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Abstract

A main task in computer graphics is to display real scenes in a virtual environ-
ment. There exists a variety of approaches. In this thesis, a method is presented
where images can be acquired using standard cameras, and new views are
generated using image-based rendering.

This requires several steps, which are dependent on each other. Therefore, a
complete pipeline is presented, from image acquisition to rendering.

Input images, taken with standard cameras, are stitched to panoramic images.
The images are registered in 3D space to establish their location relative to each
other. Using existing research, correspondences between pixels are determined
(“optical flow”). New views are generated via an interpolation scheme, which
takes existing images and renders new views of the scene. The interpolation
scheme uses the optical flow and is based on a combination of forwards and
backwards warping. It takes into account occlusions, disocclusions, and the
epipolar geometry of panoramic images. Results are enhanced by generating a
sparse pointcloud using structure-from-motion (SFM) tools, and using that as
input for the optical flow algorithm.

The benefits of my system are low-cost acquisition, automatic registration of
input images in 3D space, and a fully automatic pipeline requiring no user
input.

The main contribution is the interpolation approach, which combines several
existing ideas. Furthermore, a novel scheme is presented for taking into account
epipolar geometry of panoramic images during interpolation. This scheme
works well even if input images violate these geometric assumptions.
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Kurzfassung

Eine wichtige Aufgabe in der Computergrafik ist die Darstellung von realen
Szenen innerhalb einer virtuellen Umgebung. Dazu gibt es eine Reihe von
Herangehensweisen. In dieser Arbeit wird eine Herangehensweise präsentiert,
die es ermöglicht, die reale Szene mit normalen Kameras aufzunehmen. Mithilfe
von Rendering-Verfahren, die rein bildbasiert arbeiten (Image-Based Rendering,
IBR) werden neue Ansichten der Szene generiert.

Unser Verfahren erfordert eine Reihe von Verarbeitungsschritten, die aufeinan-
der aufbauen. Die Arbeit beschreibt eine vollständige Pipeline, von der Auf-
nahme der Bilder bis hin zum Rendern von Ausgabebildern.

Die Eingabebilder werden mit normalen Kameras aufgenommen, und automa-
tisch zu Panorama-Bildern zusammengefügt. Diese Panoramabilder werden im
3D-Raum lokalisiert. Mittels Verfahren aus der Computer Vision können Kor-
respondenzen zwischen Pixeln ermittelt werden (“Optischer Fluss”). Mithilfe
dieser Korrespondenzen kann Interpolation durchgeführt und neue Bilder
erzeugt werden. Dieses Interpolations-Schema basiert auf einer Kombination
aus Vorwärts- und Rückwärts-Morphing. Das hier vorgestellte verfahren berück-
sichtigt Occlusions, Disocclusions, und die Epipolar-Geometrie der panorami-
schen Bilder. Zusätzlich wird mithilfe von structure-from-motion (SFM) eine
Punktwolke erzeugt, die dann als Initialisierung für den optischen Fluss ver-
wendet wird.

Die Vorteile meines Systems sind schnelle und kostengünstige Aufnahme realer
Szenen, automatische Lokalisierung der Aufnahmen im 3D-Raum, und eine
vollautomatische Verarbeitung.

Der wichtigste wissenschaftliche Beitrag ist das Interpolationsverfahren, mit
dem aus den zuvor aufgenommenen Bildern neue 3D-Ansichten erstellt werden.
Für dieses Verfahren wurden mehrere bestehende Ideen miteinander verknüpft.
Außerdem wird eine neue Methode zur Berücksichtigung der Epipolargeometrie
während der Interpolation vorgestellt. Diese Methode funktioniert auch dann
gut, wenn gewisse Annahmen bezüglich der Geometrie der Eingabebilder
verletzt werden.
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1. Introduction

This chapter gives an introduction to the topic. First, the problem of displaying
real scenes inside a virtual environment is examined. Then, some existing work
on the topic is presented. Finally, we will have a brief look at our solution and
how it compares with other approaches.

1.1. Problem Statement

In computer graphics, it is often desired to display real scenes inside a virtual
environment. This has a wide variety of applications. For example, in visual
effects for movies, real scenes are augmented with computer-generated objects.
Interactive simulations, on the other hand, require free navigation through a
real scene with high visual fidelity. In real estate and tourism, users should be
able to navigate real places from their own computer.

There exists a variety of different approaches to solve this problem. Most
approaches can be summarized in three steps:

1. Data Acquisition: How to record raw data from a real scene.
2. Pre-Processing to an intermediate representation: Usually, raw data will

not be used directly. Instead, it is pre-processed and stored in a specific
format that lends itself to efficient rendering.

3. Rendering: How to generate new images from the intermediate represen-
tation.

These three steps form a pipeline: The output of one phase is used as input
for the next. This is illustrated in Figure 1.1. The example images shown in
Figure 1.1 refer to a simple manual geometry construction approach, which
works as follows: The real scene is photographed from multiple angles (“Data
Acquisition”). From these reference photographs, geometry is constructed man-
ually, and textures are extracted (“Pre-Processing”). This geometry and texture
information is stored (“intermediate representation”). It can then be used to
generate new images (“Rendering”).

1



1. Introduction

Data Acquisition

Raw Data

Real Scene

Intermediate Representation

Output Images

Rendering

Pre-Processing

Figure 1.1.: A generalized pipeline for displaying real scenes in a virtual environment. The
example images show a manual geometry construction based approach. Rectan-
gles represent entities or data items, hexagons represent processing steps. From
a real scene, raw data is captured. After some pre-processing, we arrive at an
intermediate representation. The rendering process generates output images from
the intermediate representation. 1

1 Image Credits: Photograph of Grazer Rathaus by Taxiarchos228, published at https://
de.wikipedia.org/wiki/Grazer_Rathaus#/media/File:Graz_-_Rathaus2.jpg, used under
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0/). 3D Model of Grazer Rathaus,
created by Gerhard A., published at https://3dwarehouse.sketchup.com/model.html?id=
a0d586afe6334a9178695d69e90202d, used under the 3D Warehouse General Model License
(https://3dwarehouse.sketchup.com/tos.html#license), rendered using the “SketchUp
Make” software.
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1.2. Related Work

The choice of intermediate representation depends on the rendering approach
used. There are two main paradigms for rendering: geometry-based and image-
based rendering [54].

In geometry-based rendering, the intermediate representation consists of geom-
etry and texture data. New images are generated using standard 3D rendering
techniques. Data acquisition can be done in a number of ways: Geometry can
be modelled by hand, or reconstructed automatically. Automatic reconstruction
techniques are described by Bourke et al. [4] and Goesele et al. [18], among
others.

On the other hand, in image-based rendering, output images are created from
the input images, without explicit geometry reconstruction. In this case, the
intermediate representation consists of images, which may be processed and
augmented with additional information.

A variety of data acquisition devices may be used for both approaches, some of
which are mentioned in Chapter 3.

When comparing different approaches, major considerations include rendering
performance, storage requirements for the intermediate representation, and
the amount of manual labour needed for data acquisition. For example, In
the visual effects industry, detailed geometry for scenes is often reconstructed
manually, and combined with high-resolution textures. This leads to high visual
fidelity, but is very cost-intensive and requires a lot of processing time for
rendering. On the other hand, for interactive online walkthroughs in real estate,
the requirements are different. Data acquisition needs to be done quickly and
cost-efficiently, intermediate representation data needs to be small, and real-time
rendering is desirable.

1.2. Related Work

This section shows some previous work in implementing image-based ren-
dering pipelines. Only implementations of complete pipelines are mentioned
here. Additional work relating to some of the individual steps is listed in the
corresponding chapters.

Yang & Crawfis implemented the “Rail-Track Viewer” [69], a system for efficient
real-time navigation through virtual scenes. Instead of rendering the scene
directly, they pre-render specific key points along a path. For each key point, a

3



1. Introduction

panoramic image with associated depth information is rendered. They recon-
struct a simple mesh from the depth information, and use that to interpolate
new views. This allows the user to move along a 1D path. However, their system
does not allow the visualization of real scenes, and movement is restricted to
that one-dimensional path.

Siu et al. presented a novel architecture for an image-based rendering pipeline
[56]. They make several new contributions, including an architecture to unify
several previous approaches and recovery of geometry proxies for outdoor
scenes. They also present a rendering scheme which takes into account the
expected distortions during interpolation, and selects the two most suitable
input images to sample from.

Starck et al. created the “free-viewpoint video renderer” [58]. Like Siu et al., they
create geometry proxies for the scene, however their geometry proxy changes
over time. Rendering is performed on the GPU, enabling interactive frame-rates
with high-resolution video streams.

Lipski et al. solve the problem of free-viewpoint video using a different ap-
proach (“virtual video camera” [32]). Instead of constructing a geometry proxy,
their method is purely image-based. First, they compute the optical flow be-
tween pairs of images. Optical flow refers to the problem of finding per-pixel
correspondences in a pair of images. Their method is optimized for temporal
upsampling of video, therefore they use a special-purpose optical flow algo-
rithm previously developed by Stich et al. [60]. That algorithm is optimized
for small displacements, high performance, and perceptually good results. To
generate new views, they move the pixels of the original image in the direction
of the optical flow field (“forward warping”). The rendering is implemented on
the GPU.

Zhao et al. [70] present a method based on warping a 2-dimensional triangle
mesh. They use panoramic images as input. From those images, position and
orientation are estimated. Then, feature points are detected. Between these
feature points, a 2D triangle mesh is constructed, and warped to the correct
location. All image pixels within a particular triangle follow that triangle’s
motion. This stands in contrast to optical-flow-based approaches, where each
pixel has an individual motion vector.

In Kolhatkar’s thesis [28], another approach based on optical flow is presented.
This approach is most similar to the present thesis, but there are several dif-
ferences. This thesis includes stitching and registration, whereas Kolhatkar
focusses on the interpolation. The pipeline presented here uses external optical

4



1.2. Related Work

flow software, while Kolhatkar implements a custom algorithm. Finally, the
interpolation scheme, while based on optical flow in both cases, is different.

Stich et al. interpolate directly in image space, with no explicit geometry recon-
struction [60]. In contrast to Starck et al., which used video streams, they work
on a small set of static images that are taken at different times and different
locations. Using homographies combined with an image deformation model,
they achieve convincing interpolation. They also mention that on dynamic
scenes, their approach outperforms optical-flow-based methods.

The ideas discussed in this thesis are closely related to new television tech-
nologies, namely 3DTV and FTV. 3DTV refers to stereoscopic image material,
where two images are recorded and displayed, for the left and right eye. FTV, on
the other hand, allows the viewer free viewpoint and view direction selection
(within a certain range). Kubota et al, in their article, give an overview about
the challenges of 3DTV and FTV, and emphasize the importance of considering
the entire pipeline [30]. Many of the topics addressed in this thesis are covered
in that article: The relation between capturing, preprocessing and interpola-
tion; various capture technologies, and the distinction between geometry- and
image-based rendering. The article also covers 3D video coding technologies.

1.2.1. Examples of Pipelines

Two well-known examples of image-based interpolation pipelines are Google
Street View [21], and Mapillary [63].

Google Street View uses panoramic image material, taken from company-
operated cars on streets around the world. The images are localized using
initialization data based on GPS, with an image-based refinement scheme
[27]. Their web viewer enables image-based navigation through the streets.
However, their interpolation scheme is relatively crude and can give only a
rough approximation of perspective.

Mapillary allows anyone to upload their own street-level images, and localizes
these images in 3D space, enabling navigation through a large collection of
photographs. Their interpolation scheme is more advanced than Street View,
and provides more realistic transitions between images. However, the source
images are not panoramic, thereby restricting the field of view.

5



1. Introduction

1.3. My Approach

The goal for this thesis is to implement a flexible and extensible pipeline for
image-based rendering of panoramic photographs.

A decision was made to use image-based rendering (IBR) and avoid geometry-
based rendering. The goal was to see how well IBR performs in practice. An
advantage of IBR is predictable performance and simplicity in the algorithm.
By using only images as input material, it is possible to capture scenes using a
simple camera, and there is no need for expensive or heavy equipment.

Throughout the entire pipeline, panoramic images are used instead of standard
photographs. Panoramas have unlimited field-of-view. This allows the viewer
to rotate freely, creating an immersive effect. Panoramic images can be taken
using a standard camera or special panoramic cameras. Output images can be
rendered at any location between the original camera positions. This provides
the user with freedom in both viewpoint and view direction.

Position and orientation of each panorama is determined from the images.

The system was implemented and evaluated. Evaluation was done with respect
to rendering artifacts, output quality and performance measures. Furthermore,
experiences with image acquisition are described and the pipeline is compared
with a geometry-based rendering approach.

Various external software packages and libraries were used for some of the
steps, and components can be exchanged individually.

6



2. Pipeline Overview

In this chapter, we will have a look at the structure of our pipeline. Then,
coordinate systems and conventions will be discussed. Lastly, we will look at
how panoramic images are stored in our system.

2.1. Overview

The process starts from a collection of photographs. The pipeline accepts two
types of input images: Standard images taken with a standard camera, or 360°
panoramic images. Standard images are automatically stitched into panoramic
images. The image acquisition process is explained in Chapter 3, and the
stitching in Section 3.2.

The registration subsystem (Chapter 4) determines 3D positions (up to a scale
factor) and relative orientations for all panoramas. It may also generate sparse
3D points with visibility information. This information improves rendering
quality, because the optical flow software can more precisely estimate the true
motion of scene points later.

Using the registration information, all panoramas are aligned relative to each
other (alignment, Section 4.3). This alignment is necessary to get optimal results
out of the next step.

The optical flow generation step determines pixel-wise correspondences be-
tween pairs of images. This is explained in Section 5.3. By knowing these
correspondences, pixels can be moved to simulate intermediate positions dur-
ing the next step.

Finally, using the intermediate results generated so far, new viewpoints can be
rendered (interpolation, Chapter 5).

7



2. Pipeline Overview

Figure 2.1 gives an overview over the pipeline. Input, output and intermediate
data is stored as follows:

• Input Images as JPG.
• Aligned Panoramic Images as PNG files.
• Position and Orientation for each Panorama, Sparse 3D Points are writ-

ten to a single JSON file per dataset.
• Optical Flow Files in the .flo file format, which is a de facto standard for

storage of optical flow fields.

More details can be found in Appendix A.

2.2. Conventions

This section explains the mathematical conventions used in this thesis. All data
retrieved from external tools is converted into this representation.

2.2.1. Representing 3D Rotation

In this thesis, we use different coordinate systems that are oriented at angles
relative to each other. Therefore, we first need to discuss how to represent
rotations mathematically. In this thesis, two representations are used to represent
full 3D rotations: yaw-pitch-roll, and quaternions.

Yaw-pitch-roll is illustrated in Figure 2.2. This representation has the advantage
of being intuitive to understand, however they have some properties that may
make calculations difficult (for example, they suffer from singularities). In the
literature, this representation is called “Tait-Bryan Angles” or “Euler Angles”,
depending on the specific convention used.

Our Yaw-Pitch-Roll representation works as follows: We first apply yaw (a
rotation around the y-axis, measured from the positive z-axis), then pitch
(rotation around the x-axis, measured from the positive z-axis), and then roll
(rotation around the z-axis, measured from the positive x-axis). The rotations
are applied intrinsically, i.e. they are applied to the rotated coordinate system.
We define the yaw range to be -180° to +180°, pitch from -90° to +90°, and roll
from -180° to +180°.

Quaternions are an extension of imaginary numbers that are well suited to
describe 3D rotations. Quaternions are represented by a set of four numbers

8



2.2. Conventions

Standard Images Unaligned Panoramic Images

Registration

Stitching

Optical Flow Generation

Interpolation

Position and Orientation for each Panorama

Sparse 3D Points and
Visibility Information

Optical Flow Files

Interpolated Panoramas, Perspective Images or both

Aligned Panoramic Images

Image Acquisition

Unaligned Panoramic Images

Alignment

using a standard camera using a panoramic camera

Figure 2.1.: Overview of the pipeline. Rectangles represent entities or data items, hexagons
represent processing steps. The process starts with standard images, which are
stitched together, or panoramic images, which are used directly. In the registration
step, orientation and position of each panorama is calculated. In the alignment step,
their orientation in world space is equalized. From that information, optical flow is
calculated new panoramas can be generated by interpolation.
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2. Pipeline Overview

Figure 2.2.: The yaw-pitch-roll representation of rotation.

x, y, z, w. They are ideal for efficient computation. For example, to chain two
rotations together, one only needs to multiply the respective quaternions. This
multiplication is performed using the so-called Hamilton product, which will
be written in the thesis like this: q1 ◦ q2. For more details, the reader may refer
to the literature [61]. An introduction to quaternions and their application to
3D geometry is given by Goldman [20]. A concise summary can be found in
Schwab’s article [52].

To rotate a vector v = (vx, vy, vz) by a quaternion q = (qx, qy, qz, qw), we define
a quaternion qp:

qp = (vx, vy, vz, 0) (2.1)

Then, we calculate:

p′ = q ◦ qp ◦ q−1 (2.2)

The rotated vector is given by v′ = (p′
x, p′

y, p′
z).

Conversion between yaw-pitch-roll, quaternions, and other orientations is ex-
plained in an article by Diebel [10].

10



2.2. Conventions

2.2.2. Representing Direction

To represent the direction of a point relative to a specific viewpoint, we use
direction vectors and normalized spherical coordinates.

We define the (normalized) direction vector v of scene point x as seen from
camera position c:

v =
x − c

||x − c|| where || · || : Euclidean norm (2.3)

We can represent the same direction using normalized spherical coordinates.
These are specified using two values, φ (phi) and θ (theta). φ has the same
meaning as yaw, and θ means pitch, as shown in Figure 2.2. To convert spherical
coordinates into a direction vector, yaw and pitch are applied to the z-axis vector
(0, 0, 1) using the same convention as for our yaw-pitch-roll representation.
Obviously, since we apply the rotation to the z-axis, roll values would have no
effect.

To convert a direction vector into normalized spherical coordinates, the follow-
ing formula can be used:

Direction vector v = (x, y, z)

φ = atan2(z, x)− π

2
θ = arcsin(y)

(2.4)

2.2.3. Coordinate Systems

We distinguish three coordinate systems: Global, local and image.

The global coordinate system is used to establish the position of viewpoints,
and the position of sparse 3D points which are optionally reconstructed.

The local coordinate systems are centered on each viewpoint, at a specific
rotation relative to the global coordinate systems. This rotation is identical
among all viewpoints because we align the panoramic images (Section 4.3).
This alignment is necessary because we send the image files to external “optical
flow” tools, which work much better with alligned images. The relationship
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2. Pipeline Overview

Figure 2.3.: Example of three local coordinate systems, centered at the corresponding viewpoints,
in relation to the global coordinate system. Also shown is a cloud of sparse 3D
points from our scene.

between global and local coordinate systems is illustrated in Figure 2.3, and
defined mathematically below.

The pipeline uses left-handed coordinate systems.

The image coordinate system defines the mapping between angles of incident
light rays and their position in the panoramic image. This mapping depends on
the choice of projection type. For our implementation, equirectangular projection
is used and this conversion is illustrated in Figure 2.7.

Transformations

Scene Point to Direction Vector

Let x be a 3D scene point in global coordinates. Let the camera position be c1.
For most purposes, we only need to know the direction in which a scene point
appears, but not its distance. Therefore, we will only consider the normalized
direction vector to our scene point, expressed in global coordinates vx:
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2.3. Panoramic Image Storage

vx =
x − c

||x − c|| where || · || : Euclidean norm (2.5)

Direction Vector to Local Direction Vector
Let qI1 be the orientation of the local coordinate system for this camera, ex-
pressed as quaternion. To transform the direction vector in the local coor-
dinate system, we make use of the properties of quaternions established in
Section 2.2.1.

Let qvx be vx converted into a quaternion according to Formula 2.1

vx, local = qI1 ◦ qvx ◦ q−1
I1

(2.6)

Local Direction Vector into Normalized Spherical Coordinates
We then convert this local direction vector into spherical coordinates (φ, θ)
according to Formula 2.4.

Normalized Spherical Coordinates to Image Coordinates
These spherical coordinates can be converted into panoramic image coordinates.
This is explained in Section 2.3, and more specifically in Formula 2.7.

2.3. Panoramic Image Storage

In this section, we will investigate how light information from our scene is
captured and stored.

2.3.1. A Simple Model of Photography

When describing photography, it is helpful to imagine the following model,
which is adapted from Hartley and Zisserman’s classic book [23]. We choose
a single, infinitely small viewpoint, the “center of projection” or “scanning
position”. We capture all light rays arriving at this point, with their color
information and the direction they are coming from.
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2. Pipeline Overview

Figure 2.4.: Standard Photography: View rays are captured on a rectangular image plane, and
only a portion of the scene is captured.

To capture that light information, we need to define a 2-dimensional shape onto
which the image is projected (the “projection surface”). For example, Figure 2.4
shows a model of a standard camera, with projection onto a plane.

Panoramic images and standard images differ in their field of view. In panoramic
photography, light rays arriving from all directions are captured, with a field-of-
view of 360° horizontallly and 180° vertically. On the other hand, with standard
images, we only capture a subset of light rays, with a field-of-view that covers
less than half of the full sphere.

2.3.2. Storage of Light Information

We saw in the previous section how light information arrives at a center of
projection, and is projected onto a surface. Standard photos are usually stored
as rectangular grids of pixels, so-called bitmaps. Therefore, we need to define
not only the shape of our projection surface, but also a method to store light
information from that surface in a rectangular bitmap.

With a standard digital camera, view rays land on a rectangular sensor. Since
the bitmap and the projection surface are both rectangular, the light information
arriving at the sensor may be stored directly: each sensor pixel is stored in one
bitmap pixel. This is illustrated in Figure 2.4.

With panoramic images, on the other hand, the projection surface can be
imagined as a sphere. This is illustrated in Figure 2.5. However, to store the
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2.3. Panoramic Image Storage

Figure 2.5.: Panoramic Photography: The entire scene is captured. This includes (theoretically)
all light rays arriving at the center of projection, from all directions.

images as bitmaps, we need to define how to store points on the sphere in a
rectangular image.

This problem has been well-studied by cartographers, trying to represent a
spherical earth in a rectangular map. A comprehensive overview from the
cartographers’s perspective can be found in [57].

Hassanat [24] investigates several projection types and explains their properties
in relation to virtual reality applications. For this thesis, two projection types
were considered: Cubemaps and equirectangular projection. In a cubemap,
the panoramic sphere is replaced by a panoramic cube, with 6 images with
a 90°field of view each (see Figure 2.6). These images (left, right, front, back,
up, down) can then be packed into one image, at the cost of wasted space
(Figure 2.8b).

In equirectangular projection, angles are linearly mapped to pixels. For each
view ray, we take its normalized spherical coordinates, expressed as a tuple (φ, θ)
(phi and theta, corresponding to yaw and pitch). This is shown in Figure 2.8b.
The inclination (-90°to +90°) is mapped to the vertical position in the image. The
radial angle (-180°to +180°) is mapped to the horizontal position. The center of
the image corresponds to spherical angles of 0°inclination and 0°radial. This
can be expressed mathematically as follows:
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2. Pipeline Overview

Figure 2.6.: Cubemaps can be imagined as the projection of view rays onto a cube. The sphere
from Figure 2.5 is replaced by a cube, onto whose sides the rays are projected.

let (φ, θ) : normalized spherical coordinates of view ray
let (w, h) : Image width and height, respectively
calculate image coordinates (x, y) as follows:

x =
(φ + π) · w

2π

y = (θ +
π

2
) · h

π

(2.7)

Equirectangular projection has the problem of a very non-uniform resolution
distribution: The poles are stored with much higher resolution than the equator.
Cubemaps offer more uniform resolution, but they have discontinuities between
the up/down and left/right/back images. These discontinuities present a
problem when used with optical flow algorithms, as described in Section 5.3.
Also, cubemaps waste half of the space in the bitmap. Therefore, equirectangular
projection was chosen for our implementation.

An example of one panorama, displayed as cubemap and in equirectangular
projection, is shown in Figure 2.8.
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2.3. Panoramic Image Storage

Figure 2.7.: Equirectangular Projection. For a scene point, we calculate its normalized spherical
coordinates, expressed in azimuthal angle φ and polar angle θ. These angles are
mapped to the horizontal and vertical axis in the image.

(a) (b)

Figure 2.8.: Comparing cubemaps (a) and equirectangular projection (b). Note that the very top
and bottom of the sphere were not photographed in this case, causing two holes in
(a) and white borders in (b).
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2. Pipeline Overview

2.3.3. Choice of Projection for this Thesis

Equirectangular projection has been selected for our implementation, for reasons
presented in Section 2.3.2. Equirectangular projection is also used for most of
the explanations and images in this thesis.

However, most algorithms presented are agnostic of the specific projection type
used. This is because the panoramic images are only a particular representation
of the light rays arriving at the viewpoint, and it is always possible to extract
light rays (angle and color) from the panoramic image. Therefore, by the term
“panoramic image”, we refer to a representation of the light rays, without
implying a specific type of projection.

When a specific type of projection is refered to, we will use the terms “equirectan-
gular panoramic image” or “panoramic image in equirectangular projection”.
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3. Image Acquisition

In Chapter 1, we saw how the pipeline is structured, and that panoramic images
are used as input data. There are several options to shoot these images. For this
thesis, two approaches were evaluated:

1. Using a standard camera pointed in different directions, shooting small-
field-of-view images. These images are then stitched together into a single
spherical field-of-view image.

2. Using a panoramic camera, which contains several smaller cameras mounted
at a fixed angle relative to each other. The images still need to be stitched,
but this is done by the camera software.

These two approaches were evaluated as part of this thesis, however there
are other options to shoot panoramic images. Approaches using consumer
hardware include:

• Photographing a reflective sphere using a standard camera. By pho-
tographing just one half of the sphere, more than half of the surrounding
scene can be captured in a single shot.

• Using a video camera on a tripod, then slowly rotating the camera.
• Panoramic photography apps for smartphones.

All cameras mentioned so far capture light rays arriving at a single point in
space, with their direction and color. There is also special hardware which
captures more information about the scene. These cameras and would enable
different approaches to our problem. Two examples are:

• Depth cameras, which use laser scanning or structured light to measure
distance at each pixel. One example is the Microsoft Kinect, which has
been used for image-based rendering by Gupta et al. [22]. Using a depth
camera would allow more precise reconstruction of scene geometry, and
more accurate results during interpolation (Chapter 5).

• Lightfield cameras, which acquire information about position and direc-
tion of incoming light rays. Effectively, this captures multiple viewpoints
and multiple directions simultaneously. Examples include products from
Raytrix GmbH [44] and Lytro Corporation [64]. Using a lightfield, it is
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3. Image Acquisition

(a) (b)

Figure 3.1.: The setup for standard image acquisition, consisting of a Powershot S100 consumer
camera (a) and a Panosaurus panoramic head (b). 1

possible to extract new viewpoints with high quality, and replicate camera
characteristics like depth-of-field.

3.1. Using a Standard Camera

Test images were acquired using a Canon PowerShot S100 consumer camera.
The camera is set up on a tripod using a “Panosaurus” panoramic head [47].
This is a simple mechanical device enabling the camera to pivot exactly around
its sensor. The setup is shown in Figure 3.1. Then, images are taken into all
directions. Using automatic feature detection and matching, these images can
be stitched automatically. This image-based stitching process works well most
of the time, but the scene needs to have enough distinct features, and the images
need to share some of the features. The stitching process is explained in detail
in Section 3.2 In scenes with few features, automatic stitching may not work.
In that case, it would be necessary to measure the camera orientation during
shooting for each image, and enter these values into the stitching software by
hand. For optimal results, the photographer should follow these guidelines:

1Image credits: (a) Anna16, https://commons.wikimedia.org/wiki/File:Canon_

PowerShot_S100.jpg, used under Creative Commons Attribution-Share Alike 3.0 Unported. (b)
Gregwired Digital, http://gregwired.com, used with permission.
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3.2. Stitching Standard Images

• The camera should pivot exactly around its sensor. This can be achieved
using special panoramic mounts, e.g. Panosaurus [47].

• Adjacent images must have some amount of overlap, to allow for auto-
mated image-based stitching.

• Ideally, the camera should be operated in manual mode. This is to avoid
differences in apparent illumination between the pictures. Differences in
apparent illumination might stem from varying ISO, aperture, shutter
timing or in-camera postprocessing. Using manual mode will, in most
cameras, prevent these variations. If the camera does not have a manual
mode, the stitching software will try and correct for differences in bright-
ness within each panorama. However, these corrections are not consistent
among different panoramas, and will lead to problems in later stages of
the pipeline.

• White balance must be on the same setting for the entire shoot.
• The focus should be set so that the most important objects are in focus.

“Important” objects are these which are most likely to be of interest to the
user in the particular application.

• Aperture should be set to small, so that most of the scene is in focus.
• For optimum picture quality, a low ISO value and the use of a remote

shutter or self-timer is recommended.

3.2. Stitching Standard Images

When feeding standard images into our pipeline, they are stitched automatically.
This section describes briefly how automated stitching works, and the particular
software used.

3.2.1. A Brief Overview of Automated Stitching

Brown and Lowe present an overview over automated stitching, and then
present their own approach [5]. Their solution is fairly sophisticated. Here, we
will summarize only the basic steps.

Step 1: Feature Detection. First, invariant feature points are detected in the
images. “Invariant” means that the feature detector algorithm can recognize the
same feature in different images in the presence of zoom, rotation, and slight
changes in illumination.
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3. Image Acquisition

Step 2: Matching. Secondly, matches between the features are detected across
different images.

Step 3: Image Alignment. Now, the images need to be aligned using the feature
matches found previously. Because of inaccuracies in feature positions and
mismatches between features, no perfect solution is possible. Instead, we need
to find a solution minimizing the error in feature alignment.

Step 4: Blending. Brown and Lowe explain how even after perfect alignment,
overlapping pixels in multiple images will not have the same intensity. This is
because of vignette effects inside the lense, changing scene illumination, noise,
and other factors. Therefore, they argue that good blending is essential for
high-quality results. They use multi-band blending, an approach developed
previously by Burt and Adelson [6]. Effectively, low-frequency detail are blended
over a large range, whereas high-frequency detail is blended over a shorter
range. This prevents small registration errors from producing blurry regions in
the output image.

Brown and Lowe also present some extensions to basic image stitching. For ex-
ample, their method automatically detects multiple viewpoints in the unsorted
collection of input images. They also mention automatic straightening and gain
compensation.

3.2.2. Used Software

Existing Open Source Software produces excellent results and no further re-
search was required. Therefore, the Hugin package [9] was simply integrated
into our pipeline.

For our datasets, Hugin produced reasonably good results. All images were
aligned roughly correctly. However, approximately one out of ten input images
had some small errors in their alignment, leading to seams in the stitched image.
Therefore, there would be potential to improve results by integrating a different
stitching package into the pipeline.

3.3. Using a Panoramic Camera

Shooting standard images requires taking between 10 and 30 images per view-
point. This has several disadvantages:
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3.3. Using a Panoramic Camera

Figure 3.2.: The Ladybug 3 setup.

(1) The process is time-consuming.
(2) The image-based stitching may fail if not enough feature points can be

detected.
(3) Seams between individual images will appear if there is scene motion or

changes in illumination.
(4) During the long shooting process, illumination of the scene may change

significantly (due clouds, motion of the sun, etc).

Using a panoramic camera solves problems 1-3, and may alleviate (4) because
the shooting process takes less time, so the motion of sun and clouds will be
less apparent.

The camera used for this thesis was a Ladybug 3 360 Degree Firewire Camera
[40]. It contains six small cameras which cover 80% of the full sphere at a
resolution of 1600x1200 per camera. [41]

Figure 3.2 shows the setup. A tripod holds the Ladybug camera, which is
connected to a laptop using a 10m FireWire cable. The camera is controlled via
the laptop, running the Ladybug software.

The camera is set to capture an image every second. This makes the shooting
process very efficient. The photographer moves the tripod around, and leaves it
standing at each location for two seconds. Since the Ladybug does not capture
the area directly underneath it, the photographer can simply knee down to
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3. Image Acquisition

Ladybug 3
(Panoramic Camera)

PowerShot S100 &
Panosaurus
(Standard Camera with
Panoramic Mount)

Number of Images
taken

1 20

Field of View per
Image

360° by 144° 71° by 53°

Shooting Time 10 seconds per panorama 3 minutes per panorama
Resolution Fixed and limited, but

enough for most applica-
tions.

Flexible, depending on
zoom. Very high resolu-
tion possible (using a zoom
lense).

Stitching Reliabil-
ity

Works always, because the
exact offset of the six sen-
sors is known.

Needs distinctive image
features and overlap.

Stitching Quality Somewhat lower due to
parallax effects, if cameras
do not share the same cen-
ter of projection.

Very high (if it works).

Table 3.1.: Comparison of two approaches for image acquisition.

avoid being captured. Later, using the same software, the correct frames can be
found and exported in equirectangular projection. Equirectangular projection is
explained in Section 2.7.

3.4. Evaluation

Table 3.1 compares both approaches. My recommendation is to use a panoramic
camera for large scenes, because this greatly reduces the time required. This is
especially important in outdoor scenes, where illumination conditions change
quickly.

For indoor scenes with controlled lighting conditions, and if high resolution is
important, it is preferable to use a standard camera with a panoramic mount.
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4. Registration and Alignment

In this chapter, we look at the problem of registration and alignment. We want
to determine the position and orientation of the acquired panoramic images
relative to one another, using only the images. This information allows to
align the images relative to each other, so they all share the same orientation.
Additionally, during this process, a set of 3D points is reconstructed. Those 3D
points can be used to improve results later in the pipeline.

4.1. Problem Statement

In the registration phase, locations and orientations of the panoramic images
are established. Furthermore, a set of reconstructed 3D scene points is found.
This is done using only the images, with no other measurements.

This information is used in several ways:

• By determining camera rotation, panorama images can be aligned relative
to each other. This is important for good results during interpolation
(Chapter 5).

• By knowing the camera locations, we can find the 2, 3 or 4 closest cameras
to a specific point in the global coordinate system, and use these cameras
for interpolation.

• Optionally, a set of reconstructed 3D scene points is used to improve
results during the interpolation process (Chapter 5). 1

1In practice, for the VisualSFM package, 3D scene points are retrieved. For the OpenSFM
package, 2D correspondences are retrieved. Both representations are stored and converted into
2D correspondences before they are used.
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4. Registration and Alignment

4.2. Implementation

External structure-from-motion software is integrated into the pipeline. Structure-
from-motion (SFM) refers to the problem of reconstructing 3D points and cam-
era data from a set of images. Camera data includes position, rotation and
field-of-view. The images are set in relation to each other, determining camera
position and rotation, up to a scale factor. The process also delivers a loose
collection of 3D scene coordinates and their color information, but no triangles
or other surfaces. SFM algorithms have been successfully used to reconstruct
increasingly large sets of photos, approaching a million photographs [1].

Depending on the type of input images (standard or panoramic), two different
processes are used.

4.2.1. Registration with Standard Images

We have seen that standard images are stitched together to panoramic images.
However, for registration, the original, non-stitched images are used. This is
done to minimize the influence of small errors in the image-based stitching
method, which could affect the success of the SFM process.

For standard images, the VisualSFM software is integrated into the pipeline
[67, 68]. The software provides a graphical user interface, which can be seen in
Figure 4.1a.

For registration, the original, un-stitched images are used. Therefore, the orien-
tation of the stitched panorama can not be extracted directly from the output of
VisualSFM. Instead, they must be converted. This is explained in Section 4.3.1.

4.2.2. Registration with Panoramic Input Images

When using panoramic images, there is no stitching phase, and the images
themselves are used as input for the registration. The main difficulty was finding
a SFM package that allows panoramic input images. VisualSFM only supports
standard images. Finally, the OpenSFM open-source package was selected [38].
It was initially created by Mapillary, a company providing crowd-sourced street-
level images [63]. The software is run on the command line, and provides a
web-based viewer, which can be seen in Figure 4.1b.
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4.2. Implementation

(a)

(b)

Figure 4.1.: The two packages used for Registration in this thesis. (a) shows the graphical user
interface of VisualSFM. The dataset “bar” is loaded, and the original (standard)
input images are displayed together with a reconstructed point cloud. (b) shows
the web viewer of OpenSFM. The “grabenkirche” dataset is loaded. The wireframe
camera icons display the orientation of the input panoramic images. A sparse
pointcloud is also shown.
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4. Registration and Alignment

4.3. Alignment

We now have position and orientation for each input image. For good results,
it is important to rotate the panoramas so that the same image coordinates on
each panorama correspond to the same view direction in worldspace. This is
necessary for the optical flow generation (Section 5.3): Optical flow algorithms
perform much better when applied to the aligned images. This is because
the resulting flow vectors are smaller. Large flow vectors are not a problem
themselves, but they would lead to wrap-around around the edges of the
equirectangular images, which we would like to minimize.

Again, two different processes are used, depending on the type of input im-
ages.

4.3.1. Alignment with Standard Images

This section is divided into two parts: First, we look at how to extract orientation
values for the stitched panoramic images. (This is not straightforward, because
the constituent standard images are used as input for the registration). Secondly,
an extension is presented to provide tolerance against errors in registration and
stitching.

Extracting orientation for stitched panoramic images

In this section, we investigate how to obtain the position and orientation of a
stitched panorama, which is assembled of several constituent images. At first,
the results are presented assuming correct registration information. Then, in
Section 4.3.1, an extension is presented to tolerate errors.

Obtaining the position is trivial, because all constituent images will share the
same center of projection. Therefore, we can use the position of any constituent
image.

The orientation of a stitched panorama is obtained as follows: One of the con-
stituent images is selected as the “anchor image”. In this section, we represent
orientations as quaternions.

The symbols used are summarized in Table 4.1. We look at one stitched
panoramic image Ik and want to determine its orientation in the global co-
ordinate system. Let Ja be the anchor image for Ik. Its orientation is described by
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4.3. Alignment

Description Symbol Data Type
Standard input image with in-
dex l

Jl Function R2 → R3

(RGB color)
Stitched panoramic input im-
age with index k, in equirect-
angular projection

Ik Function R2 → R3

(RGB color)

Orientation of standard input
image Jl in the local coordi-
nate system (i.e., relative to its
stitched panoramic image Ik))

q�
Jl

Quaternion

Orientation of standard input
image Jl in the global coordi-
nate system

qJl Quaternion

Orientation of stitched
equirectangular input image in
the global coordinate system

qIk Quaternion

Table 4.1.: Formula Symbols used in this Section

the quaternion q�
Ja

, and refers to the local coordinate system. This information is
generated by the stitching process. Let qJa represent the orientation of the same
image in the global coordinate system, obtained from the registration. The first
quantity allows us to put the image into relation to its panorama. The second
quantity allows us to put the image into the correct location in world space.
Combining these two pieces of information, we can determine the orientation
of the stitched panorama in world space, qIk .

qIk = (q�
Ja
)−1 · qJa (4.1)

The quaternion q is calculated for each panoramic sphere and the stitched
panorama images are rotated accordingly. This is done without quality loss by
re-running the stitching process 2. After this process, all panoramas will have
the same orientation in world space – provided the information from stitching
and registration is correct.

2In my implementation, with the Hugin software, this is done as follows: My software
updates the project file with the new orientation values. Then, it calls the Hugin software to
produce the aligned output image.

29



4. Registration and Alignment

Achieving Error Tolerance

One problem with this approach is that it relies on a single anchor image, which
is selected arbitrarily. If this anchor image is not correctly oriented by either
registration or stitching, the panorama orientation q will be incorrect.

To solve this, we select, per stitched panorama, the most suitable image to be
used as anchor image. To that end, we define an error measure erra, shown
in Formula 4.2. This value indicates, for a given selection of anchor image
a, the agreement between the orientation values obtained from stitching and
registration (q�

Jl
and qJl ), for all standard input images Jl belonging to this

panorama.

erra = ∑
Standard Input Images l

diff(q�
Jl
· (q�

Ja
)−1 · qJa , qJi)

2

where diff(q1, q2) measures the difference in rotation
between two quaternions.

(4.2)

The function diff measures the difference in rotation between two quaternions,
and can be implemented in a variety of ways. In practice, the following method
worked well enough: Both quaternions are converted into their Yaw-Pitch-Roll
representation, interpreted as a 3D vector (x, y, z) = (yaw, pitch, roll), and the
Euclidean distance between them is calculated.

After evaluating erra for all possible selections of anchor image a, the one with
the smallest error score is selected.

This algorithm optimizes for agreement in orientation between registration
and stitching. We asume that for this image, the position will also have been
estimated correctly. Therefore, we simply use the position of the anchor image
as position for the entire panorama and ignore the position values of all other
constituent images.

4.3.2. Alignment with Panoramic Images

When working with panoramic images, OpenSFM gives us their orientation in
world space, qIk , directly. All images can simply be rotated to match the orien-
tation of the first image. This results in a slight quality loss, as one additional
resampling step is necessary.
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5. Interpolation

This chapter describes the generation of new views from the panoramic image
material.

To generate a new view at a specific position cv in the global coordinate sys-
tem, the 2, 3 or 4 original viewpoints are selected which are closest to this
point. cv must be within the simplex spanned by these cameras. The following
descriptions assume these viewpoints have already been selected.

Given are 2 ≤ n ≤ 4 aligned panoramic input images I1, I2, .., taken at posi-
tions c1, c2, .. in 3D space. For these explanations, we assume panoramas in
equirectangular projection, but the same ideas can be used with any other
projection type (e.g. cube maps or cylindrical projection). The goal is to ren-
der an output image at virtual camera position cv, which can be any position
in the space spanned by the original camera positions. This position can be
represented by barycentric coordinates a = (a1, .., an) as follows:

cv =
n

∑
k=1

ck · ak with 0 ≤ ak ≤ 1 and
n

∑
k=1

ak = 1 (5.1)

Using 2, 3 or 4 cameras provides 1D, 2D or 3D movement. This allows navigation
along a line, on a triangle, or inside a tetrahedron, respectively.

In this thesis, only interpolation was considered (navigating inside the line, tri-
angle or tetrahedron spanned by the cameras), and not extrapolation (navigating
outside that volume).

5.1. Terminology and Notation

With “Virtual Camera Position” and “Virtual Viewpoint”, we mean a camera
position that was not photographed, at which we want to render a new view.
“Original Camera Position” or “Original Viewpoint” designates a camera
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5. Interpolation

Table 5.1.: Notation used in this Thesis

Description Symbol Data Type
Pixel position p R2

Equirectangular
panoramic input images in
RGB color

I1(p), I2(p), .., In(p) Function R2 → R3

Blendmask (floating-point
weights per pixel and per
image)

B1(p), B2(p), ... Function R2 → R

Optical Flow Field (a vec-
tor per pixel describing the
displacement between two
images)

F(p) Function R2 → R2

Original viewpoints for in-
put images 1, 2, 3

c1, c2, ... R3

Virtual viewpoint for out-
put image:

cv R3

Barycentric Coordinates a = (a1, a2, .., an) Rn

Equirectangular
panoramic intermedi-
ate image, generated from
input image I1, at virtual
camera position cv

OI1→cv Function R2 → R3

Equirectangular output im-
age, generated from all in-
put images, at virtual cam-
era position cv

O�→cv Function R2 → R3

Optical Flow calculated be-
tween two images I1 and
I2

FI1→I2 Function R2 → R2

Effective Optical Flow gen-
erated for image I1 with de-
sired target warp position
cv expressed in barycentric
coordinates a

FI1→a Function R2 → R2

3D scene point x R3

Normalized Spherical Co-
ordinates

(θ1, φ1) R2

Direction vector with unit
length

v1 R3

Note: Normalized spherical coordinates are represented in the local coor-
dinate system, and are used in Section 5.4.8. We use them in this section to
represent the projection of a scene point onto the panoramic sphere.
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5.2. Related Work

position of an input image, in the global coordinate system. A “warp” is a
deformation of a single image. With “interpolation” or “morphing”, we refer
to the entire image rendering process.

Occlusions and Disocclusions

In this thesis, occlusions and disocclusions are defined in relation to one of the
input images, and a specific output image. An occluded region (“occlusion”) is
an area of the scene that is visible in the input image, but not in the output. A
disoccluded region (“disocclusion”) is visible in the output image, but not in
the particular input image. This is illustrated in Figure 5.1.

5.2. Related Work

This section describes some previous results in the field. This area of research
is usually called “Viewpoint Morphing”, and is considered a subset of image-
based rendering (IBR). The techniques mentioned here are optimized for a
static scene, medium-to-large displacements, and large regions of occlusion. An
in-depth look at image-based rendering can be found in the comprehensive
book by Shum et al. [54].

McMillan and Bishop outline a theoretical model for viewpoint morphing [34].
Their model defines the “plenoptic function” as the light information available
at a specific viewpoint in the scene, where the viewpoint is one of several
parameters to that function. In that model, image-based rendering is defined
as the reconstruction of a continuous plenoptic function from a discrete set of
samples.

Seitz and Dyer [53] investigated the problem of generating new viewpoints
from two source images of the same object. They base their method on classic
image morphing methods. They show that classical morphing, which moves
each pixel linearly along its displacement, fails to produce correct perspectives
for in-between steps. To solve this, they add an additional warping step before
and after the morphing, and prove that this leads to correct perspective. This
approach is not applicable to this thesis, as panoramic images are used.

Pollard et al. [42] start with the same principle, but generalize the algorithm to
three source images. They also introduce a lookup table for efficient retrieval
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(a)

(b)

(c)

Figure 5.1.: Consider two pictures taken of the same static scene, (a) and (b). Figure (c) shows
disocclusions and occlusions in (a), with respect to (b). Occlusions are scene regions
in (a) that are not visible in (b), and are marked with green. Disocclusions are scene
regions in (b) that are not visible in (a), and are marked with blue.
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of matching edges. Lipski et al. [32] interpolate using four cameras, enabling
navigation in 3D space.

Kolhatkar [28] performs optical-flow-based morphing on panoramic images,
represented by a cubemap. Optical flow is explained in Section 5.3. Their main
contribution is an efficient GPU implementation. My method is based on a
similar scheme, but includes several improvements for occlusion handling and
correct perspective.

The interpolation algorithm of Jelinek and Taylor [26] requires a series of stan-
dard images, taken from viewpoints that are relatively close together, with
identical view direction. The images are placed on top of each other, to form
a 3-dimensional volume. Each slice of that volume we call an “epipolar plane
image”, an idea adopted from Bolles et al. [2]. Using image processing tech-
niques, straight lines can be extracted from these epipolar plane images, and
3D scene points can be determined by analyzing the position and slope of
these lines. This analysis is robust against occlusions. Finally, for rendering, the
reconstructed 3D scene points are projected into each of the input images and
connected with edges to form a triangulation. The resulting triangular 2D mesh
can be used to warp the input images.

Lipski et al. [31] present a novel approach that uses both pixel correspondences
between images and a geometric model, consisting of per-pixel depth infor-
mation. That way, they are able to combine the strengths of both approaches.
Their method works by estimating per-pixel correspondences, and then recon-
structing approximate per-pixel depth from these correspondences. Using this
depth information, the 3D scene points can be found and re-projected into any
virtual camera position. The same idea was used in this thesis, as explained in
Section 5.4.8.

Methods based on per-pixel depth may deliver incorrect results if the recon-
structed depth information is inaccurate. Goesele et al. represent the depth
uncertainty in their intermediate representation (an “ambient point cloud”),
and perform some additional cleanup of the depth maps using image pro-
cessing techniques [19]. Their hybrid rendering scheme uses ideas from both
image-based and geometry-based rendering.

5.3. Optical Flow

My interpolation method is based on optical flow between pairs of images.
Optical Flow refers to the problem of estimating per-pixel scene motion be-
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tween two images. An example is shown in Figure 5.2. This section gives an
introduction to optical flow in general, and explains how different algorithms
can be compared to each other. Also, algorithm choice criteria for this thesis are
outlined. Finally, some problems are discussed that occur when using standard
optical flow algorithms on panoramic images.

5.3.1. Introduction

We learned that optical flow refers to the problem of estimating per-pixel scene
motion between two images. Obviously, from the images it is not generally
possible to reconstruct the true scene motion without ambiguities. Therefore, op-
tical flow estimation is an underdetermined problem. However, it can be solved
by making assumptions about brightness constancy of objects and smoothness
of the resulting field. The problem was first discussed by Lucas & Kanade
[33], who derived a solution based on local neighborhoods and least-squares
optimization, and by Horn & Schunck [25], who presented a global optimization
scheme. Newer algorithms use both colors and image gradients [13].

State-of-the-art approaches include DeepFlow [66] and EpicFlow [46]. Both
methods use dense matching of image features. This provides high robustness
to large displacements, which is important for this thesis. EpicFlow also includes
edge detection, which helps to find precise motion boundaries.

To compare different algorithms, researchers have created several benchmarks.
Sintel [7] is a 3D-rendered movie with large motions, specular reflections and
other challenging features. The Middlebury dataset [49] contains stereo images
of static scenes. The KITTI Vision Benchmark Suite [16] provides high-resolution
stereo images taken from a moving vehicle. KITTI is not only used for optical
flow benchmarking, but also for object tracking and geometry reconstruction.
Of particular interest is the KITTI website [15], which lists scores for many
optical flow algorithms and is continually updated.

5.3.2. Optical Flow Algorithm Selection

The interpolation method presented in this thesis can be used in conjunction
with any optical flow algorithm. However, for optimal results, the optical flow
needs to fulfill several criteria:

1. The ability to handle large displacements.
2. The ability to detect steep discontinuities with precision.
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(a) (b)

(c)

Figure 5.2.: Images (a) and (b) are used as input for an optical flow algorithm, which calculates
the flow shown in (c). Every arrow in (c) starts at a pixel position corresponding to
(a) and ends at a pixel position corresponding to (b). In (c), the arrows are shown
superimposed onto the image (a). In this visualization, only a small subset of optical
flow vectors can be seen - in actuality, the optical flow is defined for every pixel of
(a).
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3. The algorithm should accept feature matches as input. This is necessary
to handle large displacements. In the pipeline, 3D features identified
during registration (see Chapter 4) can be used as features. These features
are generated based on all images in the dataset. Therefore, this might
outperform standard feature matching approaches, which only use two
images.

Eventually, the DeepFlow algorithm [66] was selected. It meets all of the criteria,
is reasonably fast and provides good performance on standard datasets [7, 16,
49]. The method uses deep convolutional neural networks and has two steps.
First, using a novel matching algorithm (Deep Convolutional Matching, [45]),
dense correspondences are computed between the images. Secondly, the optical
flow field is determined using an energy minimization approach. In my pipeline,
the matching algorithm is replaced by 3D features identified during registration
(see Chapter 4). These 3D features also include visibility information, so 3D
features are only projected into original viewpoints where they are actually
visible.

Another approach worth mentioning is the work of Revaud et al., “EpicFlow”
[46]. The algorithm consists of three parts: First, Deep Convolutional Matching
is used [45]. Then, edge detection is performed. Finally, the optical flow is
estimated using both the matching and the edges. This approach was not used
because edge detection would be problematic on equirectangular images, where
edges might wrap around the borders of the image. 1

5.3.3. Wrapping Considerations

In our implementation, panorama images in equirectangular projection are
used. Most optical flow algorithms are optimized for standard images and
do not take the equirectanguar geometry of the image into account. The most
significant implication of this is that the optical flow algorithm cannot know
that the equirectangular image wraps around the left/right borders.

There are some special optical flow algorithms developed for panoramic images,
for example the approach of Mochizuki and Imiya [36]. However, only very few

1This wrapping problem is not specific to edge detection, but also affects the optical flow
estimation. A solution is presented in Section 5.3.3. However, that solution just makes sure that
pixel-wise matches are wrapped around the edges of the image. Edges are more problematic,
because they might span the entire image. Therefore, some adjustments would have to be made
to the edge detection algorithm.
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algorithms were designed for this purpose, so this would severely restrict the
choice of optical flow algorithms available.

To solve that, the image is extended around the horizontal axis. The feature
matches obtained during registration (see Chapter 4) are used to determine
exactly how much extension is necessary. After the optical flow field has been
estimated, the extra regions are simply thrown away. Extension around the
vertical axis was not implemented in the pipeline, but could be done in a similar
fashion.

5.4. Our Approach

The goal was to implement a visually convincing morphing technique that
fulfills the following criteria:

• Runtime and memory requirement scaling linearly with the number of
input and output pixels, irregardless of scene size.

• Can be combined with any optical flow software that generates the stan-
dard Middlebury .flo format [51]. Source code to read and write this
format can be found at [50].

• Correct handling of occlusions and disocclusions.
• Arbitrary number of source images - the algorithm is exactly the same,

regardless of whether we interpolate between 2, 3 or 4 images.

5.4.1. Overview

The basic approach is illustrated in Figure 5.4 and is explained in this section.
The exact formulas and details for each step are described in the following
sections. Highlighted terms refer to the corresponding node in the figure.

We start from 2, 3 or 4 equirectangular panoramic input images I1, I2, ... .
From these images, we want to generate a new image at virtual viewpoint cv,
expressed in barycentric coordinates a = (a1, a2, .., an). The virtual viewpoint
must be inside the line, plane or tetrahedron spanned by the 2, 3 or 4 cameras
respectively. As a pre-calculation step, we generate several optical flow fields
FIx→Iy (one for each pair of images (Ix, Iy)).

We start the interpolation process by calculating the effective flow FIk→a for
each input image Ik. This “effective flow” field has the following meaning:
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5. Interpolation

(a) (b)

(c) (d)

(e)

Figure 5.3.: This figure shows the equirectangular panoramic images involved in and created
by the interpolation scheme. Only small cutouts of the full equirectangular images
is shown, in order to better appreciate the details. We can see two input images (a)
and (b), then two intermediate images generated from these, using the same virtual
camera position ((c) and (d)). In the intermediate images, the estimated disocclusions
are shown in green. Some of these disocclusions are estimated incorrectly, which
will be explained during our Evaluation in Section 6.2.2. Image (e) shows the output
image generated by blending the two intermediate images (c) and (d) together.
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Optical Flow Fields for each image pair

Aligned Panoramas (PNG images)

Per-Pixel Blendfactors for each image

Output Panorama Image

Effective Flow Calculation (Formula 5.6)

Hole-Filling, Disocclusion Detection

Inversion of Flow, Occlusion Handling (Listing 5.1)

Blending (Formula 5.2)

Effective Flow for each image

Inverted Flow for each image

Sampling of Image (Formula 5.8)

Intermediate Images

Figure 5.4.: The individual steps involved in the interpolation. In practice, most of these steps
can be calculated in just one pass over the image. From optical flow fields, which
have been pre-generated between pairs of images, the “effective flow fields” are
calculated (one per original viewpoint). This flow field represents the per-pixel
displacement which, when used to move the pixels of the corresponding image,
will make it look as if taken from our target viewpoint. Instead of being used
directly, this “effective flow” is inverted, and occlusions and disocclusions are
handled, generating a per-pixel blendmask for each image. The input images are
then sampled, generating intermediate images from each original image. These can
be blended together, while taking into acount the blendmask, to arrive at the final
output image.
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When each pixel of Ik is moved along the flow vectors, the resulting image
looks as if taken at the target viewpoint cv. This process of moving image pixels
along motion vectors is called “forward morphing” and can be mathematically
described as follows:

Ik, forward morphed(p + FIk→a(p)) = Ik(p) for each image pixel p (5.2)

This forward morphing has several undesirable properties:

• Formula 5.2 uses all pixels of the input image Ik, but is not guaranteed
to define all pixels in the output image Ik, forward morphed. In general, in
this thesis, we call pixels that are not written to by a certain formula or
algorithm “undefined pixels”, and all other pixels “defined pixels”. Now,
some pixels will be undefined after forward morphing, and we distinguish
between two types of these pixels.

– Holes arise when portions of the image are stretched, so that on some
target pixels, no flow vector lands.

– Disocclusions arise when objects move away, exposing background
pixels that were not captured in this image. Generally, holes appear in-
dividually, wheras disocclusions appear as larger areas of undefined
pixels.

• Several pixels p in the target image may land on the same pixel in the
destination image. We call these image pixels or regions “occlusions”.

These properties are illustrated in Figure 5.5. We solve these problems in
separate ways:

• For the holes, we would like to fill them up with plausible color values, as
those are purely artifacts of our forward morphing.

• Disocclusions, however, arise from the geometry of the scene and indicate
which information was simply not captured in the respective input image.
Therefore, we would like to remember these disoccluded pixels and then,
in a later step, use the corresponding color values from the other image.

• To solve occlusions, we assume a static scene and a moving camera.
Therefore the pixel with the largest motion vector will be closest to the
camera and should overwrite pixels with smaller motion vectors. This is a
common heuristic, used previously by [59], among others.

2Image Credit: textures created by Mitch Featherston, placed in public domain.
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Figure 5.5.: An example of holes and disocclusions. Consider two input images, showing two
points in time. An object moves and stretches in front of a static background. The
optical flow vectors are illustrated. When performing simple forward morphing of
the first image along the flow vectors, holes and disocclusions will arise. We see that
holes could be filled up with suitable color values. However, disocclusion pixels
are simply not shown in the first input image - they will need to be taken from the
other image. The situation presented here is a simple 2D case, but the same effects
appear when forward-morphing panoramic images taken of static 3D scenes. 2
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For occlusions, we simply store the length of the optical flow vectors and
overwrite “slower” background objects with “faster” foreground objects. Dis-
occluded pixels should be left undefined. Both of these solutions can be easily
applied to forward morphing.

However, hole-filling presents a problem in combination with forward morph-
ing. For images of static scenes, the optical flow vectors will be uniform across
large areas (because pixels belonging to the same object will move in the same
direction). However, texture values will be much less uniform. Therefore, filling
up holes in the color domain is less than ideal, and will lead to a reduction in
image sharpness. A better solution would be to fill up the holes in the optical
flow domain.

Therefore, we drop our previous idea of forward-morphing the color values.
Instead, we perform all the filtering (occlusions, disocclusions, hole-filling) in
the optical flow domain. To be able to do that, we perform inversion of flow.
At the same time, we also do occlusion handling using the heuristic mentioned
above (“longer motion vectors correspond to foreground objects, and should
occlude background objects with shorter motion vectors”). Effectively, this
means that at each position where an optical flow vector lands, the inverse
vector is written, pointing back to the starting point.

We now have an inverse flow in which occlusions are already handled. This
inverse flow will have some undefined pixels corresponding to disocclusions and
holes, as shown in Figure 5.5. Therefore, the next step is to perform disocclusion
detection and hole-filling (Section 5.4.5). This step distinguishes holes from
disocclusions, fills up the holes and leaves disoccluded pixels undefined. The
disoccluded pixels are stored separately 3 using one blendmask Bk per image
Ik.

Using the inverted flow for each aligned input panorama Ik, written F−1
Ik→a

and the aligned input panoramas Ik, we can now sample the input images,
resulting in intermediate images OI1→cv . These intermediate images will all
look as if taken from the target viewpoint cv.

This sampling is done using backwards morphing. While forwards morphing
(Formula 5.2) iterates over the input pixels and moves them, Backwards morph-
ing iterates over the pixels of the output image and samples the corresponding
color value from the input image - which are easy to find by following the
inverted flow.

3Note that at this point, the holes have already been filled up, so all undefined pixels
correspond to disocclusions. Therefore, it would not actually be necessary to store them
separately. However, this simplifies the explanations.
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OI1→cv(p) = Ik(p + F−1
Ik→a(p)) for each image pixel p (5.3)

Examples of the resulting intermediate images can be seen in Figures 5.3c
and 5.3d. The intermediate images are blended together, taking into account
the blendmask and the distance between its original viewpoint and the target
viewpoint, resulting in the Output Panorama Image O�→cv . An example of this
can be seen in Figure 5.3e.

We will now look at each step in detail.

5.4.2. Optical Flow Field Generation

This is a pre-processing step, which only needs to be done once per pair of im-
ages. (Obviously, only pairs of images which will later be used for interpolation
need to be considered). Optical Flow Generation was previously explained in
Section 5.3.

5.4.3. Effective Flow Calculation

We define the effective flow field to be used for the panoramic input image
Ik. This flow field could be used to forward-morph Ik to the desired target
viewpoint cv, as explained at the beginning of Section 5.4. The target viewpoint
is expressed in barycentric coordinates a = (a1, a2, .., an), as explained at the
very beginning of this Chapter.

FIk→a(p) = p +
n

∑
j=1

FIk→Ij(p) · aj where p: image coordinates of a pixel (5.4)

When using equirectangular projection, this linear warping does not produce
physically correct intermediate images, even when the optical flow is perfect.
This is because objects travelling along a straight line in 3D space will produce
curved paths on the equirectangular projection. However, for most situations,
the linear warping is acceptable. An improvement, taking into account the
geometry of equirectangular panoramic images, is presented in Section 5.4.8.
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5.4.4. Inversion of Flow and Occlusion Handling

We mentioned that it is desirable to invert the optical flow and perform some
additional processing (disocclusion handling, hole-filling, occlusion handling)
in the optical flow domain. Effectively, this inversion means that at each position
where an optical flow vector lands, the inverse vector is written, pointing back
to the starting pixel. This is illustrated in Figure 5.6.

Consider an input image Ik and the effective flow FIk→a. First, FIk→a is inverted
using an algorithm similar to Sánchez and Monzón [48]. What this inversion
does is forward-morph the optical flow field, while simultaneously handling
occlusions. The algorithm is shown in Listing 5.1.

It is worth noting that Sánchez et al. present multiple algorithms for optical flow
inversions, but only one of these algorithms was used in this thesis. Therefore,
improvement may be obtained by testing other approaches mentioned in their
article [48].

Listing 5.1: Optical flow inversion (pseudocode).
1 Input : flow f i e l d F ,
2 c o n s i s t i n g of a f l o a t i n g−point vec tor ( dx , dy ) per p i x e l
3 Output : inver ted flow f i e l d FInverted
4
5 i n i t i a l i z e FInverted with zero
6 for each p i x e l p=(x , y )
7 f l o a t vector t a r g e t p o s i t i o n = p + F ( p )
8 for each of the 4 p i x e l s q c l o s e s t to t a r g e t p o s i t i o n
9 f l o a t w = EuclideanNorm ( t a r g e t p o s i t i o n−q )

10 / / d i s t a n c e t o t h e n e i g h b o r i n g p i x e l
11 i f w>0 .75
12 continue
13 / / we on ly c o n s i d e r n e i g h b o r i n g p i x e l s
14 / / t h a t we a r e r e a s o n a b l y c l o s e t o
15 f l o a t d = EuclideanNorm ( FInverted ( q ) ) / / l e n g t h o f s t o r e d v e c t o r
16 i f EuclideanNorm ( F ( p ) ) > d / / we found a f a s t e r −moving o b j e c t
17 / / and assume i t w i l l o c c l u d e t h e s l ower−moving o b j e c t
18 FInverted ( q ) = t a r g e t p o s i t i o n − q / / P o i n t b a c k towards p i x e l p

5.4.5. Disocclusion Detection and Hole-Filling

During the previous step, we performed inversion of the effective flow and
handled occlusions. This leaves disocclusions and holes to be handled.

We have to discuss three problems:
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Figure 5.6.: Illustration of the hole-filling algorithm. (a) shows an optical flow field, matching
pixels from the left image to locations in the right image. (b) shows the result of our
optical flow inversion algorithm. The pixel with a pink circle remains undefined. (c)
shows the result after the hole-filling procedure. The pixel with the pink circle has
been correctly identified as a hole, because its two neighbors above and below have
similar flow values. It is filled with the average of its neighbors.
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• First, we need to distinguish holes and disocclusions. Both of them appear
as undefined regions in the inverted flow.

• Then, we can fill up holes in the flow fields with values from the surround-
ing area.

• Finally, we generate a blendmask. This blendmask will be used during the
final blending, in order to avoid sampling from disoccluded areas.

While holes and disocclusions both appear as undefined regions, they have
different shapes: Holes appear as small regions, just one or two pixels wide.
Disocclusions, on the other hand, appear as larger, contiguous areas. This is
shown in Figure 5.5. A simple low-pass-filtering approach can be used to fill
holes, and the algorithm is described in Listing 5.2.

We look at each undefined pixel, and consider the neighboring two pixels on
opposite sides (left/right, or up/down) to make a decision. In order to be
classified as a hole, two criteria have to be fulfilled. First, the two pixels on
opposite sides must be defined. This is because holes mostly appear as single-
pixel or two-pixel areas. Second, the flow vectors on two opposite sides must
agree. This is to ensure that these two flow vectors correspond to the same
object. If the two flow vectors on opposite sides do not agree, then the pixel
we are looking at may be in between two objects, and actually be a very small
disocclusion instead of a hole.

Listing 5.2: The hole-filling algorithm (pseudocode). The “norm” function stands for the Eu-
clidean norm.

1 Input : inver ted flow f i e l d F ,
2 which c o n s i s t s of a f l o a t i n g−point vec tor ( d x , d y ) per p i x e l
3 Output : inver ted flow f i e l d with holes detected and f i l l e d in .
4
5 i n i t i a l i z e F inv with zero
6 for each p i x e l p = ( x , y ) in F
7 i f F ( p ) i s defined
8 continue
9

10 / / Check l e f t / r i g h t p i x e l s
11 i f F ( p − ( 1 , 0 ) ) and F ( p + ( 1 , 0 ) ) are defined
12 i f norm ( F ( p − ( 1 , 0 ) ) − F ( p + ( 1 , 0 ) ) ) < threshold / / V e c t o r s a g r e e
13 F ( p ) = average ( F ( p − ( 1 , 0 ) ) , F ( p + ( 1 , 0 ) ) )
14
15 / / Check up / down p i x e l s
16 i f F ( p − ( 0 , 1 ) ) and F ( p + ( 0 , 1 ) ) are defined
17 i f norm ( F ( p − ( 0 , 1 ) ) − F ( p + ( 0 , 1 ) ) ) < threshold
18 F ( p ) = average ( F ( p − ( 0 , 1 ) ) , F ( p + ( 0 , 1 ) ) )
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Blendmask Generation

We generate 2, 3 or 4 blend masks for our input images Ik. The blendmask
has two purposes: First, it should define linear blending of the input images
depending on the distance between the new viewpoint cv and the original
viewpoints ck. Secondly, it should mark disoccluded pixels in each image as
a zero, so that these pixels taken from the other images during backwards
morphing (Section 5.4.6).

Bk(p) =

{
0, if IIk→cv(p) disoccluded
ak, otherwise

and normalized s.t.
n

∑
k=1

Bk(p) = 1 ∀ pixels p

where k : index of input and corresponding intermediate image

(5.5)

5.4.6. Sampling of Input Images to generate Intermediate
Images

We now have an inverted flow field where occlusions are taken into account,
and holes have been filled. We use this to backward-morph our input images,
and generate one intermediate image from each input image:

OIk→cv(p) =

{
undefined, if F−1

Ik→a(p) is undefined
Ik(p + F−1

Ik→a(p)), otherwise
(5.6)

When sampling color values from the images, we generally do not sample at
integer pixel location. This is because the optical flow vectors are non-integer.
Obviously, simply rounding the pixel location to the nearest integer would
discard a lot of information. Therefore, bilinear filtering is used for the color
lookup. In bilinear filtering, for a given fractional pixel location, the four closest
pixels are taken into account, and blended according to their distance. This
improves results considerably. An introduction into bilinear filtering, as well as
other filtering types, is presented by Getreuer [17].
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Figure 5.7.: Path of a static scene point (“Target”) when moving the camera. All camera positions
are on one plane, whereas the target point is at an elevation. The image is shown in
equirectangular projection 4.

5.4.7. Blending

To generate the output image, we perform linear blending of the intermediate
images using the per-pixel blendmask Bk(p) calculated previously.

O�→cv(p) =
n

∑
k=1

OIk→cv · Bk(p) (5.7)

5.4.8. Improved Warping using Epipolar Constraints

The linear warping (formula 5.4) produces visually pleasant warps, especially
if the displacements are small. However, in our equirectangular panoramic
images, objects generally will not follow straight lines. To understand why,
consider a static scene point at an elevation above some camera positions. The
camera is moved along a straight line. The equirectangular projection of our
scene point will follow a curve, as can be seen in Figure 5.7.

50



5.4. Our Approach

This curve represents a segment of the point’s epipolar line [23]. Theoretically,
when moving between two cameras on a straight line, each image point should
only move along its epipolar lines in the interpolated images. This follows from
our assumption of a static scene and panoramas that are aligned relative to
each other. Ideally, the optical flow algorithm should only find correspondences
along the epipolar lines. However, most optical flow algorithms were developed
for dynamic scenes and do not take these constraints into account. Therefore,
they will not produce correspondences that match the epipolar lines exactly.

Existing Solutions

In the literature, a number of ways are discussed to address this problem.
Seitz and Dyer’s classic paper [53] introduces two additional warping steps,
leading to correct perspective. However, this approach is not applicable to
panoramic images. McMillan and Bishop interpolate using panoramic images in
cylindrical projection, and derive the epipolar geometry for that case [34]. They
use a correspondence-finding algorithm that searches only along the epipolar
lines. Kolhatkar [28] also investigated the panoramic case, and mentions two
solutions5. First, we can re-project the optical flow onto the epipolar lines.
However, according to Kolhatkar, this deteriorates the quality of the optical flow
and leads to worse results overall. The second solution is to implement a custom
optical flow algorithm, like McMillan and Bishop. However, a requirement for
this thesis was to allow arbitrary optical flow software. Therefore, yet another
approach was developed. The approach is similar to the interpolation technique
described by Lipski et al. [31].

Our Approach

The method presented here is based on error-tolerant per-pixel triangulation of
scene points. It accepts arbitrary flow fields as input, produces superior results
to linear warping, and finds plausible solutions even if the flow vectors diverge
from the epipolar lines.

We observe a scene point from different viewpoints c1, c2, ... under different
spherical angles (θ1, φ1), (θ2, φ2), .... The convention used for our spherical angles

4The path of the target point will be different in other projection types. For example, in
cubemaps, the path will project to a line on one face of the cube, but may cross different faces.

5Note that Kolhatkar uses cubemaps, whereas for our implementation, equirectangular
projection was used. However, this is not relevant here as the two solutions presented by
Kolhatkar are agnostic of the type of input image used.
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Figure 5.8.: Improved Warping using Epipolar Constraints by error-tolerant per-pixel triangu-
lation of scene points. We start with two view rays v1, v2, who are both erronous
and do not intersect the true scene point x. We calculate the point closest to both
lines, x̃. Then, we find the points on the view rays which are closest to x̃, and call
them x̃1, x̃2. Before projecting into our virtual viewpoint cv, we generate x̃morphed
by morphing between x̃1, x̃2.
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is introduced in Section 2.2.2. This is illustrated in Figure 5.8. These correspon-
dences are trivially obtained by following the optical flow vectors. The scene
point, x, is unknown. We also have the camera positions c1, c2, ... for each of
the observations. We are looking for the projection of x into a virtual camera at
cv.

We first assume that we have perfect optical flow. In this case, all view rays will
intersect at the correct scene point x. We can find this point by triangulation.
Once we have found it, we can trivially project it into any virtual camera
position.

Now, we consider the situation when the optical flow is incorrect. In this case,
the view rays will almost certainly not intersect. This is illustrated in Figure 5.8.
We find an approximation x̃ minimizing the squared distance to all of the view
rays. This problem is discussed by Traa [65], and an efficient implementation
was created by Eikenes [12]. We now have an approximate scene point, but it
will not project back exactly into each of the observations. This is undesirable,
because then the output image Kcv would never equal the input image Ik, even
when cv = rk. To avoid that, we calculate a different scene point x̃k for each of
the input images Ik:

x̃k

=xk projected onto ray with position (ck) and direction x̃
=ck + vk · ((x̃ − ck) · vk)

(5.8)

where vk is (θ1, φ1) converted into a direction vector with unit length. This
means, we find a point that projects exactly into our observation, while being
as close as possible to the approximated scene point.

When moving the camera through the scene, we allow the scene point to move
aswell. For re-projection at position cv, represented by barycentric coordinates
(a1, a2, ...) (relative to Euclidean points c1, c2, ...), we use x̃morphed = ∑n

k=1 x̃k · ak.
Effectively, we calculate a weighted average and weigh each x̃k stronger the
closer we get to the corresponding viewpoint ck.

To combine this approach with the interpolation method from Section 5.4.6,
we only need to replace Formula 5.4. The rest of the algorithm remains un-
changed.
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5. Interpolation

5.4.9. Limitations

The method suffers from the following limitations:

• Reliance on a static scene.
• Reliance on optical flow - in cases where optical flow fails to provide

useful information, the interpolation may not produce realistic results.
• No handling of reflections or transparency. This problem is addressed by

Sinha et al. [55] and Kopf et al. [29].
• Fine-grained structures like trees and grass produce artifacts. With such

structures, most pixels will lie on the edges of object. Therefore the optical
flow algorithm produces imprecise results and separation of foreground
and background (which is usually handled by our occlusion and disocclu-
sion algorithms) is not cleanly possible.
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In this chapter, the datasets acquired for this thesis will be presented. Results are
presented to showcase specific strengths and weaknesses of the approach. The
subjective quality of the output images will be evaluated, and some performance
characteristics will be shown.

6.1. Datasets and Challenges

Table 6.1 shows the datasets created for this thesis, together with a list of specific
challenges that each dataset presents:

• Complex geometry creates more disocclusions, which the system needs
to handle. For an explanation of disocclusions, please refer to Figure 5.1.

• Reflective materials: The same object will have different color when pho-
tographed from different viewpoints. This influences Stitching, Optical
Flow Generation and Registration.

• With few distinctive features, some images may be misaligned during
stitching. Also, registration may be less precise because it relies on feature
detection.

• Fine geometry detail presents a problem for optical flow generation, for
two reasons. First, the correct optical flow would have sharp discontinu-
ities. However, optical flow algorithms usually include a smoothing term
preventing these discontinuities. Secondly, my approach relies on clear
boundaries between objects. However, when geometry is very fine (as in
trees), it will be blurred in the resulting image and therefore no sharp
boundary is present.

• Large displacements presents two problems. First, it leads to large disoc-
clusions, as mentioned previously. Secondly, many optical flow algorithms
can not deal with large displacements. My approach can handle these
displacements, but only if the Registration manages to find enough sparse
3D points covering the geometry (see Section 5.3.2).
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Bar Lobby Church Living
Room

Bridge

Acquisition
Process

Standard Camera Panoramic Camera

Number
of view-
points pho-
tographed

3 3 27 50 16

Movement
freedom

2D 2D 2D 3D 1D

Specific chal-
lenges

Complex
geometry,
reflective
materials

Uniform
textures
with few
distinctive
features

Trees with
fine geom-
etry detail

Large
displace-
ments
(geometry
very close
to camera)

Features
directly
above the
camera

Table 6.1.: This table shows the datasets acquired for this thesis.

• Features directly above the camera can lead to large displacements in the
panoramic images. This is because the equirectangular projection wraps
around the poles.

6.2. Results

In this section, we will look at the results from several aspects.

First, we will investigate the influence of viewpoint distance on interpolation
quality. Then, we will have a closer look at the disocclusion method, and
show examples of success and failure. Next, the influence of the registration
system (OpenSFM / VisualSFM) on interpolation quality will be investigated.
Lastly, we will compare some of the generated images with an automated 3D
reconstruction scheme obtained using third-party software.
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6.2. Results

Figure 6.1.: Four original viewpoints selected for the test.

6.2.1. Influence of Distance between Original Viewpoints

In the dataset “Grabenkirche”, we have four original viewpoints A, B, C, D, that
lie approximately on a line. The situation is shown in Figure 6.1. By interpolating
between different pairs of images, we can evaluate the impact of distance on
quality. The results are shown in Figure 6.2. We see that image quality worsens
significantly with larger distance between viewpoints.

6.2.2. Disocclusion Handling

In Chapter 5, my method for handling disocclusions is presented. In this section,
we look at some of the results and remaining problems. In each case, two original
viewpoints are selected and a virtual viewpoint exactly halfway between them
is generated. The images displayed are portions of equirectangular images.

Figure 6.3 shows successful disocclusion handling. Beneath the arch, we observe
a good disocclusion mask, with some small errors. The result image (Figure 6.3e)
looks very convincing.
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(a)

(b)

(c)

Figure 6.2.: Influence of original viewpoint distance on output quality. (a), (b) and (c) show the
output image with a distance between original viewpoints of 1, 2 and 3 units, respec-
tively. The pairs of cameras used are A B, A C and A D from Figure 6.1, respectively.
The virtual viewpoint is exactly halfway the respective original viewpoints.
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(a) (b)

(c) (d)

(e)

Figure 6.3.: Correct disocclusion handling. (a) and (b) are the input images. (c) and (d) show the
intermediate images, with disocclusions marked in green. (e) shows the blended
output image.
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Figure 6.6 shows an incorrect disocclusion mask. During the warping process,
undefined pixels arise in the intermediate images (Figure 6.6c and 6.6d). These
undefined pixels stem from two sources: due to the forward interpolation pro-
cess (“holes”), and because of disocclusions. The algorithm tries to distinguish
the two cases and fill the holes using a simple heuristic (see Chapter 5.4.5). In
this case, the displacement was too large, and the algorithm was unable to fill
all the holes correctly. The output image (Figure 6.6e) still looks very good. This
is because the illumination is very similar in the input images (Figure 6.6a and
6.6b), so it doesn’t make much difference whether pixels are sampled from one
image or both.

6.2.3. Influence of the Registration System

As mentioned in Section 4.2.2, panoramic images are registered using the
OpenSFM package, whereas the VisualSFM package is used for standard images.
In Section 5.3.2, we saw that the registration package delivers sparse 3D points
plus visibility information. These are used as soft constraints for the optical
flow algorithm. During testing, it became obvious that VisualSFM delivers a
better 3D reconstruction than OpenSFM, with more points and better visibility
information.

In this section, we will compare the quantity of matches delivered by both
registration systems (VisualSFM and OpenSFM).

Quantitative Evaluation

For this test, the “Grabenkirche” dataset was considered. A small sample of 7
panoramic images is used. From each of these, 12 standard images looking into
different directions are extracted, for a total of 84 test images. These standard
images are sent to VisualSFM for registration. The 7 panoramic images are
registered using OpenSFM directly.

The results are shown in Table 6.2. Subjectively, both systems deliver a con-
vincing point cloud. However, we see that VisualSFM delivers more 3D points,
which are each seen by more cameras. Therefore, registering with VisualSFM
delivers more matches per image pair, which provides a more precise constraint
for Optical Flow estimation. This justifies the selection of VisualSFM as registra-
tion for standard images, even though those could be registered by OpenSFM
aswell.
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OpenSFM VisualSFM
Input 7 panoramic images 84 standard images

(pinhole camera)
Runtime (approx) 2 minutes 10 minutes
Number of 3D points
reconstructed

5595 9115

Number of 3D points
seen from all view-
points

126 (2.2%) 437 (4.8%)

Avg number of 3D
points seen from a
viewpoint

2439 (43.6%) 4341 (47.6%)

Avg number of view-
points seeing a 3D
point

3 5

Table 6.2.: Sparse 3D reconstruction comparison between VisualSFM and OpenSFM

Influence of Equirectangular Projection

In the previous section, we have seen that OpenSFM (which is fed with equirect-
angular images) delivers significantly less scene points than VisualSFM (which
receives standard images).

The reconstruction algorithm in OpenSFM supports equirectangular images
just fine, and the algorithm converges on a solution. However, feature points
are only found near the equators of the images, as can be seen in Figure 6.4.

My hypothesis is that this has to do with the equirectangular projection used for
the input images. These images feature significant distortion around the poles.
This means, the same feature appears in different sizes in different images, and
is stretched in different ways. Therefore, matching algorithm is unable to find
the corresponding match in the other image. The problem does not occur at the
equators, where size is more uniform and stretching is almost non-existent.

6.2.4. Comparison with Geometry-Based Approach

One of the key questions posed in Chapter 1 was how the image-based rendering
approach presented here compares with geometry-based rendering. In this
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Figure 6.4.: OpenSFM matches are found almost exclusively around the equator of the image.
This likely stems from the equirectangular projection, which produces distortion and
makes the feature detection algorithm fail near the poles. Visualization produced
using code from [45].

section, we do a brief comparison using one of our datasets.

Methodology

We use one of the datasets, “Bar”. The VisualSFM software [67] is used for
registration inside the pipeline, as was explained in Chapter 4. As part of the
preprocessing, VisualSFM finds camera positions and a small set of 3D scene
points (a “sparse point cloud”). To compare the results with a geometry-based
approach, we need to reconstruct detailed geometry from the images. This is
done as follows:

Step 1: Dense Point Cloud Reconstruction. The CMVS/PMVS software is
used to reconstruct a large set of 3D scene points (a “dense point cloud”).
The software is available under the GPL license at [8], and a newer version is
available at [14].

Step 2: Mesh Reconstruction. A mesh is reconstructed, consisting of triangles,
from the dense point cloud. This is not strictly necessary, because there are
methods to render point clouds directly. However, reconstructing surfaces al-
lows using a wider range of rendering tools. Also, implicitely in the mesh
reconstruction process, some automated cleanup is performed, reducing noise
in the data. For this purpose, the open-source MeshLab software [35] is used.
The CMVS/PMVS data can be imported into MeshLab. To reconstruct a trian-
gle mesh, the Meshlab function “Filters→Point Set→ Surface Reconstruction
Poisson” is used.

Step 3: Texture Generation. Now, textures are created for the reconstructed
mesh. This is done by projecting the original images onto the mesh. This
functionality is also included in the MeshLab software, under the menu item
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Filters→Texture→Parametrization + Texture from registered Rasters. In prac-
tice, MeshLab simply picks a subset of the original input images, packs them
together into a single large texture, and generates texture coordinates to refer-
ence that large texture. The size of the large texture is adjustable. For example,
for a size of 4096 by 4096 pixels, the resulting PNG image has 17 MB.

Step 4: Rendering. The mesh can now be rendered, using the generated tex-
tures, to produce new images. Usually, lfor high-quality rendering, it would be
preferable to use special rendering software that calculates illumination in a
realistic fashion. However, in this case all textures are reconstructed from photos.
Therefore, everything is already lit, and sophisticated rendering software is not
required. A simple rendering can be exported using MeshLab.

Results

Figure 6.5 shows the results from geometry-based reconstruction, when com-
pared with the pipeline presented in this thesis.

We observe the following artifacts in the image-based result. The numbers refer
to Figure 6.5. (1) Noise due to an erronous disocclusion mask, in combination
with varying illumination. This was explained in Section 6.2.2. (2) Blur due to
imprecise matches between the three input images. (3) Disocclusion mask with
slight errors at the border.

In the geometry-based result, we observe the following artifacts: (4) Incorrect
geometry at occluded regions. In this scene, these regions are problematic to
reconstruct because they are seen by only one or two cameras. (5) Bubbles
erronously reconstructed in the middle of the room. These bubbles could be
removed by some additional processing. (6) Fine geometric details present a
problem for the reconstruction. (7) Incorrect texture projection, and noticable
seams due to changes in illumination.

Table 6.3 shows the performance characteristics of both approaches (runtime,
disk space). We see that both approaches perform similarly in this case. However,
this comparison is just a rough example, as we are only comparing two specific
implementations with each other. Both the pointcloud and the optical flow
fields could be compressed, leading to reductions in storage requirements.

We arrive at the following conclusions:

• Subjectively, both results look acceptable.
• The image-based approach produced less artifacts and looks better overall.

The geometry-based approach produces sharper results in some regions.
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(a)

(b)

(c)

Figure 6.5.: Comparing the pipeline with geometry-based rendering. (a) shows the reconstructed
mesh. (b) shows the same mesh with a texture applied. (c) shows the result from
the pipeline. The scene was photographed from three viewpoints. Visual artifacts
are numbered and referenced in the text.
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CMVS & Meshlab My Approach
Preprocessing Time 40 minutes 55 minutes
Rendering Time per
frame

100ms (GPU rendering of
geometry)

10 seconds (CPU-based)

Storage Require-
ments on Disk

200 MB (a single PNG im-
age & geometry data)

740 MB (3 PNG images & 6
uncompressed optical flow
fields)

Table 6.3.: Comparison of geometry-based rendering (using CMVS & MeshLab) and image-
based rendering (using my pipeline). The output image size is 5000x2500px. The
dataset “bar” was used for this test, and the measurements are based on three
viewpoints.

• The mesh contains several obvious errors. This is not surprising, as only
three viewpoints are used for the reconstruction. These mesh errors could
be resolved using automatic cleanup techniques, or by simply shooting
more viewpoints.

• If the viewpoints were photographed under different lighting conditions,
both methods will produce artifacts. As a workaround, the exposure of
the images could be adjusted as a pre-processing step.

• The performance characteristics of both approaches are similar on this
dataset. When scaling to a large number of viewpoints, the image-based
method would have one advantage: Only 3 or 4 viewpoints need to
be considered at one time, therefore rendering time is independent of
scene size. With geometry-based rendering, it would be much harder to
guarantee stable rendering times. Sophisticated occlusion detection and
level-of-detail schemes would need to be implemented to render large
scenes at predictable framerates.

6.3. Performance Characteristics

Table 6.4 shows runtime and memory usage for the “bar” dataset (see Table
6.1). This dataset consists of 3 viewpoints consisting of 20 4000px by 3000px
source images each. They are stitched to a 5000px by 2500px panoramic image.
Registration of the 3 · 20 source images is performed by VisualSFM. All software
is running on a PC with an Intel i7-4600U CPU, 8GB of RAM and an NVidia
GT 730M. The graphics card is relevant for VisualSFM only.
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(a) (b)

(c) (d)

(e)

Figure 6.6.: Incorrect disocclusion mask on stretched regions of the image. (a) and (b) are the
input images. (c) and (d) show the intermediate images, with disocclusions marked
in green. The problem can be seen on (c), where the image is stretched. We would
expect no disocclusions to be detected on the wall, because the hole-filling algorithm
would have detected any undefined pixels as “holes”. Instead, what we see is that
the hole-filling algorithm does not perform well under large stretching, and that
the pixels are incorrectly identified as disocclusions. (d), on the other hand, is not
stretched, therefore the problem does not appear.(e) shows the blended output
image. Note that the seam in image 6.6b is due to an error in stitching and does not
influence the problem discussed here.
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Task Runtime Memory Re-
quirements
(max.)

Notes

Registration 8 minutes 150 MB Unlike the rest of the
pipeline, VisualSFM
is GPU-accelerated.
Therefore, some
amount of GPU
memory is required
aswell.

Stitching and
Alignment

4 minutes 700 MB

Optical Flow
Generation

10 minutes per
pair of images

5000 MB Only flow fields be-
tween pairs of adja-
cent viewpoints need
to be generated.

Interpolation (3
viewpoints)

Interpolation
along straight
line: 15 seconds.
Interpolation
along equirect-
angular path
(Section 5.4.8): 2
minutes

1150 MB

Table 6.4.: Runtime and memory usage for the “bar” dataset
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7. Conclusion

The goal of this thesis was to implement a pipeline for viewpoint interpolation
of panoramic images. The pipeline was presented step-by-step, and the results
were evaluated.

We saw that realistic and visually pleasing results were obtained for a variety
of scenes, even in the presence of complex geometry and occlusions.

7.1. Advantages, Disadvantages and Applications

In Chapter 6, the pipeline was evaluated under different criteria. Based on this
knowledge, recommendations about possible applications can be made.

We saw in Chapter 3 that data acquisition takes between 10 seconds and 3
minutes per panorama, depending on the camera used. Chapter 4 explains how
panoramic images are registered in 3D space and aligned relative to each other,
without any user input. Therefore, the data acquisition process is very fast and
can be done by untrained users, using only standard cameras.

Because of the fully automatic processing and easy acquisition process, my
approach would be ideally suited for a smartphone app. The user would
take standard images and upload them to an online service, where they are
stitched and registered. Optical flow fields and panoramic input images could
then be downloaded onto the smartphone, or displayed on web pages using
an interactive viewer. This would present challenges in the area of stitching
(because the user may not be able to pivot the smartphone camera around its
optical center) and data compression (because mobile bandwidth is limited).

A main obstacle to developing such an interactive viewer would be the size
of the intermediate representation, consisting of panoramic images and flow
fields. The images are reasonably small, because of JPEG compression. However,
optical flow fields are currently uncompressed and require 64 bit per pixel. In
order to reduce bandwidth usage, a good optical flow compression algorithm
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would need to be implemented. A large compression factor could potentially
be achieved, since those flow fields are quite smooth.

In Chapter 1, interactive simulations were mentioned as a possible application.
These simulations require free navigation through large outdoor scenes with
high visual fidelity. Furthermore, acquisition should be as easy as possible. I
conclude that the pipeline is ideally suited for this purpose, for the following
reasons: First, image acquisition turned out to be very fast by using a panoramic
camera. Secondly, my interpolation scheme performs well in outdoor scenes.
Thirdly, since only 2-4 cameras are used for interpolation, very large scenes can
be rendered with predictable performance. However, the problem of loading
flow fields in and out of memory dynamically would need to be addressed.
And lastly, while the intermediate representation is quite large, this is usually
not a problem in offline simulation applications.

Virtual reality applications would also benefit from my technology, for the
following reasons. First, users expect a high degree of visual fidelity from such
applications. The image-based approach can provide that. Secondly, virtual
reality applications require high and predictable framerates for good results. My
image-based approach fulfills this criteria aswell - the rendering performance is
independent of scene complexity. Thirdly, by using the registration information,
it would be relatively easy to insert virtual objects into the real scenes.

7.2. Future Work

For each step in the pipeline, there are specific opportunities for improvement.
Improving any of the steps will have a direct impact on the quality of the final
output.

The Registration detects sparse 3D features. These features are used to initial-
ize the optical flow. By finding more features, more accurate results would
be obtained during interpolation. To find more accurate features, a different
registration framework could be used. Alternatively, using the results of the
registration and under the assumption of a static scene, image-based matching
could be performed along epipolar lines.

Optical Flow Generation is an area of active research and steady improvements
are made [15]. As the state-of-the-art advances, the pipeline will benefit from
better optical flow algorithms.
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Optical Flow is calculated between pairs of images. It would be interesting to
devise an optical flow approach that uses information from multiple images at
the same times.

The Interpolation algorithm could be implemented on the GPU, using pro-
grammable shading and multiple passes per image.

Reflections and transparency can lead to artifacts in some situations. This
problem is addressed by Kopf et al. [29], and their approach could be integrated
into the pipeline.

The hole filling algorithm (part of Occlusion Handling) could be improved. By
incorporating ideas from image processing, holes and disocclusions could be
distinguished more reliably (Section 5.4.5).

It would be interesting to combine the image-based rendering approach pre-
sented here with geometry-based rendering, and to place virtual objects into
photographed scenes.

7.3. Benefits and Contribution

The benefits of this pipeline are low-cost acquisition, automatic registration
of input images, and a fully automatic pipeline requiring no user input. This
enables users without training to acquire data rapidly, without needing to take
any measurements during shooting.

The main scientific contribution is the interpolation approach (Chapter 5), which
combines several existing ideas, and the scheme for taking into account epipolar
geometry of panoramic images (Section 5.4.8).

In conclusion, the image-based rendering pipeline delivered promising results.
The interpolation scheme is relatively simple, but produces high-quality results.
The approach scales well because interpolation runtime is independent of the
size of the scene. Furthermore, the components are exchangeable. Therefore,
as the state-of-the-art improves in structure-from-motion and optical flow al-
gorithms, new results can be integrated into the pipeline quickly, and output
quality can be improved further.
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A. File Formats, Directory
Structure, Interfaces

In Figure 2.1 we saw an overview over the pipeline, with all the individual
steps and intermediate results. In this Chapter, the data structure, as used in
the implementation, is specified in more detail.

A.1. Dataset Directory and Input Images

Each dataset must be in a separate directory. In these explanations, “dataset/”
refers to the root of that directory.

Input images are expected to be in JPG format, and have identical sizes.
Panoramic input images in equirectangular projection must be placed in a
directory “dataset/equirectangular”. Standard input images must be sorted by
viewpoint into subfolders “p1, p2, p3” (or 01, 02, 03, or 001, 002, 003, ...). At the
moment, it is not possible to mix panoramic and standard input images in the
same dataset.

Stitched images are stored as “dataset/out/input dir name.png”, where “in-
put dir name” refers to the directories “p1”, “p2”, ...

When using OpenSFM to register panoramic input images, the package must
be run manually via the command line. The result files must be placed in
the “dataset/opensfm” directory. Only the files “reconstruction.json” and
“tracks.csv” are required. For VisualSFM, this is not necessary as VisualSFM is
run automatically by the pipeline.

Registration data and references to the input files are stored in a JSON file
“dataset/data.json”. The exact format is shown in Listing A.1.

Optical Flow Files are stored in “dataset/out/flow”.

Output Images are saved under “dataset/out/morph”.
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Listing A.1: The JSON format used for intermediate data. Comments are indicated by “//” -
this is not valid JSON, and the comments must not be present in the actual file.

1 {
2 ” world data ” : {
3 ” panorama in world ” : {
4 // The o r i e n t a t i o n of a panorama in the world .
5 // As we are using al igned panoramas ,
6 // t h i s i s va l id f o r a l l panoramas .
7 ”Yaw” : −1 . 3182254494071435 ,
8 ” P i t c h ” : 0 . 19422825436870126 ,
9 ” Rol l ” : −0 . 04407010612122689

10 } ,
11 ” world in panorama ” : { // The inverse of panorama in world .
12 ”Yaw” : 1 . 3230713120961948 ,
13 ” P i t c h ” : −0 . 005527006790184677 ,
14 ” Rol l ” : 0 . 19902803394009256
15 }
16 } ,
17 ”p1” : { // Name of viewpoint ( r e f e r i n g to input d i r e c t o r y )
18 ” s o u r c e F i l e s ” : [ // L i s t of input f i l e s
19 // −−> s e v e r a l f o r standard input images ,
20 // −−> one f o r panoramic input images
21 ” ./ d a t a s e t /p1/IMG 0713 . JPG” ,
22 ” ./ d a t a s e t /p1/IMG 0714 . JPG” ,
23 . . .
24 ] ,
25 ” f i lename ” : ” ./ d a t a s e t /out/p1 . png” , // fi lename of the al igned
26 // panorama image
27 ” orientationsFromAssembler ” : [ // o r i e n t a t i o n s f o r each image
28 // determined during s t i t c h i n g ( f o r standard input images only )
29 // or empty ( f o r panoramic input images )
30 // t h i s i s used f o r the alignment .
31 {
32 ”Yaw” : −3 . 1414328495460435 ,
33 ” P i t c h ” : −0 . 18578072950462699 ,
34 ” Rol l ” : −1 . 5690956860311017
35 } ,
36 {
37 ”Yaw” : −2 . 401452035118999 ,
38 ” P i t c h ” : −0 . 18385896298492289 ,
39 ” Rol l ” : −1 . 5593538379044747
40 } ,
41 . . .
42 ] ,
43 ” rawOrientat ionsFromRegistrat ion ” : [
44 // Raw o r i e n t a t i o n s determined from the r e g i s t r a t i o n ,
45 // as quaternions ,
46 // in the o r i g i n a l coordinate system used by the r e g i s t r a t i o n .
47 // Each item r e f e r s to one input image .
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48 // Therefore , f o r panoramic input images ,
49 // t h i s array has only one entry .
50 {
51 ”x” : −0 . 644167131431 ,
52 ”y” : −0 . 671162689575 ,
53 ”z” : −0 . 310235339756 ,
54 ”w” : 0 . 19582381553
55 } ,
56 {
57 ”x” : −0 . 493124572437 ,
58 ”y” : −0 . 556997806558 ,
59 ”z” : −0 . 514582631658 ,
60 ”w” : 0 . 426365138122
61 } ,
62 . . .
63 ] ,
64 ” o r i e n t a t i o n s F r o m R e g i s t r a t i o n ” : [
65 // Same as rawOrientat ionsFromRegistrat ion ,
66 // but converted i n t o our coordinate system
67 // and expressed as Yaw/Pi tc h/Rol l
68 {
69 ”Yaw” : −3 . 1414328495460435 ,
70 ” Pi t c h ” : −0 . 18578072950462699 ,
71 ” Rol l ” : −1 . 5690956860311017
72 } ,
73 {
74 ”Yaw” : −2 . 4119936391460206 ,
75 ” Pi t c h ” : −0 . 18267925831078486 ,
76 ” Rol l ” : −1 . 5562355457611219
77 } ,
78 ”anchorImage” : 0 , // The 0−based index of the anchor image .
79 // ( always 0 f o r OpenSFM)
80 ” p o s i t i o n ” : {
81 // The p o s i t i o n of the panorama in globa l coordinates
82 ”X” : 0 . 016754085198 ,
83 ”Y” : 0 . 0995249673724 ,
84 ”Z” : 0 . 0884485244751
85 } ,
86 ” matches in ” : [
87 // L i s t of matches r e t r i e v e d from OpenSFM,
88 // in image coordinates .
89 // The IDs allow matching over s e v e r a l viewpoints .
90 {
91 ”ID” : 8 ,
92 ”X” : 0 . 238553 ,
93 ”Y” : 0 . 114778
94 } ,
95 {
96 ”ID” : 12 ,
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97 ”X” : −0 . 24033 ,
98 ”Y” : 0 . 0259952
99 } ,

100 . . .
101 ] ,
102 ” matches in 3d ” : [
103 // L i s t of matches r e t r i e v e d from VisualSFM , in world coordinates

.
104 {
105 ”ID” : 1 ,
106 ”X” : 0 . 882973492146 ,
107 ”Y” : −1 . 13085711002 ,
108 ”Z” : 1 . 27483558655
109 } ,
110 . . .
111 ] ,
112 ” source ” : 0 , // Input image format :
113 // 0 f o r standard images , 1 f o r equi rec tangular panoramic images
114 ” r e g i s t r a t i o n ” : 2 , // The r e g i s t r a t i o n system used .
115 // 1 f o r OpenSFM, 2 f o r VisualSFM .
116 ” pos i t ionsFromRegis t ra t ion ” : [
117 // The pos i t ions , in g loba l coordinates , r e t r i e v e d from the

r e g i s t r a t i o n .
118 {
119 ”X” : −0 . 694735527039 ,
120 ”Y” : −0 . 0020846221596 ,
121 ”Z” : −0 . 521440088749
122 } ,
123 {
124 ”X” : −0 . 700594961643 ,
125 ”Y” : −0 . 00269711762667 ,
126 ”Z” : −0 . 516122758389
127 } ,
128 . . .
129 ]
130 } ,
131 ”p2” : { . . . } ,
132 ”p3” : { . . . }
133 }

All elements of the JSON must be present, however, not all values are used for
all stages of the pipeline.

• The following elements are used for flow generation and interpolation:
world data
position
matches in
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matches in 3d
• The following elements are used for all steps:

source files
filename.

• The following elements are written to the JSON file during registration,
stitching and alignment. They are not required for flow calculation or
interpolation. In the actual implementation, the three steps registration,
stitching and alignment are run with just one call of the pipeline. Therefore
the values remain in memory and the values from the JSON are never
used.

orientationsFromAssembler
rawOrientationsFromRegistration
orientationsFromRegistration
anchorImage
source
registration
positionsFromRegistration

A.1.1. Conventions

All data in the JSON file uses the coordinate system described in Section 2.2
(“standard coordinate system”), with the following exception:
“rawOrientationsFromRegistration” contains the original rotation, as received
from OpenSFM or VisualSFM, in the original coordinate system used by the
respective software.

Values received from other software (Hugin, VisualSFM, OpenSFM) are con-
verted into the standard coordinate system for the pipeline. The conventions
used by these other software packages are:

Hugin: Rotation is described as Yaw, Pitch, Roll. The rotation order is the same
as described in Section 2.2.1. Positive yaw values mean a rotation to the right,
negative yaw values to the left. Positive pitch values mean upwards, negative
pitch values downwards. Positive roll values represent clockwise rotation.

VisualSFM: X-axis points right, Y-axis points downward and Z-axis points
forward. Note that the Y-axis is inverted when compared to our standard
coordinate system. Rotation is represented as quaternion in that coordinate
system, however the rotation describes the rotation of the world, and not the
orientation of the camera. Therefore, to get the orientation of the camera, the
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quaternion needs to be inverted. Camera position is represented in the global
coordinate system and can be used after inverting the Y-axis.

OpenSFM: X-axis points right, Y-axis forward, Z-axis points up. Rotation is
represented as a rotation vector x, y, z, which works as follows: The vector
describes the axis of rotation, and its magnitude describes the angle. Camera
position is described in the rotated coordinate system, so to get the camera
position in world space, the position must be transformed using the inverse of
the rotation.

A.2. Global Configuration

An optional “global conf.json” file can be placed in the application working
directory, the format of which is described in Listing A.2. If the file exists, all
values must be present. Some values correspond to command line parameters.
In these cases, the command line parameters take precedene and override the
values from the configuration file.

Listing A.2: The JSON format used for the global configuration. Comments are indicated by
“//” - this is not valid JSON, and the comments must not be present in the actual
file.

1 {
2 ” conf ig ” : {
3 ” hugin path ” : ” t o o l s /hugin/” ,
4 ” visuals fm path ” : ” t o o l s /visualsfm/” ,
5 ” deepflow2 path ” : ” t o o l s /deepflow2/” ,
6 // Height of the generated equi rec tangular panoramic image .
7 // Same as command l i n e −s .
8 ” equi he ight ” : 2500 ,
9 // Same as command l i n e −f .

10 ” o u t p u t f i l e f o r m a t ” : ” jpg ” ,
11 // Same as command l i n e −e .
12 ” improved equirectangular warping ” : t rue ,
13 // Whether or not to wri te the intermedia te images to disk
14 ” wri te in termedia te images ” : t rue ,
15 // Target f i lename f o r the output panoramic image .
16 // I f empty , a d e f a u l t value i s used .
17 ” i n t e r p o l a t i o n t a r g e t f i l e n a m e w i t h o u t e x t e n s i o n ” : ”” ,
18 // The scene i s rendered to a 3D v i s u a l i z a t i o n
19 // ” v i s u a l i z a t i o n . html” f o r t e s t i n g purposes .
20 // This parameter determines the r e s o l u t i o n
21 // at which panoramic images are drawn i n t o t h i s v i s u a l i z a t i o n .
22 ” x3dom panorama resolution ” : 30
23 }
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24 }

A.3. Using different Optical Flow Algorithms

To integrate new optical flow algorithms, there are two possibilities:

A.3.1. Option 1: Place files into the “flow” folder

Calculate the flow between pairs of aligned equirectangular images, and put
the resulting .flo files into the folder
“sequencename/out/flow/flow p1 p2 deepflow2 assisted 1.flo”,
where “p1” and “p2” stand for the aligned equirectangular input images
“sequencename/out/p1.png” and
“sequencename/out/p2.png”, respectively.

The .flo file format was used by Scharstein et al. for their optical flow benchmark
and is explained in [51]. Source code to read and write this format can be found
at their website [50].

A.3.2. Option 2: Replace DeepFlow

First, create a wrapper program that takes the same command line parameters
as Deepflow2. Then, name it “deepflow2.exe”, and refer to its folder in the
“global conf.json” file.

The command line parameters for Deepflow2 are:
deepflow2.exe image1 image2 outfile -match matchfile, where:

• image1, image2: Filenames of the input images.
• outfile: Filename of the output .flo file.
• matchfile: Filename of an input text file containing a list of matches in the

following format:
Each line refers to a match.
Each line has the format xa ya xb yb quality counter, where xa, ya,

xb, yb are the coordinates of the feature in the first and second image,
respectively. “quality” is a confidence measure with which the feature
is weighed during the optimization. This information is not currently
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available in the pipeline, therefore this is always set to 1. “counter” is a
0-based index of the match.

The file ends with one empty line.

A.4. Using different Registration tools

To replace the registration tool (currently VisualSFM or OpenSFM), there are
two options:

• Create a new class MyRegistration derived from the Registration base
class.

• Create the required files in the same format as OpenSFM. Please refer to a
sample OpenSFM output for the details of that format. The pipeline uses
only the reconstruction.json and tracks.csv files. From reconstruction.json,
camera location and position are read. From tracks.csv, 2D image features
are extracted. The file tracks.csv can be empty, but then the optical flow
algorithm will have to work without being assisted by matches, which is
not recommended.

A.5. Using different Stitching tools

Currently, Hugin is used for stitching. Hugin consists of many different pro-
grams, performing isolated functions and operating on project files. The follow-
ing programs are used by the pipeline:

• “pto gen” to generate a project file and reference the input images.
• “cpfind” to find features in images.
• “pto var” to mark specific variables for optimization (in our case, yaw,

pitch and roll).
• “autooptimiser” to optimise yaw, pitch and roll so that overlapping areas

of images are aligned. The information is written to the project file.
• “nona” to transform each image to the location in the output image, and

save it individually.
• “enblend” to blend these individual transformed images together.

To replace Hugin, there are two options: Either you write wrapper programs
for each of the executables mentioned above. Alternatively, you can replace the
class HuginAssembler with your own implementation.
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Follow the following steps to register a scene and generate interpolated views.

1. Please adjust the global configuration file, install the required libraries,
and make sure your system fulfills the requirements, as described in the
previous Sections. This guide assumes running on Microsoft Windows,
and using OpenSFM on Linux.

2. Create a new folder “myscene”.
3. If your input consists of standard images:

3.1. Sort the images by viewpoints into folders “myscene/p01”,
“myscene/p02”, ...

4. If your input consists of equirectangular panoramas:

4.1. On the Windows machine, put all panoramas into a folder
“myscene/equirectangular”

4.2. On a Linux machine, make sure OpenSfM is installed,
e.g. under “/source/OpenSfM”

4.3. Copy the images to “/source/OpenSfM/myscene/images”
4.4. Open a terminal, run the following commands:

cd /source/OpenSfM/
./bin/focal from exif myscene
“vi ./myscene/camera models.json”, change “perspective” to

“equirectangular”, type ESCAPE w q
./bin/detect features myscene
./bin/match features myscene
./bin/create tracks myscene
./bin/reconstruct myscene
./bin/mesh myscene

4.5. Copy back the files “reconstruction.json” and “tracks.csv” into your
folder “myscene” on the Windows machine.

5. Run “panomorph.exe prepare myscene absolute path/”. Make sure the
path is specified using slashes as directory separators, with a terminating
slash, and as absolute path.
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6. Run “panomorph.exe interpolate myscene absolute path/ -b 1,1,1 -i p01,p02,p03”
to prepare optical flow files (if not yet done) and render a new image
between camera positions p01, p02 and p03. (Replace p01, p02 and p03 by
the names of your images if you used equirectangular input images).

B.1. Parameters for the “prepare” Mode

Passing “prepare” as first parameter runs through stitching (if applicable),
registration, and alignment. It generates a “data.json” file in the sequence
directory, which must be specified as second parameter.

Parameters available are:

• “-s 2500”: Sets the height of the generated equirectangular panoramas to
2500.

• “-c 0,0,2480,4000”: Sets a crop rectangle to be used for stitching of standard
images. This is useful if parts of the panoramic head are visible in each
standard image at the same location.

B.2. Parameters for the “calc flow” Mode

Passing “calc flow” runs optical flow generation between a specific pair of
panoramic images. This is optional, as optical flow generation is automatically
run during interpolation if the required flow files cannot be found.

The usage is panomorph.exe calc flow sequenceFolder p1 p2, where sequence-
Folder refers to the folder containing the dataset, and p1 and p2 refer to the
pair of images between which optical flow should be generated. Stitching,
registration and alignment must already have been run before calling this
mode.

B.3. Parameters for the “interpolate” Mode

Passing “interpolate” runs optical flow generation (if the files have not already
been generated), and then performs the interpolation. Optical flow files are
cached in the folder “sequencename/out/flow” and optical flow generation is
only performed if no cached file has been found.
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Parameters available are:

• “-b 1,1,1 -i p01,p02,p03” interpolates between camera positions specified
with “-i” using the barycentric coordinates specified with “-b”

• “-p 2.5,5.5” interpolates at “2.5, 0, 5.5” in the global coordinate system and
performs interpolation between three cameras selected using triangulation
of the original viewpoints. If the position is outside the space spanned by
the original viewpoints, no output is generated. “-p ...” and “-b ... -i ...”
are mutually exclusive.

• “-f png” sets the output format to png. Default is jpg. All image formats
supported by OpenCV can be specified here.

• “-v y,p,r” extracts a standard image facing the direction specified using
yaw, pitch, roll values in radians, e.g. “-v 0.1,0.5,0.05”. “-s width,height”
specifies the size of this standard image.
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This chapter explains the build process, both for Microsoft Windows (where the
pipeline was originally developed) and for other platforms.

C.1. Mandatory Configuration and System
Requirements

The system requires a reasonable amount of RAM, mainly for optical flow
generation. For example, 5000x2500px output images require at least 8GB of
system RAM. VisualSFM requires a graphics card. The pipeline was only tested
on English versions of Windows. On German versions, there may be problems
parsing command line arguments, as “,” is used to separate different decimal
values from each other, as in “1.23,5.91”.

C.2. On Microsoft Windows

Use Visual C++ 2013 and the provided solution file. The following compo-
nents need to be installed (obviously, the paths can be changed in the project
properties)

• OpenCV 3.0 binaries under c:/lib/downloaded-build/x64/vc12/bin
• OpenCV 3.0 include files under c:/lib/opencv/build/include
• Boost under c:/lib/boost. The following Boost components are used:

filesystem and algorithm/string.
• Eigen under c:/lib/eigen.

Deepflow2 is already included, pre-compiled for Windows, and including some
DLLs from the Cygwin project that enable it to run. OpenSFM needs to be
called manually. It is recommended to use OpenSFM under linux, as it is very
hard to compile on Windows.
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C.3. Porting to other platforms

The pipeline was developed on Microsoft Windows using the Visual C++ 2013
compiler. However, most code is platform-independent. To build on a different
platform, please take the following considerations into account.

All platform-dependent code is in the file util/Platform.cpp.

It is necessary to use a reasonably modern C++ compiler, as the source code uses
some C++11 features. Some parts of the code are parallelized. If the compiler
supports OpenMP, a speedup can be achieved.

Currently, OpenSFM is called manually, because it is very hard to compile on
Windows. If compiling on Linux, OpenSFM could be compiled easily and called
automatically (OpenSFMRegistration.cpp).
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Table D.1 shows the components used in the pipeline. Only components used
per default, in the final version of the pipeline, are shown. Omitted are some
optical flow algorithms that were used for preliminary experiments only.

The table also omits some code snippets that were adapted from various re-
sources. These code snippets concern routine tasks (Windows system calls,
string operations) and certain mathematical operations. The corresponding
resources are mentioned in the source code.

The license texts for integrated components can be found in the respective
folders in the source tree. For the licenses to external libraries, please refer to
the corresponding distributions.

OpenCV is used to read and write optical flow files and images. Most, but not
all of that functionality is encapsulated in the “MyImage” class.
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Component Purpose Type of Integration Author
VisualSFM Registration External program Changchang Wu [67,

68]
OpenSFM Registration External program

(* see below)
Mapillary corpora-
tion & contributors
[38]

Hugin Stitching External program Pablo d’Angelo &
contributors [9]

Eigen Math Linked library Benoı̂t Jacob, Gaël
Guennebaud & con-
tributors [11]

TCLAP Command Line
Parsing

Sourcecode inte-
grated

Michael E. Smootin &
contributors [62]

OpenCV 3.0 Image Process-
ing

Linked library OpenCV Developers
Team [37]

Optical Flow
Inversion Code

see Section 5.4.5 Sourcecode inte-
grated and heavily
modified

Sánchez, Javier and
Monzón, Nelson [48]

DeepFlow2 Optical Flow
Generation

External program
(** see below)

Weinzaepfel et al. [66]

rapidJSON JSON reading
and writing

Sourcecode inte-
grated

THL A29 Limited,
a Tencent company,
and Milo Yip [43]

boost C++ library for
standard tasks

External library Contributors [3]

Delaunay trian-
gulation code

Used for select-
ing cameras to
interpolate new
views at specific
world positions.

Sourcecode inte-
grated

Wael El Oraiby [39]

Table D.1.: Components used in the pipeline. (*) Needs to be called manually, as Windows
was used for development, where OpenSFM is very hard to compile on. (**) Com-
piled via Cygwin, as the code uses some linux-specific C libraries which are not
straightforward to port to Windows.
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