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Abstract

Individuals with severe motor impairment can use event-related desynchronization (ERD) based
brain-computer interfaces (BCI) as assistive technology. Operating such ERD-based BCIs is a
skillful action. Previous training strategies often required a high number of training sessions,
high density electroencephalography (EEG) or BCI expert interaction. The central aim of this
thesis is to develop an adaptive BCI training paradigm, that calibrates automatically and adapts
to the changing electroencephalographic signal patterns of healthy and disabled users. First, an
adaptive BCI training paradigm was developed, based on a distributed software architecture.
The system was tested with 12 healthy volunteers. Two more studies explored auto-selecting
a user-specific combination of motor-related and non-motor-related mental tasks, first offline in
a group of 13 users with spinal cord injury (SCI) or stroke and then online in a group of 14
individuals with cerebral palsy. The adaptive training paradigm in the last study auto-selected a
user-specific combination of motor-related mental tasks, supported a non-control state and was
tested with 22 users with severe motor impairment (SCI or stroke). Additional projects slightly
broadened the scope of this thesis, by exploring the applicability of the generated classifiers for
real-world control and by investigating the BCI-related neurophysiological differences between
users with cerebral palsy and healthy controls. The adaptive training paradigms presented
in this thesis successfully auto-calibrated after minutes and recurrently adapted to the users’
brain activity. Every calibration step was preceded by online outlier rejection to assure stability
of the trained classifiers. The adaptive BCI training paradigms used only five or less EEG
electrodes for actual feedback control and required no BCI expert knowledge from operators or
care-givers other than mounting the electrode cap and starting the system. Future research will
extend the presented, modular framework with more complex classification methods. Another
possible research direction to investigate, is whether these adaptive BCI training paradigms
can be effective for rehabilitation after neural injuries like spinal cord injury, stroke or other
neurological disorders.

Keywords: Adaptive Brain-Computer Interface (BCI), Electroencephalogram (EEG), Spinal
Cord Injury (SCI), Stroke, Cerebral Palsy (CP)
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Zusammenfassung

Menschen mit motorischer Einschränkung können Gehirn-Computer Schnittstellen (Brain-Com-
puter Interfaces; BCIs), welche auf ereigniskorrelierter Desynchronisation (ERD) basieren, als
Hilfstechnologie verwenden. Bisherige Kalibrierungs- und Trainingsstrategien erforderten häufig
viele Trainingssitzungen, übermäßig viele Elektroenzephalographie (EEG) Ableitungen oder
auch das Mitwirken eines BCI Experten. Das Ziel dieser Arbeit ist es adaptive Trainingsparadig-
men zu entwickeln, die sich automatisch kalibrieren und sich an die sich ändernden EEG Signal-
muster von gesunden Menschen und Menschen mit schwerer Einschränkung anpassen. Zunächst
wurde ein adaptives BCI Trainingsparadigma entwickelt, welches auf einer verteilten Software
Architektur basierte. Das System wurde mit 12 gesunden Menschen getestet. Zwei weitere
Studien untersuchten das automatische Selektieren einer benutzerspezifischen Kombination von
motor-bezogenen und nicht motor-bezogenen mentalen Aufgaben. Diese Untersuchung erfolgte
sowohl an EEG-Daten von 13 Menschen mit Rückenmarksverletzung oder Schlaganfall als auch
in einem Echtzeit-BCI System in einer Gruppe von 14 Menschen mit Zerebralparese. Zuletzt
wurde das System um einen Zustand erweitert in dem keine Kommandos gesendet werden (“Non-
Control Zustand”). Dieses System wurde mit 22 Menschen mit Rückenmarksverletzung oder
Schlaganfall getestet. In zwei ergänzenden Projekten wurde einerseits die Eignung der Klassifika-
toren aus den Trainingsparadigmen zum Steuern realer Geräte untersucht und andererseits die
BCI-relevanten neurophysiologischen Unterschiede zwischen gesunden Menschen und Menschen
mit Zerebralparese erforscht. Die adaptiven Trainingsparadigmen in dieser Arbeit kalibrierten
automatisch nach wenigen Minuten und adaptierten sich an die Gehirnaktivität des Benutzers.
Vor jeder Rekalibrierung, entfernte das System statistische Ausreißer aus den EEG Daten. Die
adaptiven BCI Trainingsparadigmen verwendeten nur fünf oder weniger Elektroden zur Berech-
nung des Steuersignals und erforderten keinerlei BCI-Expertenwissen vom Operator. Zukünftige
Forschungsarbeit wird das präsentierte, modulare System um komplexere Klassifikationsmetho-
den erweitern. Eine weitere mögliche Forschungsrichtung wäre zu untersuchen, ob sich adaptive
BCI Trainingsparadigmen zur Rehabilitation nach Rückenmarksverletzung, Schlaganfall oder
anderer neurologischer Funktionsstörung eignen.

Schlüsselwörter: Adaptive Gehirn-Computer Schnittstelle, Elektroenzephalogramm (EEG),
Rückenmarksverletzung, Schlaganfall, Zerebralparese
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Chapter 1

Introduction

1.1 What is a brain-computer interface (BCI)?

Brain-computer interfaces (BCIs) translate patterns of invasively ([51, 94, 104]) or non-invasively

([173, 230]) measured central nervous system (CNS) activity into control signals in real-time (“on-

line”) [234]. This way BCIs can establish a direct channel of communication and control between

a user’s brain and the environment. This channel of communication and control can “replace, re-

store, enhance, supplement or improve” the natural neuromuscular CNS output ([234]). A more

recent definition also explicitly mentions BCIs’ application as a research tool ([29]). Figure 1.1

shows the resulting closed loop setup. Non-invasive BCIs are the focus of this thesis.

When natural neuromuscular CNS output like speaking or writing is lost due to neural injury

or disease, BCIs can be used to replace certain lost functionality by using them to interface

spellers or other assistive technology ([19, 93, 151]). In some cases, BCIs can help to restore

normal function, for example with BCI-controlled functional electrical stimulation to restore

grasp function ([134, 141]). BCIs can enhance natural CNS output by passively detecting

mental states such as fatigue, confusion or drowsiness, and by adapting the user interface or the

application accordingly. Such systems are referred to as passive BCIs ([166, 238, 240]). BCIs may

also be used for rehabilitation after neural injuries, like spinal cord injury (SCI; [40, 48, 52, 190]),

stroke ([46, 68, 199]) or cerebral palsy (CP; [207]). Hence BCIs can improve the capability of

the CNS to produce natural neuromuscular output. As a research tool BCIs can help to

1
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Brain-Computer Interface
Feature Extraction Feature Translation

Feedback

Restore Research tool

Replace Improve

Signal Acquisition 

Enhance

Figure 1.1 – Closed feedback loop of a brain-computer interface and typical applications. The
user’s brain activity is measured, processed and translated into a control signal. This control
signal can be used for a variety of applications as presented by the images at the bottom right.
The effect of the control signal on the application is provided as feedback to the user so that
the behavior can be adapted accordingly. Photographs from [29].

answer neuroscientific research questions in clinical and non-clinical studies ([208]). For healthy

users, especially entertainment ([103, 106, 192, 193]) has been proposed as another non-medical

use case of BCIs ([23]). BCIs may also supplement natural CNS output by providing an

additional way of interacting with the environment. An additional, artificial arm would be an

example ([47]). This scenario however lies further in the future.



CHAPTER 1. INTRODUCTION 3

History of electroencephalography-based BCIs

The capability to measure and record brain activity via electroencephalography (EEG), was first

documented by Hans Berger in 1929 ([13]). Translating patterns of brain activity into control

signals in real-time, however, required computers with sufficient processing power and was first

documented by Jacques Vidal in the 1970s ([217, 218]). In this first BCI, a user could control a

computer by focusing visuospatial attention to visual stimuli. In 1991, Wolpaw and colleagues

were the first to demonstrate online control of a cursor on a computer screen ([232]). That BCI

relied on voluntary modulation of oscillatory, neuroelectric brain activity. This latter type of

BCI is conceptually similar to the BCI approaches presented in this thesis.

1.2 Brain signals and types of BCIs

1.2.1 Acquisition of neurophysiological signals

Correlates of neurophysiological activity can be measured by a variety of methods. The BCIs

in this thesis are driven by neuroelectrical activity as recorded non-invasively via EEG from the

human scalp. EEG is a sum-potential of mainly excitatory post-synaptic potentials from large

populations (thousands to millions) of neurons. The contribution of a population of neurons to

the EEG increases, if the neurons fire synchronously. Voltage potentials created by neuronal

activity propagate through the brain by means of volume conduction. The voltage decreases

with the square of distance. Signal contributions from within the brain are therefore more

strongly attenuated than those closer to the EEG sensor. The pyramidal cells in the cortical

layers II/III and V are assumed to contribute most strongly to the sum-potential measured in

scalp EEG ([87, 148]). EEG is particularly well suited for BCIs as it is relatively inexpensive,

practical, portable and allows for high time resolution ([156]).

The most common other methods to record neuroelectrical activity are invasive, which means

that they require surgical intervention ([145]). To record the electrocorticogram (ECoG) for ex-

ample, grids of electrodes are placed on the arachnoid mater, which lies above the pia mater

and the cerebral cortex ([66, 82, 110]). The ECoG measures the sum of local field poten-

tials (LFPs; [87]). Even more invasive, is the extracellular recording of multi or single unit activ-

ity, where microelectrodes are inserted into the cortex to measure spiking activity ([59, 77, 94]).
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Invasive recording methods typically have a higher signal-to-noise ratio than EEG. However,

the required surgical intervention entails medical risks such as infection. Brain activity can also

be measured in terms of the neuromagnetic changes caused by neuronal activity. The most

common method to measure neuronal activity in this way is magnetoencephalography (MEG).

MEG is regularly used both in the context of BCIs ([32, 127]) but also for basic neuroscientific

research. The measured signal is comparable to EEG, the recording method however is more

complex. MEG recording devices are large, stationary, expensive and prone to electromagnetic

interference from noise sources. Finally, brain activity can also be measured in terms of the

metabolic changes that are related to neuronal activity. The most important methods in this

category are functional magnetic resonance imaging (fMRI, [201, 229]) and functional near in-

frared spectroscopy (fNIRS, [11, 202]). Both methods have lower time resolution than EEG,

typically at the order of seconds. Measuring neuronal activity using fMRI offers a higher spatial

resolution when compared to EEG, but requires a large, stationary and expensive recording

device. EEG was used for all BCIs in this thesis and will be assumed for all BCIs from here on.

1.2.2 Types of BCIs according to the used neuroelectrical phenomena

Voluntarily performing specific mental tasks induces spatiospectrally specific power decreases

(event-related desynchronization, ERD [167, 168, 169]) or increases (event-related synchroniza-

tion, ERS [134, 152, 153, 174, 179]) in the ongoing human EEG ([65, 82, 150, 172, 175]). These

phenomena do not require external stimulation and can be voluntarily induced by mental tasks

like performing motor imagery ([84, 154]), mental arithmetic, word association, mental naviga-

tion or mental rotation ([41, 61]). Figure 1.2 shows examples of ERD/ERS patterns induced by

imagining movement. BCIs that rely on this type of phenomenon are said to be ERD-based.

The adaptive BCIs in this thesis are ERD-based.

Other phenomena, such as evoked potentials (EP), are strictly phase- and time-locked to

external stimuli ([35, 36, 188]). EPs merely reflect the brain’s physiological response to external

stimulation. Event-related potentials (ERP) on the other side are transient deflections in the

EEG that are associated with higher order processes like attention or perception. Different

stimulus types can evoke EPs or ERPs. Depending on the stimulus type there are visually evoked

potentials (VEP; [16, 209, 227]), auditory evoked potentials (AEP; [73, 88]), somatosensory



CHAPTER 1. INTRODUCTION 5

evoked potentials (SEP; [78]), olfactory evoked potentials (OEP; [10, 146]) and gustatory evoked

potentials (GEP; [160]). The most important example of an ERP in the field of BCIs is the

P300, which is a transient positive deflection in the EEG that can be measured under specific

circumstances in the human EEG 250 to 500 ms after the occurrence of an external stimulus ([34,

186, 210]). Specifically, the P300 occurs time- and phase-locked to the onset of a target stimulus

in an oddball paradigm ([58, 205]). An oddball paradigm is a random sequence of target and

non-target stimuli, where the target stimuli occur less frequently than the non-target stimuli.

P300 BCIs have been most commonly implemented based on auditory ([90, 96, 185, 198]),

visual ([49, 58, 69, 85, 100]) and somatosensory ([27, 214]) stimuli. When stimuli are presented

at a steady frequency so that every new stimulus occurs before the deflection in the EEG that was

elicited by the last stimulus has faded, a steady-state response can occur in the EEG. Depending

on the type of stimulus this response is called a steady-state visually evoked potential (SSVEP;

[9, 128, 138, 147, 216]), steady-state auditory evoked potential (SSAEP; [111, 112, 181, 206]) or

steady-state somatosensory evoked potential (SSSEP; [133, 137, 140, 184, 188]). BCIs that rely

on such phenomena are said to be EP- or ERP-based.

Slow cortical potentials (SCP) are slow potential shifts, that can be voluntarily induced by

the user ([17, 19, 114]). From all commonly used mental strategies to control a BCI, this one

typically requires the most user training. BCIs that rely on this phenomenon are typically said

to be SCP-based.
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Figure 1.2 – Spatiospectrally specific power modulation in the electroencephalogram. The small
circles on the stylized head in Panel (A) indicate standard electrode locations ([81, 161]). The
Panels (B) and (C) show decreases (event-related desynchronization; ERD) and increases (event-
related synchronization; ERS) in power, relative to a baseline period, as recorded at the locations
C3, Cz and C4 ([172]). The x-axis in each map is the time in seconds within the trial. The
visual cue, that indicated the task was displayed at second 0. The subjects were relaxing with
eyes open, prior to the cue and executing the task after the cue. The period from second -2.5 to
0 was used as a baseline to compute the relative power changes. The y-axis shows the frequency
bands. The maps in Panel (B) are averaged across all trials of one condition, where the human
subject imagined moving both feet. For the condition in Panel (C) the task was to imagine
moving the right hand.
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1.2.3 Types of BCIs from the perspective of user interaction

From the user’s perspective, BCIs can be classified into the three categories “active”, “reac-

tive” or “passive” ([240]): Active BCIs rely exclusively on voluntarily induced, spontaneous

brain-activity. This includes mostly ERD- and SCP-based BCIs. They do not require any ex-

ternal stimulation and are generally independent of neuromuscular activity. These BCIs are

also referred to as endogenous BCIs ([230]). The ERD-based BCIs presented in this thesis are

active BCIs. Reactive BCIs on the other hand, require the user to focus their attention on

external stimuli and are hence mostly EP- or ERP-based. As previously mentioned, the used

stimuli can be visual, auditory, somatosensory, olfactory or gustatory. Reactive BCIs are typi-

cally ([31, 212]), but not always ([2, 3]), dependent on neuromuscular activity. These BCIs are

also referred to as exogenous BCIs ([230]). Passive BCIs as the third category do not require any

active interaction by the user. They can rely on any of the above mentioned phenomena such

as ERD, EP, ERP or SCP. Passive BCIs work implicitly in the background and can improve

human-machine interaction ([83, 239, 240, 241]).

Another important categorization for BCIs is the temporal control paradigm, where Mason

and colleagues ([117, 118]) differentiate between four paradigms: First synchronized, where the

BCI can be used periodically, while there is no non-control state available. Support of a non-

control state means, that the system can recognize periods of time where the user willingly

chooses not to interact with the device ([117]). Examples for synchronized paradigms, are many

traditional P300 BCIs ([27, 58, 96]), as well as ERD-based BCI training paradigms ([57, 70, 86]).

The second paradigm is called system paced, which means the BCI is periodically available, and a

non-control state is supported. Examples of such systems include more recently developed P300

BCI paradigms that have been extended to support a non-control state ([165, 182, 242]). In the

third paradigm, referred to as constantly engaged, the BCI is continuously available, but a non-

control state is not supported. Examples include ERD-based BCIs where the user is required

to perform a certain mental activity to avoid triggering activations ([141, 142]). Finally, in the

paradigm called self-paced the system is continuously available and does support a non-control

state. A number of ERD-based BCIs are examples for this mode of operation ([106, 109, 193]).
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1.3 Signal translation

1.3.1 Signal preprocessing

Spatial filtering in the context of EEG-based BCIs, improves the signal-to-noise ratio of the mea-

sured brain activity ([24, 121]) and therefore typically allows for higher control accuracies ([176]).

Every EEG electrode records sum potentials of neuronal activity from an area of few cm2 of

cortical surface underneath the electrode ([156]). The areas from which neuroelectrical signals

are recorded, therefore overlap for adjacent electrodes. Hence, parts of the recorded signal are

common in these electrodes. Spatial filtering reduces these common signal parts, which effec-

tively allows to derive a signal from a spatially more focal area of cortex. The most common

spatial filters are the bipolar derivation and the Laplacian derivation ([76, 176]), which are also

used for the BCIs in this thesis. For a bipolar derivation between two neighboring electrodes

the signal from one electrode is subtracted from that of the other electrode. For a Laplacian

derivation, the average of electrodes that surround a central electrode in a grid with equidis-

tant edges is computed and subtracted from the one central electrode. Other, more elaborate

spatial filtering methods like common average reference (CAR; [121]) or common spatial pat-

terns (CSP; [24, 97, 136, 187]) can be even more effective but require more electrodes. Temporal

filtering allows to attenuate energy in certain frequency ranges of a signal that do not contain

relevant information ([162]). Given that the choice of frequency ranges is adequate, filtering can

improve the signal-to-noise ratio. The most common types of digital filters are finite impulse

reponse (FIR) and infinite response filters (IIR) ([162]). All BCIs presented in this thesis use

IIR filters. In Figure 1.3, Panel (A) shows EEG as acquired from one channel and Panel (B)

shows the EEG signal after spatial and spectral filtering.

1.3.2 Feature extraction

Feature extraction is the process of isolating those specific characteristics of the EEG signal,

by which the signal can be classified into control commands using pattern recognition and ma-

chine learning techniques. The most important type of feature for the BCIs in this thesis is

logarithmic average band power. It is computed by first band filtering the EEG in a specific
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frequency range, computing power by squaring the signal and applying a moving average (typi-

cally over one second) to smoothen the control signal. To make the distribution of band power

more Gaussian, which is an assumption of certain classifiers, the averaged band power can be

transformed by the logarithm. Previously, logarithmic average band power was used successfully

in a variety of BCI implementations ([21, 105, 177, 193]). The Panels (A) to (E) in Figure 1.3

show the steps to compute logarithmic average band power. Other relevant features for BCIs

include autoregressive (AR) or adaptive autoregressive (AAR) parameters ([126, 197, 225]), time

domain parameters (TDP; [157, 220]) or signal synchrony for example by using phase-locking

value (PLV; [30, 99, 102]) or single-trial connectivity estimation ([14]) .

1.3.3 Classification

Classification algorithms assign class-labels to examples of data according to previously defined

classification rules ([20]). These classification rules can implement either linear or non-linear

transformations from the features, that represent the data, to specific class-labels. For the

BCIs in this thesis, linear discriminant analysis (LDA; [20, 60, 195]) was used for classification.

Panel (F) in Figure 1.3 shows how LDA can separate data examples into two classes. This classi-

fication method assumes data to be Gaussian distributed and places a linear hyperplane between

the distributions of two data sets, so that the variance between the two distributions is maxi-

mized and the variance within each distribution is minimized. This objective function is called

the Fisher criterion ([60]). Logistic regression ([20, 101]) is another example for a linear classifier.

More complex, non-linear classification methods such as artificial neural networks ([5, 20, 75])

or support vector machines ([20, 39, 204]) have been evaluated for their efficacy in the context

of EEG-based BCIs, but did not substantially outperform linear classification methods ([135]).

Please see [113] for a comprehensive review of classification algorithms used for BCIs.

1.4 Adaptive BCI training paradigms

Adaptive BCIs typically provide online feedback as early as possible or from the start, and

adapt the classifier model online during operation ([98, 123, 221, 224, 225, 231]). In this closed

feedback loop, both the user and the BCI are adaptive controllers. While the BCI continues to
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Figure 1.3 – Classification based on logarithmic band-power features, that are extracted from
the electroencephalogram (EEG). Panel (A) shows two signals for two movement imagery
conditions, recorded as the potential between the electrode at location C3 and the reference
electrode (monopolar derivation; band filter between 0.5 and 100 Hz; notch filter at 50 Hz).
Panel (B), shows the same signals after Laplace derivation and band-filtering between 10 and
13 Hz. This reveals the amplitude modulation of the sensorimotor rhythm in response to motor
activity. To attain a more reliable and stable feature, the signals are squared (see Panel (C))
and averaged over 1 second (see Panel (D)). By applying the logarithm (see Panel (E)), the
distribution of the signals becomes more Gaussian, which is an assumption of some linear clas-
sifiers like linear discriminant analysis. Finally, the scatter plot in Panel (F) shows the log.
average band-power for every trial for two features, band filtered at 10 to 13 and 16 to 24 Hz,
respectively. The resulting feature value for a specific trial is the average between second 4 and
8 in the trial.

adapt to the patterns of the user’s brain activity, the user on the other side keeps adapting his

or her behavior to maximize BCI performance.

Adaptive BCIs can be mainly differentiated according to the type of adaptation that is

used: In the context of this thesis, the first type is referred to as “continuous adaptation”.

With this method, the classifier-model is typically adapted after every trial (e.g. [221, 224,
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Figure 1.4 – Modes of operation in adaptive brain-computer interfaces. Panel (A) depicts the
continuous adaptation mode, where the classifier is modified after every trial ([221, 222, 223,
224, 225, 226]). Panel (B) shows the recurrent adaptation mode, where the classifier is updated
whenever a sufficient amount of new data is available. Panel (C) shows the auto-selection and
recurrent recalibration mode where the class combination with the highest separability is selected
according to a heuristic.

225, 226], see Figure 1.4, Panel (A)). This type of adaptation does not require any memory

of previously collected trials. The second type, represents a more general notion of adaptation

and is implemented as “recurrent recalibration” (e.g. [200], see Figure 1.4, Panel (B)). This

recurrent recalibration includes retraining of the classifier model on a fixed or newly selected

set of features. Recalibration generally takes more time than classifier adaptation and therefore
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typically needs to be run asynchronously in the background. It requires a higher amount of

computational resources, but allows for more complex data processing including outlier rejection.

To make recalibration possible, all trial information needs to be kept in memory. Systems

that rely on continuous adaptation have to start out based on a predefined classifier model.

This predefined classifier model can for example be trained based on data that was previously

collected from a large group of other users ([221, 225]). In this type of adaptive BCI, feedback

can be provided from the start. Adaptive BCIs that rely on recalibration can be configured

to start with a predefined classifier so that they can provide feedback from the start, or start

without a predefined classifier so that they can start to provide feedback after the first automatic

calibration. This first automatic calibration can also include automatic class selection (see

Figure 1.4, Panel (C)). With recurrent recalibration, typically a fixed number of new trials per

class are collected prior to every recalibration. BCIs that rely on recalibration can be configured

to recalibrate based on all collected data (“cumulative mode”) or based only on a certain number

of the most recently collected observations (“window mode”; see [200]). The work in this thesis

relies on adaptive BCIs that use recurrent recalibration in a cumulative operation mode.

1.5 Medical conditions that cause severe motor impairment

For motor impairment, the term paraplegia is used to denote partial or complete loss of function

below the waist. If the loss of function affects all four extremities, then the term tetraplegia is

used. In analogy, the terms para- and tetraparesis describe a severe weakness in the muscles

from the waist down or in all four extremities, respectively. When severe motor impairment

limits an individual’s ability to perform certain tasks, then this condition is referred to as a

disability ([235]).

1.5.1 Spinal cord injury (SCI)

Spinal cord injury (SCI) is typically a result of trauma or disease, and can cause impairment of

motor, sensory or even autonomic function ([33, 119]). The specifics of the functional impairment

can vary, depending on the location of the injury and the degree to which the spinal cord is

severed. In the order from the neck to the legs, the spinal cord is subdivided into the cervical,
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thoracial, lumbar and sacral section. The cervical section is mainly responsible for the function

of hands, arms and neck but also for the muscles that are needed for respiration. The thoracial

section is associated with the function of the muscles in the torso. The lumbar and sacral section

are generally associated with the function from the waist down to the feet. Typically, SCI affects

mainly the function associated with parts of the spinal cord that are below the level of injury. In

practice, this entails, that a SCI on a level closer to the head will lead to more severe functional

impairment. The classification of SCI is carried out according to the International Standards for

Neurological and Functional Classification of Spinal Cord Injury (ISNCSCI; [116]). Especially

relevant is the categorization of impairment in the American Spinal Injury Association (ASIA)

levels A, B, C, D or E ([116]). ASIA E refers to normal sensory and motor function. ASIA D

to A, describe the extent to which motor and sensory function are preserved below the point

where both, motor and sensory function are normal on both sides of the body: For ASIA D and

C a specific level of motor function is preserved, while in ASIA B only sensory but no motor

function is retained. Finally, ASIA A refers to complete spinal cord severance, where neither

sensory nor motor function are preserved.

1.5.2 Stroke

Stroke is a medical condition where the blood flow to certain brain areas is interrupted as a

result of arterial ischemia or hemorrhage ([50, 144]). During an ischemic stroke, a blood clot or

a different form of embolus blocks the blood flow through an artery. This way, blood from the

heart can no longer pass to supply the brain cells in the affected area with oxygen and energy.

This can cause brain cell death (lesion). A hemorrhagic stroke on the other side, is a condition

where a blood vessel in the brain ruptures, so that blood leaks into the brain. The resulting

compression of the brain tissue can cause cell death. The specifics of any impairment resulting

from stroke, depend strongly on the location of the lesion. Lesions at cortical motor areas for

example, may cause motor impairment of the associated extremities. Neural insult to the ventral

pons in the brain stem, as a specific example, can lead to a condition where the patient becomes

tetraplegic, while retaining consciousness. The condition may leave the patient with only very

limited or no means of communication with the outside world. This medical condition is referred

to as locked-in syndrome ([203]).
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1.5.3 Cerebral palsy (CP)

Cerebral palsy (CP) refers to a range of neurological conditions, where brain injury or abnormal

development before, during or after birth ([159]), causes physical and possibly also cognitive im-

pairment ([44, 132]). The condition is non-progressive and, as of the current state of knowledge,

there is no cure. However, the specifics of the impairment may change over life as a result of

rehabilitation or growing up. The type and characteristics of the associated motor impairment

vary across individuals, depending on which brain areas are affected by the condition. In the

past, the prevalence of tetraplegia in individuals with CP has been found to range between 20

and 43 % ([159]).

1.5.4 Other medical conditions

Other medical conditions that can lead to severe motor impairment include traumatic brain

injury (TBI), multiple sclerosis (MS), Guillain-Barré syndrome and amyotrophic lateral sclero-

sis (ALS). TBI is an injury to the brain, caused by external physical force. The injury may either

penetrate the skull or leave it in tact. TBI can cause a range of impairments, including severe

impairment of motor function. The type and degree of motor impairment depends on which

areas have been affected by the injury ([115, 213]). In severe cases this can result in medical

conditions like locked-in syndrome or disorders of consciousness like minimally conscious state,

persistent unresponsive state or even coma ([163, 164]). MS is a chronic, inflammatory disorder

of the central nervous system. The disorder causes progressive neurodegeneration by damaging

the myelination of axons, which can lead to severe motor impairment ([37, 228]). Guillain-Barré

syndrome causes acute weakening and numbing that progresses from the toes and fingers toward

the torso within days. At its peak, the disorder causes a high level of motor impairment, possi-

bly including respiratory failure. The cause of the disease is an inflammation of the peripheral

nerves that can follow certain infections. Two thirds of the patients recover completely within

weeks or months, while the rest may retain some impairment ([80, 237]). Charcot ALS is a

progressive, neurodegenerative and fatal disease of the motor system and is the most common

form among the motor neuron diseases (MND). ALS causes spasticity and rapidly progress-

ing muscular atrophy, which leads to severe motor impairment, respiratory failure and finally

death ([28, 95]).
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1.6 Organization of the chapters

Chapter 1, Introduction gives an overview of the most relevant neurophysiological signals,

the most important types of brain-computer interfaces and signal processing techniques.

Chapter 2, Motivation and related work reviews the state of the art and limitations of

relevant previous work in the field of adaptive brain-computer interfaces.

Chapter 3, Aim of this work points out overall and specific objectives of this thesis.

Chapter 4, Methodology and results summarizes aim, methods, main results and signifi-

cance of the core papers for this thesis.

Chapter 5, Discussion explains how the findings reported in the core papers contribute to

accomplish the aim of the thesis. This section further relates the outcome of the studies

to other work in literature and discusses possible limitations of this work.

Chapter 6, Conclusion and future prospects summarizes the main achievements of this

thesis and points out possible future research directions.



Chapter 2

Motivation and related work

2.1 Conventional BCI training approaches

Operating an ERD-based BCI is a skillful action and requires a varying amount of training

for different users ([4]). Most state-of-the-art ERD-based BCI training paradigms start by

collecting cue-guided mental activity, where no feedback is provided to the user. After collecting

a substantial amount of data (typically 20 to 30 minutes) a classification algorithm is trained.

So, depending on which classifier and processing algorithms are used, the complete training

procedure after electrode mounting can typically require between 25 and 45 minutes. The trained

classifier is then used to provide online feedback to the user during training sessions. This way,

the user can improve his or her performance based on the feedback. The data from these online

training sessions are then typically reanalyzed to set up a new classifier for consecutive training

sessions. In this iterative approach man and machine mutually adapt to each other. This

strategy has proven effective in healthy users ([71, 101, 187, 193]) and users with severe motor

impairment ([93, 141, 151, 170, 231]) but is time consuming and strenuous.

One approach to allow for high control accuracy with a low number of training sessions is by

using a high number of electrodes (more than 161) and more complex data analytic approaches

like CSP ([24, 97, 187]). Such approaches have been shown to be effective both for healthy

1The threshold of 16 electrodes was defined for this thesis since most relevant literature used either 6 to 16 or
more than 32 electrodes. This threshold therefore is well suited to distinguish these systems in the context of this
particular research topic.

16
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users ([6, 21, 67]) and for users with severe motor impairment ([8, 38, 171]). Some disadvantages

of approaches that require a high number of electrodes are, that they require more equipment,

are more expensive, require longer setup time, are more inconvenient for the user and are overall

less practical for sustained use. Many of these disadvantages are especially problematic for end

users with severe motor impairment.

2.2 Offline adaptive BCI training approaches

Adaptive BCI training paradigms constitute an alternative to conventional training paradigms.

Generally, these systems provide feedback to the user either from the start, or from as early

as possible. Then they continuously or recurrently adapt to the user’s brain activity over the

course of the training, while the user in turn adapts his or her behavior to obtain best possible

feedback. The following paragraphs review the relevant literature about offline analyses in the

field of adaptive BCIs by descending relevance.

Shenoy et al. (2006) ([200]) used EEG data, previously collected from five healthy study

participants, to visualize and quantify the non-stationarities that are introduced by the transition

from the offline to the online phase in a BCI experiment. To alleviate the negative impact of these

non-stationarities, the authors introduced and evaluated three adaptation schemes. The first

two schemes Rebias and Retrain did not change the CSP-based feature selection ([21, 187]) based

on the online data. Instead Rebias just adapted the bias term of the underlying LDA classifier,

while Retrain in addition recomputed the classifier weights. The third approach, ReCSP also

recomputed the CSP-based feature selection. The three schemes were evaluated using three

different modes that determined which data to use during adaptation: Initial used only a fixed

amount of data from the beginning of the session, while Window used a fixed amount of data

from the immediate past. Cumulative, finally used all data that was collected so far during

the adaptation process. The approaches Retrain and Rebias were found to be most effective,

in both modes Cumulative and Window (see Figure 2.1). Interestingly, even simple adaptation

like Rebias in the mode Initial was already able to counteract some of the non-stationarity.

Vidaurre et al. (2004) ([223]) initially trained a universal QDA classifier model, based on

EEG data collected from seven study participants. In preliminary offline analysis, the authors

showed that the adaptive QDA classifier effectively adapted to single sessions of EEG data from
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Figure 2.1 – Different adaptation schemes for EEG-based brain-computer interfaces. Offline
classification analysis was performed on EEG data of five healthy participants who performed two
motor-related mental tasks. Common spatial patterns (CSP) was used for feature extraction and
linear discriminant analysis was used for classification. The abscissa shows the number of trials
and the ordinate shows the classification error. In the figure legend, the prefix “C” stands for
“cumulative”, which indicates that all data that was collected up to a certain point, was used for
recalibrations. The prefix “W” on the other side, indicates that only data from a specific window
prior to a certain point was used for recalibration. “REBIAS” indicates that only the bias term
of the classifier was recomputed, wheres “RETRAIN” refers to a complete recalibration of the
classifier. “RECSP” included recomputing the CSP weights as well as retraining the classifier.
Figure from [200].

three different healthy individuals.

Sykacek and Roberts (2003) ([211]) introduced an adaptive nonlinear classification ap-

proach based on variational Kalman filtering. The authors evaluated their method on different

data sets, including EEG data collected from eight healthy study participants. The task of the

participants in this experiment had been to perform a relax task, a motor-related as well as a

non-motor-related mental task. On the EEG data, the authors were able to show a statistically

significant improvement in classification accuracy of their method compared to an otherwise

similar non-adaptive approach in most task combinations.

Kawanabe et al. (2006) ([89]) showed on EEG data, previously collected from three
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study participants, that an adaptive classifier based on a Gaussian mixture model (GMM) and

a dynamical Bayesian model was able to effectively compensate for the non-stationarities in

the transition between offline and online phase in a BCI experiment for some of the tested

participants.

Blumberg et al. (2007) ([25]) present two linear classification approaches. Both adapt in

an unsupervised manner relying on expectation maximization (EM), but the second approach

can incorporate an error signal that indicates whether a data sample was classified correctly or

not. The authors demonstrated the effectiveness of both methods on simulated data and on the

EEG data from one human subject.

Hasan et al. (2009) ([72]) presented an adaptive classifier that performs unsupervised

adaptation of a Gaussian mixture model using expectation maximization. Based on EEG data

previously collected from five study participants, the authors showed that their adaptive ap-

proach improves overall accuracy in comparison to a static approach by 1-2 %.

Yoon et al. (2009) ([236]) demonstrated that extensions to a dynamic Bayesian model for

adaptive classification can improve accuracy in the presence of missing or erroneous labels. The

authors evaluated the proposed methods using simulated data and EEG which was previously

collected from three healthy study participants.

Hsu (2011) ([79]) showed on EEG data from six healthy study participants that enhanced

active segment selection and multiresolution fractal feature vectors in an LDA-based adaptive

classification setup can improve accuracy rates.

2.3 Online adaptive BCI training approaches

The following paragraphs review the relevant literature about online adaptive BCIs in order of

descending relevance.

Vidaurre et al. (2005) ([224]) presented two variants of an online adaptive BCI that

used different feature extraction methods. One implementation used adaptive autoregressive

parameters, while the other one relied on logarithmic band power features. Both adaptive BCI

systems adapted the classifier on a trial level. Either implementation was tested with six healthy

and BCI-novice study participants in three sessions. Logarithmic band power performed slightly

better in the first and second session but both methods were equally effective in the third session.
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The system did not support automatic online artifact rejection or detection. The authors present

high average accuracies from 71.4 % in the first session to 79.1 % in the third session, but do not

report how many participants were excluded from analysis due to artifact congestion. In later

publications ([225, 226]) involving the same setup and partly data from the same participants,

the authors report that many data sets needed to be excluded due to artifact congestion and

lack of class separability.

Vidaurre et al. (2006) ([225]) reported results for three additional healthy novice study

participants for the previously presented AAR parameter-based adaptive BCI system from Vi-

daurre et al. (2005; [224]) and noted that data from three additional participants was excluded

due to the presence of artifacts. In addition the authors showed in offline analyses on EEG data

from three healthy study participants, how their continuous adaptation approach after every

trial yielded higher overall accuracy than discontinuous adaptation after three or four runs (120

to 160 trials) of data.

McFarland et al. (2005, 2008) ([124, 120]) used the standard Adaptive BCI training

paradigm of the Wadsworth center ([215, 233]), to train four healthy and two disabled users so

that they were able to effectively control a cursor across a computer screen and select specific

targets, thus emulating mouse cursor control of a computer.

Wolpaw and McFarland (2004) ([231]) presented an ERD-based BCI that continuously

adapted linear weights based on a least mean squares (LMS; [122, 123]) algorithm so that the

error in a two-dimensional cursor control task was minimized. The authors showed, that after

a considerable amount of training (between 40 and 296 sessions) two individuals with SCI and

two healthy users were able to control the BCI with an efficacy that was comparable to that in

invasive setups with non-human primates.

Vidaurre et al. (2007) ([226]) evaluated and compared four different adaptive BCI ap-

proaches, the first two using an adaptive QDA classifier either on AAR parameters or logarithmic

band power features. Approach two and three both concatenated AAR parameters and loga-

rithmic band power features but approach 3 used adaptive QDA while approach 4 used Kalman

LDA for classification. Approach 1, 2 and 3 were tested in online experiments, each with six

healthy study participants. In addition, each approach was simulated with the rest of the data

from the other participants. Six additional data sets were collected, but excluded from analyses

due to artifact congestion or lack of class separability in the data. The authors found feature
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concatenation (approach 3 and 4) to yield slightly higher accuracies. In additional analyses the

authors also confirmed their earlier finding ([225]) that continuous classifier updates after every

trial yielded slightly higher accuracy than discontinuous updates after more than three runs (120

trials).

Vidaurre et al. (2011a) ([222]) devised a sophisticated adaptive BCI training approach

that used a high number of electrodes and operated in three phases: Initially the authors selected

two of three classes for each user according to previous screening or the preference of the user.

The first phase then provided feedback from the beginning on for three runs (300 trials) based

on three laplacian derivations around the electrode positions C3, Cz and C4. For classification

a universal model was used, which was trained from 48 previously collected data sets. The LDA

classifier model was adapted after every trial. Based on the data from the first three runs, the

authors then computed CSP filters. These CSP filters remained fixed for the following second

phase. During phase two, six laplacian derivations were automatically reselected after every trial

and concatenated to the CSP filters. Finally, also the LDA classifier was retrained after every

trial. For the third and final phase in the runs seven and eight, spatial filters were retrained

based on the runs four to six and remained static from then on. In this last phase, the LDA

classifier was continuously adapted in an unsupervised manner after every trial. The authors

evaluated their system on eleven study participants (ten with BCI experience). For five of the

experienced participants, ERD-based BCIs had previously worked very well, for two of them

moderately well and for three of them very poorly. The authors found their system to be highly

effective for participants who had previously been successful. Surprisingly, the authors also saw

improvements for those users for whom ERD-based BCIs had previously not worked effectively.

Vidaurre et al. (2011b) ([221]) applied their sophisticated adaptive BCI training approach

they previously introduced in Vidaurre et al. (2011a; [222]) to a group composed of four BCI-

novice participants and ten other participants for whom ERD-based BCI systems were previously

found not to work accurately enough. The authors found their system to work better than 70 %

accuracy for all four novice participants. More interestingly the system also worked better than

70 % accuracy for five of the ten users for whom ERD-based BCIs were previously found not to

work accurately enough (see Figure 2.2).

Millán (2004a) ([129]) presents first evidence, that online-learning by regularly adapting

the BCI classifier, can systematically improve classification performance over an offline training
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Figure 2.2 – An adaptive training protocol for users, for whom previous brain-computer in-
terface (BCI) approaches were unsuccessful ([221]). The left panel shows the accuracy results
for four novice participants, the center panel shows the accuracy results for five users who were
previously unsuccessful to attain BCI control but were successful with this approach and the
right panel shows the results for users who have previously been unsuccessful and for whom the
present adaptive BCI also does not work effectively. Level 1 uses only three Laplacian deriva-
tions and continuous classifier adaptation. Level 2 uses common spatial pattern (CSP) filters,
Laplacian derivations and continuous classifier adaptation. Level 3 uses fixed spatial filters and
unsupervised classifier adaptation. The bars are the accuracy averages over the users for a run
and the dots are the averages over the users for a portion of trials within a run. The light pink
colored graphs indicate resulting performance if the setup from Level 1 were used for the rest of
the session. Figure from [221].

approach. On a related topic, Millán and colleagues also showed that the adaptive classifiers can

be used to control real-world applications such as mobile robots or virtual keyboards ([130, 131]).

Kus et al. (2012) ([101]) demonstrated an ERD-based BCI setup that required 16 elec-

trodes and supported three classes. The system allowed for automated feature selection and

classifier training after four calibration runs where no feedback was provided. During subse-

quent synchronous training runs, the classifier was re-calibrated whenever a sufficient amount

of trials was available. After four sessions of training, five healthy study participants were able

to operate three classes in an asynchronous ERD-based BCI with an average accuracy of 75 %.

Vidaurre2011c ([219]) first showed effective methods to adapt a classifier, which was trained



CHAPTER 2. MOTIVATION AND RELATED WORK 23

on offline data, to generalize better to feedback data in offline analyses. This was done on data

sets from 80 healthy and seven disabled individuals. The second step was performed on newly

collected data from eleven healthy individuals. Here the authors first collected calibration data

offline and then trained a classifier. The classifier was then used online though, and was adapted

after every trial.

2.4 Limitations of previous work

Both, conventional and adaptive BCI approaches have been shown to allow for effective BCI

training and for successful, subsequent BCI control of real-world applications for both, healthy

and disabled users based on the trained classifiers (conventional: [141, 170] and adaptive: [120,

124, 131, 215, 233]). Despite the successes, of both of these approaches over the years, a number

of more recent offline analyses ([25, 72, 79, 89, 200, 219, 223, 236]) and online studies ([224, 225,

226]) indicated, that specifically the part of BCI training may offer potential for improvement

by using more elaborate adaptive approaches. While, specifically, the results of the tests of

Vidaurre and colleagues ([224, 225, 226]) were very promising, there was still some potential for

improvement. For example, the authors consistently report the necessity to exclude 25 % of the

users due to artifactual activity or lack of separability in the EEG data. Since the accuracy

results for a portion of the study participants have not been reported, it is very difficult to

estimate the efficacy of the system for new users, especially for end users. An evaluation where all

data is reported would be necessary to generate a more reliable estimate of the efficacy of adaptive

ERD-based BCI systems. The fact that the system was not effective for users who produced

artifactual activity during operation offers another major opportunity for improvement. The

reason why artifacts are so problematic for adaptive BCI designs, is because classifier updates

happen after every trial, regardless of whether the trial was artifact contaminated or not. In the

absence of outlier rejection, especially high energy EEG artifacts like muscle activity, can strongly

deteriorate classification performance of the adapted classifier. In the previously presented

designs, the classifier update procedure stalls the online BCI operation. The update procedure

is therefore required to be very short and can not include time-consuming outlier rejection

mechanisms. To make adaptive BCIs more useful in a practical setup, they need to be robust

against occasional short timed interferences like when the user swallows or moves his or her head.
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This is even more important for users with severe motor impairment. Performing continuous

adaptation typically means, that there is not enough time to perform outlier rejection or more

complex types of optimization. At the same time improved adaptive BCI training approaches

should also be evaluated with representative samples of end users with severe motor impairment.

Adaptive BCI implementations that used higher numbers of EEG electrodes (40 to 64)

were even able to achieve effective BCI control for 50 % of a sample of users for whom ERD-

based BCIs had previously been found to be not effective ([221, 222]). There are however, a

couple of limitations to these otherwise very promising approaches. The requirement of a large

number of EEG electrodes increases setup time, user discomfort and cost of the equipment.

BCI systems that require high EEG coverage are therefore slightly less practical, especially for

users with severe motor impairment. The sophisticated and elaborate training protocol used in

this setup required running through three phases and was semi-automatic. This means, that

the procedure still required BCI expert interaction for some procedures in the protocol. To

make adaptive ERD-based BCI systems more practical for real-world use, a possible way for

improvement would be complete automation of features selection, classifier setup and adaptation.

In this ideal case, the person to setup the BCI, which in a real-world setting could be a medical

professional or a caregiver, would require no BCI expert knowledge other than mounting the

electrode cap and starting the system. Like in earlier designs, also this implementation adapts

classifiers after every trial. The authors do not mention whether their system performed outlier

rejection. Therefore the question remains, whether excluding artifact congested trials during

retraining of the classifiers may improve performance.

2.5 User requirements

Guided by the findings of previous work and by principles of user-centered design ([1, 91, 243])

we identified the following user requirements to make ERD-based BCI training paradigms more

practical and effective:

Practicality and user comfort with ERD-based BCI training paradigms are mostly a func-

tion of the number of electrodes required to run the system. A lower number of electrodes

has a number of advantages: First, electrode setup time increases in direct proportion to
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the number of sensors. Based on experience we know that using a low number of electrodes

causes less discomfort. The impact of setup time and comfort is particularly high for use

cases where sustained, daily use would be envisioned, as for example for users with severe

motor impairment. Mounting between two and sixteen electrodes typically requires less

than 15 minutes. This can be considered practical for mid to long-term use as was demon-

strated previously in training studies ([151, 170, 225]). For the purposes of this thesis 16

is therefore defined as the threshold between a low and a high number of electrodes.

Automatic calibration and online adaptation are highly important for the usability, prac-

ticality and acceptance of ERD-based BCI training paradigms in a real-world setting. A

fully automated calibration procedure would reduce the requirements imposed on the BCI

operator to simply mounting the electrodes and starting the system. The system would

seamlessly adapt to the patterns of the user’s brain activity in the background. Such

functionality is important for both, healthy users and individuals with severe motor im-

pairment. In both cases, a BCI expert for calibration would cause additional cost and

inconvenience and would render the use of BCIs for particular real-world use-cases imprac-

tical. For example: The use of BCIs in clinical settings is less expensive if the caregiver

or nurse does not need BCI expert knowledge to operate the training paradigm. With an

auto-calibrating system, the only required training is to mount electrodes.

Robustness against artifacts and other interferences is important for usability, especially for

users with severe motor impairment for whom it is more difficult to avoid artifacts (both

biological and technical from cable sways) as they might suffer from uncontrollable spasms.

Robustness and reliability of the system also have an impact on the efficacy and the per-

formance of the BCI system. To use the advantages of online adaptation, online outlier

rejection is required. If all trials, including those congested with artifacts are used, the

classifier model is skewed and incorrect feedback is provided to the user. Previous work re-

ported how up to 25 % of users needed to be excluded from analysis due to artifacts ([225]).

Performance and efficiency is the speed of information transfer using the BCI. Two factors

determine the rate of information transfer: First, the accuracy of the BCI to actually detect

the users’ intentions during single decisions and second, the number of such decisions per
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unit of time. A higher rate of information transfer allows the user to communicate faster

and in turn can be expected to improve the users’ acceptance of the system. While

communication speed should be as high as possible, BCIs which are effective but have low

communication speed, can still be highly valuable to users who have no other options to

communicate.

Effectiveness of a BCI system is determined by whether it can be controlled by user inten-

tion. In the past, users for whom BCIs did not work effectively have been referred to

as “BCI illiterate” ([22]), “BCI apraxic” or “BCI dyspraxic” (Prof. Jonathan Wolpaw

to auditorium at 4th International BCI Meeting 2010, Asilomar, CA, USA). The exact

threshold for effective BCI control is typically defined either above the statistical level of

chance ([15, 139]) or at a higher fixed percentage as for example 70 % ([92]). The aim is

for BCI systems to be effective for as many users as possible.



Chapter 3

Aim of this work

The central aim of this thesis is to develop an improved, adaptive BCI training paradigm and to

test it with healthy and disabled volunteers. To complement and support the in-depth research

toward the central aim, this thesis also explores the BCI-related neurophysiology of CP and

the applicability of the adaptive BCI training paradigm to setup BCI-based interaction with

real-world devices.

In contrast to previous work, the adaptive BCI training systems in this thesis will calibrate

and even select user-specific task combinations fully automatically. Calibration will require no

BCI expert interaction. The systems will generally require less electrodes but are expected to

yield comparable or higher accuracies as a result of automatic feature selection and motivating

online training. Online outlier rejection mechanisms will assure effective BCI operation even for

users with artifact contaminated EEG.

As another important difference, the focus in this thesis will be on testing BCIs with novice

participants and all results will be reported to assure generalizability of the findings. Most

importantly, the systems in this thesis will be extensively tested with actual end-users with

severe motor impairment as a result of a variety of medical conditions.

First tests and analyses will help to assess the specific requirements and needs of users with

CP with regard to adaptive ERD-based BCIs. Finally, a seamless technical integration of the

adaptive BCI training paradigm with assistive technology prototypes will allow the direct control

of smart home devices and internet services via ERD-based BCIs.

27
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3.1 An improved adaptive BCI training paradigm

The main aim, requires to iteratively develop and test an adaptive BCI training paradigm for

healthy and severely disabled users. The following specifications are aimed, to be covered:

Requiring less than 16 gel-based electrodes is especially relevant for users with severe

motor impairment, as with sustained, daily use, the impact of this criterion on practi-

cality and therefore feasibility becomes particularly high.

Automatic calibration and online adaptation that runs seamlessly in the background al-

lows for outlier rejection or optimization procedures to run online. No BCI expert knowl-

edge should be required from the BCI operator other than mounting the electrodes and

starting the BCI system.

Outlier rejection can be considered one of the most important features of an online adaptive

ERD-based BCI training paradigm as the inclusion of artifact congested trials during clas-

sifier setup can have a strong negative impact on the classification accuracy and therefore

on the online training of the user.

Improved effectiveness and performance over previous approaches is important as it di-

rectly influences practicality of the system. Suitable approaches to evaluate include the

auto-selection of motor-related and non-motor-related mental tasks.

Modularity and extensibility of the framework is especially relevant with respect to future

work, where with this adaptive BCI design far more complex and computationally extensive

optimizations can be computed in every adaptation step.

An optimized user interface is important, when developing a BCI training paradigm for

users with severe motor impairment as they frequently have special requirements as a

result of their medical condition (e.g. visual impairment, etc.).

Evaluation of a non-control state preludes future work, which will focus on improving the

effectiveness of non-control state detection during BCI control for disabled users.

The aim is to develop and test the adaptive BCI training paradigms in representative samples of

healthy and motor disabled volunteers. None of the results should be excluded to give a realistic
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perspective of the effectiveness of the training paradigms. As for the clinical inclusion criteria,

individuals with severe motor impairment, possibly in all four extremities will be considered.

3.2 Neurophysiology and applications

Here, one aim is to integrate the adaptive BCI training paradigm into a context-aware prototype

framework. This prototype application allows to control a configurable and extendable number

of smart-home devices and internet services via an ERD-based BCI and a special low-bandwidth

user interface. This will also confirm earlier findings, that adaptive BCI training paradigms can

be used to setup classifiers that can be used for the control of real-world devices.

The other aim here is to investigate the neural processing, that underlies motor tasks in

individuals with CP, by comparing known neural correlates between individuals with CP and

healthy controls. This will help to further explain the outcome of the tests of the adaptive BCI

training paradigms with users with CP and inform future developments.

3.3 Concrete workplan

Based on extensive preliminary analyses and pilot studies, an adaptive BCI training paradigm

will be developed as a distributed software framework. The system will be tested over multiple

sessions with healthy volunteers (NH≥ 12; 2-3 sessions).

Both conventional ([141, 170, 193]) and adaptive ([120, 124, 131, 215, 233])1 BCI training

approaches can be used to setup classifiers for BCI control of real-world applications. A study

with healthy volunteers (NH≥ 3 ) will be performed to confirm, that this holds also for our

specific implementation of an adaptive BCI training paradigm, where users first train with the

adaptive BCI training paradigm and then use a specialized input interface, to control real-world

devices.

As the next step in the core research track, a set of cue-guided EEG data is collected over

two sessions from individuals with SCI or stroke, while they perform different motor and non-

motor-related mental tasks (NSCI/Stroke≥ 10; 2 sessions). The data will be analyzed to evaluate

the effectiveness of auto-selecting combinations of different mental tasks.

1Adaptive classifier training is also a standard option in the widely adopted BCI framework BCI2000 ([191]).
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The next step in the main research track of the thesis is to optimize the system from the first

project, based on the knowledge obtained from the studies with disabled users, to produce an

adaptive BCI training paradigm, that is optimized for users with severe motor impairment. The

online tests will be performed by collaborators with end users with cerebral palsy (NCP≥ 10 ).

Next, the data collected from the healthy individuals in the first project will be compared

to the data collected from the individuals with CP to identify differences in well-known neural

correlates of motor tasks.

As the final step towards the goals of this thesis, the adaptive BCI training paradigm will be

improved based on the knowledge gathered in the online experiments with healthy individuals

and individuals with CP to produce an adaptive BCI training paradigm that supports a non-

control state. This paradigm will then be tested with individuals with severe motor impairment

as a result of SCI or stroke (NSCI/Other≥ 20 ). To facilitate future work toward the optimization

of non-control state detection during ERD-based BCI interaction, additional data will be col-

lected during the tests in this study. For these additional recordings, users with severe motor

impairment will interact with a training paradigm that emulates a specialized low-bandwidth

user interface. The classifier from the adaptive BCI training paradigm will be used to provide

feedback (NSCI/Other≥ 20 ).



Chapter 4

Methodology and results

4.1 An improved adaptive BCI training paradigm

4.1.1 An adaptive BCI training based on a distributed system

Autocalibration and recurrent

adaptation: Towards a plug and play online ERD-BCI

J. Faller, C. Vidaurre, T. Solis-Escalante, C. Neuper and R. Scherer

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(3), 313-319.

Doi: 10.1109/tnsre.2012.2189584.

Previous work found adaptive BCI training paradigms to lead to effective control during training

and subsequent interaction with applications ([120, 124, 130]). The training paradigms, however,

required a significant amount of training. Other approaches were faster ([225, 226]), but were

still ineffective for users, where the EEG was congested with artifactual activity as there was

no outlier rejection prior to classifier adaptation. Other adaptive ERD-based BCI training

paradigms allowed for very high performance ([221, 222]), but used a complex training protocol

and high density EEG, which is impractical, especially for users with severe motor impairment.

31
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The aim of this work was to implement an adaptive ERD-based BCI training paradigm that

is effective for most users, after a limited amount of training. In addition, the system should

require only a low number of EEG electrodes (less than 16), calibrate automatically after less

than five minutes of data collection and recurrently adapt the classifier during online operation,

while requiring no BCI expert knowledge from the caregiver or operator other than mounting

the EEG electrodes and starting the system.
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Cross

10 11

Pause (2-3s)
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Cue
Visual bar-feedback

Both feet

Right hand

Figure 4.1 – The synchronous adaptive brain-computer interface training paradigm. The task
for the user was to perform sustained movement imagery of the right hand or of both feet starting
from the cue (second 3) to the end of the cross period (second 8). A trial started with 3 s of
reference period, followed by a brisk audible cue and a visual cue (arrow right for right hand,
arrow down for both feet) from second 3 to 4.25. The activity period, where the users received
feedback, lasted from second 4 to 8. There was a random pause of 2 to 3 s between the trials.

Major contributions: The developed approach was based on a distributed software framework.

The system automatically calibrated after less than five minutes and recurrently recalibrated the

classifier online during feedback training (see Figure 4.1 for the paradigm). Every calibration

was preceded by outlier rejection. The system required only 13 EEG electrodes and optimized

features and configuration automatically, so that no BCI expert knowledge was required from

the operator. In an evaluation study, all 12 healthy and BCI-novice participants performed

better than a conservatively estimated chance level of 58.8 % accuracy (p=0.01; [15, 139]) after

two to three sessions of training (see Figure 4.2 for an overview). The final overall median

accuracy of 80.2 % over all participants compares favorably to other systems in literature. As a
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consequence of using online outlier rejection in this system, none of the users had to be excluded

from analyses. For actual online operation the system always relied on only five automatically

selected EEG electrodes. The analysis showed this selection to be stable over multiple sessions,

which means that for repeated and sustained use of this system, using only five electrodes may

be feasible.
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Figure 4.2 – Accuracy overview for the adaptive brain-computer interface for healthy users,
along with in-session accuracies and scores according to the Fisher criterion. The blue dots show
the peak accuracies for every session and each user. The grey dots show peak accuracies within
the sessions. The dotted lines indicate the chance levels for 40 and 200 trials at a significance
level of p = 0.01. The color plots over every session show the progression of feature separability
over the course of one session expressed by the Fisher criterion. The rows depict the six features
from top to bottom: (1) αC3, (2) βC3, (3) αCz, (4) βCz, (5) αC4 and (6) βC4 (α = 10 to 13 and
β = 16 to 24Hz). Blue indicates low, and dark red indicates high feature separability.
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4.1.2 Mental tasks in adaptive BCI training for SCI, stroke and CP

Non-motor tasks improve adaptive brain-computer

interface performance in users with severe motor impairment

J. Faller, R. Scherer, E. V. C. Friedrich, U. Costa, E. Opisso, J. Medina and G. R. Müller-Putz

Frontiers in Neuroscience, 2014, 8(320).

Doi: 10.3389/fnins.2014.00320.

Selecting user-specific combinations of mental tasks has been shown to improve control accuracy

of ERD-based BCIs for healthy users ([21, 64, 158]). More recent findings specifically showed that

control strategies which combine a motor-related and a non-motor-related mental task might

be particularly effective for ERD-based BCI control ([61, 63, 192]). To the best of the author’s

knowledge, there has been no research published that investigates the use of non-motor-related

mental tasks to operate an adaptive BCI training paradigm in a representative sample of users

with severe motor impairment.

This paper investigated, whether auto-selecting a user-specific class-combination during ini-

tial auto-calibration in an adaptive BCI training paradigm can improve control accuracy over a

standard combination of motor-related mental tasks for users with severe motor impairment as

a result of SCI or stroke.

Major contributions: The adaptive ERD-based BCI in this offline analysis required only

six EEG electrodes, only two of which were used for simulated BCI control and performed

automatic outlier rejection prior to every recalibration step. Our analyses on data from 21

sessions recorded from 13 users with severe motor impairment as a result of SCI or stroke, showed

that automatically selecting a combination of motor-related and non-motor-related mental tasks

significantly improved simulated online accuracy in comparison to using a standard combination

of motor-related mental tasks. At an overall simulated online accuracy of 75.7 %, the system

allowed for a conservatively estimated better than chance level of accuracy for eight of nine users

in the second session (see Figure 4.3 for an overview).
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Figure 4.3 – Performance overview for the Auto-AdBCI and the SMR-AdBCI configuration.
The light and dark blue dots show the simulated peak accuracies for the Auto-AdBCI on the
seen data from Session 1 and the unseen data from Session 2. The light grey whiskers indicate
the span between best and worst possible class-combinations for the unseen data of Session 2.
The small and large grey crosses show the simulated peak accuracies of the SMR-AdBCI on the
seen data of Session 1 and the unseen data of Session 2 respectively. The first of the three lines
at the bottom indicates pathology. The second and third show the class-combinations auto-
selected by Auto-AdBCI in Session 1 and Session 2. The single letters are abbreviations for the
classes Feet (F), Hand (H), Word (W) and Math (M). Letters in orange indicate motor-related
mental tasks, while letters in black indicate non-motor-related mental tasks.
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On the control of brain-computer interfaces by users with cerebral palsy

I. Daly, M. Billinger, J. Laparra-Hernández, F. Aloise, M. Lloria Garćıa, J. Faller, R. Scherer

and G. R. Müller-Putz

Clinical Neurophysiology, 2013, 124, 1787-1797.

Doi: 10.1016/j.clinph.2013.02.118.

Only few studies investigated the performance of ERD-based BCIs for users with CP. Most of

them used conventional training paradigms and required a high number of training sessions ([123,

151]). Consequently, there is also only very limited knowledge as to how effective adaptive BCI

training approaches work for this potential end user group.

The most relevant aim of this study, in the context of this thesis, was to investigate the

efficacy of adaptive ERD-based BCI training paradigms using a representative sample of users

with severe motor impairment as a result of CP. Only the results of the adaptive ERD-based

BCI training paradigm are relevant for this thesis. This includes among other things, specifically

the percentage of users for whom the BCI worked effectively.

Major contributions: The adaptive ERD-based BCI training paradigm automatically selected

a combination of motor or non-motor-related mental tasks during initial auto-calibration and

recurrently calibrated online during feedback training. To the best knowledge of the authors of

the article, this is the first published work to show auto-selection of a best task-combination in an

auto-calibrating and adaptive BCI training paradigm in an online setting. The system performed

automatic outlier rejection prior to every calibration step and required only six electrodes of

which only two were used to provide online feedback. For four of the users, not enough data

was collected for the system to auto-calibrate. The system worked better than chance for six of

the ten other users.

Author contributions: This study was conducted in collaboration with Daly and colleagues.

The main contribution of the author of this thesis, was the adaptive ERD-based BCI training

paradigm. This work also included, preliminary offline analyses, design, implementation, testing

and pilot studies.
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4.1.3 A non-control state in adaptive BCI training for SCI and stroke

A co-adaptive brain-computer interface

for end users with severe motor impairment

J. Faller, R. Scherer, U. Costa, E. Opisso, J. Medina and G. R. Müller-Putz

Public Library of Science (PLOS) One, 2014, 9(7), e101168.

Doi: 10.1371/journal.pone.0101168.

Some studies already used adaptive ERD-based BCI training paradigms for users with severe

motor impairment ([120, 231]). These systems, however, required a significant number of train-

ing sessions and did not support automatic online outlier rejection. Automatic outlier rejection

is particularly important for users with motor impairment, who may suffer from spasms or fas-

ciculations. Leeb and colleagues ([107]) explored the efficacy of a conventional training protocol

in a large cohort of 24 users with motor impairment. In their discussion the authors highlight

the importance of “online adaptation” and the availability of a “non-control state”.

The aim of this work was to further optimize the training paradigm presented in Section 4.1.1

and Section 4.1.2 toward the needs of users with severe motor impairment. In addition to

previous requirements, the system needed to be more robust to artifactual EEG components

and needed to support a non-control state ([107]).

Major contributions: The improved adaptive ERD-based BCI training paradigm automat-

ically selected the most suitable mental tasks during auto-calibration and recurrently adapted

to the user during online training (see Figure 4.4). Every recalibration of the classifier was

preceded by automatic, multi-stage outlier rejection. In addition, the system supported a non-

control state and required only six EEG electrodes of which only two were used to generate

the online feedback. In a study with 22 users (20 BCI-novice) with SCI or stroke, the system

allowed for an overall interaction accuracy of 68.6 %. The system worked significantly better

than a conservative level of chance accuracy ([15, 139]) for 18 of 22 users after only 24 minutes

of training (see Figure 4.5). To facilitate future analyses toward improving non-control state

detection in ERD-based BCIs for disabled users, additional data was recorded from 20 of the

users while they were interacting with a paradigm that emulated a specialized user interface.
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Figure 4.4 – Synchronous adaptive brain-computer interface paradigm for users with motor
impairment. Panel (A) shows how the system initially collected trials for three classes non-
control, left and right hand movement imagery (MI left/right hand). Panel (B) shows the trial
structure for the “Initial calibration phase”. After nine “artifact-free” trials per class (TPC)
were collected the system auto-calibrated, selected one of the hand MI classes and continued to
provide visual, real-time feedback. Panel (C) shows the trial structure for the “Online phase”.
The system re-calibrated whenever five new artifact-free TPC were available.

Figure 4.5 – Accuracy overview for all 22 users with severe motor impairment. The blue dots
show the overall peak accuracy, while the grey dots depict within session performance. The
color coded maps show the Fisher criterion [20] over time (left to right) for the features µC3,
βC3, µCz, βCz, µC4 and βC4 (bottom to top).
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4.2 Neurophysiology and real-world applications

4.2.1 Control of real-world applications

Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface

J. Faller, S. Torrellas, F. Miralles, C. Holzner, C. Kapeller, C. Guger, J. Bund, G. R. Müller-Putz

and R. Scherer

Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine

and Biology (EMBC), 2012, 1827-1830.

Doi: 10.1109/EMBC.2012.6346306.

It is the common practice to setup BCI classifiers in training paradigms, where the users first

learn to control visual feedback using the BCI. The trained classifier can subsequently be used

to control real-world applications, including spellers, prostheses or virtual environments. This

procedure, has been found effective both for healthy and disabled users in conventional ([170,

193]) and adaptive ([120, 125, 130]) training paradigms.

One aim of this work was to confirm earlier findings, that classifiers from adaptive BCI train-

ing paradigms can be used to control real-world applications. Further aims, were to integrate the

adaptive BCI training paradigm in a prototype framework, that was context-aware and allowed

the user to control a large and expandable number of smart-home devices and internet services.

Major contributions: The adaptive BCI training paradigm allowed for an average control

accuracy of 92 % after 11 minutes of training. As expected, the trained classifier was transferable

for control of real-world applications. For the control of a special, low-bandwidth user interface,

the classifier worked effectively at an average positive predictive value of 72 %. The user interface,

consisted of multiple layers, which were automatically generated based on the connected smart-

home devices and internet services. The menu changed dynamically, based on the status of the

devices. From a caregiver, the system does not require any BCI expert knowledge other than

mounting the electrode cap and starting the system. This prototype can be seen as a proof-

of-concept for future approaches to include BCI and other assistive technology in an integrated

prototype to control smart-home devices and internet services.
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4.2.2 Neurophysiology in cerebral palsy and controls

Exploration of the neural correlates

of cerebral palsy for sensorimotor BCI control

I. Daly, J. Faller, R. Scherer, C. M. Sweeney-Reed, S. J. Nasuto, M. Billinger and

G. R. Müller-Putz

Frontiers in Neuroengineering, 2014, 7(20), 1-11.

Doi: 10.3389/fneng.2014.00020.

Previous work found BCIs to be potentially suitable assistive technology for users with CP ([151]).

Advancing the knowledge about the neural processing of motor activity for individuals with CP

could help to improve the effectiveness of BCIs for this potential group of end users. In a pre-

vious collaboration with Daly et al., 2013 (Section 4.1.2; [42]), EEG data was recorded from

14 individuals with CP, while they were performing motor and non-motor-related mental tasks,

during adaptive BCI training. Another data set, was recorded under similar conditions from 12

healthy individuals during the study presented by Faller et al., 2012 (Section 4.1.1; [57]).

The aim of this work was to explore the neural processing, that underlies motor control in

individuals with CP. The approach was to compare well-known neural correlates of motor tasks

between the previously collected data sets from individuals with CP and healthy controls. This

comparison, specifically included ERD and measures of phase synchrony and phase dynamics.

Major contributions: The analyses showed significantly reduced ERD, phase locking and

phase dynamics in the group with CP compared to the healthy individuals. Possible reasons to

explain these findings are discussed in detail. Overall these findings suggest a lower level of motor

cortical activation in the group with CP. These findings also explain some of the challenges, that

were encountered during the earlier tests of the adaptive BCI training paradigm with users with

CP. These findings will further inform the future development of BCIs for users with CP.

Author contributions: This analysis was conducted in collaboration with Daly and colleagues.

The author of this thesis contributed in substantial parts to conceiving the idea for the analysis,

collected one of the data sets, contributed to the data analysis and co-authored the paper.
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Discussion

The work for this thesis developed and tested adaptive ERD-based BCI training paradigms that

automatically calibrated and regularly recalibrated seamlessly in the background during online

operation. These systems allowed for effective training for both healthy and disabled users.

Additionally, it was confirmed, that trained adaptive BCI classifiers can be used to control real-

world applications. The work for this thesis further revealed basic neuroscientific findings about

the neural processing of motor tasks in users with CP.

5.1 An improved adaptive BCI training paradigm

5.1.1 Effectiveness and performance

The system introduced in Faller et al. (2012; [57]) effectively auto-calibrated and recurrently

adapted to the changing patterns of brain activity for the twelve healthy, novice study partici-

pants. In only two to three sessions of training, the system was able to reach a control accuracy

above the threshold level of 70 % for ten of the twelve users. From the first session on, the con-

trol accuracy was statistically significantly better than chance for all twelve users. With a high

overall median accuracy of 80.2 % in the last session, the accuracies for all users approximate a

uniform distribution which is in accordance with previous findings ([22]).

While a detailed statistical comparison across different paradigms may not be possible, the

findings in Faller et al. 2012 ([57]) still strongly indicate a substantial improvement over the

42
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performance of previously presented conventional ERD-based BCI approaches, as for example

by Guger and colleagues in 2003 ([70]). The system by Guger and colleagues relied on four

electrodes, while the present adaptive BCI system provided feedback from five electrodes of a

total of 13 that were mounted.

In comparison to a conventional ERD-based BCI by Blankertz and colleagues (2008; [21]),

which used 55 EEG electrodes to provide feedback, the present adaptive ERD-based BCI training

paradigm achieved comparable performance after only one to three sessions of training when

comparing for the class combination right hand versus both feet. This is remarkable considering

that the present system required only 13 electrodes, only five of which were used to provide

feedback.

A correct comparison to the online adaptive ERD-based BCI training paradigms presented by

Vidaurre and colleagues in [224], [225] and [226] is difficult as the authors consistently excluded

around 25 % of the recorded data due to artifacts and lack of class separability. The reported

accuracies can therefore be seen as overestimating the performance of these systems, as we

have to assume that the BCI may have only performed around chance level for the excluded

participants.

A comparison to the online adaptive ERD-based BCI training paradigm by Vidaurre and

colleagues in [221] and [222] is not sensible as the authors specifically screened study participants

by BCI performance. It is safe to assume though, that the performance of these systems, that

used 64 electrodes, is higher than that of the systems in this thesis, as Vidaurre and colleagues

show how their system works even for users for whom other ERD-based BCIs had not worked

previously. The systems presented in this thesis however have advantages in terms of practicality

that are pointed out in Section 5.1.2.

5.1.2 Practicality and user acceptance

The operation of the developed adaptive BCI training paradigm required no expert knowledge

other than mounting the 13 EEG electrodes and starting the system. From the 13 electrodes

only five were actually used for feedback. At the same time the relevant features are typically

consistent between sessions. In a practical setting, especially for every day use it should therefore

be possible to reduce the number of electrodes to those that were automatically identified to be
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most relevant by the system. The feedback from the healthy study participants was generally

very positive.

5.1.3 Design of the system

The distributed and modular design of the adaptive BCI training paradigm allows to use any

other feature extraction and classification method within the same framework. The optimization

process runs seamlessly in the background and therefore also allows for computationally extensive

analyses. Building on the work of this thesis, future work can now test more sophisticated

classification methods by just inserting the necessary computations in the optimization instance.

Possible future extensions could include using regularized CSP for feature extraction, more

sophisticated outlier rejection methods, online artifact detection or even online data cleaning.

5.1.4 Limitations and possible improvements

For two of twelve participants the adaptive BCI training paradigm did not exceed an accuracy

of 70 %. While this rate compares favorably to literature ([70, 225, 226]), it would still be

desirable to have the system work for all users. Using more sophisticated classification and

feature optimization methods during recalibration could help to achieve that goal. Another

possible way of improving the system would be to automatically select a most effective class

combination of motor-related and non-motor-related mental tasks ([61]) during initial auto-

calibration as presented in Faller et al., 2014a and 2014b ([53, 54]). Supporting a non-control

state would be another important potential improvement ([107]).

5.2 Mental tasks in adaptive BCIs for disabled users

5.2.1 Effectiveness and performance for users with SCI or stroke

An improved version of the adaptive BCI training paradigm presented in Section 5.1 ([54])

performed better than 70 % accuracy for seven of nine users with severe motor impairment as

a result of SCI or stroke. For eight of the users the system performed significantly better than

chance. Interesting to note is that combining motor-related and non-motor-related mental tasks
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consistently yielded the best results, while using the very common class combination of two

motor-related mental tasks was found to be least effective.

One of the major features of this system was the class autoselection heuristic, which predicted

effectively, based on only few initial trials, which class combination would be best separable for a

particular user. A statistical evaluation showed, that the class autoselection heuristic performed

significantly better than a standard system that only used motor-related mental tasks.

To assure that the baseline performance of the motor-related mental tasks was correct, we

compared with literature and found the results to be comparable for both SCI ([38, 171, 189])

and stroke ([8, 32, 143]).

5.2.2 Effectiveness and performance for users with cerebral palsy

For users with severe motor impairment as a result of cerebral palsy the adaptive ERD-based

BCI training paradigm as presented in Daly et al. (2013; [42]) performed significantly better

than chance for six of fourteen users. For four of the users, not enough trials were collected

for the system to auto-calibrate. The comparably low performance can be explained by strong

artifact congestion of the EEG, which was found especially in users with spasticity.

5.2.3 Limitations and possible improvements

While including motor-related and non-motor-related mental tasks has been shown to improve

the accuracy of ERD-based BCIs ([54, 61, 62, 63]), it is not yet clear whether tasks like mental

subtraction or word association are as intuitive to end users as conventional motor tasks.

With individuals with cerebral palsy, EEG artifacts caused more problems than for users with

other medical conditions like SCI or stroke. For CP, the system was able to achieve significantly

better than chance accuracy for six of fourteen of the users, while the simulated adaptive ERD-

based BCI ([54]) worked better than chance for eight of nine users with SCI or stroke. The

application for users with CP might therefore require additional work with outlier rejection and

possibly even online artifact cleaning.
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5.3 Non-control in adaptive BCI training for disabled users

5.3.1 Effectiveness and performance

The system presented by Faller and colleagues in 2014 ([53]) was designed to support a non-

control state, where users were instructed to relax with eyes open. As Scherer and colleagues ([194])

showed, interaction with a BCI that supports a non-control state, can be more natural and in-

tuitive than controlling a BCI, where the user needs to be constantly engaged ([117]). Constant

engagement refers to the fact that the user needs to perform one of the mental tasks all the

time. Including a non-control state, precludes the possibility of antagonistic ERD/ERS pat-

terns, which can be expected to reduce the average accuracy. Even with this disadvantage, the

system was able to achieve significantly better than chance accuracy for 18 of the 22 users (82 %)

with severe motor impairment.

A comparison to an adaptive BCI training paradigm of Vidaurre and colleagues ([225])

showed no significant difference in performance. This result is very promising, as the performance

reported by Vidaurre and colleagues is based on a sample of healthy individuals and can be

assumed to be overestimated due to exclusion of 25 % of the data. An additional advantage

of the presented adaptive ERD-based BCI training paradigm is that it additionally supports a

non-control state.

Compared to an extensive study by Leeb and colleagues ([107]) involving users with se-

vere motor impairment and training over multiple sessions, the present system delivered only

a slightly lower accuracy. The advantages of the present system were that it supported a non-

control state, required only 24 minutes of training and calibrated and adapted automatically

without any interaction from a BCI expert.

A system presented by Conradi and colleagues ([38]) showed similar performance (67.7 %)

as the present system (69.9 %) in a comparable feedback condition. The presented system

complements the existing approach mainly by requiring only two instead of 64 electrodes for

control of the feedback bar. Notably, Conradi and colleagues identified their system to be

effective for only four of seven (57 %) users, while the presented BCI approach was effective for

14 of 15 (93 %) users with SCI.

In comparison to an extensive study performed by Rohm and colleagues ([189]), the present
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adaptive ERD-based BCI performed with slightly higher accuracy and requires only six instead

of at least 13 electrodes.

In the past, users with severe motor impairment have typically undergone extensive training

with conventional ERD-based BCI training paradigms before they were able to perform BCI

control in a scenario that involved a non-control state ([107, 141, 178]). In the present study,

additional EEG data was collected, while end users were interacting with a specialized training

paradigm, which supported a non-control state. Following only 24 minutes of adaptive BCI

training, already 55 % of the users were able to achieve better than chance accuracy.

5.3.2 Practicality and user acceptance

The adaptive BCI training paradigms in this thesis allowed for intuitive and effective ERD-

based BCI control of a visual feedback bar. For potential end users, these systems can be more

convenient and comfortable to use as they require only very few gel-based EEG electrodes. Since

the presented BCI systems provide feedback after only minutes of data collection, they can be

more motivating and user-friendly than conventional training paradigms, which require lengthy

offline data collection at the beginning. From the operator of the BCI, like clinical personnel or

a caregiver, the presented BCIs do not require any BCI expert knowledge other than mounting

the electrode cap and starting the BCI system. All these characteristics make these systems

interesting for setting up classifiers to establish a channel for communication and control for

users with severe motor impairment.

5.3.3 Limitations and possible improvements

The training paradigm, that emulated a low-bandwidth user interface, allowed for effective

classification for 11 of 20 users. This is a promising result for this preliminary approach. Sub-

sequent offline analyses on this collected data may help to identify better discriminable features

or more effective signal processing or machine learning techniques to detect a non-control state.

Automatic, individual optimization of parameters such as activation threshold, dwell-time and

refractory period after adaptive BCI training can be expected to directly improve classification

performance in a BCI setup that allows for a non-control state.
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5.4 Neurophysiology in cerebral palsy

The significantly reduced ERD and PLV along with higher baseline band-power suggest an im-

pairment of motor cortical engagement. In healthy controls, high levels of local phase synchrony

typically precede the execution of motor tasks. Such a state seems to be reduced or absent in CP.

This may be “a result of the inadequate development of the ability to form relevant functional

connectivity patterns during early developmental stages” ([44]). Other work that investigated

the neurophysiology of CP during BCI operation, used P300 based BCIs ([149, 183]. Nam and

colleagues (2012) for example, found lower P300 performance and less localized coherence in

users with CP when compared to healthy controls. The differences between the ERD-based and

P300 based approaches make a direct comparison insensible. Nevertheless, there seems to be

reduced performance in both modalities and the underlying differences seem to be also reflected

in changed patterns of connectivity ([44]).

The main implications of these findings for the development of ERD-based BCIs for users

with CP are that smaller ERD changes are more difficult to detect. This may pose an additional

challenge for implementing ERD-based BCIs for users with CP ([42]). On the other hand,

neurofeedback has been previously shown to improve ERD-based classification performance in

users with CP ([151]). Therefore, neurofeedback training either during childhood or in adults

may be a possible tool to improve motor function of individuals with CP ([44]).

5.5 Control of real-world applications

The adaptive BCI training paradigm was fully integrated in a context-aware software framework,

that allowed to control domotic devices and internet services via different BCIs and assistive

technology input devices ([56]). The classifier was then successfully used to control a remote

camera via a specialized low-bandwidth user interface. The user interface supported multiple

layers and was dynamically generated and updated depending on the status of the connected

devices. The effective control in this scenario, confirms the findings of previous studies ([120,

130, 170, 193]), that control of a cue-guided training paradigm can be transferred to the control

of real-world applications, both using conventional and adaptive paradigms.

As explained in Section 5.1.2, the adaptive BCI setup procedure was very practical and
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required only 11 minutes. At the same time, the control possibilities via this user interface were

extensive: The remote camera, was only one example for a vast number of domotic devices and

internet services that were supported by the framework. For example, the user could have also

used the ERD-based BCI to turn lights on or off, open or close the curtains or interact in a

social network.
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Conclusion and future prospects

6.1 Summary of achievements of this thesis

This thesis presents improved adaptive BCI training paradigms, that were tested with healthy

controls and users with SCI, stroke and CP. The training paradigms were based on a distributed

system and tended to require less training time, fewer electrodes and no BCI expert knowledge for

calibration in comparison to conventional and other adaptive training paradigms. This thesis

also confirmed the suitability of the trained classifiers to control real-world applications and

explored the basic BCI-related neurophysiology for users with motor impairment. The following

paragraphs summarize the main contributions of this thesis.

• An auto-calibrating and adaptive ERD-based BCI training paradigm was developed and

tested ([57]). The system performed online outlier rejection and required less than 16

electrodes, only five of which were used to generate the online feedback. Tests with 12

healthy volunteers showed that the system allowed for comparably high accuracies after

only two to three sessions of training.

• Adaptive BCI simulations were performed offline on multi-session EEG data collected

from 13 individuals with severe motor impairment as a result of SCI or stroke ([54]). The

results showed that auto-selecting a user-specific combination of motor-related and non-

motor-related mental tasks, improves performance over a condition where a combination

of standard motor-related mental tasks is used.

50
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• The adaptive ERD-based BCI training paradigm was extended by initial automatic selec-

tion of user-specific combinations of motor-related and non-motor-related mental tasks ([42]).

Tests with 14 study participants with severe motor impairment as a result of CP, lead to ef-

fective BCI control for six of the users and helped to identify challenges for the application

of ERD-based BCIs for users with CP.

• An adaptive ERD-based BCI training paradigm that automatically selects user-specific

mental tasks, was tested with 22 individuals with severe motor impairment as a result of

SCI or stroke ([53]). The adaptive ERD-based BCI worked significantly better than chance

for 18 of the 22 individuals and compared favorably to previous training approaches.

• The neurophysiological differences during the execution of motor tasks in a BCI context

between CP and healthy controls were described on basis of an offline analysis ([44]). These

findings will inform the future development of ERD-based BCIs for users with CP for the

purpose of either restoring communication or for functional rehabilitation.

• The adaptive BCI training paradigm was included and tested in the context-aware proto-

type systems BrainAble ([55, 56]) and BackHome ([74]). These systems allowed to control

a vast and extendable number of domotic devices and internet services via a multi-layered

user interface. This work also confirmed again, that classifiers from both conventional and

adaptive cue-guided training paradigms can be used to control real-world applications.

Most participants in the studies for this thesis had never used an ERD-based BCI before. Also,

none of the users were excluded from reporting and the sample sizes were high compared to

previous BCI studies. The results of this work can therefore be assumed to be a good estimate

of the performance of these systems in the respective target populations. Figure 6.1 shows an

overview of the projects that were carried out and indicates possible future research directions.
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Figure 6.1 – Overview of achievements and possible future work. The areas “Core” and “Ad-
ditional” show the different projects that were carried out as part of this thesis. The green text
summarizes the outcome of the project and the italic text indicates the publication venue. The
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6.2 Possible future research directions

Further improving adaptive BCI training paradigms

To improve the efficacy of the presented adaptive ERD-based BCI training paradigm, more elab-

orate optimization and classifier training procedures could be performed during recalibration.

In fact, a novel implementation of an adaptive BCI training paradigm has been already derived

from the presented framework. The system was extended to use regularized filter bank CSP ([6])

and a random forest classifier ([26]).

The analyses for this thesis showed particularly strong differences between healthy controls

and the user groups SCI and CP. These findings will inform the future development of BCI

systems for these groups of end-users. BCIs for users with SCI for example should rely more

strongly on task combinations of motor-related and non-motor-related mental tasks. In addition,

features from the beta frequency band should be given more attention, as they were found to

yield higher separability ([54]). The evaluation with users with CP, suggested that this particular

user group could benefit from online artifact cleaning methods. Possible candidate methods have

already been proposed, and have been shown to be effective in healthy individuals ([43, 45]).

Further improving non-control state detection

The synchronized adaptive BCI training paradigms presented in this thesis, allowed to control

a visual feedback bar. It was further possible to confirm previous findings ([120, 130, 170, 193]),

that classifiers trained in conventional and adaptive BCI training paradigms can be used for real-

world control. Other studies previously indicated that paradigms, which support a non-control

state may be more natural and intuitive for the user ([107, 108, 193, 196]).

As an immediate solution to improve interaction performance with BCIs that support a non-

control state, users can train with the training paradigm described by Faller and colleagues in

2014 ([53]). This training paradigm emulates a specialized, low-bandwidth user interface. This

way, users can improve their interaction proficiency before using the actual system ([56]) for

real-world control.

As a part of this thesis, EEG data was collected from 20 impaired BCI users while they were

operating a paradigm to train the interaction with a specialized input interface that supported a
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non-control state ([53]). This data will be analyzed in the future to improve the BCI performance

during the interaction with interfaces that support a non-control state.

Further research into neurophysiology

The neurophysiological analysis on the data from healthy individuals showed peri-imagery ERS

to occur online in 50 % of the users ([57]). This feature accounts for very high class separability.

Traditional training approaches find this feature in 50 % of the users in the calibration run, but

only in 4 % during online operation ([21]). Future analysis could more closely explore whether

this phenomenon is specific to adaptive BCI training paradigms or whether the occurrence of

this phenomenon could be further facilitated.

It was surprising to find the patterns of separability between motor-related and non-motor-

related mental tasks to be different for SCI when compared to healthy controls ([54]). The most

likely explanation for this change in neurophysiology is the severance of the spinal cord. A more

detailed examination of this phenomenon with high density EEG, artifact cleaning and source

reconstruction could help to further learn about the specifics of the brain rhythms that underlie

the processing of motor-related and non-motor-related tasks.

Alternative methods to measure brain-activity

All presented adaptive BCI training paradigms in this thesis were tested with gel-based EEG.

Recent tests, however, confirmed the effectiveness of water-based electrodes to accurately mea-

sure ERD activity ([182]). Using the adaptive BCI training paradigm with a water-based EEG

system could shorten setup time and improve practicality, user comfort and user acceptance.

Among invasive methods to measure brain-activity, especially ECoG would be an interest-

ing option to control adaptive BCI training paradigms ([110]). For the adaptive BCI training

paradigm, this would require to modify the spatial filter settings and the used frequency bands.

Other potential applications for adaptive BCI training paradigms

As another possible future research direction adaptive ERD-based BCI training paradigms could

be evaluated for their efficacy to facilitate rehabilitation after neural injuries such as SCI ([40,

48, 52, 190]), stroke ([7, 12, 155, 180]), CP ([207]) or other neurological disorders ([18]).
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Autocalibration and Recurrent Adaptation:
Towards a Plug and Play Online ERD-BCI
Josef Faller, Carmen Vidaurre, Teodoro Solis-Escalante, Christa Neuper, and Reinhold Scherer

Abstract—System calibration and user training are essential for
operating motor imagery based brain–computer interface (BCI)
systems. These steps are often unintuitive and tedious for the
user, and do not necessarily lead to a satisfactory level of control.
We present an Adaptive BCI framework that provides feedback
after only minutes of autocalibration in a two-class BCI setup.
During operation, the system recurrently reselects only one out of
six predefined logarithmic bandpower features (10–13 and 16–24
Hz from Laplacian derivations over C3, Cz, and C4), specifically,
the feature that exhibits maximum discriminability. The system
then retrains a linear discriminant analysis classifier on all avail-
able data and updates the online paradigm with the new model.
Every retraining step is preceded by an online outlier rejection.
Operating the system requires no engineering knowledge other
than connecting the user and starting the system. In a supporting
study, ten out of twelve novice users reached a criterion level of
above 70% accuracy in one to three sessions (10–80 min online
time) of training, with a median accuracy of % in the
last session. We consider the presented system a positive first step
towards fully autocalibrating motor imagery BCIs.

Index Terms—Adaptive systems, brain–computer interfaces
(BCIs), electroencephalography (EEG), event-related desynchro-
nization/synchronization (ERD/S), sensorimotor rhythms (SMR).

I. INTRODUCTION

E VENT-RELATED desynchronization (ERD) [1] based
brain–computer interface (BCI) systems constitute al-

ternative communication and control aids for able-bodied and
physically impaired users [2]–[4]. Able-bodied and physically
impaired users can voluntarily induce amplitude changes of the
sensorimotor rhythms (SMR) [5] in the electroencephalogram
(EEG) [6] by performing mental tasks, such as motor imagery
[7], [8]. Performing different motor imagery tasks for different
conditions yields condition-specific patterns of such amplitude
changes. The BCI system can then recognize the user input
as belonging to either of the conditions, by classifying the
detected patterns.
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Despite positive results in a number of subjects [9], [8], motor
imagery based BCIs are still not widely used, neither in clinical
practice nor for applications with able-bodied users. We iden-
tify two main requirements to increase usability and user accep-
tance in motor imagery based BCI systems: 1) Fast and simple
system setup and calibration, and 2) effective online learning
and training of either the system [10], the user [11], or both
(co-adaptive training) [12]–[17]. An optimal training paradigm
should lead to high control accuracy and stability after a very
short time for most users.
Conventional BCI training protocols (e.g., [18]) run through

the stages 1) data acquisition without feedback, 2) offline anal-
ysis of the data and setup of a predictive statistical model, and
3) BCI online operation with feedback based on the generated
statistical model. One of the first adaptive online motor im-
agery based BCIs [13] operated on very low EEG sensor cov-
erage and provided feedback from the first trial, using a standard
classifier trained on data from a large pool of subjects. It then
continuously adapted the underlying statistical model. In a sup-
porting study, the same authors showed a gradual performance
increase in the vast majority of nine able-bodied volunteers over
the course of three sessions. However, the system used a fixed
number of predefined features and a fixed classifier setup config-
uration, which may leave room for further improvement. More
recent work [15], [16] presented a very sophisticated BCI setup
process that proved highly effective in training naive partici-
pants and others that formerly could not achieve effective BCI
control. This very successful approach used a high number of
EEG sensors, automatic parameter selection and required only
minimal interaction of a BCI expert.
We propose an autocalibrating online ERD-BCI framework,

that offers intuitive co-adaptive learning and training, based on
a number of novel features. The system provides (I) positive
reinforcement feedback after only (II) minutes of running the
paradigm, when subject-specific parameters can first be identi-
fied. In regular intervals, our system performs (III) outlier rejec-
tion and then seamlessly (IV) reselects one from six standard
frequency-bands, that exhibits the highest discriminability be-
tween the two classes in the gathered data for the current user.
The system then retrains a linear discriminant analysis (LDA)
[19] classifier and updates the model in the online system. This
system requires (V) only very few pre-assumptions and (VI)
zero manual calibration, since most of the parameters are seam-
lessly selected online to best fit for the current user.
We provide evidence for the efficacy of the concept and its

implementation in this system, in an online two-class ERD-BCI
study, where ten out of twelve novice users reach a criterion
level of 70% [7] accuracy in only one to three training sessions.

1534-4320/$31.00 © 2012 IEEE
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Fig. 1. Trial structure within the synchronous training paradigm. The task for
the user was to perform sustained right hand versus both feet movement imagery
starting from the cue (second 3) to the end of the cross period (second 8). A trial
started with 3 s of reference period, followed by a brisk audible cue and a visual
cue (arrow right for right hand, arrow down for both feet) from second 3–4.25.
The activity period, where the users received feedback, lasted from second 4–8.
There was a random 2–3 s pause between the trials.

Fig. 2. Architecture overview diagram for the adaptive BCI framework.

II. MATERIALS AND METHODS

A. Data Acquisition

We acquired the EEG from three Laplacian derivations [20],
3.5 cm (center-to-center) around the electrode positions (ac-
cording to International 10–20 System of Electrode Placement)
C3 (FC3, C5, CP3, and C1), Cz (FCz, C1, CPz, and C2), and
C4 (FC4, C2, CP4, and C6). The acquisition hardware was a
g.GAMMAsys active electrode system along with a g.USBamp
amplifier (g.tec, Guger Technologies OEG, Graz, Austria). The
system sampled at 512 Hz, with a bandpass filter between 0.5
and 100 Hz and a notch filter at 50 Hz.

B. Online BCI System

The BCI system was based on a synchronous, two-class Graz
BCI training paradigm [21], that used LDA classification on one
from six logarithmic bandpower features to provide feedback.
In each run, the system randomly presented 20 trials for each of
the two conditions (sustained hand or feet movement imagery).
Fig. 1 explains the trial structure.
We extended the online BCI system to trialwise send EEG

data to a standalone Matlab Optimization Instance and re-
ceive classifier-model updates online in return (see Fig. 2).
The Matlab Optimization Instance was running on the same
machine. All communication was carried out in the trial pauses
using a custom socket protocol on top of TCP/IP. In the first
run of each session, the system started without giving feedback.
The Optimization Instance gathered a small set of trials (10
trials per class) for initial training, and then sent the first set of
classifier weights to the online BCI system. The Optimization
Instance then sent weight updates at the start of every new

run and whenever it had five new trials per class to retrain the
classifier during a run.
The online BCI system only provided correct visual feed-

back, based on the classifier output to the user. The length of the
white colored feedback bar in the direction of the cue-arrow, was
mapped directly from the current distance from the LDA hyper-
plane.We chose to only display correct feedback to motivate the
participants as much as possible [22]. Also, we wanted to avoid
inducing nonstationarities in the EEG, which have been shown
to come up as reactions to negative feedback [23].

C. Optimization Instance

The Optimization Instance was running on the same com-
puter, over the course of all runs in one session. It recurrently
recomputed LDA weights based on the signal from the three
Laplacian channels that it received trialwise, and sent the re-
sulting LDA weights back to the online system.
We conducted a series of simulations on offline data [24] to

identify the most suitable classifier training setup and feature
bands for this co-adaptive training paradigm. Based on the re-
sults, we chose to train the first LDA classifier model after 10
trials per class and then again whenever five new trials per class
were available. We always trained on the complete set of avail-
able data (cumulative update, cf. [25]).
The training process started by extracting a pool of six loga-

rithmic band power features ( -band, 10–13 and -band, 16–24
Hz for each of the Laplacian derivations at C3, Cz, and C4; we
will from now on refer to these features as

, and ), averaged over 1 s. The system then iteratively
rejected trials that were identified as outliers. Trials were cat-
egorized as outliers if the mean over the activity period in at
least one of six features was higher or lower than standard
deviation from the grand mean for this condition, in the whole
sample-set. Only one outlier was rejected at maximum in each
step of the iteration. The recalculated grand mean and standard
deviation of the reduced sample-set were used in the next reit-
eration of the algorithm. The rejection algorithm stopped when
no more trials matched the outlier criterion.
The Optimization Instance then selected the one feature that

exhibited the highest discriminability between the two classes
over the course of the activity period. We used the Fisher-crite-
rion [19] as a measure of discriminability. We decided to clas-
sify based on only one best feature, because prior ANOVA on
results from the offline simulations had not yielded significant

performance benefits from using a more complex
model. Also, less complex statistical models are known to gen-
eralize better given a small training set [26].
The system then split the 4 s activity period of the highest

discriminable feature into eight adjacent 0.5 s time segments.
From every 0.5 s time segment four equi-distant points were
sampled as the actual input for LDA training. The system then
selected the single time-segment that scored the highest me-
dian LDA classification accuracy in the whole activity period
(second 4–8) of the accuracy average curve of the test trials after
a leave-one-out cross-validation. Finally, the Optimization In-
stance recomputed a new LDA model using the selected feature
and time-segment on the full training set and then sent the re-
sulting weights to the online BCI system.
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D. System Test and Validation

Twelve able-bodied, BCI-novice volunteers (seven male, five
female, age years) participated in our BCI-study. We
decided to conduct at least two sessions for each participant to
capture inter-session variance. Based on [7], we use a criterion
level of 70% accuracy as the threshold for successful BCI oper-
ation. One additional session was recorded for participants who
did not reach the criterion level in two sessions, to see whether
there would be learning or training effects.We performed a third
measurement for S09 since he/she showed strong improvement
from session 1 to 2 and was only slightly above the threshold
in session 2. The participants performed five runs of 40 trials
(i.e., 200 trials) in each session. The pure measurement-time per
session was 38 min, however including briefing, montage (10
min) and pauses, 1 session lasted around 90 min. All subjects
were right handed and had normal or corrected to normal vi-
sion. None of the volunteers suffered from neurological or psy-
chological disorders or had been using medication which could
have adversely affected the measurement. The measurements
for each participant were carried out on different days within a
time frame of five days. The volunteers were compensated with
7.5 Euro/h.
The experimenter thoroughly informed the volunteers before-

hand about the nature of the experiment and the specifics of the
tasks. All participants gave written, informed consent. The task
was to relax and to perform sustained, kinesthetic movement im-
agery [27] during the complete activity period of the presented
trials (see Fig. 1). For condition 1 (arrow right), the task was to
imagine a palmar grip with the right hand. The task for condi-
tion 2 (arrow down) was to imagine a plantar extension of both
feet. For the reference period, we instructed the subjects to relax
with eyes open.
The participants were seated in a comfortable chair, 60 cm

away from the computer monitor that displayed the paradigm.
Their arms were rested on the table before them. The experi-
menter sat slightly to the left, behind the participant and mon-
itored that the subject adhered to the task. The experimenter
informally interviewed the participants in the pauses how they
liked the training and whether they preferred the brief offline or
online training phase.

E. Evaluation

We report the peak accuracies in the activity period (from
second 4–8) in approximately 200 trial curve averages. Notice
that the chance level in binary classification for a -value of 0.01
with 100 trials per class is 58.5% [28].

III. RESULTS

A. Neurophysiological Perspective

In this right versus both feet sustained movement imagery
task, many participants exhibited discriminable alpha features
at C3 or at C4; particularly with ERD of the idle alpha peak
in hand, and strong alpha event-related synchronization (ERS)
[1] in foot movement imagery. Some other participants showed
synchronization in foot movement imagery in the beta range
over Cz. In some subjects like S06 features changed, so that
alpha features at Cz instead of C4 became most discriminable.

In fact features were selected in the majority of re-
training steps in 60% of the sessions followed by %

% % % and last % .
Fig. 5 shows detailed spectra and topological bandpower plots
for the first and the last session of each participant.

B. Online Performance

Ten out of twelve subjects reached accuracies above a crite-
rion level of 70% accuracy, with a median accuracy in the last
session of %. Ten participants showed a performance
increase from the first to the second session. This increase is,
however, not statistically significant over the whole
group. See Fig. 3 for a grand overview over accuracies along
with in-session details about online accuracy and feature dis-
criminability. Table I shows the peak, mean and standard devi-
ation of the accuracies at the end of every session.
Four subjects failed to reach the criterion level within two

sessions. Two of these participants reached the level in the third
attempt, one did not and one other user (S12) became ill and
could not participate in the third session. We still present the
first two runs of the subject in order not to bias the results of the
study. Fig. 4 shows the accuracy curves for all subjects along
with grand mean and standard deviation over 200 trials in the
last session along with the respective peak accuracy points.

IV. DISCUSSION

A. Efficacy of the Presented System

The proposed Adaptive BCI framework proved effective to
autocalibrate and from then adapt itself to the subject-specific
features. The framework successfully addresses the require-
ments, which we identified in the introduction. 1) Setting up
the system was very quick and intuitive, since it was operating
on only three Laplacian derivations. The setup did not require
any sort of manual calibration. In fact, it did not require any
engineering knowledge other than connecting the user to the
equipment and starting the two applications. 2) Ten out of
twelve novice volunteers reached a criterion level of 70%
accuracy in a two-class ERD-BCI setup within only one to
three sessions, at a median end accuracy of % in
the last session. Within the group of the successful participants,
70% reached the criterion level within the first two runs of the
first session (less than 15 min online). The other 30% reached
the criterion level in the second or third session. The end ac-
curacies for all subjects appear to be approximating a uniform
distribution between chance-level and 99% (see Fig. 3). This is
in line with the findings presented in [29].

B. Participants Who Learned BCI Control

The majority of subjects show a slight increase in perfor-
mance, which is in line with an overall growing separability
in the features. Feature discriminability increases particularly
strongly in the two participants S08 and S09. These two sub-
jects started from around chance level and eventually reached
above 70% accuracy. It is reasonable to assume that they would
have been classified as “illiterates” [29] in a conventional
screening session. Subject S08 started without measurable
discriminability in any feature. From the end of the first session
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Fig. 3. Overview over the end accuracies for all sessions, along with in-session accuracies and according fisher-scores. The blue dots show the peak accuracies
in the activity period in 200 trial averages for each session of each participant. The grey show the 40 trial peak accuracies at periodic, roughly equi-distant points
in one session. The dotted lines indicate the chance levels for 40 and 200 trials at a significance level of . The color plots over every session show the
progression of the discriminability over the course of one session expressed by the absolute Fisher-score. The rows depict the six features from top to bottom: (1)

, (2) , (3) , (4) , (5) , and (6) ( and Hz). Blue indicates low, and dark red indicates high discriminability
of a fisher-score of 3.5 or higher.

TABLE I
PEAK VALUES FROM THE ACTIVITY PERIOD IN THE 200 TRIAL ACCURACY

AVERAGE CURVES AT THE END OF EACH SESSION IN PERCENT

Fig. 4. Overview of the 200 trial average accuracy curves for the last session
in all subjects. The blue crosses mark the peaks of maximum accuracy in the
activity period of second 4–8.

discriminability in the feature began to rise gradually,
peaking close to the end of the third session. The data of subject
S09 showed low levels of separability in the feature in the

first session. This was, however, not sufficient to gain above
chance control. Starting from half of the second session, sepa-
rabilities in and gradually increased; then in the third
session, presented as a highly dominant feature leading to
around 80% accuracy. Figs. 3 and 5 show spectra, accuracies
and separabilities for the subjects S08 and S09.

C. Participants Who Had Problems Achieving BCI Control

Two out of twelve participants, S10 and S12, were not able
to reach the criterion level. S10 showed low discriminability in
the alpha bands over all three sites C3, Cz, and C4. The subject
then started the second session with reasonably high discrim-
inability in . Like in the first session the participant reached
significantly better than random accuracy of 69%.
In the third session became the dominant feature, but led
to an overall lower accuracy of 65%. This participant exhibited
ongoing fasciculations over a number of trials in every session,
particularly at the electrode sites C5 and C6. These fascicula-
tions were partly masking features from the Laplacian deriva-
tions over C3 and C4. The outlier rejection successfully ex-
cluded many affected trials in session 1. In later runs in session 2
and 3, a high number of trials was contaminated with such noise.
The artifact rejection then partly failed to exclude a majority of
the affected trials starting from trial 136 and 129 in session 2
and 3, respectively. It is reasonable to assume that this noise in
the data negatively influenced the efficacy of the system. This
emphasizes how important it is for online BCI systems to in-
clude robust artifact rejection algorithms, which might help to
counteract such undesired phenomena.
The accuracy of subject S11 is only marginally better than

the criterion level. The data shows highly significant
ERD during the activity period of both tasks, as compared to the
reference interval in various features, including
and . Unfortunately, the activation patterns for both tasks
appear to be almost identical, showing slight class specific dif-
ferences only in . This can have a variety of reasons. We do
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Fig. 5. The plots show spectral and topological details for the first and last session of each participant. The blue line in the spectra shows activity in right hand
condition, whereas the green line shows activity in both feet condition. The grey line at the back shows activity in the reference period. The light blue areas along
with the percentage numbers at alpha and beta frequency ranges in the spectra indicate how often one particular feature was selected during this session. The
spectra are calculated for second 5–7 in the activity period, and second 1–3 in the reference period, and averaged over all online trials. The topological plots show
the distribution of bandpower in the frequency ranges of the alpha and beta features. Red indicates high and blue indicates low bandpower.

not assume that the subject could have misunderstood the par-
adigm, since we thoroughly explained the task and were then
regularly rechecking with the participants in the pauses. Maybe
it was difficult for the subject to perform the different motor im-
ageries or maybe imagining the movements simply led to the
same activation. A solution for this type of problem might be to
start with a higher number of imagery types and then to select
two best suited strategies during the training process. A similar
strategy was used among others in [10]. Another interesting fact
was that, although this user did not reach the performance crite-
rion in this three-state-setup (reference and different imageries
for condition 1 and 2), he exposes typical features that lead to
extremely accurate control in ERD-BCI that use motor imagery
and relax with eyes open as the two strategies.
Subject S12 presented with the lowest final accuracies and

overall feature discriminabilities in the group. Closer inspec-
tion however revealed, that this participant has discriminable
features outside the standard alpha and beta bands that we were
considering in our system. More specifically, we found a high

beta feature at position Cz in the feet movement imagery con-
dition in both sessions. The feature was very similar to that of
S08, except in a slightly higher frequency range of 26–31 Hz.
The system selected the adjacent standard feature in 80% of
all cases in session 1 and in 50% of all cases in session 2. In the
second session, we additionally found a discriminable low alpha
feature at position C3 in handmovement imagery condition. The
frequency range was 8–10 Hz. Hence, both features were not
covered by the standard bands we were using (10–13 Hz and
16–24 Hz).We conclude that the efficacy of the system for users
that exhibit such features could be vastly improved by including
additional bands, such as 8–10 and 24–30 Hz.

D. Participants With Good Control From the Start

The participants S01, S02, S03, S04, S05, S06, and S07 reach
peak accuracies of 74%–99% averaged over 200 trials. Six
of these successful users presented with highly discriminable
alpha features at C3 which, considering neurophysiology,
makes sense for the combination of tasks we use. The
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feature was selected by the system in those subjects in the
overwhelming majority of the cases (see Fig. 5). From these
seven participants, only S06 exhibited features from electrode
cites other than C3, namely and . Sorting the subjects
S01, S02, S03, S04, S05, and S07 by either end-accuracy or
magnitude of their alpha peak in the condition relax with eyes
open, yields almost identical order. The subject with the highest
peak shows the highest accuracy and the one with the smallest
peak, show the lowest accuracy. This is in line with findings
presented in [29].

E. Antagonistic ERD/ERS Effects

The four subjects who achieved the highest accuracies, also
exhibited extremely strong peri-imagery ERS (also referred to
as antagonistic ERD/ERS patterns, cf. [30]) in the alpha band
at site C3 in the feet movement imagery condition (compare
the spectra in Fig. 5). This phenomenon accounts for extremely
high separabilities, since the magnitude change that it provokes
is not bounded by a limit as with ERD. Using bandpower as fea-
tures, strongly intensifies this effect. The deflection in the
features which is caused by peri-imagery ERS is disproportion-
ately large, even after logarithmic transformation. We consider
this phenomenon the main factor that led to such high accura-
cies in these subjects. Previous work found this phenomenon
offline in more than 50% of the participants [31]. More recent
work confirmed these findings in a large group of participants,
but also found that the effect vanishes in the vast majority of
users when moving to online operation [29]. We find this phe-
nomenon online in six of twelve subjects, four times left- or
bi-lateral and two times right-lateral in the sustained both feet
movement imagery condition. In five of these six subjects, this
phenomenon contributes to the most discriminable feature.

F. A Note on the User Experience

The participants gave very positive feedback about the
training paradigm during interviews in the breaks between the
runs. All users preferred the online feedback training over the
brief offline phase in the beginning. Here, some statements
translated from German: “I prefer the part with feedback; it
makes me put more effort in it.” (S09), “I find it more difficult
to imagine the movements without feedback.” (S02), “I am very
unsure what really happens in the beginning.” (S03, [referring
to non-feedback phase]), “It is like a computer game; you want
to become better” (S07, [referring to the feedback phase]).
Notice, that the generally positive user experience could be
also ascribed to the fact that we only gave positive feedback.
We hypothesize based on [22] that this additionally motivated
the users and influenced their training success positively.

G. Comparison to Literature

Comparison with online BCI systems in literature is difficult
since the applied approaches are often vastly different. We aim
to approach the minimal setup time and complexity of systems
like [32] on one side, and to achieve the high performance of
very sophisticated, high coverage systems like [15] on the other
side. We think that our results provide convincing evidence that
we meet these expectations, since in comparison, our system

performs very well along the important dimensions accuracy,
system scale, amount of required expert interaction and how
many users achieve successful control.
For the sake of comparison with [32] we recalculate the

online accuracy in our study after 75 trials (automatic outlier
rejection accounts for the slight variation in trial numbers) in the
first session. We ascribe the resulting minimal increase of the
mean accuracy for our participants from 75.4 to %
mainly to the lower number of trials (cf. [28]). Our study
shows higher first session performance than the logarithmic
bandpower based system in [32], in the sense that a higher
percentage of users reaches the brackets 90–100 (16.7% versus
7.3%), 80–89 (16.7% versus 13.5%), and 70%–79% (33.3%
versus 26.2%) in online operation. Our system does, however,
require slightly higher coverage than the four sensors used in
[32]. In addition, factors other than sensor coverage, paradigm
or algorithms, such as the challenging recording environment in
[32] could have also contributed to this performance difference.
The system in [10] allows for higher online accuracies in the

first session. However, that system uses 64 as compared to 13
sensors and requires expert interaction during calibration. Sur-
prisingly, the end accuracies that our participants achieve in 1–3
sessions of training are only slightly lower than in this very large
scale system.Moreover, we achieve the same end accuracies on-
line as [10] calculate in an offline simulation on the calibration
data where they use common spatial patterns (CSP), limited to
the two imageries that we use (right hand versus both feet) and
manually selected single best frequency band.
The system in [15] is a highly sophisticated online SMR BCI

system that proved highly effective even in participants that
could not achieve SMR control with other systems. Compared to
this approach, our system is very simple and low scale, does not
require any expert interaction and is effective for a high number
of users after a maximum of only three sessions. We consider
factors such as practicality, number of sensors, setup time and
ease of use, key points in order to make BCI systems useable in
practice, especially for applications that involve physically im-
paired users. The results lead us to conclude that our system of-
fers a very good trade-off between scale and performance, while
still allowing for a maximum of usability and practicality.

H. Possible Improvements

First, we currently always use the whole set of data to retrain
the statistical model. Other update strategies that use only a re-
cent portion of the data could better facilitate training [25], since
more recent feature changes have a higher impact. Second, since
we use a statistical model that has a very low complexity, we
could consider to start giving feedback after less than 10 trials
per class. Another option would be to start the BCI with feed-
back from a standard classifier model (cf. [18], [13]). The low
sensor coverage requirements qualify this system for a combina-
tion with dry sensor technology as previously presented in [33].
This would render the presented system even more practical
for real-world applications such as clinical or home use. More
sophisticated approaches could select optimal, subject specific
features using other optimization methods such as distinction
sensitive learning vector quantization [24] or genetic algorithms
[18].
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V. CONCLUSION

Recent work [15], [16] indicates that co-adaptive methods
can strongly increase BCI performance of novice users and
also of users who previously could not achieve stable BCI
control through conventional training protocols. At least for
able-bodied, novice participants, these results appear to be
consistent over implementations with both, low and high EEG
sensor coverage. The presented system was optimized for rapid
setup and fast co-adaptive training, and proved effective in
a surprisingly high percentage of 83% of users in this study.
This underlines once more, the importance of early feedback
in motor imagery BCI training. For the future we will explore
ways to improve the efficacy of the system for the minority of
users who were not successful with the current implementation.
More fine grained feature extraction is one option to address
this issue. Our final aim is to improve this type of co-adaptive
BCI system to a level of efficacy and intuitivity where they can
strongly benefit abled-bodied and physically impaired users.
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Individuals with severe motor impairment can use event-related desynchronization (ERD)
based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that
users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy
users. We aim to find an improved configuration of such an adaptive ERD-based BCI
for individuals with severe motor impairment as a result of spinal cord injury (SCI) or
stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a
user specific class-combination from motor-related and non motor-related mental tasks
during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance
than a conventional SMR-AdBCI. To answer this question we performed offline analyses on
two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG)
data recorded from individuals with SCI or stroke. On data from the twelve individuals
in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar
way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI.
We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen
data from the nine participants in Session 2 and compared the results. On the unseen data
of Session 2 from individuals with SCI or stroke, we found that automatically selecting a
user specific class-combination from motor-related and non motor-related mental tasks
during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification
performance compared to an adaptive ERD-based BCI that only used motor imagery tasks
(SMR-AdBCI; average accuracy of 75.7 vs. 66.3%).

Keywords: adaptive brain-computer interface (BCI), stroke, spinal cord injury (SCI), event-related

desynchronization (ERD), electroencephalography (EEG), assistive technology, mental tasks

1. INTRODUCTION
Electroencephalography (EEG) based brain-computer inter-
faces (BCIs) can restore communication for severely impaired
individuals (Birbaumer et al., 1999; Millán et al., 2010). Here, we
focus on BCIs that operate based on the dynamics of oscillatory
bioelectrical brain activity. These BCIs exploit the fact that per-
forming motor imagery or other specific mental tasks leads to
spatio-spectrally specific power decreases (event-related desyn-
chronization, ERD) or increases (event-related synchronization,
ERS) in the EEG (Pfurtscheller and Lopes da Silva, 1999). ERD-
based BCIs use signal processing and statistical machine learn-
ing techniques to translate patterns of such power changes into
control signals.

Operating ERD-based BCIs is a skillful action and requires
initial system calibration and user training of varying extent
(Allison and Neuper, 2010). Conventional calibration and train-
ing paradigms require (a) recording EEG while users perform
cue-guided mental activity, (b) offline training of a pattern

recognition system, followed by (c) feedback training based on
the computed classifier. Typically, the feedback training data is
(d) reanalyzed offline to create a more accurate and robust clas-
sifier. The common practice of reiterating steps (c) and (d) over
multiple training sessions has been shown to lead to effective con-
trol even for users with motor impairment (Pfurtscheller et al.,
2000; Neuper et al., 2003; Wolpaw and McFarland, 2004; Kübler
et al., 2005; Müller-Putz et al., 2005). This approach, however, can
be time-consuming and strenuous, especially for users with severe
motor impairment.

Using a high number of electrodes with this conventional
training approach, has been shown to allow for high con-
trol proficiency for healthy users after only one day of train-
ing (e.g., Blankertz et al., 2008). Increased setup time, higher
user discomfort and higher cost, however, render this approach
slightly less practical for clinical and home applications.

In contrast to conventional training approaches, adaptive
ERD-based BCI training paradigms provide feedback based on
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the user’s brain activity as early as possible and allow both the user
and the system to continuously adapt to each other. In healthy
users, adaptive ERD-based BCI training paradigms have been
shown to work effectively with both, a low (Vidaurre et al., 2006;
Faller et al., 2012b) and a high (Vidaurre et al., 2011) number of
EEG electrodes.

Another way to improve the performance of ERD-based BCIs
is to optimize the user’s control strategy: Selecting a user spe-
cific combination of mental tasks for example has been shown
to boost control proficiency (Obermaier et al., 2003; Blankertz
et al., 2008; Galán et al., 2008). In a similar way, combin-
ing motor related control tasks with non-motor related tasks
proved as another effective strategy to improve performance
Friedrich et al., 2012, 2013; Scherer et al., 2013 in healthy
individuals.

We aim to identify a general configuration (three bipolar chan-
nels and four mental tasks) for an easy-to-use, auto-calibrating
and adaptive ERD-based BCI that auto-selects a user-specific task
combination and allows for robust control after a short training
time for a large percentage of users with severe motor impair-
ment as a result of spinal cord injury (SCI) or stroke. We used
three bipolar derivations for our system because this configura-
tion has proven effective in a large number of studies both for
healthy users (e.g., Scherer et al., 2008 or an Adaptive BCI in
Vidaurre et al., 2006) and users with motor impairment (e.g.,
Müller-Putz et al., 2005; Mohapp et al., 2006). Our design gives
preference to bipolar (Vidaurre et al., 2006) over Laplacian (Faller
et al., 2012b) derivations to require fewer electrodes and hence
make the system more practical for clinical and sustained home
use by individuals with severe motor impairment. Generally,
screening users with more classes increases the chance of effec-
tive BCI control. We decided to limit the number of mental tasks
to four because of reasons of practicality and usability. With
four classes, our system would typically auto-calibrate in less
than 6 min.

Inferring from the knowledge with healthy users outlined
above, we hypothesized that auto-selecting a user specific class
combination of motor-related and non motor-related mental
tasks during initial auto-calibration of an adaptive ERD-based
BCI (“Auto-AdBCI”) could increase performance in compar-
ison to an adaptive ERD-based BCI that uses only standard
motor imagery tasks (“SMR-AdBCI”) in individuals with SCI or
stroke.

To answer this question, we performed offline analyses
on two sessions of 30 channel EEG data from 13 indi-
viduals with severe motor impairment as a result of SCI
or stroke. On the data from Session 1, we identified the
general configuration for the Auto-AdBCI by running a minimal
adaptive BCI configuration (“Mini-AdBCI”) for all combi-
nations of every single bipolar derivation and every sin-
gle class combination and selecting the three channels and
four classes that yielded the highest performance. In the
same way, we also identified three bipolar derivations for
the standard SMR-AdBCI. On the data from Session 2,
we then simulated both, the Auto-AdBCI and the standard
SMR-AdBCI configuration and compared the performance
results.

2. MATERIALS AND METHODS
2.1. EEG SIGNAL ACQUISITION
We recorded EEG from the 30 scalp locations illustrated in
Figure 1 (International 10/20 System of Electrode Placement).
The reference and ground electrodes were attached to the left
ear-lobe and right mastoid respectively. All signals were recorded
using active electrodes and a biosignal amplifier (g.USBamp,
Guger Technologies OG, Graz, Austria). The signal was sampled
at 256 Hz, with a band-pass filter between 0.5 and 100 Hz and a
notch filter at 50 Hz.

2.2. PARTICIPANTS
We recorded two sessions of EEG data from 13 volunteers
with severe motor impairment (age 39.1 ± 9.1; 7 female) at
the Institut Guttmann Neurorehabilitation Hospital (Barcelona,
Spain). Seven of the volunteers were diagnosed with SCI (injury
between C3 and C5, ASIA A to C, according to Maynard et al.,
1997) and six with different types of stroke. The participants S05
and S09 were in “locked-in state (LIS)” according to the defi-
nition in Kübler and Birbaumer (2008). Two participants, S04
and S13 were left-handed, the others right-handed. Four partic-
ipants could not participate in Session 2. Two of them became
ill (respiratory infection; severe pressure sore) and the other
two did not have time to come in for the second measurement
within the 2 week recording period because of other appoint-
ments. We had to exclude the data of participant S13, because
it was strongly congested with artifacts. This left data of twelve
participants in Session 1 and nine participants in Session 2 for
analysis. See Table 1 for more details. The study, including mea-
surement protocol and consent procedure, were approved by
the local ethics board, “Comitè d’Ètica Assistencial de l’Institut

FIGURE 1 | Locations of the 30 EEG electrodes recorded in our study. In
total, 64 bipolar derivations were used in our analyses. The bipolars were in
sagittal and coronal orientation with one or no electrode positions as gaps
in between (four representative examples indicated by the black arrows).

Frontiers in Neuroscience | Neuroprosthetics October 2014 | Volume 8 | Article 320 | 2



Faller et al. Non motor tasks improve BCIs

Table 1 | Detailed information about the 13 participants with severe motor impairment.

User Sex Age Months Pathology Functional disability

(years) since injury

S01 F 43 27 SCI at C5, ASIA C Tetraplegia

S02 M 38 15 SCI at C4, ASIA A Tetraplegia

S03 M 36 53 SCI at C5, ASIA A Tetraplegia

S04 F 33 2 SCI at C5, ASIA C Tetraplegia

S05 M 42 6 Brainstem stroke Locked-in state

S06‡ M 45 26 Brainstem stroke Tetraplegia

S07 F 31 5 Brainstem stroke Locked-in state

S08‡ F 40 255 SCI at C5, ASIA A Tetraplegia

S09 F 57 5 Hemorrhagic stroke, left hemisphere Global aphasia; right hemiparesis

S10 M 37 13 SCI at C3, ASIA A Tetraplegia

S11‡ M 50 15 SCI at C4, ASIA A Tetraplegia

S12 F 20 6 Bilateral, intracerebral hemorrhagic stroke Tetraparesis

S13‡ F 36 58 Basal ganglia and brainstem stroke Tetraparesis

Mean 39.1 37.4

SD 9.1 67.8

The symbol ‡ indicates, which volunteers were not able to participate in the second session. The data of participant S13 was excluded, because it was too strongly

congested with artifacts.

Guttmann.” Written, informed consent was obtained for every
participant. In many cases, written consent had to be provided by
the participants’ legal representatives as many of the participants
were not able to write due to motor impairment. The partici-
pants were instructed about the paradigm in person by caregivers
with the support of presentation slides and other written briefing
material.

2.3. EXPERIMENTAL PARADIGM
We used a modified cue-guided Graz-BCI paradigm
(Pfurtscheller and Neuper, 2001, see Figure 2). The partici-
pants were instructed to perform one of five different specific
mental tasks starting from the appearance of the visual cue until
the disappearance of the cue and the cross seven seconds later.
Two of the mental tasks were motor-related: Sustained imagery of
(1) a dorsiflexion of both feet (“Feet”) and (2) a palmar grasp of
the right hand (“Hand”). The other three classes were non motor-
related tasks: For condition (3), participants were instructed to
mentally recall as many words as possible starting with a provided
letter (“Word”). The letters were drawn from a uniform random
distribution over the custom alphabet A, D, E, F, G, H, I, J, C,
M, N, O, P, R, S, T, L, and V (adapted for Spanish language). For
condition (4), participants were instructed to subtract a given
subtrahend (randomly between 3 and 10) from a given minuend
(randomly between 15 and 30) and to keep subtracting the sub-
trahend from the last difference (e.g., 17 − 9 = 8 ⇒ 8 − 9 =−1
⇒ −1 − 9 = −10, etc.) for the duration of the imagery
period (“Math”). For condition (5), participants were instructed
to mentally navigate through a well known building (“Nav”).
During each run (6 min long), we recorded 25 trials, five for each
of the five cue conditions. The sequence of cues was random.
In every session we recorded eight runs (i.e., 200 trials per
session).

FIGURE 2 | Schematic depiction of the structure of one single trial.

2.4. ANALYSES
To determine three bipolar derivations and four classes for the
Auto-AdBCI we first simulated the Mini-AdBCI—which used
only one bipolar derivation and two classes—on all combinations
of every single bipolar derivation and every single class combi-
nation of all data in Session 1. Figure 3 shows an overview of
the analysis and Figure 4 depicts how the different adaptive BCI
configurations operate.

In the results of the Mini-AdBCI simulation, we ranked the
bipolar derivations according to the median (second 4–8 in the
trial) of the simulated online accuracy over all class combina-
tions. Inspecting the positions in the resulting list sequentially,
starting with the best performing derivation, we then added
every bipolar derivation to the result set that did not overlap
a scalp area covered by a previously added derivation. From
the resulting set of bipolar derivations, we finally selected the
top three. For these three bipolar derivations, we selected the
four of five classes that on average scored the highest median
accuracies.

To determine the three bipolar derivations for the SMR-AdBCI
we simulated the Mini-AdBCI on the classes Hand and Feet of
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FIGURE 3 | Procedure to determine whether the Auto-AdBCI performs better than a standard SMR-AdBCI. The boxes with green background show
results.

the data from Session 1 and used the same ranking and selection
procedure as for the Auto-AdBCI.

To answer our research question, we simulated the previously
determined configuration of the Auto-AdBCI on the data from
Session 2. Likewise, we ran a simulation of the SMR-AdBCI con-
figuration, on the same data from Session 2. To avoid over-fitting,
we only used the results from the unseen data of Session 2 in our
statistical comparison. For the sake of completeness, we also ran
both simulations on the seen data of Session 1.

2.5. DETAILS ON ADAPTIVE BCI CALIBRATION
Similar to previous implementations (Faller et al., 2012b) the
simulated adaptive ERD-based BCIs here (1) collected seven
artifact-free trials per class (TPC), (2) did the initial calibra-
tion, (3) proceeded to apply the most recent classifier to new
trials and (4) re-calibrated on all collected trials, whenever seven
new artifact-free TPC were available (see Figure 4). In compar-
ison to Faller et al. (2012b) we reduced the number of initially
collected TPC from ten to seven and increased the number of
TPC collected between recalibration steps from five to seven.
Collecting only seven TPC for initial calibration has proven effec-
tive in another previous study (Faller et al., 2012a) and allows
our present approach to auto-calibrate in an online setting within
6 min, even though here, we collect data for four instead of
two classes. We deem quick auto-calibration very important for
usability and practicality, especially in a BCI for end users. From
experience with our online Adaptive BCI systems we knew that

collecting either five or seven TPC prior to recalibration did not
make a difference in efficacy or usability, but here this change
was important for practical reasons as it reduced the computa-
tional effort for the close to 15000 Adaptive BCI simulations in
our analyses.

In this section we explain the classifier “calibration” proce-
dure that is used by all three adaptive BCI configurations and the
“class selection and calibration” procedure that is used for initial
calibration in the Auto-AdBCI (see Figure 4).

For regular classifier calibration, the algorithm first extracted
logarithmic band-power features (averaging over 1 s) from every
bipolar derivation that was used in this particular adaptive
BCI configuration (one or three). Features were extracted for
the bands 8–10, 10–13, 13–16, 16–24, and 24–30 Hz. These
bands have been previously found to show power modulation in
response to performing the specific mental tasks we use (Neuper
and Pfurtscheller, 2001; Faller et al., 2012b; Friedrich et al., 2012).
From these five features, the system always selected the one with
the highest separability in the window from second 4–8 in the trial
according to the Fisher criterion (c.f. Bishop, 2007; Faller et al.,
2012b).

The system then trained a linear discriminant analysis (LDA,
Bishop, 2007) classifier using the selected feature. Here, the
system split the time-window from second 4–8 into eight adja-
cent 0.5 s time-windows and performed leave-one-out cross-
validation (LooCV) for every one of them. The window that
produced the overall highest median accuracy (second 4–8 in the
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FIGURE 4 | Overview of the three Adaptive BCI configurations used in our

analyses. The information on which channels and classes were used for each
Adaptive BCI configuration is shown in parentheses next to the names of the

configurations. The bar in every panel, represents the trials in one session,
which the Adaptive BCIs process one by one. The crosses in some trials of the
example bars indicate how some trials are removed by the outlier rejection.

trial) was used to compute the new classifier, which was from then
on used in the simulation.

The Auto-AdBCI configuration started collecting data for four
instead of two classes. During initial auto-calibration the system
then selected two of the four classes in the following way: The
Auto-AdBCI first performed the regular calibration procedure for
every one of the six binary combinations of the four classes and
then selected the one class combination, that produced the high-
est LooCV median accuracy during calibration. If multiple class
combinations had the same median LooCV test accuracy, the sys-
tem picked the class combination whose best feature had a higher
separability according to the Fisher criterion.

2.6. OUTLIER REJECTION
Our adaptive BCI system used trial-based outlier rejection, which
worked in multiple phases: First, the method removed outliers by
thresholding amplitude and the statistical measures kurtosis and
probability of the EEG (Delorme et al., 2007). For the amplitude,
the threshold was ± 100 µV . For kurtosis and probability the
threshold was ±3.5 times the standard deviation from the respec-
tive sample mean. Afterwards, the outlier rejection mechanism

iteratively removed trials based on the distribution of the logarith-
mic band-power for all feature bands (Faller et al., 2012b). This
outlier rejection was done separately for the relax period (second
0–3) and the relevant part of the imagery period (second 3–8).
The epochs from the relax period were pooled over all conditions,
while the imagery period epochs were processed condition spe-
cific. The outlier rejection removed on average 12.5 ± 3.1(SD)%
of the trials. For seven of twelve participants we found some of the
lateral channels T3, T4, P7, and P8 to be congested with artifacts.
We manually excluded the affected channels for these users prior
to analysis.

2.7. PERFORMANCE EVALUATION AND STATISTICS
For system internal model selection and to identify the most effec-
tive bipolar derivations and classes in our analyses, we rely on
the median accuracy between second 4 and 8 in the trial of the
simulated online accuracy as a performance measure. For these
purposes, this measure has proven robust and reliable (Faller
et al., 2012b). To measure final simulated online BCI perfor-
mance, however, high accuracy in a much shorter time window
is relevant. Krausz et al. (2003) for example, showed how in a
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“Basket Paradigm,” the trial length can be optimized for each user
to increase BCI performance. For the final results, we therefore
report the peak accuracy within the window from second 4–8 in
the trial. Assuming a conservatively low number of 30 TPC in the
online simulation, the level of better than chance accuracy for a
significance level of p = 0.01 in a binary decision task is 66.7%
(Müller-Putz et al., 2008). To test the difference hypothesis of our
research question we conducted a mixed design repeated mea-
sures analysis of variance (ANOVA) with one between-subject
factor “Pathology” (2 levels, SCI and Stroke), one within-subject
factor “BCI-Type” (2 levels, Auto-AdBCI and SMR-AdBCI) and
the dependent variable “Simulated online peak accuracy.” We
examined the two main effects and their interaction on the
results from Session 2. Normal distribution was confirmed by
the Kolmogorov-Smirnoff test and Greenhouse-Geisser Epsilon
was used for correction. We considered p-values smaller than 0.05
statistically significant.

3. RESULTS
3.1. CHANNELS AND CLASSES FOR THE SMR-ADBCI AND THE

AUTO-ADBCI
In the analyses on the data of Session 1 we identified the
bipolar derivations at Cz (FCz-CPz), Pz (P1-P2), and P4 (CP4-
PO4) (see Figure 5) to produce the highest accuracy. Over these
three selected channels we further found the mental tasks Math,
Feet, Hand, and Word to perform best, leading us to reject
class Nav. When limiting the classes to Hand, and Feet for the
SMR-AdBCI we identified the bipolar derivations C3-CP3, again
Cz (FCz-CPz), and CP4-P4 (see Figure 5) to produce the highest
accuracy.

3.2. PERFORMANCE OF THE AUTO-ADBCI
By BCI-Type, we found an overall peak accuracy of
75.7 ± 8.4 (SD)% for the Auto-AdBCI system and an over-
all peak accuracy of 66.3 ± 7.2 (SD)% for the SMR-AdBCI
system. That means the performance of the Auto-AdBCI was
9.4% accuracy higher than that of the SMR-AdBCI. This dif-
ference was statistically significant [F(1, 7) = 15.705, p < 0.01].
The Auto-AdBCI system worked significantly better than chance

FIGURE 5 | The selected bipolar derivations for the SMR-AdBCI and

the Auto-AdBCI system. The annotated numbers show the ranking of the
bipolars, with number one performing the best.

for eight of nine users, while the SMR-AdBCI system worked
significantly better than chance for six of nine users (p < 0.01,
Müller-Putz et al., 2008).

By Pathology, we found an overall peak accuracy of
75.6 ± 7.0 (SD)% for users with SCI and 65.2 ± 8.1 (SD)% for
users with stroke. That means the average performance of both
BCI-Types is 10.4% higher for users with SCI than for those
with stroke. This difference was statistically significant [F(1, 7) =
10.406, p < 0.05]. There was no statistically significant effect of
the interaction of Pathology and BCI-Type on the peak accu-
racy [F(1, 7) = 0.017, ns].

Figure 6 shows the peak accuracies for the simulations of
the Auto-AdBCI and SMR-AdBCI systems on the seen data of
Session 1 and the unseen data of Session 2. Table 2 shows the sim-
ulated online peak accuracies, separately for the two sessions and
pathologies.

4. DISCUSSION
Our findings support our hypothesis: In our sample of nine
individuals with SCI or stroke in Session 2, auto-selecting a
user specific class combination of motor-related and non motor-
related mental tasks during initial calibration of an adaptive
ERD-based BCI significantly increased performance in compar-
ison to an adaptive ERD-based BCI that used only motor-related
mental tasks.

4.1. PERFORMANCE OF THE AUTO-ADBCI
The Auto-AdBCI successfully auto-calibrated and adapted to the
patterns of oscillatory brain activity of the users with severe
motor impairment in our study. On the unseen data of Session 2,
a high number of eight of nine users performed better than
chance. For seven of nine users the system performed higher
than 70% accuracy which had previously been found neces-
sary to effectively operate a spelling application (Kübler et al.,
2001).

Figure 6 shows how the simulated performance of the Auto-
AdBCI configuration on the unseen data of Session 2 (dark blue
dots) is in most cases very close to that of the best possible
class combination (upper end of gray whiskers), which indi-
cates that our comparably simple auto-selection heuristic was
overall very effective. The simulated online accuracy of the Auto-
AdBCI on the unseen data of Session 2 was less than 5% lower
than an average with the best-possible class-combinations but
more than 15% better than an average with the worst-possible
class-combinations (see Table 2). In over 80% of all sessions, the
Auto-AdBCI selected a class-combination where one class was
either Hand or Feet and the other class was either Word or Math.
The less than 20% of all sessions where the Auto-AdBCI selected
class-combinations where both tasks were either only motor-
related or non motor-related are with the five of twelve users for
whom the system worked least effectively. From the gray whiskers
in Figure 6 we see, that, at least in Session 2, none of the other
class-combinations perform substantially better, which indicates
that this is not a problem with the heuristic approach of the Auto-
AdBCI. With respect to the selected class-combinations, we found
no indication that there may be a systematic difference between
the pathologies SCI and stroke.
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FIGURE 6 | Performance overview for the Auto-AdBCI and the

SMR-AdBCI configuration. The light and dark blue dots show the
simulated peak accuracies for the Auto-AdBCI on the seen data from
Session 1 and the unseen data from Session 2. The light gray whiskers
indicate the span between best and worst possible class-combinations
for the unseen data of Session 2. The small and large gray crosses
show the simulated peak accuracies of the SMR-AdBCI on the seen data

of Session 1 and the unseen data of Session 2 respectively. The first of
the three lines at the bottom indicates pathology. The second and third
show the class-combinations auto-selected by Auto-AdBCI in Session 1
and Session 2. The single letters are abbreviations for the classes
Feet (F), Hand (H), Word (W), and Math (M). Letters in orange indicate
motor-related mental tasks, while letters in black indicate non
motor-related mental tasks.

Table 2 | Simulated online peak accuracies for sessions and pathologies.

Peak accuracies for different Adaptive BCI configurations

Best class-combination Auto-AdBCI SMR-AdBCI Worst class-combination

Session 1† Stroke 73.2 71.2 65.2 57.6

SCI 80.8 74.5 62.0 60.2

Mean (SD) 77.6 (6.1) 73.1 (8.5) 63.4 (5.1) 59.1 (2.5)

Session 2 Stroke 73.9 69.9 60.5 59.1

SCI 85.3 80.3 70.8 60.9

Mean (SD) 80.2 (7.7) 75.7 (8.4) 66.3 (7.2) 60.1 (2.8)

Mean (SD) 78.4 (6.1) 73.6 (7.7) 64.5 (3.5) 59.5 (2.1)

The Auto-AdBCI, initially auto-selected one of six class combinations according to a heuristic. Based on seven trials per class, the heuristic tried to select a class-

combination that would allow for a highest possible peak control accuracy over the session. To compare, we simulated the overall session accuracy not only with the

auto-selected class-combination (Auto-AdBCI), but also with all other class-combinations. The column “Best Class-Combination” is the average when considering

for every user only the one class-combination that eventually produces the highest overall accuracy. In analogy, the column “Worst Class-Combination” considers

for every user only the one class-combination that eventually produces the lowest overall accuracy. †Notice, the data of Session 1 is “seen data” as it has been

previously used to determine the configurations of the BCIs.

Our analyses again highlighted some important points to keep
in mind for bringing BCIs to end-users. For example the issue
with artifactual activity in the EEG of users with motor impair-
ment: After we had to remove one or more artifact congested
lateral EEG channels in the data of more than half of the par-
ticipants, the automatic outlier rejection of our system still had to
remove on average 12.5% of the trials. The other issue is that users
with severe motor impairment often are also more susceptible to

illness, have limited mobility and independence and are therefore
more likely to miss BCI training sessions.

4.2. COMPARING TO OTHER STUDIES THAT INVOLVED USERS WITH
SCI OR STROKE

High inter-subject variability in EEG studies and differences in
the used paradigms make a detailed comparison to independent
population samples in other BCI studies difficult. In addition,
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most previous BCI studies involving individuals with SCI or
stroke did not consider non motor-related mental tasks but
instead focused mostly on motor-related tasks. We therefore
decided to check whether the performance of the SMR-AdBCI
which we used as baseline, is comparable to the results of exist-
ing studies. If the performance of the SMR-AdBCI is comparable
to other systems, then this supports the findings in our study,
that the Auto-AdBCI does perform better than a purely motor
imagery based system. We compare results of other studies to the
result of the SMR-AdBCI on the unseen data of Session 2. We con-
sider higher performance better, but a high number of sensors less
practical for home or clinical use with impaired end users.

For end users with SCI, Pfurtscheller et al. (2000) and Müller-
Putz et al. (2005) showed effective ERD-based BCI control based
on motor-related tasks in early case studies. Later, Pfurtscheller
et al. (2009) found an overall accuracy result, lower than that
of our SMR-AdBCI (61.7 vs. 70.8%) in offline analyses on seven
individuals with SCI using 16 electrodes instead of 6 in our
setup. Conradi et al. (2009) found a higher overall accuracy of
75% in four tetraplegic volunteers, but they used 64 instead of
6 electrodes and screened the participants from a larger group,
which makes the results incomparable. In a recent study, Rohm
et al. (2013) found an accuracy result comparable to our SMR-
AdBCI (65.7 vs. 70.8%) in ten individuals with SCI over a large
number of sessions.

For end users with stroke, Mohapp et al. (2006) found accuracy
results in ten hemiparetic individuals, that were comparable with
those of the SMR-AdBCI (67.1 vs. 60.5%). The minor differences
could be explained by the stronger impairment of the partici-
pants in our sample. In a study involving eight stroke survivors,
Buch et al. (2008) found an overall accuracy of 52.8% (median) in
the first session and an overall end-accuracy of 72.5% (median)
after 20 sessions of training. We deem the overall accuracy of
59.2% (median) we found with the SMR-AdBCI in Session 2 com-
parable. More recently, Ang et al. (2011) found a higher overall
accuracy of 74% in a large sample of 54 stroke survivors, but they
used a higher number of electrodes (27 instead of 6).

We find that the SMR-AdBCI performs at a similar level
as comparable ERD-based BCI systems with users with similar
pathology. This supports our main finding, that the Auto-AdBCI
performs better than a standard adaptive BCI that relies only on
motor tasks.

4.3. ANALYSIS OF CLASS SEPARABILITY PATTERNS
Overall, but especially in users with SCI, we found higher
class separability as soon as non motor-related mental tasks
were involved, which explains the overall significantly higher
performance in the Auto-AdBCI when compared to the SMR-
AdBCI (75.7 vs. 66.3% peak accuracy). In addition, we found
stronger class separability in the group SCI as compared to the
group Stroke, which is also reflected in the results of our statistical
performance comparison. It is interesting to note, that the pat-
terns of separability in the group SCI show distinct spatio-spectral
differences to those of the healthy controls. The patterns in the
group Stroke, are more similar to those of the healthy controls.

Figure 7 shows topographical projections of feature separa-
bilities (Fisher criterion) after outlier rejection for different class

combinations, frequency bands and user groups (SCI, Stroke and
Healthy). The data set of the healthy individuals is from a similar
study (Friedrich et al., 2012). That study included all the mental
tasks used here, except the second motor task Feet.

In the group SCI, we found interesting differences to the
groups Stroke and Healthy: Most importantly, for the combi-
nation of motor-related and non-motor related mental tasks we
found strong, topographically focal separability around the ver-
tex, most prominent in the feature bands 13–16 Hz and 16–24 Hz.
For task combinations of non-motor related mental tasks we
found a similar, spatio-spectrally even more focal pattern of
separability between 16 and 24 Hz.

These observations are in accordance with reports in litera-
ture: Curt et al. (2002), Alkadhi et al. (2005), Conradi et al. (2009)
and most recently Gourab and Schmit (2010) found performing
motor tasks to cause increased but more diffuse activity in cortical
motor areas (including increased central beta ERD) in individuals
with SCI when compared to healthy controls. Curt et al. (2002)
suggested that this phenomenon might be a result of “sprout-
ing or rewiring” which “may occur close to the SCI segments.”
This would also explain the differences in the separability patterns
when comparing to the groups Healthy and Stroke. In the groups
Healthy and Stroke, the spinal cord is in tact and such “sprout-
ing” would therefore not occur. Gourab and Schmit (2010) on the
other hand speculated, that the increased ERD activity they found
in users with SCI during attempted execution of a foot movement
would be due to “increased difficulty in attempting movement
with the paralyzed extremity.” For the purpose of BCI operation,
it is relevant to note, that the patterns of SCI survivors seem
to show stronger class separability when involving non motor-
related mental tasks than when only motor-related mental tasks
are used.

In the group Stroke we found activation patterns that are
weaker but otherwise similar to those in the group Healthy. This
is in accordance with earlier studies, which found motor-related
tasks in individuals with stroke to produce similar patterns of
separability as in healthy controls (Mohapp et al., 2006; Ang
et al., 2008; Buch et al., 2008; Sharma et al., 2009). Our present
study confirms the similarity of the separability patterns between
healthy users and individuals with stroke now also for task com-
binations that involve non motor-related mental tasks.

4.4. LIMITATIONS AND FUTURE PROSPECTS
A limitation of the present study is that the results were obtained
through offline analyses. Tests with online implementations will
show whether non-motor related mental tasks like “Word” or
“Math” are also practical for real world applications. Another lim-
itation of the present system is performance: Our system showed
significantly improved accuracy over previous approaches. Still,
an average of 70–75% accuracy may not be enough to attain sat-
isfactory control in a real world setting for many end users. Based
on previous findings involving online ERD-based adaptive BCIs
(Vidaurre et al., 2006, 2011; Faller et al., 2012b) we are hoping
to see the additional closed-loop feedback lead to even higher
system performance, especially with training over multiple ses-
sions. As a next step it will be important to explore whether
the advantages of the presented approach also translate to user
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FIGURE 7 | Topographic projections of the average feature

separabilities (Fisher criterion) for the dimensions pathology, class

combination type and frequency band. The abbreviations “MT ” and “nM”
stand for motor-related and non motor-related mental tasks respectively. The
row MT vs. nM for example shows an average over all class combinations where

one class is a motor-related and the other one is a non motor-related mental
task. The data for group Healthy, did not include the class Feet. For the class
combinations MT vs. nM and nM vs. nM, for the users with motor impairment
we therefore excluded the class Feet. The data is averaged across 2 sessions
for 9 healthy users (Friedrich et al., 2012) and 12 with severe motor impairment.

populations with severe motor impairment as a result of medi-
cal conditions other than SCI or stroke, like amyotrophic lateral
sclerosis (Kübler and Neumann, 2005) or cerebral palsy (Neuper
et al., 2003). In another research direction, it would be inter-
esting to evaluate, whether adaptive ERD-based BCIs could be
useful tools for neuro-rehabilitation (Dobkin, 2004; Daly and
Wolpaw, 2008) after neural injuries like stroke (Grosse-Wentrup
et al., 2011), SCI (Cramer et al., 2007) or other neurological
disorders.

5. CONCLUSION
In our sample of nine individuals with SCI or stroke, auto-
selecting a user specific class combination of motor-related
and non motor-related mental tasks during initial calibration
of an adaptive ERD-based BCI significantly increased perfor-
mance in comparison to an adaptive ERD-based BCI that

used only motor-related mental tasks. This could have very
strong implications on the use of ERD-based BCIs, especially
for clinical applications: As of now, most BCI protocols still
exclusively rely on motor-related mental tasks. Our findings
show that including non motor-related mental tasks can signif-
icantly improve performance for potential end users with SCI or
stroke.
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h i g h l i g h t s

� We evaluate the control of Brain-computer interfaces by 14 users with cerebral palsy.
� Eight users were able to control at least one of the BCIs with significant accuracy.
� Analysis of the results reveals that BCIs may be controlled by some users with CP.

a b s t r a c t

Objective: Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for indi-
viduals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how
well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these
users are able to gain control of BCIs.
Methods: This study is conducted with 14 individuals with CP attempting to control two standard online
BCIs (1) based upon sensorimotor rhythm modulations, and (2) based upon steady state visual evoked
potentials.
Results: Of the 14 users, 8 are able to use one or other of the BCIs, online, with a statistically significant
level of accuracy, without prior training. Classification results are driven by neurophysiological activity
and not seen to correlate with occurrences of artifacts. However, many of these users’ accuracies, while
statistically significant, would require either more training or more advanced methods before practical
BCI control would be possible.
Conclusions: The results indicate that BCIs may be controlled by individuals with CP but that many issues
need to be overcome before practical application use may be achieved.
Significance: This is the first study to assess the ability of a large group of different individuals with CP to
gain control of an online BCI system. The results indicate that six users could control a sensorimotor
rhythm BCI and three a steady state visual evoked potential BCI at statistically significant levels of accu-
racy (SMR accuracies; mean ± STD, 0.821 ± 0.116, SSVEP accuracies; 0.422 ± 0.069).
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Cerebral palsy (CP) is a non-progressive condition caused by
damage to the brain during the early developmental stages, i.e.
from the early stages of pregnancy through to 3 years old, and
resulting in motor, and other, impairments (Holm, 1982; Odding
et al., 2006). CP is caused by a one-time event and classified as

‘‘non-progressive’’ meaning the condition does not get worse with
time (Badawi et al., 2008). However, specific symptoms may
change over time as the individual’s body grows and develops
(Panteliadis and Strassburg, 2004).

CP can result in a range of symptoms and may be considered to
be an umbrella term for any disabilities of movement, coordina-
tion, balance, posture, muscle tone regulation etc. resulting from
damage during the brain’s early development (Fong, 2005; Badawi
et al., 2008). Individuals with CP may have a range of difficulties re-
lated to motor control including executing intended movements,
automatic movements, and controlling postures (Krigger, 2006).
Additionally, the brain damage may also in some cases result in
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problems with speech, comprehension, or mental retardation
(Miller, 2004). In some cases CP may render the individual com-
pletely paralysed, in others frequent muscle spasms may occur
(Krigger, 2006).

Individuals with CP may encounter a range of difficulties in
everyday life. Communication may be very difficult as speech
may be severely impaired or impossible (Miller, 2004). Addition-
ally, individuals with CP may have severe restrictions on their
independence and may have to rely on care-givers for many of
their activities of daily living (Panteliadis and Strassburg, 2004).

A potential tool proposed to help with the communication and
independent living needs of individuals with CP is a brain-com-
puter interface (BCI) (Neuper et al., 2003; Mir, 2009).

BCIs are devices which allow control of a computer, or other de-
vice, via either the controlled modulation of neurological activity
or the evocation of electro-potential changes. As such they can al-
low their users to control external devices for communication
(Wolpaw et al., 2002), locomotion (Leeb et al., 2007), neuropros-
thesis control (Müller-Putz et al., 2006; Neuper et al., 2006), envi-
ronmental control (Aloise et al., 2011), entertainment (Nijholt
et al., 2009), or rehabilitation (Prasad et al., 2009; Ang et al.,
2010; Kaiser et al., 2012).

BCI control often uses the electroencephalogram (EEG) to mea-
sure brain activity and is most commonly based upon one of three
paradigms; P300 event-related potentials (ERPs), steady state vi-
sual evoked potentials (SSVEPs), or sensorimotor rhythm (SMR)
changes. P300 ERPs are changes in amplitude in on-going EEG in
response to a particular stimulus or event and may be used to iden-
tify which option from a set of choices a BCI user is attending to
Farwell and Donchin (1988).

SMR BCIs base control upon the modulation of on-going oscilla-
tory activity in response to a range of mental tasks (Pfurtscheller
and Neuper, 2001). For example, these can include motor imagery
in which the user imagines movement in some part of their body
(Pfurtscheller and Neuper, 2001), mental arithmetic in which the
user attempts some mentally engaging arithmetic task, and word
association in which the user attempts to recall words that begin
with a specified letter (Del R Millan et al., 2002; Obermaier et al.,
2001; Faller et al., 2012; Friedrich et al., 2012).

SSVEPs are a response to attention by the user to a regularly
oscillating visual stimuli (Calhoun et al., 1995; Calhoun and McMil-
lan, 1997; Jones et al., 1998; Ming and Shangkai, 1999; Middendorf
et al., 2000). When attending to such a stimuli oscillatory activity
at the corresponding frequency in the EEG recorded from the users
occipital cortex increases in magnitude. Thus, by inspecting the
power spectra of the EEG recorded over this region it is possible
to discern which of a range of target stimuli the user is attending
to Middendorf et al. (2000).

There is only a small amount of previous work attempting to
investigate the potential use of BCIs by individuals with CP. One
previous study, Neuper et al. (2003), investigated the long term
use of a BCI by a single individual with CP and found that BCI con-
trol was possible for this individual. A motor imagery based BCI
was provided and, over a period of several months, the individual
was trained to use it, achieving an average level of accuracy of
above 70 %. However, there are no studies exploring the potential
use of BCIs by populations of individuals with CP between whom
particular motor function impairments, neurological damage, and
other, individual specific conditions such as degrees of spasticity
may vary greatly. Additionally, the nature of the brain damage in
individuals with CP and related symptoms makes it unclear
whether such individuals will be able to (1) generate the necessary
modulations in their neurological activity to control a BCI, and (2)
produce EEG with a small enough amount of artifacts for use in BCI.

Therefore, to begin to answer these questions a feasibility study
is conducted. Fourteen adults with CP are engaged in experimenta-

tion with two different online BCI systems in order to investigate if
they are able to achieve online control and to assess the quality of
their EEG. Two commonly used BCIs are chosen, the sensorimotor
rhythm (SMR) based BCI and the steady state visual evoked poten-
tial (SSVEP) based BCI. Note, P300 BCIs were not investigated at
this stage as prior pilot studies with a small group of 6 individuals
with CP showed more users were able to produce a significant
SSVEP response than P300. Additionally, users indicated a prefer-
ence for either SSVEP or SMR BCIs over P300 based BCIs.

The two BCIs used in this study represent very different control
paradigms involving different cognitive processes and different
cortical regions. SMR-based BCIs involve attempting mental tasks,
with cortical activation primarily located in the motor cortex
regions. In contrast, SSVEP BCIs involve attending to oscillatory
stimuli with neurophysiological responses located primarily in
the occipital cortex. Therefore, these two BCIs allow individuals
with CP to attempt two diverse control paradigms.

We set out to investigate whether individuals with CP are able
to gain control over either an SSVEP or a SMR-based BCI.

2. Methods

2.1. Subjects

Fourteen individuals with CP voluntarily participated in this
study (seven male, age range 20 to 58 with a median age of 36,
SD = 10.97). Institutional review board (IRB) ethical approval was
obtained for all measurements. Details of the participants are sum-
marised in Table 1.

2.2. Recording

EEG was recorded from 16 electrode channels via the g.tec
GAMMAsys system with g.LADYbird active electrodes (g.tec, Aus-
tria). Channels were arranged primarily over the motor and parie-
tal cortical areas according to the international 10/20 system.

We used channels AFz, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4,
PO3, POz, PO4, O1, Oz, and O2. The reference electrode was placed
on either the right or left ear according to the particular condition
of each subject and the ground electrode was placed either behind
the left ear at either TP7, TP9, or at FPz (again according to partic-
ular subject conditions).

Accelerometer sensors were used to record the subjects head
movements in the x, y, and z dimensions by placing a PLUX accel-
erometer at position Fz (xyzPLUX triaxial accelerometer). Addi-
tionally, for some subjects, a PLUX blood pressure sensor was
placed on one finger of either the left or right hand (bvpPLUX).
The hand and finger used varied from subject to subject according
to comfort and the particular condition of each individual with CP.

Synchronisation of signal timing between the EEG and the
accelerometer was achieved via the TOBI signal server (Müller-
Putz et al., 2011; Breitweiser et al., 2011). EEG data was sampled
at a frequency of 512 Hz and saved to file during both training
and feedback runs while the accelerometer and blood pressure
were both sampled at a rate of 128 Hz. Only the EEG signals were
used in this study with the other physiological signals retained for
future analyses.

2.3. BCI systems

Two online BCI systems were implemented to test the ability of
individuals with CP to control either an SSVEP or an SMR based BCI.
Users were shown demonstrations of each BCI prior to beginning
the measurements. This was to familiarise them with the tasks
and make sure they understood what was required.
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Individuals with CP who participated in our pilot study reported
that they felt more comfortable and secure when given some mea-
sure of control over the experimental setting. Thus, users were free
to choose which system they would like to try. After each run they
were again asked if they would like to (1) continue with the cur-
rent system, (2) try the other system, or (3) stop. Users reported
that giving them these choices helped them stay motivated and al-
lowed them to feel more secure and comfortable in the novel set-
ting of the EEG measurement environment.

When given free choice of which paradigm to choose, it was
hypothesised that users may exhibit strong preferences for one
paradigm. This preference may bias the results. For example, if
the SSVEP paradigm was chosen first by all users then lower results
at the SMR BCI may be explained, in part, by subject fatigue from
first attempting the SSVEP BCI.

To determine if there was such a bias in choice, either in terms of a
preference for one or the other of the BCI paradigm types or in the
order paradigms were selected, two tests were applied. First, the
number of times each paradigm type was chosen was assessed
against the null hypothesis of equal probability of each paradigm
being chosen. Second, the fraction of times each paradigm was cho-
sen within each of the first three runs (subsequent runs were not
completed by enough users for valid statistical testing) was assessed
against the same null hypothesis. Rejection of the null hypothesis in
the first test would indicate a significant preference for one or other
of the paradigms by the subjects. Rejection of the null hypothesis in
one or more of the runs in the second task would indicate that there
is some preference for the order of the runs exhibited by the subjects.

2.3.1. SSVEP
The SSVEP paradigm consisted of four square targets in the form

of four red boxes arranged on a computer screen in a quadrangle.
Stimuli were rapidly changed between red and black colours at fre-
quencies of (clockwise from top left) 6.66 Hz, 8.57 Hz, 12 Hz, and
15 Hz. These frequencies were chosen based upon pilot experi-
ments with three healthy subjects. Users were periodically cued
to attend to one of the targets via an arrow placed in the centre
of the screen and remaining in place for 6 s. Additionally, a fifth
null condition was cued by a cross appearing for 6 s in the centre
of the screen. Feedback about successful accomplishment of the
task was provided immediately by highlighting a selection frame
around the target. Inter-trial intervals were uniformly distributed
between 3–5 s.

Each condition was randomly chosen from a uniform distribu-
tion for each trial. Trials were grouped into runs and one SSVEP
run consisted of 20 trials with equal numbers of trials for each class.

Classification was performed via the canonical correlation anal-
ysis (CCA) method described in Seber (1984) and applied in Horki

et al. (2010). Correlations were found between two sets of data (1)
the EEG recorded on multiple channels arranged over the occipital
cortex and (2) the SSVEP stimulation frequencies. The largest cor-
relation coefficient was used to identify the stimuli the user was
attending to. Thresholding was used to test for the null condition
that the user was not attending to a stimuli. Thresholds were ini-
tially set to 0.2 for each of the four SSVEP stimulation frequencies
based upon a prior pilot study with 3 healthy subjects.

CCA was applied in a sliding window to segments of the EEG of
length 2 s with a step size of 0.0625 s. Feedback was presented to
the user if the output of the CCA method exceeded the threshold
for 0.5 s consecutively.

In addition to the classification accuracy it is interesting to ask
in what percentage of trials the users manage to achieve correct
feedback. Thus, the ‘‘hit rate’’ (HR) was measured as the percentage
of trials for which a user managed to produce a sufficiently large
SSVEP response to achieve correct feedback.

2.3.2. Sensorimotor rhythms
The sensorimotor rhythm paradigm – based upon work in Faller

et al. (2012) – consisted of an initial calibration phase followed by
an online feedback phase.

During the calibration phase the user was asked to perform four
different mental tasks in response to a cue. The tasks were:

1. Kinaesthetically imagined movement of either hand
2. Kinaesthetically imagined movement of the feet
3. Mental arithmetic
4. Mental word-letter association

No feedback was provided during this initial phase. Instead the
system used the data recorded to select the two of the four tasks
which were best suited for individual control.

The timing of individual trials was as follows.
Second 0: a fixation cross appeared in the centre of the screen

and remained there for the duration of the trial.
Second 1.5: a cue appeared on screen indicating which task to

perform. This cue remained until second 3.5.
Remaining time: the time from the appearance of the cue to the

end of the trial at second 8 was designated as the imagery period
and the user was instructed to perform the cued task during this
time and halt when the cross disappeared.

One of the four different conditions was randomly chosen from a
uniform distribution for presentation to the user during each trial.

After sufficient trials were recorded in the calibration phase for
accurate estimation of the class boundaries the BCI automatically
proceeded to the feedback phase. The two most discriminative
classes were selected for use and randomly presented to the user,

Table 1
Subject details. GMFCS denotes the Gross motor function classification system score, Orthopaedic disorders are denoted by codes which indicate lower limb disorders (MMII) or
upper limb disorders (MMSS). The subjects dominant hand is either left (L), right (R), bilateral (B), or unknown (–).

User Gender Age GMFCS Orthopaedic disorders CP type Sensory disturbances Dominant hand

01 M 53 V MMII, MMSS Dystonic – L
02 M 36 V MMII, MMSS Dystonic-spastic – L
03 F 52 IV MMII Spastic diplegia Myopia R
04 M 22 IV MMSS, MMII Acquired cerebral damage – R
05 M 32 V MMII Acquired cerebral damage Blindness, left eye. Deafness, left ear. B
06 F 20 - MMII, MMSS Dystonic – –
07 M 34 IV MMSS, MMII Athetosic – L
08 F 58 IV MMII Spastic diplegia Myopia R
09 F 32 IV MMII Spastic – L
10 F 36 V MMII, MMSS Spastic – L
11 M 38 V MMII, MMSS Dystonic-spastic – L
12 F 36 V MMII, MMSS Dystonic Myopia L
13 M 37 IV MMII, MMSS Spastic – –
14 F 31 IV MMII, MMSS Spastic – –
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following the same timing as used in the calibration phase, during
each trial.

During the imagery period in the feedback phase a bar was dis-
played on screen indicating the LDA classifier distance estimated
from attempting to classify features from the users SMR strength.
Increased LDA classifier distance causes the bar to fill from left to
right. Additional feedback in the form of a smiley face was pre-
sented to the user in the case of the classifier prediction matching
the true class label for more than 50 % of the duration of the imag-
ery period in the trial.

An individual run in both the training and feedback phases con-
tained 32 trials. The number of trials per class was balanced per
run, thus, in the training run there were 8 trials per class and in
the feedback run there were 16 trials per class.

The exception to this arose when sufficient trials for classifica-
tion were gathered from the calibration phase in the middle of a
run. In this case the run changed from the calibration to the feed-
back phase immediately and the run may therefore be said to have
contained both calibration and feedback trials.

During the feedback phase the distribution of the EEG compo-
nents related to the tasks continued to be estimated to attempt
to further improve the accuracy with which the system responded
to the user.

During both the calibration phase and feedback phase artifacts
in the EEG were automatically identified and labelled. This allowed
comparisons to be made between the classifier outputs and any
patterns or repetitions found in the generation of artifacts. Artifacts
were automatically identified via the thresholding of a number of
key metrics from the EEG as described in Faller et al. (2012).

There were four stages to the classifier setup outlier rejection,
feature selection, segment selection, and classifier training. Outlier
rejection was based upon thresholding kurtosis, probability, and
statistical properties of the features. Logarithmic band power fea-
tures were then extracted from the EEG in the bands 9–14, 13–
17, 16–24, and 23–29 Hz. During the calibration phase the feature
that showed the highest between-class discriminability (as mea-
sured by Fischer’s score) and the time period (within the activity
period) that scored the highest median accuracy after leave-one-
out cross-validation, was used for training the LDA classifier ap-
plied during the online feedback phase.

The LDA classifier was applied in a sliding window approach
during online classification. A window of width 1 s was used with
a step size of 1 sample. This is further detailed in Faller et al. (2012).

2.4. Performance

Online classification performance is reported for both the SSVEP
and SMR BCI systems. The statistical significance of the perfor-
mance was calculated at each time point against the null hypoth-
esis of equal probability of each class being selected by the
classifier. The subsequent significance level (p < 0.05) is illustrated
against the plots of performance accuracy over time.

Additionally, it may be argued that there was a multiple com-
parisons issue related to the calculation of the significance on a
sample by sample basis. However, this was a non-trivial problem
as there was a large amount of dependency between subsequent
EEG sample points. Thus, a Bonferroni multiple comparisons cor-
rection was not appropriate. To this end the mean area under the
accuracy curves for each BCI system was also calculated. The area
was calculated during the imagery period for the SMR BCI and dur-
ing the SSVEP stimulation period for the SSVEP BCI. The signifi-
cance of this area under the accuracy curve was then estimated
via a bootstrapping approach.

Multiple bootstrap replications of the performance curves were
generated via first shuffling the class labels prior to calculating
classification accuracy. Mean areas under the accuracy curves were

then calculated from each bootstrap replication and used the esti-
mate the distribution of mean areas under accuracy curves under
the null hypothesis of random classification. From this the signifi-
cance of the observed accuracy curve was estimated.

2.5. Relationships between subject details and performance

It is interesting to ask if there is a relationship between any of
the subject details, such as age, CP type etc., and their performance
with each of the BCIs. For example, if some sub-group of subjects
(e.g. some age group) perform better at one type of BCI then this
could inform and guide the design of future BCI systems for sub-
groups of individuals with CP. To this end stepwise multi-linear
regression was performed with subject details as predictor vari-
ables and the resulting accuracies at controlling each of the BCIs on-
line as the criterion variables. Two separate regression analyses
were performed (1) for the criterion variable SSVEP performance
accuracies and (2) for the criterion variable SMR performance accu-
racies. The predictor variables used were subject gender, age, Gross
motor function classification system (GMFCS) score, orthopaedic
disorders, CP type, sensory disturbances, and dominant hand.

3. Results

3.1. Run order

Table 2 lists the orders of runs selected by each user.
It is worth noting that all users tried both tasks with no obser-

vable preferences. This is confirmed by the tests for bias in para-
digm selection performed. Over all runs and subjects null
hypothesis (that there is equal probability of each paradigm being
chosen) is not rejected (p = 0.104). Table 2 lists the p values of
probabilities of rejecting the null hypothesis that each paradigm
is equally likely to be chosen during each run. Note, for run three
the null hypothesis is rejected (p = 0.035). However, is may be ar-
gued that it is necessary to apply multiple comparisons correction
to correct for the three runs. When Bonferroni correction is applied
the null hypothesis is no longer rejected as p = 0.035 is greater than
the adjusted significance level of p = 0.0167.

Users commented on the first day of measurements that false
positive selections of SSVEP stimuli were distracting. Therefore,
from the second day of measurements onwards (users 4 to 14)
the thresholds, used by the CCA method to identify the SSVEP stim-
ulation frequency the users were attending to, were adjusted from
0.2 to 0.3 for each stimulation frequency. This had the effect of
reducing the number of false postive identifications as desired.
However, it also reduced the number of true positive identifica-
tions, making it harder for the users to produce any feedback.

3.2. SSVEP

During attempted online control of a BCI via SSVEP, 5 users
were able to achieve control at a statistically significant level
(p < 0.05). Fig. 1 illustrates online classification accuracies achieved
by the best performing user for each stimuli who was able to con-
trol the SSVEP BCI at statistically significant accuracies (p < 0.05).
Table 3 then lists the peak and mean online accuracies over all
stimuli achieved by each user when attempting to control the 5-
class SSVEP BCI online along with the HR, the percentage of trials
for which users were able to achieve correct feedback.

However, it’s important to note that a multiple comparisons
correction may be necessary to adjust for the multiple subjects in
the study. Bonferroni correction may be used to do this. The alpha
significance level is adjusted by 1/N were N indicates the number
of comparisons and in this case equals 13. After applying
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Bonferroni correction we observe that three users exhibit signifi-
cant (p < 0.05) peak and mean classification accuracies.

Accuracies may be listed on a per stimulation frequency (class)
basis using a one-vs-rest classification scheme. The balanced accu-
racy and Cohen’s kappa are reported to adjust for the bias in the
number of trials. Mean and standard deviations of balanced accu-
racy values for each stimulation frequency and the null condition
(when the user does not look at any stimuli) are listed in Table 4.
A 2x2 Anova with the factor stimulation frequency revealed no sig-
nificant effect of frequency on performance F(4,69) = 0.57, p = 0.683.

Note, users 1 – 3 had CCA thresholds set to 0.2 while the
remaining users had thresholds set to 0.3. Significant classification
accuracy is achieved by some users with each threshold value.

3.3. Sensorimotor rhythms

During attempted online BCI control clear sensorimotor rhythms
are visible in 12 users with artifacts contaminating the spectra in the
remainder. Examples of good, artifact free, spectra generated by a
user are illustrated in Fig. 2. ERD/S spectra are illustrated on com-
mon average referenced (CAR) channels FC3, FCz, FC4, C3, Cz, C4,
CP3, CPz, and CP4 for each of the 4 mental tasks employed.

The online classifier identifies enough trials to be trained with 10
users and online classification is statistically significant (p < 0.05) in
8 of those users. Of those users, two exhibit significant correlations
between the classifier output and the automatically identified arti-
facts present in the signal. Thus, of the 14 users who attempted on-
line BCI control via SMR modulation 6 were successful.

Online classification accuracies achieved by the 6 users able to
control the SMR based BCI at statistically significant accuracies,
without significant correlations found with the automatically iden-
tified artifacts, are illustrated in Fig. 3. The peak online classifica-
tion accuracy for each user during the SMR based BCI control in
the period 2–6 s relative to the cue, the corresponding p-values,
and the correlation R-values and p-values between the classifier
output and the automatically identified artifacts are listed in Ta-
ble 5. Additionally, the hit rate (HR), the percentage of trials for
which each user is able to achieve a smiley feedback, is listed.

3.4. Signal quality

During the online measurements considerable EMG and move-
ment related artifacts were observed in 3 users with transient EMG
observed in another 8 users. The remaining 3 users exhibited rela-

tively clean EEG with only occasional blinks and EOG. In two users
classification results were significantly correlated with artifacts
(one of whom produced statistically significant online peak control
accuracies). In the remainder (12 users) this was not the case. The
following further general observations may be made on the EEG re-
corded from individuals with CP.

Considerable EMG and other artifacts are present on occipital
channels in the majority of individuals. These arise from neck
muscles and/or head supports exerting pressure on the occipital
electrodes. While efforts were made to prevent head supports
exerting pressure on occipital electrodes this was not always feasi-
ble for the complete duration of the measurement session. Periods
of short-lived transient EMG may also be observed over the whole
head in many users. However, these are often short lasting (<10 s).
Electrode pop artifacts also occur frequently due to involuntary
head movements causing pulling at leads in some users.

The active electrode system used has a better signal to noise ra-
tio (SNR) on the cable between the electrode and the amplifier,
potentially leading to less noise in the signal. However, in 2 users
(user 6, 2 runs, user 12, 1 run) problems with the ground channel
disconnecting due to large head movements introduced large line
noise artifacts in some runs and rendered the signals un-usable.
These runs were removed from the dataset prior to analysis and
are not incorporated into the classification results.

3.5. Relationships between subject details and performance

The small number of subjects involved in this study means the
impact of the statistical analysis of the relationships between sub-
ject details and their performance is limited and should be inter-
preted with caution. The results of the multi-linear stepwise
regression analysis reveal a statistically significant (p < 0.05) rela-
tionship between the predictor variable subject gender and the cri-
terion variable, the subjects performance at the SMR BCI with
feedback provided (r2 = 0.501, p = 0.0136). Further analysis reveals
the accuracies achieved by male users and female users are seen to
be significantly different (female user accuracies, mean ± SD
(number of subjects); 0.849 ± 0.112(5), male user accuracies;
0.681 ± 0.071(5)), with female users achieving significantly higher
accuracies p = 0.022 when compared via a paired t-test.

4. Discussion

It has been shown that some users with CP are able to volition-
ally modulate their neurological activity in order to control a BCI at

Table 2
Order and number of BCI runs chosen by each user. SSVEP denotes the choice to try the SSVEP BCI for a particular run. SMR denotes the choice to try the SMR BCI for a particular
run. The subscripted SMR choices (SMRt and SMRf) denote runs for which the user had to go through 4 class trials to train the classifier (SMRt) and trials for which feedback was
provided (SMRf). Feedback was provided as soon as enough trials had been gathered by the classifier for adequate classification results to be obtained. Therefore, for runs during
which feedback was provided from a point part way through the run the number of training/feedback trials in the run are indicated in parenthesis and the subscripts are
dispensed with. The final row indicates the probabilities of bias in the selection of BCI paradigms by users during each run assessed against the null hypothesis of equal
probability of each paradigm being selected.

User Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

01 SSVEP SSVEP SMRt SMR (18/14) SMRf

02 SMRt SSVEP SMR (9/23)
03 SMRt SSVEP SMRt SSVEP SMR (23/9) SSVEP
04 SSVEP SSVEP SMRt

05 SSVEP SSVEP SMRt SMR (10/22) SSVEP
06 SMRt SSVEP SSVEP
07 SMRt SSVEP SMRt

08 SSVEP SMRt SMR (8/24) SSVEP SMRf SSVEP
09 SMRt SSVEP SMR (13/19)
10 SSVEP SMRt

11 SSVEP SMRt SMR (2/30)
12 SMRt SSVEP SSVEP SSVEP SMRt SSVEP SMRt SMRf

13 SSVEP SSVEP SMRt SMR (9/23)
14 SSVEP SMRt SSVEP SMR (11/21)
p 0.183 0.061 0.035 – – – – –
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statistically significant levels of accuracy. Although the levels of
accuracy are too low to demonstrate usability this result indicates
that some individuals with CP can, with no prior training or expe-
rience, control a BCI and could potentially, in future, be able to use
BCIs as assistive devices in selected circumstances.

The suitability of each BCI paradigm for each user depends on
individual circumstances. Many users were observed to exhibit
poor signal quality on occipital channels resulting from uncon-
trolled neck muscles and/or their head supports exerting pressure
on the occipital electrodes. For this reason the suitability of SSVEP -
and potentially also P300 - BCI control is limited and dependent
upon either these users being able to control their neck muscles,
and do without head support, or on suitable artifact removal meth-
ods being developed. By contrast SMR based BCIs could be con-
trolled by 6 out of 14 users with task related SMRs observable in
12 users.

The SSVEP accuracies illustrated in Fig. 1 are observed to exhibit
differences in granularity at different frequencies. Some explana-
tion is needed for this. Inspecting the a posteriori probabilities
for each stimulation frequency reveals large differences for differ-
ent stimulation frequencies. The mean a posteriori probabilities are
0.49, 0.15, 0.29, 0.05 and 0.02 for the stimulus types null condition,
6 Hz, 8 Hz, 12 Hz, and 15 Hz respectively. Thus, the classifier is
biased towards lower frequencies resulting in outputs at these fre-
quencies being more frequently presented and finer grained plots
resulting from greater numbers of switches at these stimulation
frequencies.

The bias towards lower stimulation frequencies in the classifier
may be physiological. Indeed in a pilot study performed on a small
number of individuals with CP prior to the work reported here it
was observed that the power spectrum of occipital EEG from indi-
viduals with CP exhibited larger spikes in response to lower stim-
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Fig. 1. Online classification results achieved by the best performing user (user 5) when attempting online control of the SSVEP based BCI. Each plot illustrates the Cohen’s
kappa coefficient for each of the four SSVEP stimulation frequencies positioned in each corner of the screen and the null condition. Cohen’s kappa is used due to the imbalance
in class numbers entailed in reporting results for one class against the rest. The abscissa shows the time course over the trial starting from the onset of the visual cue (vertical,
dashed line).
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ulation frequencies then higher stimulation frequencies. Although
it’s important to note the well-known high inter-subject variability
in EEG responses and the relatively small number of subjects in
this study mean stronger conclusions cannot currently be drawn.

Peak accuracies, along with time courses of accuracy, are used
to report performance at each of the BCI systems. This is common
practice in BCI research and provides some measure of both the
best performance and the performance over time (Treder et al.,
2011; Fazli et al., 2012; Allison et al., 2010). However, it may be ar-
gued that peak accuracy alone does not provide a complete mea-
sure of statistically significant performance. To this end mean
accuracies are also reported and their significance checked via a
bootstrapping method. This reveals that users who achieve signif-
icant peak accuracies with the SSVEP BCI also achieve significant
mean accuracies. However, two users (09 and 11) who achieved
significant peak accuracies with the SMR BCI did not exhibit signif-
icant mean accuracies. This may be due to the small number of tri-
als with user 09 (19 trials) or an unstable performance with a large
period of false classifier results (user 11). By way of contrast, users
01, 02, 13, and 14 exhibit significant mean accuracies despite not
exhibiting significant peak accuracies.

The hit rate (HR) records the percentage of trials for which the
user achieves correct feedback. While correct feedback alone is
not enough to indicate feasible BCI control it does give some mea-
sure of how successful control appears to be to the user and it is
encouraging to see that for 7 of the SSVEP BCI users HRs of 50.0
and above are achieved. Although this must be contrasted with
the remaining users who were not able to produce any correct
feedback.

When inspecting the time courses of the classification accura-
cies achieved by each of the 6 users successful in controlling the
SMR BCI at statistically significant levels of accuracy users 8, 9,
and 11 achieve sustained levels of significant control. However,
users 2, 3, and 14 only achieve significant control for transient peri-
ods of time or, in the case of user 3, the user attempted so few trials
(9) that the impact of the results is very low. Users 2 and 14 com-
pleted 23 and 21 trials respectively. It’s conceivable that with more
trials a more sustained period of significant classification could
emerge. However, this is currently only speculative and sustained,
significant BCI control can currently only be seen to be achieved by
3 users.

The choice of which two out of the four classes are chosen for
the online feedback condition over all users shows a slight prefer-
ence for the feet motor imagery condition (chosen 8 times). Other
classes are chosen similar numbers of times to one another (hand
imagery 3 times, mental arithmetic 4 times, and word-letter asso-
ciation 5 times). The reason for this observed preference could be
that the feet motor imagery condition produces an SMR pattern
in these users which is more distinct and, therefore, differentiable
then the other classes. However, this will require further research
to verify due to the relatively small number of subjects involved in
this study.

The users involved in this study received no prior BCI training. It
is, therefore, interesting that a number of them were none-the-less
able to achieve significant levels of control with one or other of the
BCIs they attempted. Furthermore, it is interesting to note that this
was achieved with BCIs which were not optimised for individuals
with CP. Training sessions with the users – either BCI training or
training at meditation – could improve the performance of BCI con-
trol with a number of users and, potentially, allow more users to
achieve significant levels of control (Tan et al., 2009; Mahmoudi
and Erfanian, 2006).

However, it’s important to note that statistically significant lev-
els of accuracy do not mean usable BCI control may be achieved.
Useable BCI control may be defined as a sufficient level of control
to allow users to complete a reasonable number of desired tasks.
For binary control this is defined as 70% accuracy, based upon
the results of two patients described in Kübler et al. (2001). During
attempted online control of the two-class SMR BCI 5 out of the 6
users who achieved significant control are seen to produce either
brief or sustained control above the 70% threshold. However, a lar-
ger number of trials would allow for further confirmation of this
result.

Additionally, the use of more sophisticated signal processing
methods, machine learning methods, and / or feature types may,
potentially, also help to improve performance in a number of users
with CP. It may be possible to allow some users who are not cur-
rently able to control a BCI at a statistically significant level of
accuracy to do so. Investigations into improved methods are an
on-going topic of research in BCI and have the potential to yield
impressive results in future work.

The active electrodes used in this study have a considerably
shorter setup time, when compared to the passive electrode sys-
tems more commonly used in BCI studies. However, this comes
at the expense of potentially poorer signal quality due to the lack
of an impedance measure in the particular amplifier system used.
None-the-less, this was a successful decision as during online con-
trol no major problems with setup time were encountered and the
proportion of usable signals is similar to that observed with pas-
sive electrode system used in other studies. In future work it
may be possible to measure the signal quality during BCI operation
via the use of alternative metrics which work in situations where
impedance measures are not available, such as that proposed in
Daly et al. (2012).

Table 3
Columns two and three list peak online classification accuracies for control of the
SSVEP based BCI by each user and the corresponding p-value against the null
hypothesis of equal chance of each of the 5 classes (4 stimuli and the no-target
condition) been classified. Asterisks (⁄) indicate users who achieved statistically
significant (p < 0.05 adjusted via Bonferroni to p < 0.0038) accuracies as measured via
the bootstrapping significance test. Columns four and five list mean accuracies during
the stimulation period and the number of trials attempted by each user. Additionally,
the HR (the percentage of trials for which the user was able to attain the correct
feedback) is listed. Note, user 13 attempted SSVEP control but because of the position
of their head rest was pressing on the occipital electrodes no usable signals could be
recorded for this paradigm.

User Peak accuracy p Mean acc. Trials HR

01 0.400 0.002 ⁄ 0.234 40 56.2
02 0.350 0.067 0.168 20 56.2
03 0.366 0.002 ⁄ 0.219 60 62.5
04 0.325 0.035 0.208 40 50.0
05 0.500 0.000 ⁄ 0.296 60 60.4
06 0.350 0.067 0.219 20 50.0
07 0.400 0.023 0.235 20 50.0
08 0.200 0.525 0.194 60 00.0
09 0.250 0.327 0.201 20 00.0
10 0.200 0.545 0.191 20 00.0
11 0.200 0.545 0.187 20 00.0
12 0.200 0.522 0.189 80 00.0
13 – – – – –
14 0.200 0.532 0.191 40 00.0

Table 4
Mean and standard deviation of balanced accuracies and Cohen’s kappa related to
attending to each SSVEP stimulation frequency and the null condition (attending to
no stimuli).

Condition Accuracy (mean ± std) Kappa (mean ± std)

6.66 Hz stimuli 0.606 ± 0.112 0.191 ± 0.204
8.57 Hz stimuli 0.639 ± 0.165 0.209 ± 0.259
12 Hz stimuli 0.603 ± 0.135 0.176 ± 0.195
15 Hz stimuli 0.586 ± 0.116 0.202 ± 0.266
No stimuli 0.571 ± 0.090 0.176 ± 0.215
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Other issues encountered during measurements include EMG,
head movement, electrode pops (short lasting sharp amplitude
changes caused by movement of the electrode), EOG, and eye blink
artifacts, which are frequently observed, although this varies con-
siderably between users. Users with spasticity exhibited consider-
ably more EMG artifacts in their EEG than users without. However,
correlation analysis between classifier outputs and automatically
detected artifacts revealed statistically significant classification
accuracy was based upon artifacts in only 1 case.

No formal survey of user experiences was conducted in this
study. This was due to two reasons (1) many of the users became
tired quickly and an additional survey conducted before, during,
or after the measurements would have been an additional source
of fatigue and (2) the users exhibited widely differing abilities to
communicate (from normal speech to eye gaze communication
via letter boards) which were prohibitive to attempts to administer
a formal survey.

Many users became fatigued during use of the BCIs. This could,
in part, be resolved by a more engaging paradigm. In particular
some users complained that the mental arithmetic task was partic-
ularly difficult and the SSVEP stimuli were ‘‘annoying’’. This may be
contrasted with the motor imagery tasks which were described by
some users as ‘‘enjoyable’’. A proposed solution is the use of con-

text aware BCIs, as proposed in Zander and Jatzev (2012) and
Scherer et al. (2012), in which the BCI is augmented by additional
information relating to the subject and/or environment (e.g. mea-
sures of subject engagement).

Analysis of the relationship between subject details and perfor-
mance with the SSVEP and SMR BCIs reveals a significant relation-
ship between subject gender and their performance with the
online SMR BCI. However, it’s worth noting that only 10 of the
14 subjects were able to attempt online control of the SMR BCI.
Of these 10 users 5 were male and the females achieved higher
classification accuracies. However, with only 10 subjects and dif-
fering numbers of trials over subjects (no significant difference
was found in the number of trials between males and females,
(p = 0.852), paired t-tests) it is not, at this stage, clear how general-
isable this finding is to a wider population of individuals with CP.
Future work will explore whether further statistical relationships
emerge with more subjects.

The results reveal that not all approaches work for every user.
Indeed, 6 of the 14 users can control the SMR BCI at above signif-
icant levels of accuracy and 3 can control the SSVEP BCI at above
significant levels of accuracy, with one user overlap. This leaves 6
users who could not control either BCI at a statistically significant
level.
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Fig. 2. Examples of SMRs, from a user with relatively clean EEG, relating to each condition, (hands/ feet imagery, mental arithmetic, and word association). Each plot is split
into 9 subplots illustrating the common average referenced channels FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4. Red colours indicate significant periods of ERD and blue
significant periods of ERS. Significance is determined via the bootstrapping approach described in Graimann et al. (2002). The vertical line at 0 s denotes the cue presentation
time. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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This finding may be considered alongside a large meta-analysis
performed by Kübler and Birbaumer (2008) in which the efficacies
of three different types of BCI for use as communication and con-
trol devices with a range of patient populations were assessed.
The three BCIs assessed were SMR, slow cortical potential, and
ERP based BCIs. Individuals with spinal cord injury, amyotrophic
lateral sclerosis, brain stem stroke, multiple sclerosis, traumatic
brain injury, and post-anoxic encephalography were considered.
Subjects were ranked in terms of impairment and no statistical
relationship was found between their performance and their
degree of impairment when completely locked in subjects were ex-
cluded from the analysis.

Our results also show that for the individuals with CP involved
in our study no statistical relationship was found between the de-
gree of impairment and their ability to control a BCI. Thus, our find-
ings add to and support those reported in Kübler and Birbaumer
(2008).

When considering the performance of the SSVEP paradigm the
result is somewhat surprising. SSVEP accuracies are generally rela-
tively high when compared to other BCI paradigms. For example,
Allison et al. (2010) reports a mean accuracy of 91.85% over 106
healthy subjects using an SSVEP BCI. However, when one considers
the particular conditions of individuals with CP, in particular that a
number of individuals exhibit spasticity and have problems con-
trolling their neck muscles or require head rests, it is not so sur-
prising that this particular user group exhibits considerably
lower accuracies with the SSVEP task then might be expected from
healthy subjects, or even other BCI target user groups.

Ultimately, the large degrees of differences in individual needs
and results achieved indicate that BCIs need to be tailored to meet
each user’s needs and requirements. Doing so offers the possibility
of producing BCIs which could be controlled by a number of indi-
viduals with CP. However, the results at this stage ultimately indi-
cate that providing BCIs that are useful as assistive devices to this
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Fig. 3. Online classification accuracies achieved by users who were able to achieve statistically significant (p < 0.05) classifier accuracies when attempting online control of an
SMR based BCI and for whom there is not a significant correlation betwen classifier results and artifacts. Times are listed relative to the cue presentation time (denoted by the
veritical dashed line) and the horizontal solid line illustrates the significance level at (p < 0.05). Note, the position of this line varies dependent upon how many trials each user
completed in the feedback phase.
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user group presents a significant challenge. Nevertheless, the fact
that BCI control was achieved by some naive untrained individuals
with CP is an encouraging initial finding.
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Abstract

Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have
proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users
with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training
paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step
toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-
paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencepha-
logram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand
movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-
calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control
state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection
and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24
minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-
paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-
adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time,
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Introduction

Performing specific mental tasks such as movement imagery

induces spatio-spectrally specific power decreases (event-related

desynchronization, ERD) and increases (event-related synchroni-

zation, ERS) in oscillatory bio-electrical activity as measured by

the electroencephalogram (EEG) [1,2]. ERD-based brain-com-

puter interfaces (BCIs) use machine learning techniques to

translate patterns of such power changes into control signals [3].

This form of direct communication between brain and environ-

ment does not rely on the typical muscular output pathways of the

body and can hence serve as assistive technology for individuals

with severe motor impairment [4–7]. Intuitive, on-demand BCI

control, independent of system cues has previously been demon-

strated in healthy [8] and disabled users [9,10] using self-paced

BCI systems. For self-paced operation, the BCI ideally detects

whether the user is in a state where s/he intends to convey

commands (‘‘control state’’) or not (‘‘non-control state’’). The BCI

then triggers commands only in the control state.

ERD-based BCIs can be a promising assistive technology. Their

operation, however, is a skillful action that can require a varying

amount of training [11]. The typical approach to setup ERD-

based BCIs is to first (1) record EEG while the user performs

specific mental tasks in a cue-guided paradigm. A BCI expert then

(2) trains a statistical classifier based on the collected data. This

classifier is then used to (3) provide feedback during an online

training session. To attain effective BCI control using a small

number of electrodes (e.g. less than 16), it is common to analyze

the data from online sessions and to re-train classifiers over

multiple sessions. Through this feedback training, the user ideally

learns to produce better discriminable patterns of brain activity.

This method has been shown to be effective ([4,5,7,9]), but takes

time and can be strenuous for the user. Using a high number of

electrodes with this conventional training approach can lead to

highly effective ERD-based control in only one day of training in

able-bodied users ([12]), but is slightly less practical due to the

longer setup time.

Co-adaptive ERD-based BCIs on the other side, typically

provide feedback for the user’s brain-activity as early as possible

and continuously adapt the underlying classifier model. In healthy

individuals, co-adaptive ERD-based BCIs have proven highly

effective both using a low (c.f. [13–15]) and a high number of EEG

electrodes (c.f. [16]). To a limited extent, co-adaptive ERD-based

BCIs have also been shown to be effective for users with severe

motor impairment [5,17,18].
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As of yet, there is no previous work that evaluates the suitability

of auto-calibrating and co-adaptive training approaches, to

establish ERD-based BCI control for a representative sample of

novice users with severe motor impairment. In particular, no

previous work in this research direction involved a non-control

state which is an important step toward intuitive self-paced

operation. Leeb and colleagues ([7]) trained 24 users with motor

impairment in a conventional cue-guided paradigm over a

maximum of ten sessions, so that half of the users were eventually

able to control a spelling application or a tele-presence robot.

Among other things, the authors identified auto-calibration and a

non-control state especially for self-paced operation as important

future research directions. Previous publications about self-paced

operation in users with motor impairment were mostly case-studies

using conventional, non-automated setup protocols, that required

a BCI expert and training over a number of sessions [9,10,19].

Our primary aim in this work is to evaluate the effectiveness of a

cue-guided, auto-calibrating and online re-calibrating ERD-based

BCI training paradigm with a large group of 22 (20 novice) users

with severe motor impairment. The BCI requires only six scalp

electrodes overlaying the sensorimotor cortex and provides real-

time feedback based on only two of these electrodes. The system

starts collecting cue-guided mental activity for movement imagery

of left and right hand and a non-control class. After approximately

five minutes the system auto-calibrates and proceeds to provide

visual online feedback for classifying the non-control state against

the movement imagery of the particular hand that allowed for

higher statistical discriminability. As a secondary aim we want to

present preliminary results from a specifically designed self-paced

training paradigm that is based on a low-bandwidth user interface

adapted from literature [20].

Methods

Recording setup
Six EEG channels were recorded for the BCI. Ten additional

channels were recorded for later offline analysis (not presented in

this paper). The active electrodes were placed according to the 10/

20 System of Electrode Placement (see Figure 1). The signal was

sampled at 256 Hz with a band pass filter between 0.5 and 100 Hz

and a notch filter at 50 Hz. A biosignal amplifier (g.tec Medical

Systems, Graz, Austria) was used for recording.

Participants
Twentytwo volunteers with severe motor impairment partici-

pated in our study (age 37.8 + 16.0 (SD) years; six female). All

participants suffered from motor impairment in all four extrem-

ities. The medical conditions were either cervical spinal cord

injury (SCI; ASIA A to D according to [21]), polyneuropathy,

traumatic brain injury (TBI) or multiple sclerosis (MS). See Table 1

for details. Participant P18 suffered from paralysis of the right eye.

All other end users had normal or corrected to normal vision.

Participant P17 was in ‘‘Locked-in State’’ according to the

definition in [22]. All measurements were conducted at the

Institut Guttmann Neurorehabiliation Hospital (Barcelona, Spain).

The study, including the measurement protocol and the consent

procedure were approved by the local ethics board, ‘‘Comitè

d’Ètica Assistencial de l’Institut Guttmann’’. All participants gave

informed, oral consent. In addition, written consent was obtained

for every participant. The signed consent forms are stored with the

participants’ clinical files. In many cases, written consent had to be

provided by the participants’ legal representatives as many

participants were not able to write due to tetraplegia. The

participants were instructed in person by caregivers with the

support of presentation slides as briefing material.

Data collection
We recorded all EEG data in segments (‘‘runs’’). One run lasted

one to seven minutes. See Figure 2 for an overview. For the co-

adaptive paradigm we collected four runs of data (six minutes per

run). There were 36 trials per run and 144 trials total for two

classes per participant. For the self-paced paradigm, we recorded

three runs of data. The first of these three runs was one minute

long and was used to automatically adapt the bias of the classifier.

The other two runs were seven minutes long. Two participants

(P04 and P10) did not participate in the measurements for the self-

paced paradigm.

Co-adaptive BCI paradigm
The co-adaptive paradigm started collecting data trials for one

non-control class and two movement imagery classes (see Figure 3,

Panel (A) and (B)). Cues were presented as audio-playback of

spoken words and large, well discernible visual shapes, to make the

paradigm usable for individuals with visual impairment. Every

trial started with a reference period where a white cross was

displayed from second zero to two. For this time, participants were

instructed to visually fixate the white cross and relax with eyes

open.

The visual and audible cue for one of initially three classes was

presented at second two. The sequence of cues was random: The

class non-control was indicated by a white cross and the spoken word

‘‘relax’’. For this class, participants were instructed to continue to

relax with eyes open and to focus on the white cross. For class left

and right, the participants were instructed to sustain kinaesthetic

movement imagery (palmar grasp, [23]) of the left or the right

hand over the whole imagery period until second seven. The two

Figure 1. Recorded scalp electrode positions. The three bipolar
derivations, indicated by the arrows were considered by the co-
adaptive BCI. Feedback was provided from only one of these bipolar
derivations. The bipolar derivation selected in the last re-calibration,
was also used for the self-paced paradigm. The black circles mark
electrodes, recorded for future analyses. The reference electrode was at
the left ear-lobe (Ref.) and the ground electrode at AFz (Gnd.).
doi:10.1371/journal.pone.0101168.g001
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classes were indicated by a left and right pointing arrow and the

audible cues were the spoken words ‘‘left’’ and ‘‘right’’. No

feedback was provided during the ‘‘initial calibration phase’’. In

the background the system continuously identified artifact-

congested trials in two steps: First by thresholding amplitude,

kurtosis and probability of the band-filtered EEG [24] and second,

by identifying trials where at least one feature is an outlier to the

distribution of the values for all other trials [15].

As soon as nine artifact-free trials per class (TPC) were available,

the system trained one linear discriminant analysis (LDA) classifier

for class left against class non-control and another one for class right

against class non-control. For each classifier, the system chose one of

six logarithmic band power features (m~½9,13� Hz and b~½16,26�
Hz from the bipolars at C3, Cz and C4). The BCI then selected

the one MI class with higher cross-validation classification

performance against class non-control and proceeded to provide

continuous, real-time visual feedback only for these two classes for

the rest of the measurement (see Figure 3, Panel (C)).

In this ‘‘online phase’’, the system continued to perform trial-

based outlier rejection and re-calibrated the system whenever five

new artifact-free TPC were available (see Figure 3, Panel (A)). In

every calibration step, the system also trained an autoregressive

(AR) filter model (order 11) on all artifact-free trials. See Appendix

A for more details on the calibration procedure and how the

Table 1. Information about the severely impaired participants.

Hand Months

User Age Sex dominance since injury Medical Condition Disability

P01 66 F Right 8 Guillain-Barré syndrome Tetraparesis

P02 21 M Right 2 SCI C4, ASIA A Tetraplegia

P03a 46 M Right 24 SCI C4, ASIA A Tetraplegia

P04 19 M Right 6 SCI C3, ASIA A Tetraplegia

P05 39 M Right 19 SCI C6, ASIA A Tetraplegia

P06 45 M Right 3 SCI C7, ASIA C Tetraplegia

P07 60 M Right 4 Brain Anoxia Tetraplegia

P08 25 M Right 11 SCI C4, ASIA A Tetraplegia

P09 19 M Left 5 SCI C4, ASIA B Tetraplegia

P10a 43 F Right 280 SCI C4, ASIA A Tetraplegia

P11 21 M Right 6 SCI C5, ASIA B Tetraplegia

P12 65 F Left 4 SCI C1, ASIA C Tetraplegia

P13 38 M Right 3 SCI C4, ASIA D Tetraplegia

P14 19 M Right 66 SCI C4, ASIA A Tetraplegia

P15 47 M Right 12 SCI C7 and TBI, ASIA A Tetraplegia

P16 42 M Right 147 SCI C6, ASIA A Tetraplegia

P17 23 M Right 6 TBI Locked-in state

P18 34 F Right 74 Multiple Sclerosis Tetraplegia

P19 28 M Left 5 TBI & brachial plexus injury Tetraparesis

P20 24 F Right 64 SCI C2, ASIA A Tetraplegia

P21 41 F Right 9 Hemorrhagic stroke Tetraplegia

P22 66 M Right 15 Polyneuropathy Tetraparesis

Mean 37.8 35.1

SD 16.0 64.9

The participants are sorted by co-adaptive BCI performance. The superscript ‘‘a’’ marks the two participants who had used ERD-based BCIs before. TBI stands for
traumatic brain injury. Functional scoring for spinal cord injury (SCI) is according to the American Spinal Injury Association (ASIA, [21]).
doi:10.1371/journal.pone.0101168.t001

Figure 2. Overview of the measurement procedure. The runs colored in blue were recorded with the co-adaptive paradigm (see Figure 3). The
runs colored in green were recorded with the self-paced paradigm (see Figure 4). During the non-control runs, we recorded EEG while participants
relaxed with eyes open looking at a black screen. These non-control runs are not analyzed in this paper.
doi:10.1371/journal.pone.0101168.g002
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created classifier model was used in the self-paced BCI training

paradigm.

During online operation, the system then applied the inverse

transfer function of the AR filter to the EEG and thresholded the

residual (prediction error) to detect artifactual activity in real-time

[25]. Whenever artifactual EEG was detected, the system

displayed a yellow dot (see Figure 3, Panel (C)). The yellow dot,

remained on display for 0.5 s after offset of artifact detection. The

end users were instructed to try to avoid any activity that would

produce EEG artifacts.

To maximize the training effect and motivation in our group of

mostly novice users, we only provided positive feedback between

second 3.75 and 7 [15,26,27]. Specifically, only when the class-

label predicted by the LDA matched the true class-label, a yellow

feedback bar was displayed within the yellow rectangle seen in

Figure 3, Panel (C). The yellow bar extended in length from left to

right in proportion to the LDA distance. The users were instructed

to try to extend the bar as far as possible. Whenever the predicted

class-label did not match the true class-label of the cue, the yellow

rectangle stayed empty.

If the predicted class-label and the true class-label matched for

longer than a total time of two seconds between second three and

seven, the system displayed a smiley and played an audio

recording saying ‘‘excellent’’ starting with the pause at second

seven. The length of the pause was random between two and three

seconds.

Self-paced BCI paradigm
The self-paced paradigm was based on a validated low-

bandwidth input user interface (UI) used in a very similar form

in the assistive technology prototype BrainAble [20,28,29] (see

Figure 4). It typically displays around six menu items in a circular

arrangement of segments. An arrow points from the center of the

user interface toward one segment at a time. The head of the

arrow rotates clockwise around the center so that it takes four

seconds to rotate over one segment. The length of the arrow stays

at a fixed short length in case the non-control class is detected. The

arrow grows proportional to the LDA distance in case movement

imagery is detected. When the arrow length exceeds a predefined

threshold, the arrow turns red. Keeping the arrow above the

threshold for a certain uninterrupted period of time would usually

trigger a selection of the menu item in the segment that the arrow

is pointing at.

To evaluate the efficacy of this self-paced BCI training

paradigm in a reliable and controlled way, we had to instruct

the participants as to which menu items to select. We therefore

displayed dynamically updated instructions in a dialog box above

the UI (see Figure 4). The next target was determined randomly to

be two to five segments clockwise after the last target item or the

position of the arrow at the beginning of the run. We found this

setup to be closest to the real-world case where the user decides

autonomously which item to select. The participants were

instructed to look at the screen and do nothing, whenever the

arrow was pointing to a segment other than the target. For when

the arrow was pointing to the target segment, participants were

instructed to perform the previously trained movement imagery

(either right or left hand).

To improve motivation [15,26,27] and to avoid inducing EEG

non-stationarities as a result of ‘‘perceived loss of controllability’’

[30], we displayed the actual feedback only when the arrow was

pointing to a target segment. When the arrow was pointing at non-

target segments we displayed artificially generated feedback, where

arrow length varied with gaussian noise around a length below the

activation threshold. For target segments, the users always had full

control. For every uninterrupted full second users managed to

extend the arrow beyond the activation threshold they scored one

point (maximum of four possible). If the users scored at least one

point, the paradigm stopped for three seconds at the end of the

segment and displayed the points in the instruction panel as seen

in Figure 4, Panel (C).

Evaluation
For the co-adaptive paradigm we computed the accuracy for

every sample point between second three and seven in the trial and

Figure 3. Schematic description of the co-adaptive BCI paradigm. Panel (A) shows how the system initially collected trials for three classes
non-control, left and right hand movement imagery (MI left/right hand). Panel (B) shows the trial structure for the ‘‘Initial calibration phase’’. After nine
‘‘artifact-free’’ trials per class (TPC) were collected the system auto-calibrated, selected one of the hand MI classes and continued to provide visual,
real-time feedback. Panel (C) shows the trial structure for the ‘‘Online phase’’. The system re-calibrated whenever five new artifact-free TPC were
available.
doi:10.1371/journal.pone.0101168.g003
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report the peak value. To compare with results in literature, we

also computed the Youden index [31] as the difference between

true positive and false positive rate at an optimized threshold and

dwell-time (range 0.5 to 4 s in steps of 0.5 s). The Youden index

ranges from -1 (all targets missed, all non-targets hit) to +1 (all

targets hit, all non-targets missed). We identified better than

chance performance by comparing to confidence intervals around

the theoretical chance level [32]. The threshold level of chance

accuracy was 61.0 % (54 TPC; p = 0.01) for the co-adaptive

paradigm.

For computing accuracy in the self-paced paradigm we

considered true positive (TP), false positive (FP), true negative

(TN) and false negative (FN) events. We counted one activation

whenever the arrow was continuously extended above threshold

for one second. Activations that were triggered while the arrow

was pointing at the current target segment were counted as TP. All

other activations were counted as FP. Notice, FP activations were

not displayed to the user during online operation. If there was no

activation throughout a segment, we counted one FN activation in

case of a target- and one TN activation in case of a non-target

segment. From all segments on average 31.2% were targets, the

rest were non-targets. For computing accuracy we corrected the

confusion matrices for this class imbalance so that the theoretical

chance level was 50%. We conservatively computed the level of

statistically significant (p = 0.01) chance accuracy based on the

number of target segments for every end user. For statistical

comparisons with results from literature we used undirected t-tests

for independent samples.

Results

The co-adaptive paradigm worked with a peak online accuracy

of 68.6 + 8.2 (SD) %. The performance for 18 of 22 participants

was significantly better than chance (p = 0.01). Figure 5 shows the

overall peak accuracies as blue dots and the peak accuracies within

the session as grey dots. In addition, the figure shows the evolution

of feature separability as measured by the Fisher criterion over the

recording session for every end user. The system auto-selected the

classes left and right hand movement imagery equally often. From

the 50% of end users who scored the highest online accuracy 8 of

11 were using right hand movement imagery. Figure 6 shows which

features were most dominant in the final calibration step. We

found Beta-Cz to be most dominant, followed by Beta-C3, Mu-

C3, Beta-C4, Mu-C4 and Mu-Cz. Figure 7 shows exemplary

power spectra for the three users, for whom the system worked

most effectively. Two end users did not participate in the

measurements for the self-paced paradigm. For the other 20

participants, we individually corrected the confusion matrices for

class imbalance and found an overall accuracy of 64.4 + 11.0

(SD) %. The accuracies were significantly higher than chance

(p = 0.01) in 11 of 20 end users. Table 2 shows detailed results for

both paradigms including the accuracies from the corrected

confusion matrices for the self-paced paradigm.

Discussion

Effectiveness of the cue-guided, co-adaptive paradigm
The co-adaptive paradigm effectively provided better than

chance online feedback for the majority (81.8%) of a representa-

tive sample of mostly novice severely disabled end users diagnosed

with SCI, TBI, polyneuropathy or MS. The system used only two

electrodes for online control. At least in healthy users, we

previously found that scalp locations with relevant features tend

to stay the same between sessions for the same individual [15].

Future training protocols could hence use six electrodes in the first

session and mount only the two most relevant electrodes in

consecutive sessions. As to feature relevance: Beta features were

dominant for most of the users in the final calibration step. Mu

features were mostly relevant at position C3; less at the positions

C4 and Cz. Features from position C4 were dominant least

frequently. We speculate that the factor handedness (19 from 22

users were right handed) might have influenced this outcome. The

Figure 4. The self-paced BCI paradigm in different states of operation. The head of the arrow was generally rotating clockwise around the
center. Panel (A) shows how the arrow is short and colored in blue, whenever class non-control is detected. The dialog above the window indicated
the next target item. Panel (B) shows how the arrow changed its color to red, when movement imagery was above the activation threshold. The user
scored one point for every second the arrow stayed above this threshold in a target segment. Panel (C) shows how the user received feedback if s/he
scored at least one point. In this case the arrow stopped rotating and turned grey. After a refractory period of three seconds the paradigm returned
back to the initial state depicted in Panel (A).
doi:10.1371/journal.pone.0101168.g004
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exemplary spectra for the three most successful users in Figure 7

look as expected, and show how decreases in sensorimotor rhythm

power were used to control the BCI systems.

Comparing to cue-guided, co-adaptive paradigms in
healthy users

Vidaurre and colleagues ([13]) presented a highly effective, co-

adaptive ERD-based BCI that used 6 electrodes in tests with 12

healthy, novice volunteers. Correcting for statistical chance

(p = 0.01) [32] we found our co-adaptive paradigm to work on

average 6.7% better than chance (22 end users, none rejected, 20

BCI-novice). The BCI of Vidaurre and colleagues worked on

average 11.6% better than chance (12 users, 3 rejected). Even

though, this rejection of participants likely skewed the results in

favor of the BCI in Vidaurre et al., there is still no significant

difference between the results (p = 0.099). This result is highly

encouraging, as it indicates that a co-adaptive BCI that supports a

non-control state and uses only two electrodes online can work in

severely disabled end users with an accuracy comparable to a

slightly more complex system in healthy users.

Figure 5. Online performance for all 22 end users. The blue dots show the overall peak accuracy, while the grey dots depict within session
performance. The color coded maps show the Fisher criterion [48] over time (left to right) for the features m C 3, b C 3, m C z, b C z, m C 4 and b C 4 (bottom
to top).
doi:10.1371/journal.pone.0101168.g005

Figure 6. Feature dominance after calibration. Shows for what percentage of users, the different logarithmic band-power features were
selected in the final classifier calibration step.
doi:10.1371/journal.pone.0101168.g006
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Figure 7. Overview of power spectra. The three panels show power spectra for the three participants for whom the BCI system worked most
effectively. For participant P01 and P03, the system selected the b-feature and for participant P02 the a-feature. Here, all three users control the
system by causing oscillatory power of the sensorimotor rhythms to decrease (event-related desynchronization, c.f. [2]).
doi:10.1371/journal.pone.0101168.g007

Table 2. Detailed results for both paradigms.

Co-adaptive BCI Self-paced BCI

User Acc. (%) Youden index Selected MI Feature Acc. (%)

P01 84.7* 0.773 Right b C z 94.2*

P02 82.6* 0.715 Left m C 3 75.6*

P03a 82.4* 0.686 Right b C 3 82.1*

P04 78.8* 0.573 Right m C 3 61.8*

P05 75.7* 0.373 Left b C 4 50.2

P06 75.0* 0.542 Left b C z

P07 74.5* 0.518 Right b C z

P08 69.9* 0.252 Right m C 4 58.5

P09 69.4* 0.356 Rightb b C z 73.4*

P10a 69.2* 0.401 Right b C z 69.8*

P11 66.7* 0.218 Right m C 3 75.1*

P12 64.9* 0.227 Leftb b C 3 51.8

P13 64.0* 0.258 Left b C 4 63.4*

P14 63.4* 0.268 Right b C 4 62.9*

P15 63.0* 0.120 Right m C 3 59.4

P16 62.7* 0.286 Left b C 4 53.3

P17 62.7* 0.152 Left b C 3 55.3

P18 62.0* 0.048 Left b C z 58.2

P19 60.4 0.188 Leftb b C 3 63.3*

P20 60.0 0.299 Left b C z 59.2

P21 59.0 0.130 Right b C 3 61.2*

P22 58.9 0.144 Left b C 3 58.8

Mean 68.6 0.342 64.4

SD 8.2 0.208 11.0

The accuracies for the self-paced paradigm were corrected for class imbalance, so that results are comparable. The superscript ‘‘a’’ marks the two end users who had
previously used ERD-based BCIs. The asterisks indicate significantly better than chance (p = 0.01) accuracy. The superscript ‘‘b’’ marks left-handed users. MI stands for
motor imagery and Acc. abbreviates accuracy.
doi:10.1371/journal.pone.0101168.t002
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Comparing to cue-guided paradigms in users with motor
impairment

Leeb and colleagues ([7]) validated a conventional ERD-based

BCI training protocol with 24 end users (11 with tetraplegia) in a

maximum of ten training sessions. The authors discuss, how auto-

calibrating and co-adaptive training approaches could expedite

BCI setup. Based on their findings, the authors continue to explain

how allowing for a non-control state ‘‘becomes essential for

mentally operating devices over long periods’’. Our system

implements these thoughtful propositions in that it offers a non-

control state, automatically selects the most effective class-

combination during auto-calibration and regularly re-calibrates

online. The system presented by Leeb and colleagues reached a

high Youden index above 0.4 for 41.7% of end users after a

maximum of ten training sessions. Our co-adaptive system

performed above the same threshold for 31.8% of end users after

24 minutes of training. That means less users reached the same

performance threshold with our system in the first session. Still,

our system advantageously complements this existing, effective

approach, as it offers a non-control state and completely removes

the requirement for a BCI expert (even for calibration). After the

caregiver mounts the six electrodes and starts the system, users can

typically train with real-time feedback based on two electrodes

after less than five minutes. Based on literature we would also

expect performance of the co-adaptive paradigm to improve over

multiple training sessions [5,13,15].

Comparing to cue-guided paradigms in users with SCI
Pfurtscheller and colleagues ([33]) recorded 16 EEG channels

from 8 para- and 7 tetraplegic individuals with SCI at lumbar

(NL = 1), thoracial (NTh = 7) and cervical (NC = 7) level who were

instructed to perform three types of movement imagery in a cue-

guided paradigm. Using manual outlier rejection and common

spatial patterns (CSP, [34]), the authors found the highest offline

classification accuracy between movement imagery of the left hand

and both feet. We used these results for comparison. Correcting

for statistical chance [32] we found the system in Pfurtscheller et

al. to perform 8.2% better than chance (80 TPC; p = 0.01), while

our co-adaptive system performed 7.9% better than chance (15

users with SCI; 54 TPC; p = 0.01). We found no significant

performance difference (p = 0.943). This result is encouraging as

Pfurtscheller and colleagues discuss how their approach was

successful with only one of the tetraplegic users. Our co-adaptive

system worked better than chance for 14 of 15 tetraplegic end

users. Our system classified based on 2 instead of 16 electrodes and

automatically provided online feedback after less than five

minutes. Our system did further not require manual artifact

rejection, feature selection, classifier training or any other

interaction of a BCI expert. Most importantly our system supports

a non-control state which is important for intuitive, self-paced

interaction.

Conradi and colleagues ([35]) calibrated an ERD-based BCI

using CSP on 30 minutes of high density EEG (64 electrodes) from

7 BCI-novice individuals with cervical SCI at ASIA levels A or B.

The authors found discriminable ERD patterns in four of the

participants, computed classifiers and proceeded to record online

feedback runs. In the condition ‘‘cursor on’’, which is most similar

to our setup the system worked at 67.7% accuracy (computed as

the weighted average of accuracy values in Table 1 in [35]). For

our sample of 15 users with SCI (13 BCI-novice; none excluded,

ASIA A or B, three with C or D) we found a comparable average

online accuracy of 69.9 + 7.4 (SD) %. In comparison, our system

does not deliver much higher performance, but our implementa-

tion complements the existing, effective approach in other ways:

Our system does not require BCI expert interaction and provides

online feedback automatically after less than five minutes. The

caregiver needs to mount only six electrodes of which only two are

used for control, which may be more practical for some

applications. Finally, our system offers a non-control state, which

is important for self-paced BCI operation.

Rohm and colleagues ([36]) showed how 9 of 10 end users (one

rejected due to a classifier problem) with cervical SCI (ASIA A or

B) achieved an overall accuracy of 65.7% in a high number of

training sessions. While the online accuracy with our co-adaptive

system at 69.9 + 7.4 (SD) % is not much higher, there are some

ways how our system complements this existing approach: Instead

of more than 13 electrodes, our system requires only six electrodes,

from which it only uses two online. Instead of offline training and

manual calibration, our system provides feedback automatically

after less than five minutes. Most importantly our system supports

a non-control state which is important for self-paced operation.

Effectiveness of the self-paced BCI training paradigm
Several previous case studies ([10,19,37]) demonstrated success-

ful self-paced BCI control in individuals with SCI. A recent study

showed successful and reasonably flexible control of a spelling

application and a tele-presence robot in a large group of users with

motor impairment [7]. All of these end users had undergone

extensive BCI training typically over multiple sessions and in most

cases these systems did not support a non-control state. In our first,

simple attempt we found the present self-paced paradigm to work

significantly better than chance (p = 0.01) in 11 of 20 end users

(majority with SCI; 18 BCI novice). With the exception of P19 and

P21, the end users, who achieved better than chance accuracy

with the self-paced paradigm had generally also achieved better

than chance accuracy previously with the co-adaptive paradigm.

Our present approach can complement the effective, existing

approaches in that it allows for comparably fast (24 minutes) and

fully automatic setup and training without any BCI expert

interaction. Typical training protocols to improve performance,

like selecting optimal task combinations ([12,38–40]) were

performed automatically. Finally, the present self-paced paradigm

supports a non-control state and uses only two electrodes during

operation.

Limitations
A limitation of the present setup was that the self-paced

paradigm did not work better than chance for as many end users

as the co-adaptive paradigm. This was anticipated and can be

explained by the fact that in favor of stability we did not yet use

fully automatic optimization of the threshold but chose a fixed

value for all users. The threshold was fixed to a value which

allowed to easily trigger activations with the predefined activation

dwell-time of 1 s in the self-paced paradigm. By allowing the users

to trigger activations in the target segments, while suppressing

erroneous feedback in the non-target segments we were aiming to

make this training paradigm more enjoyable and motivating for

our mostly novice end users ([27]). In addition we wanted to avoid,

that the users’ perception of mistakes would introduce additional

non-stationarities in the EEG ([30]). Based on the clean data we

collected from these end users we can do further analyses and

simulations in the future to find system configurations that can

automatically optimize threshold, dwell-time and features to allow

for more robust self-paced operation.

Future prospects
In this work we used a co-adaptive BCI paradigm to quickly

establish a communication and control channel for users with SCI,

A Co-Adaptive Brain-Computer Interface for Users with Motor Impairment

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e101168



TBI, polyneuropathy or MS. The co-adaptive paradigm already

supported a non-control state and the generated classifiers worked

well in the presented self-paced paradigm. Additional workload

measurements in future experiments could help to objectively

quantify the merit of supporting a non-control state. Based on the

collected data we are working to improve our signal processing

methods to attain higher system efficacy. In addition we plan to

explore the impact of using non-motor tasks and multi-session

training. The present system selected a user-specific control

strategy automatically based only on cross-validation accuracy

and feature separability. Future implementations could also

consider physiological markers in the decision process. In addition

to the user population in the present study, future research could

also target individuals in minimally conscious state [41]. Finally,

co-adaptive BCI training paradigms could also be evaluated for

their efficacy as tools in neuro-rehabilitation [42] after neural

injuries like stroke [43,44] or SCI [45,46].

Conclusions

We presented a cue-guided, auto-calibrating and online co-

adaptive ERD-based BCI training paradigm that allowed for

significantly better than chance (p = 0.01) control in 18 of 22

severely disabled users (20 BCI-novice). After only 24 minutes of

co-adaptive training, 11 of 20 end users were able to control a self-

paced BCI training paradigm with a control proficiency signifi-

cantly better than chance (p = 0.01). Comparing with literature we

found our co-adaptive BCI to well complement existing, effective

approaches in that it requires no BCI expert, supports a non-

control state and provides feedback based on only two electrodes

automatically after less than five minutes.

Appendix A. Details on classifier calibration and
use

For initial class selection, the typical calibration was performed

for both class combinations left vs non-control and right vs non-control

to select the one class combination that showed higher median

leave-one-out cross-validation (LooCV) test accuracy. Such

choosing of a user-specific task combination had been previously

shown to improve ERD-based BCI control proficiency [12,38–

40]. The calibration procedure always worked in the following

steps on all collected artifact-free trials: First the BCI extracted a

total of six logarithmic band-power features (1 second averaging)

in the bands 9 to 13 and 16 to 26 Hz ([15,47]) from bipolar

derivations at C3 (FC3 - CP3), Cz (FCz - CPz) and C4 (FC4 -

CP4). The system proceeded to select the single feature with

maximum discriminability according to the Fisher criterion (cf.

[48]) in the classification period from second three to seven within

the trial. The BCI then split the classification period into eight

adjacent 0.5 s windows and computed LooCV accuracy for every

one of theses windows. Specifically the system trained an LDA

classifier for the logarithmic band-power values in the 0.5 s time

window and then applied the classifier sample-wise to the feature

of the whole classification period of the test-trial. Averaging across

all test-trials resulted in one accuracy curve of 4 s length for every

training window (eight total). The training window, whose LooCV

accuracy curve yielded the highest median accuracy over these 4 s

was used to finally train the classifier. As a last step the system

trained the AR filter model (order 11) of the real-time artifact

detection method on all artifact free trials [25]. The system re-

calibrated seamlessly in the background whenever five new TPC

were available and the most recently trained classifier model was

always immediately used in the online system. The last classifier

generated in the co-adaptive paradigm was automatically used in

the first run of the self-paced paradigm. With an LDA output

ranging approximately from -1 to 1, the activation threshold was

set statically to 0.5 for all participants. An activation was triggered

whenever participants produced above threshold classifier output

for a fixed dwell-time of at least 1 s. The system automatically

adjusted the bias term of the classifier based on the data recorded

in the first run of the self-paced paradigm.
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Prototype of an auto-calibrating,
context-aware, hybrid brain-computer interface*

Faller J.1, Torrellas S.2, Miralles F.2, Holzner C.3, Kapeller C.3, Guger C.3,
Bund J.4, Müller-Putz G. R.1 and Scherer R.1

Abstract— We present the prototype of a context-aware
framework that allows users to control smart home devices and
to access internet services via a Hybrid BCI system of an auto-
calibrating sensorimotor rhythm (SMR) based BCI and another
assistive device (Integra Mouse mouth joystick). While there is
extensive literature that describes the merit of Hybrid BCIs,
auto-calibrating and co-adaptive ERD BCI training paradigms,
specialized BCI user interfaces, context-awareness and smart
home control, there is up to now, no system that includes all
these concepts in one integrated easy-to-use framework that can
truly benefit individuals with severe functional disabilities by
increasing independence and social inclusion. Here we integrate
all these technologies in a prototype framework that does not
require expert knowledge or excess time for calibration. In a
first pilot-study, 3 healthy volunteers successfully operated the
system using input signals from an ERD BCI and an Integra
Mouse and reached average positive predictive values (PPV) of
72 and 98 % respectively. Based on what we learned here we
are planning to improve the system for a test with a larger
number of healthy volunteers so we can soon bring the system
to benefit individuals with severe functional disability.

I. INTRODUCTION

Electroencephalography (EEG) based brain-computer in-
terface (BCI) systems can establish a channel of commu-
nication for individuals with severe functional disabilities
(cf. [10], [5], [1]). Sensorimotor rhythm (SMR) based BCIs
generate control signals based on the dynamics of oscillatory
brain activity in the EEG. Such SMR based BCIs use ma-
chine learning techniques to detect decreases (event-related
desynchronization, ERD, [7]) and increases (event-related
synchronization, ERS) of the amplitude of specific frequency
bands within the SMR, which the user can voluntarily
influence by performing certain mental tasks (e.g. motor
imagery).

However, modulating these brain patterns to create a reli-
able control signal is a skill-full action that, with traditional
training paradigms, can require extensive training over weeks
or even months [5]. Recent studies showed that co-adaptive
online training paradigms effectively lead to high control
accuracy, even in participants that could not achieve control
with conventional training paradigms [9]. In the simplest
case, the user can, after training, produce a one dimensional
signal, that can be used to interact with the environment.

*This work was supported by the EU Research Projects BrainAble (FP7-
247447) and TOBI (FP7-224631).

1Institute for Knowledge Discovery, Graz University of Technology, 8010
Graz, Austria josef.faller@tugraz.at

2Barcelona Digital Technology Center, 08018 Barcelona, Spain
3g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria
4Meticube, 3045-504 Coimbra, Portugal

SMR based BCI systems can be complimented with other
BCI or non-BCI input signals, where both signals are used
either simultaneously or in a sequential manner. This by
definition constitutes a Hybrid BCI [6]. Such Hybrid BCI
setups can increase the number of available classes, the
stability and/or speed of the BCI system. Another way
to increase reliability of the interaction is to implement
the concept of context-awareness, which means that the
system adapts according to the current status of user and
environmental variables [4].

A hybrid system of an SMR BCI and a conventional
assistive technology device integrated with an optimized
Graphical User Interface (GUI) to a Context-Aware Environ-
mental Control System has the potential to vastly increase
social inclusion and independence of users with severe func-
tional disabilities, since the combination potentially brings
up synergies and balances out shortcomings that the com-
ponents might have in standalone configurations. This is an
improvement over existing systems, which often implement
only one or some of the abovementioned technologies or
concepts, which we think might leave considerable potential
in interaction efficacy unused. Other systems require expert
interaction during calibration and are therefore more difficult
to operate for non-expert caregivers.

We integrate a Hybrid BCI (SMR BCI and Integra
Mouse R© mouth joystick), a simulated Workload Detector,
a specialized GUI based on [2] and a Context-Aware En-
vironmental Control System in an intuitive framework that
allows the user to trigger actions in the outside world. The
paradigm for this first proof of concept involving 3 healthy
volunteers very loosely resembles a potential real-world use-
case, where we (1) auto-calibrate the SMR BCI, then (2)
let the user remotely control a camera via ERD, then (3)
simulate that the Workload Detector deactivates ERD and at
last (4) let the user post a message on Twitter R© using the
Integra Mouse.

II. MATERIALS AND METHODS

A. System Architecture

Our framework mainly consists of three loosely coupled
parts that we show in the Architecture Overview Diagram
in Fig. 1. Block (A) User Interface, includes the hybrid
system consisting of an SMR BCI, a mouth joystick and
a simulated Workload Detector. The color segmentation
of block (A) depicts how the parts overlaying (A.1) are
needed for auto-calibration and the parts overlaying (A.2) are
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Fig. 1. Architecture Overview Diagram for the complete framework, excluding some supported input interfaces that are not the focus of this work. The
framework mainly consists of three loosely coupled segments in the panels (A) User Interface, (B) Ambient Intelligence and (C) Remote Services. The
components overlaying the green area (A.1) are used during Co-Adaptive ERD Auto-Calibration and Training while the components overlaying the blue
area (A.2) are mainly used for Hybrid BCI Online Operation. (Twitter logo is the property of Twitter Inc., San Francisco, CA, USA).

needed for online operation. Block (B) shows the Context-
Aware Environmental Control System that updates the GUI
depending on the context, executes commands that the user
selects and controls Remote Services in block (C) via an
abstract interface called Universal Control Hub (UCH, [11])
which is based on ISO standard 24752, as promoted by the
international OpenURC Alliance (http://www.openurc.org/).

B. EEG Setup for ERD BCI control

We recorded EEG at a sample-rate of 256 Hz with a
bandpass filter between 0.5 and 100 Hz and a notch filter
at 50 Hz. For signal acquisition we used g.GAMMAsys
active electrodes, a g.USBamp biosignal amplifier and the
g.HIGHspeed signal acquisition block (g.tec, Guger Tech-
nologies OEG, Graz, Austria). The positions for the 6
electrodes according to the 10/20 System for Electrode
Placement were FC3, FCz, FC4, CP3, CPz and CP4. The
three bipolar derivations FC3-CP3, FCz-CPz and FC4-CP4
(blue colored sensors in Fig. 1), were considered during ERD
auto-calibration and one was used during online operation.

C. Co-Adaptive ERD Auto-Calibration

The system by default loads the ERD classifier configu-
ration from the last training at startup and is then ready to
use. With one double-click, a new co-adaptive online ERD
training session can be started, where the user has to produce
two different mental activities (right hand versus both feet
movement imagery) in a cue guided training paradigm (see
Fig. 2). The paradigm starts with offline data collection and
then automatically calibrates and provides feedback after
approximately 3 min (7 trials per class). During this online
feedback operation the system continuously analyzes the

data, reselects one best logarithmic bandpower feature (α,
10 to 13 Hz, or β, 16 to 24 Hz from C3, Cz or C4)
and recalculates a new linear discriminant analysis (LDA)
classifier whenever 5 new trials per class are available after
trial based outlier rejection (see [3] for details). A total of 60
trials were collected during ERD auto-calibration procedure.

0 1 2 3 4 5 6 7 8 9

Reference
Cross

10 11

Pause (2-3s)

sec
Audible cue

Imagery period

Cue
Activity period (Feedback)

Both feet

Right hand Bar-Feedback
(after 7 trials/class)

Fig. 2. The task for the user was to perform sustained right hand versus
both feet movement imagery starting from the cue (second 3) to the end
of the cross period (second 8). A trial started with 3 s of reference period,
followed by a brisk audible cue and a visual cue (arrow right for right hand,
arrow down for both feet) from second 3 to 4.25. The activity period, where
the user received feedback, lasted from second 4 to 8. There was a random
2 to 3 s pause between the trials.

D. Hex-o-Select GUI and Control Logic

As GUI for our online ERD/Integra Mouse Hybrid BCI
control, we use a customized implementation (see Fig. 3)
based on [2]. This GUI that we refer to as Hex-o-Select
displays a variable number (3 to 8) of menu items in layers
that are organized in a tree structure. The menu items can
represent either atomic actions or headlines that lead to sub-
menu layers. The last element of every sub-menu layer is
labeled ’Back’ and leads to the menu-layer directly above.
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The GUI is completely remote configured by the Context-
Aware Environmental Control System and receives immedi-
ate updates whenever devices change their status (e.g. Twitter
Logged On or Off). All this communication is mediated by
the BCI-TO-XML Block (see Fig. 1 and [8]).

The GUI supports four different operation modes: (I) The
arrow mode uses a one dimensional signal. In this mode,
the length of an arrow can be increased by imagining right
hand movement and decreased by imagining movement of
both feet. The arrow is rotating at a slow pace and colored
in blue when its length is lower than a certain threshold (see
Fig. 3, Panel A). Whenever its length exceeds the threshold,
the arrow stops rotating and turns its color to red (see Fig. 3,
Panel B). The user can select the menu item in the segment
where the arrow is pointing to by keeping the arrow length
above the threshold for a dwell time of 3 s. After every
successful activation the system would either execute an
action or change to a sub-menu layer depending on the type
of the item. After any activation, the arrow resets to the
original position (pointing upwards), remains disabled, static
and colored in black for a refractory period of 3 s.

The operation modes (II) and (III) use two dimensional
input signals to guide a cursor to select items. Operation
mode (II) allows for devices such as Joystick, eye-tracker or
Wii-Remote whereas operation mode (III) enables the system
mouse as an input device. The latter option allows to use
assistive technology like the Integra Mouse but also allows
an operator or care-giver to quickly interact using the system
mouse. Operation mode (IV) allows for any simultaneous
hybrid operation of the modes (I), (II) and (III).

E. Online Simulation of the Workload Detector

Our idea is that the system could try to detect whether
the user is overwhelmed with workload and could then
deactivate the ERD BCI so that no erroneous activations can
be triggered. We mainly focus on testing the proposed Hybrid
BCI for interacting with the Context-Aware Environmental
Control System. Therefore we only simulate the functionality
of the Workload Detector by having an experimenter trigger
it manually at a defined point in the test protocol.

F. Mouth Joystick Setup

As the second active input signal next to ERD we used a
mouth joystick (Integra Mouse, LifeTool Solutions GmbH,
Linz, Austria, see Fig. 1), since it is a common assistive
technology device. By moving the tip of the mouth joystick
with their lips, users could freely control the system mouse
cursor up, down, left and right. The tip of the joystick has
the form of a small tube and the users could trigger a left-
mouse click by briefly (less than 1 s) creating underpressure
in the mouth piece by sucking out the air.

G. Experimental Paradigm and Evaluation

We tested our system in one session with 3 healthy
volunteers (male, age 25 ± 3.5), who had previously used
ERD BCIs but were not specifically trained for this ex-
periment. The protocol of interactions was the same for

Brainable User Interface _ x

TV
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Door

Camera

HVAC

Back

Main - Home TV

Curtain

Door

Camera

HVAC

Back

Main - Home

Settings

Zoom

Movement

Back

Main - Home - Camera

(A)
(B)

(C)

Fig. 3. The panels show different layers in the Hex-o-Select GUI (based
on [2]). Arrow Mode (I) and System Mouse Cursor Mode (III) are activated
in all the panels. In Panel (A) the arrow length is below selection threshold
and the arrow is therefore colored in blue and rotating, whereas in Panel (B)
the arrow is extended over the selection threshold and therefore colored in
red and not rotating. Panel (C) shows the change to the sub-menu layer
’Camera’ after a successful selection in Panel (B). The arrow is colored in
black which indicates that the system is in refractory period.

every participant. First (1) the users completed the Co-
Adaptive ERD Auto-Calibration and Training paradigm of
our prototype (see Fig. 1, Segment (A.1)). From this we
report the selected feature and the peak training accuracy
from second 4 to 8 in the trial after leave-one-out cross-
validation. We then start the system in Hybrid BCI Online
Operation Mode (see Fig. 1, Segment (A.2)) where the GUI
simultaneously runs (I) Arrow Mode based on ERD and (III)
System mouse cursor mode relying on the signal from the
Integra Mouse (see Section II-D).

The second step (2) concerned the ERD online operation
and was divided in 3 subtasks: (2.a) 1 min idle, (2.b) actual
selection of the 10 predefined menu-items in 4 layers to
remote control a camera and again (2.c) 1 min idle. The
camera is exemplary for a variety of supported devices, and
could in practice be used by a disabled, potentially bed-
bound user to perceive what happens in other localities. For
the idle period the subjects were instructed to actively avoid
triggering any activations. For this, we report the number of
False Positive (FP, i.e. unintentional) activations. For (2.b)
we report time-to-finish (TTF), False Negatives (FN, i.e.
failure to trigger an activation) and Positive Predictive Value
(PPV = total(TP )/(total(TP ) + total(FP )), TP means
True Positive, i.e. intentional activation).

We then (3) simulate that the Workload Detector triggers
and deactivates the ERD input, so that in practice no unin-
tentional commands could be sent by the ERD signal when
the user is overwhelmed with workload.

At last (4) the participants had to select a predefined
sequence of 20 menu items in 5 layers using the Integra
Mouse to post the text ’Hello’ to a configured account in the
social platform Twitter (http://www.twitter.com). We report
the same performance criteria as in step (2.b).

III. RESULTS

All three participants successfully completed the full test
protocol and all systems worked as expected. We present
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(A.1) Calibration (A.2) Online Operation
ERD - Calibration ERD - Camera control Integra - Twitter control
60 Trials LooCV Idle 10 Selections Idle 20 Selections
Feature Acc. (%) FP PPV (%) FN TTF (s) FP PPV (%) FN TTF (s)

S01 αC3 96.0 0 76.9 10 20:55 0 100.0 4 1:11
S02 αC4 92.0 0 59.1 0 12:07 0 93.3 3 1:06
S03 αCz 88.0 2 80.0 3 10:39 1 100.0 2 1:05

Mean - 92.0 0.67 72.0 4.3 14:33 0.3 97.8 3 1:07
SD - 4.0 1.2 11.3 5.1 05:33 0.6 3.9 1 0:03

TABLE I
RESULTS OF THE (A.1) AUTO-CALIBRATION AND (A.2) HYBRID BCI ONLINE OPERATION PHASE.

all results in Table I. Based on the high average of 92 %
over the peak training accuracies, the subjects were able to
reach an average of 72 % PPV in the Hex-o-Select ERD
online condition. As expected, the average PPV in the Integra
Mouse condition was even higher, above 97 %.

IV. DISCUSSION

Three healthy volunteers successfully operated the proto-
type of our highly integrated context-aware system by means
of a Hybrid BCI consisting of an SMR BCI and a mouth
joystick to control a camera and to post a message on the
social platform Twitter. The tested functionality is represen-
tative for a vast number of other compatible appliances (TV,
Door, etc.) and internet services (Facebook, etc.).

Operating the system did not require any expert knowledge
other than connecting the user and starting the system. In
the beginning, the Co-Adaptive ERD Auto-Calibration and
Training system successfully identified single features for the
three users that led to an average peak training accuracy of
92 % after only 11 minutes of calibration. Also, the transition
from cue-paced training to online ERD operation did not
cause any problems. In online ERD operation, the users were
able to effectively select the correct menu items using Hex-
o-Select with an average PPV of 72 %. This was even though
they had to orient themselves in the menu structure and were
possibly distracted by the camera feedback. The number of
FP activations was surprisingly low in the idle periods and
the users effectively corrected their mistakes during online
operation. The long TTF for Subject S02 can be attributed to
the comparably high occurence of FNs, where often the time
of the arrow-length being above threshold was slightly below
dwell-time. Using subject-specific dwell-time or checking for
the total time above threshold per segment could improve the
system in this concern.

During informal interviews, subjects reported that oper-
ating the ERD BCI for 10 to 20 min was mentally strain-
ing. This supports the idea that a mechanism such as the
Workload Detector that we simulated could be beneficial in
combination with an ERD BCI. As expected, the control with
the Integra Mouse was very fast and accurate, and only led
to a low number of FNs.

The positive results of this first pilot study lead us to
conclude that this system may potentially increase inde-
pendence and social inclusion of users with disabilities
by offering intuitive control over smart home devices and

internet services. We are working to improve the efficacy
of the Hybrid BCI based on what we learned here so that
we can start tests on a larger number of healthy users with
the aim to eventually deploy our system to create real-world
benefit for users with functional disabilities.

ACKNOWLEDGMENT

This paper only reflects the authors’ views and funding
agencies are not liable for any use that may be made of the
information contained herein.

REFERENCES

[1] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen,
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Cerebral palsy (CP) includes a broad range of disorders, which can result in impairment of
posture and movement control. Brain-computer interfaces (BCIs) have been proposed as
assistive devices for individuals with CP. Better understanding of the neural processing
underlying motor control in affected individuals could lead to more targeted BCI
rehabilitation and treatment options. We have explored well-known neural correlates
of movement, including event-related desynchronization (ERD), phase synchrony, and
a recently-introduced measure of phase dynamics, in participants with CP and healthy
control participants. Although present, significantly less ERD and phase locking were
found in the group with CP. Additionally, inter-group differences in phase dynamics were
also significant. Taken together these findings suggest that users with CP exhibit lower
levels of motor cortex activation during motor imagery, as reflected in lower levels of
ongoing mu suppression and less functional connectivity. These differences indicate that
development of BCIs for individuals with CP may pose additional challenges beyond those
faced in providing BCIs to healthy individuals.

Keywords: electroencephalogram (EEG), brain-computer interface (BCI), cerebral palsy, sensorimotor rhythm,

event-related desynchronization (ERD), phase synchrony, phase dynamics

INTRODUCTION
Cerebral palsy (CP) can be a very debilitating life-long condition
affecting activities of normal living. We explored a novel approach
to the use of a brain-computer interface (BCI) to assist individu-
als with CP experiencing motor impairment. Given the difficulties
people with CP have in using standard BCIs, we investigated alter-
native neural correlates of movement, which may allow better BCI
control by this group.

CP describes a group of brain and nervous system disorders
that can involve movement, learning, visual, and auditory per-
ception, and cognitive processing (Miller, 2005). CP is caused by
brain injury occurring pre- or peri-natally, or in the first 2 years
of infancy (Holm, 1982; Odding et al., 2006). It may be induced
by hypoxia to a particular brain area, or result from intracerebral
hemorrhage, infection, head injury, or jaundice (Perlman, 1997).

CP can lead to difficulties in maintaining posture and coordi-
nating movement. Problems include muscle tightening, abnormal
gait, muscle weakness, tremors, spasms, and loss of coordination.
Severity varies, and effects may be uni- or bilateral, involving
upper, lower, or all limbs, occasionally resulting in almost com-
plete paralysis (Krigger, 2006). Therefore, individuals with CP
experience a range of challenges in their day-to-day lives for which
they may require assistance.

BCIs offer a promising way of providing greater independence
for individuals with CP (Wolpaw et al., 2002; Neuper et al., 2003;

Millán et al., 2010; Sellers et al., 2010). BCIs base control of
devices on direct recording and interpretation of brain activity.
As such, they can enable control of a computer without activa-
tion of the efferent nervous system. BCIs can be used to control
devices that could, for example, facilitate movement limited by
weakness or poor coordination, or aid communication, establish-
ing a direct, non-muscular, communication channel between a
user and the environment (Wolpaw et al., 2002). Furthermore,
although CP is a non-progressive condition, the associated symp-
toms may change over time as the individual’s body grows and
develops (Badawi et al., 2008). Such changes open the possibil-
ity of BCI-based neurofeedback approaches to alleviate motor
impairments (Daly et al., 2013a). Moreover, it has been proposed
that a motor imagery (MI) strategy could be beneficial in rehabil-
itation efforts to improve motor control in cases of cortical lesion
induced movement impairments (reviewed by Zimmermann-
Schlatter et al., 2008). Such an approach is encapsulated in a
MI-BCI. MI-BCIs are based upon the detection of changes in
sensorimotor rhythms (SMRs), oscillatory activity in the motor
cortical regions (Pfurtscheller and Neuper, 2001), and have been
suggested as effective communication devices for users with CP
(Neuper et al., 2003).

One of the most common approaches to BCIs is based on
event-related desynchronization (ERD), which is a modulation
in cortical electrical activity before, during, and after attempted
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execution, or imagination, of active or passive movement, man-
ifested in the electroencephalogram (EEG) (Pfurtscheller and
Lopes da Silva, 1999; Müller-Putz et al., 2003, 2007), magne-
toencephalogram and electrocorticogram (Hinterberger et al.,
2008; Foldes, 2011). The corresponding representation area in the
motor cortex exhibits suppression of on-going oscillatory activ-
ity in the alpha (8–13 Hz) and beta (13–30 Hz) frequency bands
(Niedermeyer, 1999; Pfurtscheller and Lopes da Silva, 1999). After
movement cessation, beta oscillatory activity increases over base-
line event-related synchronization (ERS) then returns to baseline
activity. This process is considered to correspond either to a motor
cortex inhibition or a sensory reafference (Baker, 2007; Müller-
Putz et al., 2007). Mu and beta activity are modified by limb
movement and MI (Pfurtscheller et al., 1997; Neuper et al., 1999).

Despite promising results with ERD-based BCI control in
healthy populations, previous studies have shown that users with
CP were not able to control an MI-BCI based upon ERD/S
at comparable accuracy levels (Neuper et al., 2003; Daly et al.,
2013a). However, MI-BCIs offer a number of advantages over
other BCIs, including not requiring any executed movement,
e.g., eye gaze, which a number of other BCIs [such as steady
state visual evoked potential (SSVEP)- and event related poten-
tial (ERP)-based BCIs] require. Furthermore, they are intuitive,
and in a pilot exercise, participants reported using such BCIs to
be enjoyable (Daly et al., 2013b), increasing motivation, which is
advantageous when BCIs are being employed for rehabilitation
purposes. We therefore investigated differences in SMR activity in
participants with CP and healthy participants in order to explain
the diminished performance in users with CP, as well as to explore
other neural correlates of MI, which may be more useful for
controlling BCIs in this group.

More recently, a new way of interpreting how the brain may
process information, based on interactions between different
brain areas rather than solely on their activations, has been gain-
ing prominence in cognitive neuroscience. Human and animal
studies indicate that transient episodes of long- and short-range
phase synchrony, between distant and adjacent cerebral areas, as
measured by pair-wise interactions between electrodes at micro-
and/or macro spacings, correspond to perceptual and cognitive
processes (Varela et al., 2001). Such synchrony has been proposed
to underpin cognitive acts through the transient formation and
dissolution of neural assemblies (Varela et al., 2001). The phase
locking value (PLV), as introduced in Lachaux et al. (1999), pro-
vides a method for quantifying the degree of phase synchrony
in a particular frequency band between different time series of
electrical brain activity, such as recorded from EEG electrodes at
different scalp locations. In contrast to coherence measurement,
the PLV is strictly sensitive to the phase and not to the amplitude
of the signals (Varela et al., 2001; Brunner et al., 2006). A PLV
close to 0 indicates no synchrony, while a value close to 1 indi-
cates perfect synchrony of the two compared time series at that
point.

Changes in coordination of activity through timing have been
identified in motor cortex activity during movement (Meinecke
et al., 2005; Sweeney-Reed and Nasuto, 2009). Local phase syn-
chrony in the motor cortex alpha band has been found to increase
prior to movement, decreasing at movement, then increasing

again afterwards in healthy participants (Sweeney-Reed and
Nasuto, 2009). These electrical activity changes are also potential
candidates for controlling an MI-BCI.

Furthermore, the temporal dynamics of synchrony exhibit
changes during MI tasks (Daly et al., 2011). We recently pro-
posed an approach to modeling phase synchronization dynamics
in the EEG during a motor task in healthy individuals (Daly
et al., 2013c). Differences in temporal dynamics of phase relations
between participant groups could indicate a difference in timing
of cortical integration resulting from CP lesions, offering another
approach to BCI control.

A number of questions arise. It is currently unknown how CP-
induced motor-cortical lesions affect ERD strength, MI efficacy,
or other SMR-related activity such as phase relationships, despite
the potential benefits to CP sufferers from the use of SMR activ-
ity to control a BCI. Crucial to the development of effective BCIs
for this group is determination of whether CP-related impair-
ment also results in alteration of the electrophysiological patterns
usually detected during MI. The question is particularly impor-
tant, as individuals with CP are among those who stand to benefit
significantly from BCI use.

We therefore had two goals. First, we assessed how motor cor-
tex SMR activity differs in individuals with CP compared with
healthy individuals, in order to identify a useful approach to
BCI control in users with CP. Second, we sought to further our
understanding of the motor impairments in CP through detailed
examination of electrical activity in the motor cortex during MI.

MATERIALS AND METHODS
Participants with CP and healthy controls attempted to control
a BCI using MI. Institutional review board ethical approval was
obtained prior to all measurements. We first provide details of the
EEG recording and BCI paradigm, before describing the analysis
methods and inter-group comparisons.

HEALTHY PARTICIPANTS
The first dataset was from 12 able-bodied BCI-naïve volunteers
(5 female and 7 male, median age 26 ± 3.0 years). Details of these
participants are listed in Table 1.

Table 1 | Summary of the healthy participants.

Participant Age Gender

1 32 F
2 21 M
3 26 F
4 27 M
5 26 M
6 22 F
7 28 F
8 26 M
9 28 M
10 26 M
11 22 M
12 25 F

Gender is indicated by either M (male) or F (female).
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These data were recorded in a cue-guided, auto-calibrating
and adaptive ERD-based BCI paradigm (see Faller et al., 2012 for
details). EEG was recorded from electrodes FC3, FCz, FC4, C5,
C3, C1, Cz, C2, C4, C6, CP3, CPz, and CP4 via a g.GAMMAsys
active electrode system along with a g.USBamp amplifier (g.tec,
Guger Technologies OEG, Graz, Austria).

In this study only EEG from the first training session was used
to remove bias due to practice. In every trial, we displayed a fixa-
tion cross over the entire trial duration. Between 1.5 and 2.75 s,
a visual cue indicated the required task. The participants were
instructed to perform kinesthetic MI of their right hand (condi-
tion 1) or both feet (condition 2) from the time the cue appeared
on the screen until the time the cross disappeared (Figure 1A).

The system collected data offline until 10 trials were avail-
able for each class (∼3.5 min). After enough trials had been
recorded during the training phase, online positive reinforcement
regarding the strength of the mental activity was provided to
the participants for each trial during data measurement. As only
trials from the training phase were considered in this work, we do
not detail this here. Further details may be found in Faller et al.
(2012).

It is important to note that one of the aims of this work was to
investigate motor control processes during BCI control. BCI con-
trol is typically based on either a small number of averaged trials
or single trials. Indeed results identified from averaging across a
larger number of trials could be misleading when applied to BCI.

PARTICIPANTS WITH CP
The second dataset was recorded from 14 BCI-naïve volunteers
with CP (7 female and 7 male, median age 36 ± 11 years). All

FIGURE 1 | BCI paradigms used in training stages of BCI operation by

both users with CP and healthy users. (A) BCI paradigm used with healthy
participants. (B) BCI paradigm used with participants with cerebral palsy.

participants exhibited upper limb disorders and 10 participants
also exhibited lower limb disorders. Details of these participants
are provided in Table 2.

EEG was recorded from electrodes AFz, FC3, FCz, FC4, C3,
Cz, C4, CP3, CPz, CP4, PO3, POz, PO4, O1, Oz, and O2 via
a g.GAMMAsys active electrode system along with a g.USBamp
amplifier (g.tec, Guger Technologies OEG, Graz, Austria). Further
details on the participants are reported elsewhere (Daly et al.,
2013a).

A similar paradigm to that applied with the able-bodied par-
ticipants was used. A cue-guided, auto-calibrating and adaptive
SMR BCI paradigm was optimized for disabled users. The timing
of the trials was adjusted based upon requests made by partici-
pants with CP, in a prior pilot study, for a longer MI period (see
Daly et al., 2013a for details).

We presented a fixation cross from 0 to 1.5 s. From 1.5 to
3.5 s, a visual cue indicated the required task. From 3.5 to 8 s the
system again displayed the fixation cross. The participants were
instructed to perform four mental tasks, of which only kinesthetic
MI of either hand (condition 1) or both feet (condition 2) were
used for this analysis (see Figure 1B).

After the first auto-calibration, the system displayed feedback
in the form of a bar, as with the control participants, from 3.5
to 8 s. Data were collected offline for the four conditions until a
sufficient number of artifact-free trials were gathered for accurate
estimation of the class boundaries. Thus, different numbers of tri-
als were gathered per participant. Further details are provided in
Daly et al. (2013a).

In this study, as with the control group, only EEG from the
training period was used, to remove bias due to practice. Note that
the length of the training period differed between participants, as
some participants required more repetitions than others before
sufficient class separation could be obtained by the classifier.
Details on the feedback provided after the training phase may be
found in Daly et al. (2013a).

Table 2 | Summary of the participants with CP.

Participant Age Gender Orthopedic disorders

1 53 M LLD, ULD
2 36 M LLD, ULD
3 52 F LLD
4 22 M LLD, ULD
5 32 M LLD
6 20 F LLD, ULD
7 34 M LLD, ULD
8 58 F LLD
9 32 F LLD
10 36 F LLD, ULD
11 38 M LLD, ULD
12 36 F LLD, ULD
13 37 M LLD, ULD
14 31 F LLD, ULD

Gender is indicated by either M (male) or F (female). Orthopedic disorders are

denoted by codes indicating lower limb disorders (LLD) or upper limb disorders

(ULD).
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PRE-PROCESSING
EEG from nine channels positioned over the motor cortex and
common to the recording montage used with both participant
groups was used (FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4).
The data were then re-referenced to a common average reference
(CAR) scheme before segmentation into trials.

Trials containing artifacts were then identified as any trial for
which the amplitude exceeded ±80 μV. These trials were excluded
from subsequent analysis. From the healthy users 2.58 (±2.72)
trials were removed and from the users with CP 8.07 (±7.49)
trials were removed.

As we were only interested in trials relating to the 2 MI tasks
common to both groups, this leaves a total of 17.33 (±2.77) trials
remaining for healthy users and 19.92 (±7.49) trials remaining
for users with CP.

We focused on four frequency bands of interest in subsequent
processing steps. These were the alpha (8–13 Hz), lower beta
(13–16 Hz), mid beta (16–20 Hz), and upper beta (20–30 Hz)
frequency bands.

BANDPOWER FEATURES
Band-powers (BP) were calculated for all channels as the root
mean squared amplitude of the EEG filtered into the frequency
bands of interest. These frequency bands were chosen as they
are well-known to contain the ERD/S response observed during
motor planning and execution/imagery (Pfurtscheller and Lopes
da Silva, 1999). The data were then baselined; the mean BP ampli-
tude in the 1.5 s prior to cue appearance was subtracted from the
data.

Our aim was to derive a representative BP response from the
EEG for the participants with CP, in order to examine potential
differences to healthy participants. Even within a specific CP sub-
type, CP inherently has significant variability, as lesions can occur
at different locations or take different forms such as malforma-
tions, periventricular lesions or cortico-subcortical lesions (Wu
et al., 2006; Korzeniewski et al., 2008). We therefore averaged the
BP of the nine CAR channels described above to attempt to cor-
rect for inter-participant differences in spatial locations of greatest
ERD/S manifestation.

Additionally, baseline BP in the 1.5 s pre-cue baseline period
was also compared between groups.

PHASE LOCKING VALUE (PLV)
Following bandpass filtering to provide a narrow band signal,
PLVs between channel pairs were calculated as per Lachaux et al.
(1999). We filtered the channels into the four frequency bands
of interest. We then extracted the instantaneous phase from each
trial using the Hilbert transform and calculated the PLV pair-wise
for all possible channel combinations according to the following
formula (Lachaux et al., 1999)

PLVt = 1

N

∣∣∣∣
∑N

n = 1
exp(jθ(t, n))

∣∣∣∣ ,

where N denotes the number of trials to average, t denotes the
time point in the time series, and θ(t,n) denotes the phase dif-
ference between the two time series. The PLVs for all possible

pairwise combinations were then averaged as per the approach
taken in Sweeney-Reed et al. (2012).

Additionally, PLVs between the primary motor cortex (M1)
and the supplementary motor area (SMA) were estimated by
measuring the mean PLV between channels FPz-C3, FPz-Cz, and
FPz-C4. This was based upon observed strong PLV between M1
and the SMA during MI-BCI control (Wang et al., 2006).

PHASE DYNAMICS
The temporal dynamics of the phase of the EEG across multi-
ple EEG channels were compared using the method described in
Daly et al. (2013c). First, the phase values from the preprocessed
multivariate EEG time series from the channels over the motor
cortex (FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4) were
used to define a relative phase vector by taking their phase rel-
ative to the average phase on a set of reference channels. These
reference channels were chosen to minimize the effect of spe-
cific phase dynamics on one channel biasing the results and are
symmetrically arranged about the midline. Formally,

�i (t) = θi (t) − θR(t),

where θi(t) denotes the phase on channel i at time t and θR(t)
denotes the phase on a reference channel R at time t. The fol-
lowing four channels were used as references FC3, FC4, CP3, and
CP4. These were chosen as they surround the channels most often
associated with MI (C3, Cz, and C4).

A relative phase pattern vector was then defined as

ϒ (t) = (�1 (t) , . . ., �N (t) ),

where N denotes the number of channels for which relative phase
�i was calculated.

The relative phase pattern vector characterizes the phase across
the multivariate time series at a given moment in time. Thus, its
temporal evolution is informative about the temporal dynamics
of phase across the motor cortex.

The time series of relative phase patterns were then seg-
mented into regions of phase stability. This was done via the
Instantaneous Instability Index (III) (Ito et al., 2007) of the
relative phase pattern vectors, which is defined as

I (t) =
√∑N

i=1
di(t)2,

with

di (t) = 1

N

∑N

h=1
{1−cos (�i (t) −�h (t) ) }.

A period of phase stability may be defined as a period for which I
falls below a certain percentile of its magnitude values; the fiftieth
percentile—as used in Ito et al. (2007)—was used in this work.
A Global Phase Synchronization (GPS) pattern vector was then
defined across each of the periods of synchronization. Formally,

pg = (�
g
1, . . ., �

g
N),
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defines the GPS pattern vector, where

�
g
i = tan−1

∑
t ∈ lg sin �i(t)∑
t ∈ lg cos �i(t)

,

and where lg denotes the gth GPS episode, with 1 ≤ g ≤ M and
M is equal to the number of GPS episodes. Thus, the vector pg

gives the average phase pattern during a single episode of GPS.
The entire series of phase pattern vectors pg was then clus-

tered and labeled via a K-means clustering approach to produce
a labeled GPS time-series, sg. In this work K = 6, based upon the
choice made in Ito et al. (2007) and Daly et al. (2013c).

The temporal dynamics of phase synchronization patterns (the
labeled GPS time-series) were characterized by a Hidden Markov
model (HMM) which attempted to capture the temporal dynam-
ics of the process by assuming an underlying stochastic system
modeled by a series of state transitions. Each of the k states within
the HMM can generate observables, which comprise the values
taken by the labeled GPS time-series.

HMMs may be used to model and classify the temporal
dynamics of phase pattern vectors. Initial parameters were drawn
from uniform distributions. Further details of how this may be
done are reported elsewhere (Daly et al., 2013c). In this work
the number of states in the HMM was determined by appli-
cation of a summation of Akaike’s information criterion and
Bayesian information criteria (AIC + BIC) (Visser et al., 2002).
The HMM toolbox provided by Murphy (1998) was chosen for
implementation due to its low computational cost.

COMPARISON
Stepwise regressions were calculated with mean BP strengths and
PLVs over all trials in the MI period used as the criteria. The time
series of relative BPs and PLVs were first segmented into time win-
dows of length 2 s from 0 s relative to the cross onset to 8 s. Thus,
four time segments were created (0–2, 2–4, 4–6, and 6–8 s) and
BP strengths and PLV values averaged over these time segments.

The predictors were group (healthy users vs. users with CP),
age, gender, and number of artifact-free trials completed by each
participant and included in the analysis. Separate regressions were
performed for the classes hand and feet MI with mean ERD/S and
PLV strengths in the alpha and beta bands.

Comparisons were made across four frequency bands and
four time segments. It may be argued that a Bonferroni cor-
rection is required. However, subsequent time segments are not
independent of one another, which is assumed by Bonferroni
correction. Additionally, the frequency bands investigated were
selected based upon their known involvement in motor-related
activity (Pfurtscheller et al., 1997). Therefore, because of the lack
of independence between time segments, and because we expect
motor related responses at many of the investigated frequencies,
we list all comparisons significant at p < 0.05 (uncorrected).

In order to assess the reliability of differing phase dynamics
to differentiate between user groups, HMMs were trained and
applied to classify the mean BP and PLV trials from each partici-
pant into either users with CP or healthy users in a leave-one-out
train and validation scheme. This was done independently for the

hand and feet MI conditions. Statistical significance of the result-
ing accuracy was then assessed against the null hypothesis of equal
probability of each class label being assigned.

Additionally, to determine whether the HMM classification
result was determined by the user group (users with CP vs. healthy
users), or some other factor (e.g., age), stepwise regressions were
calculated. The log-likelihood ratio between the two groups was
entered as the criterion. The predictors were group (healthy users
vs. users with CP), age, gender, and the number of artifact-free
trials completed by each of the participants. Separate regressions
were performed for the classes hand and feet MI.

Note, t-testing was used for post-hoc testing and assumes nor-
mality of each tested distribution. To check for this a one sample
Kolmogorov–Smirnov test for normality was performed prior to
each post-hoc t-test reported throughout this work.

RESULTS
During periods of MI both healthy BCI users and BCI users
with CP exhibited ERD/S changes from baseline in the alpha
and beta frequency bands. These were accompanied by increases
over baseline in the degree of observed PLV. Background PLV
levels were also observed to be higher in participants with CP
compared to healthy participants. Finally, significant differences
were observed in phase dynamics between participant groups,
with healthy participants exhibiting greater levels of inter-channel
phase differences than participants with CP. These findings are
summarized in Table 3 and detailed in the following sections.

SENSORIMOTOR RHYTHM ACTIVITY
Results are summarized in Table 4. In the alpha frequency band
(8–13 Hz) larger ERDs were found for hand MI in healthy
participants. A significant effect of group (healthy users vs. users
with CP) was found for the hand MI task in time segments

Table 3 | Summary of key findings.

Healthy CP

Baseline PLV <

Relative PLV >

Relative ERD/S >

III dynamics >

Table 4 | Summary of significant ERD/S findings.

MI: Group with Frequency Time Stepwise Post-hoc

hand/feet greater ERD (s) regression t-test

r2-value p-value

Hand Healthy Alpha 4–6 0.148 =0.034

Hand Healthy Alpha 6–8 0.180 =0.033

Hand Healthy Mid beta 4–6 0.156 =0.048

Hand Healthy Mid beta 6–8 0.176 =0.043

Feet Healthy Mid beta 4–6 0.239 =0.004

Feet Healthy Mid beta 6–8 0.231 =0.017

Hand Healthy High beta 4–6 0.310 =0.005
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4–6 s (r2 = 0.148; p = 0.0473) and 6–8 s (r2 = 0.180;
p = 0.0274). Note, r2 denotes the root mean squared fit of the
model.

Post-hoc t-tests revealed a significantly larger (more negative)
BP reduction in healthy users than users with CP (i.e., MI-
related ERD was significantly less in the CP group) (p = 0.034
and p = 0.033). No other significant effects were observed in the
alpha frequency band.

In all instances of post-hoc testing the test failed to reject the
null hypothesis of normality (p > 0.05 and p > 0.01).

In the mid beta band (16–20 Hz) significantly larger ERDs
were observed in healthy participants from 4 s onwards during
both hand and feet MI. A significant effect of group was found
during hand MI between 4 and 6 s (r2= 0.156; p= 0.042). Post-
hoc testing (t-test) revealed a significantly greater ERD (more
negative relative BP) in healthy users (p = 0.048). Additionally,
between 6 and 8 s during hand MI, there was a significant effect of
group (r2 = 0.176; p = 0.011). Post-hoc testing revealed a signifi-
cantly greater ERD (more negative BP) in healthy users. Between
4–6 s (r2 = 0.239; p = 0.009) and 6–8 s (r2 = 0.231; p = 0.011)
significant effects of group were observed, with post-hoc t-tests
revealing significantly more ERD (negative BP) in healthy users
(p = 0.004) than users with CP (p = 0.017).

In the upper beta frequency band (20–30 Hz) larger ERD
was observed during hand MI in healthy participants. A signif-
icant effect of group was observed during hand MI between 4
and 6 s (r2 = 0.310; p = 0.002). A post-hoc t-test again revealed
significantly more ERD (negative relative BP) in healthy users
(p = 0.005). Note, no other significant effects of any predictors
were observed in any frequency band. Also of note, is the obser-
vation that the lower beta frequency band (13–16 Hz) contained
no significant effects of any independent variable within any time
segments.

An example of mean BPs in the mid beta frequency band
during hand MI tasks for each participant group is illustrated
in Figure 2. Note the large negative BP fluctuation exhibited by
healthy users when compared to users with CP.

Significant differences were observed in the 1.5 s baseline
period, with significant effects of group in most frequency
bands and classes (hand-alpha: r2 = 0.351; p = 0.002, foot-
alpha: r2 = 0.286; p = 0.007, hand-lower-beta: r2 = 0.235;
p = 0.022, hand-mid-beta: r2 = 0.275; p < 0.001, foot-mid-
beta: r2 = 0.236; p = 0.005, hand-upper-beta: r2 = 0.269;
p < 0.001, foot-upper-beta: r2 = 0.264 p = 0.001). In each
case post-hoc testing (t-test) revealed significantly larger baseline
(background) BP recorded from individuals with CP.

PHASE LOCKING VALUES
Results for PLVs are summarized in Table 5.

In the alpha frequency band a significant effect of group was
observed during hand MI between 4–6 s (r2 = 0.268; p = 0.006)
and 6–8 s (r2 = 0.364; p = 0.001). Post-hoc tests (t-tests) revealed
relative PLV values to be significantly higher in healthy users (p =
0.013) compared to users with CP (p < 0.001).

When considering the PLVs between M1 and the SMA a signif-
icant effect of group was observed during hand MI between 4–6 s
(r2 = 0.167; p = 0.034) and 6–8 s (r2 = 0.232; p = 0.011). Post-
hoc testing revealed a significantly higher level of M1-SMA PLV in
healthy users (p = 0.034 and p = 0.009). Additionally, a signifi-
cant effect of gender was observed during feet MI between 0 and
2 s (r2 = 0.148; p = 0.047). Post-hoc testing revealed significantly
higher M1-SMA PLV for female participants (p = 0.029).

In the lower beta frequency band a significant effect of group
was observed in the time window 6–8 s during hand MI (r2 =
0.239; p = 0.009) and during feet MI (r2 = 0.183; p = 0.026). A
post-hoc t-test revealed a significant increase in PLVs in healthy
users (p = 0.012 and p = 0.009). A significant effect of group was
also observed for the M1-SMA PLV in the lower beta band dur-
ing hand MI between 6 and 8 s (r2 = 0.225; p = 0.012). Post-hoc
testing revealed a larger PLV in healthy participants (p = 0.016).

In the mid beta frequency band a significant effect of Group
was observed during hand MI in time segments 4–6 s (r2 = 0.336;
p = 0.001) and 6–8 s (r2 = 0.347; p < 0.001). Post-hoc t-tests
again revealed significantly larger PLVs in healthy users (p =

FIGURE 2 | An example of mean band-power differences from baseline from healthy users and users with CP in the mid beta frequency band during

hand MI. The error bars illustrate ±1 standard deviation from the mean.
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0.006 and p = 0.004). During feet MI significant effects of group
were also observed during time segments 4–6 s (r2 = 0.202;
p = 0.019) and 6–8 s (r2 = 0.376; p < 0.001). Post-hoc t-tests
revealed significantly larger PLVs in healthy users compared to
users with CP (p = 0.025 and p = 0.015).

Table 5 | Summary of significant PLV findings.

MI: hand/feet Group with Frequency Time Stepwise Post-hoc

Region: greater (s) regression t-test

MC/M1-SMA PLV r2-value p-value

Hand, MC Healthy Alpha 4–6 0.268 =0.013

Hand, MC Healthy Alpha 6–8 0.364 =0.001

Hand, M1-SMA Healthy Alpha 4–6 0.167 =0.034

Hand, M1-SMA Healthy Alpha 6–8 0.232 =0.009

Hand, MC Healthy Lower beta 6–8 0.239 =0.012

Feet, MC Healthy Lower beta 6–8 0.183 =0.009

Hand, M1-SMA Healthy Lower beta 6–8 0.225 =0.012

Hand, MC Healthy Mid beta 4–6 0.336 =0.006

Hand, MC Healthy Mid beta 6–8 0.347 =0.004

Feet, MC Healthy Mid beta 4–6 0.202 =0.025

Feet, MC Healthy Mid beta 6–8 0.376 =0.015

Hand, M1-SMA Healthy Mid beta 6–8 0.197 =0.014

Feet, M1-SMA Healthy Mid beta 4–6 0.196 =0.036

Feet, M1-SMA Healthy Mid beta 6–8 0.266 =0.011

Hand, MC Healthy Upper beta 0–2 0.214 =0.004

Hand, MC Healthy Upper beta 2–4 0.268 =0.003

Hand, MC Healthy Upper beta 4–6 0.511 <0.001

Hand, MC Healthy Upper beta 6–8 0.399 =0.002

Feet, MC Healthy Upper beta 4–6 0.169 =0.021

Hand, M1-SMA Healthy Upper beta 4–6 0.341 =0.005

Hand, M1-SMA Healthy Upper beta 6–8 0.303 =0.009

Region denotes the region of the motor cortex considered where MC denotes

the whole motor cortex and M1-SMA denotes PLVs between the M1 and SMA

regions.

When considering the PLV between M1 and the SMA in the
mid beta band a significant effect of group was observed during
hand MI between 6–8 s (r2 = 0.197; p = 0.001) and during feet
MI between 4 and 6 s (r2 = 0.196; p = 0.021) and 6–8 s (r2 =
0.266; p = 0.006). Post-hoc t-tests revealed significantly larger
PLVs in healthy users compared to users with CP (p = 0.014;
p = 0.036; p = 0.011). Additionally, significant effects of gender
were observed during hand MI between 0 and 2 s (r2 = 0.191;
p = 0.023), with a post-hoc t-test revealing significantly larger
PLVs in female users (p = 0.027).

In the upper beta frequency band, significant effects of
group were observed in time segments 0–2 s (r2 = 0.214; p =
0.015), 2–4 s (r2 = 0.268; p = 0.006), 4–6 s (r2 = 0.511; p <

0.001), and 6–8 s (r2 = 0.399; p < 0.001) during hand MI.
Post-hoc t-tests revealed that in each case there were signif-
icantly larger PLVs in the healthy users than in the users
with CP (p = 0.004, p = 0.003, p < 0.001, and p = 0.002).
Additionally, during feet MI a significant effect of user age
was observed in the time segment 0–2 s (r2 = 0.195; p =
0.021), with post-hoc testing (correlation) revealing a signif-
icant negative correlation with PLV strength decreasing with
increasing age (r = −0.442; p = 0.021). Finally, during feet MI
significant effects of group (r2 = 0.169; p = 0.009) and par-
ticipant gender (r2 = 0.364; p = 0.012) were observed in the
time segment 4–6 s, with post-hoc t-tests revealing larger PLVs
in healthy users (p = 0.021) and larger PLVs in female users
(p = 0.032).

Significant effects of group were also found for PLVs between
M1 and the SMA in the upper beta band during hand MI between
4–6 s (r2 = 0.341; p < 0.001) and 6–8 s (r2 = 0.303; p = 0.003),
with post-hoc t-tests revealing larger PLVs in healthy users (p =
0.005 and p = 0.009). Additionally, a significant effect of gender
was observed during feet MI between 4 and 6 s (r2 = 0.212; p =
0.016), with a post-hoc t-test revealing a larger PLV in female users
(p = 0.040).

An example of mean relative PLVs in the mid beta frequency
band during hand MI is illustrated in Figure 3. Note that there

FIGURE 3 | An example of mean PLV differences from baseline from healthy users and users with CP in the mid beta frequency band during hand MI.

The error bars illustrate ±1 standard deviation from the mean.
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was a large increase in PLV in the healthy user group and only a
very small increase in the group of users with CP.

PHASE DYNAMICS
Phase dynamics may be observed in the time series of III val-
ues. An example is illustrated in Figure 4. Note that healthy users
exhibited greater III levels than users with CP. The higher levels
indicate a greater amount of instability in the inter-channel phase
differences in the healthy individuals.

Users may be differentiated by their group (either users with
CP or healthy users) with an accuracy of 0.7143 (p < 0.05) for
the hand MI condition and 0.7500 (p < 0.05) for the feet MI
condition. Thus, a significant difference was observed in phase
dynamics between users with CP and healthy users during both
MI tasks.

The results of the stepwise regressions revealed a significant
effect of group (r2 = 0.168; p = 0.046) for hand MI.

Additionally, a significant effect of group (r2 = 0.179;
p = 0.039) was also revealed for feet MI with no significant
effects of any other predictors. This result indicates that the dif-
ference in log likelihoods of the phase dynamics of each user
being generated by one or other of the HMMs was determined
by the users’ group rather than other potential factors such as
their age. This result, therefore, further confirms a significant dif-
ference in phase dynamics between users with CP and healthy
users.

DISCUSSION
Individuals with CP exhibited statistically significantly smaller
ERD strengths and PLVs in channels recorded over the motor
cortex than healthy individuals while performing two common
BCI control tasks: hand MI and feet MI. Significant differences
were observed most often between 4 and 8 s relative to fixation
cross presentation time. There was also a larger BP in the baseline
period in individuals with CP. Additionally, analogous differ-
ences were also observed in motor cortex PLV strengths and PLV
strengths between the primary motor cortex (M1) and the SMA.

The observed differences were most frequently explained by
the participants’ group (whether they have CP or not), as com-
pared to differences in age, numbers of trials performed, or
gender, which only sporadically explained the observed differ-
ences. Furthermore, a significant difference was also observed in
the phase dynamics exhibited by each participant group, with

individuals with CP exhibiting smaller differences in moment-to-
moment phase stability.

It is important to consider the time course of the trial when
discussing these results. All the trials included for analysis are
from the training runs for both the healthy users and the users
with CP. During these runs, no feedback was provided to the
users. Hence, it was not clear to users at which point MI should
cease. This is reflected in the long periods of observed MI which
extend up to 8 s from fixation cross presentation time.

The lesser degree of ERD coupled with higher baseline BP
activity suggests impairment of motor cortical engagement dur-
ing attempted motor control tasks in individuals with CP, result-
ing in reduced levels of suppression of the ongoing alpha and beta
frequencies and different temporal dynamics. The latter was indi-
cated by reduced short-range synchronization of motor cortex
activity and differing rates of phase state transitions. High levels of
local phase synchrony in motor areas have been shown to precede
movement in healthy participants, possibly due to a participant
involved in a motor-related task being in a continual state of
readiness to move, followed by a phase-scattering which has been
interpreted as preparation for the selection of the particular neu-
ral assembly required for the selected movement (Sweeney-Reed
and Nasuto, 2009). The present results indicate that such a state
of preparedness is reduced or absent in participants with CP, and
we suggest that this may be a result of inadequate development
of the ability to form relevant functional connectivity patterns
during early developmental stages. Additionally, the higher lev-
els of background activity in the alpha and beta frequency bands
(as indicated via the differences in baseline activity) may indicate
less motor cortical localisation and specialization in individuals
with CP.

The smaller III fluctuations in the group of participants with
CP are an interesting observation. III reflects the number of
transitions between phase microstates (Ito et al., 2007), which
represent short lasting periods of stability in the electrical activity
in the brain. Such electrical activity is thought to follow a pat-
tern of chaotic itinerancy in which the trajectory of phase activity
wanders through a landscape of ruined attractors (Ito et al., 2007).
A smaller level of III fluctuation therefore corresponds to longer
time periods spent at each localized attractor and a potentially
less reactive set of dynamics. This may be indicative of a more
diffuse (unstructured) mode of inter-cortical communication in
individuals with CP.
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FIGURE 4 | An example of mean III time series over participants in the alpha (8–13 Hz) frequency band from healthy users and users with CP during

hand MI.
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A number of factors could explain why such differences were
observed between users with CP and healthy users. One possibil-
ity is that the fetal brain damage experienced by individuals with
CP prevents the learning of reliable motor control in the early
developmental stages of childhood. As such, individuals with CP
may experience more difficulty acquiring reliable control of their
motor functions (Palisano et al., 1997) and, hence be unable to
reliably produce the associated ERD responses.

It has been shown elsewhere that, in addition to impairment in
motor planning, individuals with CP also exhibit impairment in
MI as measured via rotation-related negativity by Parson’s hand
rotation paradigm (Crajé et al., 2010; Van Elk et al., 2010). As
there is a known relationship between efficacy at hand mental
rotation and ERD strength (Chen et al., 2013), it is reasonable
to speculate that there may, therefore, be a relationship between
CP-related impairment and ERD strength.

In contrast, individuals with severe stroke lesion induced
impairments are seen to exhibit larger ERD/S strengths (Kaiser
et al., 2012). Furthermore, the ERD strength may increase in
the non-lesioned hemisphere (possibly as a compensatory neuro-
plastic change). While it is reasonable to hypothesize that lesions
occurring in the fetal brain or during infancy will also induce
changes in ERD strength, the lack of a compensatory increase
in ERD strength elsewhere in the motor cortex may be, poten-
tially, explained by recruitment of those cortical areas for other
functions.

Additionally, post-stroke the ERD/S strength may reflect a
re-learning process as the individual attempts to recruit other
cortical areas to re-learn actions familiar pre-stroke. In the case
of individuals with CP, such re-learning may not be possible, as
the impairment was present from childhood, and motor corti-
cal pathways are either damaged or have since been recruited for
other tasks via neuroplastic processes.

Another factor that may explain the differences between
individuals with CP and post-stroke individuals could relate
to differences in learning processes. It has been reported that
children with CP exhibit significantly slower rates of learning
motor tasks than aged-matched healthy children (Hung and
Gordon, 2013). Learning to use a MI-BCI may be described
as akin to a motor learning task. Therefore, the lower ERD
responses observed by individuals using our BCI may be a result
of a slower learning process. Given further training, it is pos-
sible that individuals with CP may eventually learn to gener-
ate ERDs equivalent in strength to those generated by healthy
individuals.

The effects on the analysis results of multiple comparisons
should be discussed. Each set of features (ERD/S strengths and
PLV values) was divided into four time segments and four
frequency bands across two conditions. Therefore, 32 compar-
isons were made for each of the features (ERD/S values and
PLVs). It should be noted, however, that many of the observed
significant differences between the groups occurred in stable
regions. For example, the majority of the significant differences
in ERD/S strength occur in the time segments 4–6 and 6–8 s.
Additionally, the investigated frequency bands are known to be
involved with motor processes. We therefore suggest that applica-
tion of a Bonferroni correction for multiple comparisons would

be inappropriate here, as it takes no account of these regions of
significant differences.

The findings that there are significant effects of age (upper
beta) on the ability to separate ERD strength are of some interest.
However, these effects are not reliably repeated across frequency
bands, time segments, or conditions. The lack of repeatability
suggests that these effects may be falsely positive, arising from the
multiple comparisons made in the analysis.

The differing numbers of trials between participants and
groups was hypothesized to be a significant factor. However, this
was not observed to be the case. Additionally, it is important
to note that it is common in BCI studies to attempt to deter-
mine motor control intention from a relatively small number of
trials. Thus, the small number of trials used here represents a
realistic challenge, while the larger number of participants adds
robustness to the results.

Our findings may be contrasted with those in Pires et al.
(2011), in which no differences were observed in P300-BCI per-
formance when comparing between healthy users and users with
CP. However, it is important to note that differences in profiles of
P300 ERPs compared to SMR activity make comparison between
these studies non-trivial. Furthermore, only three individuals
with CP participated in the work described in Pires et al. (2011)
and these were not differentiated from users with amyotrophic
lateral sclerosis (ALS).

In contrast, Nam et al. (2012) compared functional integra-
tion, measured by coherence, during a P300 BCI control task
performed by individuals with CP, ALS, and healthy controls. A
lower BCI accuracy and information transfer rate was found for
individuals in both the motor disabled groups (Nam et al., 2012).
This was seen to occur alongside an increase in localized coher-
ence during the task in healthy participants when compared to
participants in the groups of motor impaired individuals. The
difference between electrophysiological activity during MI when
compared to P300 means a direct interpretation of these results
against MI is not possible. However, they do indicate that some
difference in performance at a BCI task may be observed in indi-
viduals with CP and that this may also relate to changing levels of
connectivity.

Of particular note is that our work examines ERD (based upon
the Fourier transform) and phases (based upon non-linear anal-
ysis) separately, as these have been shown to exhibit different
time courses (Sweeney-Reed and Nasuto, 2009). Previous studies
have investigated connectivity in the brain, during BCI control
tasks, via the coherence measure (e.g., Krusienski et al., 2012).
Coherence is a measure of amplitude and phase. By separating
them, we have been able to reveal different aspects of neural
processing and increase our understanding of the underlying
physiology.

These findings have potential implications for research into the
use of BCIs by individuals with CP. First, smaller ERD strengths
are harder to differentiate reliably from on-going EEG activity.
Hence, MI-BCI control accuracy may be expected to be lower for
individuals with CP. Second, BCIs for neurofeedback rehabilita-
tion efforts could, for example, be tailored to encourage greater
ERD strength. On the one hand, a case study has already demon-
strated improvement in ERD-based classification rates following
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neurofeedback (Neuper et al., 2003). On the other hand, we pos-
tulate that such neurofeedback may, additionally, increase the
ability of this user group to accurately control their own motor
functions.

Additionally, the lower ERD strength exhibited in individu-
als with lesions occurring in early childhood compared to lesions
occurring in adulthood (e.g., stroke) suggests that delivering neu-
rofeedback rehabilitation in childhood to individuals with CP
may be one promising route of enquiry. This may encourage early
neuro-plastic changes and allow acquisition of motor control,
which would otherwise prove more challenging.

There are some limitations to our study: The heterogene-
ity of our CP participants means that we do not have enough
participants to provide statistical evidence that the variation in
the specific diagnoses of the participants with CP would explain
the high variability of ERD/S strengths in that group. Another
possible limitation was that the age of the participants was not
matched. We did, however, find that this factor did not have a
significant effect in our regression analysis.

In future work we intend to explore differences between indi-
viduals with CP and how this relates to their ability to produce
ERD/S responses and control a BCI. We will also attempt to use
the knowledge gained from this study to expedite the develop-
ment of BCIs that work as effectively as possible for individuals
with CP.

CONCLUSION
A significant difference was found between individuals with CP
and healthy individuals in terms of the strength of the ERD
response, PLV strength, and phase dynamics measured from them
during hand and feet MI tasks. Individuals with CP produced
significantly lower ERD strengths and PLVs. This suggests that
efforts to develop MI-BCIs for individuals with CP must be tai-
lored to the lower ERD response and differences in connectivity
strengths expected in this population. Therefore, providing reli-
able BCI control to users with CP presents a greater challenge than
providing BCIs to healthy users.
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