w(ci) in %).
TYPE FUEL SKIBAG 4-WHEEL PDC

50.0 5.0 10.0 30.0 5.0

a of user interaction data is represented by the sum of weighted (w(ci) – see Table 2) attribute level

similarities.†

For attributes such as fuel, the lower the value the more satisfied the user is (LIB). When the user

specifies a certain car type (no intrinsic value scale), we suppose the most similar is the preferred one.

In such cases, the nearer-is-better (NIB) similarity measure is used.‡

MIB : s(ci,ai) =
val(ci)−min(ai)

max(ai)−min(ai)
(4.1)

LIB : s(ci,ai) =
max(ai)− val(ci)

max(ai)−min(ai)
(4.2)

NIB : s(ci,ai) =

{
1 i f val(ci) = val(ai)

0 else
(4.3)

sim(c,a) =
n

∑
i=1

s(ci,ai)∗w(ci) (4.4)

†Our preference (w(ci)) determination method is typically based on multi attribute utility theory (Winterfeldt and Edwards
(1986)).

‡For a detailed discussion of different types of similarity measures see, for example, (McSherry (2004)). In Formulae
4.1 – 4.3, val(ci) denotes the value of user requirement ci, min(ai) denotes the minimal possible value of configuration
attribute ai, and max(ai) denotes the maximal possible value of ai.

49

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

Table 4.3.: Similarity (sim(c,a)) between requirements (c = CR) and user interaction data (a) from
configuration sessions.

si TYPE FUEL SKIBAG 4-WHEEL PDC sim(c,a)

s1 1.0 1.0 0.0 0.0 1.0 0.6
s2 1.0 1.0 0.0 0.0 0.0 0.55
s3 0.0 0.0 1.0 1.0 1.0 0.18
s4 0.0 0.67 0.0 0.0 1.0 0.08
s5 0.0 0.67 0.0 0.0 0.0 0.03
s6 0.0 0.0 0.0 1.0 1.0 0.35
s7 0.0 0.67 1.0 0.0 0.0 0.13
s8 0.0 0.67 1.0 0.0 0.0 0.13

Utility-based diagnosis. Utility-based diagnosis prefers minimal diagnoses that are predominantly

composed of requirements which are of low importance (a low w(ci) value) for the customer (user).

Based on the concepts of multi attribute utility theory (Winterfeldt and Edwards (1986)), individual

importance values (see Table 4.2) of user requirements that are part of a diagnosis are summed up –

the lower this sum, the lower is the overall importance of the parameters contained in the diagnosis

and the higher is the ranking of the corresponding diagnosis. The function utility(C ⊆CR) returns a

utility value for each set C which is a subset of CR (see Formula 4.5). Note that in the case of our

working example the diagnosis ranking on the basis of the utility-based approach is the same as with

the discussed similarity-based approach; therefore we omit a graphical representation of utility-based

diagnosis search.

u(C ⊆CR) =
1

∑ci∈C w(ci)
(4.5)

[1] CS1 : {c7,c8}
u(¬c7)→20.0 u(¬c8)→2.0

[2] CS2 : {c8,c9}
u(¬c7,8)→1.82 u(¬c7,9)→6.67

[4] CS3 : {c7,c9}
u(¬c7,8)→1.82 u(¬c8,9)→1.67

[5] ∆1 :
{c7,c8}

√ [3] ∆2 :
{c7,c9}

√ [6]× [7] CS4 : {c7,c10}
u(¬c7,8,9)→1.54

u(¬c8,9,10)→1.54

[8]× [9] ∆3 : {c8,c9,c10}
√

Figure 4.3.: Utility-based diagnosis search: the order of identified diagnoses is {∆2,∆3,∆1}.

Probability-based diagnosis. Probability-based best first search for diagnoses prefers minimal

diagnoses with a high probability of being selected by the user. For the determination of diagnosis

probabilities we rely on joint probabilities that a particular diagnosis (or part of a diagnosis) will be

50

4.4. Calculating Personalized Diagnoses

Table 4.4.: Example diagnoses selected by users, the individual probabilities are: p(¬c6)=0.30,
p(¬c7)=0.50, p(¬c8)=0.60, p(¬c9)=0.20 where, for example, p(¬c6)=0.30 denotes the
probability of c6 being part of a diagnosis.

∆i TYPE FUEL SKIBAG 4-WHEEL PDC

∆log1 6=city – – =no –
∆log2 – – =no =no –
∆log3 6=city 6=6l – – –
∆log4 6=xdrive – – – –
∆log5 – – =no =no –
∆log6 6=city 6=6l – – –
∆log7 6=city 6=6l – – –
∆log8 6=xdrive 6=4l – =yes –
∆log9 6=city 6=6l – – –
∆log10 6=city 6=6l – – –

selected by the user. Formula 4.6 is used for determining the joint probabilities for a given set of

constraints C ⊆CR. Figure 4.4 shows the application of this approach in the context of our working

example. The probabilities are determined on the basis of user-selected diagnoses (see Table 4.4).

The assumption of independence of failure made here is one widely made in model-based diagnosis

(DeKleer (1990)).

p(C ⊆CR) = ∏
ci∈C

p(ci) (4.6)

[1] CS1 : {c6,c7}
p({¬c6})→.30 p({¬c7})→.50

[4] CS2 : {c8,c9}
p({¬c6,8})→.18 p({¬c6,9})→.06

[2] CS2 : {c8,c9}
p({¬c7,8})→.30 p({¬c7,9})→.10

[5] ∆1 :
{c6,c8}

√ [7] ∆2 :
{c6,c9}

√ [3] ∆3 :
{c7,c8}

√ [6] CS3 :
{c6,c8}×

Figure 4.4.: Probability-based diagnosis: the order of identified diagnoses is {∆3,∆1,∆2}.

Ensemble-based diagnosis. In the case of cardinality-based, similarity-based, utility-based, and

probability-based diagnosis search, diagnosis predictions (the rankings) are based on a single hypoth-

esis. The idea of ensemble-based diagnosis search is to exploit a set of hypotheses (an ensemble) for

making the prediction. For the ranking of diagnoses we apply a basic majority voting approach (see

Table 4.5); assuming that the errors made by each individual prediction mechanism are not the same,

ensemble-based methods can be very useful for improving the prediction quality (see Section 4).

51

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

Table 4.5.: Example diagnoses selected by ensemble method (implemented as a basic form of majority
voting).

METHOD / POSITION 1 2 3
utility-based ∆2 ∆3 ∆1

probability-based ∆3 ∆1 ∆2
similarity-based ∆2 ∆3 ∆1

ensemble-based ∆2 ∆3 ∆1

4.5. Evaluation

Prediction Quality. We now demonstrate the improvements achieved by the application of our per-

sonalized diagnosis approaches on the basis of an empirical study with two datasets.

Dataset 1: Computer Configuration. This dataset has been composed on the basis of an online

user experiment conducted at the Graz University of Technology. 415 subjects participated in the

study (82,4% male and 17,6% female). Participants had to define their requirements (CR) regarding

a set of 12 computer properties. The task of the subjects was to define their product requirements

(including requirement importance). After having completed the requirement specification phase,

each participant was informed about the fact that no solution could be found. The configurator then

presented a list of max. 50 different repair configurations (solution alternatives) – at least one property

of each configuration was inconsistent with CR. The configurations were extracted from www.dell.at.

The ranking of the solution alternatives was randomized and the subjects were enabled to navigate in

order to evaluate the solution alternatives regarding criteria such as price, harddisk size or number of

fulfilled requirements. The subjects then had to select one out of the presented repair configurations

that appeared to be the most acceptable one for them. Since no solution has been made available for CR

(only configurations inconsistent with CR were shown) we could calculate conflicts (in CR induced by

the repair configurations) and the corresponding diagnoses with our diagnosis techniques (the average

number of diagnoses per CR was: 5.32 (std.dev. 1.67)). Precision (see Formula 4.7) was measured

then in terms of how often a repair configuration selected by the participant was consistent with one

of the top-N ranked diagnoses.

Dataset 2: Financial Services. This dataset belongs to a financial service configurator we deployed

at www.hypo-alpe-adria.at. In this commercial application, inconsistent states and selected diagnoses

had been recorded (N=1.703 sessions out of which in 418 sessions a diagnosis process had been

activated – average number of diagnoses per CR: 20.42 (std.dev. 4.51)). In the case of the financial

services configurator, the importance of a user requirement (w(ci)) was (is) determined on the basis

of multi attribute utility theory (Winterfeldt and Edwards (1986)).

Based on the two datasets (computer and financial services) we evaluated our diagnosis approaches

w.r.t. their precision (Formula 4.7). The idea of this precision measure is to figure out how often

a diagnosis that corresponds to a diagnosis selected by the user or leads to a repair configuration

52

4.5. Evaluation

selected by a user is among the top-n ranked diagnoses.

precision =
#(correct predictions)

#(predictions)
(4.7)

As can be seen in Table 4.6 and Table 4.7, in our two empirical settings the ensemble-based ap-

proach (majority voting) outperforms the other prediction methods in terms of precision. Breadth first

search has the lowest precision. Based on a two-sample t-test we tried to figure out whether there ex-

ist statistically significant differences between the diagnosis approaches in terms of their mean square

error (1
n ∑

n
i=1 |(1− diagpos(i))2|) where diagpos denotes the position of the diagnosis selected by

the user and n=#(diagnosis processes started). In both datasets we detected a significant difference

between breadth-first search and all other approaches (computer: p = 2.2e−16, financial services:

p < 0.05). Furthermore, there is a significant difference between the ensemble-based and the other

personalized approaches in the case of the computer dataset (p = 7.55e−6); in the case of the financial

services dataset we can observe a tendency (p < 0.07).

Table 4.6.: Predictive quality (precision) of used diagnosis selection methods for computer configura-
tion dataset.

METHOD / N 1 2 3 4 5
breadth first 0.55 0.76 0.82 0.88 0.96
utility-based 0.66 0.83 0.94 0.95 0.98

similarity-based 0.65 0.81 0.90 0.93 0.98
probability-based 0.64 0.85 0.93 0.95 0.99
ensemble-based 0.68 0.86 0.94 0.96 0.99

Table 4.7.: Predictive quality (precision) of used diagnosis selection methods for financial services
configuration dataset.

METHOD / N 1 2 3 4 5
breadth first 0.12 0.27 0.39 0.52 0.62
utility-based 0.17 0.37 0.48 0.65 0.74

similarity-based 0.17 0.37 0.49 0.65 0.73
probability-based 0.15 0.33 0.47 0.57 0.74
ensemble-based 0.17 0.35 0.50 0.63 0.76

Performance. The PDIAG algorithm (Algorithm 1) has been implemented on the basis of the

standard hitting set algorithm introduced in Reiter (1987) – it is NP-hard in the general case but is

applicable for interactive configuration settings (see the following evaluation). In PDIAG minimal

conflict sets are determined on the basis of QUICKXPLAIN (Junker (2004)) – the worst case complex-

ity in terms of the number of consistency checks of QUICKXPLAIN is O(2k ∗ log(n
k)+ 2k) where k

represents the size of the minimal conflict set and n is the number of constraints.

We conducted a performance analysis in order to show the applicability of our approach (see Ta-

ble 4.8). The tests have been executed on a standard desktop computer (Intel R©CoreTM2 Quad CPU

53

Chapter 4. Personalized Diagnosis for Over-Constrained Problems

Q9400 CPU with 2.66GHz and 2GB RAM). In addition to our datasets we evaluated our diagno-

sis algorithms with the Renault configuration knowledge base part of the configuration benchmark

suite.§ Even for complex settings (Renault benchmark) we can expect a performance acceptable for

interactive settings.

Table 4.8.: Avg. runtime(msec) for determining the first-N diagnoses (bf = breadth first, pers=all
personalized approaches).

DATASET APPROACH N=1 N=5
computer configuration bf 64.1 70.0
computer configuration pers 64.2 71.1

financial services bf 23.3 36.8
financial services pers 23.9 37.1

car (Renault) bf 921.3 1510.1
car (Renault) pers 952.7 1581.9

4.6. Related Work

The increasing size and complexity of knowledge bases led to the application of model-based diag-

nosis (Reiter (1987); DeKleer et al. (1992)) to automated knowledge base debugging (Felfernig et al.

(2004)). The contribution of (Felfernig et al. (2004)) has a special relationship to the concepts pre-

sented in this chapter: (Felfernig et al. (2004)) identify faulty constraints in configuration knowledge

bases, furthermore, they present a first approach to the identification of minimal sets of faulty user

requirements (following a breadth-frist search regime). The work presented in this chapter extends ex-

isting research results by demonstrating the application of recommendation algorithms for improving

the prediction quality of diagnosis algorithms. One approach to determine personalized diagnoses for

inconsistent requirements has been proposed for knowledge-based recommendation scenarios (Felfer-

nig et al. (2009a)) where repair proposals for inconsistent features requests are generated on the basis

of the similarity between the feature requests and the items in a product table. O’Sullivan et al. (2007)

introduce minimal exclusion sets. On the basis of such sets, O’Sullivan et al. (2007) discuss the con-

cept of representative explanations which can be interpreted as sets of minimal diagnoses covering all

constraints part of at least one of the existing diagnoses. In contrast to the work presented in this chap-

ter, the approach of O’Sullivan et al. (2007) does not explicitly take into account the preferences of

the current user (customer). In knowledge-based recommendation maximally successful sub-queries

(Godfrey (1997); McSherry (2004)) represent the complement to minimal diagnoses (DeKleer et al.

(1992); Reiter (1987)). Note that our work relies on the assumption of an open configuration (trade-off

exploration) based scenario where the user is free to specify preferred requirements – the configuration

system then provides the corresponding feedback in terms of diagnoses.

§www.itu.dk/research/cla/externals/clib.

54

4.7. Conclusions

4.7. Conclusions

We have introduced techniques that help to calculate personalized diagnoses. In this context we

proposed different personalization strategies which can help to significantly increase prediction qual-

ity. Within the scope of an empirical study we compared five search strategies (cardinality-based,

similarity-based, utility-based, probability-based, and ensemble-based). The results show clear ad-

vantages of personalized diagnosis calculation in terms of precision. Thus the results presented in this

chapter provide a solid basis for improving existing constraint-based applications in terms of a lower

number of needed interaction cycles for the user and a lower number of needed diagnosis calculations.

55

56

Chapter 5
WeeVis

This chapter is based on the results documented in Reiterer et al. (2014).

The author of this thesis developed the examples mentioned in this chapter and

wrote major parts of the above mentioned paper.

5.1. Abstract

Configuration is a thriving application area for AI technologies. As a consequence, there is a need

for advancing knowledge acquisition practices in order to make configuration technologies more ac-

cessible. In this chapter we introduce WEEVIS which is a freely available Wiki-based environment

for defining and solving basic configuration tasks. In the line of the idea of Wikipedia, knowledge

bases are regarded as Wiki pages which can be created, edited, and versionized by a community of

users. WEEVIS configurators can be integrated into standard Wikipedia pages and are thus more eas-

ily accessible compared to proprietary knowledge representations. WEEVIS technologies are easily

accessible and therefore well-suited for the application in educational contexts.

5.2. Introduction

In the line of the Wikipedia spirit of allowing communities to cooperatively develop and maintain

Wiki pages, we introduce the WEEVIS environment that supports the development and maintenance

of configuration knowledge bases on the basis of wide-spread and well-known Wiki technologies.

WEEVIS∗ has been developed on the basis of MediaWiki (www.mediawiki.org) which is the estab-

lished standard Wiki platform.
∗www.weevis.org.

57

Chapter 5. WeeVis

For a long period of time the engineering of configuration knowledge bases required that knowl-

edge engineers are technical experts (in the majority of the cases computer scientists) with the needed

technical capabilities (Stumptner, 1997; Fleischanderl et al., 1998). Recent developments in the field

moved one step further and also provided graphical engineering environments (Felfernig, 2007; Tiiho-

nen et al., 2013) which improve the accessibility and maintainability of knowledge bases. However,

potential users of these technologies still have to deal with additional tools and technologies which is

in many cases a reason for not applying configuration technologies.

The WEEVIS environment tackles this challenge by providing new technologies that allow users to

develop and maintain knowledge bases without the need of getting acquainted with the specific prop-

erties of a configurator development environment and with a corresponding programming language.

In its current version, WEEVIS supports scenarios where user requirements can be defined in terms of

functional requirements (Mittal and Frayman, 1989) and the corresponding solutions (configurations)

are typically selected from a set of pre-defined configurations. User requirements are checked with

regard to their consistency and – in the case of inconsistent requirements – WEEVIS proposes a set of

possible repair alternatives. This way, WEEVIS does not only support product selection but also con-

sistency maintenance processes on the basis of intelligent repair mechanisms (Felfernig et al., 2009a).

Currently, WEEVIS does not provide a graphical development environment for configuration knowl-

edge bases but relies on a textual knowledge representation language. The idea is that a community

of engineers (users) cooperatively contributes to the development of a configuration knowledge base.

The inclusion of graphical concepts supporting community-based knowledge base development and

maintenance is within the scope of future work. WEEVIS comes along with the following innovations:

• Knowledge Acquisition. WEEVIS users are enabled to articulate their domain knowledge by

defining the basic properties of the configuration task in a Wikipedia style. WEEVIS provides

a set of predefined tags that can be used for creating, defining, and maintaining a configura-

tion problem definition. By exploiting the basic functionalities of the underlying MediaWiki

infrastructure, configuration knowledge bases can be versioned and restored in the case of the

creation of unintended versions.

• Knowledge Distribution and Collaborative Development. WEEVIS users can develop and pub-

lish their configuration knowledge to a community of interested users. Other users interested in

contributing to the further development of the knowledge base can engage in the development

and maintenance process as it is the case with standard Wiki pages. WEEVIS and WEEVIS

knowledge bases are freely available and accessible in the Internet.

• Rapid Prototyping. By using the basic functionalities provided by Wikipedia, WEEVIS allows

rapid prototyping processes where the result of a change can immediately be seen by simply

switching from the edit mode to the corresponding read mode. This approach allows an easy

understanding of the WEEVIS tags and also of the semantics of the provided WEEVIS language.

The major contributions of this chapter are the following. We introduce a Wiki-based environ-

58

5.3. Modeling of the Working Example

ment for the development and maintenance of configuration problems. In this context we provide an

overview of the functionalities supported by the WEEVIS environment. This serves as a basis for

further application and exploitation.

The remainder of this chapter is organized as follows. On the basis of an example from the domain

of personal computers (see (Hotz et al., 2014)) we introduce the WEEVIS knowledge representation

concepts (Section 5.3). In Section 5.4 we give an overview of how WEEVIS is embedded in the Media

Wiki environment. In Section 5.5 we discuss the limitations of the WEEVIS approach and shed light

on related work by comparing existing engineering practices with the WEEVIS functionalities. With

Section 5.6 we conclude the chapter.

5.3. Modeling of the Working Example

For demonstration purposes we will now show how to define the configuration model introduced in

(Hotz et al., 2014) on the basis of the WEEVIS knowledge representation concepts. In this context

we will see that not all of the semantic properties defined in that configuration model can be represent

directly within WEEVIS. Note that due to the supported knowledge representation concepts, WEEVIS

can also be interpreted as a basic constraint-based recommendation environment (see (Felfernig et al.,

2006a)), however, in its current version specific personalization concepts such as solution ranking and

personalized repair for inconsistent requirements (see (Felfernig et al., 2009a)) are not supported. The

expressivity of WEEVIS (which properties can be represented?) is very similar to those of feature

models (see (Hotz et al., 2014)), i.e., the upper bound of the multiplicity of the relationship between

different variables (features) is restricted to 1. However, variables in WEEVIS are not restricted to

the values 1 (true) and 0 (false). WEEVIS relies on a CSP-based knowledge representation – see, for

example, (Mackworth, 1977; Tsang, 1993). Constraints are currently restricted to types typically used

for configuration knowledge representation (e.g., compatibilities, incompatibilities, and requirement

relationships). Restricted to such basic knowledge types, WEEVIS has not been designed for the de-

velopment of large-scale and complex component-oriented configurator applications (see, e.g., (Hotz

et al., 2014)). Reasonable upper bounds regarding the complexity of knowledge bases that can be

developed in WEEVIS have to be figured out in future work.

In the following we provide a short overview of the knowledge representation concepts currently

available in WEEVIS.

Customer Properties. Customer properties describe the way in which users are enabled to specify

their requirements with regard to the configurable product. Examples of customer properties are the

primary usage (usage), the degree of energy efficency (efficiency), the maximum price accepted by

the user (maxprice), the resident country (country), the selected motherboard (mb), and the selected

central processing unit (cpu). The list of customer properties used in this working example is shown

in Table 5.1.

59

Chapter 5. WeeVis

Customer Property Domain
usage Internet, Scientific, Multimedia

efficiency A, B, C
maxprice Integer
country Austria, Germany, ...

mb MBSilver, MBDiamond
cpu CPUS, CPUD

Table 5.1.: Customer properties of working example. For example, maxprice allows the customer to
specify his/her requirements regarding the upper bound of the price.

Product Properties. In WEEVIS, product properties are representing the basic properties of items

that can be part of a solution. Examples of product properties in the personal computer domain are

the name of the product (pname), type of the cpu (pcpu), the type of the motherboard (pmb), the type

of operating system (pos), the price of the computer (pprice). The list of product properties used in

our working example is shown in Table 5.2.

Product Property Domain
pname Text
pcpu CPUS, CPUD
pmb MBSilver, MBDiamond
pos OSAlpha, OSBeta

pprice Integer

Table 5.2.: Product properties of working example. For example, each computer configuration has a
specified cpu type pcpu (CPUS or CPUD).

Incompatibility Constraints. These constraints describe exclusion relationships between different

customer properties and/or product properties. For example, if the value of efficiency is A then the

value of mb must not be MBSilver. Furthermore, if the value of efficiency is C then the value of mb

must not be MBDiamond. The complete list of incompatibility constraints in our working example is

shown in Table 5.3.

Attribute Property Attribute Property
efficiency A mb MBSilver
efficiency C mb MBDiamond

Table 5.3.: Incompatibility constraints of working example. For example, a motherboard MBSilver is
incompatible with the energy efficiency class A.

Filter Constraints. In WEEVIS, filter constraints are used for expressing the relationship between

selected customer requirements (instantiations of customer properties) and the corresponding product

properties. For example, the price of a solution must not exceed the maximum price defined by the

user or the selected cpu should be contained in the configuration. The complete list of filter constraints

60

5.3. Modeling of the Working Example

used in this working example is shown in Table 5.4.

Attribute Operator Attribute
maxprice ≥ price

cpu = pcpu
mb = pmb

Table 5.4.: Filter constraints of working example. For example, the cpu selected by the customer has
to be included in the corresponding configuration.

Includes. This is an additional constraint type that allows the definition of alternative inclusions that

are not taken into account by incompatibility and filter constraints. An example of such an inclusion

constraint is the following: if the user is interested in a highly energy-efficient computer, include the

newest model named energystar (even if the maximum price accepted by the user is lower than the

price of energystar) – see Table 5.5.

Attribute Property pname
efficiency A energystar

Table 5.5.: Includes constraint of working example. For example, if a user is interested in an energy
class A configuration, then the item (product) energystar should be included.

Excludes. In the line of includes constraints, WEEVIS also supports the definition of so-called

excludes constraints. A solution could be excluded because the needed hardware is currently not

available (e.g., pname = hw1) or a solution can not be delivered due to the fact that certain personal

computers can not be delivered to all destination countries (e.g., country = Austria and pname = hw2).

An overview of the excludes constraints is given in Table 5.6.

Attribute Property pname
- - hw1

country Austria hw2

Table 5.6.: Excludes constraint of working example. For example, if the destination country is Austria
then the computer hw2 is not allowed to be contained in a configuration. Furthermore, hw1
is currently not available.

Products. In WEEVIS, possible solution alternatives can be defined in a product table (see Table

5.7). Using such a product table makes sense if the set of alternatives is low. This way, search can

be made more efficient. In the case of a large search space, the explicit representation of solution

alternatives makes knowledge engineering and the underlying search processes inefficient. In such a

situation, WEEVIS also allows for the definition of the solution space in a implicit (constraint-based)

form.

61

Chapter 5. WeeVis

pname pcpu pmb pos pprice
hw1 CPUD MBSilver OSAlpha 600
hw2 CPUS MBDiamond OSBeta 600

engergystar CPUS MBDiamond OSBeta 800

Table 5.7.: Supported solutions of working example.

5.4. User Interface

The entry page of the WEEVIS Wiki environment is depicted in Figure 5.1. The idea of this entry

page is similar to the entry page of Wikipedia, i.e., to support the user in easily identifying the most

relevant information units (in our context configuration-enhanced Wikipedia pages).

Figure 5.1.: The WeeVis entry page (www.selectionarts.org/weevis).

After having selected (or created) a configurator application (this is done by simply inserting a link

to a new Wiki page), the new configurator application can be defined where the MediaWiki Tag Exten-

sion System has been used to define a custom recommender tag. WEEVIS configuration knowledge

bases can be defined on a textual level with a syntax that is similar to the syntax of standard Wiki

pages. A screenshot that shows the definition of WEEVIS configurator applications is depicted in

Figure 5.2.

Finally, a configurator application can be activated by simply switching from the edit view to the

corresponding read view. A screenshot of a corresponding WEEVIS configurator application is shown

in Figure 5.3. The interface supports the definition of customer requirements (on the left hand side)

– corresponding solutions are displayed on the right hand side. For each solution, a so-called support

62

5.5. Related Work

Figure 5.2.: WeeVis: example configurator knowledge base.

score is determined. If a solution fulfills all requirements, this score is 100%, otherwise it is lower

and – when clicking on the score value – a corresponding repair action is displayed on the left hand

side (see Figure 5.3).

Figure 5.3.: WeeVis: example personal computer configurator. User specify their requirements in
terms of providing answers to questions. WEEVIS determines solutions and – in the case
of inconsistent requirements – presents a set of repair actions.

5.5. Related Work

Semantic Wikis. The integration of knowledge-based concepts into Wikipedia platforms has already

been realized by different approaches to the development of so-called Semantic Wikis. For example,

(Baumeister et al., 2011) introduce a Semantic Wiki based approach were domain ontologies can be

63

Chapter 5. WeeVis

specified as a basis of the corresponding wiki-based application. Domain ontologies are defined in

terms of an ontology representation language. Compared to WEEVIS, (Baumeister et al., 2011) focus

on the application of ontology representation languages which are less accessible to users who are

not experts in the knowledge engineering field. Furthermore, the WEEVIS constraint representation is

focused on configuration domain specific knowledge representations which makes it easier to define

the corresponding domain knowledge.

Configuration Knowledge Representations. There is a long history of developing representation

languages for configuration problems. One of the first approaches to a consistency-based character-

ization of a configuration problem has been proposed by (Mittal and Frayman, 1989). Thereafter

different types of constraint-based representations have been developed, ranging from dynamic con-

straint satisfaction problems (see (Mittal and Falkenhainer, 1990)) to so-called generative constraint

satisfaction problems – see (Stumptner et al., 1998). An in-depth overview of different types of basic

configuration knowledge representations can be found in (Stumptner, 1997). (Felfernig, 2007) in-

troduced an approach to define configuration knowledge bases on the basis of the Unified Modeling

Language (UML) and (Felfernig et al., 2003) also show how to represent such models on the basis of

description logics based concepts. (Soininen et al., 1998) introduce a general ontology that includes

relevant concepts needed for configuration knowledge representation.

Configuration Environments. (Felfernig et al., 2006a) introduce an environment for the graphical

development of knowledge-based recommender applications. This environment has commonalities

with the basic functionalities of WEEVIS: product alternatives are explicitly specified and then se-

lected and ranked on the basis of a given set of user requirements. (Tiihonen et al., 2013) intro-

duce their answer-set programming based configuration environment WECOTIN which is an envi-

ronment dedicated to the graphical definition of large-scale configuration knowledge bases. Major

configuration-related constraints types can be defined on a graphical level. More complex constraints

have to be defined in a proprietary logic-based knowledge representation language. Other graphi-

cal development environments are presented in (Haselböck and Schenner, 2014), (Krebs, 2014), and

(Hotz and Günter, 2014). The major difference between WEEVIS and other configuration knowl-

edge base development environments is that it can be expected that more users are able to deal with

modeling configurators in Wikipedia compared to the alternative of defining knowledge bases with

(provider-) specific environments. However, admittedly, the major drawback of WEEVIS is its lim-

ited expressiveness compared to more general knowledge representation formalisms (see (Hotz et al.,

2014)). Furthermore, graphical constraint management facilities have to be integrated in order to

achieve a wide-spread use.

Anomaly Management. Most of the existing configuration environments include different types of

anomaly detection (see (Felfernig et al., 2014d)) or at least consistency management functionalities.

In a similar fashion, WEEVIS includes a basic implementation of the FASTDIAG diagnosis algorithm

(Felfernig et al., 2012b) which supports users in situations where no solution can be found. Fur-

thermore, WEEVIS allows the specification of test cases which can be exploited for the purposes of

64

5.6. Conclusion

regression testing. The integration of further quality assurance mechanisms such as the automated de-

bugging of WEEVIS knowledge bases, redundancy detection (Felfernig et al., 2011a), and diagnosis

discrimination (Shchekotykhin et al., 2012) is within the scope of future work.

5.6. Conclusion

In this chapter we have introduced the WEEVIS environment for the Wiki-based development and

maintenance of simple configuration knowledge bases. WEEVIS is especially useful in scenarios

were groups or communities of users are interested in commonly providing a configurator application

to the whole public or to a specific group of users. From the technological point of view the major

advantage of WEEVIS is the development and maintenance of configuration knowledge bases without

the overhead of getting acquainted with a completely new technology. Major issues related to the

further development of WEEVIS are the integration of personalization concepts (Ardissono et al.,

2003; Tiihonen and Felfernig, 2010) that help to rank the set of determined solutions (configurations),

the integration of additional quality assurance mechanisms (beside the basic versioning concept of

Wikipedia), and the further development of the WEEVIS language itself in the sense of improving the

understandability and reducing the cognitive complexity of the provided modeling concepts.

65

66

Chapter 6
An Overview of Direct Diagnosis and
Repair Techniques
in the WEEVIS Environment

This chapter is based on the results documented in Felfernig et al. (2014c).

The author of this thesis contributed the related work, developed the working example and

wrote major parts of the above mentioned paper.

6.1. Abstract

Constraint-based recommenders support users in the identification of items (products) fitting their

wishes and needs. Example domains are financial services and electronic equipment. In this chap-

ter we show how divide-and-conquer based (direct) diagnosis algorithms (no conflict detection is

needed) can be exploited in constraint-based recommendation scenarios. In this context, we provide

an overview of the MediaWiki-based recommendation environment WEEVIS.

6.2. Introduction

Constraint-based recommenders (Felfernig et al. (2006b); Felfernig and Burke (2008)) support the

identification of relevant items from large and often complex assortments. Example item domains

are electronic equipment (Felfernig et al. (2006a)) and financial services (Felfernig et al. (2007a)). In

contrast to collaborative filtering (Konstan et al. (1997)) and content-based filtering (Pazzani and Bill-

sus (1997)), constraint-based recommendation relies on an explicit representation of recommendation

67

Chapter 6. An Overview of Direct Diagnosis and Repair Techniques in the WEEVIS Environment

knowledge. Two major types of knowledge sources are exploited for the definition of a constraint-

based recommendation task (Felfernig and Burke (2008)). First, knowledge about the given set of

customer requirements. Second, recommendation knowledge that is represented as a set of items and

a set of constraints that help to establish a relationship between requirements and the item assortment.

Diagnosis techniques can be useful in the following situations: (1) in situations where it is not

possible to find a solution for a given set of user (customer) requirements, i.e., the requirements are

inconsistent with the recommendation knowledge base and the user is in the need for repair proposals

to find a way out from the no solution could be found dilemma; (2) if a recommendation knowledge

base is inconsistent with a set of test cases that has been defined for the purpose of regression testing,

the knowledge engineer needs support in figuring out the responsible faulty constraints.

For situation (1) we sketch how model-based diagnosis (Reiter (1987)) can be applied for the iden-

tification of faulty constraints in a given set of customer requirements. In this context efficient divide-

and-conquer based algorithms can be applied to the diagnosis and repair of inconsistent requirements.

In a similar fashion, such algorithms can be applied for the diagnosis of inconsistent recommender

knowledge bases (the knowledge base itself can be inconsistent, or alternatively, inconsistencies can

be induced by test cases used for regression testing).

The diagnosis approaches presented in this chapter have been integrated into WEEVIS∗ which is

a MediaWiki-based recommendation environment for complex products and services. In the line of

the Wikipedia† idea to support communities of users in the cooperative development of Web content,

WEEVIS is an environment that supports all the functionalities available for the creation of Wiki

pages. Additionally, it allows the inclusion of constraint-based recommender applications that help to

work up existing knowledge and present this in a compressed and intuitive fashion.

The contributions of this chapter are the following. First, we sketch how efficient divide-and-

conquer based algorithms can be applied for solving diagnosis and repair tasks in constraint-based

recommendation scenarios. Second, we sketch how diagnosis and repair approaches can be integrated

into Wiki technologies‡ and with this be made accessible to a large user group. Third, we discuss

challenges for future research that have to be tackled to advance the state-of-the-art in constraint-

based recommendation.

The remainder of this chapter is organized as follows. In Section 6.3 we discuss properties

of constraint-based recommendation tasks. Thereafter, we introduce an example recommendation

knowledge base. In Section 6.4 we show how divide-and-conquer based algorithms can be applied for

the diagnosis and repair of inconsistent requirements. Thereafter we show how such algorithms can

be applied to the identification of faulty constraints in knowledge bases (see Section 6.5). Related and

future work are discussed in Section 6.6. We conclude the chapter with Section 6.7.

∗www.weevis.org.
†www.wikipedia.org.
‡www.mediawiki.org.

68

6.3. Working Example

6.3. Working Example

Figure 6.1.: Example WEEVIS PC Recommender definition (MediaWiki ’Edit’ mode).

In the remainder of this chapter we will use personal computer recommendation as working ex-

ample. Roughly speaking, a recommendation task consists of selecting those items that match the

user requirements. In the context of personal computers, the recommender user has to specify his/her

requirements regarding, for example, the intended usage, the maximum accepted price, and the cpu

type. Since WEEVIS is a MediaWiki-based environment, the definition of a recommender knowledge

base is supported in a textual fashion (see Figure 6.1).

On the basis of a set of requirements, the recommender system determines alternative solutions

(the consideration set) and presents these to the user. If no solution could be found for the given

requirements, repair alternatives are determined which support users in getting out of the no solution

could be found dilemma (see Figure 6.3).

Constraint-based recommendation requires the explicit definition of questions (representing alter-

69

Chapter 6. An Overview of Direct Diagnosis and Repair Techniques in the WEEVIS Environment

natives for user requirements), properties of the items, and constraints. An example of a recommenda-

tion knowledge base is shown in Figure 6.1. The WEEVIS tag &QUESTIONS enumerates variables

that describe user requirements where usage specifies the intended use of the computer, eefficiency

represents the required energy efficiency, maxprice denotes the upper price limit specified by the user,

country represents the country of the user, mb represents the type of motherboard, and cpu the re-

quested central processing unit. If a variable is associated with a keep tag, this variable is not taken

into account in the diagnosis process. For example, country? is associated with a keep tag; for this

reason, it will not be part of any diagnosis presented to the recommender user. Other examples of

such attributes are a person’s age and gender.

In addition to variables representing potential user requirements, a recommendation knowledge

base includes the definition of variables that represent item properties (represented by the WEEVIS

tag &PRODUCTS). In our example, cpup represents the CPU included in the item, mbp specifies

the included motherboard, osp represents the installed operating system, and pricep is the overall

price. Furthermore, the set of items (products) must be specified that can be recommended to users.

A simplified item assortment is included in Figure 6.1 as part of the item properties. Our example

assortment of items consists of the entries hw1, hw2, and energystar.

Incompatibility constraints describe combinations of requirements that lead to an inconsistency.

The description related to the WEEVIS tag &CONSTRAINTS includes an incompatibility relation-

ship between the variable usage and the variable cpu. For example, computers with a CPUD must not

be sold to users interested in scientific calculations.

Filter constraints describe the relationship between user requirements and items. A simple exam-

ple of such a filter constraint is maxprice ≥ pricep, i.e., the price of an recommended item must be

equal or below the maximum accepted price specified by the customer (see the WEEVIS tag &CON-

STRAINTS in Figure 6.1).

Finally, WEEVIS supports the definition of test cases (see also Section 6.5) which can be used

to specify the intended behavior of a recommender knowledge base (WEEVIS tag &TEST). After

changes to the knowledge base, regression tests can be triggered on the basis of the defined test suite.

The —show— tag specifies whether the recommender system user interface should show the status

of the test case (satisfied or not) – see, for example, Figure 6.4.

On a formal level, a recommendation knowledge base can be represented as a constraint satisfaction

problem (Mackworth (1977)) with two sets of variables V = U∪ P and the corresponding constraints C

= COMP ∪ PROD ∪ FILT. In this context, ui ∈U are variables describing possible user requirements

(e.g., usage or maxprice) and pi ∈ P are variables describing item (product) properties (e.g., mbp or

pricep).

The recommendation knowledge base specified in Figure 6.1 can be transformed into a constraint

satisfaction problem where &QUESTIONS represents U , &PRODUCTS represents P and PROD, and

70

6.4. Diagnosis and Repair of Requirements

&CONSTRAINTS represents COMP and FILT .§ Given such a recommendation knowledge base we

are able to determine concrete recommendations on the basis of a specified set of user (customer)

requirements. Requirements collected are represented in terms of constraints, i.e., R = {r1,r2, ...,rk}
represents a set of user requirements.

After having identified the set of alternative solutions (recommended items or consideration set),

this result is presented to the user. In constraint-based recommendation scenarios, the ranking of items

is often performed on the basis of Multi-Attribute Utility Theory (MAUT) where items are evaluated

on the basis of a given set of interest dimensions. For further details on the ranking of items in

constraint-based recommendation scenarios we refer to Felfernig et al. (2013c).

6.4. Diagnosis and Repair of Requirements

In situations where the given set of requirements ri ∈ R (unary constraints defined on variables of U

such as maxprice ≤ 500) become inconsistent with the recommendation knowledge base (C), we are

interested in repair proposals that indicate for a subset of these requirements change operations with a

high probability of being accepted by the user. On a more formal level we now introduce a definition

of a customer requirements diagnosis task and a corresponding diagnosis (see Definition 1).

Definition 1 (Requirements Diagnosis Task). Given a set of requirements R and a set of constraints C

(the recommendation knowledge base), the diagnosis task it to identify a minimal set ∆ of constraints

(the diagnosis) that have to be removed from R such that R - ∆ ∪ C is consistent.

An example of a set of requirements for which no solution can be identified is R = {r1: usage =

Scientific, r2 :eefficiency = high, r3: maxprice = 1700, r4: country = Austria, r5:mb = MBSilver, r6:

cpu = CPUD}. The recommendation knowledge base induces two minimal conflict sets (CS) (Junker

(2004)) in R which are CS1: {r1,r6} and CS2: {r1,r5}. For these conflict sets we have two alternative

diagnoses which are ∆1:{r5,r6} and ∆2:{r1}. The pragmatics, for example, of ∆1 is that at least r5 and

r6 have to be adapted in order to be able to find a solution. How to determine such diagnoses on the

basis of a HSDAG (hitting set directed acyclic graph) is shown, for example, in Felfernig et al. (2004).

Approaches based on the construction of hitting sets typically rely on conflict detection (Junker

(2004); Felfernig et al. (2004)). In interactive settings, where only preferred diagnoses (leading diag-

noses) should be presented, hitting set based approaches tend to become too inefficient since conflict

sets have to be determined before a diagnosis can be presented (Felfernig et al. (2012a); Felfernig and

Schubert (2010)). This was the major motivation for the development of the FASTDIAG algorithm

(Felfernig et al. (2012a); Felfernig and Schubert (2010); Felfernig et al. (2013d)), which is a divide-

and-conquer based algorithm that enables the determination of minimal diagnoses without the need

of conflict determination and HSDAG construction. This way of determining minimal diagnoses can

also be denoted as direct diagnosis since no conflict set determination is needed in this context.
§PROD is assumed to be represented as a single constraint in disjunctive normal form where each conjunct is an item.

71

Chapter 6. An Overview of Direct Diagnosis and Repair Techniques in the WEEVIS Environment

FASTDIAG can be seen as an inverse QUICKXPLAIN (Junker (2004)) type algorithm which relies

on the following basic principle (see Figure 6.2). Given, for example, a set R = {r6,r5, ...,r1} and a

diagnosis (see Definition 1) is contained in {r6,r5,r4} (first part of the split), then there is no need

of further evaluating {r3,r2,r1}, i.e., the latter set is consistent. The similarity to QUICKXPLAIN

is the following. If a minimal conflict is contained in {r6,r5,r4} there is no need to further search

for conflicts in {r3,r2,r1} since the algorithm determines one minimal conflict set at a time. Both

algorithms (FASTDIAG and QUICKXPLAIN) rely on a total lexicographical ordering (Junker (2004);

Felfernig et al. (2012a)) which allows the determination of preferred minimal diagnoses (minimal

conflict sets).

A minimal (preferred) diagnosis ∆ can be used as a basis for the determination of corresponding

repair actions, i.e., concrete measures to change user requirements in R in a fashion such that the

resulting R’ is consistent with C.

Definition 2 (Repair Task). Given a set of requirements R = {r1,r2, ...,rk} inconsistent with the

constraints in C and a corresponding diagnosis ∆⊆ R (∆ = {rl, ...,ro}), the corresponding repair task

is to determine an adaption A = {rl’, ..., ro’} such that R - ∆ ∪ A is consistent with C.

Figure 6.2.: Divide-and-conquer principle of FASTDIAG (CS1 and CS2 are assumed to be conflict
sets). The set of requirements R = {r1, ...,r6} is split in the middle. If a diagnosis is
already contained in the first part of the split (R - {r6,r5,r4} is consistent), there is no
need to further investigate the right part for further diagnosis elements. This way, half of
the potential diagnosis elements can be eliminated in one step (consistency check).

In WEEVIS, repair actions are determined conform to Definition 2. For each diagnosis ∆ de-

termined by FASTDIAG (currently, the first n=3 leading diagnoses are determined – for details see

Felfernig et al. (2012a)), the corresponding solution search for R - ∆ ∪ C returns a set of alternative

repair actions (represented as adaptation A). In the following, all products that satisfy R - ∆ ∪ A are

shown to the user (see the right hand side of Figure 6.3).

In the current WEEVIS implementation, the total lexicographical ordering is derived from the order

in which a user has entered his/her requirements. For example, if r1: usage = Scientific has been

entered before r5: mb = MBSilver and r6: cpu = CPUD then the underlying assumption is that r5 and

r6 are of lower importance for the user and thus have a higher probability of being part of a diagnosis.

In our working example ∆1 = {r5,r6}. The corresponding set of repair actions (solutions for R-∆1 ∪
C) is A = {r5’:mb=MBDiamond, r6’:cpu=CPUS}, i.e., {r1,r2,r3,r4,r5,r6} - {r5,r6} ∪ {r5’, r6’} is

consistent. The item that satisfies R - ∆1 ∪ A is {hw1} (see the first entry in Figure 6.3). In a similar

72

6.5. Knowledge Base Diagnosis

Figure 6.3.: PC recommender UI (MediaWiki Readmode). If the user selects the item energystar
on the right-hand side, a diagnosis with corresponding repair actions is depicted on the
left-hand side.

fashion, repair actions are determined for ∆2 - the recommended item is {energystar}. The identified

items (p) are finally ranked according to their support value (see Formula 6.1).

support(p) =
#repair actions in R′

requirements in R
(6.1)

6.5. Knowledge Base Diagnosis

Recommendation knowledge is often subject to change operations. Due to frequent changes it is im-

portant to support quality assurance of recommendation knowledge. WEEVIS supports the definition

and execution of test cases¶ which define the intended behavior of the recommender knowledge base.

If some test cases become inconsistent with a new version of the knowledge base, the causes of the

unintended behavior must be identified. On a formal level a recommendation knowledge base (RKB)

diagnosis task can be defined as follows (see Definition 3).

¶WEEVIS supports the definition of positive test cases (test cases that should be consistent with the knowledge base).

73

Chapter 6. An Overview of Direct Diagnosis and Repair Techniques in the WEEVIS Environment

Definition 3 (RKB Diagnosis Task). Given a set C (the recommendation knowledge base) and a set

T = {t1, t2, ..., tq} of test cases ti, the corresponding diagnosis task is it to identify a minimal set ∆ of

constraints (the diagnosis) that have to be removed from C such that ∀ti ∈ T : C−∆∪ ti is consistent.

An example test case which induces an inconsistency with the constraints in C is t: usage = Sci-

entific and cpu = CPUD and mb = MBSilver (see Figure 6.1). t induces two conflicts in the recom-

mendation knowledge base which are CS1: ¬(usage = Scientific ∧ cpu = CPUD) and CS2: ¬(usage

= Scientific ∧ mb = MBSilver). In order to make C consistent with t, both incompatibility constraints

have to be deleted from C, i.e., are part of the diagnosis ∆.

Figure 6.4.: PC recommender knowledge base: result of the diagnosis process presented in WEEVIS.

Similar to the diagnosis of inconsistent requirements, the hitting set based determination of diag-

noses for inconsistent knowledge bases is shown in Felfernig et al. (2004). This approach relies on

the construction of a HSDAG determined on the basis of minimal conflict sets provided by conflict

detection algorithm such as QUICKXPLAIN. Diagnoses are determined in a breadth-first fashion, i.e.,

minimal cardinality diagnoses of faulty constraints in C are returned first.

In contrast to Felfernig et al. (2004), WEEVIS includes a FASTDIAG based approach to knowledge

base debugging that can also be applied in interactive settings. In this case, diagnoses are searched in

C. In the case of requirements diagnosis, the total ordering of the requirements is related to user pref-

erences (in WEEVIS derived from the instantiation order of variables). Total orderings of constraints

in the context of knowledge base diagnosis are determined using criteria different from the diagno-

sis of inconsistent requirements, for example, age of constraints, frequency of quality assurance, and

structural constraint complexity (see Felfernig et al. (2013e)). An example screenshot of the WEEVIS

diagnosis presentation is depicted in Figure 6.4.

74

6.6. Related and Future Work

6.6. Related and Future Work

Diagnosing Inconsistent Requirements. Junker (2004) introduced the QUICKXPLAIN algorithm

which is a divide-and-conquer based approach to the determination of minimal conflict sets (one

conflict set at a time). Combining QUICKXPLAIN with the hitting set directed acyclic graph (HS-

DAG) algorithm (Reiter (1987)) allows for the calculation of the complete set of minimal conflicts.

O’Sullivan et al. (2007) show how to determine representative explanations (diagnoses) which fulfill

the requirement that minimal subsets ∆S of the complete set of diagnoses ∆C should be determined

that fulfill the criteria that if a constraint ci is contained in a diagnosis of ∆C it must also be part of

at least one diagnosis in ∆S. Felfernig et al. (2009b, 2013a) show how to integrate similarity met-

rics, utility-, and probability-based approaches to the determination of leading diagnoses on the basis

HSDAG-based search.

Schubert and Felfernig (2010) introduce FLEXDIAG which is a top-down version of FASTDIAG

allowing a kind of anytime diagnosis due to the fact that diagnosis granularity (size of constraints

regarded as one component in the diagnosis process) can be parametrized. Felfernig et al. (2012a);

Schubert and Felfernig (2010) introduce the FASTDIAG algorithm that allows for a more efficient

determination of diagnoses due to the fact the there is no need for determining conflict sets (= direct

diagnosis). FASTDIAG is a QUICKXPLAIN style algorithm that follows a divide-and-conquer ap-

proach for the determination of minimal diagnoses. Note that in contrast to traditional HSDAG based

approaches, FASTDIAG does not focus on the determination of minimal cardinality but preferred min-

imal diagnoses. A major issue for future work will be the development of diagnosis algorithms that

are capable of performing intra-constraint debugging an thus help to better focus on the sources of

inconsistencies. FASTDIAG is not restricted to the application in knowledge-based recommendation

scenarios but generally applicable in consistency-based settings (Hotz et al. (2014)). For example,

the same principles can be applied in knowledge-based configuration (Stumptner (1997); Sabin and

Weigel (1998); Felfernig et al. (2014b)). Further approaches to the determination of diagnoses for in-

consistent knowledge bases can be found, for example, in K. McAreavey and Miller (2014); Marques-

Silva and Previti (2014); Marques-Silva et al. (2013); Y. Malitsky and Marques-Silva (2014); Walter

et al. (2013).

Knowledge Base Maintenance. The application of model-based diagnosis for the debugging of

inconsistent constraint sets was first presented in Bakker et al. (1993). Felfernig et al. (2004) show

how to exploit test cases for the induction of conflict sets in knowledge bases which are then resolved

on the basis of a hitting set based approach. In the line of the work of Felfernig et al. (2012a);

Felfernig and Schubert (2010) the performance of knowledge debugging can be improved on the

basis of FASTDIAG. A detailed evaluation of the performance gains of FASTDIAG in the context of

knowledge base debugging is within the focus of our future work. A detailed comparison between the

performance of FASTDIAG and conflict-driven diagnosis of inconsistent requirements can be found,

for example, in Felfernig et al. (2012a).

75

Chapter 6. An Overview of Direct Diagnosis and Repair Techniques in the WEEVIS Environment

Identifying redundant constraints is an additional issue in the context of knowledge base develop-

ment and maintenance. Redundant constraints can deteriorate runtime performance and also be the

cause of additional overheads in development and maintenance operations (Felfernig et al. (2011a)).

Redundancy detection can be based on QUICKXPLAIN especially in the case of an increasing number

of redundant constraints. For a detailed discussion of alternative algorithms for redundancy detection

in knowledge bases we refer to Felfernig et al. (2011a). A major focus of our future research will

be the development of an intra-constraint redundancy detection, i.e., it will be possible to identify

redundant subexpressions.

6.7. Conclusions

In this chapter we provide an overview of the WEEVIS environment with a special focus on the

integrated diagnosis support. Diagnosis techniques integrated in WEEVIS are the result of research

in model-based diagnosis with a special focus on divide-and-conquer based (direct) algorithms that

make diagnosis search more efficient in the case that leading diagnoses are required. WEEVIS is

a publicly available MediaWiki-based environment for developing and maintaining constraint-based

recommender applications.

76

Chapter 7
The WEEVIS Environment applied in the
E-Government Domain

This chapter is based on the results documented in Reiterer et al. (2015a).

The author of this thesis developed the examples mentioned in this chapter and

wrote major parts of the above mentioned paper.

7.1. Abstract

Constraint-based recommenders support customers in identifying relevant items from complex item

assortments. In this chapter we present WEEVIS, a constraint-based environment that can be ap-

plied in different scenarios in the e-government domain. WEEVIS supports collaborative knowledge

acquisition for recommender applications in a MediaWiki-based context. This chapter shows how

Wiki pages can be extended with recommender applications and how the environment uses intelligent

mechanisms to support users in identifying the optimal solutions to their needs. An evaluation shows

a performance overview with different knowledge bases.

7.2. Introduction

Constraint-based recommender applications help users navigating in complex product and service as-

sortments like digital cameras, computers, financial services and municipality services. The calcula-

tion of the recommendations is based on a knowledge base of explicitly defined rules. The engineering

of the rules for recommender knowledge bases (for constraint-based recommenders) is typically done

by knowledge engineers, mostly computer scientists (Felfernig and Burke (2008)). For building high

77

Chapter 7. The WEEVIS Environment applied in the E-Government Domain

quality knowledge bases there are domain experts involved who serve the knowledge engineers with

deep domain knowledge (Felfernig and Burke (2008)). Graphical knowledge engineering interfaces

like Felfernig et al. (2006a) improved the maintainability and accessability and moved the field one

step further.

Other recommendation approaches like collaborative filtering use information about the rating

behavior of other users to identify recommendations (Linden et al. (2003); Konstan et al. (1997)).

Content-based filtering (Pazzani and Billsus (1997)) exploits features of items for the determination

of recommendations. Compared to these approaches, constraint-based recommenders are more appli-

cable for complex products and services due to their explicit knowledge representation.

In the line of Wikipedia∗ where users build and maintain Wiki pages collaboratively we introduce

WEEVIS†. WEEVIS is a MediaWiki‡ based environment that exploits the properties of MediaWiki

and enables community based development and maintenance of knowledge bases for constraint-based

recommenders. WEEVIS is freely available as a platform and successfully applied by four Aus-

trian universities (in lectures about recommender systems), in the financial services domain and in

e-government .

In the e-government domain officials as well as the community residents can take numerous advan-

tages of knowledge-based recommenders:

• WEEVIS can be used as an online advisory service for citizens for example for documents that

are necessary to apply for a private construction project. The online recommendation of neces-

sary documents in advance to on-site appointments can lead to a time reduction for community

residents and community officials.

• WEEVIS can be used for modeling internal processes like the signing of travel applications for

example a community official wants to visit a conference, based on different parameters like

the conference type, or if it’s abroad or in the domestic area, different officials have to sign the

travel request. In WEEVIS the appropriate rules for such internal processes can be mapped and

especially for new employees WEEVIS recommenders can provide substantial assistance.

• WEEVIS can be used as an information platform for example with integrated knowledge-based

recommenders for community residents e.g. to identify the optimal waste disposal strategy for

a household (this example is used as a running example in this chapter, see Section 2). Instead

of providing plain text information, like common municipality web pages, the knowledge rep-

resentation as a recommender provides an easier way for community members to identify the

optimal solution for their situation.

A recommender development environment for single users is introduced in Felfernig et al. (2006a).

This work is based on a Java platform and focuses on constraint-based recommender applications for
∗www.wikipedia.org
†www.weevis.org
‡www.mediawiki.org

78

7.3. WEEVIS Overview

online selling. Compared to Felfernig et al. (2006a), WEEVIS provides a wiki-based user interface

that allows user communities to develop recommender applications collaboratively. Instead of an

incremental dialog, where the user answers one question after the other, like Felfernig et al. (2006a),

WEEVIS provides an integrated interface where the user is free to answer questions in any order.

The WEEVIS interface also provides intelligent mechanisms for an instant presentation of alterna-

tive solutions in situations where it is not possible to find a solution for a given set of user (customer)

requirements, i.e., the requirements are inconsistent with the recommendation knowledge base and

the user is in the need for repair proposals to find a way out from the no solution could be found

dilemma. Model-based diagnosis (Reiter (1987)) can be applied for the identification of faulty con-

straints in a given set of customer requirements. In this context efficient divide-and-conquer based

algorithms (Junker (2004)) can be applied to the diagnosis and repair of inconsistent requirements.

The environment supports the user with integrated model-based diagnosis techniques (Reiter (1987);

Felfernig et al. (2012a)). A first approach to a conflict-directed search for hitting sets in inconsistent

CSP definitions was introduced by Bakker et al. (1993). With regard to diagnosis techniques, WEE-

VIS is based on more efficient techniques that make the environment applicable in interactive settings

(Felfernig et al. (2012a); Friedrich (2014)).

A Semantic Wiki-based approach to knowledge acquisition for collaborative ontology development

is introduced, for example, in Baumeister et al. (2011). Compared to Baumeister et al. (2011), WEE-

VIS is based on a recommendation domain specific knowledge representation (in contrast to ontology

representation languages) which makes the definition of domain knowledge more accessible also for

domain experts.

The remainder of this chapter is organized as follows. In Section 2 we present an overview of the

recommendation environment WEEVIS and it’s application in the e-government domain. In Section

3 we present results of a performance evaluation that illustrates the performance of the integrated

diagnosis technologies. With Section 4 we conclude the chapter.

7.3. WEEVIS Overview

Since WEEVIS is based on the MediaWiki platform, it can be installed on freely available web servers.

On the website www.weevis.org a selection of different WEEVIS recommenders is publicly available.

For internal processes WEEVIS can be deployed in the local intranet. Standard wiki pages can be

complemented easily by recommender knowledge bases. Currently, WEEVIS calculates recommen-

dations based on previously entered requirements. If the requirements would result in a no solution

could be found message WEEVIS calculates alternative solutions based on diagnoses (see Section 2.4).

In line with the Wiki idea, WEEVIS provides the ability to build knowledge bases collaboratively, a

valuable feature in e-government domain, because depending on the community department multiple

people are responsible for data management and administration. Furthermore, WEEVIS exploits the

79

Chapter 7. The WEEVIS Environment applied in the E-Government Domain

basic functionalities provided by MediaWiki and allows rapid prototyping processes where the result

of a change can immediately be seen by simply switching from the edit mode to the corresponding

read mode. This approach allows an easy understanding of the WEEVIS tags and also of the semantics

of the provided WEEVIS language.

Figure 7.1.: Waste Disposal Strategy a simple recommender knowledge base from the e-government
domain (WEEVIS read mode).

7.3.1. WEEVIS User Interface

Since WEEVIS is a MediaWiki-based environment the user interface relies on the common Wiki prin-

ciple of the read mode (see Figure 7.1) for executing a recommender and the write mode (see Figure

7.2) for defining a recommender knowledge base. The development and maintenance of a knowledge

base is supported a textual fashion with a syntax that is similar to the standard Wiki syntax (see Figure

7.2). In the following we will present the concepts integrated in the WEEVIS environment on the basis

of a working example from the e-government domain. More specifically we present a recommender

that supports households in identifying their optimal waste disposal strategy. In this recommendation

scenario, a user has to specify his/her requirements regarding, for example, the number of persons

living in the household or how frequently the containers should be emptied. A corresponding WEE-

VIS user interface is depicted in Figure 7.1. Requirements are specified on the left hand side and the

corresponding recommendations for the optimal waste disposal plan are displayed in the right hand

side.

For each solution, a so-called support score is determined. If a solution fulfills all requirements,

80

7.3. WEEVIS Overview

Figure 7.2.: The Waste Disposal Strategy recommender knowledge base (view source (edit) mode).

this score is 100%, otherwise it is lower and, when clicking on the score value, a corresponding

repair action is displayed on the left-hand side (see Figure 7.1). Due to the automated alternative

determination, WEEVIS is always able to present a solution and users are never ending up in the no

solution could be found dilemma (see Figure 7.1).

An example of the definition of a (simplified) e-government recommender knowledge base is de-

picted in Figure 7.2. The definition of a recommender knowledge base is supported in a textual fashion

on the basis of a syntax similar to MediaWiki. Basic syntactical elements provided in WEEVIS will

be introduced in the next subsection.

7.3.2. WEEVIS Syntax

A WEEVIS recommender consists of three necessary aspects, the definition of questions and possible

answers, items and their properties, and constraints (see Figure 7.2).

The definition of an item assortment in WEEVIS starts with the &PRODUCTS tag (see Figure 7.2).

The first line represents the attributes separated by the exclamation mark. In our example, the item

assortment is specified by the name, sizep, the container size, emptyingp, the emptying frequency, and

81

Chapter 7. The WEEVIS Environment applied in the E-Government Domain

pricep, the price of the waste disposal plan. Each of the next lines represents an item with the values

related to the attributes, in our example there are three items specified: Small Plan, Medium Plan, and

Large Plan.

The second aspect starts with the &QUESTIONS tag. In our example the following user require-

ments are defined: persons, specifies the number of persons living in the household (one to two, three

to four, more than four) and maxprice specifies the upper limit regarding the price of the waste dis-

posal plan. Furthermore, emptying represents the sequence in which the dustbins will be emptied,

weekly or monthly, and container size, the preferred size of the dust container, 120 or 60.

The third aspect represents the definition of the constraints. Starting with the &CONSTRAINTS

tag in WEEVIS different types of constraints can be defined. For the first constraint in our example

the &INCOMPATIBLE keyword is used to describe incompatible combinations of requirements. The

first incompatibility constraint describes an incompatibility between the number of persons in the

household (persons) and the container size. For example, a waste disposal plan with (container size)

60 must not be recommended to users who live in a household with more than four persons. Filter

constraints describe relationships between requirements and items, for example, maxprice ≥ pricep,

i.e., the price of a waste disposal plan must be equal or below the maximum accepted price.

7.3.3. Recommender Knowledge Base

A recommendation knowledge base can be represented as a CSP (Constraint Satisfaction Problem)

(Mackworth (1977)) on a formal level. The CSP has two sets of variables V (V = U ∪P) and the

constraints C = PROD∪COMP∪FILT where ui ∈U are variables describing possible user require-

ments (e.g., persons) and pi ∈ P are describing item properties (e.g., emptyingp). Each variable vi has

a domain d j of values that can be assigned to the variable (e.g., one to two, three to four or more than

four for the variable persons). Furthermore, there are three different types of constraints:

• COMP represents incompatibility constraints of the form ¬X ∨¬Y

• PROD the products with their attributes in disjunctive normal form (each product is described

as a conjunction of individual product properties)

• FILT the given filter constraints of the form X → Y

The knowledge base specified in Figure 7.2 can be transformed into a constraint satisfaction prob-

lem where &QUESTIONS represents U , &PRODUCTS represents P and &CONSTRAINTS repre-

sents PROD, COMP, and FILT . Based on this knowledge representation WEEVIS is able to deter-

mine recommendations that take into account a specified set of user requirements. The results col-

lected are represented as unary constraints (R= {r1,r2, ...,rk}). Finally the determined set of solutions

(recommended items) is presented to the user.

82

7.3. WEEVIS Overview

7.3.4. Diagnosis and Repair of Requirements

In situations where requirements ri ∈ R (unary constraints defined on variables of U such as emp-

tying = monthly) are inconsistent with the constraints in C, we are interested in a subset of these

requirements that should be adapted to be able to restore consistency. On a formal level we define a

requirements diagnosis task and a corresponding diagnosis (see Definition 1).

Definition 1 (Requirements Diagnosis Task). Given a set of requirements R and a set of constraints

C (the recommendation knowledge base), the requirements diagnosis task is to identify a minimal set

∆ of constraints (the diagnosis) that has to be removed from R such that R−∆∪C is consistent.

As an example R = {r1 : persons = morethan f our, r2 : maxprice = 600, r3 : emptying =

monthly,r4 : containersize = 60} is a set of requirements inconsistent with the defined recommen-

dation knowledge. The recommendation knowledge base induces two minimal conflict sets (CS)

(Junker (2004)) in R which are CS1 : {r1,r4} and CS2 : {r1,r3}. For these requirements we can derive

two diagnoses: ∆1 : {r3,r4} and ∆2 : {r1}. For example, to achieve consistency of ∆1 at least r3 and r4

have to be adapted. Such diagnoses can be determined on the basis of a HSDAG (hitting set directed

acyclic graph) (e.g. Felfernig et al. (2004)).

Determining conflict sets (Junker (2004)) at first and afterwards constructing a HSDAG (hitting

set directed acyclic graph) to identify diagnoses tends to become inefficient especially in interactive

settings. Direct diagnosis algorithms like FASTDIAG (Felfernig et al. (2012a)) reduce this two-step

process to one step by calculating diagnoses directly without conflict determination. This was the

major motivation for integrating FASTDIAG (Felfernig et al. (2012a)) into the WEEVIS environment.

Like QUICKXPLAIN (Junker (2004)), FASTDIAG is based on a divide-and-conquer approach that

enables the calculation of minimal diagnoses without the calculation of conflict sets. In WEEVIS

the derived diagnosis are used as a basis for determining repair actions, which lead to the alternative

solutions that are be presented to the user. A repair action is a concrete change of one or more user

requirements in R on the basis of a diagnosis such that the resulting R′ is consistent with C.

Definition 2 (Repair Task). Given a set of requirements R = {r1,r2, ...,rk} inconsistent with the

constraints in C and a corresponding diagnosis ∆⊆ R (∆ = {rl, ...,ro}), the corresponding repair task

is to determine an adaption A = {r′l, ...,r′o} such that R−∆∪A is consistent with C.

In WEEVIS, repair actions are determined conform to Definition 2. For each diagnosis ∆ deter-

mined by FASTDIAG, the corresponding solution search for R− ∆∪C returns a set of alternative

repair actions (represented as adaptation A). In the following, all solutions that satisfy R−∆∪A are

shown to the user (see the right hand side of Figure 7.1).

Diagnosis determination in FASTDIAG is based on a total lexicographical ordering of the cus-

tomer requirements (Felfernig et al. (2012a)). This ordering is derived from the sequence of

the entered requirements. For example, if r1 : persons = morethan f our has been entered before

r3 : emptying = monthly and r4 : containersize = 60 then the underlying assumption is that r3 and r4

83

Chapter 7. The WEEVIS Environment applied in the E-Government Domain

Knowledge base Number of solutions / requirements /
constraints

Small 5/5/5
Medium 20/10/15
Large 50/15/30

Table 7.1.: The different knowledge bases with sizes Small, Medium and Large used for the perfor-
mance comparison.

are of lower importance for the user and thus have a higher probability of being part of a diagnosis.

In our working example ∆1 = {r3,r4}. The corresponding repair actions (solutions for R−∆1 ∪C)

is A = {r′3 : emptying = weekly,r′4 : containersize = 120}, i.e., {r1,r2,r3,r4}−{r3,r4}∪ {r′3,r′4} is

consistent. The item that satisfies R−∆1∪A is {LargePlan} (see in Figure 7.2). The identified items

(p) are ranked according to their support value (see Formula 7.1).

support(p) =
#adaptions in A

#requirements in R
(7.1)

7.4. Performance Evaluation

7.4.1. Description of the evaluation

We have conducted a performance evaluation with the goal to highlight the ability of WEEVIS to

calculate repair actions and if no solutions could be found. Therefore we set up an experiment with

three WEEVIS recommenders based on the e-government example presented in Section 2. To illus-

trate the performance of WEEVIS, the knowledge base was extended and deployed with different

complexity regarding the number of solutions (&PRODUCTS tag in WEEVIS), user requirements

(&QUESTIONS tag WEEVIS), and constraints (&CONSTRAINTS tag WEEVIS) (see Table 7.1).

According to these three attributes the knowledge bases were classified as Small, Medium, and Large.

To fit the attributes of knowledge base Small from Table 7.1, the running example (see Figure 7.2) was

adapted by adding one question, two products and removing the last two constraints. The Medium and

Large knowledge base are extended versions of the running example.

7.4.2. Results of the evaluation

To provide an optimal user experience a focus of WEEVIS is to provide instant feedback after every

interaction. Interacting with a WEEVIS recommender starts with the the entering of new requirements

and the subsequent calculation of solutions for these requirements. If no solution could be found

WEEVIS calculates one or more diagnoses and the complementing alternative products. With this

84

7.4. Performance Evaluation

time for identifying solutions
Small < 1ms

Medium < 1ms
Large < 2ms

Table 7.2.: This table shows the time needed to come up with solutions for three knowledge bases.
Even for the largest knowledge base the overall time is far below the limit of an instanta-
neously reaction(100ms).

diagnosis calculation repair identification overall time
Small < 1ms < 1ms < 1ms

Medium 93ms 16ms 109ms
Large 499ms 19ms 518ms

Table 7.3.: This table shows the time needed to come up with at least one alternative solution for
each of the three knowledge bases. Even for the largest knowledge base the overall time is
below the limit of interrupt a users thought (1,000ms).

performance evaluation we show that WEEVIS can identify at least one alternative solution even for

large knowledge bases within recommended user interface response times (Nielsen (1994)):

• below 100ms, the user feels that the system reacts instantaneously

• 1,000ms is the upper limit for keeping the users thought uninterrupted

• 10,000ms is the upper limit for keeping the user’s focus on the dialogue

For the first performance evaluation the goal was to measure the time needed for calculating the

corresponding solutions to given requirements. After assigning answers to the questions for the three

different knowledge bases, the resulting values are depicted in Table 7.2. The performance values

in Table 7.2 show that for each of the knowledge bases WEEVIS identifies solutions fast enough to

provide instantaneous feedback from the user interface. If no solution could be found due to inconsis-

tencies between the requirements and the knowledge base, Table 7.3 shows the time needed to identify

at least one alternative solution on the basis of one preferred diagnosis, Table 7.4 shows the time con-

sumption of calculating all possible solutions. WEEVIS is able to calculate either one, two, three or

all diagnoses and the corresponding alternative solutions. By taking the response time boundaries for

user interfaces into account, the experiment shows that for small and medium knowledge bases it’s

possible to calculate all minimal diagnoses within acceptable response times (see Table 7.3). When

it comes to large knowledge bases the presented alternative solutions can be reduced to increase the

performance of the user interface instead (see Table 7.4).

85

Chapter 7. The WEEVIS Environment applied in the E-Government Domain

diagnosis calculation repair identification overall time
Small 97ms 16ms 113ms

Medium 969ms 20ms 989ms
Large 3,028ms 60ms 3,088ms

Table 7.4.: This table shows the time needed to come up with all possible alternative solutions for each
of the three knowledge bases. For the largest knowledge base the overall time for repair
calculation takes about three seconds which is above the recommended time boundaries
for interrupting the user’s flow of thought.

7.5. Conclusion

In this chapter we presented WEEVIS which is an open constraint-based recommendation environ-

ment. By exploiting the advantages of Mediawiki, WEEVIS provides an intuitive basis for the devel-

opment and maintenance of constraint-based recommender applications. The results of our experi-

ment show that due to the integrated direct diagnosis algorithms the WEEVIS user interface provides

good the response times for common interactive settings.

86

Chapter 8
Conclusions

In this thesis we introduce the WEEVIS environment, a MediaWiki extension that supports the in-

tegration of knowledge-based recommenders into wiki pages. In it’s current development status the

WEEVIS environment supports the creation of recommendation knowledge bases that rely on an as-

sortment of explicitly defined solutions (items) that can be enumerated. The recommendation ap-

proach was chosen because the number of items described in typical wiki pages can be represented

with an enumerable amount of solutions. However, the introduced approaches for personalizing diag-

noses and acquiring knowledge from the wisdom of the crowd are applicable in a recommendation as

well as in a configuration scenario. A future version of WEEVIS may be extended to be able to deal

with larger solution spaces that can’t be represented explicitly.

For collaborative knowledge acquisition as well as during the interaction of users with recom-

menders or configurators, there are several challenges that can be tackled by applying diagnosis ap-

proaches: On the one hand the challenge of finding ways out of the no solution could be found dilemma

and on the other hand the challenge to identify redundancies and inconsistencies in knowledge bases.

Furthermore this work introduces and discusses the personalization of diagnoses. The dedication of

WEEVIS is to be used by end users and experts from different domains who want to contribute to a

knowledge platform by building knowledge bases in fields of their expertise. This chapter reflects on

the research questions and the contributions that have been made to answer them.

Research Question Q1:

How to exploit the wisdom of the crowds for building knowledge bases?

In the line of Wikipedia and other wiki-based platforms that allow users to collabora-
tively create content, in this work we introduce WEEVIS. By exploiting the MediaWiki
platform, WEEVIS supports the development and maintenance of recommender knowledge
bases within wiki pages (see Chapter 5). For the definition of the WEEVIS syntax we ori-
ented towards the MediaWiki syntax. This allows users who have already contributed to a

87

Chapter 8. Conclusions

MediaWiki based knowledge platform an easy way to extend pages with recommendation
knowledge bases. WEEVIS also takes advantage of MediaWiki features such as versioning,
easy prototyping and mechanisms such as locking pages during editing, which are basic fea-
tures for collaborative development. Furthermore, WEEVIS comes along with a minimalistic
user interface that is seamlessly integrated with wiki pages. 2

Research Question Q2:

How to support users in managing anomalies (e.g., redundancies and inconsistencies)
in knowledge bases during a collaborative knowledge engineering process?

In the context of knowledge-based recommendation and configuration there are several
challenges to be tackled concerning the knowledge engineering process. Two major chal-
lenges are the detection of inconsistencies and redundancies within knowledge bases (see
Chapter 6). Obviously, resolving these types of anomalies by hand comes along with a high
cognitive effort (Reiterer (2015)). In this work we describe how to reduce these efforts by
integrating algorithms for redundancy detection (Felfernig et al. (2011a)) and inconsistency
detection (Reiterer (2015)). The integration of these algorithms enhances the value of WEE-
VIS as a knowledge acquisition tool for domain experts.

Research Question Q3:

How to optimize the performance of calculating diagnoses for interactive scenarios?

The WEEVIS environment (see Chapter 5) relies on a direct diagnosis approach (the FAST-
DIAG algorithm) to identify alternative solutions if a user taps into a no solution could be
found scenario. Conflicts between user requirements (see Chapter 3) can occur at any time
during the recommendation process and WEEVIS has to come up with alternative solutions
immediately. Due to the high computational complexity involved in identifying diagnoses,
there is a trade-off between performance and prediction quality. In Chapter 7 we present two
knowledge bases from different domains implemented in WEEVIS and analyze algorithm
performance for product assortments of different complexity.

Research Question Q4.1:

How to improve the prediction quality of personalized diagnoses by applying the
ensemble-based approach?

In Chapter 4 we present an ensemble-based approach to calculate personalized diagnoses.
Diagnosis approaches support users in different situations such as the no solution could be
found dilemma and in finding constraints that violate test cases. In each of these situations,
the prediction quality of the diagnosis approach plays a significant role for satisfying the user.
The ensemble-based diagnosis approach introduced in Chapter 4 combines three personal-
ization approaches: similarity-based diagnosis, utility-based diagnosis, and probability-based

88

diagnosis. Based on the assumption that different diagnosis approaches often lead to a differ-
ent diagnoses ranking, the individual prediction faults of each approach can be compensated
by applying, for example, a majority-based approach to generate ensembles. In Chapter 4
we present a study which shows evidence of the increased prediction quality based on two
data sets, one from the domain of Computer Configuration and another from the Financial
Services domain.

Research Question Q4.2:

Is the performance of calculating personalized diagnoses applicable for interactive
settings?

As mentioned in Chapter 7, performance of diagnosis algorithms is crucial for their ap-
plicability in interactive settings. The ensemble-based diagnosis algorithm introduced in
Chapter 4 calculates personalized diagnoses with a high prediction quality and it is appli-
cable in interactive settings. In addition to the Computer Configuration and the Financial
Services datasets, the Renault benchmark knowledge base, which is part of the configuration
benchmark suite was used for the performance evaluation. Considering the calculation of the
first and the first five diagnoses, the ensemble-based approach performs nearly as well as the
breadth-first approach.

89

90

Chapter 9
Future Work

This chapter focuses on ideas for future work that could be done in the context of WEE-
VIS. There are lots of data already available from interactions with WEEVIS that could be
exploited and used for further development of the system. Psychological effects such as the
Serial Positioning Effect (Murphy et al. (2006)) in the recommendation (solution) list should
be taken into account in the next version of WEEVIS (see the following discussion).

9.1. Learning Requirements Preferences From Interaction Logs

The WEEVIS interaction log is a large resource of interaction data that can be exploited. Two
aspects are especially interesting: On the one hand the order in which the proposed questions
are answered and on the other hand solutions from the result list.

The order in which users answer questions could be used for a repositioning of the elements
in the questions list. For example, questions that are more often answered by users might be
interesting for other users as well. Thus the more interesting questions could be placed on
top of the list of questions. As a consequence, the time effort of a user to identify a relevant
question is reduced. In the current state of the WEEVIS development an interaction log is
already collected but the exploitation of the data is subject of future work.

9.2. Considering Serial Positioning Effects in the List of Solutions

Knowledge-based recommender systems such as WEEVIS (see Chapter 5) or the CWAD-
VISOR environment (see Felfernig et al. (2006a)) provide a list of solutions according to the

91

Chapter 9. Future Work

requirements entered by the user. The goal of these environments is to identify the most rel-
evant solutions. In the perception of solution lists users are biased by serial position effects
(Murphy et al. (2006)): Users are more likely to recall items at the beginning and the end of
the list than from the middle.

For knowledge-based systems in commercial settings, serial position effects can be ex-
ploited for promoting products from the solution list. Therefore the knowledge base descrip-
tion language must be extended by a syntax element that allows the creator of a recommender
to highlight certain solutions for promotion. The system can then automatically order the so-
lution list according to the serial position effect to promote the highlighted solutions. For
example, if the solution list consists of 10 items from which 4 should be promoted, two can
be set on top of the list and two at the end. We want to emphasize that, this creates partially
ethical issues, that have to be taken into account.

9.3. Analyzing the Evolution of the Knowledge Base Construction

Process

Since WEEVIS extends the MediaWiki platform, several functions such as versioning, user
management, and rapid prototyping (read/write mode) are exploited for knowledge base cre-
ation and maintenance. Especially the integrated versioning of the wiki pages brings signifi-
cant advantage for collaborative development. Users don’t have to deal with the backtracking
of faults they make during the recommender development process, versioning makes it easier
to experiment with WEEVIS features. Anytime each page can be reverted to a version that
was saved in the past. The collected data from the versioning can be exploited to reproduce
and analyze each step of the recommender creation and maintenance process. By analyzing
this data the knowledge acquisition process in WEEVIS could be improved and refined.

9.4. Data Extraction from Existing Wiki Pages

For the creation of a recommender knowledge base there are three different inputs necessary
(see Section 5):

• Solutions aka products, the result of a recommendation process. Solutions are repre-
sented by a table of products with the corresponding attribute value definitions.

• Questions, they are used to collect the requirements from the user.

• Constraints, represent the ways customer requirements restrict the solution space.

92

9.5. Parallelized Direct Diagnosis

These three aspects have to be defined by domain experts in the current version of the
WEEVIS wiki extension. The questions aspect as well as the constraints aspect need some
sort of creativity of a domain expert. The third aspect, solutions, is a list of items which is
static and, for instance, provided by the producer of the products. Sometimes this information
is already available in the form of a list within a plain text wiki page, for example, a list
of cars, produced by a car manufacturer BMW. The community project DBpedia∗ extracts
structured information from wiki pages and makes it available for automated processing. In
a future version, WEEVIS could implement a DBpedia interface to include solution lists in
an automated fashion.

9.5. Parallelized Direct Diagnosis

Diagnosis algorithms and conflict detection algorithms in knowledge-based systems support
users in a variety of situations where inconsistencies occur. For example, for identifying
alternative solutions if customer requirements are inconsistent with the knowledge base and
for detecting constraints that are inconsistent with test cases. These scenarios are all interac-
tive and with increased diagnosis calculation performance it would be possible to handle even
larger knowledge bases (see Chapter 7). Since most of todays hardware devices such as smart
phones or personal computers have multi core cpus integrated, the parallelization of direct
diagnosis algorithms can help to further increase the performance of identifying diagnoses.
Jannach et al. (2015) proposed techniques for the parallelization of the standard model-based
diagnosis approach (conflict detection with subsequent diagnosis calculation by constructing
a hitting set tree (see Reiter (1987))). Since direct diagnosis algorithms such as FASTDIAG

(see Chapter 3) have a higher performance than the standard approach it can be expected that
the exploitation of multi core resources brings further performance improvements.

∗www.dbpedia.org

93

94

List of Figures

3.1. A conflict set CS is a subset of C (AC = C∪B) which is inconsistent with
B. CS is minimal if no subset of CS fulfills the conflict set property. In
this context, B is the background knowledge which includes all constraints
considered correct. An example conflict set is CS1 = {c1,c4,c5}. 31

3.2. Activation sequence of the different QUICKXPLAIN instances (for details
see Table 3.2). 33

3.3. A diagnosis ∆ is a subset of C (AC =C∪B) such that B∪C−∆ is consistent. ∆

is minimal if no subset of ∆ fulfills the diagnosis property. B again represents
the background knowledge. An example diagnosis is ∆1 = {c1}. 35

3.4. Breadth-first based search for diagnoses on the basis of the minimal conflict
sets CS1 = {c1,c4,c5} and CS2 = {c1,c2,c5}. The resulting minimal diag-
noses are ∆1 = {c1}, ∆2 = {c5}, and ∆3 = {c2,c4}. 36

3.5. Breadth-first based search for conflicts on the basis of the minimal diagnoses
∆1 = {c1}, ∆2 = {c5}, and ∆3 = {c2,c4}. The resulting minimal conflict sets
are CS1 = {c1,c2,c5}, CS2 = {c1,c4,c5}. 36

3.6. Activation sequence of the different FASTDIAG instances (for the details see
Table 3.4). 38

4.1. Cardinality-based diagnosis (breadth-first): the diagnoses ranking is
{∆1,∆2,∆3}. The expression [{c6,c8} ×] denotes containment, i.e., the node
can be closed. 47

4.2. Similarity-based diagnosis: the diagnoses order is {∆2,∆3,∆1}. The term
¬c6 → 0.6 denotes the fact that the highest similarity between CR and the
tuples of the sessions si in Table 1 consistent with ¬c6 is 0.6 (in our case i = 1). 48

4.3. Utility-based diagnosis search: the order of identified diagnoses is {∆2,∆3,∆1}. 50
4.4. Probability-based diagnosis: the order of identified diagnoses is {∆3,∆1,∆2}. 51

95

List of Figures

5.1. The WeeVis entry page (www.selectionarts.org/weevis). 62
5.2. WeeVis: example configurator knowledge base. 63
5.3. WeeVis: example personal computer configurator. User specify their require-

ments in terms of providing answers to questions. WEEVIS determines solu-
tions and – in the case of inconsistent requirements – presents a set of repair
actions. 63

6.1. Example WEEVIS PC Recommender definition (MediaWiki ’Edit’ mode). . . 69
6.2. Divide-and-conquer principle of FASTDIAG (CS1 and CS2 are assumed to be

conflict sets). The set of requirements R = {r1, ...,r6} is split in the middle.
If a diagnosis is already contained in the first part of the split (R - {r6,r5,r4}
is consistent), there is no need to further investigate the right part for further
diagnosis elements. This way, half of the potential diagnosis elements can be
eliminated in one step (consistency check). 72

6.3. PC recommender UI (MediaWiki Readmode). If the user selects the item en-
ergystar on the right-hand side, a diagnosis with corresponding repair actions
is depicted on the left-hand side. 73

6.4. PC recommender knowledge base: result of the diagnosis process presented
in WEEVIS. 74

7.1. Waste Disposal Strategy a simple recommender knowledge base from the
e-government domain (WEEVIS read mode). 80

7.2. The Waste Disposal Strategy recommender knowledge base (view source
(edit) mode). 81

96

List of Tables

1.1. Overview of the research objectives and the corresponding contributions of
this thesis. 9

2.1. Overview of journals and conferences (including workshops) used as the ba-
sis for the literature analysis (papers on recommender system applications
2005–2012). 13

2.2. Overview of identified recommender applications not in the mainstream of
e-commerce applications (Knowledge-based Recommendation: KBR, Col-
laborative Filtering: CF, Content-based Recommendation: CBR, Machine
Learning: ML, Group Recommendation: GR, Probability-based Recommen-
dation: PR, Data Mining: DM). 14

2.3. Example of a content-based filtering recommendation problem: recommen-
dation of similar requirements based on category and/or keyword information. 16

2.4. Example of a group recommendation problem: recommendation of require-
ments prioritizations to a group of stakeholders (used heuristics = majority
voting). 17

2.5. Example of a collaborative recommendation problem. The entry ij with value
1 (0) denotes that fact that knowledge engineeri has (not) inspected constraint j. 18

2.6. Example of collaboratively recommending relevant features. A table entry x
denotes the order in which a user specified values for the given features. . . . 20

2.7. Collaborative filtering based determination of personal game difficulty levels.
A table entry x denotes the time a user needed to complete a certain game task. 21

3.1. Example of the application of SIMPLECONFLICTDETECTION. CS =
{c1,c4,c5} is returned as minimal conflict set (CS) for C = {c5,c4,c3,c2,c1}
and B = {cα,cβ,cγ,cδ,cε,cφ,cι}. 32

97

List of Tables

3.2. Example of QUICKXPLAIN: Γ = {cα,cβ,cγ,cδ,cε,cφ,cι} is the (original)
background knowledge and CS = {c1,c4,c5} is the returned conflict set. The
sequence of the different QX activations is depicted in Figure 3.2. 33

3.3. Runtime evaluation: the average runtime in milliseconds (ms) needed by
SIMPLECONFLICTDETECTION (SCD) and QUICKXPLAIN to calculate one
minimal conflict set (on a standard PC). The basis for this evaluation are
knowledge bases from www.splot-research.org. 34

3.4. Example of FASTDIAG: Γ = {cα,cβ,cγ,cδ,cε,cφ,cι} is the (original) back-
ground knowledge and ∆ = {c5} is the returned diagnosis. The activation
sequence of the different FASTDIAG instances is depicted in Figure 3.6. . . . 38

3.5. Runtime evaluation: the average runtime in milliseconds (ms) needed by
HSDAG and FASTDIAG to calculate one minimal diagnosis (on a standard
PC). The basis for this evaluation are knowledge bases from www.splot-
research.org (Dell laptops (laptops), smarthomes (homes), cars, and Xerox
printers (printers). 39

3.6. Representation of a diagnosis task as optimization problem – in this case,
all minimal conflict sets (CS1, ...,CS4) have to be determined before the op-
timization can start (1 (0) denotes the fact that ci is part (not part) of the
minimal conflict set). 39

3.7. A simple configuration problem defined by the variables V = {v1,v2,v3},
dom(vi) = {1,2,3}, and the constraint cp = con f1∨con f2∨con f3∨con f4 ∈CKB. 40

3.8. Example user requirements CR and their relationship to the configurations
con f1, ...,con f4 (1 = requirement supported, 0 = not supported). 41

4.1. Example user interaction data from already completed configuration sessions. 49

4.2. Example importance values (w(ci) in %). 49

4.3. Similarity (sim(c,a)) between requirements (c = CR) and user interaction
data (a) from configuration sessions. 50

4.4. Example diagnoses selected by users, the individual probabilities are:
p(¬c6)=0.30, p(¬c7)=0.50, p(¬c8)=0.60, p(¬c9)=0.20 where, for example,
p(¬c6)=0.30 denotes the probability of c6 being part of a diagnosis. 51

4.5. Example diagnoses selected by ensemble method (implemented as a basic
form of majority voting). 52

4.6. Predictive quality (precision) of used diagnosis selection methods for com-
puter configuration dataset. 53

4.7. Predictive quality (precision) of used diagnosis selection methods for finan-
cial services configuration dataset. 53

98

List of Tables

4.8. Avg. runtime(msec) for determining the first-N diagnoses (bf = breadth first,
pers=all personalized approaches). 54

5.1. Customer properties of working example. For example, maxprice allows the
customer to specify his/her requirements regarding the upper bound of the
price. 60

5.2. Product properties of working example. For example, each computer config-
uration has a specified cpu type pcpu (CPUS or CPUD). 60

5.3. Incompatibility constraints of working example. For example, a motherboard
MBSilver is incompatible with the energy efficiency class A. 60

5.4. Filter constraints of working example. For example, the cpu selected by the
customer has to be included in the corresponding configuration. 61

5.5. Includes constraint of working example. For example, if a user is interested
in an energy class A configuration, then the item (product) energystar should
be included. 61

5.6. Excludes constraint of working example. For example, if the destination
country is Austria then the computer hw2 is not allowed to be contained in a
configuration. Furthermore, hw1 is currently not available. 61

5.7. Supported solutions of working example. 62

7.1. The different knowledge bases with sizes Small, Medium and Large used for
the performance comparison. 84

7.2. This table shows the time needed to come up with solutions for three knowl-
edge bases. Even for the largest knowledge base the overall time is far below
the limit of an instantaneously reaction(100ms). 85

7.3. This table shows the time needed to come up with at least one alternative so-
lution for each of the three knowledge bases. Even for the largest knowledge
base the overall time is below the limit of interrupt a users thought (1,000ms). 85

7.4. This table shows the time needed to come up with all possible alternative
solutions for each of the three knowledge bases. For the largest knowledge
base the overall time for repair calculation takes about three seconds which
is above the recommended time boundaries for interrupting the user’s flow
of thought. 86

99

100

Bibliography

ADOMAVICIUS, G., BOCKSTEDT, J., CURLEY, S., AND ZHANG, J. 2011. Recommender
systems, consumer preferences, and anchoring effects. In RecSys 2011 Workshop on Hu-
man Decision Making in Recommender Systems. 35–42. (Cited on page 25.)

ADOMAVICIUS, G. AND TUZHILIN, A. 2005. Toward the next generation of recommander
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering 17, 6, 734–749. (Cited on pages 13 and 24.)

ALDANONDO, M. AND VAREILLES, E. 2008. Configuration for mass customization: how
to extend product configuration towards requirements and process configuration. Journal
of Intelligent Manufacturing 19, 5, 521–535. (Cited on page 2.)

ARAZY, O., MORGAN, W., AND PATTERSON, R. 2006. Wisdom of the crowds: Decen-
tralized knowledge construction in wikipedia. In 16th Annual Workshop on Information
Technologies & Systems (WITS) Paper. (Cited on page 5.)

ARDISSONO, L., FELFERNIG, A., FRIEDRICH, G., GOY, A., JANNACH, D., PETRONE, G.,
SCHÄFER, R., AND ZANKER, M. 2003. A framework for the development of personal-
ized, distributed web-based configuration systems. AI Magazine 24, 3, 93–108. (Cited on
page 65.)

BAKKER, R., DIKKER, F., TEMPELMAN, F., AND WOGMIM, P. 1993. Diagnosing and
solving over-determined constraint satisfaction problems. In IJCAI 1993. 276–281. (Cited
on pages 75 and 79.)

BALLATORE, A., MCARDLE, G., KELLY, C., AND BERTOLOTTO, M. 2010. RecoMap: an
interactive and adaptive map-based recommender. In 25th ACM Symposium on Applied
Computing (ACM SAC 2010). Sierre, Switzerland, 887–891. (Cited on page 24.)

101

Bibliography

BARKER, V. E., O’CONNOR, D. E., BACHANT, J., AND SOLOWAY, E. 1989. Expert sys-
tems for configuration at digital: XCON and beyond. Commun. ACM 32, 298–318. (Cited
on pages 18 and 28.)

BAUMEISTER, J., REUTELSHOEFER, J., AND PUPPE, F. 2011. KnowWE: A Semantic Wiki
for Knowledge Engineering. Applied Intelligence 35, 3, 323–344. (Cited on pages 63, 64,
and 79.)

BERKOVSKY, S., FREYNE, J., COOMBE, M., AND BHANDARI, D. 2010. Recommender
algorithms in activity motivating games. ACM Conference on Recommender Systems (Rec-
Sys’09), 175–182. (Cited on pages 15, 20, 21, and 25.)

BERKOVSKY, S., FREYNE, J., AND OINAS-KUKKONEN, H. 2012. Influencing Individu-
ally: Fusing Personalization and Persuasion. ACM Transactions on Interactive Intelligent
Systems 2, 2, 1–8. (Cited on page 20.)

BLUMÖHR, U., MÜNCH, M., AND UKALOVIC, M. 2010. Variant Configuration with SAP.
Galileo Press. (Cited on page 4.)

BROCCO, M. AND GROH, G. 2009. Team Recommendation in Open Innovation Networks.
In ACM Conference on Recommender Systems (RecSys’09). NY, USA, 365–368. (Cited
on pages 15 and 23.)

BURKE, R. 2000. Knowledge-based recommender systems. Encyclopedia of Library and
Information Systems 69, 32, 180–200. (Cited on pages 2, 3, 12, 14, 19, and 44.)

BURKE, R. AND RAMEZANI, M. 2010. Matching recommendation technologies and do-
mains. Recommender Systems Handbook, 367–386. (Cited on page 14.)

BYUNG-KWAN, L. AND WEI-NA, L. 2004. The effect of information overload on consumer
choice quality in an on-line environment. Psychology & Marketing 21, 3, 159. (Cited on
page 5.)

CHANDOLA, V., BANERJEE, A., AND KUMAR, V. 2009. Anomaly Detection: A Survey.
ACM Computing Surveys 41, 3, 1–58. (Cited on page 27.)

CHATZOPOULOU, G., EIRINAKI, M., AND POYZOTIS, N. 2009. Query Recommendations
for Interactive Database Exploration. In 21st Intl. Conference on Scientific and Statistical
Database Management. 3–18. (Cited on pages 15, 17, and 18.)

CHESBROUGH, H. 2003. Open Innovation: The New Imperative for Creating and Profiting
from Technology. Harvard Business School Press, Boston, MA. (Cited on page 23.)

CHUNG, R., SUNDARAM, D., AND SRINIVASAN, A. 2007. Integrated personal recom-
mender systems. In 9th ACM Intl. Conference on Electronic Commerce. Minneapolis,
MN, USA, 65–74. (Cited on page 24.)

102

Bibliography

COSLEY, D., LAM, S., ALBERT, I., KONSTAN, J., AND RIEDL, J. 2003. Is seeing believing

’Äı̀ how recommender system interfaces affect users’Äô opinions. In CHI03. 585–592.
(Cited on page 25.)

CRESS, U. AND KIMMERLE, J. 2008. A systemic and cognitive view on collaborative
knowledge building with wikis. International Journal of Computer-Supported Collabora-
tive Learning 3, 2, 105–122. (Cited on page 4.)

CUBRANIC, D., MURPHY, G., SINGER, J., AND BOOTH, K. 2005. Hipikat: A Project
Memory for Software Development. IEEE Transactions of Software Engineering 31, 6,
446–465. (Cited on page 14.)

DEKLEER, J. 1990. Using crude probability estimates to guide diagnosis. Artificial Intelli-
gence 45, 3, 381–391. (Cited on page 51.)

DEKLEER, J., MACKWORTH, A., AND REITER, R. 1992. Characterizing diagnoses and
systems. Artificial Intelligence 56, 2–3, 197–222. (Cited on pages 44, 46, 47, and 54.)

DIAS, M., LOCHER, D., LI, M., EL-DEREDY, W., AND LISBOA, P. 2008. The value of per-
sonalized recommender systems to e-business. In 2nd ACM Conference on Recommender
Systems (RecSys’08). Lausanne, Switzerland, 291–294. (Cited on page 24.)

DUCHENEAUT, N., PATRIDGE, K., HUANG, Q., PRICE, B., AND ROBERTS, M. 2009. Col-
laborative Filtering Is Not Enough? Experiments with a Mixed-Model Recommender for
Leisure Activities. In 17th Intl. Conference User Modeling, Adaptation, and Personaliza-
tion (UMAP 2009). Trento, Italy, 295–306. (Cited on page 13.)

FAKHRAEE, S. AND FOTOUHI, F. 2011. TupleRecommender: A Recommender System for
Relational Databases. In 22nd Intl. Workshop on Database and Expert Systems Applica-
tions (DEXA). Toulouse, France, 549–553. (Cited on pages 15 and 18.)

FALKNER, A., FELFERNIG, A., AND HAAG, A. 2011. Recommendation Technologies for
Configurable Products. AI Magazine 32, 3, 99–108. (Cited on pages 2, 3, 19, and 20.)

FANO, A. AND KURTH, S. 2003. Personal choice point: helping users visualize what it
means to buy a BMW. In 8th Intl. Conference on Intelligent User Interfaces (IUI 2003).
Miami, FL, USA, 46–52. (Cited on pages 15 and 23.)

FAULRING, A., MOHNKERN, K., STEINFELD, A., AND MYERS, B. 2009. The Design
and Evaluation of User Interfaces for the RADAR Learning Personal Assistant. AI Maga-
zine 30, 4, 74–84. (Cited on page 24.)

FELFERNIG, A. 2007. Standardized configuration knowledge representations as techno-
logical foundation for mass customization. IEEE Transactions on Engineering Manage-
ment 54, 1, 41–56. (Cited on pages 58 and 64.)

103

Bibliography

FELFERNIG, A., BENAVIDES, D., GALINDO, J., AND REINFRANK, F. 2013d. Towards
Anomaly Explanation in Feature Models. In Workshop on Configuration. Vienna, Austria,
117–124. (Cited on page 71.)

FELFERNIG, A. AND BURKE, R. 2008. Constraint-based Recommender Systems: Tech-
nologies and Research Issues. In 10th ACM Intl. Conference on Electronic Commerce
(ICEC’08). Innsbruck, Austria, 17–26. (Cited on pages 2, 15, 19, 67, 68, 77, and 78.)

FELFERNIG, A., FRIEDRICH, G., JANNACH, D., AND STUMPTNER, M. 2004. Consistency-
based diagnosis of configuration knowledge bases. Artificial Intelligence 152, 2 (Febru-
ary), 213–234. (Cited on pages 3, 4, 5, 28, 44, 54, 71, 74, 75, and 83.)

FELFERNIG, A., FRIEDRICH, G., JANNACH, D., STUMPTNER, M., AND ZANKER, M.
2003. Configuration knowledge representations for semantic web applications. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM) 17, 1, 31–
50. (Cited on page 64.)

FELFERNIG, A., FRIEDRICH, G., JANNACH, D., AND ZANKER, M. 2006a. An Integrated
Environment for the Development of Knowledge-based Recommender Applications. Intl.
Journal of Electronic Commerce (IJEC) 11, 2, 11–34. (Cited on pages 2, 4, 6, 12, 14, 17,
19, 59, 64, 67, 78, 79, and 91.)

FELFERNIG, A., FRIEDRICH, G., AND SCHMIDT-THIEME, L. 2007b. Introduction to
the ieee intelligent systems special issue: Recommender systems. IEEE Intelligent Sys-
tems 22, 3, 18–21. (Cited on page 44.)

FELFERNIG, A., FRIEDRICH, G., SCHUBERT, M., MANDL, M., MAIRITSCH, M., AND

TEPPAN, E. 2009a. Plausible Repairs for Inconsistent Requirements. In IJCAI’09.
Pasadena, CA, 791–796. (Cited on pages 5, 6, 15, 17, 19, 20, 44, 54, 58, and 59.)

FELFERNIG, A., HOTZ, L., BAGLEY, C., AND TIIHONEN, J. 2014b. Knowledge-based
Configuration: From Research to Business Cases. Elsevier/Morgan Kaufmann. (Cited on
pages 2, 3, 8, and 75.)

FELFERNIG, A., ISAK, K., SZABO, K., AND ZACHAR, P. 2007a. The VITA Financial
Services Sales Support Environment. In AAAI/IAAI 2007. Vancouver, Canada, 1692–1699.
(Cited on pages 2, 6, and 67.)

FELFERNIG, A., JERAN, M., NINAUS, G., REINFRANK, F., AND REITERER, S. 2013b. To-
ward the next generation of recommender systems: applications and research challenges.
In Multimedia services in intelligent environments. Springer, 81–98. (Cited on page 11.)

FELFERNIG, A., JERAN, M., NINAUS, G., REINFRANK, F., REITERER, S., AND STET-
TINGER, M. 2014a. Basic approaches in recommendation systems. In Recommendation
Systems in Software Engineering. Springer, 15–37. (Cited on page 1.)

104

Bibliography

FELFERNIG, A., MAIRITSCH, M., MANDL, M., SCHUBERT, M., AND TEPPAN, E. 2009b.
Utility-based repair of inconsistent requirements. In Proceedings of IEA/AIE’09. Springer
Lecture Notes in Computer Science, vol. 5579. Tainan, Taiwan, 162–171. (Cited on
pages 5 and 75.)

FELFERNIG, A., MANDL, M., PUM, A., AND SCHUBERT, M. 2010. Empirical Knowledge
Engineering: Cognitive Aspects in the Development of Constraint-based Recommenders.
In 23rd Intl. Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA/AIE 2010). Cordoba, Spain, 631–640. (Cited on pages 15, 17,
and 18.)

FELFERNIG, A., REINFRANK, F., AND NINAUS, G. 2012b. Resolving Anomalies in Feature
Models. In 20th Intl. Symposium on Methodologies for Intelligent Systems. Macau, China,
1–10. (Cited on pages 5, 15, 17, 28, 37, and 64.)

FELFERNIG, A., REINFRANK, F., NINAUS, G., AND BLAZEK, P. 2014e. Redundancy De-
tection in Configuration Knowledge. In Knowledge-based Configuration – From Research
to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds. Morgan Kauf-
mann Publishers, Chapter 12, 199–210. (Cited on page 27.)

FELFERNIG, A., REITERER, S., REINFRANK, F., NINAUS, G., AND JERAN, M. 2014d.
Conflict Detection & Diagnosis in Configuration. In Knowledge-based Configuration –
From Research to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds.
Morgan Kaufmann Publishers, Chapter 7, 97–114. (Cited on pages 27 and 64.)

FELFERNIG, A., REITERER, S., STETTINGER, M., AND JERAN, M. 2014c. An overview
of direct diagnosis and repair techniques in the weevis recommendation environment. In
25th Intl. Workshop on Principles of Diagnosis. 1–6. (Cited on pages 8 and 67.)

FELFERNIG, A., REITERER, S., STETTINGER, M., REINFRANK, F., JERAN, M., AND

NINAUS, G. 2013e. Recommender Systems for Configuration Knowledge Engineering.
In Workshop on Configuration. 51–54. (Cited on page 74.)

FELFERNIG, A., SCHIPPEL, S., LEITNER, G., REINFRANK, F., ISAK, K., MANDL, M.,
BLAZEK, P., AND NINAUS, G. 2013c. Automated Repair of Scoring Rules in Constraint-
based Recommender Systems. AICom 26, 2, 15–27. (Cited on pages 28 and 71.)

FELFERNIG, A. AND SCHUBERT, M. 2010. Fastdiag: A diagnosis algorithm for inconsistent
constraint sets. In DX 2010. 31–38. (Cited on pages 71 and 75.)

FELFERNIG, A., SCHUBERT, M., AND REITERER, S. 2013a. Personalized Diagnosis for
Over-Constrained Problems. In IJCAI 2013. 1990–1996. (Cited on pages 9, 43, and 75.)

105

Bibliography

FELFERNIG, A., SCHUBERT, M., AND ZEHENTNER, C. 2012a. An efficient diagnosis
algorithm for inconsistent constraint sets. AIEDAM 26, 1, 53–62. (Cited on pages 3, 6, 8,
15, 17, 71, 72, 75, 79, and 83.)

FELFERNIG, A., TEPPAN, E., AND GULA, B. 2006b. Knowledge-based recommender tech-
nologies for marketing and sales. International Journal of Pattern Recognition and Artifi-
cial Intelligence 21, 2, 333–354. Special issue of Personalization Techniques for Recom-
mender Systems and Intelligent User Interfaces. (Cited on page 67.)

FELFERNIG, A., ZEHENTNER, C., AND BLAZEK, P. 2011a. Corediag: Eliminating re-
dundancy in constraint sets. In 22nd Intl. Workshop on Principles of Diagnosis. Munich,
Germany. Citeseer. (Cited on pages 6, 8, 15, 17, 18, 28, 65, 76, and 88.)

FELFERNIG, A., ZEHENTNER, C., NINAUS, G., GRABNER, H., MAALEJ, W., PAGANO,
D., WENINGER, L., AND REINFRANK, F. 2011b. Group Decision Support for Require-
ments Negotiation. Springer Lecture Notes in Computer Science 7138, 1–12. (Cited on
pages 14 and 15.)

FIJANY, A. AND VATAN, F. 2004. New approaches for efficient solution of hitting set prob-
lem. In Winter International Symposium on Information and Communication Technologies.
Trinity College Dublin, Cancun, Mexico, 1–6. (Cited on pages 39 and 40.)

FLEISCHANDERL, G., FRIEDRICH, G. E., HASELBÖCK, A., SCHREINER, H., AND

STUMPTNER, M. 1998. Configuring large systems using generative constraint satisfac-
tion. IEEE Intelligent Systems 13, 4, 59–68. (Cited on pages 28 and 58.)

FOGG, B. 2003. Persuasive Technology – Using Computers to Change What We Think and
Do. Morgan Kaufmann Publishers. (Cited on page 20.)

FOSTER, M. AND OBERLANDER, J. 2010. User Preferences Can Drive Facial Expressions:
Evaluating an Embodied Conversational Agent in a Recommender Dialog System. User
Modeling and User-Adapted Interaction (UMUAI) 20, 4, 341–381. (Cited on page 25.)

FRIEDRICH, G. 2014. Interactive Debugging of Knowledge Bases. In International Work-
shop on Principles of Diagnosis (DX’14). Graz, Austria, 1–4. (Cited on page 79.)

FRIEDRICH, G., GOTTLOB, G., AND NEJDL, W. 1990. Physical impossibility instead of
fault models. In AAAI. Vol. 90. 331–336. (Cited on pages 6 and 9.)

FRIEDRICH, G., JANNACH, D., STUMPTNER, M., AND ZANKER, M. 2014. Knowledge
Engineering for Configuration Systems. In Knowledge-based Configuration – From Re-
search to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds. Morgan
Kaufmann Publishers, Chapter 11, 177–198. (Cited on pages 27 and 28.)

106

Bibliography

FRIEDRICH, G. AND SHCHEKOTYKHIN, K. 2005. A general diagnosis method for ontolo-
gies. In 4th Intl. Semantic Web Conference (ISWC05). Number 3729 in Lecture Notes in
Computer Science. Springer, Galway, Ireland, 232–246. (Cited on page 45.)

GARCIA-MOLINA, H., KOUTRIKA, G., AND PARAMESWARAN, A. 2011. Information
seeking: convergence of search, recommendations, and advertising. Communications of
the ACM 54, 11, 121–130. (Cited on page 19.)

GILES, J. 2005. Internet encyclopaedias go head to head. Nature 438, 7070, 900–901. (Cited
on page 5.)

GODFREY, P. 1997. Minimization in cooperative response to failing database queries. Intl.
Journal of Cooperative Information Systems 6, 2, 95–149. (Cited on pages 44 and 54.)

GOLBECK, J. 2009. Computing with social trust. Springer. (Cited on page 22.)

GOLDBERG, D., NICHOLS, D., OKI, B., AND TERRY, D. 1992. Using Collaborative Filter-
ing to weave an information Tapestry. Communications of the ACM 35, 12, 61–70. (Cited
on pages 1 and 12.)

HAMMER, S., KIM, J., AND ANDRE, E. 2010. MED-StyleR: METABO diabetes-lifestyle
recommender. In 4th ACM Conference on Recommender Systems. Barcelona, Spain, 285–
288. (Cited on pages 15 and 23.)

HAPPEL, H. AND MAALEJ, W. 2008. Potentials and Challenges of Recommendation Sys-
tems for Software Engineering. In Intl. Workshop on Recommendation Systems for Soft-
ware Engineering. Atlanta, GA, USA, 11–15. (Cited on page 14.)

HASELBÖCK, A. AND SCHENNER, G. 2014. S’UPREME. In Knowledge-based Configura-
tion – From Research to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen,
Eds. Morgan Kaufmann Publishers, Chapter 22, 327–336. (Cited on page 64.)

HOENS, T., BLANTON, M., AND CHAWLA, N. 2010. Reliable Medical Recommendation
Systems with Patient Privacy. In 1st ACM Intl. Health Informatics Symposium (IHI 2010).
Arlington, Virginia, USA, 173–182. (Cited on pages 15 and 22.)

HOFMANN, H. AND LEHNER, F. 2001. Requirements engineering as a success factor in
software projects. IEEE Software 18, 4, 58–66. (Cited on page 15.)

HOLMES, R., WALKER, R., AND MURPHY, G. 2006. Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on Software
Engineering 32, 12, 952–970. (Cited on page 14.)

HOTZ, L., FELFERNIG, A., STUMPTNER, M., RYABOKON, A., BAGLEY, C., AND

WOLTER, K. 2014. Configuration Knowledge Representation & Reasoning. In
Knowledge-based Configuration – From Research to Business Cases, A. Felfernig,

107

Bibliography

L. Hotz, C. Bagley, and J. Tiihonen, Eds. Morgan Kaufmann Publishers, Chapter 6, 59–96.
(Cited on pages 28, 59, 64, and 75.)

HOTZ, L. AND GÜNTER, A. 2014. KONWERK. In Knowledge-based Configuration –
From Research to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds.
Morgan Kaufmann Publishers, Chapter 24, 347–364. (Cited on page 64.)

HUANG, Y., CHANG, Y., AND SANDNES, F. 2010. Experiences with RFID-based inter-
active learning in museums. Intl. Journal of Autonomous and Adaptive Communication
Systems 3, 1, 59–74. (Cited on pages 15 and 23.)

JANNACH, D. 2008. Finding Preferred Query Relaxations in Content-based Recommenders.
In Intelligent Techniques and Tools for Novel System Architectures, P. Chountas, I. Petrou-
nias, and J. Kacprzyk, Eds. Studies in Computational Intelligence, vol. 109. 81–97. (Cited
on page 39.)

JANNACH, D. AND BUNDGAARD-JOERGENSEN, U. 2007. SAT: A Web-Based Interactive
Advisor for Investor-Ready Business Plans. In Intl. Conference on e-Business (ICE-B
2007). 99–106. (Cited on pages 15 and 23.)

JANNACH, D., SCHMITZ, T., AND SHCHEKOTYKHIN, K. 2015. Parallelized hitting set
computation for model-based diagnosis. In Twenty-Ninth AAAI Conference on Artificial
Intelligence. (Cited on page 93.)

JANNACH, D., ZANKER, M., FELFERNIG, A., AND FRIEDRICH, G. 2010. Recommender
Systems – An Introduction. Cambridge University Press. (Cited on pages 1 and 13.)

JANSSEN, J., BROEK, E., AND WESTERINK, J. 2011. Tune in to your emotions: a ro-
bust personalized affective music player. User Modeling and User-Adapted Interaction
(UMUAI) 22, 3, 255–279. (Cited on page 25.)

JUNKER, U. 2004. QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In 19th Intl. Conference on Artifical Intelligence. AAAI’04. AAAI
Press, 167–172. (Cited on pages 6, 7, 28, 31, 33, 38, 47, 53, 71, 72, 75, 79, and 83.)

K. MCAREAVEY, W. L. AND MILLER, P. 2014. Computational approaches to finding and
measuring inconsistency in arbitrary knowledge bases. International Journal of Approxi-
mate Reasoning, 1–35. (Cited on page 75.)

KAPOOR, N., CHEN, J., BUTLER, J., FOUTY, G., STEMPER, J., RIEDL, J., AND KONSTAN,
J. 2007. Techlens: a researcher’s desktop. In 1st Conference on Recommender Systems.
Minneapolis, Minnesota, USA, 183–184. (Cited on page 15.)

KERSTEN, M. AND MURPHY, G. 2010. Using task context to improve programmer produc-
tivity. In 14th ACM SIGSOFT Intl. Symposium on Foundations of Software Engineering.
1–11. (Cited on page 14.)

108

Bibliography

KIMMERLE, J., MOSKALIUK, J., AND CRESS, U. 2009. Understanding learning: the wiki
way. In Proceedings of the 5th International Symposium on Wikis and Open Collaboration.
ACM, 3. (Cited on page 2.)

KONSTAN, J., MILLER, B., MALTZ, D., HERLOCKER, J., GORDON, L., AND RIEDL, J.
1997. GroupLens: applying collaborative filtering to Usenet news. Communications of the
ACM 40, 3, 77–87. (Cited on pages 12, 18, 19, 21, 67, and 78.)

KONSTAN, J. AND RIEDL, J. 2012. Recommender systems: from algorithms to user experi-
ence. User Modeling and User-Adapted Interaction (UMUAI) 22, 1, 101–123. (Cited on
pages 12 and 13.)

KOREN, Y., BELL, R., AND VOLINSKY, C. 2009. Matrix Factorization Techniques for
Recommender Systems. IEEE Computer 42, 8, 30–37. (Cited on page 12.)

KREBS, T. 2014. EngCon. In Knowledge-based Configuration – From Research to Busi-
ness Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds. Morgan Kaufmann
Publishers, Chapter 23, 337–346. (Cited on page 64.)

LEE, T., PARK, Y., AND PARK, Y. 2008. A time-based approach to effective recommender
systems using implicit feedback. Expert Systems with Applications 34, 4, 3055–3062.
(Cited on page 25.)

LEITNER, G., FERCHER, A., FELFERNIG, A., AND HITZ, M. 2012. Reducing the Entry
Threshold of AAL Systems: Preliminary Results from Casa Vecchia. In 13th Intl. Confer-
ence on Computers Helping People with Special Needs. Linz, Austria, 709–715. (Cited
on pages 15 and 22.)

LEMAY, M., HAAS, J., AND GUNTER, C. 2009. Collaborative Recommender Systems for
Building Automation. In Hawaii Intl. Conference on System Sciences, Waikoloa, Hawaii,
2009. Hawaii, USA, 1–10. (Cited on pages 15 and 22.)

LIGGESMEYER, P. 2009. Software-Qualität: Testen, Analysieren und Verifizieren von Soft-
ware. Springer Science & Business Media. (Cited on page 6.)

LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com Recommendations – Item-to-
Item Collaborative Filtering. IEEE Internet Computing 7, 1, 76–80. (Cited on pages 12,
21, and 78.)

MACKWORTH, A. 1977. Consistency in Networks of Relations. AI Journal 8, 1, 99–118.
(Cited on pages 59, 70, and 82.)

MANDL, M., FELFERNIG, A., TIIHONEN, J., AND ISAK, K. 2011. Status Quo Bias in
Configuration Systems. In 24th Intl. Conference on Industrial Engineering and Other
Applications of Applied Intelligent Systems (IEA/AIE 2011). Syracuse, NY, USA, 105–
114. (Cited on page 20.)

109

Bibliography

MARQUES-SILVA, J., HERAS, F., JANOTA, M., PREVITI, A., AND BELOV, A. 2013. On
computing minimal correction subsets. In IJCAI’2013. 615–622. (Cited on page 75.)

MARQUES-SILVA, J. AND PREVITI, A. 2014. On Computing Preferred zehenMUSes and
MCSes. In SAT 2014. 58–74. (Cited on page 75.)

MARQUES-SILVA, J. AND SAKALLAH, K. 1996. Grasp: A new search algorithm for satisfi-
ability. In Intl. Conference on Computer-Aided Design. Santa Clara, CA, 220–227. (Cited
on page 45.)

MARTIN, F., DONALDSON, J., ASHENFELTER, A., TORRENS, M., AND HANGARTNER,
R. 2011. The Big Promise of Recommender Systems. AI Magazine 32, 3, 19–27. (Cited
on page 24.)

MASTHOFF, J. 2011. Group recommender systems: Combining individual models. Recom-
mender Systems Handbook, 677–702. (Cited on pages 12, 16, and 17.)

MAYER-SCHÖNBERGER, V. AND CUKIER, K. 2013. Big data: A revolution that will trans-
form how we live, work, and think. Houghton Mifflin Harcourt. (Cited on page 1.)

MCCAREY, F., CINNEIDE, M., AND KUSHMERICK, N. 2005. Rascal – A Recommender
Agent for Agile Reuse. Artificial Intelligence Review 24, 3–4, 253–273. (Cited on
page 14.)

MCSHERRY, D. 2004. Maximally successful relaxations of unsuccessful queries. In 15th
Conference on Artificial Intelligence and Cognitive Science. Galway, Ireland, 127–136.
(Cited on pages 44, 48, 49, and 54.)

MISIRLI, A., BENER, A., AND KALE, R. 2011. AI-Based Software Defect Predictors:
Applications and Benefits in a Case Study. AI Magazine 32, 2, 57–68. (Cited on page 14.)

MITTAL, S. AND FALKENHAINER, B. 1990. Dynamic Constraint Satisfaction Problems. In
Proceedings of the eighth national conference on artificial intelligence (AAAI-90). Boston,
MA, USA, 25–32. (Cited on page 64.)

MITTAL, S. AND FRAYMAN, F. 1989. Towards a Generic Model of Configuration Tasks. In
11th International Joint Conference on Artificial Intelligence (IJCAI-89). Vol. 2. Detroit,
Michigan, USA, 1395–1401. (Cited on pages 58 and 64.)

MOBASHER, B. AND CLELAND-HUANG, J. 2011. Recommender Systems in Requirements
Engineering. AI Magazine 32, 3, 81–89. (Cited on pages 14 and 15.)

MURPHY, J., HOFACKER, C., AND MIZERSKI, R. 2006. Primacy and recency effects on
clicking behavior. Journal of Computer-Mediated Communication 11, 2, 522–535. (Cited
on pages 91 and 92.)

110

Bibliography

NIELSEN, J. 1994. Usability engineering. Elsevier. (Cited on pages 6 and 85.)

NINAUS, G., FELFERNIG, A., STETTINGER, M., REITERER, S., LEITNER, G.,
WENINGER, L., AND SCHANIL, W. 2014. Intellireq: Intelligent techniques for software
requirements engineering. In 21st European Conference on Artificial Intelligence/Presti-
gious Applications of Intelligent Systems (PAIS 2014), p. to appear, Prague, Czech Repub-
lic. (Cited on page 15.)

O’SULLIVAN, B., PAPADOPOULOS, A., FALTINGS, B., AND PU, P. 2007. Representative
explanations for over-constrained problems. In AAAI’07. 323–328. (Cited on pages 4, 44,
54, and 75.)

PAZZANI, M. AND BILLSUS, D. 1997. Learning and revising user profiles: The identifica-
tion of interesting web sites. Machine Learning 27, 313–331. (Cited on pages 12, 16, 67,
and 78.)

PAZZANI, M. J. AND BILLSUS, D. 2007. Content-based recommendation systems. In The
adaptive web. Springer, 325–341. (Cited on page 1.)

PEISCHL, B., ZANKER, M., NICA, M., AND SCHMID, W. 2010. Constraint-based Recom-
mendation for Software Project Effort Estimation. Journal of Emerging Technologies in
Web Intelligence 2, 4, 282–290. (Cited on page 14.)

PINXTEREN, Y., GELIJNSE, G., AND KAMSTEEG, P. 2011. Deriving a recipe similarity
measure for recommending healthful meals. In 16th Intl. Conference on Intelligent User
Interfaces. Palo Alto, CA, USA, 105–114. (Cited on pages 15 and 23.)

PRIBIK, I. AND FELFERNIG, A. 2012. Towards Persuasive Technology for Software Devel-
opment Environments: An Empirical Study. In Persuasive Technology Conference (Per-
suasive 2012). 227–238. (Cited on pages 15, 20, 21, and 25.)

R. MOONEY, L. R. 2004. Content-based book recommending using learning for text catego-
rization. User Modeling and User-Adapted Interaction 14, 1, 37–85. (Cited on page 16.)

RAMIEZ-GONZALES, G., MUNOZ-MERINO, P., AND DELGADO, K. 2010. A Collaborative
Recommender System Based on Space-Time Similarities. IEEE Pervasive Computing 9, 3,
81–87. (Cited on page 24.)

RAMOS, C., AUGUSTO, J., AND SHAPIRO, D. 2008. Ambient Intelligence – the Next Step
for Artificial Intelligence. IEEE Intelligent Systems 23, 2, 15–18. (Cited on page 24.)

REITER, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1
(April), 57–95. (Cited on pages 3, 4, 6, 7, 9, 17, 35, 44, 46, 47, 53, 54, 68, 75, 79, and 93.)

REITERER, S. 2015. An integrated knowledge engineering environment for constraint-based
recommender systems. In 1st International Workshop on Personalization and Recom-
mender Systems in Financial Services (FinRec’15). 11–18. (Cited on pages 6, 8, and 88.)

111

Bibliography

REITERER, S., FELFERNIG, A., BLAZEK, P., LEITNER, G., REINFRANK, F., AND NIN-
AUS, G. 2014. WeeVis. In Knowledge-based Configuration – From Research to Business
Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Eds. Morgan Kaufmann Publish-
ers, Chapter 24, 297–307. (Cited on page 57.)

REITERER, S., FELFERNIG, A., JERAN, M., STETTINGER, M., WUNDARA, M., AND EIX-
ELSBERGER, W. 2015a. A wiki-based environment for constraint-based recommender
systems applied in the e-government domain. In 3rd Workshop on PErsonalization in
eGOVernment and Smart Cities: Smart Services for Smart Territories, UMAP 2015. 1–10.
(Cited on pages 8 and 77.)

REITERER, S., STETTINGER, M., JERAN, M., EIXELSBERGER, W., AND WUNDARA, M.
2015b. Advantages of extending wiki pages with knowledge-based recommendations. In
15rd International Conference on Knowledge Technologies and Data-Driven Business, i-
KNOW 2015. (Cited on page 2.)

ROBILLARD, M., WALKER, R., AND ZIMMERMANN, T. 2010. Recommendation Systems
for Software Engineering. IEEE Software 27, 4, 80–86. (Cited on pages 13 and 14.)

SABIN, D. AND WEIGEL, R. 1998. Product Configuration Frameworks - A Survey. IEEE
Intelligent Systems 14, 4, 42–49. (Cited on pages 19 and 75.)

SCARDAMALIA, M. AND BEREITER, C. 2003. Knowledge building. in encyclopedia of
education (pp. 1370-1373). (Cited on pages 2 and 5.)

SCHAFER, J., KONSTAN, J., AND RIEDL, J. 2011. E-Commerce Recommendation Appli-
cations. Journal of Data Mining and Knowledge Discovery 5, 1–2, 115–153. (Cited on
pages 13 and 21.)

SCHAFER, J. B., FRANKOWSKI, D., HERLOCKER, J., AND SEN, S. 2007. Collaborative fil-
tering recommender systems. In The adaptive web. Springer, 291–324. (Cited on page 1.)

SCHUBERT, M. AND FELFERNIG, A. 2010. A Diagnosis Algorithm for Inconsistent Con-
straint Sets. In 21st Intl. Workshop on the Principles of Diagnosis. (Cited on page 75.)

SCHUBERT, M. AND FELFERNIG, A. 2011. BFX: Diagnosing Conflicting Requirements
in Constraint-Based Recommendation. International Journal on Artificial Intelligence
Tools 20, 2, 297–312. (Cited on page 39.)

SCHUBERT, M., FELFERNIG, A., AND MANDL, M. 2010. FastXPlain: Conflict Detection
for Constraint-Based Recommendation Problems. In Trends in Applied Intelligent Systems
(proc. of 23rd International Conference on Industrial Engineering and Other Applications
of Applied Intelligent Systems, IEA/AIE 2010), N. Garcı́a-Pedrajas, F. Herrera, C. Fyfe,
J. Benı́tez, and M. Ali, Eds. Lecture Notes in Computer Science, vol. 6096. Springer,
Cordoba, Spain, 621–630. (Cited on page 39.)

112

Bibliography

SHCHEKOTYKHIN, K. M., FRIEDRICH, G., FLEISS, P., AND RODLER, P. 2012. Interactive
ontology debugging: Two query strategies for efficient fault localization. Web Semantics:
Science, Services and Agents on the World Wide Web 12–13, 88–103. (Cited on page 65.)

SOININEN, T., TIIHONEN, J., MÄNNISTÖ, T., AND SULONEN, R. 1998. Towards a General
Ontology of Configuration. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AI EDAM) 12, 4, 357–372. (Cited on page 64.)

SOMMERVILLE, I. 2007. Software Engineering. Pearson. (Cited on page 15.)

STUMPTNER, M. 1997. An overview of knowledge-based configuration. Aicommunications,
111–125. (Cited on pages 2, 58, 64, and 75.)

STUMPTNER, M., FRIEDRICH, G., AND HASELBÖCK, A. 1998. Generative Constraint-
based Configuration of Large Technical Systems. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (AI EDAM) 12, 4, 307–320. (Cited on page 64.)

SUROWIECKI, J. 2005. The wisdom of crowds, anchor. (Cited on page 5.)

TAYEBI, M., JAMALI, M., ESTER, M., GLAESSER, U., AND FRANK, R. 2011. Crime-
walker: A Recommender Model for Suspect Investigation. In ACM Conference on Rec-
ommender Systems (RecSys’11). Chicago, IL, 173–180. (Cited on pages 15 and 22.)

TERVEEN, L. AND HILL, W. 2001. Beyond Recommender Systems: Helping People Help
Each Other. In HCI in the New Millennium. Addison-Wesley, 487–509. (Cited on
page 23.)

THIESSE, F. AND MICHAHELLES, F. 2009. Building the Internet of Things Using RFID.
IEEE Internet Computing 13, 3, 48–55. (Cited on pages 23 and 24.)

THORLEUCHTER, D., VANDENPOEL, D., AND PRINZIE, A. 2010. Mining ideas from
textual information. Expert Systems with Applications 37, 10, 7182–7188. (Cited on
pages 15 and 23.)

TIIHONEN, J. AND FELFERNIG, A. 2010. Towards recommending configurable offerings.
International Journal of Mass Customization 3, 4, 389–406. (Cited on page 65.)

TIIHONEN, J., HEISKALA, M., ANDERSON, A., AND SOININEN, T. 2013. WeCoTin - A
practical logic-based sales configurator. AI Communications 26, 1, 99–131. (Cited on
pages 4, 58, and 64.)

TSANG, E. 1993. Foundations of Constraint Satisfaction (Computation in Cognitive Sci-
ence). Academic Press. (Cited on pages 44, 45, and 59.)

TUZHILIN, A. AND KOREN, Y. 2008. 2nd KDD Workshop on Large-Scale Recommender
Systems and the Netflix Price Competition. 1–34. (Cited on page 12.)

113

Bibliography

WALTER, R., ZENGLER, C., AND KÜCHLIN, W. 2013. Applications of MaxSAT in Auto-
motive Configuration. In Workshop on Configuration. Vienna, Austria, 21–28. (Cited on
page 75.)

WIESNER, M. AND PFEIFER, D. 2010. Adapting Recommender Systems to the Require-
ments of Personal Health Record Systems. In 1st ACM Intl. Health Informatics Symposium
(IHI 2010). Arlington, Virginia, USA, 410–414. (Cited on pages 15 and 23.)

WILSON, D., LELAND, S., GODWIN, K., BAXTER, A., LEVY, A., SMART, J., NAJJAR,
N., AND ANDAPARAMBIL, J. 2009. SmartChoice: An Online Recommender System to
Support Low-Income Families in Public School Choice. AI Magazine 30, 2, 46–58. (Cited
on page 15.)

WINOTO, P. AND TANG, T. 2010. The role of user mood in movie recommendations. Expert
Systems with Applications 37, 8, 6086–6092. (Cited on page 25.)

WINTERFELDT, D. AND EDWARDS, W. 1986. Decision Analysis and Behavioral Research.
Cambridge University Press. (Cited on pages 49, 50, and 52.)

XU, S., JIANG, H., AND LAU, F. 2008. Personalized Online Document, Image and Video
Recommendation via Commodity Eye-tracking. In ACM Conference on Recommender
Systems (RecSys’08). 83–90. (Cited on page 25.)

Y. MALITSKY, B. O’SULLIVAN, A. P. AND MARQUES-SILVA, J. 2014. A Portfolio
Approach to Enumerating Minimal Correction Subsets for Satisfiability Problems. In
CPAIOR’2014. 368–376. (Cited on page 75.)

YUAN, N., ZHENG, Y., ZHANG, L., AND XIE, X. 2012. T-Finder: A Recommender System
for Finding Passengers and Vacant Taxis. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 1–14. (Cited on pages 15 and 22.)

114

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Toward the Next Generation of Recommender Systems: Applications and Research Challenges
	2.1 Abstract
	2.2 Introduction
	2.3 Recommender Systems in Software Engineering
	2.4 Recommender Systems in Data & Knowledge Engineering
	2.5 Recommender Systems for Configurable Items
	2.6 Recommender Systems for Persuasive Technologies
	2.7 Further Applications
	2.8 Issues for Future Research
	2.9 Conclusions

	3 Conflict Detection and Diagnosis Techniques for Anomaly Management
	3.1 Abstract
	3.2 Introduction
	3.3 Example
	3.4 Determining Minimal Conflict Sets
	3.4.1 Simple Conflict Detection
	3.4.2 QuickXPlain
	3.4.3 Runtime Performance of Conflict Detection Algorithms

	3.5 Determining Minimal Diagnoses
	3.5.1 Hitting Set Directed Acyclic Graph (HSDAG)
	3.5.2 FastDiag
	3.5.3 Further Approaches

	3.6 Conclusion

	4 Personalized Diagnosis for Over-Constrained Problems
	4.1 Abstract
	4.2 Introduction
	4.3 Working Example
	4.4 Calculating Personalized Diagnoses
	4.5 Evaluation
	4.6 Related Work
	4.7 Conclusions

	5 WeeVis
	5.1 Abstract
	5.2 Introduction
	5.3 Modeling of the Working Example
	5.4 User Interface
	5.5 Related Work
	5.6 Conclusion

	6 An Overview of Direct Diagnosis and Repair Techniquesin the WeeVis Environment
	6.1 Abstract
	6.2 Introduction
	6.3 Working Example
	6.4 Diagnosis and Repair of Requirements
	6.5 Knowledge Base Diagnosis
	6.6 Related and Future Work
	6.7 Conclusions

	7 The WeeVis Environment applied in the E-Government Domain
	7.1 Abstract
	7.2 Introduction
	7.3 WeeVis Overview
	7.3.1 WeeVis User Interface
	7.3.2 WeeVis Syntax
	7.3.3 Recommender Knowledge Base
	7.3.4 Diagnosis and Repair of Requirements

	7.4 Performance Evaluation
	7.4.1 Description of the evaluation
	7.4.2 Results of the evaluation

	7.5 Conclusion

	8 Conclusions
	9 Future Work
	9.1 Learning Requirements Preferences From Interaction Logs
	9.2 Considering Serial Positioning Effects in the List of Solutions
	9.3 Analyzing the Evolution of the Knowledge Base Construction Process
	9.4 Data Extraction from Existing Wiki Pages
	9.5 Parallelized Direct Diagnosis

	List of Figures
	List of Tables
	Bibliography

