
Robert Schilling, BSc

Securing the Communication- and Memory-Interfaces
of a Multi-Core Cluster

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Prof. Stefan Mangard

Institute of Applied Information Processing and Communications

 Diplom-Ingenieur

Supervisor

Graz, March 2016

Institut für Integrierte Systeme
Integrated Systems Laboratory

Department of Information Technology and
Electrical Engineering

Fall Semester 2015

Securing the Communication- and
Memory-Interfaces of a

Multi-Core Cluster

Master Thesis

Robert Schilling
schrober@student.ethz.ch

March 2016

Supervisors: Dr. Frank K. Gürkaynak, kgf@iis.ee.ethz.ch
Dipl.-Ing. Michael Mühlberghuber, mbgh@iis.ee.ethz.ch

Professors: Prof. Dr. Luca Benini, lbenini@iis.ee.ethz.ch
Prof. Dr. Stefan Mangard, stefan.mangard@iaik.tugraz.at

Acknowledgements

First and foremost, I want to thank Frank Gürkaynak and Michael Mühlberghuber from
the Integrated Systems Laboratory at ETH Zurich for their help and support during this
project. Thank you for all the fruitful discussions and always asking the right questions.
I also want to thank Stefan Mangard from Graz University of Technology. Without
his help this thesis would not be possible. Moreover, I want to thank all members of
the PULP team of the ETH Zurich and University of Bologna for their support with
the complex PULP system. Also thank you to the team of the Institute for Applied
Information Processing and Communications of Graz University of Technology for all
the valuable input on this project.

Finally, I must express my gratitude to my parents and to my girlfriend Anna for provid-
ing continuous support throughout my studies and this master’s thesis. This time would
not have been possible without them. Thank you for everything.

iv

Abstract

The Internet of Things (IoT) is a growing market. More and more different kinds of
devices are being connected and share sensible information via their communication in-
terfaces. In order to ensure that only the intended receiver can read the transmitted data,
IoT devices use encryption algorithms to protect the communication. Since those devices
are deployed in the field, adversaries have physical access to them and can perform side-
channel attacks on the cryptographic algorithms. To counteract side-channel attacks,
such as the differential power analysis, we evaluate different leakage-resilient encryption
algorithms in a hardware implementation. In this thesis, we develop a cryptographic
hardware accelerator, which should protect a multi-core processor system against state-
of-the-art side-channel attacks. Counteracting attacks like DPA is accomplished based
on the concept of fresh re-keying, which ensures that an encryption key is only used for
one single encryption. We implement two different encryption modes which rely on this
principle. First, we design a re-keying function based on a polynomial multiplication
in combination with a leakage-resilient bulk encryption mode using the Advanced En-
cryption Standard. Second, we present the first hardware implementation of PASEC,
a leakage-resilient authenticated encryption framework build on a permutation func-
tion. PASEC supports two re-keying functions, one encryption and one authentication
mode. All re-keying functions and encryption modes can be combined, which results in
a highly-flexible cryptographic accelerator. The accelerator is integrated into a multi-
core processing architecture to fulfill two properties. First, the internal memory can be
encrypted. Adversaries are not able to read the encrypted data in the memory. Sec-
ond, a secure communication via the peripheral interfaces is possible. Both scenarios
are protected against side-channel attacks which are reasonable in a hostile environment.
The cryptographic accelerator is taped-out as part of the Fulmine application specific
integrated circuit (ASIC) using the 65 nm technology of United Microelectronics Corpo-
ration. Fulmine represents the first ASIC implementation of the presented cryptographic
modes available to date.

Keywords: Internet of Things, leakage-resilient cryptography, fresh re-keying, side-
channel attacks, differential power analysis, application specific integrated circuit

v

Kurzfassung

Das Internet der Dinge ist ein wachsender Markt. Immer mehr verschiedene Geräte
werden vernetzt und kommunizieren miteinander. Zum Schutz der Kommunikation wer-
den Verschlüsselungsalgorithmen eingesetzt, die sicherstellen, dass nur der beabsichtigte
Empfänger die Nachricht lesen kann. Da Geräte des Internets der Dinge an den unter-
schiedlichsten Orten eingesetzt werden, haben potentielle Angreifer physikalischen Zu-
griff darauf. Dies ermöglicht den Angreifern die Durchführung von Seitenkanalangriffen
auf den Geräten. In dieser Diplomarbeit werden verschiedene Verschlüsselungsvarianten
evaluiert, die speziell gegen Seitenkanalangriffe wie eine differentielle Leistungsanalyse
abgesichert sind. Es wird ein kryptographischer Hardware Beschleuniger entwickelt, der
einen Mehrkern-Prozessor gegen modernste Seitenkanalangriffe absichert. Das Konzept
der frischen Schlüsselgenerierung kommt zum Einsatz um eine differentielle Leistungs-
analyse zu verhindern. Dabei wird gewährleistet, dass ein Schlüssel nur für exakt eine
Verschlüsselung verwendet wird. In dieser Arbeit werden zwei Algorithmen in Hard-
ware implementiert, die auf diesem Prinzip basieren. Der erste Modus beschreibt eine
Schlüsselfunktion basierend auf einer Polynommultiplikation. Diese Funktion wird mit
einem Verschlüsselungsmodus kombiniert, der auf einem Advanced Encryption Stan-
dard beruht. Als zweiten Modus präsentiert diese Arbeit die erste Hardware Implemen-
tierung von PASEC, einem authentifizierten Verschlüsselungsmodus basierend auf einer
Permutation, der zwei Schlüsselfunktionen, einen Verschlüsselungsmodus sowie einen Au-
thentifizierungsmodus, unterstützt. Alle Schlüsselfunktionen und Verschlüsselungsmodi
sind miteinander kombinierbar, wodurch sich eine Vielzahl von verschiedenen Konfig-
urationen für den flexiblen kryptographischen Beschleuniger ergibt, um zwei Aufgaben
zu erfüllen. Zum einen kann der interne Speicher verschlüsselt werden, weshalb es An-
greifern nicht mehr möglich ist, die Daten im Speicher zu verstehen. Des Weiteren kann
mit einem kryptographischen Beschleuniger eine sichere Kommunikation über Periph-
erieschnittstellen gewährleistet werden, die zudem gegen Seitenkanalangriffe abgesichert
ist. Der kryptographische Beschleuniger wird als Bestandteil des Fulmine Chips in der
65 nm Technologie von United Microelectronics Corporation produziert. Fulmine ist die
erste Hardware Implementierung der präsentierten Verschlüsselungsvarianten, die derzeit
verfügbar ist.

Stichwörter: Internet der Dinge, Seitenkanalangriffe, Differentielle Leistungsanalyse,
Integrierte Schaltungen

vi

Contents

List of Acronyms xv

1 Introduction 1
1.1 Contribution of this Work . 2
1.2 Organization . 3

2 Background 4
2.1 PULP - A Parallel Ultra-Low Power Processing Architecture 4
2.2 Introduction to Cryptography . 5

2.2.1 Asymmetric Cryptography . 6
2.2.2 Symmetric Cryptography . 6
2.2.3 Block Cipher . 7
2.2.4 Stream Cipher . 7

2.3 Advanced Encryption Standard . 8
2.4 Sponge Construction . 11

2.4.1 The Keccak-f Permutation Family 12
2.5 Side-Channel Attacks . 14

2.5.1 Simple Power Analysis . 15
2.5.2 Differential Power Analysis . 16
2.5.3 Fault Attacks . 19

2.6 Countermeasures against Side-Channel Attacks 19
2.6.1 Masking . 19
2.6.2 Hiding . 19

3 Related Work 21

4 Leakage-Resilient Cryptography for the Internet of Things 24
4.1 Attacker Model . 24
4.2 Fresh Re-keying . 25

viii

Contents

4.3 Re-keying Function based on a Polynomial Multiplication 26
4.3.1 Polynomial Multiplication . 27
4.3.2 Masked Multiplication . 29
4.3.3 A Non-Invertible Re-keying Function 29

4.4 An Efficient Leakage-Resilient Construction 30
4.4.1 2PRG Construction . 31

4.5 Permutation-based Leakage-Resilient Encryption 32
4.5.1 Permutation Leakage . 33
4.5.2 Re-keying Function . 33
4.5.3 Encryption Function . 34
4.5.4 Authentication Function . 34
4.5.5 Parameter Selection . 35

4.6 XTS Encryption . 36

5 Hardware Architecture 38
5.1 Accelerator Architecture . 38
5.2 Operation . 39
5.3 HWCrypt - A Cryptographic Accelerator 40
5.4 Peripheral Interface . 41
5.5 Command Queue . 41
5.6 Polynomial Re-keying Unit . 42

5.6.1 Parallel Masked Polynomial Multiplier 42
5.6.2 Iterative Masked Polynomial Multiplier 42
5.6.3 Polynomial Multiplier . 44

5.7 Linear Feedback Shift Register . 45
5.8 AES Unit . 46

5.8.1 AES Dual Iterative . 48
5.8.2 GF(2128) Multiplier . 56

5.9 Sponge Unit . 56
5.9.1 Variable Rate Engine . 57
5.9.2 Keccak-f [400] Permutation . 57

5.10 TCDM Interfaces . 59
5.11 Verification . 60

5.11.1 Functional Verification . 60
5.11.2 Constraint Random Testing in Software 62

6 Results 64
6.1 Constraints . 64
6.2 HWCrypt Accelerator . 64
6.3 Advanced Encryption Standard . 65

6.3.1 Software Implementation . 66
6.3.2 Primitive Operation . 66
6.3.3 Hardware Implementation . 67
6.3.4 Summary . 68

ix

Contents

6.4 Polynomial Re-keying Unit . 69
6.4.1 Software Implementation . 69
6.4.2 Hardware Implementation . 71
6.4.3 Random Bit Requirements . 71

6.5 Performance Evaluation of the Sponge Unit 74
6.5.1 Re-keying Function . 74
6.5.2 Encryption Mode . 75

6.6 Accelerator Efficiency . 76
6.6.1 Without a Command Queue . 77
6.6.2 With a Command Queue . 78

6.7 Fulmine - ASIC . 79

7 Conclusion and Future Work 81
7.1 Future Work . 82

A HWCrypt Accelerator Datasheet 83
A.1 Features . 83
A.2 Applications . 84
A.3 Description . 84
A.4 Fulmine Configuration . 85
A.5 Interface Description . 86

A.5.1 Peripheral Interface . 86
A.5.2 Interrupt Interface . 88
A.5.3 TCDM Interface . 88

A.6 Register Map . 89
A.6.1 Register Description . 91

A.7 Operation Modes . 95
A.7.1 Re-keying Mode . 95
A.7.2 Encryption Mode . 98
A.7.3 Primitive Mode . 101

x

List of Figures

2.1 PULP architecture. 5
2.2 Asymmetric cryptography scheme. 6
2.3 Symmetric cryptography scheme. 7
2.4 Block cipher in the ECB mode. 8
2.5 AES state matrix S. 8
2.6 AES SubBytes operation. 9
2.7 AES ShiftRows operation. 9
2.8 AES MixColumn operation. 10
2.9 Sponge construction for a hash function. 12
2.10 Keccak state matrix S. 12
2.11 Keccak state organization. 13
2.12 Traditional cryptographic system. 15
2.13 Leaking cryptographic system. 15
2.14 AES-128 SPA trace. 16
2.15 Attacked AES-128 value. 17
2.16 Correlation result of AES-128 DPA attack. 18

4.1 Security boundary of the PULP system. 25
4.2 Fresh re-keying as proposed by Medwed et al. 26
4.3 A non-invertible re-keying function. 30
4.4 Generic encryption pipeline. 30
4.5 2PRG construction. 31
4.6 2PRG instance using a block cipher. 31
4.7 Leakage-resilient stream cipher. 32
4.8 Re-keying function RK1. 34
4.9 Re-keying function RK2. 34
4.10 Sponge construction for encryption. 35
4.11 Sponge construction for authentication. 35
4.12 XTS encryption mode. 37

xi

List of Figures

5.1 PULP architecture with HWCrypt accelerator. 39
5.2 Top-level architecture of the HWCrypt accelerator. 40
5.3 Architecture of the command queue. 41
5.4 Masked polynomial re-keying function. 43
5.5 Iterative polynomial multiplier. 45
5.6 132-bit LFSR architecture. 46
5.7 Architecture of the AES unit. 47
5.8 AES-128 Dual Iterative top-level architecture. 49
5.9 Architecture of a cipher stage with two combinational round functions. . . 50
5.10 Architecture of a cipher stage with three combinational round functions. . 50
5.11 Architecture of the key expansion algorithm. 51
5.12 Architecture of the round function of the key expansion algorithm. 52
5.13 AES last round architecture. 53
5.14 Two AES S-box designs. 54
5.15 AT-plots of different synthesis runs for two AES-128 architectures. 54
5.16 AT-plots of two-round AES-128 using worst-case parameters. 55
5.17 GF(2128) multiplication by 2. 56
5.18 Architecture of the sponge unit. 58
5.19 Architecture of the variable rate engine. 59
5.20 Architecture of the Keccak-f [400] permutation function. 60
5.21 AT-plot of two Keccak-f [400] architectures. 61
5.22 Bandwidth analysis for the TCDM interface. 62
5.23 A generic test bench architecture. 63
5.24 UVM-like test bench of HWCrypt . 63

6.1 Parallelized coupon collector’s problem. 73
6.2 Efficiency for increasing block size. 77
6.3 Total efficiency for different block sizes. 78
6.4 Practical accelerator efficiency with a command queue. 79
6.5 Layout of the Fulmine ASIC. 80

A.1 Functional block diagram . 84
A.2 Interrupt handling of HWCrypt . 88
A.3 TCDM read transaction. 89
A.4 TCDM write transaction. 89

xii

List of Tables

4.1 Security bounds for the PASEC framework [1]. 36
4.2 Recommended parameters for PASEC [1]. 37

6.1 Area breakdown of HWCrypt based on synthesis results. 65
6.2 Evaluation results of software AES-128 implementation. 66
6.3 Evaluation results of primitive-based AES-128 implementation. 66
6.4 Theoretical primitive performance for AES-128. 67
6.5 Evaluation results of a hardware implementation of AES-128 for 1 kB. . . 68
6.6 Performance comparison of AES-128 based algorithms for 1 kB. 68
6.7 Evaluation results for software implementations of a multiplication in

GF(28) averaged for 256 invocations. 70
6.8 Evaluation results for a software implementation of a modular multiplica-

tion averaged for 256 invocations. 70
6.9 Evaluation results for a hardware implementation of a masked polynomial

multiplication. 71
6.10 Performance results in cycles for RK1 re-keying. 75
6.11 Performance results in cycles for RK2 re-keying. 75
6.12 Performance results in cycles for permutation-based encryption. 76
6.13 Fulmine features. 80

A.1 HWCrypt signal interface. 87
A.2 HWCrypt signal interface continued. 88
A.3 Register map of HWCrypt . 90
A.4 HWCTRL configuration for re-keying. 96
A.5 HWCTRL configuration for encryption. 99
A.6 HWCTRL configuration for primitive operation. 101

xiii

List of Algorithms

1 AES-128 encryption function. 10

2 AES-128 decryption function. 11

3 AES-128 key expansion function. 11

4 Keccak-f [b] permutation function. 14

5 Operand scan algorithm for the polynomial multiplication. 27

6 Polynomial multiplication with Fisher-Yates shuffling. 28

7 Fisher-Yates shuffling algorithm. 28

8 Masked polynomial multiplication . 29

9 Iterative multiplication in GF(28). 69

10 Multiplication in GF(28) using exponential representation. 70

xiv

List of Acronyms

AESAdvanced Encryption Standard

ASICApplication-Specific Integrated Circuit

AXIAdvanced Extensible Interface

CPACorrelation Power Analysis

CPUCentral Processing Unit

CRTChinese Remainder Theorem

DESData Encryption Standard

DFADifferential Fault Analysis

DFTDesign for Testability

DMADirect Memory Access

DPADifferential Power Analysis

DUVDesign under Verification

ECBElectronic Codebook

ECDHElliptic-Curve Diffie-Hellman

FPGAField Programmable Gate Array

FSMFinite State Machine

GCMGalois Counter Mode

xv

List of Acronyms

GEGate Equivalent

GFGalois Field

HDLHardware Description Language

I2C Inter-Integrated Circuit

IAIK Institute for Applied Information Processing and Communications

IC Integrated Circuit

IIS Integrated Systems Laboratory

IoT Internet of Things

IRQ Interrupt Request

LFSRLinear Feedback Shift Register

LRLeakage-Resilient

LUTLookup Table

MACMessage Authentication Code

NISTNational Institute of Standards and Technology

PRFPseudo Random Function

PRGPseudo Random Generator

PRNGPseudo Random Number Generator

PULPParallel Ultra-Low-Power Processing-Platform

R2RRegister to Register

RAMRandom Access Memory

RFIDRadio-Frequency Identification

RFUReserved for future use

RTLRegister Transfer Level

SNRSignal to Noise Ratio

SoCSystem-on-Chip

xvi

List of Acronyms

SPASimple Power Analysis

SPISerial Peripheral Interface

TCDMTightly Coupled Data Memory

UARTUniversal Asynchronous Receiver Transmitter

UMCUnited Microelectronics Corporation

UVMUniversal Verification Methodology

XEXXOR-Encrypt-XOR

XTSXEX-based tweaked-codebook mode with ciphertext stealing

xvii

Chapter 1
Introduction

The growing market of the Internet of Things (IoT) started about ten years ago when
the first devices became smart. With the last IPv4 addresses handed out in 2011, the
market of connected devices is steadily growing. New devices in the domain of IoT are
not traditional computers or smartphones anymore. Instead, in the last few years, a lot
of different types of devices got an interface to a network. These new computing devices
are the Internet of Things. In fact, IoT devices can be anything. Refrigerators, sensor-
nodes, lamps, or even cars are connected. Outlooks to the year 2020 predict about 50
billion running IoT devices. Due to the connecting interfaces, end-users can control these
devices in a smart way, which is done using applications on the smartphone or via the
computer. Although this evolution of technology is very impressive, the development of
IoT devices is still in its early days. These devices already have a comprehensive feature
set. However, this also increases the risk of being hacked.

IoT devices operate in a hostile environment. Since such devices are deployed in the
field, almost everyone has access to them. This allows adversaries to mount physical
attacks on them. In the last year, two security researchers showed that the infotainment
center of a Jeep Cherokee car had major vulnerabilities [2]. The security researchers were
able to exploit them to take over a running car, and had control over the brakes and
the transmission unit. This example shows that hackers could induce a car crash via a
computer on the other side of the world. This motivates security researchers to develop
new mechanisms for secure communications to avoid a scenario like that.

In 2009 Halderman et al. [3] presented a novel attack on dynamic random access mem-
ories (DRAM). He and his team showed that this type of memory does not loose the
stored data immediately when they are turned off. Instead, deleting the content happens
gradually over time. When keeping the temperature of the memory low, the deleting
process even slows down. It was shown that the data was stored for hours in a turned-off
memory. Attackers can remove the memory from a computer and use a special test setup

1

1 Introduction

to readout the memory content to gain information of sensible data stored in the DRAM.
This is called cold boot attack.

A physical side-channel attack on ordinary laptops is published by Genkin et al. [4].
They gain information out of the electromagnetic leakage of the computer to attack the
elliptic-curve Diffie-Hellman (ECDH) algorithm to extract the private key. This works
even if the measurement setup is in a room next to the attacked computer. They attack
the libgcrypt library, which is used by various applications. Contrary to other attacks,
this particular attack recovers the key within seconds.

These vulnerabilities are only a few examples, but they show one thing. The implementa-
tion of security protocols and their algorithms are still in their early stages of development
concerning side-channel resistance. It is always a cat and mouse game between people
who develop products and people who attack these devices. To improve the security of
pervasive devices, it requires the industry and the research community to develop and
analyze proper solutions.

All these devices are based on a central processing unit and use cryptographic algorithms
to protect the memory and the communication. In this thesis, we first consider the mem-
ory encryption scenario. The internal and external memory is encrypted in order that an
adversary does not gain any information out of it. Second, we consider the secure com-
munication scenario. An IoT device has different interfaces for communication. All data
sent over such communication interfaces shall be encrypted. Thereby, attackers are not
able to read the original data anymore. Both scenarios should include countermeasures
to protect the implementation against side-channel attacks.

1.1 Contribution of this Work

In this thesis, we develop a highly-performance cryptographic accelerator for the PULP
System-on-Chip (SoC). This accelerator implements leakage-resilient encryption modes
to withstand sophisticated side-channel attacks. Thereby, we implement state-of-the-
art cryptographic algorithms in hardware for a highly-flexible evaluation platform. The
architecture uses the concept of fresh re-keying to implement an AES-128 based leakage-
resilient stream-cipher which facilitates a fast key-update function based on a pseudo
random generator. Furthermore, We present the first hardware implementation of the
permutation-based authenticated encryption framework PASEC. Additionally, we imple-
ment AES-128 ECB and AES-128 XTS encryption for comparison purposes. Finally,
the accelerator supports the access of the internal primitives to implement hardware-
accelerated algorithms in software. The cryptographic accelerator is integrated into the
PULP system and taped-out as part of the Fulmine application-specific integrated cir-
cuit (ASIC) using the United Microelectronics Corporation (UMC) 65 nm technology.
Fulmine represents the first multi-core microprocessor containing high-performance state-
of-the-art leakage-resilient encryption approaches available to date.

2

1 Introduction

1.2 Organization

The thesis is organized as follows. In Chapter 2 we give an introduction to cryptog-
raphy. Furthermore, we describe side-channel attacks and provide an understanding to
countermeasures for this kind of attacks. Chapter 3 presents existing solutions and imple-
mentations of leakage-resilient cryptography and cryptographic extensions to commercial
products. In Chapter 4 we show the theoretical background of this thesis. We present
the implemented algorithms and modes of operation in detail. Chapter 5 describes the
hardware architecture of the cryptographic accelerator HWCrypt . Furthermore, we de-
scribe the concrete design and the design decisions. Moreover, we present the functional
verification flow, which is used to test the implementation using a pure RTL approach,
as well as a hardware-software co-simulation. Eventually, we discuss in Chapter 6 perfor-
mance results of software and hardware implementations of the algorithms used in this
thesis. Finally, we draw in Chapter 7 a conclusion of this work and give an outlook for
the future.

3

Chapter 2
Background

In this chapter, we introduce the PULP multi-core processing architecture. In the fol-
lowing section we give an introduction to cryptography. We show the basic principles
and primitives. Furthermore, we describe the Advanced Encryption Standard (AES) and
the Keccak-f permutation family, which are used in this work. Eventually, we give an
introduction to side-channel attacks and their countermeasures.

2.1 PULP - A Parallel Ultra-Low Power Processing
Architecture

PULP is a heterogeneous multi-core System-on-Chip (SoC) platform for the context
of IoT applications. The goal of this processing architecture is to design a processor,
which fulfills the demands of state-of-the-art IoT applications but with a highly-optimized
energy consumption. PULP is developed by the ETH Zurich in collaboration with the
University of Bologna.

Figure 2.1 shows the architecture of a PULP chip. The main part of this architecture is
the cluster, which contains multiple processing cores depicted with the green boxes. The
processing core can either be an OpenRISC [5], or a RISC-V [6] core and have access to
a level-1 memory, which is called the tightly coupled data memory (TCDM). Access to
this memory is fast and can be achieved in one clock cycle in the best case. This memory
is used in software like a scratchpad. Data can be loaded into the cluster either via direct
memory accesses (DMA) or directly by the processing cores using the memory bus.
Outside the cluster the SoC contains different peripheral controllers such as a Universal
Asynchronous Receiver Transmitter (UART), a Serial Peripheral Interface (SPI), or an
Inter-Integrated Circuit (I2C) bus. Furthermore, the SoC contains a level-2 (L2) memory
which contains the executable and user data.

4

2 Background

For energy efficiency reasons most of the parts can be clock-gated to reduce their dynamic
power consumption. In addition to that, the processing cores support a sleep mode, in
which the cores itself are clock-gated and wait for an event.

Figure 2.1: PULP architecture.

2.2 Introduction to Cryptography

This section aims to give an overview about the basic principles in cryptography, which
later chapters are based on. Cryptography has a long history. Even in the ancient Rome,
people used ciphers to encrypt important messages during their transport. This lead to
the famous Caesar-cipher, a substitution cipher which replaces every letter of a message.
Thereby, it uses a fixed shift in the alphabet to determine the new encrypted character.
Since then, cryptography evolved a lot. Today, modern cryptography tries to achieve the
following four properties:

Confidentiality. This property protects transmitted data between two entities, such
that unauthorized third-parties are unable to read the transmitted data. An eavesdropper
only can read the ciphertext but does not understand it.

Integrity. With integrity the transmitted message is protected against altering. In-
tegrity proves that the transmitted message is correct. The receiving party is able to
detect an altered message and can therefore discard it.

5

2 Background

Authentication. With authentication, we can ensure that a message is guaranteed to
come from the claimed entity. If the entity Bob is receiving a message with a message
authentication code (MAC) from Alice, the MAC ensures the message is not coming from
another entity.

Non-Repudiation. This concept ensures that an entity cannot deny a previous made
transfer of a message.

Researchers developed two leading cryptographic schemes to implement the properties
stated above. This leads to the concepts of asymmetric and symmetric cryptography.

2.2.1 Asymmetric Cryptography

Asymmetric cryptography uses two types of keys for different purpose, namely the public
and the private key. The public key, as its name suggests, is public and available for
everyone. This key is used to encrypt a message. The second key is the private key,
which is kept secret. Only when the corresponding private key is known, one is able
to decrypt a message. This can be simplified, to a padlock and a corresponding key to
open it, as depicted in Figure 2.2. The public key equals the padlock. Everyone can
get the padlock to enclose a message. Only the entity with the key is able to open the
padlock again and read the enclosed message. There are two wide-spread algorithms in
cryptography, which rely on this principle, namely the RSA scheme and elliptic-curve
cryptography.

Alice Bob
Figure 2.2: Asymmetric cryptography scheme.

2.2.2 Symmetric Cryptography

Symmetric cryptography uses a shared secret to implement a confidential communication
as indicated in Figure 2.3. As the name suggests, both entities Alice and Bob use the
same shared secret, namely the keyK. With this key Alice is able to encrypt a messageM
to the ciphertext C and also to decrypt it. An eavesdropper is computationally not able
to recover the original message M from the ciphertext. The receiver Bob uses the same

6

2 Background

secret key K, which was used to encrypt the message, to recover the message M again.
However, such a scheme requires both parties to know the shared key K in advance.
Therefore, key exchange protocols, which may are based on asymmetric cryptography,
are used to transfer the shared key.

Alice Bob
Figure 2.3: Symmetric cryptography scheme.

As stated in Section 2.2, cryptography aims to solve the problems of confidentiality, in-
tegrity, and authenticity. In the past, dedicated algorithms were used to achieve each
of these requirements separately. Since each algorithm needs to be invoked, this lead
to overhead in runtime, required code, or required area when talking about hardware
implementations. To improve the performance, developers developed the concept of au-
thenticated encryption, which aims to combine the individual steps into one algorithm.

To implement symmetric cryptographic primitives, either a block cipher or a stream
cipher may be used as described in the following section.

2.2.3 Block Cipher

A block cipher encrypts a plaintext block P = {0, 1}m with the fixed block size m into a
ciphertext C of the same size. Every bit of the ciphertext depends here on every bit of the
plaintext. Typical block sizes form are 64-bit or 128-bit. Figure 2.4 shows a block cipher,
which encrypts each block of data independently using the Electronic Codebook (ECB)
mode. The block cipher is able to encrypt and decrypt the input data denoted by E/D.
In this architecture the plaintext P is encrypted to the ciphertext C using the key K. If
the block cipher only supports the encryption mode, this is denoted by E.

2.2.4 Stream Cipher

A stream cipher encrypts every bit of the plaintext P individually by XORing it with
an encryption pad. The encryption pads, also called the pad-stream, are computed via
a pad generator. This pad generator, which depends on the secret key K, computes
a pseudo-random sequence of bits. In synchronous stream ciphers the pad-stream only

7

2 Background

 E/D

P

C

K

Figure 2.4: Block cipher in the ECB mode.

depends on the secret key K. However, in asynchronous stream ciphers, the pad-stream
is computed based on both the key K and the previously encrypted ciphertext.

2.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) [7] is a block cipher and the successor of
the Data Encryption Standard (DES). The AES algorithm Rijndael is the winner of a
competition to find a new encryption algorithm to avoid the weaknesses of DES. AES
supports a block-size of 128-bit and a key-size of 128-, 192-, and 256-bit, referred to
as AES-128, AES-192, and AES-256. These algorithms differ in the number of invoked
round functions and their key expansion algorithm. For the sake of simplicity, we now
describe the AES-128 algorithm.

AES organizes the 128-bit state S in a 4x4 matrix as shown in Figure 2.5. Each value
Sr,c in this matrix represents one element in the finite field GF(28) using the irreducible
polynomial x8 + x4 + x3 + x+ 1. Given the 128-bit (16-byte) input block I, the state is
initialized using the relation Sr,c = I[r+4c]. AES uses four core operations to construct
an encryption round. Those core operations are described below.

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

Figure 2.5: AES state matrix S.

AddRoundKey. In the AddRoundKey operation a round-key is added to the current
state using the XOR operation. Round-keys are computed by executing the key expansion
algorithm as defined in Algorithm 3.

8

2 Background

SubBytes. The SubBytes operation, as depicted in Figure 2.6, transforms all bytes of
the state by using an invertible S-box. This substitution is the only non-linear operation
in the cipher. The S-box is based on the multiplicative inverse in the finite field GF(28)
followed by an affine transformation.

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S’0,0

S’1,0

S’2,0

S’3,0

S’0,1

S’1,1

S’2,1

S’3,1

S’0,2

S’1,2

S’2,2

S’3,2

S’0,3

S’1,3

S’2,3

S’3,3

S-box

S’r,cSr,c

Figure 2.6: AES SubBytes operation.

ShiftRows. The ShiftRows operation in AES only operates on the rows of the state S.
As indicated in Figure 2.7, the first row is left untouched. Beginning with the second
row, the row is cyclically shifted by one to the left. The third row is shifted by two bytes
to the left. Eventually, the fourth row is shifted by three bytes to the left. This operation
provides a good diffusion over the columns.

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S0,0

S1,1

S2,2

S3,3

S0,1

S2,3

S3,0

S0,2

S2,0

S3,1

S0,3

S2,1

S3,2

S0,2 S0,3 S0,0ShiftRows

Figure 2.7: AES ShiftRows operation.

MixColumns. The MixColumns step operates on each column independently. Each
column is treated as a polynomial and is multiplied with a fixed polynomial. This is
indicated with the matrix multiplication shown in Figure 2.8. This operation provides a
good intra-column diffusion.

AES uses these four operation to construct one round, which is iteratively applied on the
state S. Algorithm 1 describes the encryption algorithm of AES-128. The AES operations
are applied ten times (ten rounds), but during the last round the MixColumn step is left
out. Each round uses a different round-key during the AddRoundKey operation, which
is computed by the key expansion algorithm.

The decryption algorithm, as shown in Algorithm 2, operates in the reversed order com-
pared with the encryption algorithm. Moreover, it uses the inverse operation of the AES
operations defined in Section 2.3. Since the round-keys are the same, but in a reverse

9

2 Background

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S’0,0

S’1,0

S’2,0

S’3,0

S’0,1

S’1,1

S’2,1

S’3,1

S’0,2

S’1,2

S’2,2

S’3,2

S’0,3

S’1,3

S’2,3

S’3,3

S0,c

S1,c

S2,c

S3,c

S’0,c

S’1,c

S’2,c

S’3,c

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

Figure 2.8: AES MixColumn operation.

Algorithm 1: AES-128 encryption function.
Input: P ∈ [0, 2128 − 1], RK0,..,10 ∈ [0, 2128 − 1]
Output: C ∈ [0, 2128 − 1]

1 S ← AddRoundKey(P , RK0);
2 for i← 1 to 10 do
3 S ← SubBytes(S);
4 S ← ShiftRows(S);
5 if i < 10 then
6 S ← MixColumns(S);
7 end
8 S ← AddRoundKey(S, RKi);
9 end

10 return S

order, the key expansion algorithm stays the same for decryption. Each of the AES
operations described above supports an inverse operation including the non-linear Sub-
Bytes transformation. The AddRoundKey operation is the same for both encryption and
decryption.

The key expansion algorithm of AES-128 expands the initial 128-bit encryption key K
into 11 round-keys RK0 to RK10 as described in Algorithm 3. This algorithm iteratively
computes the next round-key based on the previous one. It operates on words, each
32-bit wide. The RotWord operation cyclically shifts one 32-bit word by one byte. The
SubWords operation substitutes all four bytes by applying the same S-box lookup as used
during encryption. The key expansion algorithm returns an array of 44 words containing
the eleven 128-bit round-keys RKi. The first 128-bit round-key equals the encryption
key K. As indicated by Algorithm 3, the key expansion algorithm requires the round
constants RConi, which are defined in [7].

10

2 Background

Algorithm 2: AES-128 decryption function.
Input: C ∈ [0, 2128 − 1], RK0,..,10 ∈ [0, 2128 − 1]
Output: P ∈ [0, 2128 − 1]

1 S ← AddRoundKey(P , RK10);
2 for i← 9 to 0 do
3 S ← InvShiftRows(S);
4 S ← InSubBytes(S);
5 if i > 0 then
6 S ← InvMixColumns(S);
7 end
8 S ← AddRoundKey(S, RKi);
9 end

10 return S

Algorithm 3: AES-128 key expansion function.
Input: K ∈ [0, 2128 − 1]
Output: RK0..43 ∈ [0, 232 − 1]

1 for i← 0 to 3 do
2 RKi ← Ki;
3 end
4 for i← 4 to 43 do
5 tmp← RKi−1;
6 if i mod 4 = 0 then
7 tmp← SubWord(RotWord(tmp))⊕RConi/4;
8 end
9 RKi ← Ki−4 ⊕ tmp;

10 end
11 return RK0..43

2.4 Sponge Construction

The sponge construction [8] is a flexible cryptographic design to implement various cryp-
tographic primitives, such as hash functions, encryption modes, or authentication func-
tions. The heart of a sponge construction is the permutation function p, which is itera-
tively applied on a state S. The state S is split into a rate-part r and a capacity-part c.
The rate-part is used to operate with external data. The capacity-part is used as an
internal state, which is not visible to the outside. Figure 2.9 shows a classic sponge
construction, which is used to construct a hash function.

A sponge construction supports two different operation phases. The first operation is the
absorbing phase. The messagesmi are absorbed into the state, followed by an application

11

2 Background

p p

m0

p
c

r

m1

p

mi

…

…

p p …

h0 h1 h2

Absorbing Phase Squeezing Phase

Figure 2.9: Sponge construction for a hash function.

of the permutation function p. This is repeated for any arbitrary length of data. The
second operation is the squeezing phase. In this mode, the rate-part r of the state is
used as the output. In the hash construction of Figure 2.9 this equals the hash of the
message.

2.4.1 The Keccak-f Permutation Family

The SHA-3 competition, which aimed to find a new standard for hash functions, was won
by the Keccak [9] algorithm. The Keccak hash algorithm is a sponge construction
which uses a permutation as its base operation. This permutation, or better, the family
of these permutation functions are described here.

The permutation family Keccak-f describes seven different permutation functions,
which only differ in their bit-width denoted by b ∈ 25, 50, 100, 200, 400, 800, 1600 and
the number of rounds nr. The number of rounds nr is given by nr = 12 + 2l, where
2l = b/25. For Keccak-f [25] this returns 12 rounds, and for Keccak-f [1600] this re-
sults in 24 rounds respectively. The Keccak-f permutation function iteratively applies
different functions on the state S. Keccak organizes the state as a 5x5x2l cube-matrix
as illustrated in Figure 2.10. The z-axis grows depending on the configuration parame-
ter l.

y

x

z

…..

…..

Figure 2.10: Keccak state matrix S.

The state is organized in lanes, slices, rows, and columns as shown in Figure 2.11. The

12

2 Background

core functions of Keccak, on which the round function is based on, use these repre-
sentations for their operation. Keccak uses the five core functions θ, ρ, π, χ, and ι
to construct one round. This round is invoked multiple times to construct the Keccak
permutation, which is described in Algorithm 4. The functionality description of the core
functions below only gives a rough overview rather than a fully detailed description.

y

x

z

Lane Slice Row Column

Figure 2.11: Keccak state organization.

Description of the θ Function. This step adds to each bit S[x][y][z] the bitwise sum
of the columns S[x− 1][·][z] and S[x+ 1][·][z − 1].

S[x][y][z]← S[x][y][z] +

4∑
i=0

S[x− 1][i][z] +

4∑
i=0

S[x+ 1][i][z − 1] (2.1)

Description of the ρ Function. The ρ operation performs a cyclic rotation with
a constant shift C within each lane of the state. The shift constants Cx,y are defined
in [9].

S[x][y][z]← S[x][y][z] + Cx,y (2.2)

Description of the π Function. This operations permutes the lanes as indicated in
Equation 2.3 and Equation 2.4. Since this step operates on each slice independently, it is
invariant to the z-axis. Equation 2.4 shows the assignment of the matrix multiplication
of Equation 2.3 .

(
x
y

)
←
(
0 1
2 3

)
·
(
x
y

)
(2.3)

S[x][y][z]← S[y][2 · x+ 3 · y][z] (2.4)

13

2 Background

Description of the χ Function. The χ operation is the only non-linear operation in
this construction. It applies a non-linear mapping on the 5-bit rows, which acts as an
S-box lookup.

S[x][y][z]← S[x][y][z]⊕ ((¬S[x+ 1][y][z]) &S[x+ 2][y][z]) (2.5)

Description of the ι Function. This step adds round-dependent constants to the
state. These constants are defined in [9]. Without this operation the permutation func-
tion would be symmetric.

Algorithm 4 shows the iterative usage of the base functions defined above. In each round,
a round-dependent constant RConi is added to the state during the ι operation.

Algorithm 4: Keccak-f [b] permutation function.
Input: S ∈ [0, 2b − 1], b ∈ 25, 50, 100, 200, 400, 800, 1600, RCon0..n1−1
Output: S ∈ [0, 2b − 1]

1 for i← 0 to nr − 1 do
2 S ← θ(S));
3 S ← ρ(S));
4 S ← π(S);
5 S ← χ(S);
6 S ← ι(S,RConi);
7 end
8 return S

2.5 Side-Channel Attacks

In a traditional cryptographic system a primitive operates on certain input data. As
depicted in Figure 2.12, the cryptographic system uses an internal secret to process the
input data and compute the output data. Encryption of data is one example for such a
system. In a perfect world, such an architecture would be safe, as long as the underlying
cryptographic primitive is mathematically secure.

However, life is not perfect. In reality a system as described before leaks information
about the internal computation via so called side channels. This phenomenon is illus-
trated in Figure 2.13. These side channels may depend on the secret key, which allows
an adversary to gain information of that secret. It is clear, that such an attack is very
specific to a concrete implementation of a cryptographic primitive. Famous examples
for passive side channels are the power consumption [10], the timing behavior [11], the
electromagnetic radiation [12,13], or even the acoustic emission [14].

14

2 Background

Input Output

Secret

Cryptographic
Primitive

Figure 2.12: Traditional cryptographic system.

Furthermore, an attacker may tamper a cryptographic device to induce faults [15, 16].
The adversary then observes the behavior and the output of the cryptographic system
which may allow the attacker to break the system. This kind of attack is called active
side-channel attack.

Input Output

Secret

Cryptographic
Primitive

Leaking
Side-Channel
Information

Figure 2.13: Leaking cryptographic system.

2.5.1 Simple Power Analysis

With simple power analysis (SPA) attacks, we define the class of attack in which an
adversary has a single power trace of a cryptographic operation. Since the power con-
sumption correlates with the internal computation, the cryptographic operation is also
detectable in the power trace. Figure 2.14 shows an SPA trace of an AES-128 encryption.
One can clearly see the different rounds of the AES operation. In [17] Mangard describes
an SPA attack on the key expansion algorithm of AES. If the measurements are too
noisy, averaging is exploited to improve the attack. For highly parallel architectures this
SPA attack is less likely due to the lower signal-to-noise ratio (SNR).

15

2 Background

Time / us
0 0.1 0.2 0.3 0.4 0.5 0.6

C
ur

re
nt

 /
m

A

202.85

202.9

202.95

203

203.05

203.1

203.15

203.2
SPA Trace of AES-128

Figure 2.14: AES-128 SPA trace.

2.5.2 Differential Power Analysis

The concept of differential power analysis (DPA) was introduced by Paul Kocher [10] in
1999. Compared to SPA attacks, this kind of attack is much more powerful and also much
harder to protect. This class of attack combines multiple power traces of encryptions,
which all use the same key to recover the used secret. Furthermore, the plaintexts or the
ciphertexts used in these traces need to be known by the attacker.

Then the attack works as follows: First, the attacker determines an intermediate value,
which depends on the secret and the known values (either the plaintext or the cipher-
text). Next, the adversary performs a key guess and computes the intermediate value for
this key guess for all power traces. In the next step, the intermediate values are mapped
to a hypothetical power consumption depending on a chosen power model. Simple power
models such as a simple bit-, Hamming-Weight, or a Hamming-Distance model are often
sufficient to model the power consumption accurately. Then a statistical test is performed
to compute the relation between the measured power consumption and the hypothetical
one. If the key guess was right, a strong correlation between these two power consump-
tions is visible. However, if the key assumption was wrong, no strong relation between
the two power consumptions is shown. This attack is repeated for all possible keys in the
key-space to find the one with the strongest correlation. The more accurate the power
model is, the fewer power traces are needed to perform the attack.

This principle is used to attack AES-128 successfully. The smallest key for AES is 128
bit wide. Performing a DPA attack on a key-space with the size of 2128 is not feasible
using today’s computing power. If the key-space could be reduced, AES can be attacked

16

2 Background

more easily. With DPA, the attack is reduced to attack a single key byte, which reduces
the key-space to 256 different values. Therefore, a realistic attack is possible. The attack
is then repeated for all remaining key bytes but reuses the same power traces.

This algorithm attacks either the first or the last round of AES. In this description we
use the first round. The initial step of AES XORs the key bytes of the first round-key
(for encryption this equals the cipher key K) with the plaintext. Then, the SubBytes
operation is applied to all results of the XOR operation. This operation sequence is
shown in Figure 2.15. The output of the SubBytes, the intermediate value Ii, is attacked
by the DPA attack.

SubBytes

Ki

Pi

Ii
Figure 2.15: Attacked AES-128 value.

For a key guess, the output of the SubBytes operation is calculated for all given plain-
texts. The result of this operation is mapped to a power consumption depending on a
power model. A very simple model is often sufficient for a successful attack. In fact,
bit zero of the SubBytes output is used as a binary distinguisher between two classes of
power consumptions as described in [10]. We now perform the statistical analyze step.
Therefore, we compute the mean of both power consumption classes and next the dif-
ference of it. If we perform the right key guess, we also perform the right distinguishing
step. Therefore, the difference of means shows a correlation. If the key assumption was
wrong, the distinguishing step was wrong, and the difference of means does not show a
relation between the key guess and the power traces. These steps are repeated for all
possible keys for this key byte. Furthermore, this procedure is repeated for all key bytes
of the 128-bit encryption key. Using a better power model can enhance the attack to
require fewer traces.

Figure 2.16 shows the correlation of a DPA attack on AES-128. The trace shows the
correlation result for all key guesses when attacking one single key-byte. The correlation
result indicates the right key guess is 166.

17

2 Background

Key Guess
0 50 100 150 200 250

C
or

re
la

tio
n

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correlation result for all key guesses

Figure 2.16: Correlation result of AES-128 DPA attack.

2.5.2.1 Higher-Order Differential Power Analysis

In higher-order DPA [18,19] attacks, multiple samples from one trace are combined. The
degree of order is defined by how many samples are used from one trace. This extended
version of a DPA attack allows an adversary to attack even a masked implementation of
a cryptographic algorithm. In a masked implementation, the secret key is masked using
a random value. The cryptographic algorithm processes both the mask and the masked
value. However, combining the sample points of the mask and the masked value, this
again correlates with the secret key. This combining-step, which combines multiple parts
of a trace, is a higher-order function.

2.5.2.2 Correlation Power Analysis

Correlation power analysis (CPA) [20] evaluates the correlation between small changes
in the traces and a leakage model, which depends on intermediate values of the crypto-
graphic primitive. The Pearson correlation coefficient is used to determine the correlation
between a hypothetical power consumption of the intermediate values of the key guess
and the actual power traces. Especially when having a lower amount of traces, this
variation of a DPA attack might give better results.

18

2 Background

2.5.3 Fault Attacks

Fault attacks are different to an SPA or DPA attack. An adversary induces faults into
the cryptographic algorithm and then observes the behavior of it. Since the attacker is
tampering the device, this kind of attack is an active side-channel attack. Boneh et al.
showed in [15, 16] how the RSA signature algorithm can be broken by inducing random
faults to the RSA algorithm based on the Chinese remainder theorem (CRT). This class
of attack is very powerful because breaking the RSA scheme only requires one faulty and
one correct computation. Moreover, this kind of attack is also applicable to symmetric
ciphers such as AES with the same complexity.

2.6 Countermeasures against Side-Channel Attacks

Countermeasures against DPA attacks exist at different levels of abstraction. However,
the basic principle is always the same. The countermeasures aim to reduce the SNR
to avoid the leakage of secret information. In general, such cryptographic systems are
called leakage-resilient. In the backend design of an integrated circuit shieldings [21] are
used to avoid probing attacks on the chip. Furthermore, special logic styles [22,23] exist,
which aim to design DPA-resistant standard building blocks. If these building blocks
are DPA-resistant, one can build any arbitrary digital circuit, which is DPA-resistant
as well. At the algorithmic level, masking is used to break the correlation between the
power consumption and the secret. Hiding [24] tries to minimize the SNR to make a
DPA attack harder. At the protocol level, fresh re-keying [25] can be used to minimize
the number of measurements an attacker can obtain for a single encryption key. All these
countermeasures can be used to implement a leakage-resilient cryptographic system.

2.6.1 Masking

With masking [26–28] the power consumption becomes independent of the intermediate
values to prevent a DPA attack. Therefore, intermediate values are modified using a
random mask, which changes for each computation and is unknown to the attacker.
This countermeasure operates on the algorithmic level, rather than changing the power
consumption of the cryptographic device. It is shown, that using multiple masks (or
shares) prevents higher-order DPA attacks. In general, m shares protect against an m-th
order DPA attack. This countermeasure requires the system to have a random number
generator for generating the masks.

2.6.2 Hiding

The concept of hiding [24] tries to reduce the dependency of the power consumption and
the intermediate values. To achieve this, two approaches can be taken. The first method

19

2 Background

attempts to hold the power consumption constant, independently of the processed data.
The second idea tries to randomize the power consumption, to avoid a data dependency
on it. A popular solution for this countermeasure is shuffling, which randomizes the
order of execution of an algorithm. Apparently, this does not solve the data dependency.
However, due to a different execution order of the algorithm, the data dependency is
shifted. This makes a DPA attack more difficult and requires more traces to successfully
mount such an attack.

20

Chapter 3
Related Work

Adding countermeasures to an ordinary block cipher can eventually lead to a side-channel
resistant implementation. Pramstaller et al. discussed an ASIC implementation of
AES-128 [29], which contains masked S-box designs to withstand a DPA attack. The
performance loss of such a protected implementation is said to be 40-50%. However,
Mangard et al. [30] published an attack on this ASIC implementation. He demonstrates
a DPA attack on the masked implementation succeeded due to glitches in the logic.
Although using random masks, the output of the S-box still depends on the processed
plaintext. After determining a reasonable power model, a DPA attack was performed
with 30,000 traces for a particular S-box used in this design. A comparable performance
loss of a masked AES implementation is shown in [31]. The security concerning a DPA
attack of 32-bit and a 128-bit masked implementation of AES-128 are compared with
their unprotected reference implementation. In both architectures, the throughput is
halved compared to the unprotected implementation. Furthermore, the required lookup
tables (LUT) for the field programmable gate array (FPGA) are increased by a factor of
three.

Instead of implementing an algorithmic countermeasure, Hwang et al. [32] presented
countermeasures on the gate level. They published their research on a cryptographic
co-processor based on two AES implementations. Both AES designs are functionally
equivalent. However, the first architecture contains countermeasures against power anal-
ysis attacks. It uses a special logic style called wave dynamic differential logic (WDDL)
and a special layout technique called differential routing to counteract DPA attacks. The
second AES architecture does not contain any side-channel analysis countermeasures. It
was shown that the encryption key was fully recovered after 8000 measurements on the
insecure AES implementation. The secure implementation of the co-processor can with-
stand a full DPA attack even after 1,500,000 measurements. The comparison between
protected and unprotected implementation shows the required area increased by a factor

21

3 Related Work

of 2.5. Moreover, the throughput of the protected implementation of AES is reduced by
a factor of four.

To avoid adding countermeasures directly to the block cipher, Medwed et al. [25] proposed
the concept of fresh re-keying, which is described in more detail in Chapter 4. Their
target application is the field of area constraint radio-frequency identification (RFID).
They show a low-area implementation of a fresh re-keying system between 8 kGE and
21 kGE. However, there are different constructions of re-keying functions possible. In
2013, Belaïd et al. [33] investigated the construction of a block-cipher-based pseudo-
random function (PRF) as a re-keying function. Their focus is to develop a hardware-
friendly re-keying function. The paper gives insights on the choice of the components of
the block cipher for usage as a re-keying function. However, the construction still needs
to be further investigated to provide a good understanding of the security as it is already
available for masking and hiding. Further research may lead this construction directly
to a leakage-resilient primitive rather than using it for re-keying. Instead of using a re-
keying function, which is based on a random nonce, Paul Kocher holds a patent [34] for
a direct key update function. Based on a master key K and special tree-functions, a tree
of encryption keys is constructed without the need of a nonce. The number of required
keys need to be known in advance. However, this allows the architecture to pre-compute
the keys to increasing the performance.

Cryptographic implementations are also included in commercial products. Atmel devel-
oped the ARM Cortex-A5 processor family SAMA5D4 [35]. This application processor
series contains an internal cryptographic unit based on the AES block cipher. The
interface of this cryptographic unit supports double-buffering, which means a new con-
figuration can be written while the unit is still busy with its current operation. This AES
unit can be combined with a DMA transfer to transparently encrypt or decrypt the mem-
ory. Furthermore, the AES unit supports different operation modes including the Galois
Counter Mode (GCM). Moreover, the unit can be used to transparently encrypt all mem-
ory transfers to the external DDR memory. A second security feature of this processor
series is the integrity check monitor (ICM). The ICM is a special DMA controller, which
performs an integrity check over multiple memory regions transparently. It computes
the hash digest over these regions, which is stored in a dedicated memory range. When
reading from a secured memory range, the hash digests are re-computed and compared
with the already stored hash values to detect any tampering of the memory.

To further improve the performance of cryptographic implementations, Intel introduced
the AES-NI instruction set [36] in 2010. This instruction set extension is used to acceler-
ate any AES round-based algorithm. The extension supports executing one round of the
AES algorithm for encryption and decryption including a dedicated operation for the last
round of AES. Furthermore, a new instruction to accelerate the key expansion is added.
When using the newest Intel i7 processor generation named Skylake, the performance of
the ECB mode is increased to 0.63 cycles per byte (cpb) [37].

However, most of the available commercial products with cryptographic features do not

22

3 Related Work

have any protection against side-channel attacks. There are special fields of applications
which offer side-channel protection. Rambus Cryptography Research [38] licences DPA
countermeasures to different vendors in the semiconductor industry. Especially smart-
cards often contain DPA countermeasures such as shortly described in [39]. However,
no concrete countermeasures are presented. To the best of our knowledge, there is no
published work on high-performance microprocessor architectures containing counter-
measures against side-channel attacks.

23

Chapter 4
Leakage-Resilient Cryptography for the
Internet of Things

This chapter describes the theoretical background of the cryptographic algorithms used
in this thesis. The algorithms are implemented as part of a cryptographic accelerator
on a PULP chip. We first discuss the attack model for this thesis. Second we de-
velop the leakage-resilient encryption mode based on AES. Eventually, we describe the
permutation-based authenticated encryption framework PASEC.

4.1 Attacker Model

The cluster of a PULP chip is considered to be trusted. Everything beyond one cluster
is considered to be insecure. This includes the L2-memory, external memory, as well as
other communication interfaces. The device contains a secret key K, which is unknown
to the adversary and is securely stored inside the cluster. It is assumed this key is already
in the cluster. This thesis does not consider the secure transfer of the key K into the
cluster. The device is deployed in the context of IoT, which means an adversary has
physical access to it. It is assumed an attacker can apply non-invasive and semi-invasive
passive attacks such as measuring the power consumption, the electromagnetic emission,
or the timing behavior. An attacker cannot perform invasive attacks such as probing.
The cryptographic device does not have any debug- or test interfaces on which attacks
can be performed. However, the attacker can gain information from the information
leakage on side channels, which can be obtained in a non-invasive or semi-invasive way.
Furthermore, an adversary may induce faults in the cluster. This may be done via glitches
on the clock signal.

24

4 Leakage-Resilient Cryptography for the Internet of Things

Figure 4.1: Security boundary of the PULP system.

Figure 4.1 shows the PULP system with the cluster inside. The cluster boundary is
considered to be the security boundary. The cluster contains three interfaces to other
parts of the chip, namely one Advanced eXtensible Interface (AXI) instruction interface,
which can only read data, and two AXI interfaces to read and write data, or to control
the peripherals of the chip. In this thesis, we focus on the data interfaces. The instruction
interface is not protected in this work. The main reason for this is to be as flexible as
possible for the evaluation of the actual cryptographic algorithms. It is clear that the
encryption unit can be extended to the instruction cache to transparently decrypt fetched
instructions.

4.2 Fresh Re-keying

A naive way to protect a block cipher against side-channel attacks is to add proper
countermeasures to the cipher itself. However, this is difficult to implement due to
complex non-linear designs of block ciphers. Implementing side-channel analysis (SCA)
countermeasures directly in the block cipher massively increases the area and decreases
the performance as reported in [29, 31, 32]. To simplify the protection, Medwed et al.
proposed the concept of fresh re-keying. A re-keying function g computes a new, different
session key k∗ based on one secret master key K and a publicly known random nonce
ni, which is shown in Figure 4.2.

Having a different key for every encryption prevents a DPA attack on the cipher by design
because a DPA attack requires the encryption key to be constant to be able to observe
multiple power traces for one key. However, this scheme shifts the duties of protection

25

4 Leakage-Resilient Cryptography for the Internet of Things

E/D

mi

ci

k*gK

ni

Figure 4.2: Fresh re-keying as proposed by Medwed et al.

against DPA attacks from the cipher to the re-keying function g. Due to the simplicity
of that function (compared to the block cipher), this function is easier to protect than
the block cipher. In a re-keying scheme, the computed session key k∗ is only for exactly
one encryption. This limits an attacker to gain information on the secret master key
under only a single query, which means the attack vector on the block cipher is reduced
to an SPA attack. Furthermore, this concept avoids differential fault attacks by design.
A differential fault attack requires at least one correct and one faulty encryption or
decryption under the same key and same data. Since in the fresh re-keying scheme every
encryption happens under a different session key, such an attack is mitigated by design as
well. However, the re-keying function g requires special protection against DPA attacks
if it is not DPA-safe by design.

At Africacrypt 2010 Medwed et al. proposed this architecture with a new re-keying
scheme [25] based on a polynomial multiplication in the finite field GF(28)[y](y16 + 1).
To yield DPA security, the implementation of the polynomial multiplication includes
two countermeasures, namely masking and shuffling of the partial multiplications. This
function was used to fulfill the requirements for a general re-keying function as defined by
the following rules: The re-keying function should have a good diffusion on the master
key, in which the bits of the session key k∗ depend on many bits of the master key.
Furthermore, the re-keying function should be easy to protect against SCA attacks.
There should be no synchronization overhead, and the original key should stay the same.
These properties need to be taken into account when developing an alternate re-keying
function.

4.3 Re-keying Function based on a Polynomial
Multiplication

In this section, we describe the re-keying function g, which is based on a polynomial
multiplication in GF(28)[y]/(y16 + 1). We first start with the plain multiplication and

26

4 Leakage-Resilient Cryptography for the Internet of Things

then describe the added SCA countermeasures. Eventually, this section describes an
improvement to avoid the session key to be invertible.

4.3.1 Polynomial Multiplication

As described in [25], the polynomial multiplication in GF(28)[y]/(y16 + 1) fulfills the
required properties for a re-keying function. In this multiplication, the 128-bit operands
are split into 16 coefficients, each in the finite field GF(28). Because the polynomial
multiplication is a linear function, passive side-channel countermeasures such as masking
are easily implemented.

In the fresh re-keying scheme described in [25], the polynomial multiplication is performed
using the product scan algorithm. However, when considering a parallel implementation
of all coefficients in hardware, this increases the hardware overhead due to additional
multiplexing. For this reason, the proposed algorithm is transformed into the operand-
scan algorithm as described in Algorithm 5. Because all coefficients ai and bj are elements
in the finite field GF(28), the multiplication and addition in Line 6 of Algorithm 5 operate
in this field as well. The finite field is defined by the irreducible Rijndael polynomial [7]
x8 + x4 + x3 + x+ 1.

Algorithm 5: Operand scan algorithm for the polynomial multiplication.
Input: a, b ∈ GF (28)[y]/(y16 + 1)
Output: c = a · b ∈ GF (28)[y]/(y16 + 1)

1 j ← rand() (mod 16);
2 i← 16− j (mod 16);
3 c← 0;
4 for k ← 0 to 15 do
5 for l← 0 to 15 do
6 cl ← cl + ai · bj ;
7 if l < 15 then
8 i← i+ 1 (mod 16);
9 end

10 j ← j + 1 (mod 16);
11 end
12 end
13 return c

This implementation of the polynomial multiplication already incorporates one counter-
measure against side-channel attacks, namely shuffling of the partial multiplications. In
Line 1 in Algorithm 5 the start index j is shuffled.

Shuffling the start index results in 16 different sequences of the partial multiplications
due to the 16 coefficients. We improve the shuffling strategy to mix all coefficients rather
than only the start index. This increases the number of possible sequences of the partial

27

4 Leakage-Resilient Cryptography for the Internet of Things

multiplications from 16 to 16! which equals about 2.09 · 1013 different sequences. To
achieve this, we use the Fisher-Yates Algorithm [40,41], which is described in Algorithm 7.
The necessary changes to the re-keying function are shown in Algorithm 6.

Algorithm 6: Polynomial multiplication with Fisher-Yates shuffling.
Input: a, b ∈ GF (28)[y]/(y16 + 1)
Output: c = a · b ∈ GF (28)[y]/(y16 + 1)

1 c← 0;
2 for k ← 0 to 15 do
3 j ← fisher_yates_shuffle();
4 for l← 0 to 15 do
5 i← l − j (mod 16);
6 cl ← cl + ai · bj ;
7 end
8 end
9 return c

The Fisher-Yates algorithm used in Algorithm 6 shuffles an array of N elements, in this
case 16. For the polynomial re-keying, we shuffle the current index j. For this reason,
the array to be mixed is initialized with the values 0 to 15. The Fisher-Yates algorithm
is used in an iterative way, which means rather than shuffling the array at once, we use
it to iteratively shuffle the array.

Algorithm 7: Fisher-Yates shuffling algorithm.
Input: Initialized array a with value 0 to 15
Output: Shuffled array a

1 c← 0;
2 for i← 15 to 1 do
3 j ← Random integer such that 0 ≤ j ≤ i;
4 Swap(a[i], a[j]);
5 end
6 return a

In hardware, getting a random number in the range 0 ≤ j ≤ i is not possible because
we can only retrieve a fixed-size random values between a certain range. Taking the
modulus with respect to i is also not possible in most of the cases since this would bias
the probability distribution of the shuffled data. However, there are certain cases in
which taking the modulus is possible without shifting the distribution. This happens if
the current index i evenly divides the number of elements (N=16). If this is not the case,
the next random number has to be evaluated until we get one in the desired range. To
speed-up the choosing process for the next index, multiple random numbers are evaluated
in parallel.

28

4 Leakage-Resilient Cryptography for the Internet of Things

4.3.2 Masked Multiplication

The second countermeasure against DPA attacks is masking. With masking, we add a
random mask to the key to making the power consumption of intermediate values of
the multiplication independent of the secret key. Masking can be applied multiple times
to counteract higher-order DPA attacks. Algorithm 8 shows a masked version of the
polynomial multiplication described in Section 4.3.1. It uses additive masking to protect
the secret value denoted by a. All multiplications in this algorithm use the polyno-
mial multiplication from Algorithm 5. Due to the increased number of multiplications
(m+1 multiplications vs. one multiplication in the unmasked case) this countermeasure
decreases the throughput of the polynomial multiplication.

Algorithm 8: Masked polynomial multiplication
Input: K,ni,mi ∈ GF (28)[y]/(y16 + 1) with i = 1 to the masking order m
Output: k∗ = K · ni ∈ GF (28)[y]/(y16 + 1)

1 mk ← K;
2 for i← 1 to m do
3 mk ← mk +mi;
4 end
5 k∗ ← mk · ni;
6 for i← 1 to m do
7 k∗ ← k∗ +mi · ni;
8 end
9 return k∗

This masked multiplication algorithm supports an arbitrary masking order without hav-
ing any memory overhead. Higher-order masking only increases the runtime due to more
multiplications.

4.3.3 A Non-Invertible Re-keying Function

Dobraunig et al. presented a generic chosen-plaintext key-recovery attack in [42], which
is applicable on the re-keying function g as described in Section 4.3. The major problem
of this function is that it is invertible. If an adversary can recover a session key k∗, he
is also able to recover the master key K since the nonce ni is publicly known. There-
fore, Dobraunig et al. refine the requirements for the re-keying function, and add one
additional requirement: The re-keying function must be hard to invert. To overcome
this issue they describe an improved version of the re-keying function g to make it not
invertible. Figure 4.3 shows a feed-forward construction using a block cipher to make
the re-keying function non-invertible. Since a block cipher is already used in the bulk
encryption scheme, there is not much additional overhead.

29

4 Leakage-Resilient Cryptography for the Internet of Things

EgK

ni

E/D

mi

ci

k*

Figure 4.3: A non-invertible re-keying function.

4.4 An Efficient Leakage-Resilient Construction

The re-keying scheme from Section 4.3 requires one nonce to encrypt one block of data,
which means there is a 100% memory and communication overhead. Such an encryp-
tion scheme is not feasible in practice. Considered the memory encryption scenario,
this halves the available memory space because nonces need to be stored as well. In a
communication scenario, this halves the throughput, since the nonces also need to be
transmitted. Therefore, we aim for a more efficient solution with respect to memory
consumption while also keeping the security at the same level.

Figure 4.4 shows a generic encryption pipeline with a re-keying function. The first
encryption can already use the fresh session key. To avoid multiple calls of the re-keying
function, we aim for an iterative key update function to compute the next session key
based on the previous one. The next session key (which is of course only used once) can
be used to encrypt or decrypt the next block of data.

g Key
Update

Key
Update

K

ni

k*= k0 k1 k2 Key
Update

k3 …

ENC
m0

c0

ENC
m1

c1

ENC
m2

c2

ENC
m3

c3

…

Figure 4.4: Generic encryption pipeline.

The re-keying function is already defined by the masked polynomial multiplication from
Section 4.3.2 with the feed-forward construction from Section 4.3.3.

30

4 Leakage-Resilient Cryptography for the Internet of Things

Next, we analyze the requirements for the sequential key update function to find a suitable
one. This function ensures that each memory location in one chunk of data is encrypted
differently. Given a fresh input key k0, this function derives a different key ki for each
block in one chunk. Since this function is invoked for every memory address in one chunk,
it has high throughput requirements and should only have little latency. In general, a
lightweight function is preferable. Furthermore, this function should not have a high
memory overhead, since the number of executions of this function scales linearly with
the amount of data to be encrypted.

4.4.1 2PRG Construction

Standaert et al. evaluate in [43] the information leakage of a 2PRG construction , which
is illustrated in Figure 4.5. Furthermore, they argue that the previously used „bounded
leakage“ model is hard to fulfill in practice, and introduce a more realistic leakage model
the so-called „simulatable leakage“ . In this model, the system remains secure if an
adversary is unable to distinguish an actual power trace based on the secret key K from
a simulated power trace using a random key Kr.

2P
RG

2P
RG

2P
RG

k0 k1 k2 k3

…
y1 y2 y3

Figure 4.5: 2PRG construction.

Such a 2PRG construction can be implemented using two block cipher instances as
depicted in Figure 4.6. In this scheme the values p0 and p1 are public constants. In fact,
they show that such a construction is secure when using a block cipher instance which
has a 2-simulatable leakage. Simulatable leakage is claimed to be empirically verifiable.
However, this requires further investigations as there are still open challenges.

BC

BC

p0

p1

k2

y2

k1

Figure 4.6: 2PRG instance using a block cipher.

31

4 Leakage-Resilient Cryptography for the Internet of Things

The 2PRG construction from Figure 4.6 is turned into a stream cipher. The pad-
stream yi, computed by the 2PRG construction, is used to encrypt the message blocks
via an XOR operation.

Combining the polynomial multiplication from Section 4.3.3 and the 2PRG construction
described above, results in the cipher architecture shown in Figure 4.7. In fact, this archi-
tecture is a synchronous stream cipher using the 2PRG construction as a pad generator.
Furthermore, the block ciphers in this architecture only need to support the encryption
mode rather than both encryption and decryption. For hardware and software imple-
mentations, this reduces the required overhead. This allows hardware implementations
to have a smaller area footprint and software implementations to have a smaller exe-
cutable. In this cipher architecture, both ciphers can work in parallel since there are no
data dependencies between them.

EgK

ni

k*
0

1 E

E
i=0

p1

p1

mi

ci

yi

Figure 4.7: Leakage-resilient stream cipher.

For this leakage-resilient 2PRG construction, we use the AES-128 block cipher as it is
also used in [43] for their proof. However, the security proof holds for any block cipher
which has a 2-simulatable leakage.

4.5 Permutation-based Leakage-Resilient Encryption

Another solution to implement a leakage-resilient encryption mode is the authenticated
encryption framework PASEC [44], which is based on a permutation function. In general,
it follows the same principle as before. It consists of a leakage-resilient re-keying func-
tion combined with a bulk encryption mode, which ensures that every message block is
encrypted differently. Additionally, this framework supports authentication of the cipher-
text to implement an authenticated encryption mode to also withstand DPA attacks.

32

4 Leakage-Resilient Cryptography for the Internet of Things

4.5.1 Permutation Leakage

As described in [44], permutation functions support a very flexible modeling of the SPA-
leakage in absent of traditional countermeasures such as masking or hiding. Given a
bounded leakage of λ bits on the internal state, this can be seen as a reduced capacity
c′ = c − λ. To keep the same security level, which is determined by the capacity, two
approaches can be taken. First, the size of the state of the permutation p can be increased.
Second, the rate can be reduced to r′ = r − λ to retrieve the desired capacity c. The
latter approach can be used to implement a flexible architecture, in which the rate can
be changed dynamically during runtime. If the leakage is too high, the rate is reduced.
However, the system needs to be able to deal with different rates.

4.5.2 Re-keying Function

PASEC defines two re-keying functions named RK1 and RK2. Both re-keying functions
are DPA-secure by design and do not contain additional countermeasures such as masking
or hiding.

4.5.2.1 Re-keying Function RK1

This re-keying function is based on the Goldreich-Goldwasser-Micali (GGM) [45] con-
struction. First, the state is initialized using the zero-padded master key K followed by
an application of the permutation function. Next, the GGM tree is constructed, by either
taking the left half or the right half of the current state, depending on the current bit
ni,l of the public nonce ni. The remaining half of the state is padded using the current
index i+ i. After constructing the next state, the permutation function is applied. This
is repeated for all bits of the nonce to finally compute the session key k∗. Figure 4.8
visualizes this computation.

4.5.2.2 Re-keying Function RK2

A second approach to construct a permutation-based re-keying function is to use directly
the sponge construction, which is depicted in Figure 4.9. Here the state is initialized using
the master key K padded with a dedicated initial vector iv, followed by an application
of the permutation function. Then all l bits of the nonce ni are iteratively absorbed
into the state. This is followed by an application of the permutation function to finally
compute the session key k∗.

33

4 Leakage-Resilient Cryptography for the Internet of Things

K0

p

pp

pp

p

1 1

2

SL SR

S1,L S1,RS1,L S1,R
2

l

k*

Init

ni,0

ni,1

ni,l-1

Figure 4.8: Re-keying function RK1.

p p p
K

iv

k*

…

…
1
n0

1
nl-1

c

Figure 4.9: Re-keying function RK2.

4.5.3 Encryption Function

The encryption mode in PASEC is constructed using a classic sponge construction. The
state of the permutation function is initialized using the obtained session key k∗ in com-
bination with the nonce ni, and a dedicated initial vector for encryption iv. The session
key k∗ is computed either via the re-keying function RK1 or RK2. After performing
an initial application of the permutation function, the rate-part r of the state is used
to generate a pad-stream for encryption, which is depicted in Figure 4.10. The generic
re-keying function g1 can either be the re-keying function RK1 or RK2.

4.5.4 Authentication Function

PASEC also defines an authentication mode in an encrypt-then-MAC construction. As
illustrated in Figure 4.11, first, the ciphertext data is hashed to get the value y. The
value y is then used to compute a MAC-key k2, which depends on the ciphertext. For
this purpose the generic re-keying function g2 is either the re-keying function RK1 or

34

4 Leakage-Resilient Cryptography for the Internet of Things

r

p p
iv

c0

c

g1

K1

ni||0*1

p0

p

c1

c

r

p1

p

cl-1

r…

…112

144

144

k*

Figure 4.10: Sponge construction for encryption.

RK2. This key k2 is finally used to compute the authentication tag T . Although this
authentication algorithm supports associated data, which would be hashed before the
ciphertext, this is not used in the application of the PULP architecture.

The encrypt-then-MAC construction is required because otherwise, it would open a door
to a DPA attack. In a MAC-then-encrypt construction the authentication tag is com-
puted on the plaintext and is then encrypted with it together. In the verification step
while decrypting, the ciphertext and the tag are first decrypted before the integrity is
checked. In this case, an attacker may tamper the memory to keep the value of the
nonce constant. This would allow the adversary to capture multiple power traces using
the same master key K and the same nonce ni but with different data, which eventually
leads to a DPA attack.

p p p
ni

iv …

…

c0 cl-1

c

g2

p

K2

T
k2y

Figure 4.11: Sponge construction for authentication.

4.5.5 Parameter Selection

Permutation-based cryptographic modes support a flexible trade-off between performance
and security. For all operating modes, we require a security of 128-bits. Let us define b
with the size of the permutation p, k the size of the master key K, and t the size of the
authentication tag T . Furthermore, we denote the size of the capacity of the permutation
with c and the size of the rate of the permutation with r. Using these definitions, PASEC
defines the security bounds for the particular primitive functions RK1, RK2, ENC, and
MAC in Table 4.1. For the targeted security level of 128-bit, we use the Keccak-f [400]

35

4 Leakage-Resilient Cryptography for the Internet of Things

permutation as described in Section 2.4.1. Keccak-f [400] uses a state size of 400-bits,
which is sufficient to reach a security level of 128-bit according to Table 4.1.

Furthermore, [1] also defines the required number of rounds of the Keccak-f [400] per-
mutation to achieve 128-bit security given a 128-bit master key K. Contrary to the
original definition of Keccak-f [400] in [9], which requires 20 rounds for this permuta-
tion, PASEC relaxes the required number of rounds for the re-keying function RK1 and
for the MAC algorithm. The required number of rounds for PASEC is summarized in
Table 4.2.

4.6 XTS Encryption

We want to compare the leakage-resilient modes described before with state-of-the-art
cryptographic modes used for disk encryption systems. For this reason, we also implement
the XTS [46] mode of operation, which is used in various commercial products [47,48].

XTS stands for XEX-based tweaked-codebook mode with ciphertext stealing, which is
a recommended mode of operation by the National Institute of Standards and Technol-
ogy (NIST). This scheme is based on the XOR-Encrypt-XOR construction [49] and uses
the AES [7] as its encryption primitive. Compared to XEX, XTS uses two different keys
K1 and K2 for the tweak derivation and the encryption. The construction of XTS is
shown in Figure 4.12

Although this mode of operation was developed for disk encryption, it is also suitable for
the use case of memory encryption, or any arbitrary communication encryption. Disks
are usually organized in larger blocks, the so-called sectors. This concept also applies to
the main memory. Instead of directly reading one single value from the main memory,
the cache controller fetches one cache line, which can be considered as the sector. For a
communication scenario, a message number may be seen as the sector number to derive
a different tweak.

As shown in Figure 4.12, the sector number (SN) is used to derive a sector-dependent
tweak. Furthermore, a multiplication in the finite field GF(2128) with αaddr computes a
different, address-dependent tweak for each block of memory in one sector. The address-
dependent tweak is used to whiten the input and output of the block cipher. Due to

Table 4.1: Security bounds for the PASEC framework [1].
Function Security (bits)
RK1 min(k, b/2, c)
RK2 min(k, c/2, t)
ENC min(k, b/2, t)
MAC min(k, b/2, c, t)

36

4 Leakage-Resilient Cryptography for the Internet of Things

E/D

P

C

K1

K2

SN

αaddr
T

T

U
E

Figure 4.12: XTS encryption mode.

different tweaks for each address in the sector, each value gets encrypted differently.
Therefore, this construction mitigates weaknesses from ECB, in which the same plaintext
always encrypts to the same ciphertext. However, the XTS construction is not SCA
resistant by default. To do so, the block cipher, as well as the tweak derivation function,
need to include countermeasures against this kind of attacks.

Table 4.2: Recommended parameters for PASEC [1].
Function Capacity c max. State Leakage Rounds
RK1 256 128 12
RK2 256 128 20
ENC - 72 20
MAC 399 271 12

37

Chapter 5
Hardware Architecture

This chapter describes the hardware architecture of HWCrypt , a cryptographic accelera-
tor for the PULP system. We describe each relevant component of the design by starting
with the top-level architecture. Details of sub-components are then given in a top-down
approach. Furthermore, we present the functional verification flow used in this design.
This covers the verification using an RTL-flow, as well as a software-defined verification
of the accelerator.

5.1 Accelerator Architecture

There are different possibilities to achieve the goal of a secure communication off the
cluster. An encryption unit could be added directly at the communication bus level,
which was done in [50] for the AXI interface. Such a design supports a transparent en-
cryption for all memory transfers on the bus. Adding a confidential communication over
an input/output (I/O) interface is hard to achieve in such a design. This type of com-
munication is fairly different from memory accesses. Furthermore, such an architecture
does not support a flexible evaluation of the cryptographic algorithms.

A second possibility is adding an encryption module in the DMA controller of the cluster.
DMA is used to transfer larger blocks of data from the L2-memory to the TCDM, and
vice versa. Due to bigger block sizes, one can gain better performance and efficiency
but is still limited to DMA transfers only. Achieving an I/O encryption in this scenario
requires a special DMA controller for I/O within the cluster.

A third approach is implementing a dedicated cryptographic accelerator, which operates
as a co-processor from the CPU perspective. The processing cores can program the
accelerator to encrypt data from the TCDM and then start an operation. The accelerator
operates in parallel to the processing cores and notifies them when it finishes. After

38

5 Hardware Architecture

finishing one encryption operation, the CPU core can program the DMA controller to
transfer the encrypted data off the cluster, or send it via an I/O interface outside the chip.
For this thesis, we choose this approach. The accelerator supports both the encryption of
the TCDM inside the cluster and the communication of data sent over an I/O interface off
the chip. Furthermore, this approach allows us to flexible evaluate of the cryptographic
operations concerning the DPA safety. Additionally, this design gives us the possibility
to use the internal primitives in software. This allows us to implement primitive-based
algorithms in software, but with hardware acceleration.

Figure 5.1: PULP architecture with HWCrypt accelerator.

Figure 5.1 shows the PULP system with the cryptographic accelerator HWCrypt inside
the cluster. This is indicated by the purple unit next to the OpenRISC processing cores.
The connection shows the TCDM interface of the accelerator, and a peripheral interface,
which the processing cores use to program the accelerator.

5.2 Operation

The main goal of the accelerator is to encrypt and decrypt data of the TCDM using algo-
rithms, which resists side-channel attacks. Chapter 4 presents the algorithms supported
by this accelerator. It describes two leakage-resilient encryption schemes, which both
rely on the principle of fresh re-keying. For a better flexibility, we require the accelerator
also only to perform the re-keying operation alone. The freshly computed session key
can then be used in software for further processing. Third, we require the accelerator to
allow a primitive operation. This means the inner primitive operations of the encryption
schemes – the AES round function and the permutation function – should be accessible

39

5 Hardware Architecture

via the accelerator interface. This can be used to implement any algorithm in software,
which is based on these primitives, but with hardware acceleration.

5.3 HWCrypt - A Cryptographic Accelerator

Figure 5.2 shows the top-level architecture of the HWCrypt accelerator. The accelerator
is part of the PULP cluster and, therefore, provides one peripheral interface. This
interface allows the processing cores to configure, start, and monitor the accelerator. In
addition to the peripheral interface, HWCrypt facilitates two 32-bit TCDM interfaces,
which are used by the accelerator to load and store the ciphertext and plaintext from
the TCDM. Both TCDM interfaces are used only in one direction, which means that
one interface only reads data, whereas the other one only writes data to the TCDM.
Furthermore, HWCrypt contains two interrupt or event lines, which are used to notify
the processing cores that the operations of the accelerator have finished.

AES
Unit

Polynomial
Re-keying

Configuration Registers

PRNG

2 TCDM Ports

Peripheral
 Interface

HWCrypt

FSM
FinishIRQ

TCDM
TX IF

TCDM
RX IF

Sponge
Unit

Cmd
Queue

IntermediateIRQ

Figure 5.2: Top-level architecture of the HWCrypt accelerator.

Internally, the accelerator uses the AESUnit, the Polynomial Re-keying Unit, and the
SpongeUnit for computing the cryptographic operations. Moreover, the design uses a
finite state machine (FSM), two TCDM interface controllers, a command queue, and a
register interface for the data transfer and the control flow. The design rationales of
these components are now discussed in detail.

40

5 Hardware Architecture

5.4 Peripheral Interface

A 32-bit peripheral interface is used for the register configuration. The accelerator regis-
ters are visible for the CPU cores in a certain memory range and can be read or written
by the processing cores. These memory accesses are transferred into accesses to the pe-
ripheral interface. The peripheral interface only supports 32-bit accesses in hardware,
which needs to be considered when performing an access via software. A detailed reg-
ister map is describing all registers of the accelerator, as well as the detailed interface
description, are shown in Section A.6 and Section A.5.

5.5 Command Queue

The accelerator can only compute one job at a time. However, to improve its efficiency,
we implement a command queue. This allows the software to configure multiple pending
jobs while the accelerator is still busy with its current operation. Therefore, we define a
special set of registers, namely the queue registers. These registers are writeable while the
accelerator is still busy. Write accesses to all other registers block until the accelerator
is in the idle state again. Furthermore, new jobs can be started although HWCrypt is
still working. When the accelerator finishes one job, it automatically fetches the next
pending job from the command queue and starts it. Adding a new job to the queue only
works if the queue is not full. However, if the queue is full and the software tries to
start a new job, this access is blocked until there is space in the queue again. The main
reasons to implement a command queue are the long configuration and interrupt latency
of the PULP system. To overcome this drawback, the processing cores can re-program
the accelerator while it is still busy. The performance improvements due to adding a
command queue are discussed in Section 6.6.

21

PtrOut_SP

1

1

1

Bin 2
OneHot

PtrIn_SP
2

FSM

CmdQueue

NextCmd_DO

Full_SO

Gnt_SOReq_SI

Cmd_DI

Figure 5.3: Architecture of the command queue.

41

5 Hardware Architecture

Figure 5.3 shows the architecture of the command queue, which contains four sets of
queue registers. These queue registers are a collection of several different registers, which
are required for a new job.

5.6 Polynomial Re-keying Unit

In this section, we evaluate different architectures of the masked polynomial multiplier
as described in Algorithm 8. This unit multiples two polynomials in the finite field
GF(28)[y]/(y16 + 1). Furthermore, this unit implements additive masking of the secret
key as a countermeasure against a DPA attack. We discuss different architectures of the
underlying polynomial multiplier, which are based on Algorithm 5.

5.6.1 Parallel Masked Polynomial Multiplier

A parallel masked polynomial multiplier consists of multiple unmasked polynomial multi-
pliers to implement a masked version of the algorithm. This does not affect the through-
put because all unmasked multiplications are computed in parallel. Such an architecture
requires m + 1 instances of a polynomial multiplier to implement m-th order masking,
which would increase the area requirements tremendously.

Second, this design is not safe against a DPA attack. Consider first-order masking with-
out shuffling. Such a design requires two polynomial multipliers. The first multiplier
performs the computation m0 ·ni. The second multiplier computes the masked multipli-
cation (K ⊕m0) ·ni. In this architecture one register contains the value m0 and another
one the register K ⊕m0. The Hamming-distance between those registers equals the key
K = (K ⊕ m0) ⊕ m0. Assuming a Hamming-distance based power model, this would
leak information on the key K via the power consumption. For this reason, this par-
allel architecture is not suitable for a secure implementation of the masked polynomial
multiplication.

5.6.2 Iterative Masked Polynomial Multiplier

The iterative masked polynomial multiplier computes all unmasked multiplications iter-
atively. Since there are no parallel computations of two multiplications, no information
leaks via the Hamming-distance are possible by design. Since all polynomial multipli-
cations are computed iteratively, the throughput is decreased linearly with the masking
order. One advantage of this architecture is its support of an arbitrary masking order
without a major implementation overhead. Figure 5.4 shows the architectural block di-
agram of the iterative masked polynomial multiplication. This design supports masking
up to order 255.

42

5 Hardware Architecture

1

2

128

128

128

FSM

M
as
ke
dV
al
ue
_
D
N

InpA_DI

InpB_DI

ShuffleType_SI

1
0

Busy_SO

AccuResult_D

M
as
ke
dV
al
ue
_
D
P

RandomValue_DI

Key_DI

Nonce_DI

InpValueSel_SP

128

128

128

2

InpA_D

MulResult_DP

128

128

128Po
ly
m
ul
Re
su
lt_
D

Start_SI

O
ut
pS
el_
S

128

MaskedValueSel_S

Start_SI Finish_SO

MaskingOrder_SI

Result_DO

Finish_SO

128

134

128

128

2ShuffleType_SI

8

PolyMul

MaskedPolyMul

OutpC_DO

1280

RandomValue_DI
0

0

128

128

Key_DP

Mask_DP

GateKey_DP

128

128134

Figure 5.4: Masked polynomial re-keying function.

The architecture can be broken into three parts: on the left, the design contains an
accumulator to compute the final masked key. In the middle, the unmasked polynomial
multiplier is used to perform any multiplication. On the right part, the output accu-
mulator is shown, which computes the final result of the session key k∗. If masking is
disabled, the result directly from the polynomial multiplier is used for the output.

Masked Key Accumulator. The masked multiplication algorithm, as describes in
Algorithm 8, first computes the multiplications between the masks mi and the nonce ni.
Second, the multiplication of the masked key and the nonce is performed. To compute
the masked key, the register MaskedValue_DP first stores the value K⊕m0, which imple-
ments first-order masking. The polynomial multiplier then computes the multiplication
m0 · ni. In the next step, the next mask m1 is processed. This mask is added to the
MaskedValue_DP register to get the second-order masked key K ⊕m0 ⊕m1. Then the
mask m1 is processed to compute the value m1 · ni. These steps are repeated until the
desired masking order is reached.

Output Accumulator. The output accumulator fetches the results of the unmasked
polynomial multiplier and accumulates them in register MulResult_DP. For the following
description we consider first-order masking. For this operation, first, the result of m0 · n
is stored. Second, the result of (K ⊕mo) ·ni is added to the output accumulator register
to eventually compute the final result of the session key k∗ = K · ni.

43

5 Hardware Architecture

5.6.3 Polynomial Multiplier

The masked polynomial multiplier uses one instance of an unmasked polynomial mul-
tiplier, which is described in this section. This unit implements the operand-scan mul-
tiplication scheme described Algorithm 6. This polynomial multiplier exploits different
shuffling strategies as the second countermeasure against DPA attacks.

5.6.3.1 Fully Parallel Multiplier

A fully parallel multiplier computes all 256 partial multiplications in parallel. Therefore,
this architecture requires 256 instances of a multiplier in the finite field GF(28), which
increases the area of the multiplier. This design gives the best throughput since the
multiplication is computed in one cycle. However, this design does not allow shuffling
since all partial multiplications are computed in parallel.

5.6.3.2 Fully Iterative Multiplier

A fully iterative multiplier only consists of one multiplier in GF(28). All 256 partial
multiplications are computed iteratively. Due to the iterative computation, shuffling is
possible. However, the throughput of this design is worse because it takes 256 clock
cycles to compute one multiplication. Since the polynomial multiplier only uses one
multiplier in GF(28) the area consumption is low, which makes this design attractive to
area-constraint environments such as smart cards.

5.6.3.3 Iterative Parallel Multiplier

The iterative parallel multiplier combines the fully parallel architecture with the iterative
design. The goal is to improve the throughput compared to the fully iterative architecture
but still support shuffling.

As indicated in Algorithm 6, only the order execution of the outer loop is randomized,
which means all operations of the inner loop can be parallelized. This results in the design
as proposed in Figure 5.5. This architecture consists of 16 parallel multipliers in GF(28)
to implement the inner loop of the operand-scan algorithm. Furthermore, the design
consists of 16 multiply-accumulate stages, each containing a multiplier in the finite field
GF(28). These stages compute all 16 result coefficients in parallel by accumulating their
partial multiplication results. To compute all 256 partial multiplications, this design
requires 16 clock cycles since all output coefficients are computed in parallel.

The shuffle unit selects the current coefficient index of the first operand of the multipli-
cation, which is the same for all 16 multiplication stages. The second coefficient index
differs for each multiplication stage but depends on the first index. Therefore, this value

44

5 Hardware Architecture

8

4

128

PolyC_DP[1]

4

8

0

1C_DO
A_DI

B_DI

GF256Mul

8

8

…

0

1C_DO
A_DI

B_DI

GF256Mul

8

8

8

…

0

1C_DO
A_DI

B_DI

GF256Mul

8

8

8

…

8

8

…

0

-
4

4

-
4

44

-
4

4

1

15

… … …

FSM
Busy_SO
Finish_SO

PolyC_DP[15]

PolyC_DP[0]

8

8

88

8

8
8

8

88

8

8

…
ShuffleUnit

ShuffleValid_SOShuffleValue_DO

ShuffleType_SI Start_SI

OutpC_DO

G
FM

ul
O
ut
p_
D
[0
]

G
FM

ul
O
ut
p_
D
[1
]

G
FM

ul
O
ut
p_
D
[1
5]

…

Ac
cu
m
ul
at
e_
S

Po
ly
C_
D
N
[1
5]

Po
ly
C_
D
N
[1
]

Po
ly
C_
D
N
[0
]

A
Se
l_
S[
15
]

A
Se
l_
S[
1]

ASel_S[0]

4BSel_S

8

8

8

8

PolyBSel_D

Po
ly
A
Se
l_
D
[0
]

Po
ly
A
Se
l_
D
[1
]

Po
ly
A
Se
l_
D
[1
5]

2

128

128

Start_SI
ShuffleType_SI

InpB_DI

InpA_DI

Polymul

ShuffleValid_S

Figure 5.5: Iterative polynomial multiplier.

is computed combinationally using the relation ASel[i] = i − BSel. In this relation,
BSel indicates the index generated by the shuffling unit. ASel[i] denotes the index for
operand A for the i-th stage.

In addition to the full Fisher-Yates shuffling, the shuffle unit also supports shuffling only
the start index as originally proposed by Medwed et al. Furthermore, shuffling can be
completely disabled for evaluation purposes.

5.7 Linear Feedback Shift Register

The masked polynomial re-keying unit from Section 5.6 requires random masks for its
computation. Furthermore, the polynomial multiplier from Section 5.6.3 requires random
data for the internal shuffle unit. We use a linear feedback shift-register (LFSR) to
implement a pseudo-random number generator (PRNG) to provide the required data.

The masked multiplication requires 128-bit random masks. The shuffle unit requires, at
least, 4-bits of random data per cycle. In the first step of the polynomial multiplication,

45

5 Hardware Architecture

both a mask and the random shuffle data are required. Therefore, we require 132-bit
of random data in this step. As a result, we implement an XNOR-based 132-bit LFSR
based on the polynomial x132 + x103 [51]. For the sake of simplicity the architecture
depicted in Figure 5.6 shows the computation of only one random bit. This schematic is
replicated 132 times to compute one random 132-bit vector per clock cycle.

0 1 2 120 121 131

…

…

…

Figure 5.6: 132-bit LFSR architecture.

5.8 AES Unit

The AES unit is developed to implement all AES-based encryption modes. This includes
the leakage-resilient encryption mode described in Section 4.4.1 and the XTS encryption
mode described in Section 4.6. Furthermore, this unit supports the post-processing of
the session key as described in Section 4.3.3 and plain ECB encryption using AES-128
for comparison purposes.

Figure 5.7 shows the architecture of the AES unit. The main part of this architecture is
one instance of an AES-128 algorithm, which supports computing two words in parallel.
This parallel operation of two words is used in XTS- and in ECB-encryption. Moreover,
this unit facilitates a 128-bit data input-, and output interface with an AXI-like hand-
shake. The handshake protocol is based on a ready and valid signal similar to the AXI
interface protocol. The design is broken into three parts, namely the input sampler, the
AES-128 instance, and the output sampler.

Input Sampler. The input sampling unit samples the 128-bit input data from the
TCDM interface into two registers Inp0_DP and Inp1_DP. XTS- and ECB-encryption
requires this for a parallel computation of two words. This unit operates independently
of the main control FSM of the AES unit as it tries to fetch data whenever it is possible.

AES-128 Dual Iterative. The middle part of the AES unit contains one AES-128
Dual Iterative instance, which is described in detail in Section 5.8.1. For XTS encryption,
the AES unit supports whitening of the input- and output-data by XORing them with
an address-dependent tweak. For all other modes, the tweak is constantly kept zero
to not modify the input- and output-data. The architecture of the tweak derivation is

46

5 Hardware Architecture

CipherOutp0_D

CipherOutp1_D

128

128

2

PostProcessedKey_D

Outp0_DP

Outp1_DP

FreshTweak_S

10 LrSel_S
Tw

ea
kI

np
0_

D
P

TweakOutp0_DP
Inp0_DP

10

Inp_DI

OutpDO

XTSGfMul

Inp_DI

OutpDO

XTSGfMul

Tweak0Mul4_D

Tweak0Mul2_D

CipherOutp0_D

TweakOutp1_DP

Tw
ea

kI
np

1_
D

P

Inp_DI

OutpDO

XTSGfMul

0 1

Inp_DI

OutpDO

XTSGfMul

FreshTweak_S

Tweak1Mul2_D

Tweak1InpMul4_D

Tweak1Mul4_D

CipherOutp0_D

1
0

0
1

1
0

Const1_DI

Nonce_DI

Const1Sel_S

FreshInpSel_S

Const0_DI Const0Sel_S

Inp_DI 0
1

Inp1_D

Inp0_D
CipherInp0_D

CipherInp1_D

Outp0_D

Outp1_D

Outp_DO
In

p0
_

D
I

In
p1

_
D

I

O
ut

p0
_

D
O

O
ut

p1
_

D
O

3210

Tw
ea

k0
_

D
N

Key_DI

CipherKey_D

Nonce_DI

Ci
ph

er
O

ut
p1

_
D

FSM

Start_SI
OpMode_SI

Length_SI
KeyValid_SI
InpValid_SI

OutpReady_SI

Busy_SO
Finish_SO
InpReady_SO
OutpValid_SO

Key_DO

Key0_DI
Key1_DI

AES128DualIterative

AESUnit

TweakOutp0_D

* Note: All internal data signals 128-bit wide

KeySel_S

128

128

128

128

Inp1_DP

Inp0_DP

Output
Sampler

Input
Sampler

Figure 5.7: Architecture of the AES unit.

described in Section 5.8.2. Since the same tweak is used to whiten both the input and
the output of the AES computation, the tweak for the first cipher stage is stored in the
registers TweakInp0_DP and TweakOutp0_DP. This structure is replicated for the second
cipher stage.

Output Sampler. The AES-128 instance outputs in ECB-, and XTS-mode two result
words per encryption since both cipher stages are used in parallel. To output this data
over a single 128-bit AXI-like interface, this data is first cached in the output sampling
stage defined by the registers Outp0_DP and Outp1_DP. The output sampler then outputs
one by one word on the output interface as this is ready. Meanwhile, the AES-128
instance can already compute the next encryption.

Clearly, if the architecture should only support the leakage-resilient mode of operation,
different parts of the design are not necessary. The input- and output-sampler are not

47

5 Hardware Architecture

needed since the AES unit operates only on one word rather than on two words in parallel.
Furthermore, the GF(2128) multipliers and the required registers to store the tweaks for
XTS encryption can be omitted.

5.8.1 AES Dual Iterative

For an efficient implementation of the leakage-resilient AES-based encryption mode as
defined in Section 4.4.1, we aim for an architecture which is capable of encrypting two
words in parallel. Since both encryptions use the same cipher key for encryption, the
key expansion algorithm is shared between both cipher stages. As shown in Figure 4.6,
pipelining cannot be exploited since there are data dependencies between each compu-
tation. Concretely, the new cipher key for the next encryption depends on the output
of the last encryption. Exactly this dependency does not allow us exploiting pipelining
in hardware to improve the throughput. These design rationales lead to following design
decisions:

1. An iterative architecture of AES
2. Two cipher stages for a parallel computation of two AES words
3. A shared key expansion algorithm between both cipher stages

The design decisions lead to the architecture AES-128 Dual Iterative, an iterative design
with two cipher stages. Figure 5.8 shows the block diagram of the top-level architecture
of AES-128 Dual Iterative. The design consists of two cipher stages, each using the
round-keys computed by the shared instance of the key expansion algorithm. Each of
the cipher stages computes one encryption.

5.8.1.1 Cipher Stage

In Figure 5.9 the architecture of the cipher stage containing two combinational round
functions is shown. The number of round functions increases the length of the critical
path and is constraint by the target frequency. The second round function is different
because this instance supports the last round function as defined in Algorithm 1. This
particular function adds a second execution path, which omits the MixColumn operation.
Having two combinational round functions, the invocation of the ten rounds of AES-128
is achieved in five clock cycles.

For evaluation purposes, Figure 5.10 shows a different architecture of the cipher stage,
which consists of three combinational round functions in the critical path. To apply the
round function ten times, this architecture requires four clock cycles. In the last clock
cycle the round function is applied only once. Therefore, this architecture implements
the instance for the last round of AES as the first round function in the combinational
path.

48

5 Hardware Architecture

128

OutpDecr0_D

128

AES Dual Iterative

Ci
ph

er
St

ag
e

KeySchedule

FSM

Key_DI

NewKey_SI

Inp0_DI

Inp1_DI
Outp1_DO

Outp0_DO

Start_SI Busy_SO
Finish_SO

EncrMode_SI

StartKS_S

Key_DI

EncrMode_SI

FirstKeyEncr_DO

RoundKeys_DO

Start_SI RoundCnt_SI

RoundCnt_SP

EncrMode_SI

La
st

O
ut

p_
D

O

In
pE

nc
r_

D
I

O
ut

pE
nc

r_
D

O

128

128

128

2x128

Roundkeys_D

FirstKeyEncr_D

128

128

128

128

Fi
rs

tI
np

_
D

I

FirstKeyDecr_DO

Ci
ph

er
St

ag
e

EncrMode_SI
Fi

rs
tK

ey
En

cr
_

D
I

Ro
un

dk
ey

s_
D

I

O
ut

pD
ec

r1
_

D

128

Fi
rs

tK
ey

D
ec

r_
D

I

Fi
rs

tK
ey

D
ec

r_
D

I
Fi

rs
tK

ey
En

cr
_

D
I

Ro
un

dk
ey

s_
D

I

In
pD

ec
r_

D
I

O
ut

pD
ec

r_
D

O

La
st

O
ut

p_
D

O
O

ut
pE

nc
r_

D
O

O
ut

pD
ec

r_
D

O

In
pE

nc
r_

D
I

Fi
rs

tI
np

_
D

I
In

pD
ec

r_
D

I

O
ut

pE
nc

1_
D

OutpEncr0_D

128

128FirstKeyDecr_D

Figure 5.8: AES-128 Dual Iterative top-level architecture.

5.8.1.2 Key Expansion Algorithm

Figure 5.11 depicts the key expansion algorithm of AES-128 for a cipher architecture with
two cipher stages. The key expansion algorithm supports computing the round-keys for
encryption and decryption. The round-keys for encryption and decryption only differ
in their order. The computation of them is based on the initial cipher key. A round
function for the key expansion algorithm is iteratively applied on the previous round-key
as described in Algorithm 3.

The decryption algorithm of AES-128 requires the same round-keys as for encryption,
but in the reverse order. Two approaches are considered to support this functionality.
First, the architecture contains a memory for all 11 round keys. The key expansion
algorithm for encryption is invoked, which stores all round-keys in the memory. For the
decryption operation, the pre-computed round-keys from the memory are returned in the
reverse order using a multiplexing network.

The second approach only saves the last round-key of encryption. Since the key expansion
algorithm of AES is invertible, one can compute previous round-keys given the last
one. Therefore, the first step is to perform the encryption variant of the key expansion
algorithm to determine the last round-key. This key is then used to compute again

49

5 Hardware Architecture

OutpDecr_D[1]

128

O
ut
pE
nc
r_
D
[1
]

128

RoundKeys_DI[1]

Ro
un
dI
np
D
ec
r_
D

128

128

Outp_DO

LastOutp_DO

1
0

1
0

1
0

RoundKeys_DI

FirstKeyDecr_DI

La
st
Ci
ph
er
Ro
un
d

Ci
ph
er
Ro
un
d

EncrMode_SIStart_SI

CipherStage

RoundKey_DI RoundKey_DI

EncrMode_SIEncrMode_SIIn
pE
nc
r_
D
I

In
pE
nc
r_
D
I

O
ut
pE
nc
r_
D
O

In
pD
ec
r_
D
I

In
pD
ec
r_
D
I

O
ut
pD
ec
r_
D
O

Fi
rs
tR
ou
nd
In
pD
ec
r_
D

OutpDecr_D[0]

O
ut
p_
D
N

La
st
O
ut
p_
D
N

O
ut
p_
D
P

La
st
O
ut
p_
D
P

La
st
D
ec
rO
ut
p_
D

LastEncrOutp_D

OutpEncr_D[0]

RoundKeys_DI[0]

128

2x128

128

128

128

128

128

128

128

128

Inp_DI

Ro
un
dI
np
En
cr
_
D

0
1FirstInp_DI

Fi
rs
tR
ou
nd
In
pE
nc
r_
D

128

128
128

128

O
ut
pE
nc
r_
D
O

FirstKeyEncr_DI

O
ut
pD
ec
r_
D
O

La
st
O
ut
pE
nc
r_
D
OL
as
tO
ut
pD
ec
r_
D
O

128

128

Fi
rs
tI
np
_
D
P

128

128

Figure 5.9: Architecture of a cipher stage with two combinational round functions.

128

128

RoundInpEncr_D

128

128

Ci
ph

er
Ro

un
d

Outp_DO

LastOutp_DO

1
0

1
0

RoundKeys_DI

FirstKeyDecr_DI

FirstInp_DI
Ci
ph

er
Ro

un
d

La
st
Ci
ph

er
Ro

un
d

EncrMode_SIStart_SI

CipherStage

RoundKey_DI RoundKey_DI RoundKey_DI

EncrMode_SIEncrMode_SIEncrMode_SIIn
pE

nc
r_
DI

In
pE

nc
r_
DI

In
pE

nc
r_
DI

O
ut
pE

nc
r_
DO

O
ut
pE

nc
r_
DO

O
ut
pE

nc
r_
DO

In
pD

ec
r_
DI

In
pD

ec
r_
DI

In
pD

ec
r_
DI

O
ut
pD

ec
r_
DO

O
ut
pD

ec
r_
DO

O
ut
pD

ec
r_
DO

Fi
rs
tR

ou
nd

In
pD

ec
r_
D

OutpDecr_D[0] OutpDecr_D[1] OutpDecr_D[2]

OutpEncr_D[1]

OutpEncr_D[2]

O
ut
p_

DN
La

st
O
ut
p_

DN

O
ut
p_

DP
La

st
O
ut
p_

DP

LastDecrOutp_D

LastEncrOutp_D

O
ut
pE

nc
r_
D[
0]

RoundKeys_DI[0] RoundKeys_DI[1] RoundKeys_DI[2]
128

3x128

128

128

128

128

128

128 128

128 128

128

128

128

128

Inp_DI

0
1

1
0

128

128

FirstKeyEncr_DI

128

RoundInpDecr_D

128

128

Fi
rs
tR

ou
nd

In
pE

nc
r_
D

Figure 5.10: Architecture of a cipher stage with three combinational round functions.

the previous round-keys by applying the inverse key update function. This approach
is preferable since it requires less memory to store all round-keys. Furthermore, the
multiplexing overhead is reduced since the output of the round function is directly used
as the round-key for decryption. This architecture is also more flexible because it scales
with the number of cipher stages of the cipher.

Figure 5.11 shows the block diagram of the key expansion algorithm for a two-round
cipher architecture. This design can easily be extended to a three-round cipher architec-
ture by adding a third key round function in the combinational path. For decryption,
the last round-key is stored in the KeyDecr_DP register, which is used to compute the
previous round-keys using the inverse key update function.

Figure 5.12 shows the parallel design of the round function of the key expansion algorithm
of AES-128. This design operates on round-keys organized in four 32-bit words. As

50

5 Hardware Architecture

128

128

K
ey

D
ec

r_
D

N

128128

0
1

RoundCnt_SI

Key_DI

K
ey

Ro
un

d

K
ey

Ro
un

d

EncrMode_SI

KeyExpansion

RoundKeys_DO[0] RoundKeys_DO[1]

128128

128

3

8 8

Rcon_DI Rcon_DI

K
ey

In
_

D
I

K
ey

In
_

D
I

K
ey

O
ut

_
D

O

K
ey

O
ut

_
D

O

128 128 128

KeyIn_D

KeyOut_D[0] K
ey

O
ut

_
D

[1
]

Ro
un

dK
ey

_
D

P

FirstKeyEncr_DO

0
1

0
1

4

EncrMode_SI

Start_SI

K
ey

D
ec

r_
D

P
128 K

ey
D

ec
r_

D

KeyDecrEn_S

128

0
1

+
3

3

3
0

5

0x
02

0x

08

0x
20

0x

80
0x

36
0x

1B
0x

40
0x

10
0x

04
0x

01

0x
01

0x

04

0x
10

0x

40
0x

1B
0x

36
0x

80
0x

20
0x

08
0x

02

EncrMode_SIEncrMode_SI

FirstKeyDecr_DO

Figure 5.11: Architecture of the key expansion algorithm.

described before, the architecture supports both the forward- and the backward-path of
the key expansion algorithm.

5.8.1.3 AES Round Function

The round function for the cipher stage combinationally computes one round of the AES
algorithm. Figure 5.13 shows the round function for the last round. This design supports
computing the intermediate round as well as the last round. For the sake of simplicity, we
only show the design of the last round since the intermediate round function is almost
the same, except it does not contain the exit path for the last round. Figure 5.13
shows the architecture of the round function with its two signal paths for encryption and
decryption. Furthermore, it shows the exit paths for the last round, which omits the
MixMatrix operation.

SubMatrix. The SubMatrix operation performs the S-box lookup for each of the 16
bytes of the state. Depending on the EncrMode_SI signal, the lookup is either performed
for encryption or decryption. We evaluated two different algorithms for the S-box lookup.
As described in Section 2.3, the mathematical description of the S-box lookup is based
on a multiplicative inverse in the finite field GF(28) followed by an affine transformation.
The inverse S-box lookup performs the opposite operation using an inverse affine trans-
formation followed by the multiplicative inverse. The multiplicative inverse is computed

51

5 Hardware Architecture

32

Key_DI[0] Key_DI[1] Key_DI[2] Key_DI[3]

Key0xor1_D Key1xor2_D Key2xor3_D

K
ey
0x
or
1x
or
2

K
ey
0x
or
1x
or
2x
or
3_
D

SubWord

RCon_DI

RCon_D

32

8888

Key_DO[0] Key_DO[1] Key_DO[2] Key_DO[3]

10

1 1 1000

EncrMode_SI

32 32 32

32 32 32 32

32

323232

32

32

32 32 32 32

32InpSubWord_D

OutpSubword_D

KeyEncr_D[0] KeyEncr_D[1]

K
ey
En
cr
_
D
[2
]

K
ey
En
cr
_
D
[3
]

KeyRound

Figure 5.12: Architecture of the round function of the key expansion algorithm.

using a lookup in a table (LUT), which is shared between encryption and decryption.
The affine- and inverse-affine transformations are computed combinationally. This de-
sign is denoted as the shared design. The second approach is using a dedicated LUT
for both encryption, and decryption. Both LUTs contain the multiplicative inverse as
well as the required pre-, or post-transformation. Compared with the first approach this
architecture requires two LUTs. However, this design is faster since no combinational
transformation and multiplexing are required. We name this architecture as the separate
design. The architecture of both approaches is depicted in Figure 5.14.

ShiftRows / InvShiftRows. This operation performs a cyclic shift of the state. This
only contains a rewiring of the state in hardware.

MixMatrix / InvMixMatrix. The MixMatrix operation performs the MixColums
step on all bytes of the state. The design uses an optimized 32-bit implementation as

52

5 Hardware Architecture

128
AddRKey

InvShiftRows

SubMatrix

AddRKeyShiftRows

AddRKey

MixMatrix

OutpEncr_DO

InpDecr_DIInpEncr_DI

OutpDecr_DO

Roundkey_DI

EncrMode_SI

InpInvSr_D

InpSr_D InpRKeyAddDecr_D

OutpSr_D OutpRKeyAddDecr_D

LastCipherRound
128 128

128

128128

128
128

OutpMixMatrix_D
128

128 128

LastOutpDecr_DO

InvMixMatrix

128

LastOutpEncr_DO

128

Figure 5.13: AES last round architecture.

proposed in [52]. Furthermore, this unit also supports the inverse operation for the
decryption operation.

AddRkey. The AddRkey performs an XOR operation between the state and the round-
key for the particular round. Adding the round-key works the same for encryption and
decryption.

5.8.1.4 Architecture Evaluation

For comparison reasons both S-box, architectures are synthesized for the targeted UMC
65nm technology. Figure 5.15 shows the Area-Time-plots (AT) of different synthesis runs
for both the two- and the three-round architecture. Additionally, the plots also show the
synthesis results for the two different S-box architectures.

As assumed, the separate S-box design is faster than the shared one. Due to the longer
critical path as shown in Figure 5.14a the shared design is slower than the separate design
shown in Figure 5.14b. However, since the latter architecture requires in total two LUTs
for encryption and decryption, the area requirements are higher.

53

5 Hardware Architecture

8

InpMulInv_D8

Inv. Affine
Transformation

Mul. Inv.

10

Affine
Transformation

EncrMode_SI

InpEncr_DI InpDecr_DI

OutpEncr_DO OutpDecr_DO

OutpMulInv_D

OutpInvAffine_D

SboxLUTShared
8 8

8 8

8

(a) Shared.

InpEncr_DI InpDecr_DI

OutpEncr_DO OutpDecr_DO

SboxLUTSeparate

8

SBOX INV SBOX

8

8 8

(b) Separate.

Figure 5.14: Two AES S-box designs.

60

80

100

120

140

160

180

200

1.5 2 2.5 3 3.5 4 4.5 5 5.5

A
re
a
[k
G
E
]

Clock Period [ns]

AES-128 Shared
AES-128 Separate

(a) 2-round.

50

100

150

200

250

300

2 2.5 3 3.5 4 4.5 5 5.5

A
re
a
[k
G
E
]

Clock Period [ns]

AES-128 Shared
AES-128 Separate

(b) 3-round.

Figure 5.15: AT-plots of different synthesis runs for two AES-128 architectures.

54

5 Hardware Architecture

The target frequency for synthesis of HWCrypt is 500MHz since previous tape-outs of
PULP chips in the same process technology indicate a maximum clock frequency of
500MHz under the typical-case conditions (VDD = 1.2V, T = 25 ◦C). For tape-out, the
design is synthesized using the worst-case process corner (VDD = 1.08V, T = 125 ◦C)
libraries, which are significantly slower than the typical-case libraries. To have a reason-
able area of HWCrypt , the target frequency for synthesis is reduced to 400MHz.

Figure 5.15b shows the AT-plot of the three-round architecture of AES-128 using the
typical-case parameters. Since the minimal clock period of this design is close to 2.5 ns,
the two-round architecture is favorable. In Figure 5.16 we show the AT-plot of the two-
round architecture using the worst-case process parameters. Compared to the typical-
case synthesis run, the minimum clock period is significantly reduced to 2.49 ns. The
plot also indicates the 400MHz threshold at a clock period of 2.5 ns.

50

100

150

200

250

300

2 2.5 3 3.5 4 4.5 5 5.5

A
re
a
[k
G
E
]

Clock Period [ns]

AES-128 Shared
AES-128 Separate

Figure 5.16: AT-plots of two-round AES-128 using worst-case parameters.

The AT-plot shows the results for both the shared, and the separate S-box design. For the
Fulmine tape-out, we use the separate design to reach the target frequency of 400MHz
when synthesizing with the worst-case parameters.

55

5 Hardware Architecture

5.8.2 GF(2128) Multiplier

XTS encryption requires a sequential tweak update based on a multiplication in the finite
field GF(2128) defined by the polynomial x128 + x7 + x2 + x + 1. The initial tweak is
derived from the sector address and is denoted by Tb. Address-dependent tweaks within
one sector are computed according to Equation 5.1.

Taddr = Tb · αaddr (5.1)

Intuitively this would require an exponentiation function to compute the address-dependent
tweak. The complexity can be reduced. First, α is a constant. The recommended pa-
rameters for α are 2 or 3 [46]. In this work we use the value α = 2. Second, this
tweak derivation function computes the tweak for each memory address within one sec-
tor. Equation 5.1 computes this address-dependent tweak always from the initial base
tweak. This is turned into a sequential derivation function as shown in Equation 5.2. The
next tweak is always computed from the previous one. This turns the exponentiation
function into a simple multiplication by 2 in GF(2128).

Ti = Ti−1 · 2 (5.2)

Multiplication by two, although in the finite field GF(2128), is fairly simple since it
only consists of a shift by one to the left with a conditional XOR with the irreducible
polynomial. The hardware architecture of this multiplier is shown in Figure 5.17.

0
1

0x87

Shifted_D

Inp_DI[126:0]
127

1
0

128

128

128

128

Inp_DI[127]

128

Outp_DO

Inp_DI

XtsMul

Figure 5.17: GF(2128) multiplication by 2.

5.9 Sponge Unit

The sponge unit implements a versatile architecture to support the permutation-based
re-keying functions RK1 and RK2. Furthermore, this unit supports a flexible encryp-
tion mode as well as authentication of the ciphertext. The sponge unit, as depicted in
Figure 5.18, is based on two instances of the permutation function Keccak-f [400] as
described in Section 5.9.2. The first permutation function is used for re-keying, encryp-
tion, and parts of the authentication algorithm. The second permutation is used for the

56

5 Hardware Architecture

authentication part during encryption, in which authentication and encryption can work
in parallel. Due to the parallel computation, the throughput is increased. Similar to
the AES unit, this design facilitates a 128-bit data input- and output interface with an
AXI-like handshake protocol.

The architecture of the sponge unit shows an iterative construction using a permutation
function on which all algorithms are based on. Both permutation functions use an input
multiplexer controlled by an FSM to select the right state input. The output of the
permutation function is fed into the Variable Rate Engine to absorb or squeeze data with
the correct rate. An iterative design is used because we cannot exploit pipelining since
there are data dependencies between each computation of the permutation function.

5.9.1 Variable Rate Engine

To support a flexible trade-off between performance and security, the sponge construction
supports a variable data rate. The permutation function uses the variable rate engine
only to operate on smaller parts of the data. This unit supports processing the following
rates: 1-bit, 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit.

Figure 5.19 shows the hardware architecture of the Variable Rate engine. This design is
based on two major parts. First, the unit is consists of a shift-register with a variable
shift-width for all supported rates. Second, there is an XOR unit which XORs the lower
r-bits of the internal data D with the state State_DI. The parameter r denotes the
supported rates as stated before.

5.9.2 Keccak-f [400] Permutation

The permutation-based re-keying and encryption modes use the Keccak-f [400] permu-
tation function. This permutation function consists of 20 iterative round functions, as
described in Algorithm 4. Figure 5.20 shows the architecture of a three-round version
of Keccak-f [400]. For 20 invocations, during the last clock cycle, only two round in-
vocations need to be invoked rather than three. Therefore, the state is exited after two
rounds and multiplexed at the output register. Moreover, to support a more flexible
evaluation of the security of the permutation-based algorithms, the implementation of
Keccak-f [400] supports less than 20 computations of the round function. In fact, the
architecture supports any round number, which is a multiple of three, up to a maximum
number of 20 rounds.

An iterative approach is chosen since pipelining is not exploitable. Due to data de-
pendencies from the output to the input, pipelining the architecture would not gain
any throughput improvement. The number of combinational rounds is defined by the
desired maximum frequency of 400MHz using the worst-case process parameters. In
Figure 5.21 we compare two the synthesis results of the three-round architecture using

57

5 Hardware Architecture

400 256

4

4

4

2

X
or
D
at
aS
el
_
S

14
4

144

3
3

3

2

In
itR
k2
K
ey
0_
D

40
0

40
0

40
0

40
0

40
0

40
0

In
itR
k1
K
ey
1_
D

27
2

In
itR
k2
K
ey
1_
D

C
ou
nt
er
_
D
P

12
8

3

P0Outp_D

14
4

144

20
0

40
0

Inp_DI

Outp_DO

M
ax
R
ou
nd
_
SI

K
ec
ca
kF
40
0

Va
ria
bl
e

R
at
e

En
gi
ne

0 1 …
0 1

H
al
fS
el
_
S

St
at
eR
k1
_
D

0 1

+
1

St
at
eL
ef
t_
D

St
at
eR
ig
ht
_
D

40
0

20
0 20
0

StateNonce_DP

Pa
dd
ed
N
on
ce
_
D

25
6

14
4

14
4

StateNonce_DP

144

PaddedNonce_D

14
4

Inp_DI

Outp_DO

M
ax
R
ou
nd
_
SI

K
ec
ca
kF
40
0

Va
ria
bl
e

R
at
e

En
gi
ne

Ex
pK
ey
0_
D
P

40
0

40
0 P1Outp_D

Ex
pK
ey
1_
D
P

40
0

40
0

40
0

X
or
D
at
a_
D

P1
In
p_
D

P0
In
p_
D

P0
M
ax
R
ou
nd
s_
S

P1
M
ax
R
ou
nd
s_
S

3

40
0

40
0

40
0

27
2

K
ey
1_
D
I

0
Iv
R
k2
_
D
I

Iv
M
ac
_
D
I

N
on
ce
_
D
I

In
itM

ac
_
D

In
itM

ac
_
D

In
itR
k1
K
ey
1_
D

In
itR
k2
K
ey
1_
D
40
0

Se
ss
io
nK
ey
_
D

Pa
dd
ed
N
on
ce
_
D

IV
En
c_
D
I

14
4

14
4

11
2

In
itE
nc
_
D

In
itR
k1
K
ey
0_
D
40
0

4
P0
In
pS
el
_
S

P1
In
pS
el
_
S

40
0

StateInp_D

St
at
eI
np
Se
l_
S

3

In
p_
D
I

2

P0
R
ou
nd
Se
l_
S

RekeyRounds_DI

EncRounds_DI

MacRounds_DI

3
3

3

A
dd
Se
l_
S

K
ey
_
D
O

25
6

14
4

X
or
P0
O
ut
p_
D

O
ut
p_
D
O

FS
M

12
8

K
ey
0_
D
I

27
2

0

Iv
R
k2
_
D
I

27
2

12
8

27
2

2

P1
R
ou
nd
Se
l_
S

RekeyRounds_DI

EncRounds_DI

MacRounds_DI

0 1

X
or
P1
O
ut
p_
D

ExpKey0_DP

144
InpSample_DP

RateRekey_SI
RateEnc_SI

RateMac_SI

14
4X
or
P0
R
at
e_
S

2

X
or
P0
R
at
eS
el
_
S

In
p_
D
I

X
or
R
at
e_
SI

State_DI

State_DO

14
4

XorP0Inp_D

Ex
pK
ey
0_
D
P 25
6

400

400

400

400

40
0400

CachedState_DP

St
ar
t_
SI

R
ek
ey
M
od
e_
SI

En
c_
SI

A
ut
h_
SI

En
cr
M
od
e_
SI

Le
ng
th
_
SI

12
8 230

Sp
on
ge
U
ni
t

12
8

14
4Fi
ni
sh
_
SO

F
ig
ur
e
5.
18

:A
rc
hi
te
ct
ur
e
of

th
e
sp
on

ge
un

it
.

58

5 Hardware Architecture

Tweak_S State_DO

142

140

144

143
0 144

1

0 144

2

0 144

4…

144

4

1
0 144

ShiftValue_D

144

ShiftReg_DP

0
1

144

144

143 1

144

142 2

144

140 4

144

128 16

…

0 0 0 0

ShiftReg_DN

144

144

State_DI
FreshInp_S

Inp_DI
Shift_SI

144

VariableRateEngine

XorRate_SI
4

XorRate_SI

Figure 5.19: Architecture of the variable rate engine.

the typical-case process parameters against the worst-case parameters. One can clearly
see the worst-case parameters are much slower compared to the typical-case parameters.
This architecture fulfills the requirements to reach a clock period of 2.5 ns to achieve a
maximum frequency of 400Mhz. The iterative architecture is very flexible and allows a
trade-off between the clock period and the throughput per cycle. Removing one round in
the critical path decreases the clock period by about 33%. Adding one additional round
in the critical path increases the clock period by about 25%.

5.10 TCDM Interfaces

The accelerator consists of two 32-bit TCDM interfaces for data transfer. Both interfaces
are used in a single-duplex mode, which means one interface is only used for receiving
data, and the other one is only used for transmitting data. Furthermore, both interfaces
implement an interface converter between the 32-bit TCDM interface and the internally
used 128-bit AXI-like interface. The TCDM interfaces are used to load and store data
for encryption and decryption. Moreover, both interfaces are used to load and store the
authentication tags, when using an encryption mode with authentication.

We now evaluate the bandwidth requirements of the TCDM interface to make a proper
choice on the number of required TCDM ports of the accelerator. The bandwidth is
determined by the throughput of the AES-based encryption algorithms, as well as the
throughput of the permutation-based encryption algorithm. For both algorithms, we
define a block size of 128-bit per encryption, although the permutation-based encryption
mode supports smaller block sizes as well. Figure 5.22 shows the required TCDM band-
width for different latencies of the encryption algorithms. The AES-based encryption
algorithm requires five cycles to encrypt one block of data using the leakage-resilient
mode of operation. According to Figure 5.22, this requires two TCDM ports in single-
duplex operation to handle the bandwidth. Although the ECB- and XTS-mode are faster

59

5 Hardware Architecture

4

RoundCnt_DP

400

In
p_

D
I

O
ut

p_
D

O
K

ec
ca

kF
40

0R
ou

nd

RCon_DI

In
p_

D
I

O
ut

p_
D

O
K

ec
ca

kF
40

0R
ou

nd

RCon_DI

In
p_

D
I

O
ut

p_
D

O
K

ec
ca

kF
40

0R
ou

nd

RCon_DI

400 400

Ro
un

dO
ut

p_
D

[0
]

Ro
un

dO
ut

p_
D

[1
]

Ro
un

dO
ut

p_
D

[2
]

St
at

e_
D

P

0 1 2 3 4 5 6

0x
00

01
0x

80
00

0x
80

81
0x

00
88

0x
80

8B
0x

80
03

0x
80

0A

0x
80

82
0x

80
8B

0x
80

09
0x

80
09

0x
00

8B
0x

80
02

0x
00

0A

0x
80

8A
0x

00
01

0x
00

8A
0x

00
0A

0x
80

89
0x

00
80

0x
00

00

16 16 16

RC
on

_
D

[0
]

RC
on

_
D

[1
]

RC
on

_
D

[2
]FSM

400

4

Inp_DI

Start_SI

MaxRounds_SI

400

Outp_DO

Finish_SO

Busy_SO
KeccakF400

0

1

0

1

St
at

e_
D

N

400

400

EdgeState_D

Ed
ge

Se
l_

S

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Start_SI

Figure 5.20: Architecture of the Keccak-f [400] permutation function.

(they encrypt two words in five clock cycles rather than only one), the TCDM bandwidth
is not optimized for those modes. The support for these modes of operation is only added
for comparison reasons, but they are not the main target application of the accelerator.

5.11 Verification

In this section, we describe the verification approach used for HWCrypt . This covers the
functional verification of the accelerator from a stand-alone hardware perspective, as well
as the functional verification of the accelerator in the system perspective of the whole
PULP chip.

5.11.1 Functional Verification

Functional verification is a big part of the design. Most of the hardware units contain their
own randomized test bench. In fact, the development of HWCrypt followed a test-driven
development approach. With the help of version control and continuous integration,
the quality of the implementation was raised. Due to instant feedback of the continuous
integration system, regressions were easily detected. The test suite for HWCrypt contains
constraint randomized unit tests for the following design modules:

• AES Dual Iterative
• Keccak-f [400]

60

5 Hardware Architecture

0

5

10

15

20

25

30

1 1.5 2 2.5 3 3.5 4

A
re
a
[k
G
E
]

Clock Period [ns]

KECCAK-f[400] typical
KECCAK-f[400] worst

Figure 5.21: AT-plot of two Keccak-f [400] architectures.

• AES unit
• Sponge unit
• LFSR
• TCDM receive interface
• TCDM transmit interface
• HWCrypt

All of these test benches follow the same approach. A Driver applies signals to the input
interface, and a Monitor receives the response from the design under verification (DUV).
The Monitor then compares the received response with the expected response, which is
either computed directly in the test bench or read from a stimuli file. The stimuli file is
generated from a golden model written in Python. A generic architecture of such a test
bench design is shown in Figure 5.23.

Such a test bench design has similarities to the universal verification methodology (UVM)
and is therefore called UVM-like test bench. However, we want to stress our test benches
do not use any UVM-macros and are much simpler from the hierarchical point of view.
Figure 5.24 shows the UVM-like test bench of the HWCrypt accelerator.

The architecture contains a Driver and a Monitor for both TCDM interfaces and a
separate Monitor for the interrupt interface. Additionally, the test bench contains a
so-called Transactor for the peripheral interface, which supports both driving and mon-
itoring of the interface. All design blocks with a monitoring functionality (Monitor and
Transactor) have a Match signal, which indicates whether the received response matches

61

5 Hardware Architecture

0 2 5 10 15 20
Latency [Cycles]

16

32

64

128

I/
O

 B
a
n
d
w

id
th

 [
B

it
s/

C
y
cl

e
]

Architecture bandwidth
TCDM Bandwidth for different # ports

1

2

4

8

#
 T

C
D

M
 P

o
rt

s

Figure 5.22: Bandwidth analysis for the TCDM interface.

the expected response of the golden model. If all Match signals are logic 1 for a test case,
the test case passes. As soon as one Match signal is logic 0, the test case fails.

5.11.2 Constraint Random Testing in Software

Constraint random testing is a state-of-the-art methodology in hardware development
to reach a proper test coverage. In such a test architecture, the stimulies to test a
hardware module are generated randomly but with certain constraints. One example for
a constraint could be a configuration value for a mode of operation, which is only allowed
to have certain values.

For testing the accelerator, we developed a golden model written in Python, which is
capable of generating constraint random test cases. These test cases are used in the
hardware test bench to test properly the accelerator. However, in this thesis we go
one step further. We use the same golden model to convert the stimuli used in the
hardware test bench into a C-program. This program is executed in the software test
bench with the whole PULP system. To generate the C-program conveniently, we use
Jinja2 [53], a template engine for Python originally developed for the web development.
The principle of a template engine is simple. First, we write a template of the C-program.
This template is then filled with values coming from the golden model. For the use in
HWCrypt , we write a template of the C-program, which either encrypts or decrypts data,
performs a re-keying operation, or does a primitive operation. Then we generate a test
case by using our golden model written in Python. The values of the generated test
case are filled into the template by using Jinja. The C-program is then executed on the
PULP system in a hardware-software co-simulation test bench.

62

5 Hardware Architecture

DUV MonitorDriver

Golden
Model

Reset, Clock
Generation

tb

tb_top

Figure 5.23: A generic test bench architecture.

AES
Unit

Polynomial
Re-keying

Configuration Registers

PRNG

HWCrypt

FSM

TCDM
TX IF

TCDM
RX IF

Sponge
Unit

Cmd
Queue

IRQ
Monitor

TCDM
Monitor

TCDM
Driver

tb
Score
Board

Python
Model

Peripheral
Transactor

tb_top

Figure 5.24: UVM-like test bench of HWCrypt .

63

Chapter 6
Results

In this chapter, we evaluate the results of the hardware implementation of the crypto-
graphic accelerator HWCrypt. Moreover, the software performance of certain parts of
the accelerator is discussed. We show the throughput improvements achieved due to the
hardware architecture. The overall efficiency of the accelerator in a real-life scenario is
analyzed, and the improvements due to implementing a command queue are presented.
Eventually, we discuss the backend results of the taped-out Fulmine ASIC.

6.1 Constraints

The HWCrypt accelerator is taped-out as part of a PULP chip using the UMC 65nm
technology. Previous tape-outs of PULP chips in this technology reach a frequency of
400MHz when synthesizing with the worst-case process parameters. As presented in
Chapter 5, the design of the cryptographic accelerator HWCrypt meets these timing
requirements. The longest combinational path in HWCrypt is determined by the design
of the AES-128 instance. As shown in Figure 5.15 the critical path of this design, a
register- to-register (R2R) path, is given by 2.48 ns. The R2R path of the Keccak-f [400]
permutation defines the next group of critical paths with a clock period of 2.11 ns.

6.2 HWCrypt Accelerator

In Table 6.1, we present the synthesis results for HWCrypt using the worst-case process
parameters (VDD = 1.08V, T = 125 ◦C). This table also shows the relative utilization
of each major component. The implementation of the peripheral interface including the
register file of the accelerator is integrated in the top-level design of HWCrypt .

64

6 Results

Table 6.1: Area breakdown of HWCrypt based on synthesis results.
Component Area [kGE] Utilization [%]
HWCrypt 349 100
AES unit 220 63.1
Sponge unit 61 17.4
Polynomial Re-keying 19.8 5.6
CmdQueue 11.6 3.3
LFSR 1.9 0.5
TCDM RX interface 2.3 0.6
TCDM TX interface 2.3 0.6

Table 6.1 indicates that with 63% utilization the AES unit is the largest part of the
design. As already discussed in Section 5.8, the size of the accelerator can be reduced
when targeting only one encryption mode rather than acting as a universal evaluation
platform. When only implementing the AES-based leakage-resilient mode, the sponge
unit can be omitted. Furthermore, the AES unit can be improved significantly. Since
the leakage-resilient mode only requires the encryption functionality of the block cipher,
rather than both encryption and decryption, the area of the block cipher can be reduced
significantly. Because the S-boxes for encryption and decryption mainly determine the
size of the AES implementation, removing the decryption part roughly halves the area
of the AES-128 instance. The decryption part of AES-128 in HWCrypt is only required
for the ECB- and XTS-mode, which are added for evaluation purposes.

When only targeting the permutation-based sponge unit, we can omit the AES unit and
the polynomial re-keying unit. This reduces the area of the design to less than 100 kGE.
Furthermore, the sponge unit can be improved by using only one permutation instance
to save about 20% of the area. This would reduce the throughput for authentication
when the encryption and authentication algorithm share the same configuration.

6.3 Advanced Encryption Standard

In this section, we discuss the performance results of different AES-128 implementa-
tions. We start with a software implementation and then present the results of the
hardware-accelerated AES architecture using the primitive operations of the accelerator.
Eventually, we discuss the performance of the AES-based modes of operation using the
full hardware implementation of HWCrypt.

65

6 Results

6.3.1 Software Implementation

Starting with an unoptimized software implementation of AES-128, we investigate the
runtime on a PULP processor, which is shown in Table 6.2. To improve the perfor-
mance of the vanilla implementation, all lookup tables are moved to the TCDM to get
a single-cycle access to the table values in the best case. Furthermore, the addressing
of the state data and loops are optimized. Table 6.2 shows the improved version has a
speed-up of almost a factor of 10 compared to the unoptimized implementation. One
encryption of a 128-bit word (including the key expansion algorithm) takes 2900 cycles.
Further optimizations could exploit a T-Table approach, in which multiple operations
are combined in lookup tables. This, however, increases the requirements on the TCDM.
For a benchmark purpose, we encrypt 1 kB of data. In this experiment, we reach a per-
formance of 162.8 cycles per byte (cpb). As indicated in [54], an assembler optimized
implementation on an AVR microcontroller reaches a performance of 124.6 cpb.

Table 6.2: Evaluation results of software AES-128 implementation.
Operation Duration [cycles]
One encryption (unoptimized) 27000
One round (optimized) 260
One encryption (optimized) 2900

6.3.2 Primitive Operation

For a performance evaluation, we implement the AES-128 encryption algorithm using
the primitive operations provided by the accelerator. One primitive operation invokes
one double-round function of AES. Therefore, this operation is invoked five times to
reach the required ten rounds for AES-128. The expanded round-keys are computed in
advance in software. The primitive operation supports encrypting or decrypting of two
words in parallel. Encrypting two words takes 340 cycles with a warm instruction cache,
but does not include computing the round-keys. Table 6.3 shows how the total runtime
of 340 cycles on the PULP system is split. Benchmarking the encryption for 1 kB of
data results in a performance of 10.6 cpb.

Table 6.3: Evaluation results of primitive-based AES-128 implementation.
Operation Duration [cycles] Relative Duration [%]
Execution 112 33
Encryption 35 10.3
LSU stall 162 47.6
Load stall 31 9.1
Sum 340 100

66

6 Results

Table 6.3 indicates that the main duration is not spent on the actual encryption compu-
tation, but rather on the configuration and on the programming phase of the accelerator.
More than 55% are spent on stalling the processing core due to a TCDM contention (LSU
stall) or due to a load stall. However, we mention that the primitive mode is not de-
signed for performance. The primary goal of this operation mode is making the internal
primitives accessible via the peripheral interface. This allows us to implement a hardware-
accelerated implementation of any algorithm which relies on these primitives.

As shown in Table 6.3, the encryption step only takes 33% of the overall time. A
detailed analysis in the RTL simulation reveals that the actual encryption step only
takes 35 cycles. Since five encryption steps are invoked, a single encryption step takes
seven cycles. If we assume that writing one peripheral register takes only one clock cycle,
the theoretical performance shown in Table 6.4 would be achieved.

Table 6.4: Theoretical primitive performance for AES-128.
Operation Duration [cycles]
State XOR 8
State transfer 8
Round-key transfer 40
Encryption 35
Sum 91

Encrypting two 128-bits words would take 91 cycles, which equals a performance of
2.84 cpb. Although this shows a significant performance gain, the accelerator is still not
optimized for the primitive operation. If the round-keys could be written in parallel to
the encryption step, the performance still could be improved by a factor of about two.

6.3.3 Hardware Implementation

To evaluate the performance of the hardware implementation of AES-128, we use the
ECB- and XTS-encryption mode. Compared to the software implementation from Sec-
tion 6.3.1, the hardware architecture also includes the key expansion algorithm and the
controlling part. Furthermore, we show the performance of the leakage-resilient mode of
operation. For a benchmarking purpose, we encrypt 1 kB of data in all configurations.
The ECB- and the XTS-mode use both cipher stages of the AES instances in parallel.
Therefore, they would have in theory double the bandwidth compared with the leakage-
resilient mode of operation, which only uses one. However, this bandwidth difference is
not visible in Table 6.5 in which the ECB- and XTS-mode have a similar performance
compared with the leakage-resilient mode. This is caused by the TCDM interface, which
bandwidth is designed for the throughput of the leakage-resilient mode of operation. Dis-
abling the masking functionality of the polynomial re-keying function would reduce the
duration by 20 cycles.

67

6 Results

Table 6.5: Evaluation results of a hardware implementation of AES-128 for 1 kB.
Operation Duration [cycles]
AES-128 ECB encryption 395
AES-128 XTS encryption 405
AES-128 leakage-resilient encryption1 435

6.3.4 Summary

We now compare the presented results for the AES-based ECB encryption and leakage-
resilient (LR) mode of operation with each other. Table 6.6 shows the performance results
of different AES-based encryption algorithms. Clearly the hardware implementation of
AES-128 shows a tremendous performance improvement compared to the optimized soft-
ware implementation. The leakage-resilient mode of operation reaches a performance of
0.42 cpb including the polynomial re-keying with first-order masking. This performance
value is comparable with cryptographic implementations on state-of-the-art Intel proces-
sors using the AES-NI instruction set extension. However, the AES-NI instruction set
does not support any SCA countermeasures. As indicated in [37], parallelizable modes
such as the ECB encryption reach a performance of 0.63 cpb on a modern Intel i7 Sky-
lake CPU. For serial encryptions, the performance is reduced to about 2.65 cpb. This
shows our hardware implementation of the ECB mode is already about twice as fast
as an implementation on a modern Intel CPU. In theory, the ECB performance of the
implemented AES-128 would be about 0.16 cpb, but the memory interface of HWCrypt
is not designed for this bandwidth. The Intel implementation uses a pipelined version
of the AES round function. When the pipeline is full, each clock cycle computes one
round. To compute one AES-128 encryption it then takes 10 cycles, which results in a
theoretical throughput of 10 cycles

16byte = 0.63 cpb. Moreover, the leakage-resilient mode is a
serial algorithm due to its data dependencies. This means the hardware implementation
of HWCrypt outperforms an implementation of such an algorithm on an Intel CPU using
AES-NI by about a factor of six.

Table 6.6: Performance comparison of AES-128 based algorithms for 1 kB.
Operation Duration [cycles] Throughput [Gbit/s] Performance [cpb]
AES-128 ECB software 166700 0.0246 162.8
AES-128 ECB primitive 21280 0.154 10.6
AES-128 ECB hardware 395 8.3 0.38
AES-128 LR hardware1 435 7.5 0.42
AES-NI ECB [37] - - 0.63
AES-NI serial [37] - - 2.65

1Polynomial re-keying with 1-st order masking and shuffling of partial products.

68

6 Results

6.4 Polynomial Re-keying Unit

This section evaluates the performance of the re-keying function in software and hard-
ware. We start with the evaluation of the multiplication in the finite field GF(28) and
then continue with an unmasked and masked implementation of the polynomial multi-
plier.

6.4.1 Software Implementation

For comparison reasons, the polynomial re-keying function as defined in Section 4.3 is
implemented in software on the PULP system. This re-keying function performs in total
256 multiplications in the finite field GF(28) as its primary operation. For this reason,
we first evaluate the performance of the GF(28) multiplication in software.

6.4.1.1 Multiplication in GF(28)

This section evaluates different algorithms for the multiplication in GF(28) in software
on a PULP system. Algorithm 9 shows the iterative multiplication in the finite field
GF(28). The multiplication is performed using the irreducible Rijndael polynomial [7]
x8 + x4 + x3 + x+ 1.

Algorithm 9: Iterative multiplication in GF(28).
Input: a, b ∈ GF(28)
Output: c = a · b ∈ GF(28)

1 p← 0;
2 for c← 0 to 7 do
3 if b & 0x01 then
4 p← p⊕ a;
5 end
6 a← a << 1;
7 if a & 0x100 then
8 a← a⊕ 0x11b;
9 end

10 b← b >> 1;
11 end
12 return p

A second algorithm to perform the multiplication in GF(28) is using the exponential
representation, which is shown in Algorithm 10. This algorithm uses table lookups to
perform the multiplication, which can be implemented efficiently in software. However,

69

6 Results

this algorithm requires 512-bytes of memory for the tables (256-bytes for the logarithm
table and 256-bytes for the exponential table).

Algorithm 10: Multiplication in GF(28) using exponential representation.
Input: a, b ∈ GF(28)
Output: c = a · b ∈ GF(28)

1 if a = 0 or b = 0 then
2 return 0
3 end
4 tmp← LOG_TABLE[a] + LOG_TABLE[b];
5 return EXP_TABLE[tmp];

Both algorithms are implemented as C-programs and are simulated on a PULP sys-
tem. Algorithm 10 is implemented in two variants. First, the tables are stored in
the L2-memory of PULP. Second, the tables are stored in the TCDM of the SoC.
The naming of these functions is gf256mul_slow for Algorithm 9, gf256mul_fast, and
gf256mul_fast_tcdm for Algorithm 10 respectively. Table 6.7 shows the simulated per-
formance evaluation of the finite field multiplications running on the PULP system. The
runtime is averaged for 256 invocations.

Table 6.7: Evaluation results for software implementations of a multiplication in GF(28)
averaged for 256 invocations.

Operation Duration [cycles]
gf256mul_slow 132
gf256mul_fast 79
gf256mul_fast_tcdm 42

Based on the fast TCDM version of the multiplication in GF(28), a polynomial multi-
plication is developed as described in Algorithm 5. Furthermore, the polynomial mul-
tiplication is extended to implement a masked polynomial multiplication as defined in
Algorithm 8. For the software-based implementation, we use a masking order of three,
which results in four polynomial multiplications in total. All measured values are aver-
aged for 256 invocations.

Table 6.8: Evaluation results for a software implementation of a modular multiplication
averaged for 256 invocations.

Algorithm Duration [cycles]
Polynomial multiplication 10869
Masked polynomial multiplication2 41568

2Third-order masking

70

6 Results

Table 6.8 shows the software evaluation results for the unmasked polynomial multipli-
cation and masked multiplication using a masking order of three. Due to the itera-
tive computation, the multiplication in software shows massive computation overhead
in both evaluation cases. The slow software implementation argues this function to be
implemented in hardware to increase the performance tremendously. Since PULP is a
multi-core platform, the performance of the software implementation could be improved
by exploiting the parallelism using multiple processing cores. Of course, this makes these
processing cores unavailable for other computations.

6.4.2 Hardware Implementation

The software implementation highly indicates that a hardware implementation can per-
form much better. In fact, the hardware implementation computes the polynomial multi-
plication in 18 cycles which equals a speed-up by a factor of more than 500. Table 6.9 sum-
marizes the performance of the hardware implementation of the unmasked and masked
computation. Similar to Section 6.4.1, we use third-order masking for comparison rea-
sons. The significant performance impact is not surprising since the polynomial mul-
tiplier is based on multipliers in GF(28), which compute one multiplication within one
clock cycle in hardware. This corresponds to a speed-up by a factor of about 40. Fur-
thermore, the hardware architecture parallelizes the computation by using 16 multiplier
stages. Although the performance of the software implementation is worse, it scales with
architectural improvements in the hardware implementation.

Table 6.9: Evaluation results for a hardware implementation of a masked polynomial
multiplication.

Algorithm Duration [cycles]
Polynomial multiplication 18
Masked polynomial multiplication3 72

6.4.3 Random Bit Requirements

The masked polynomial multiplier requires random bits for the masks and the shuffling
unit. In this section, we estimate the required number of bits for both operations.

3Third-order masking

71

6 Results

6.4.3.1 Masking

For m-th order masking, we require m masks, each 128-bit wide. This results in the
required random bits as defined in Equation 6.1.

#bitsmask = m · 128 (6.1)

6.4.3.2 Shuffling

The architecture of our shuffling unit supports different shuffling strategies. In this eval-
uation we consider the Fisher-Yates shuffling operation, which requires the most random
bits. The Fisher-Yates shuffling algorithm can be reduced to the coupon collector’s prob-
lem [55]. The expected value to draw all N values is given in Equation 6.2.

E(X) = N

N∑
i=1

N

N − i
(6.2)

For certain cases, the modulus is used to reduce the random value to a certain interval as
described in Section 4.3.1. Therefore, the expected value of draws for these cases is guar-
anteed to be 1. This improves the expected values of draws as shown in Equation 6.3.

E(X) =
N−1∑
i=0

{
1 if i = 8,12,14,15
N

N−i otherwise
(6.3)

Computing the expected value of draws for N = 16 using Equation 6.3 results in
d28.09e = 29 draws. Each draw equals a 4-bit random number from the PRNG. Given
the expected number of draws, this result in #bitsshuffle,min = 116-bits of required ran-
dom data for one polynomial multiplication. Equation 6.4 combines the required bits
for masking with a masking order of m and shuffling, which performs m + 1 polyno-
mial multiplications. First-order masking (m = 1) requires, at least, 360-bits of random
data.

E
(
#bitssingle

)
= #bitsmask + E

(
#bitsshuffle,min

)
= m · 128 + (m+ 1) · 116

(6.4)

At this point, only one draw per cycle is considered. Our hardware implementation
evaluates multiple draws in parallel. Therefore, Equation 6.3 is extended for multiple

72

6 Results

independent draws. In each cycle, k stages evaluate an independent draw. Only one draw
out of the k stages is taken. All other draws are discarded. This results in Equation 6.5.

E(X) =

N−1∑
i=0

1 if i = 8,12,14,15
1

1−(i
N)

k otherwise (6.5)

For the shuffle strategy in the polynomial re-keying unit, the number of elements N
equals to 16. Equation 6.5 is evaluated for different numbers of parallel units k, which is
shown in Figure 6.1. The more stages k we have, the fewer draws are required.

0 2 4 6 8 10 12
Pack size

16

18

20

22

24

26

28

30

E
x
p
e
ct

e
d
 #

 o
f

d
ra

w
s

Figure 6.1: Parallelized coupon collector’s problem.

The polynomial re-keying unit contains k = 33 evaluation stages and draws N = 16
values. This results in an expected value of E

(
#bitsshuffle,par

)
= d16.00106e = 17 draws

according to Equation 6.5. Each draw requires 33 ·4 bit of random data, which results in
132-bits of random data per draw. Given the expected value of number of draws, one can
compute the required number of random bits. However, the first 4-bit value of the first
draw guarantees to succeed to be a valid one. The remaining 128-bit of random data are
not discarded. Instead, this data is reused for the first mask. This optimization leads
to the required number of bits described in Equation 6.6. First-order masking (m = 1)

73

6 Results

requires 4488-bit of random data in the architecture with 33 parallel evaluation stages.

E (#bits) = #bitsmask + E
(
#bitsshuffle,par

)
= (m+ 1) · (17 · 132)

(6.6)

This random data requirement affects only the polynomial re-keying unit. This means
the bit requirements are independent of the block size to be encrypted. Furthermore, the
permutation-based re-keying functions do not require random data, which represents a
major advantage of that architecture.

6.5 Performance Evaluation of the Sponge Unit

In this section, we evaluate the performance of the versatile hardware implementation of
the sponge unit. The performance results of the permutation-based re-keying functions,
as well as the implemented encryption mode, are presented. In total, this unit supports
up to 20,000 different configuration options when considering the permutation-based
encryption modes alone. This already shows the flexibility of this unit.

6.5.1 Re-keying Function

The sponge unit supports two different re-keying functions named RK1 and RK2, which
are described in Section 4.5.2. The performance of the hardware implementation in the
PULP system of both re-keying functions is evaluated in this section.

6.5.1.1 Re-keying Function RK1

The RK1 re-keying function is based on a GGM-tree using the bits of the nonce. This
operation is a bit-wise operation using each bit of the nonce, which is not configurable.
However, the number of invoked rounds of the permutation function can be parametrized.
In Table 6.10 we show the performance results for all possible round configuration. As
described in Section 6.5.2, the measured values do not exactly reflect the actual time
for computation. Due to unrelated instructions for starting and polling the accelerator,
a bias of 57 cycles is measured. This needs to be taken into account for comparison.
Table 6.10 shows the performance range of the RK1 re-keying function from 345 cycles
to 1209 cycles. Compared to the performance of polynomial re-keying, as shown in
Table 6.9, the performance of RK1 re-keying is worse. However, the construction of this
re-keying function is DPA-safe by design. Additional countermeasures such as masking
or hiding are not required. Furthermore, the permutation-based re-keying functions do
not require random numbers.

74

6 Results

Table 6.10: Performance results in cycles for RK1 re-keying.
Rounds Duration [cycles]
3 345
6 489
9 533
12 777
15 921
18 1065
20 1209

6.5.1.2 Re-keying Function RK2

The permutation-based re-keying function RK2 supports two different configuration op-
tions. The number of invoked rounds for the permutation function and the data rate on
which the nonce is processed are parametrizable. Those two options span a matrix of dif-
ferent configurations as shown in Table 6.11. Compared to the RK1 re-keying function,
this facilitates more configuration options.

Table 6.11: Performance results in cycles for RK2 re-keying.

Rate
Rounds 20 18 15 12 9 6 3

1-bit 1209 1065 921 758 565 489 345
2-bit 633 561 489 417 345 273 201
4-bit 345 309 273 237 201 165 129
8-bit 201 183 165 147 129 111 93

6.5.2 Encryption Mode

We also evaluate the real performance of the permutation-based encryption mode on the
PULP system. This mode of operation supports two degrees of freedom for configura-
tion, namely the number of invoked rounds of the permutation function and the rate of
the processed data. This allows us to trade-off between the performance and the security
of the encryption mode. Table 6.12 shows the performance results for encrypting 1 kB of
data using different configurations of the sponge unit. These performance merits do not
contain any overhead due to re-keying. All values are measured on the PULP system
in software and, therefore, reflect the real performance numbers including overhead for
starting and polling the accelerator in software. As visualized in Table 6.12 the sponge
unit supports various configuration options. When considering the performance results
for a high throughput, the encryption duration in cycles is similar for different configu-
rations. For these cases, the encryption bandwidth is limited by the bandwidth of the

75

6 Results

TCDM interface.

Table 6.12: Performance results in cycles for permutation-based encryption.

Rate
Rounds 20 18 15 12 9 6 3

1-bit 65596 57406 49216 41020 32830 24640 16450
2-bit 32830 28735 24640 20545 16450 12335 8257
4-bit 16450 14398 12355 10303 8251 6208 4162
8-bit 8251 7234 6195 5182 4156 3139 2100
16-bit 4156 3643 3117 2626 2113 1600 1087
32-bit 2113 1852 1587 1339 1087 835 580
64-bit 1087 961 813 700 574 448 445
128-bit 574 511 435 448 448 448 444

These timings are measured in software and, therefore, contain additional overhead due
to unrelated instructions for starting and polling the accelerator. We analyzed the RTL
simulation and measured an average overhead of 57 cycles, which can be subtracted
from the performance results of Table 6.12 to yield the raw encryption performance of
the accelerator. This results in a throughput range between 50Mbit/s and 8.47Gbit/s
when using a clock frequency of 400MHz. This broad range of configuration shows the
flexibility of the permutation-based encryption mode again.

6.6 Accelerator Efficiency

Having a fast encryption core is only one side. If there is much overhead due to the
communication interface, the software cannot utilize the accelerator enough to reach a
good efficiency. Therefore, the performance of the communication interface is analyzed.
For this experiment, we consider decrypting 8 kB of data from the L2-memory of the
PULP system. The experiment uses the AES-based leakage-resilient mode of operation
with first-order masking. The data is loaded in 1 kB blocks via the DMA controller from
the L2-memory into the TCDM. The DMA controller generates an interrupt and triggers
the cryptographic accelerator to start a fresh decryption with the newly available data.
This is repeated until all eight blocks are decrypted. We aim for an efficiency above 90%
in a practical scenario.

To measure the efficiency, we take the following three phases of the accelerator into
account:

(A) Decrypting one 1 kB block of data

(B) Initial configuration of the accelerator

(C) Reconfiguration including the interrupt latency

76

6 Results

Given these values, the efficiency of the accelerator is computed as follows.

Efficiency =
A

A+B + C
(6.7)

Since the initial configuration B is only done once, decrypting multiple blocks of data
will gain a better efficiency.

6.6.1 Without a Command Queue

First, the efficiency is evaluated without having a command queue. Because we only have
one context, the configuration- and interrupt-latency impact the overall performance of
the accelerator. We first evaluate the efficiency of a single decryption operation. The
efficiency of a single operation depends on whether it is the first operation or a later
one. The first operation suffers from the initial configuration latency and cache misses.
In addition to the interrupt latency, the second operation suffers from cache misses in
the interrupt handler. Later decryptions are faster since cache misses do not influence
the efficiency as much as in the first two operations. Moreover, the block size also
influences the efficiency. The larger the block size, the more efficient the operation. The
efficiency is improved since there are fewer context switches due to an increased block
size. This behavior is visualized in Figure 6.2. This figure shows the first, second, and
later decryptions for different block sizes. However, using a large block size of 16 kB is
not practical in the PULP environment with a limited TCDM.

2 4 6 8 10 12 14 16
Block Size [kB]

55

60

65

70

75

80

85

90

95

100

E
ff

ic
ie

n
cy

 [
%

]

First Decryption
Second Decryption
Later Decryptions

Figure 6.2: Efficiency for increasing block size.

77

6 Results

In Figure 6.3 we show the total efficiency in a streaming application. The experiment
decrypts 8 kB using different block sizes. When using a block size of 1 kB, the efficiency
does not raise much above 75%. By taking larger block sizes, the efficiency can be
increased. However, with a reasonable block size and a reasonable size of data to be
decrypted, 90% efficiency is not reached in practice.

2 4 6 8 10 12 14 16
Data Size [kB]

55

60

65

70

75

80

85

90

95

100

E
ff

ic
ie

n
cy

 [
%

]

Blocksize = 1kB
Blocksize = 2kB
Blocksize = 4kB

Figure 6.3: Total efficiency for different block sizes.

6.6.2 With a Command Queue

To enhance the efficiency, the architecture of HWCrypt contains a command queue to
deal with multiple contexts. The software can configure the next operation while the
accelerator is still busy with its current job. This mitigates the performance loss due
to the long interrupt latency. The data source – in our case the DMA controller – can
immediately configure the next operation when a DMA transfer completes.

In Figure 6.4 we show the total efficiency for the same experiment as done in Section 6.6.1.
The result shows the efficiency of the accelerator reaches the 90% mark for a block size
of 1 kB when decrypting about 7 kB of data, which equals seven blocks. In a streaming
application, this is a reasonable scenario. Using the command queue, we utilize fully the
accelerator. This means increasing the block size as it is done in the previous experiment
would not increase the performance. The efficiency of the architecture with a command
queue now only depends on the initial configuration latency.

This evaluation shows a command queue, or a similar interface to handle multiple con-
texts, is an essential feature to fully utilize the accelerator. Without such an optimized

78

6 Results

0 2 4 6 8 10 12 14 16
Data Size [kB]

55

60

65

70

75

80

85

90

95

100

E
ff

ic
ie

n
cy

 [
%

]

Efficiency (Multiple contexts, BS=1kB)

Figure 6.4: Practical accelerator efficiency with a command queue.

configuration interface, the configuration time and the interrupt latency are too high
to be efficient in practice. Such interfaces are also used in commercial products, which
often support a double-buffer [35] interface. This needs to be taken into account when
developing a new accelerator.

6.7 Fulmine - ASIC

The HWCrypt accelerator is taped-out in the Fulmine ASIC. This chip contains a four-
core PULP system with two4 accelerators inside the cluster. Moreover, the OpenRISC
core is modified to supported an extended instruction set with optimizations for signal
processing operations. In Table 6.13 we summarize the main features of Fulmine. As
indicated, Fulmine supports two different maximum frequencies. This is a result of the
backend design. A multi-mode multi-corner (MMMC) strategy was used to have different
operating modes. The clock speed of the cryptographic accelerator was reduced to meet
the area requirements for the chip. Figure 6.5 shows the final layout of the Fulmine
ASIC.

4Fulmine consists a second accelerator for convolutional operations, which is unrelated to this project

79

6 Results

Table 6.13: Fulmine features.
Technology UMC 65nm
Package QFN64
Dimensions 2626µm x 2626µm
Processing Cores 4
Instruction set OpenRISC + custom instructions
Accelerator Convolutional and cryptographic accelerator
Max. frequency5 [MHz] 285
Max. HWCrypt frequency5[MHz] 250
Max. frequency6 [MHz] 400
L2-memory [kB] 192
TCDM [kB] 64
Total area [kGE] 2500
Cluster area [kGE] 1660
HWCrypt area [kGE] 340

Figure 6.5: Layout of the Fulmine ASIC.

5VDD = 1.08V, T = 125 ◦C
6VDD = 1.2V, T = 25 ◦C

80

Chapter 7
Conclusion and Future Work

In this thesis, we present the first ASIC implementation of a leakage-resilient crypto-
graphic mode based on polynomial re-keying and a 2PRG construction. Moreover, we
also show the first ASIC design of PASEC, a permutation-based leakage-resilient au-
thenticated encryption scheme. Both encryption modes are designed to withstand DPA
attacks and rely on the concept of fresh re-keying. This ensures that a session key is used
for only one single encryption which mitigates DPA attacks on the cipher by design. In-
stead, it shifts the requirements for DPA safety from the cipher to the re-keying function.
To avoid a DPA attack on the polynomial re-keying unit, we implement masking and hid-
ing as DPA countermeasures. In detail, the architecture supports masking up to order 255
and multiple shuffling strategies to implement hiding. The permutation-based re-keying
functions are DPA-safe by design and do not require any additional countermeasures.
Due to their flexible design, these re-keying functions support a trade-off between secu-
rity and throughput during runtime. Moreover, we also implement a permutation-based
encryption mode with a fine-grained configuration matrix. Apart from the encryption
mode, PASEC also defines a leakage-resilient authentication mode. This feature provides
integrity of the ciphertext. The authentication algorithm detects any tampering on either
the nonce, on the authentication tag, or on the ciphertext.

We implement the presented cryptographic modes in a hardware accelerator named
HWCrypt as part of the cluster of a PULP system. This PULP system is taped-out using
the 65 nm technology of UMC on the Fulmine ASIC. Fulmine is a four-core PULP archi-
tecture containing two hardware accelerators and improved OpenRISC processing cores.
The cryptographic accelerator HWCrypt is designed to support protecting the following
two scenarios. First, HWCrypt supports encrypting the TCDM. The encrypted data is
finally stored in the L2-memory of the SoC to protect the content. Second, the encrypted
data of the TCDM may be sent over an I/O interface of the chip. HWCrypt ensures that
transmitted data is encrypted and ensures safety against side-channel attacks.

81

7 Conclusion and Future Work

The accelerator provides a highly-flexible evaluation platform for leakage-resilient en-
cryption algorithms based on fresh re-keying. Due to the flexibility of the architecture,
millions of different configurations are possible. This allows us to evaluate the security
of the implemented modes of operation in a fine-grained way.

7.1 Future Work

The cryptographic accelerator HWCrypt is the first step towards evaluating the secu-
rity of leakage-resilient encryption modes for high-performance processing architectures.
Since the primary goal of this work is the implementation of a flexible evaluation plat-
form, future work may integrate the evaluated algorithms into concrete products. This
may result in a secure DMA controller, which performs encryption and authentication
of different, configurable memory ranges transparently. Moreover, the DMA controller
may be capable of dealing with I/O peripherals such as SPI. This enhanced architecture
would support both the memory encryption scenario, as well as the secure communication
scenario.

Using the leakage-resilient modes of HWCrypt , the efficiency of the accelerator scales with
the amount of data to be processed. Due to the re-keying function, which is performed
before the encryption part, the performance of small encryptions is decreased. Future
work might improve the performance of HWCrypt for very small block sizes. This would
make the accelerator more suitable for small communications used in the context of
RFID.

The design and implementation of the cryptographic accelerator HWCrypt are only the
initial steps to evaluate leakage-resilient primitives for IoT. To verify the security of the
leakage-resilient primitives, we will develop a proper DPA measurement setup for the
PULP chip. This setup contains the external host for booting the PULP chip, as well
as a possibility to accurately measure the power consumption of Fulmine. This evaluation
platform can be reused for future measurements of PULP chips using the same package
and bonding layout. To state the security, we will try to attack the Fulmine chip with the
cryptographic accelerator. The results will reveal whether the encryption modes with its
countermeasures can withstand sophisticated DPA attacks. This evaluation of the ASIC
will eventually lead to safer cryptographic primitives used in the IoT.

82

Appendix A
HWCrypt Accelerator Datasheet

In the appendix, we describe all operating modes of the HWCrypt cryptographic accel-
erator, which is part of the Fulmine ASIC. Fulmine is a four-core PULP chip fabricated
in the UMC 65nm technology with two hardware accelerators. It consists of HWPE, a
convolutional accelerator and HWCrypt , a cryptographic accelerator. The datasheet in
the appendix aims to give an understanding of the supported features of HWCrypt and
how to use them.

A.1 Features

• Leakage-resilient memory encryption based on AES-128
• Leakage-resilient memory encryption based on a Keccak-f [400] permutation func-

tion with authentication
• AES-128 XTS memory encryption
• AES-128 ECB memory encryption
• Leakage-resilient hardware-accelerated re-keying functions based on a polynomial

multiplication and on the Keccak-f [400] permutation with countermeasures against
DPA attacks.
• Hardware accelerated AES round function and Keccak-f [400] permutation

83

A HWCrypt Accelerator Datasheet

A.2 Applications

HWCrypt is a cryptographic accelerator for evaluating state-of-the-art leakage-resilient
cryptographic algorithms for the next generation Internet-of-Things processors. This ac-
celerator is used to protect the cluster of a PULP system against side-channel attacks
by allowing the software to make encrypted transfers beyond the cluster boundary. With
this protection both the memory transfers to the L2-memory and the communication
transfers, are secured from adversaries. Furthermore, the protection contains counter-
measures against side-channel attacks.

A.3 Description

Figure A.1 depicts the functional block diagram of HWCrypt . It shows the major com-
ponents of the accelerator, which are described below.

AES
Unit

Polynomial
Re-keying

Configuration Registers

PRNG

2 TCDM Ports

Peripheral
 Interface

HWCrypt

FSM
FinishIRQ

TCDM
TX IF

TCDM
RX IF

Sponge
Unit

Cmd
Queue

IntermediateIRQ

Figure A.1: Functional block diagram

Peripheral Interface A 32-bit configuration interface, which is con-
nected to the cluster-internal peripheral inter-
connect. This interface allows the processing
cores to configure, start, and monitor the ac-
celerator.

TCDM Interface Two 32-bit TCDM interfaces are used to read
and write data from the TCDM. The inter-
faces are also used to read and write the au-
thentication tags.

84

A HWCrypt Accelerator Datasheet

Polynomial Re-keying Unit The polynomial re-keying unit implements a
re-keying function based on a polynomial mul-
tiplication. This unit contains masking and
shuffling to protect the algorithm against DPA
attacks.

Cmd Queue A command queue supports multiple-context
computation for pending operations in a first-
in-first-out scheme.

PRNG A pseudo random number generator based on
a 132-bit linear feedback shift-register provides
random data for masking and shuffling.

AES Unit The AES unit provides support for AES-128 ECB,
AES-128 XTS, and the leakage-resilient mode
of operation. Furthermore, this unit supports
post-processing of session keys to avoid them
to be invertible.

Sponge Unit The sponge unit supports two permutation-
based re-keying functions, an encryption mode,
and authentication of the ciphertext.

A.4 Fulmine Configuration

The Fulmine ASIC supports two different accelerators, namely one accelerator for convo-
lutional operations HWPE and one for cryptographic operations HWCrypt . The usage
of both accelerators is mutually exclusive, which means one can only use one accelerator
at a time. The reason behind this is that there is a limited number of TCDM ports of the
internal interconnect. To use the right accelerator, the internal TCDM port multiplexer
needs to be configured. Furthermore, Fulmine supports clock-gating the selected accel-
erator. Both configurations are performed in the CLUSTER_CTRL_REG register as defined
in Register A.1.

85

A HWCrypt Accelerator Datasheet

Register A.1: CLUSTER_CTRL_REG. (0x10200018)

RF
U

0

32 12

HW
_A

CC
_E

N

0

11

HW
_A

CC
_S
EL

1

10

RF
U

0

9 0

Reset

HW_ACC_SEL Selects the used accelerator. Logic 0 selects HWCrypt ;
logic 1 selects HWPE. The default selection while startup
is HWPE.

HW_ACC_EN Logic 1 enables the clock signal of the accelerator. Only
the selected accelerator by the HW_ACC_SEL bit is clocked.

A.5 Interface Description

A.5.1 Peripheral Interface

Table A.1 describes the signal interface of the HWCrypt accelerator. Apart from the
clock and reset signals, the accelerator has three different interfaces. First, it contains
a peripheral interface. This interface is connected to the cluster-internal peripheral in-
terconnect. Processing cores can perform a register configuration of the accelerator via
this interface. Furthermore, the peripheral interface of HWCrypt allows the processing
cores to monitor the operation by reading the status registers. Second, the accelerator
provides two 32-bit TCDM interfaces for data access. These interfaces are used by the
accelerator to read and write the processed data from the TCDM. Moreover, HWCrypt
uses these interfaces to read and write the authentication tags. Third, the accelerator
contains two interrupt- or event-lines to notify the processing cores that an intermediate
job or the last job has finished.

86

A HWCrypt Accelerator Datasheet

Table A.1: HWCrypt signal interface.
Signal Direction Description
Clk_CI Input Clock input for the accelerator.
Rst_RBI Input Reset signal. Active low.
FinishIrqEvent_SO Output Finish interrupt line. Active high.
IntermediateIrqEvent_SO Output Intermediate interrupt line. Active high.
PeriphReq_SI Input Request signal to the peripheral interface.
PeriphAddr_DI[31:0] Input Address of the peripheral interface to be

accessed.
PeriphWen_SI Input Write enable signal for peripheral interface.

Active low.
PeriphWdata_DI[31:0] Input Data to be written to the accelerator.
PeriphBe_SI[3:0] Input Byte enable signal. Implementation ig-

nores this signal. All accesses are treated
as 32-bit accesses.

PeriphId_SI[4:0] Input ID of the request.
PeriphGnt_SO Output Grant signal for peripheral accesses. Read

accesses are always granted. Write accesses
are only granted if the accelerator is not
busy or if the write access is referred to a
queue register and the command queue is
not full.

PeriphRvalid_SO Output Valid data signal. Goes high one cycle after
the corresponding grant signal.

PeriphRdata_DO[31:0] Output Data read from the accelerator.
PeriphId_SO[4:0] Output ID of response. Must match the ID of the

request.
PeriphRpc_SO Output Error code. Always 0.
TCDMRxReq_SO Output Data request for the receiving TCDM in-

terface. Active high.
TCDMRxAddr_DO[31:0] Output TCDM address of data to be read.
TCDMRxWen_SO Output Write enable signal for receiving TCDM in-

terface. Always 1 for receiving operations.
TCDMRxWdata_DO[31:0] Output Always 0 since write operations are not

used.
TCDMRxBe_SO[3:0] Output Byte enable signal. Only 32-bit transfers

supported. Always set to 1111.
TCDMRxGnt_SI Input Grant signal when a transfer is valid. Ac-

tive high.
TCDMRxRvalid_SI Input Valid data signal. Goes high one cycle after

the corresponding grant signal.
TCDMRxRdata_DI[31:0] Input Data response from the TCDM.

87

A HWCrypt Accelerator Datasheet

Table A.2: HWCrypt signal interface continued.
TCDMTxReq_SO Output Data request for the transmitting TCDM inter-

face. Active high.
TCDMTxAddr_DO[31:0] Output TCDM address of data to be written.
TCDMTxWen_SO Output Write enable signal for transmitting TCDM in-

terface. Always 0 for transmitting operations.
TCDMTxWdata_DO[31:0] Output Data to be written to the TCDM.
TCDMTxBe_SO[3:0] Output Byte enable signal. Only 32-bit transfers sup-

ported. Always set to 1111.
TCDMTxGnt_SI Input Grant signal when a transfer is valid. Active

high.
TCDMTxRvalid_SI Input Valid data signal. Goes high one cycle after the

corresponding grant signal.
TCDMTxRdata_DI[31:0] Input Transmitting interface does not use the read

data signal.

A.5.2 Interrupt Interface

HWCrypt supports two different interrupts or events. The intermediate interrupt is
raised if a job has finished while there are still pending jobs in the command queue. A
finished interrupt is raised if all pending jobs have finished. Figure A.2 shows the in-
terrupt behavior of the accelerator with three jobs. The first two finished jobs raise
IntermediateIrqEvent_SO. The last operation raises the FinishIrqEvent_SO inter-
rupt.

FinishIrqEvent_SO

IntermediateIrqEvent_SO

Job Job1 Job2 Job3

Figure A.2: Interrupt handling of HWCrypt .

A.5.3 TCDM Interface

In Figure A.3 and in Figure A.4, we show the main communication protocol for the
TCDM interface. First, we show a read transaction. The master controller of the interface
performs a read request by pulling the Req_SO and the inverted Wen_SO signal to logic
high together with the memory address to be read. The slave then grants the access by
signalling the Gnt_SO with logic high. One cycle after the grant signal the Rvalid_SI
is set to high by the slave together with the memory data on the Rdata_DI lines. The

88

A HWCrypt Accelerator Datasheet

grant signal may already be raised in the same clock cycle to logic high when the request
is performed.

Req_SO

Wen_SO

Gnt_SI

Addr_DO addr

Rvalid_SI

Rdata_DI data

Figure A.3: TCDM read transaction.

The write transaction operates similarly as the read transaction as depicted in Figure A.4.
The request is performed by pulling the Req_SO to logic high with the Wen_SO signal
staying at logic zero. At the same time the target address Addr_DO, and Wdata_DO are
set to the values for the request. When the TCDM memory controller raises the grant
signal Gnt_SI, the transaction to the memory is successful. The grant may be raised in
the same cycle as the request is performed

Req_SO

Wen_SO

Addr_DO addr

Wdata_DO data

Gnt_SI

Figure A.4: TCDM write transaction.

A.6 Register Map

Table A.3 shows the register map of HWCrypt . All registers are 32-bit wide and are
accessible by the processing core via the peripheral interface. As indicated in Table A.3,
registers such as KEY0, which are larger than 32-bit, are defined by an address range.
Sub-registers are then named with a numbered postfix. The register map is visible from
the processing cores at a base address of 0x10201000.

89

A HWCrypt Accelerator Datasheet

Table A.3: Register map of HWCrypt .
Address Name Access Description
0x00 HWSTAT R Status register to monitor the current

state of HWCrypt .
0x04 HWCTRL W Control register to configure and start a

new operation.
0x08 TCDM_SRC R/W TCDM data source address.
0x0C TCDM_DST R/W TCDM data destination address.
0x10 TCDM_TSRC R/W Tag source address.
0x14 TCDM_TDST R/W Tag destination address.
0x18 LEN R/W Length of the data to be encrypted or

decrypted. Must be divisible by four.
0x1C-0x28 NONCE[0-3] R/W Nonce for the re-keying operation

and the permutation-based encryption
mode.

0x2C SPONGE_CTRL R/W Sponge control register to configure all
permutation-based modes of operation.

0x30-0x3C KEY0[0-3] R/W Cipher key 0 for AES-128 ECB-, AES-
128 leakage-resilient-, and permutation-
based encryption mode.

0x40-0x4C KEY1[0-3] R/W Key 1 for the AES-128 XTS encryption
mode and permutation-based authenti-
cation mode.

0x50-0x60 SESS_KEY[0-3] R/W Session key register used for re-keying
only or to provide a session key if no
re-keying mode is configured.

0x64-0x70 CONST0[0-3] R/W Constant p0 for the AES-128 based
leakage-resilient encryption mode.
Used for the first round-key in AES-
primitive operation.

0x74-0x80 CONST1[0-3] R/W Constant p1 for the AES-128 based
leakage-resilient encryption mode.
Used for the second round-key in
AES-primitive operation.

0x84-0x94 SEED[0-4] R/W 132-bit seed for the LFSR.
0x98-0xB8 IV_REKEY[0-8] R/W Initial value for permutation-based re-

keying function RK2.
0xBC-0xC8 IV_ENC[0-3] R/W Initial value for permutation-based en-

cryption mode.
0xCC-0xEC IV_MAC[0-8] R/W Initial value for permutation-based au-

thentication mode.
0xF0-0x120 USER_STATE[0-12] R/W User state for primitive operations.

USER_STATE[0] is also used for the
padding configuration of permutation-
based re-keying functions.

90

A HWCrypt Accelerator Datasheet

A.6.1 Register Description

We now describe special registers, which contain a bit configuration rather than being
one single register such as the LEN, or KEY_0 register.

HWSTAT. The status register HWSTAT of the accelerator is shown in Register A.2.
This register allows the processing cores to monitor the operation and determines the
current state of the accelerator. This register is read only.

Register A.2: HWSTAT. (0x000)

CU
RR

_C
M
D_

ID

0

31 24

NE
XT

_C
M
D_

ID

0x01

23 16

E_
SP
ON

GE
_C

FG

0

13

E_
PR

IM
_M

OD
E

0

12

E_
AU

TH
_C

FG

0

11

E_
TA
G_

VE
RI
F

0

10

E_
OU

T_
BN

DS

0

9

E_
LE
N_

ZE
RO

0

8

E_
LE
N_

M
OD

0

7

E_
EN

C_
M
OD

E

0

6

E_
SH
UF
_M

OD
E

0

5

E_
RE

KE
Y_

M
OD

E

0

4

E_
NO

_M
OD

E

0

3

QU
EU

E_
FU
LL

0

2

FI
NI
SH

0

1

BU
SY

0

0

Reset

CURR_CMD_ID Returns the job ID for the currently operated job.

NEXT_CMD_ID Returns the job ID for the next job.

E_AUTH_CFG When logic one, a wrong authentication configuration
for the current job request was performed.

E_TAG_VERIF When logic one, the tag verification for decryption has
failed. Either the ciphertext, the nonce, or the tag has
been corrupted.

E_OUT_BNDS When logic one, the memory source, or target range
is out of the allowed bounds. This can happen for the
TCDM range for encryption, or for the authentication
tag, which is read and written to the TCDM.

E_LEN_ZERO When logic one, the length for the job started is zero.

E_LEN_MOD When logic one, the length for the job started is not
divisible by four. The accelerator only supports en-
crypting data blocks which are multiple of 128-bit.
Since the length is defined by 32-bit words, the length
must be divisible by four.

E_ENC_MODE When logic one, an invalid encryption mode is config-
ured.

91

A HWCrypt Accelerator Datasheet

E_SHUF_MODE When logic one, an invalid shuffling mode is config-
ured.

E_REKEY_MODE When logic one, an invalid re-keying mode is config-
ured.

E_NO_MODE Error bit indicating no mode is configured. This means
neither a re-keying-, an encryption-, nor a primitive-
mode is configured for the job request.

QUEUE_FULL When set to high, this bit indicates that the internal
command queue is full. Any additional job request
(START-bit is set to logic high) to the HWCTRL register
will block the peripheral interface until there is again
space in the command queue.

FINISH Logic high indicates a job has finished.

BUSY When logic one, this bit indicates the accelerator is
busy with its current operation.

HWCTRL. The HWCTRL register controls and configures the HWCrypt accelerator. It
allows the processing cores to configure the peripheral for a certain mode and to start
an operation. When starting a new job, all other related registers must be configured in
advance.

Register A.3: HWCTRL (0x004)

RF
U

0

30 26

PR
IM
_M

OD
E

0

26 24

M
AS
K_

OR
DE

R

0

23 16

RF
U

0

15 14

SH
UF
_M

OD
E

0

13 12

RF
U

0

11

EN
C_

M
OD

E

0

10 8

RF
U

0

7

RE
KE

Y_
M
OD

E

0

6 4

FR
ES
H_

SE
ED

0

3

AU
TH

0

2

EN
C_

DE
C

0

1

ST
AR
T

0

0

Reset

PRIM_MODE Primitive mode configuration. Valid values are listed be-
low. Any other value will be treated as an error. For
decryption operations, the ENC_DEC bit must be set sep-
arately. When using the Keccak-f [400] operation, the
ROUNDS_ENC bit in the SPONGE_CTRL register must be con-
figured separately.

000 No primitive operation
001 AES double-round encryption
010 AES double-round decryption
011 Last AES double-round encryption

92

A HWCrypt Accelerator Datasheet

100 Last AES double-round decryption
101 Keccak-f [400] primitive operation

MASK_ORDER Masking order for polynomial re-keying. When set to
0x00 no masking is applied. Otherwise the masking order
defined by this register is used. The maximum masking
order is 255.

SHUF_MODE Shuffling strategy for the partial multiplications of the
polynomial re-keying unit. Valid values are listed below.
Any other value will be treated as an error.

00 No shuffling
01 Shuffling of the start index
10 Fisher-Yates shuffling

ENC_MODE Encryption mode. Valid values are listed below. Any
other value will be treated as an error.

000 No encryption
001 AES-128 ECB encryption
010 AES-128 XTS encryption
011 AES-128 based leakage-resilient encryption
100 Permutation-based encryption

REKEY_MODE Re-keying mode. Valid values are listed below. Any other
value will be treated as an error.

000 No re-keying
001 Polynomial re-keying
010 Polynomial re-keying with block cipher post-processing
011 Key expansion for permutation-based re-keying RK1
100 Key expansion for permutation-based re-keying RK2
101 Permutation-based re-keying RK1
110 Permutation-based re-keying RK2

FRESH_SEED Update the internal seed for the pseudo random number
generator. The SEED register must be written before.

AUTH Enables the authentication mode. Only valid when using
the permutation-based encryption mode and a dedicated
re-keying mode. Otherwise an error is raised.

ENC_DEC When set to zero, encryption is performed. Else, decryp-
tion is performed.

START Starts a new operation with the current configuration.

93

A HWCrypt Accelerator Datasheet

SPONGE_CTRL. The SPONGE_CTRL register is used to provide a base-configuration
of the internal Keccak-f [400] permutation function, and for the sponge unit. The
configuration of this register is required for all permutation-based operations.

Register A.4: SPONGE_CTRL. (0x038)

RF
U

0

31 24

RA
TE
_M

AC

0

23 20

RA
TE
_E

NC

0

19 16

RF
U

0

15 14

RA
TE
_R

EK
EY

0

13 12

RF
U

0

11

RO
UN

DS
_M

AC

0

10 8

RF
U

0

7

RO
UN

DS
_E

NC

0

6 3

RF
U

0

3

RO
UN

DS
_R

EK
EY

0

2 0

Reset

RATE_MAC Configures the absorbing rate for permutation-based
authentication algorithm. Valid values are listed be-
low. Any other value will be treated as an error.

000 1-bit
001 2-bit
010 4-bit
011 8-bit
100 16-bit
101 32-bit
110 64-bit
111 128-bit

RATE_ENC Configures the absorbing rate for permutation-based
encryption. This configuration uses the same possible
configuration as the bit-field RATE_MAC.

RATE_REKEY Rate for permutation-based re-keying function RK2.
Valid values are listed below. Any other value will be
treated as an error.

0000 1-bit
0001 2-bit
0010 4-bit
0011 8-bit
1000 144-bit

ROUNDS_MAC Defines the number of invoked round for the Keccak-f [400]
permutation function for the authentication algorithm.
Valid values are listed below. Any other value will be
treated as an error.

94

A HWCrypt Accelerator Datasheet

000 3 Rounds
001 6 Rounds
010 9 Rounds
011 12 Rounds
100 15 Rounds
101 18 Rounds
110 20 Rounds

ROUNDS_ENC Defines the number of invoked round for the Keccak-f [400]
permutation function for the encryption algorithm. It
uses the same round values as defined for ROUNDS_MAC.

ROUNDS_REKEY Defines the number of invoked round for the Keccak-f [400]
permutation function for the re-keying functions RK1
and RK2. It uses the same round values as defined for
ROUNDS_MAC.

A.7 Operation Modes

HWCrypt supports three different operating modes. First, encryption and decryption
of the TCDM data are supported. Second, HWCrypt can perform standalone re-keying
without encryption. Third, the accelerator is capable of doing a primitive operation of
the AES round function and the permutation function. Each of these three operating
modes supports different configurations which are described in the following sections.

All operations follow the same principle. First, the operating mode with all its required
registers is configured. Second, the operation is started by writing the HWCRTL register
with a proper configuration and the START-bit set to one. This starts the accelerator to
perform the configured operation. When the job finishes, either the FinishIrqEvent_SO
or IntermediateIrqEvent_SO interrupt is raised depending on the pending jobs in the
command queue. Alternatively, the software can poll the HWSTAT register and read the
BUSY-bit until the accelerator is finished and sets the FINISH-bit. The software can
already start the next operation while the accelerator is still busy. A command queue
stores the request and starts the new job when the current operation finishes. The queue
can store four pending operations. If the queue is full, adding a new job to the queue by
writing the HWCTRL with a set START-bit will block the peripheral interface.

A.7.1 Re-keying Mode

The re-keying mode supports performing only a re-keying computation in hardware with-
out encryption. The computed session key can be used in software for any other oper-
ation. To configure this mode, the KEY_0 and the NONCE register must be written first.

95

A HWCrypt Accelerator Datasheet

Moreover, additional register configuration may be necessary depending on the selected
re-keying mode. Table A.4 shows the HWCTRL register configuration for all possible re-
keying modes, which are explained in detail in the following section. After finishing the
operation, the computed session key can be read via the SESS_KEY register. Polynomial
re-keying modes result in a 128-bit session key. Permutation-based session keys result in
a 144-bit session key.

Table A.4: HWCTRL configuration for re-keying.
Operation HWCTRL value
No re-keying 0x000001
Polynomial re-keying 0xmms011
Polynomial re-keying with post-processing 0xmms021
Key expansion for permutation-based re-keying RK1 0x000031
Key expansion for permutation-based re-keying RK2 0x000041
Permutation-based re-keying RK1 0x000051
Permutation-based re-keying RK2 0x000061

A.7.1.1 Polynomial Re-keying

For polynomial re-keying, the HWCTRL needs to be configured as defined in Table A.4 in
the second row. This configuration contains two place-holders defined by s and m. This
place-holder s defines the shuffling mode and can be set according to Register A.3. The
second place-holder m defines the masking order for the polynomial re-keying function
and can be set to an 8-bit value to define the masking order.

Relevant Register Configuration

HWCTRL Configuration for the masking order and re-keying mode.

KEY0 Master key.

NONCE Nonce for the re-keying operation.

A.7.1.2 Polynomial Re-keying with Block Cipher Post-Processing

The configuration for polynomial re-keying with block cipher post-processing as shown
in Table A.4 is similar to the configuration of ordinary polynomial re-keying as defined
in Section A.7.1.1. The only difference is a different re-keying mode as defined in the
description of Register A.3.

96

A HWCrypt Accelerator Datasheet

Relevant Register Configuration

HWCTRL Configuration for the masking order and re-keying mode.

KEY0 Master key.

NONCE Nonce for the re-keying operation.

A.7.1.3 Key Expansion for Permutation-based Re-keying RK1

This operation performs the key expansion algorithm for the permutation-based re-keying
mode RK1. To start this operation, the SPONGE_CTRL register needs to be configured
before. In particular, the bit-field ROUNDS_REKEY need to be set to configure the number
of required rounds of the permutation function.

Relevant Register Configuration

HWCTRL Configuration for the re-keying mode.

KEY0 Master key.

KEY1 Key for the permutation-based authentication mode.

SPONGE_CTRL Round configuration for the ROUNDS_REKEY bit-field.

A.7.1.4 Key Expansion for Permutation-based Re-keying RK2

This operation performs the key expansion algorithm for the permutation-based re-keying
mode RK2. Moreover, this mode requires a more detailed configuration. First, the initial
vector in register IV_REKEY needs to be written. Second, the bit-field ROUNDS_REKEY in
the SPONGE_CTRL register needs to be configured before starting the expanding operation
as defined in Table A.4.

Relevant Register Configuration

HWCTRL Configuration for the re-keying mode.

KEY0 Master key.

KEY1 Key for the permutation-based authentication mode.

IV_REKEY Initial vector for permutation-based re-keying function
RK2.

SPONGE_CTRL Round configuration for the ROUNDS_REKEY bit-field.

97

A HWCrypt Accelerator Datasheet

A.7.1.5 Permutation-based Re-keying RK1

This operation starts the permutation-based re-keying function RK1. The key expansion
algorithm, as defined in Section A.7.1.3, must be executed before.

Relevant Register Configuration

HWCTRL Configuration for the re-keying mode.

NONCE Nonce for the re-keying operation.

SPONGE_CTRL Round configuration for the ROUNDS_REKEY bit-field.

A.7.1.6 Permutation-based Re-keying RK2

This operation starts the permutation-based re-keying function RK2. The key expansion
algorithm as defined in Section A.7.1.4 must be executed before.

Relevant Register Configuration

HWCTRL Configuration for the re-keying mode.

NONCE Nonce for the re-keying operation.

SPONGE_CTRL Round configuration for the ROUNDS_REKEY and RATE_REKEY
bit-fields.

A.7.2 Encryption Mode

HWCrypt supports different encryption modes, which configurations are shown in Ta-
ble A.5. For both the AES-based leakage-resilient encryption mode and the permutation-
based encryption mode, the encryption operation can be combined with any re-keying
mode as defined in Table A.4. Moreover, these two encryption modes support using a
software-defined session key. In this case, the re-keying mode needs to be set to 0x0,
and the session key needs to be provided via the SESS_KEY register before starting a new
operation. In this section, we describe the configuration of all encryption modes in de-
tail. Furthermore, each configuration contains a section showing any additional relevant
register configuration. All encryption modes support either encryption or decryption.
For encryption, the ENC_DEC-bit is set to 0, for decryption to 1. Table A.5 defines all
supported encryption modes.

98

A HWCrypt Accelerator Datasheet

Table A.5: HWCTRL configuration for encryption.
Operation HWCTRL value
No encryption 0x000001
AES-128 ECB encryption 0x000101
AES-128 XTS encryption 0x000201
AES-128-based leakage-resilient encryption 0x000301
Permutation-based encryption 0x000401

A.7.2.1 AES-128 ECB Encryption

The accelerator supports AES-128 ECB encryption of the TCDM. Given the encryption
key in register KEY0, TCDM data can be encrypted or decrypted.

Relevant Register Configuration

HWCTRL Encryption configuration.

KEY0 Cipher key for encryption and decryption.

TCDM_SRC Source address of the data to be processed.

TCDM_DST Destination address of the data to be processed.

LEN Length of data to be processed. Must be divisible by four.

A.7.2.2 AES-128 XTS Encryption

HWCrypt supports AES-128 XTS encryption of data in the TCDM. If both keys KEY0
and KEY1 have the same value, XEX encryption is performed. The CONST0 register is
used to act as the block number to compute the address-dependent tweak.

Relevant Register Configuration

HWCTRL Encryption configuration.

KEY0 Cipher key for encryption and decryption.

KEY1 Cipher key for tweak encryption.

CONST0 Block number used for the tweak computation.

TCDM_SRC Source address of the data to be processed.

TCDM_DST Destination address of the data to be processed.

LEN Length of data to be processed. Must be divisible by four.

99

A HWCrypt Accelerator Datasheet

A.7.2.3 AES-128 based Leakage-Resilient Encryption

The accelerator supports a leakage-resilient encryption mode, in which every block is
encrypted differently. This encryption mode can be configured with any re-keying mode
as defined in Section A.7.1. The registers CONST0 and CONST1 serve as the constants p0
and p1 for the leakage-resilient encryption algorithm. Their recommended values are 0
for CONST0 and 1 for CONST1 respectively.

Relevant Register Configuration

HWCTRL Encryption configuration.

CONST0 Constant p0 for the leakage-resilient mode of operation.

CONST1 Constant p1 for the leakage-resilient mode of operation.

TCDM_SRC Source address of the data to be processed.

TCDM_DST Destination address of the data to be processed.

LEN Length of data to be processed. Must be divisible by four.

A.7.2.4 Permutation-based Encryption

The permutation-based encryption mode supports a leakage-resilient encryption of the
TCDM with DPA-safety by design. Furthermore, it supports a configurable data pro-
cessing rate to trade-off the security versus the performance. Register A.4 defines the
processing rate for encryption. The lower the rate is, the higher is the capacity of the
sponge construction. This means that with the reduced rate, which equals a reduced
throughput, the security is increased. Moreover, the encryption mode supports a differ-
ent number of invoked rounds of the permutation function as defined in Register A.4.

Authentication Permutation-based encryption supports authentication of the cipher-
text. To use this mode the AUTH-bit in the HWCRTL register needs to be set. Authen-
tication requires the second key to be written in advance to the KEY1 register. When
using a permutation-based re-keying mode, the key also needs to be expanded as de-
fined in Section A.7.1.3 and Section A.7.1.4. For encryption, the authentication function
computes an authentication tag, which is written to the TCDM address defined by the
TCDM_TDST register. Decryption with authentication requires the TCDM_TSRC register to
point to the TCDM memory where the 128-bit authentication tag for the ciphertext is
located. Furthermore, authentication requires the ROUNDS_MAC and RATE_MAC bit-fields
in the SPONGE_CTRL register to be configured properly. Authentication supports all re-
keying functions except the software-defined session keys, in which no re-keying mode is
configured.

100

A HWCrypt Accelerator Datasheet

Relevant Register Configuration

HWCTRL Encryption and authentication configuration.

SPONGE_CTRL Sponge configuration for round- and rate-configuration
for encryption and authentication.

IV_ENC Initial vector used for the permutation-based encryption
mode.

IV_MAC Initial vector used for the permutation-based authentica-
tion mode.

TCDM_SRC Source address of the data to be processed.

TCDM_DST Destination address of the data to be processed.

LEN Length of data to be processed. Must be divisible by
four.

TCDM_TSRC Source address of the authentication tag used for decryp-
tion.

TCDM_TDST Target address for authentication tag computed during
encryption.

NONCE Nonce used in the encryption mode.

USER_STATE0 Bits [15:0] define the padding of the nonce used in this
encryption mode.

A.7.3 Primitive Mode

The primitive mode aims to make internally used primitive instances accessible via the
peripheral interface. This mode of operation is not optimized for performance rather
it supports a hardware accelerated software implementation of an arbitrary algorithm
which uses any of the provided primitives.

Table A.6: HWCTRL configuration for primitive operation.
Operation HWCTRL value
Double AES round encryption 0x1000001
Double AES round decryption 0x2000003
Last double AES round encryption 0x3000001
Last double AES round decryption 0x4000003
Keccak-f [400] 0x5000001

101

A HWCrypt Accelerator Datasheet

A.7.3.1 AES Round Operation

Although the AES-128 based encryption mode already supports ECB encryption, we fur-
ther extend the flexibility of the accelerator by making the AES round function available
via the peripheral interface. This allows the user to implement any AES round-based
algorithm with hardware acceleration. The primitive operation of AES distinguishes be-
tween four different operating modes, which are listed in Table A.6. A normal AES double
round and the last AES double round (without the MixColumns operation) are available
for both encryption and decryption via this primitive interface. To program a primitive
operation, the software needs first to write the USER_STATE registers. USER_STATE[0-3]
define the first 128-bit word, whereas USER_STATE[4-7] define the second 128-bit word.
Furthermore, the software needs to write the registers CONST0 and CONST1, which define
the round-keys for the first and the second round, respectively. Then, software must trig-
ger the operation via writing the proper configuration to the HWCTRL register. Table A.6
indicates the configuration for the supported modes. These configurations already con-
tain a set start bit. After finishing the operation, the two words are readable via the
USER_STATE register.

Relevant Register Configuration

HWCTRL Configuration of the primitive operation.

USER_STATE[0-3] First 128-bit AES word.

USER_STATE[4-7] Second 128-bit AES word.

CONST0 Round-key for the first round function.

CONST1 Round-key for the second round function.

A.7.3.2 Keccak-f [400] Permutation

The sponge unit uses the Keccak-f [400] permutation function internally. This permu-
tation function is made accessible via the peripheral interface, which makes it possible
to implement a hardware accelerated sponge construction in software, such as the Kec-
cak hash algorithm. For this computation, the 400-bit state is written to the registers
USER_STATE[0-12]. Furthermore, this mode uses the ROUNDS_ENC configuration from the
SPONGE_CTRL register to determine the number of rounds. Register A.4 defines the pos-
sible configuration values for all available round configurations. The operation is started
by writing the HWCRTL register with the value for Keccak-f [400] primitive operation as
defined by Table A.6. After finishing the operation, the computed state is readable in
register USER_STATE[0-12].

102

A HWCrypt Accelerator Datasheet

Relevant Register Configuration

HWCTRL Configuration of the primitive operation.

SPONGE_CTRL Sponge configuration number of rounds.

USER_STATE[0-12] 400-bit state for the permutation function.

103

A HWCrypt Accelerator Datasheet

104

Bibliography

[1] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and T. Unterluggauer,
“PASEC: Keccak,” 2016.

[2] M. Carlie and C. Valasek, “Remote Car Hacking,” http://illmatics.com/Remote%
20Car%20Hacking.pdf, 2015.

[3] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-
drino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We Remember: Cold
Boot Attacks on Encryption Keys,” Communications of the ACM, vol. 52, no. 5, pp.
91–98, 2009.

[4] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, Topics in Cryptology
- CT-RSA 2016: The Cryptographers’ Track at the RSA Conference 2016,
San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings. Cham:
Springer International Publishing, 2016, ch. ECDH Key-Extraction via Low-
Bandwidth Electromagnetic Attacks on PCs, pp. 219–235. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-29485-8_13

[5] D. Lampret, C.-M. Chen, M. Mlinar, J. Rydberg, M. Ziv-Av, C. Ziomkowski, G. Mc-
Gary, B. Gardner, R. Mathur, and M. Bolado, “OpenRISC 1000 Architecture Man-
ual,” Rev, vol. 1, p. 15, 2007.

[6] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-
V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54,
May 2014. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-54.html

[7] NIST, Advanced Encryption Standard (AES) (FIPS PUB 197), National Institute
of Standards and Technology, Nov. 2001.

105

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://dx.doi.org/10.1007/978-3-319-29485-8_13
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

Bibliography

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Permutation-based en-
cryption, authentication and authenticated encryption,” Directions in Authenticated
Ciphers, 2012.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge function
family main document,” Submission to NIST (Round 2), vol. 3, p. 30, 2009.

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in
Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer Science, M. Wiener,
Ed. Springer Berlin Heidelberg, 1999, vol. 1666, pp. 388–397. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48405-1_25

[11] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems,” in Advances in Cryptology — CRYPTO ’96, ser. Lecture Notes in
Computer Science, N. Koblitz, Ed. Springer Berlin Heidelberg, 1996, vol. 1109,
pp. 104–113. [Online]. Available: http://dx.doi.org/10.1007/3-540-68697-5_9

[12] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side—channel(s),” in Cryptographic Hardware and Embedded Systems-CHES 2002.
Springer, 2003, pp. 29–45.

[13] K. Gandolfi, C. Mourtel, and F. Olivier, Cryptographic Hardware and Embedded
Systems — CHES 2001: Third International Workshop Paris, France, May
14–16, 2001 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
ch. Electromagnetic Analysis: Concrete Results, pp. 251–261. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44709-1_21

[14] Genkin, Daniel and Shamir, Adi and Tromer, Eran, RSA Key Extraction
via Low-Bandwidth Acoustic Cryptanalysis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 444–461. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-44371-2_25

[15] D. Boneh, R. A. DeMillo, and R. J. Lipton, Advances in Cryptology —
EUROCRYPT ’97: International Conference on the Theory and Application of
Cryptographic Techniques Konstanz, Germany, May 11–15, 1997 Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, ch. On the Importance
of Checking Cryptographic Protocols for Faults, pp. 37–51. [Online]. Available:
http://dx.doi.org/10.1007/3-540-69053-0_4

[16] D. Boneh, A. R. DeMillo, and J. R. Lipton, “On the Importance of Eliminating
Errors in Cryptographic Computations,” Journal of Cryptology, vol. 14, no. 2, pp.
101–119, 2000. [Online]. Available: http://dx.doi.org/10.1007/s001450010016

[17] S. Mangard, “A Simple Power-Analysis (SPA) Attack on Implementations of
the AES Key Expansion,” in Information Security and Cryptology—ICISC 2002.
Springer, 2002, pp. 343–358.

106

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/s001450010016

Bibliography

[18] T. Messerges, “Using Second-Order Power Analysis to Attack DPA Resistant Soft-
ware,” in Cryptographic Hardware and Embedded Systems—CHES 2000. Springer,
2000, pp. 27–78.

[19] J. Waddle and D. Wagner, Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch.
Towards Efficient Second-Order Power Analysis, pp. 1–15. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-28632-5_1

[20] E. Brier, C. Clavier, and F. Olivier, Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, ch.
Correlation Power Analysis with a Leakage Model, pp. 16–29. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-28632-5_2

[21] J.-M. Cioranesco, J.-L. Danger, T. Graba, S. Guilley, Y. Mathieu, D. Naccache, and
X. T. Ngo, “Cryptographically Secure Shields,” in Hardware-Oriented Security and
Trust (HOST), 2014. IEEE, 2014, pp. 25–31.

[22] K. Tiri and I. Verbauwhede, “Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology,” in Cryptographic Hardware
and Embedded Systems-CHES 2003. Springer, 2003, pp. 125–136.

[23] T. Popp and S. Mangard, “Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints,” in Cryptographic Hardware and Embedded Systems
– CHES 2005, ser. Lecture Notes in Computer Science, J. Rao and B. Sunar,
Eds. Springer Berlin Heidelberg, 2005, vol. 3659, pp. 172–186. [Online]. Available:
http://dx.doi.org/10.1007/11545262_13

[24] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer Science & Business Media, 2008, vol. 31.

[25] M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni, “Fresh Re-keying:
Security against Side-Channel and Fault Attacks for Low-Cost Devices,” in Progress
in Cryptology – AFRICACRYPT 2010, ser. Lecture Notes in Computer Science,
D. Bernstein and T. Lange, Eds. Springer Berlin Heidelberg, 2010, vol. 6055, pp.
279–296. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-12678-9_17

[26] K. Itoh, M. Takenaka, and N. Torii, “DPA Countermeasure Based on the “Masking
Method”,” in Information Security and Cryptology—ICISC 2001. Springer, 2002,
pp. 440–456.

[27] M.-L. Akkar and C. Giraud, “An Implementation of DES and AES, Secure against
Some Attacks,” in Cryptographic Hardware and Embedded Systems—CHES 2001.
Springer, 2001, pp. 309–318.

107

http://dx.doi.org/10.1007/978-3-540-28632-5_1
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/11545262_13
http://dx.doi.org/10.1007/978-3-642-12678-9_17

Bibliography

[28] K. Schramm and C. Paar, “Higher Order Masking of the AES,” in Topics in
Cryptology–CT-RSA 2006. Springer, 2006, pp. 208–225.

[29] N. Pramstaller, F. K. Gurkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fichtner,
“Towards an AES Crypto-Chip Resistant to Differential Power Analysis,” in Solid-
State Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th European.
IEEE, 2004, pp. 307–310.

[30] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully Attacking Masked AES
Hardware Implementations,” in Cryptographic Hardware and Embedded Systems–
CHES 2005. Springer, 2005, pp. 157–171.

[31] F. Regazzoni, Y. Wang, F.-X. Standaert et al., “FPGA Implementations of the
AES Masked Against Power Analysis Attacks,” in Proceedings of COSADE 2011,
International Workshop on Side-Channel Analysis and Secure Design, 2011.

[32] D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Ver-
bauwhede, “AES-Based Cryptographic and Biometric Security Coprocessor IC in
0.18-um CMOS Resistant to Side-Channel Power Analysis Attacks ,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 4, pp. 781–792, 2006.

[33] S. Belaïd, F. De Santis, J. Heyszl, S. Mangard, M. Medwed, J.-M.
Schmidt, F.-X. Standaert, and S. Tillich, “Towards Fresh Re-Keying with
Leakage-Resilient PRFs: Cipher Design Principles and Analysis,” Journal of
Cryptographic Engineering, vol. 4, no. 3, pp. 157–171, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s13389-014-0079-5

[34] P. C. Kocher, “Leak-Resistant Cryptographic Indexed Key Update,” Mar. 25 2003,
US Patent 6,539,092.

[35] Atmel, “Datasheet SAMA5D4 Series,” http://www.atmel.com/images/
atmel-11238-32-bit-cortex-a5-microcontroller-sama5d4_datasheet.pdf, 2015.

[36] Intel, “Intel Advanced Encryption Standard (AES) New Instructions Set,” https:
//software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf,
2012.

[37] A. Bogdanov, M. M. Lauridsen, and E. Tischhauser, “Comb to Pipeline: Fast Soft-
ware Encryption Revisited,” in Fast Software Encryption. Springer, 2015, pp.
150–171.

[38] Rambus Cryptography Research, “Licensed Countermeasures,” https://www.
rambus.com/security/dpa-countermeasures/licensed-countermeasures/, 2016.

[39] NXP Semiconductors, Business Line Identification, “P5CT072/ P5CC072/
P5CN072/ P5CD072/P5CD036/P5CN036 V0S Secure SmartCard
Controller,” https://www.rambus.com/security/dpa-countermeasures/
licensed-countermeasures/, 2008.

108

http://dx.doi.org/10.1007/s13389-014-0079-5
http://www.atmel.com/images/atmel-11238-32-bit-cortex-a5-microcontroller-sama5d4_datasheet.pdf
http://www.atmel.com/images/atmel-11238-32-bit-cortex-a5-microcontroller-sama5d4_datasheet.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/

Bibliography

[40] R. A. Fisher, F. Yates et al., “Statistical Tables for Biological, Agricultural and Med-
ical Research.” Statistical Tables for Biological, Agricultural and Medical Research.,
no. Ed. 3., 1949.

[41] D. E. Knuth, “Seminumerical Algorithms, The Art of Computer Programming, Vol.
2,” 1981.

[42] C. Dobraunig, M. Eichlseder, S. Mangard, and F. Mendel, “On the Security of
Fresh Re-keying to Counteract Side-Channel and Fault Attacks,” in Smart Card
Research and Advanced Applications, ser. Lecture Notes in Computer Science,
M. Joye and A. Moradi, Eds. Springer International Publishing, 2015, vol. 8968,
pp. 233–244. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-16763-3_14

[43] F.-X. Standaert, O. Pereira, and Y. Yu, “Leakage-Resilient Symmetric
Cryptography under Empirically Verifiable Assumptions,” in Advances in
Cryptology - CRYPTO 2013, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 8042, pp. 335–352. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40041-4_19

[44] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and T. Unterluggauer,
“PASEC: Securing Authenticated Encryption Against Passive Side-Channel Attacks
By Design,” 2016.

[45] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct Random Functions,”
Journal of the ACM (JACM), vol. 33, no. 4, pp. 792–807, 1986.

[46] M. Dworkin, “Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices,” NIST Special Publication, vol.
800, 2010.

[47] Kingston Technology, “Encrypted Drives,” http://www.kingston.com/en/usb/
encrypted_security, 2016.

[48] Samsung Semiconductor, Inc., “Samsung Solid State Drives,” http://www.samsung.
com/us/business/oem-solutions/pdfs/selfencryptingssd-042011.pdf, 2016.

[49] P. Rogaway, “Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC,” in Advances in Cryptology - ASIACRYPT
2004, ser. Lecture Notes in Computer Science, P. Lee, Ed. Springer
Berlin Heidelberg, 2004, vol. 3329, pp. 16–31. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-30539-2_2

[50] R. Schilling, “Memcrypt - A Fully Transparent Memory Encryption,” 2015, Master
Project.

[51] I. Xilinx, “Efficient Shift Registers, LFSR Counters, and Long Pseudo- Random Se-
quence Generators,” http://www.xilinx.com/support/documentation/application_
notes/xapp052.pdf, 1996.

109

http://dx.doi.org/10.1007/978-3-319-16763-3_14
http://dx.doi.org/10.1007/978-3-642-40041-4_19
http://www.kingston.com/en/usb/encrypted_security
http://www.kingston.com/en/usb/encrypted_security
http://www.samsung.com/us/business/oem-solutions/pdfs/selfencryptingssd-042011.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/selfencryptingssd-042011.pdf
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

Bibliography

[52] J. Wolkerstorfer, “An ASIC Implementation of the AES MixColumn operation,” in
Austrochip 2001, 2001, pp. 129–132.

[53] A. Ronacher, “Jinja2 - A Full Featured Template Engine in Python,” http://jinja.
pocoo.org/, 2014.

[54] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright, “Fast Software AES Encryp-
tion,” in Fast Software Encryption. Springer, 2010, pp. 75–93.

[55] P. Neal, “The Generalised Coupon Collector Problem,” Journal of Applied Probabil-
ity, pp. 621–629, 2008.

[56] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
in Advances in Cryptology — CRYPTO ’97, ser. Lecture Notes in Computer
Science, J. Kaliski, BurtonS., Ed. Springer Berlin Heidelberg, 1997, vol. 1294, pp.
513–525. [Online]. Available: http://dx.doi.org/10.1007/BFb0052259

[57] C. E. Dobraunig, F. Koeune, S. Mangard, F. Mendel, and F.-X. Standaert, “Towards
Fresh and Hybrid Re-Keying Schemes with Beyond Birthday Security,” in CARDIS,
ser. LNCS, N. Homma and M. Medwed, Eds. Springer, 2015, in press.

110

http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://dx.doi.org/10.1007/BFb0052259

	List of Acronyms
	Introduction
	Contribution of this Work
	Organization

	Background
	PULP - A Parallel Ultra-Low Power Processing Architecture
	Introduction to Cryptography
	Asymmetric Cryptography
	Symmetric Cryptography
	Block Cipher
	Stream Cipher

	Advanced Encryption Standard
	Sponge Construction
	The Keccak-f Permutation Family

	Side-Channel Attacks
	Simple Power Analysis
	Differential Power Analysis
	Fault Attacks

	Countermeasures against Side-Channel Attacks
	Masking
	Hiding

	Related Work
	Leakage-Resilient Cryptography for the Internet of Things
	Attacker Model
	Fresh Re-keying
	Re-keying Function based on a Polynomial Multiplication
	Polynomial Multiplication
	Masked Multiplication
	A Non-Invertible Re-keying Function

	An Efficient Leakage-Resilient Construction
	2PRG Construction

	Permutation-based Leakage-Resilient Encryption
	Permutation Leakage
	Re-keying Function
	Encryption Function
	Authentication Function
	Parameter Selection

	XTS Encryption

	Hardware Architecture
	Accelerator Architecture
	Operation
	HWCrypt - A Cryptographic Accelerator
	Peripheral Interface
	Command Queue
	Polynomial Re-keying Unit
	Parallel Masked Polynomial Multiplier
	Iterative Masked Polynomial Multiplier
	Polynomial Multiplier

	Linear Feedback Shift Register
	AES Unit
	AES Dual Iterative
	GF(2128) Multiplier

	Sponge Unit
	Variable Rate Engine
	Keccak-f[400] Permutation

	TCDM Interfaces
	Verification
	Functional Verification
	Constraint Random Testing in Software

	Results
	Constraints
	HWCrypt Accelerator
	Advanced Encryption Standard
	Software Implementation
	Primitive Operation
	Hardware Implementation
	Summary

	Polynomial Re-keying Unit
	Software Implementation
	Hardware Implementation
	Random Bit Requirements

	Performance Evaluation of the Sponge Unit
	Re-keying Function
	Encryption Mode

	Accelerator Efficiency
	Without a Command Queue
	With a Command Queue

	Fulmine - ASIC

	Conclusion and Future Work
	Future Work

	HWCrypt Accelerator Datasheet
	Features
	Applications
	Description
	Fulmine Configuration
	Interface Description
	Peripheral Interface
	Interrupt Interface
	TCDM Interface

	Register Map
	Register Description

	Operation Modes
	Re-keying Mode
	Encryption Mode
	Primitive Mode

