
Dominik Ziegler, BSc

Private Information Leakage in Mobile
Applications

Automated Network Analysis

Master’s Thesis

to achieve the university degree of
Master of Science

submitted to
Graz University of Technology

Tutor
O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Second Tutor
Dr.techn. Peter Teufl

Institute for Applied Information Processing and Communications (IAIK)

Graz, March 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

ii

Acknowledgments

At that point I would like to express my gratitude to all those who joined me on
this journey.

My heartfelt thanks go to my parents who have always shown great patience and
support for my work. It was them who showed me what is really important in life.

Additionally, I would like to express my sincerest thanks to my grandparents and
family for their loving nature and their listening and of course cooking skills.

Not to forget my sister for her ambitious (and sometimes rough) nature who always
managed to get me back on the straight and narrow.

Last but not least, I would like to thank all my friends for their understanding and
the countless hours of laughing and for their spontaneity. Without you, life would

be monotonous and boring.

A final thank goes to all my teachers, for their exceptional education not only in
technical but also in social skills. In particular, I would like to thank my advisor,
Peter, for the countless hours of support, motivation and helpful pieces of advice.

iii

For my grandfather, Alois,
who could not live to celebrate this moment.

iv

Abstract

Smartphones should make our lives easier and more comfortable. As a result, new
features (e.g. geolocation, camera) and applications taking use of these mechanisms
are introduced each year. At the same, smartphones provide location-independent
access to the Internet. This combination of easy access to data as well as the
permanent access to the Internet, can, however, have an enormous impact on the
security of those devices.

For this reason, several techniques have been developed to analyze applications in
terms of security or errors. One way to achieve this, is by inspecting the network
traffic caused by applications. Compared to other mechanisms this allows to
analyze software independently from the operating system. However, due to the
vast amount of applications, an automated process is necessary to analyze multiple
applications at once.

On that account, this thesis proposes an automatic approach for Internet traffic
inspection. More precisely, the purpose of the application was to automatically
inspect already captured network-dumps and visualize the results in an easy to use
way. Furthermore, the capabilities of the application should easily be extendable
to adapt to ongoing changes. In this context we have developed extensions to
analyze the data flow of mobile applications. Specifically, we have concentrated on
automated detection of private data in captured-network dumps.

Based on this work we have analyzed the top applications of two mobile operating
systems in terms of data leakage. Furthermore, we have used these results to inves-
tigate whether the two operating systems have different impact on the developed
applications.

The results not only show that the transferred data differ on these operating systems,
but also that due to different approaches in the permission system, applications
on one platform tend to excessively use functions they do not necessarily need.
Additionally, we have found that identical applications from the same vendor might
set apart from the implementation on the opposing operating system.

v

Kurzfassung

Smartphones sollen unser Leben einfacher und bequemer gestalten. Infolgedes-
sen werden laufend neue Funktionen (z.B. Ortung, Kamera) bzw. Anwendungen
vorgestellt. Gleichzeitig bieten Smartphones einen ortsunabhängigen Zugang zum
Internet. Die Kombination aus dem einfachen Zugriff auf Daten mit einem per-
manenten Internetzugang kann allerdings gravierende Auswirkungen auf die
Sicherheit der Geräte haben.

Aus diesem Grund existieren verschiedene Techniken, die die Sicherheit bzw. Fehler
der Anwendungen untersuchen. Eine Möglichkeit besteht darin, den Netzwerkver-
kehr der Applikationen zu erforschen, was im Vergleich zu anderen Mechanismen
eine plattformunabhängige Analyse ermöglicht. Um mehrere Applikationen gleich-
zeitig zu analysieren, benötigt man aufgrund der zahlreichen Anwendungen einen
automatisierten Prozess.

Die vorliegende Arbeit stellt einen automatisierten Ansatz für die Analyse von
Internetverkehr vor. Ziel der Anwendung war es, Netzwerkverkehr automatisch zu
analysieren und die Resultate benutzerfreundlich zu visualisieren. Außerdem sollte
die Anwendung möglichst einfach erweiterbar sein, um auf Änderungen reagieren
zu können. Deshalb wurden Erweiterungen entwickelt, die den Datenfluss von
Applikationen analysieren. Der Schwerpunkt lag dabei auf der Erkennung von
privaten Daten im Netzwerkverkehr.

Abschließend wurden die Top-Applikationen zweier mobiler Betriebssysteme auf
private Daten untersucht. Die Ergebnisse benutzten wir, um herauszufinden, ob
Betriebssysteme die entwickelten Anwendungen unterschiedlich beeinflussen.

Die Resultate zeigen nicht nur, dass sich die übermittelten Daten voneinander
unterscheiden. Aufgrund der divergierenden Auffassung hinsichtlich der Rech-
teverwaltung greifen Anwendungen auf der einen Plattform auch häufiger auf
Funktionen zu, welche sie nicht zwingend benötigen. Außerdem haben wir festge-
stellt, dass sich das Verhalten von Anwendungen ein und desselben Herstellers auf
unterschiedlichen Plattformen unterscheidet.

vi

Contents

Abstract v

1 Introduction 1
1.1 Smartphone Statistics . 3

1.1.1 Smartphone Adoption and Usage 4

1.1.2 Internet Usage . 5

1.2 Privacy-Incidents . 6

1.2.1 Operating Systems . 8

1.3 Goals . 11

2 Related-Work 14

3 Tools and Frameworks 18
3.1 Burp-Suite . 19

3.1.1 Capture-Network Traffic 19

3.2 Play-Framework . 21

3.3 Elasticsearch . 23

4 Core Architecture 24
4.1 Base-Framework . 26

4.1.1 Structure . 26

4.1.2 Controllers . 28

4.1.3 Elasticsearch . 28

4.1.4 Retrieval . 29

4.2 Plugins . 29

4.2.1 Base Plugin . 29

4.2.2 Plugin Registration . 30

4.2.3 Result Caching . 31

4.3 Network-Dump . 32

vii

Contents

4.4 User-Interface . 33

4.4.1 Overview screen . 34

4.4.2 Analysis screen . 35

4.4.3 Comparison screen . 36

5 Privacy Leakage Plugins 37
5.1 Prerequisites . 38

5.1.1 Private Data Plugin . 39

5.1.2 Pre-Processing . 39

5.1.3 Filtering . 40

5.2 Name Plugin . 41

5.2.1 Detection . 41

5.2.2 Challenges . 42

5.3 Email Plugin . 42

5.3.1 Detection . 43

5.3.2 Challenges . 43

5.4 Username & Password Plugin 44

5.4.1 Detection: Usernames 44

5.4.2 Detection: Passwords . 44

5.4.3 Challenges . 45

5.5 Credit Card Plugin . 46

5.5.1 Detection . 46

5.5.2 Challenges . 48

5.6 Geo Data/Position Plugin . 48

5.6.1 Detection . 49

5.6.2 Challenges . 49

5.7 Phone Number Plugin . 50

5.7.1 Detection . 51

5.7.2 Challenges . 52

5.8 Session/Token Plugin . 52

5.8.1 Detection . 53

5.8.2 Challenges . 54

5.9 Device Information Plugin . 54

5.9.1 Detection . 54

5.9.2 Challenges . 55

5.10 Sample Data . 56

viii

Contents

6 Evaluation 58
6.1 Goals . 59

6.2 Limitations and Assumptions 60

6.3 Setup . 62

6.4 Top 50 iOS Applications . 64

6.5 Top 50 Android Applications 67

6.6 Approach . 69

6.7 Analysis . 72

6.8 General Comparison: Android and iOS 75

6.8.1 Incidents . 75

6.8.2 Categories . 76

6.8.3 Results . 78

6.9 Comparison: Common Application per OS 81

6.9.1 Results . 84

6.10 Challenges . 84

6.11 Notable examples . 85

6.11.1 Location Map . 86

6.11.2 Credentials in Network Traffic 86

6.11.3 SQL Queries . 87

6.11.4 Passwords . 88

7 Future Work 89

8 Conclusion 91

Bibliography 94

ix

List of Figures

1.1 Smartphone users worldwide in billion. Based on statistics
from Statista Inc. [Sta15b] . 4

1.2 PC sales, compared to tablet sales worldwide in million.
Based on statistics from Statista Inc. [Sta15a] 5

1.3 Malware by Platform 2000-2013 [For13] 9

1.4 Malware by Platform 2013 [For13] 10

3.1 Main user-interface of Burp-Suite 1.6 showing the Toolbar . . 20

4.1 Framework Architecture . 25

4.2 Overview screen, showing all available network-dumps . . . 34

4.3 Analysis screen, showing a detailed analysis result for one or
more network-dump(s) . 35

4.4 Comparison screen, showing differences between network-
dumps . 36

5.1 Custom content format detected in the traffic of some appli-
cations . 57

6.1 Top 50 iOS Application Categories (22. June 2015) 66

6.2 Top 50 Android Application Categories (22. June 2015) 68

6.3 Permission Systems on Android and iOS 71

6.4 Top 50 iOS Applications (22. June 2015) Analysis Report . . . 73

6.5 Top 50 Android Applications (22. June 2015) Analysis Report 74

6.6 Number of detected private data incidents per category on iOS 79

6.7 Number of detected private data incidents per category on
Android . 80

6.8 Common Applications of iOS and Android (22. June 2015) . . 83

6.9 Locations of nearby users extracted from the network traffic . 87

x

1 Introduction

With the rise of smartphones and thus mobile applications, access to private
data such as geo-location, credit-cards, phone numbers or the like has never
been easier. Likewise, various sensors, for instance GPS and camera as well
as the permanent access to the Internet, in conjunction with the missing
expertise of some users, contribute to the predominant situation of abuse
and private-data leakage. In 2014 alone, 2000 new Android malware samples
were discovered everyday [Sva14]. Detecting or even preventing malicious
applications or careless usage of sensitive data is therefore becoming an
important topic when talking about smartphones.

At the same time, mobile platforms such as Android, iOS or Windows
Phone, or more precisely, their dedicated app marketplaces speed up the
distribution of mobile applications by providing a central collecting point
[TKN12]. By the end of 2014, already more than 3 billion apps have been
available on all major platforms. Hence, developers nowadays are more
likely to build apps instead of providing complete web services. As a
consequence, users tend to use apps with network access more quickly
[Xu+11]. This trend in combination with the amount of private data available
on mobile platforms leads to new attack vectors. Researchers or antivirus
companies are therefore investing a lot of time and money in detecting
malicious or poorly implemented applications.

Because of this concerning development in malware and the growing access
to sensitive information on mobile operating systems, the present thesis
deals with the topic of private data-leakage of modern smartphones. In par-
ticular, great attention has been paid to not only detect private information
in mobile applications (e.g. phone-numbers, user names, passwords, etc.)
but also to figure out implications on the transmitted data due to operating
system peculiarities like permission systems.

1

1 Introduction

One way to achieve this is by analyzing the application and therefore un-
derstanding the nature and intentions of software. Traditionally, techniques
such as static code analysis, dynamic code analysis or network monitoring
are used to gain insight into the data flow of an application. However, in
general code analysis is too vigorous to perform in large operations. This
is aggravated by the fact that most platforms limit the capabilities of appli-
cations and therefore do not permit reverse engineering or measurements
in the background on the device itself. Additional steps to achieve reverse
engineering on mobile platforms are therefore almost always necessary.

Another approach to get an overview of the data flow is to analyze the
network traffic caused by applications via software like Wireshark1 or Burp-
Suite2. The drawback of these tools however is, that they require a certain
kind of expertise and most certainly experience in this field. Additionally,
analyzing and interpreting the so captured outgoing and incoming traffic is
a very time consuming and challenging task to undertake. Evidently, this
process does not scale due to the significant number of available applica-
tions.

Using a more automated approach in network analysis, one could facilitate
this procedure and therefore help specialists or security researchers gain
insight into the application’s nature. However, in spite of the increasing
number of apps and users and the fact that a majority of these smartphone
applications rely on HTTP or HTTPS protocol, which is a well defined
standard, it is still a sophisticated task to automatically analyze the traffic
and therefore the nature of these applications. That is, because most smart-
phone apps generally do not rely on a common terminology or way of data
representation. More precisely: mobile services may use existing technology
like JSON, multipart/form-data or simply plain-text to encode their content
and prepare it for transmission, but there is hardly any generic approach
on how to interpret and understand all the transmitted information. For
example: if a developer decides to omit any describing parameters for the
transmitted data, it is undoubtedly rather complex to automatically gain
complete insight into the submitted information. In fact, we nowadays have
less understanding of the underlying technology and protocols used in

1https://www.wireshark.org
2http://portswigger.net/burp/

2

https://www.wireshark.org
http://portswigger.net/burp/

1 Introduction

smartphone applications as compared to web services [Cal+09].

On that account this thesis proposes a way to facilitate this process. Hence,
the presented architecture takes the output of different network analyzer
tools such as Burp-Suite (see Section 3.1) and is capable of automatically
processing and presenting it in a more structured way. For example, it is
possible to extract certain predefined information like geo-location or search
in the provided dump for leaked data. Furthermore, the framework is able
to automatically detect data breaches or just simply list used technologies
or protocols. To achieve this goal, a modular architecture is inevitable.
Henceforth, the functionality of this framework can be further extended by
so-called plugins, each serving exactly one purpose (e.g. username-detection,
email-address detection etc.).

However, to combine various detecting mechanisms, a great deal of effort
has to be put into each module of the framework, which would most
certainly go beyond the scope of this thesis. For this very reason and to
provide a complete experience, a common core providing basic features,
such as validating and processing the input, has been developed first. This
core has been created by Mattias Rauter, Christof Stromberger and Dominik
Ziegler. As mentioned above, the modular nature is a major aspect of
the framework. As such it is possible to divide the development process
into clearly structured tasks. By focusing on distinct fields of interest, e.g.
tracking-frameworks, authentication mechanisms or private-data leakage,
different extensions for the core framework can be developed without
interfering the work of others.

1.1 Smartphone Statistics

The proposed framework automatically analyzes and processes captured
Internet traffic. Although this technique is not limited to mobile devices and
can equally be used with desktop applications, this thesis focuses primarily
on smartphone- respectively mobile-traffic. The following gives an overview
of the development and why it is also important to also concentrate on
mobile-traffic in the upcoming years.

3

1 Introduction

1.1.1 Smartphone Adoption and Usage

As of this writing, 1.91 billion people worldwide are using smartphones,
with an estimated number of 2.56 in 2018 [Sta15b]. Figure 1.1 illustrates
this development. Compared to the year 2007, which marks the beginning
of the smartphone-boom with the release of the Apple iPhone and soon
afterwards of Android, with roughly 122.32 million devices, nowadays more
than 15 times as many people are using smartphones.

If we look at the global smartphone sales since 2007 this fact becomes even
more obvious. By the end of 2014 roughly 1.2 billion devices have been
sold to end users in that year alone. According to estimates this figure will
increase to approximately 1.95 billion p.a. by the end of the year 2019.

Comparing this number to the personal computer sales (including desktops
as well as notebooks) with an estimate of 123,1 million in 2017 (157 million
in 2010), we can clearly see a decrease in sales [Sta15a]. Figure 1.2 gives an
overview of this development as well as a future outlook. For the stated
reasons we can thus safely assume that the number of smartphones will
rise even more rapidly over the next couple of years. Directing the focus on
mobile internet traffic is therefore becoming an important factor.

Figure 1.1: Smartphone users worldwide in billion. Based on statistics from Statista Inc.
[Sta15b]

4

1 Introduction

Figure 1.2: PC sales, compared to tablet sales worldwide in million. Based on statistics
from Statista Inc. [Sta15a]

1.1.2 Internet Usage

Estimates predict that by the year 2020 traffic caused by smartphones will
have increased exponentially to circa 17 exabytes, that is 17 000 000 000

gigabytes per month [Sta14b]. In 2014, this number was still at about 2.1
exabytes per month. If we look at the smartphone adoption statistics (see
Section: 1.1.1) this development can easily be explained with the predicted
number of smartphone sales on the one hand and with the increase in data
consumption per user.

Looking at these figures in detail, this results in a total of approximately 3.5
gigabytes of internet traffic caused by smartphones per user per month.

Certainly, these numbers are based on predictions and may vary from
country to country and over the time. Still, as they are based on the current
developments they are a good indicator on what to expect.

5

1 Introduction

1.2 Privacy-Incidents

It should be noted at this point that despite the fact that there already exist
considerable approaches to reduce or detect malicious or faulty software
still a noticeable amount of malware-related incidents are reported each
year. Additionally, not all threats can be detected or even prevented by
application certification or malware detection frameworks. In some cases,
deception (e.g. Phishing) and lack of knowledge or awareness can be the
reason for private data theft [Ira+08] [Bod13]. Moreover, sending sensitive
information over the Internet can be a required process in certain situations
like for example authentication mechanisms.

It is therefore all the more important to know in which kind of data at-
tackers are most interested in. Consequently, it may be of great help to
get an overview of different types of malware in order to gain a better
understanding of malicious software and attack vectors. Additionally, it is
important to note that (mobile operating) systems constantly change and
evolve. As do their security mechanisms. It is therefore equally important
to look at recent privacy incidents to see how current malware collects and
transmits (private) information.

However, when talking about malware, it is first of all crucial to know which
kind of malicious software even exists. In general, harmful software can be
split into three categories [Loo14]:

Malware: Malware is software designed to steal (personal) data from de-
vices and profit from them. Many times, it is the main cause for financial
fraud or unresponsive devices. It is the hypernym for different kinds of
software such as viruses, trojans, worms or ransomware. When dealing with
malware, network analysis can be of great help to identify such software,
because most of the time, it transmits data over the Internet in order to
communicate with or send acquired information to a server operated by
attackers. Theoretically, it is possible to detect or at least contribute in a
meaningful way to help identify most of the current malware implementa-
tions via network analysis.

Chargeware: The aim of chargeware is to generate profit for its operator
and therefore usually entails high costs for the user. In the majority of cases,

6

1 Introduction

the user is not informed about these billings, which usually happen without
proper notice or the user’s approval. Depending on the implementation
details it can be fairly channeling to detect these threats via network analysis.
That is, because all too often, chargeware uses conventional techniques like
premium SMS or premium rate numbers to generate profit.

Adware: In the majority of cases, adware displays importunate content on
the user’s screen and reduces the overall user experience. Additionally,
adware most commonly collects personal data in large amounts and sends
it to a backend. Even though adware might not pose a risk to the user from
a financial point of view or in terms of device damage, stealing personal
data can be equally dangerous as they intrude into private lives.

By knowing different types of malicious software it is equally important
to understand how it is utilized on smartphones in order to know the
capabilities and limitations of network analysis. In brief, when looking
at recent threats, we can detect a trend towards malware, in particular
ransomware which is a new kind of attack, which emerged in the last
years. Ransomware is designed to prevent the use of a device by locking it
down, or encrypting its contents. The victim often needs to make payment
in order to regain access to their computer or phone. Most of the time,
ransomeware is installed as drive by download, meaning it disguises as
versions of legitimate programs in order to delude the victim. While at first
glance network analysis might not be of great help when dealing with such
software, eventually ransomware will have to communicate with a server
in order to transmit the encryption key or to send device or user related
information. This traffic can then be captured and analyzed.

Another concerning observation has been made by researchers who found
that some malware came preinstalled on certain devices. This implies that
attackers must have infiltrated the supply chain and have gained full control
over the installed software. By posing as ringtone apps or the like, this
kind of malware then tries to capture login data by displaying forged text
messages. However, this behavior may most certainly be detected with
network analysis.

Likewise a trend towards forged app store software has been observed.
After installation, this software runs in the background to intercept phone
calls or text messages. Obviously, without network access an attacker would

7

1 Introduction

draw no benefit from this kind of attack. The collected data therefore have
to leave the device at a certain point. As a result is possible to identify those
kind of attacks.

Last but not least, security analysists have detected software which uses the
processing power of smartphones for crypto currency such as Bitcoins or
Litecoins. Although the computation power of modern smartphones is still
not fast enough, calculating challenges for crypto currency can be possible
by accumulating a large amount of smartphones.

Interestingly, most of the identified threats have been observed and been
predominant on the Android platform in last year. However, while clearly
not all threats can be detected or even prevented by network traffic inspec-
tion, most malware can be identified by inspecting the sent data of infected
devices. This is based on the fact, that attackers expect some sort of benefit
from their software. As a result, most of the collected data has to be sent
over the Internet to an endpoint. This shows that analyzing network traffic
can be a valuable tool and of additional help to detect those kinds of attacks.
Furthermore, we can see that attackers are most likely to be interested in
user-credentials or content of text-messages (e.g. for mobile banking).

1.2.1 Operating Systems

As anticipated, all major incidents recorded in the last three years emerged
on the Android Platform [For13]. Figure 1.4 gives an approximate overview
of the prevailing situation. According to Svajcer [Sva12], there are two rea-
sons for this. On the one hand, the Android operating system has gained
large popularity over the last years, with more than 1 million activations per
day [Sva12]. On the other hand, attackers try to distribute the applications
very quickly and widely. So-called application marketplaces3 provide a per-
fect environment for malicious applications. Typically, these app stores entail
a particularly large user-basis, which in return implies a high possibility of
installation. Moreover, most of the time malware uses several techniques to
avoid detection by the application marketplaces’ security mechanisms. And
this is the crux of the matter.

3Centralized solution, offered by vendors in order to distribute applications

8

1 Introduction

Figure 1.3: Malware by Platform 2000-2013 [For13]

In general, two different approaches on how to analyze and certify applica-
tions suitable for app store distribution are used in practice, both evidently
having advantages but also disadvantages.

On the one hand, there exists a manual approach, meaning that applications
respectively the code are partly or completely analyzed by hand. Still is
possible under certain conditions to hide functionality in applications which
might be missed. Additionally, just recently there have been reports where
manual app certification has failed on a large scale [Ben15]. Certainly a
manual certification approach is not 100% secure, but it at least reduces the
risk and aggravates the situation [Sva12].

On the other hand a more automated technique is used. As a result, spe-
cial software designed to find flaws or misusage of certain functionality
in applications is applied. Obviously, companies are not releasing detailed

9

1 Introduction

Figure 1.4: Malware by Platform 2013 [For13]

information on this process, in order to not reveal security related parts and
to keep up with attackers. However, this process has also proven its weak-
ness, as just recently attackers managed to circumvent automated security
mechanisms and implant malware into an application store [Fox15].

Now talking about the current mobile operating systems, it is assumed that
Apple and Microsoft rely on manual app certification processes to a certain
extent [App15][Pla13]. In contrast, Google claims to use a more automated
technique for the Android Platform and its Google Play Store4, namely
Google Bouncer [Loc12]. Indeed, based on experience, publishing and up-
dating an application for the Google Play Store can be achieved within a
couple of minutes, which is a good indicator for automated analysis.

Additionally, besides the official Google Play Store, there exist third party
solutions to install applications, on the Android operating system. Big

4https://play.google.com/

10

https://play.google.com/

1 Introduction

companies and vendors like Amazon5 benefit from this opportunity and
distribute applications via their own marketplaces, a fact not hidden from
attackers. Especially in China where access to official stores is often not
possible, third party solutions become the only way of discovering new appli-
cations [Ng+14]. Approximately more than 70% of devices in China receive
content from unofficial app stores like Blackmarket6. Typically, attackers use
these platforms to create free versions of otherwise paid applications and
implant malicious code this way.

Another reason, why Android is as popular among attackers is its operating
system update policy. At the moment, a device running Android can only
receive official core updates trough its manufacturer. As a consequence, all
too often cheap devices do not receive any security updates after a certain
period, even though a newer version of Android has been developed, leaving
this device vulnerable to possible attacks [Ama14].

Summarizing, we see that when dealing with malware, special care has to
be taken when analyzing applications on Android. Naturally, this does not
imply that there is no malware on Apple or Windows smartphones at all. The
prevailing situations and above mentioned circumstances, however, show
that at the moment attackers are heavily concentrating on Google’s operating
system. However, analyzing network traffic is more or less operating system
independent. We can therefore safely assume that there is no big difference
when inspecting data created by any mobile operating system.

1.3 Goals

Over the last years, an increase in new malware types like ransomware has
been noticed [Cis14]. This can be attributed to the fact that carriers as well
as vendors try to put a stop to conventional malware approaches [Blu14].
Mechanisms such as the elimination of premium SMS forces attackers to
come up with new ideas. Especially the trend to ransomeware is concerning,
as this kind of software usually means high costs to the users and leaves

5https://www.amazon.de/gp/mas/get/android/
6http://www.blackmart.us

11

https://www.amazon.de/gp/mas/get/android/
http://www.blackmart.us

1 Introduction

the devices unusable [Fse14]. Likewise important is the fact that attackers
were able to infiltrate the mobile supply chains and could thus manage to
install malware prior. There is hardly any protection possible against these
kinds of attacks. Consequently, it is all the more important to be on one’s
guard and to abstain from installing applications from untrusted sources.
Antivirus software will therefore become even more important over the next
years [Sec13].

However, not all incidents concerning private data theft can be prevented
this way. Sometimes, lack of knowledge of software developers can also
cause unwanted leakage of sensitive information.

The goal of this investigation became to implement an application to cope
with the current development of malware, as well as to provide means of
automatically finding private data such as usernames, passwords or the
like in captured network traffic. As a result, extensions for the developed
framework to simply display or detect these data have to be developed.
Another important point was to design the software in such a way that it is
able to analyze network traffic independently from the operating system of
the smartphone.

However, when comparing the network traffic of different operating systems,
or more precisely, the applications running on it, it is equally important
to talk about permission systems. In general, there exist two different
approaches on how to control the execution of applications, limit device
capabilities or prevent unauthorized usage of sensors and private data.

On the one hand there are permission systems which perform on access
level, which means that with the first attempt to access private information
(e.g. GPS, photos, etc.) the user is notified and may or may not grant access.
On the other hand an ”all or nothing” approach is utilized. This permission
system asks the user upon installation to allow access to needed sensors
or functionality. Once installed, the application may make use of these
mechanisms as often and whenever necessary.

Generally speaking, both systems have certain benefits. However, the goal
of the study is to see, whether these different approaches have an impact
on the developed applications and on uncontrolled, that is without proper
notice, usage of data.

12

1 Introduction

This leads to another important aspect. Not only are we interested to see
whether private information has been sent by an application, but also if the
amount and type of data varies significantly between different operating
systems.

It can be said, the Android operating system has become the main target
for attacks these days. However, not every device is infected with malware
or has access to third party application stores. For this reason, one aspect of
this thesis, was to find out how permission systems impact the overall data
of conventional, in other words non-malware applications.

Summarizing, we can say that even though network analysis cannot prevent
or detect malware, it is not only an essential process in identifying unwanted
software but should also help identify poorly implemented applications
which do not provide enough security mechanisms to guarantee data safety.
As such, the intention of the presented application and the developed
plugins was not to serve as a malware detection platform, but rather as a
set of tools to detect exactly which data is sent over the Internet. Especially
on the Android platform, where permissions (e.g. Internet access, user data,
contacts) are often needed for certain functionality, it is sometimes not clear
whether these permissions are really necessary or not. For example: Internet
access in combination with access to contact data does not necessarily mean
that this contact information is sent over the Internet. Then again, having
no Internet access does not automatically mean that private information
cannot be leaked. It could be possible that this data is shared with another
application, which in return does have the permission to send information
over the Internet. However, the corresponding application in return does
not require access to private data.

13

2 Related-Work

Privacy is becoming an important topic when it comes to analyzing smart-
phone applications. However, as of this writing there are different ap-
proaches on how to dissect and inspect software, each focusing on a specific
use case.

In general, we can distinguish between two types of analysis methods.
First of all, there is code analysis, an easy way to inspect data flow either
at runtime, called dynamic analysis, or on existing source or binary code,
which is called static analysis [RS10]. One of the main advantages of dynamic
code analysis is, that is is possible to detect and track data flow throughout
an application. This way, one can detect unwanted or uncontrolled access
to data or certain functionality. The drawback of this method however,
is that a program needs to be executed on a device itself. As a result, a
mechanism to virtually execute an application in a sandbox or similar has to
be developed first. Additionally, dynamic analysis usually does not provide
a complete report of an application, as only the parts which are executed
can be inspected. This way, it is possible to hide certain functionality from
dynamic analysis.

On the other hand, static analysis can be performed on existing code alone,
making it extremely powerful and versatile to use. However, by using only
static analysis we usually can not trace every movement and sometimes
might miss coherences of data.

Typically, by combining both static and dynamic analysis we can achieve
much more accurate reports than using each technique alone. Then again,
the effort necessary to accomplish this is usually fairly high.

Naturally, different approaches for both dynamic and static analysis have
been presented over the last couple of years. However, due to the specific

14

2 Related-Work

nature of code analysis, most of the time additional steps like unlocking
a device have to be made in order to achieve results. Additionally, code
analysis heavily depends on the operating system itself and therefore the
programming language used. That said, not all languages allow a complete
reverse engineering of already compiled code.

In contrast to this, we can also analyze applications via monitoring the
network traffic. Admittedly, this reduces the accuracy of an analysis report
to only the parts which were sent over the Internet. However when talking
about private data we are most likely to be interested in only this informa-
tion which is transmitted to another party. In other words, if smartphone
applications do not send any data over the Internet, we can almost be certain,
that no private data is sent either.

Another point, which supports the usage of network analysis, is that it does
not depend on the underlying platform. As a result, it can be used on any
existing and possibly future device, making it very stable and reliable to
ongoing changes. Using network analysis to detect applications which sent
private information is therefore a reliable and fast way.

Hence, Enck et al. [Enc+10] presented an approach to completely monitor
the network traffic of Android applications in real time. They propose an
application called ”TaintDroid” which virtually executes the programs to
be analyzed and is therefore able to detect outgoing private data. Taint-
Droid uses a combination of various analysis techniques to track private
information. By ”tainting” this data, it is possible to find information once
it leaves the device and trace it back to its origin. However, TaintDroid
requires a rooted1 Android device and can therefore not be used on every
smartphone.

In contrast, Falaki et al. [Fal+10] presented an approach in 2010 to analyze
the network traffic caused by smartphones. They showed that roughly 50%
of traffic is caused by browsing, while applications like mail or messaging
contribute to the other half. In their findings, they state that packet loss is the
primary cause for slow connections and current server configurations are not
optimized for smartphone traffic. Additionally, they propose mechanisms to
improve network overhead and power consumption. However, this approach

1Elevated User Rights

15

2 Related-Work

is not generic and does not provide easy methods to extend the applications
functionality to detect certain kind of data.

Stepping further into the topic, Callado et al. [Cal+09] explain in their survey
the main problems of network traffic analysis. In their work, they first of all
split the traffic into two categories namely ’packet-based’ and ’flow-based’,
and compare the results. Moreover, they give an overview of traffic analysis
techniques like signature-matching, sampling and inference as well as their
own proposal. Last but no least, Callado et al. [Cal+09] give an outlook
of future trends. Nevertheless, this process focuses heavily on inspecting
the kind of application and does not analyze the data itself. As such, it is
not possible to detect certain kind of information in the analyzed network
traffic.

On the other hand, several approaches have been presented to overcome
the previously mentioned issue of malware infected devices or malicious
applications. Desmet et al. [Des+08] identify the permanent access to the
Internet and the capability of modern smartphones to execute untrusted
code as the fundamental dilemma. They propose a new technology called
SxC (Security-by-Contract) which enforces the permissions given to un-
trusted code. As a consequence, third-party code can not escape from its
sandbox or elevate its rights. At the same time however, it is still possible to
develop applications which collect private data within its given boundaries.
This solution therefore obviously cannot solve the problem of private data
leakage alone.

While a lot of research is conducted in the field of protecting the user and
their data, Ongtang et al. [Ong+12] point out that protecting the application
itself is equally important. This implies that access to interfaces offered
by applications must be protected from improper use and permissions
should only be given to those applications which can be trusted. To improve
the situation on the Android Platform, they propose the Saint (Secure
Application INTeraction) framework, which, according to them, enhances
the operating system by these missing features. Again, this solution is very
appealing, but is very specifically designed for one platform. Additionally,
it does not prevent from the possibility of sending private information over
the Internet, be it by accident or not.

16

2 Related-Work

Enck, Ongtang, and McDaniel [EOM09] add that malware on mobile devices
is becoming a more serious problem each year. As the devices become more
powerful and systems become more complex, attacks are becoming more
spacious. Application certification, which means precisely analyzing the
code, could restrict these problems. However, this process is missing on the
Android platform. Hence, they propose Kirin, a security service, to limit
malware applications during install time.

All in all, we have seen a lot of outstanding work being conducted in both
directions, analyzing network traffic and attempts to restrict and control
applications and prevent malware. However, most of the above presented
work is very platform specific or concentrates on one field alone. Moreover,
means to easily extend the functionality of the proposed design to either
support more operating systems or to react to ongoing changes are mostly
missing.

For this reason, the proposed design tries to close a gap between platform
specific (private) data detection and existing tools widely used for network
analysis. One of the main advantages is certainly the possibility to respond
to current developments by extending its functionality.

Furthermore, as we are analyzing the network traffic alone, the tool can be
used independently from the underlying platform. As a result, hardly any
work is necessary to adapt to operating system changes. Another important
point is that devices do not need to have elevated user rights.

Summarizing we can state, that due to the nature of network analysis some
of the presented work indeed will yield better reports in terms of accuracy or
detection rate. However, the proposed design is perfectly suited to provide a
very detailed overview of used technologies and especially data flow. At the
moment, there is no such generic approach, which is also easily extendable
at the same time.

17

3 Tools and Frameworks

To guarantee a platform independent user experience, the proposed applica-
tion is developed as a standalone web-application. As such, it is possible to
run this tool platform independently regardless of the operating system or
the browser. Additionally, this software can be deployed on a central server
and can thus be further developed as a collective tool to analyze applications
and create a data pool of interesting network dumps. Generally speaking
the modular architecture allows further development without much effort,
as will be described in Chapter 4.

However, the proposed design consists of several factors which we need to
take into account first. One of them being interoperability. For this purpose,
the presented work takes advantage of existing tools or at least provides
possibilities to include them in the application, in order to facilitate the
development process as well as to reduce the need to get accustomed with
new software or mechanisms to a minimum.

With this intention, relying on existing network analysis tools was one
decision. Especially for Internet traffic there exist several tools like Wireshark,
or Burp-Suite, which both have been widely used by many researches.
Additionally, this software has been tested in real life scenarios and proven
its functionality. However, because of the special use case of smartphone
application analysis, we have decided to rely on Burp-Suite in the first case.
This is, because Burp-Suite automatically provides functionality to capture
encrypted Internet traffic. A detailed description of Burp-Suite will therefore
be given in the following.

At the same time, it is just as important to have a good core for web based
applications. Keeping the goal of platform independency as well as easy
scalability in mind, we have decided to rely on Play-Framework, a Java
based toolset designed for large web-applications.

18

3 Tools and Frameworks

By providing interfaces for these tools and connecting them in a meaningful
way, it is therefore possible to not only easily analyze newly captured
smartphone traffic, but to also use existing network dumps and have them
analyzed.

3.1 Burp-Suite

The proposed framework provides, as of this writing, no possibility to
capture network traffic or create network dumps of (mobile) applications
from within the tool itself. As such, it depends on input from existing
solutions. One of them being Burp-Suite1. The benefit of this approach is
that established products can still be used and existing workflows do not
necessarily have to be changed. Settling-in-periods to new products can
therefore be omitted.

In the proper sense, Burp-Suite is not only a tool to create network-dumps
but a complete toolchain for security-testing. Thus, it provides mechanisms
to capture encrypted traffic, which becomes heavily important when trying
to analyze applications which rely on the HTTPS-protocol. In order for
this to work, a Root-Certificate first has to be imported into the device’s
certificate chain. Burp-Suite can then create on-the-fly certificates for the
captured packets and intercept or even modify secured network-requests or
-responses. Still, devices used to capture network-traffic are not vulnerable
to attacks from another party, as each instance of Burp-Suite creates its
unique Root-Certificate. Additionally, the requests have to be rerouted to
the machine running Burp-Suite. For a conventional analysis process this
is realized via a proxy setting on the device itself, as described in Section
3.1.1.

3.1.1 Capture-Network Traffic

When analyzing network traffic, the capture settings are fairly important.
This section deals with the basic settings of Burp-Suite, used to analyze the

1http://portswigger.net/burp/

19

http://portswigger.net/burp/

3 Tools and Frameworks

applications mentioned in Chapter 6.

As of version 1.6 the main user-interface offers twelve different tabs for the
user to select from (see also figure 3.1).

Figure 3.1: Main user-interface of Burp-Suite 1.6 showing the Toolbar

To actually capture traffic a few adjustments have to be made:

• Proxy Listener: Typically a proxy-server redirects requests from one
machine to another. While capturing network-traffic, Burp-Suite acts
as a proxy listener to capture the requests sent from the device. An
important factor when trying to analyze smartphone traffic is to set
the address to ”specific” in order for the smartphone to detect the
proxy.

• Intercept Client Requests/Server Responses: In order to capture all
traffic, the filters have to be adapted. Creating two filters for both
HTTP and HTTPS protocols has proven effective.

• HTTP-History: Once the dump has been created, it has to be exported
in a suitable format. This can be achieved trough the HTTP-History
tab. Important for this matter is to set the filter to the desired value.
The network-exchange list can then be exported to a suitable format
for the developed framework via the context menu.

• Certificate-Pinning: Although certificate pinning cannot be circum-
vented using Burp-Suite, it is an important aspect when analyzing
traffic, secured via HTTPS. In general, certificate pinning describes a
technique used in applications to prevent so-called man-in-the-middle

20

3 Tools and Frameworks

attacks, where attackers try to intercept a secured connection by in-
troducing their own certificate. During and before each request the
trust status of the submitted X.509 certificate is checked. If this is not
the case e.g. an intermediary certificate generated by Burp-Suite has
been submitted, the communication is aborted. As a result, traffic from
applications which rely on certificate pinning cannot be captured.

3.2 Play-Framework

The Play-Framework2 is an open-source framework to create powerful web-
applications. It is written in Scala but provides programmatic interfaces
for Java. Development can therefore be done in either of those language or
even a mixture of both. It is thus even possible to develop web-applications
completely written in Java. In addition, the Play-Framework builds upon
the Model-View-Controller Pattern, which has the ultimate goal to simplify
unforeseen changes or additions during the development process. The user-
interface is more or less independent from the underlying data structure or
data logic. The architecture of the proposed application builds upon and
uses this pattern and will be described in Chapter 4.

What led to the decision of using the Play-Framework and what makes it
ideal for the proposed application is described in the following:

• SBT: Scala SBT3 is an open-source build toolchain to automate com-
pile tasks. Similar to ANT or Maven, it supports tasks like library
dependency management or build instructions written in a more ab-
stract language. SBT builds upon the Scala language, but supports
natively both Scala and Java code. The Play-Framework uses SBT as
its preferred build tool.

• Code Refresh: Unlike most web-application frameworks, the Play-
Framework supports automatic code refresh. In other words, stopping,
redeploying and restarting the server during the development process

2http://playframework.com
3http://www.scala-sbt.org

21

http://http://playframework.com
http://www.scala-sbt.org

3 Tools and Frameworks

is not necessary. Compile errors are displayed directly in the browser
window. As a consequence, an increase in productivity during the
development process has been observed as the deployment effort as
well as the time need to compile could be reduced to a minimum.

• Database: The Play-Framework comes with built-in relational database
support. As a consequence, writing database queries becomes virtually
obsolete, and it is possible to concentrate on more important tasks. In
order to create or modify the database structure, conventional Java
Classes with the corresponding annotations are sufficient. In addition,
special methods are provided to update, insert or delete existing data.
Moreover, manual database evolutions can be created in addition to
the automatically generated structure to support database changes in
a productive environment.

• Integrated Webserver / Deployment: What makes the Play-Framework
ideal is the integrated JBoss Netty4 web-server. In this way, it is not
absolutely necessary to install or setup an Apache5 or Tomcat6 server
during development process or during production phase. Still, if pre-
ferred the source can be packaged in a conventional WAR-File, an
archive file with all necessary files, and deployed on above mentioned
servers.

• Distribution: The adaption of the Play-Framework shows that the
architecture is highly flexible and scales even for big projects. Major
companies like Linkedin7 or The Guardian8 already rely on the archi-
tecture.

4http://netty.io
5http://httpd.apache.org
6http://tomcat.apache.org
7https://www.linkedin.com
8http://theguardian.com

22

http://netty.io
http://httpd.apache.org
http://tomcat.apache.org
https://www.linkedin.com
http://theguardian.com

3 Tools and Frameworks

3.3 Elasticsearch

When dealing with network traffic, the captured dumps can quickly grow
rather big in size. As a result an effective way to store, retrieve and search
through this immense amount of information is necessary, in order to
perform any kind of analysis procedure.

However, even though the Play-Framework comes with inbuilt relational
database management (see 3.2) the proposed design uses Elasticsearch9 to
store, search through or retrieve data. In short, Elasticsearch is a search
engine which has been optimized to work with large datasets and provide
full text search. A feature most relational database systems have not been
optimized for. Additionally, Elasticsearch comes with an inbuilt web-server
and a RESTful API to perform (real-time) search-queries.

As a result, the uploaded network dumps can not only be analyzed from
within the framework itself, but can be made publicly accessible without
any effort at all, hence, providing sustainability and the demanded interop-
erability between existing and future applications.

9https://www.elastic.co

23

https://www.elastic.co

4 Core Architecture

In general, the whole architecture consists of four substantial parts (Base-
Framework, Plugins, User Interface, Network-Dump), each being a closed
system working on its own. As a result, modifying, adding or even exchang-
ing certain components does not affect the overall system at all. Figure 4.1
illustrates these elements and gives an overview about their relation.

The core component of the system consists of the Base-Framework, which
connects all relevant parts of the application. To cope with the goal of a
modular structure the basis serves as a central collection point and provides
means of communication between the plugins (see also Chapter 5) and the
data logic. Thus, it is possible to change or extend the functionality of the
Base-Framework without the need to modify the plugin structure or vice
versa. Besides, it is possible to make changes to the user interface or change
the visualization of plugins without interfering in another scope.

Speaking of plugins - which function it is to analyze the data set - we can
clearly see that they take up the main task. Ideally, each plugin serves only
one purpose. However, by combining multiple of those extensions we can
easily achieve detailed and deep levels of analysis.

Furthermore, by separating the data representation from the analysis results,
we can create an additional layer of abstraction. This way, we can interpret
and visualize analysis reports in any desired form. For instance, it is possible
to display one and the same result in multiple ways, like graphs, overall
statistics or means without the need of recalculating the result again.

Last but not least, it is important to note that in general, an arbitrary
program can be used to capture network traffic. This allows the system to
be versatile in respect of interoperability between existing solutions and the
provided tools.

24

4 Core Architecture

Figure 4.1: Framework Architecture

25

4 Core Architecture

4.1 Base-Framework

The Base-Framework builds the core of the system and as such, is responsible
for connecting and processing the remaining components. First of all, one
of its major tasks is parsing and converting the provided network dumps
into a system-wide defined format. In this way, changing the application
responsible for capturing the network traffic will not affect the remaining
system. Additionally, it is possible to support multiple different network-
dump input formats without great effort.

In the next step, the Base-Framework is responsible from registering all
detected plugins which is achieved by scanning for all possible extensions
in the project folder that follow a given protocol. This is to make sure, that
the plugins work to a certain extent. Additionally, in this way, the Base-
Framework does not have to be changed if a new extension is developed
or an existing is removed. Simultaneously, it is possible to deactivate or
activate plugins via the core if not needed to save unnecessary computation
power.

Another task of the Base-Framework is to pass on the results of the analysis
plugins to the user interface respectively to inform the user interface of their
availability. By decoupling the visualization from the Base-Framework we
could achieve a much higher versatility of all parts while still providing the
same functionality. This again shows the modular architecture of the overall
system as well as the interchangeability of the components.

Summarizing, we see that the Base-Framework essentially plays a vital role
while still leaving all important work to the according modules. Never-
theless, the core has some further details, which will be dealt with in the
following.

4.1.1 Structure

Remember that the developed design works as a standalone web-application
and builds upon the Play-Framework, a Java based toolset to quickly

26

4 Core Architecture

build large scale web-based software. Generally speaking, a typical Play-
Framework project structure looks as follows:

app/

controllers/

models/

views/

conf/

application.conf

...

build.sbt

Although the above mentioned structure represents only a portion of all
project files, it simplifies the view of the project and will therefore be
explained in the following:

• Controllers: In the Play-Framework controllers serve as the logic layer.
For a good structure each controller implements or combines methods
within the same context. It is therefore easy to maintain the code or
find certain functionality.

• Models: In general, each model in a Play-Framework application rep-
resents an entry in an object-relational-database (ORM). As mentioned
in Section 3.2, the Play-Framework comes with built-in database sup-
port. Still, we decided to rely on Elasticsearch to store and retrieve data.
Thus, models in the proposed design do not implement the common
functionality as one might be used to (see also 4.3).

• Views: To follow the Model-View-Controller pattern, each view is
indepedent from the data-logic. As such, a screen represents a single
landing page to display. This way, the user-interface can easily be
changed without modifying the underlying data structure.

27

4 Core Architecture

4.1.2 Controllers

Controllers play a big part in any Play-Framework application, as they
build the base logic of the underlying software. As a consequence, three
controllers, Application, FileController, PluginController have been
developed. Generally speaking, each controller is intended to combine data
logic which belongs together in one single place.

Application
The Application-Controller handles the routing of the visible user-interface
URLs, meaning it renders all parts of the application which are visible to the
user. This includes the depiction of the uploaded network dumps or their
parse results as well as error pages like ”not found” or the like. In general,
the Application-Controller does not include much logic but is vital for the
application’s functionality.

File Controller
The FileController’s sole purpose is to handle requests related with files.
This includes handling and parsing network-dumps or retrieving them
from Elasticsearch. However, the FileController itself does not provide
any functionality to analyze the uploaded dumps.

Plugin Controller
The PluginController is a very lightweight controller and is utilized to han-
dle plugin registration and common tasks used within the context of plugins.

4.1.3 Elasticsearch

Elasticsearch plays a vital role in the developed application. Not only is it
used to store and retrieve the uploaded Network-Dumps from the database,
but it also serves as a pre-filter engine to arrange them. Especially in ap-
plications with large database-objects, elastic-search can contribute to a

28

4 Core Architecture

huge performance boost, particularly when performing real time search
operations [Seb14].

4.1.4 Retrieval

An important factor during the development process was the interoperability
and openness between third party applications. As a consequence, it is
possible to retrieve or search through the uploaded network-dumps via the
Elasticsearch query API.

4.2 Plugins

Plugins play a huge role in the developed framework and build the core of
the analysis process. We have shown that the controllers in the proposed
design do not figure prominently. Instead, all the logic in analyzing the up-
loaded dumps is implemented within the plugins itself. Thus, it is possible
to extend the framework to a virtually infinite grade. As this thesis focuses
on private information, or more precisely leakage and theft of these data,
several plugins dealing with this topic have been implemented. A detailed
description of all developed plugins will follow in Chapter 5. Great value
has been set upon simplicity, maintainability and intercommunication. In
the following, the process of creating plugins will be explained in detail.

4.2.1 Base Plugin

To simplify the development process, a common basis for all plugins had
to be established. For this reason, a universal Plugin base has been created.
This base serves as a template, and should optimize the effort needed to
create a new plugin.

29

4 Core Architecture

4.2.2 Plugin Registration

Creating and registering a new plugin so that it is available throughout the
whole framework is as easy as subclassing the above mentioned ”Plugin”
class. A special ”PluginManager" automatically scans for each subclass of
Plugin and registers it so that it is available throughout the whole system.
This means that manually adding a plugin, a process which might easily be
forgotten during the development process, is not necessary.

To conform to the underlying structure, each plugin needs to conform to a
defined protocol.

In this context, the developed framework provides the possibility to pre-filter
the network dumps before retrieving them from Elasticsearch (see also 4.1.3).
Even though this process is not essential for the analysis process, it can, in
some circumstances, improve the overall performance of the application.
For example: Imagine the user trying to retrieve a list of all dumps with a
certain keyword. Even with automatic analysis this process can be a very
time consuming task, especially if the database has grown to a certain extent.
Using pre-filtering we can benefit from the performance of Elastisearch and
retrieve only those Network-Dumps which matter without the need of
analyzing the whole dump itself.

Furthermore, each plugin is responsible for the visual processing of its
analysis results. For this reason, in each analysis step, a list of Network-
Dumps is passed in order to search through. The plugin then decides how
the data should be visualized by returning the appropriate HTML code.

A protocol was necessary to enable communication between plugins (see
4.2.2). However, due to the dynamic nature of the framework, there is hardly
any sufficient way to find a common denominator between all developed
plugins so far and those which might be introduced in the future. For
this reason, each external plugin, which depends on the results of another
plugins, needs to know how to interpret the results.

30

4 Core Architecture

Intercommunication

When designing a spacious application like the proposed one, special care
has to be taken in order to avoid multiple calculation of the same results.
If this fact would be ignored, it would not only influence the application’s
performance but would also result in multiple implementations of the same
code. Obviously the so developed code would hardly be maintainable. For
example, a plugin which detects private data within a dump might be
interested in the connection type. This means, detecting if this data is sent
over a secure connection using HTTPS or whether this information might
be seen by anyone in the same network. Thus, this plugin would have to
implement an algorithm to detect HTTPS traffic as well as logic to detect
private data in the dump. Likewise, another plugin could be keen on the
percentage of secure versus insecure traffic. It would therefore also have to
implement the same logic as before.

Exactly for this reason, the proposed framework provides means to share
detection results with all plugins interested in this information.

4.2.3 Result Caching

When performing large bulk operations and analysis procedures, it might
often be the case that the result of a calculation or an analysis report might
be required multiple times; especially due to the fact that plugins can
exchange information between themselves. Particularly CPU- and time-
intensive calculations could therefore prolong the overall runtime and have
great impact on the performance.

As will be described in Section 4.4.2, the proposed design features an
analyze and a compare mode, which allows to further inspect multiple
network-dumps at the same time. The benefit of this mechanism, however,
would get lost if for each Network-Dump to be analyzed the report would
have to be recalculated.

Once uploaded, network-dumps won’t change and the analysis report will
most certainly be the same for each dump. For this reason, a ResultHandler

has been implemented in order to temporarily or if necessary permanently

31

4 Core Architecture

store calculated results. Tests have shown that by using this technique a
huge performance-boost can be achieved.

4.3 Network-Dump

As shown above, keeping settling-in-periods as short as possible by relying
on and providing interoperability to existing tools, the proposed work does
not provide network capture capabilities on its own.

In principle, a network dump may therefore be created by any arbitrary
program and imported into the provided solution. However, for this to
work a uniform format to be used internally has to be defined first. This
guarantees a coherent and especially continuous analysis process, without
the need of modifying existing plugins.

Because this work heavily concentrates on smartphone traffic, the developed
application only supports network dumps created from Burp-Suite as of this
writing. One of the main reasons for this decision is the already implemented
support for capturing and deciphering encrypted traffic. Due to the nature
of the internal format the existing work can, however, easily be extended to
support multiple other file formats.

Altogether, as may be guessed from the context, a Network-Dump represents
a collection of server request and response pairs, recorded for a single
(smartphone) application to be analyzed. In the developed application the
internal format is defined as follows:

• Program: The program parameter specifies which external program
is used to capture the traffic. This can come in handy when different
programs are used to analyze one and the same application.

• Application Version: Keeping track of the version number is a fairly
important aspect when comparing dumps captured on a different
date. This way, it is possible to see traffic changes, if, for example, an
application has been updated.

32

4 Core Architecture

• Platform: Equally important as the application version is the platform
on which a network dump was captured. As a result, it is possible to
see differences in the network traffic between platforms.

• App Name: The application name parameter is used to differentiate the
uploaded dumps and to identify them.

• Exchanges: Exchanges build the heart of a network-dump and contain
a series of server-requests as well as their appropriate responses. Each
request and response pair itself contains an array of header-properties
as well as a body, if applicable.

4.4 User-Interface

Being the last component in the analysis procedure, the user-interface is
responsible for displaying the analysis results to the user. This implies, that
in general each plugin is only designed to calculate the desired results and
may not determine how to display or interpret them.

In fact, there may be an arbitrary number of presentation methods, or in
other words templates for one and the same result. For example, when
detecting GPS-coordinates within a network dump, it is possible to list them
in a table, but at the same display each coordinate on a world map, creating
a more versatile method to explore data.

This is achieved by defining a unique identifier for both the plugins and the
associated templates. As a result, the Base-Framework can then automati-
cally deduce the dependency, and choose the appropriate display methods
for each plugin.

Hence, these mechanisms allow adding or removing new templates for an
already existing plugin without making changes to the extension itself.

However, additional mechanisms are necessary to display these templates
in a meaningful way. For this reason, the user-interface was split into two
components: on the one hand, the mentioned templates and on the other so
called screens, providing functionality needed for the analysis process itself.

33

4 Core Architecture

At the same time, they serve as a container for the templates. As a result,
by decoupling templates from the remaining user interface essentially no
limits are defined for visualizing the analysis results.

4.4.1 Overview screen

The overview screen (see Figure 4.2) gives an outlook on all available appli-
cations and their associated network traffic. At the same time it represents
the landing page of the developed application. The overview screen offers
the ability to upload new network-dumps through a dialog which also
allows adding additional fields like application-name, version or category as
well as the operating system. These parameters later help to further narrow
down the captured traffic. Using the features of elastic search it is also
possible to search in real time for data within all uploaded network traffic
on the overview screen, providing an easy way to narrow down applications
to be analyzed. Naturally, it also possible to delete uploaded network traffic
on this screen. By default the latest network dump will be listed on top.

Figure 4.2: Overview screen, showing all available network-dumps

34

4 Core Architecture

4.4.2 Analysis screen

The analysis screen (see Figure 4.3) is responsible for displaying the analysis
result of an application. On that account, each (enabled) plugin is automati-
cally loaded and the result is visualized using the detected templates. For
easier navigation the left sidebar gives an overview of the current section
and helps identify the desired output.

Moreover, one key aspect of the developed application is the possibility of
analyzing multiple applications in one attempt. Using the analyze-screen
and special designed templates it is also possible to aggregate the data of
multiple network-dumps into one single report. For instance, the architec-
ture allows to show statistics about the percentage of detected credit cards
per dump or simply show all locations detected in one single view.

Figure 4.3: Analysis screen, showing a detailed analysis result for one or more network-
dump(s)

35

4 Core Architecture

4.4.3 Comparison screen

In some cases, it might be necessary to see the differences between two
network-dumps like for instance a comparison between an iOS and an
Android application by the same vendor.

For this reason, the application offers a comparison mode (see Figure 4.4)
which displays all the distinctions between two network dumps side by
side. In contrast to the analysis screen which serves the purpose of giving
a report over multiple network dumps at the same time, the comparison
screen allows to easily scroll through the different applications, and find
similarities or differences, without the need of changing context.

Additionally, the comparison screen can be used to find divergences in
network traffic after application updates have been released. This allows to
easily detect features which have been added in a later version of a software.

Figure 4.4: Comparison screen, showing differences between network-dumps

36

5 Privacy Leakage Plugins

When dealing with private-information, each user has a different perception
of what kind of data is considered private and which one is not [PA02]. As
a result, it is not a straightforward task to define ”private-data leakage”.
Additionally, [Pri98] argues that even though some information ”ought to
be private”, this does not necessarily imply that it must not be shared. Or
in other words: even though for example a password is considered private
information, it is still necessary to transmit it over the Internet, in order
to authenticate a user. However, this information must not be revealed to
another party.

This brings up another key point: when processing private-data, disclosure
of this information is a delicate topic. This ”issue of control” [Pri98] implies
that as soon as private data is passed from one party to another, who
did not have access to this information a priori, it is expected that this
information is being dealt with in appropriate ways. The bottom line is
that each party involved should ensure that this data is kept safe and
all relevant measurements (e.g. encryption) have been taken to prevent
undesired exposure and that data is dealt with in respect to the owners
intentions.

Drawing parallels to private-data detection, we can clearly see that defining
private-data is a topic on its own. For reasons of simplicity we thus define
private-data as information which fully or partly could help identify or
impersonate an individual and thus draw conclusions on the user’s behavior
or worse, their whereabouts or its complete natural entity.

Likewise we can already see the limitations of automated network-analysis.
While it is possible to correctly detect and identify most outgoing traffic, we
still cannot solve the ”issue of control”.

37

5 Privacy Leakage Plugins

Nevertheless, automated network-traffic analysis plays a vital role in in-
specting applications. As mentioned above, one of the issues when dealing
with private data is that the user needs to give his consent to when data is
being transmitted. Most of the time, however, it is not clear which kind of
information is being sent.

In the context of automated network-traffic analysis, we therefore define
private data as data which can help identify an individual. This can be a
name, location, password or similar. As a result, the developed plugins for
the architecture concentrate on the most widely transmitted information,
which could help identify or cause great financial damage to a person.
Paired with the information gained from the current malware situation,
we have therefore defined the following plugins, being discussed in the
following:

• Name Plugin
• Email Plugin
• Username & Password Plugin
• Credit Card Plugin
• Geo Data/Position Plugin
• Phone Number Plugin
• Session/Token Plugin
• Device Information Plugin

5.1 Prerequisites

When trying to find private information within network traffic certain
conditions have to be met in the beginning, in order to be able to detect
these data.

First of all, it is necessary to consider how this information can be retrieved
in an automated way. In general, there exist several solutions for this.
However, keeping in mind that essentially all submitted data will eventually
have to be processed on a server, the captured traffic almost always follows
a certain pattern or a protocol, which can be automatically interpreted. Most

38

5 Privacy Leakage Plugins

of the time, applications therefore rely on common definitions like JSON1,
Query strings2 or the like.

As a result, we can use this circumstance to increase the accuracy and the
detection rate of the plugins by using regular expressions 3 in conjunction
with certain optimizations, discussed in the following.

5.1.1 Private Data Plugin

We have previously defined a base class which serves as a parent to all
plugins. When talking about private data this class, however, is too generic
and does not provide all functionality which is important for private data de-
tection. For this reason, a more suitable class (PrivateDataPlugin) has been
defined in order to handle tasks, which could be necessary for every plugin
which tries to detect private information. Additionally, this class serves as a
common interface to define standards for all remaining plugins.

However, it should be noted at this point, that the Private Data Plugin does
not provide analysis functionality on its own. It should rather serve as a
tool to reduce redundant or frequently repeating tasks and to keep the
implementation effort as low as possible.

5.1.2 Pre-Processing

To keep the false positive rate as low as possible a pre-processing filter
is applied on the captured data. This filter is responsible for removing
irrelevant parts of the network dump. This includes, but is not limited to
files like stylesheets, javascript or binary-data.

Additionally, the filter prepares the text for better analysis. This involves
removing quotes around JSON-content or URL-decoding resources.

1JavaScript Object Notation
2Parameters which are part of the URL. Usually separated by ”&”
3Describing sequence of characters using a pattern

39

5 Privacy Leakage Plugins

Another big problem during development was noticed when analyzing
Base64 encoded strings. All too often, they were part of conventional traffic,
which resulted in a mixture of Base64 encoded data and alphanumeric
content, meaning human-readable text. Unfortunately, there exists no con-
venient way to detect Base64 encoded strings in a sequence of characters.
Rather, with the help of a regular expressions, it is possible to estimate if a
string matches the definition. However, this does not necessarily mean that
the resulting text really was Base64 encoded. For this reason, the pre-filter
applies two functions: first, it detects all possible Base64 parts with a mini-
mal length of 10 characters. This improves the false positive rate. Secondly,
the percentage of binary characters is calculated. If the resulting value ex-
ceeds the threshold (5%), the detected token probably was not converted
using Base64 encoding.

5.1.3 Filtering

Despite the effort, regular expressions are in most cases prone to errors and
can often result in too many or too few matches. Additional mechanisms will
therefore have to be applied. Generally speaking, there exist two different
approaches when deciding to limit the amount of false positives: white- and
blacklisting. Still, opinions are sharply divided as soon as the key question
is asked: which approach is more convenient? [Tec11]

Usually, a rough differentiation can be made when answering this question.
Does an application allow almost everything and only limits a few, or are
there only a few cases which are allowed? If the first statement applies, then
blacklisting is probably the more convenient approach, if however the latter
is more accurate then a whitelisting approach probably is a much better
option.

40

5 Privacy Leakage Plugins

5.2 Name Plugin

The Oxford English Dictionary4 defines the term ”name” as ”a word or set
of words by which a person or thing is known, addressed, or referred to”
[Oxf]. Although, this statement defines the term to a pretty good extent
from a technical point of view, this definition, however, is too generic.

When analyzing applications, we have to find a more restrictive definition
in order to find a possible regular expression.

5.2.1 Detection

Generally speaking, finding a name in a network-dump is not an easy task
to undertake. Filtering by above mentioned definition causes a high number
of false positive matches. Likewise, one could use a dictionary with pre-
defined names to match. This, however, would cause a huge increase in the
plugin’s-size, given the number of different names. Additionally, matching
nicknames or typos in names would certainly fail with this approach.

However, relying on the describing nature of the network traffic we can
narrow down this process to a certain extent. We can therefore define the
following regular expression to mach all names within a given range of
characters:

((first|last)_?|(?<!_|[a-z]))name[=:]+[;,\n]

This expression matches all parts of strings, which contain the term ”name”
and optionally start with ”first” or ”last”. To match all characters (including
spaces and umlauts) the process is not stopped until one of the defined
delimiters is found.

4http://www.oxforddictionaries.com

41

http://www.oxforddictionaries.com

5 Privacy Leakage Plugins

5.2.2 Challenges

Without further context, the above mentioned regular expression seems too
complex. Defining a more simplified regular expression might deliver the
same results:

name[=:][a-z]+

The observations during testing however showed that above approach is
too general and yields too many false positives. Additionally, it does not
match all names. This can easily be explained when looking at the data
transferred over the network. Logically, network requests and responses
do not only contain well formed protocols like JSON, but can also include
HTML content and its corresponding style information, HTTP-Headers, as
well as Cyrillic characters or umlauts. Thus, a too simple regular expression
would match terms like <meta name="description" content="text"> or
content name=sample content but would not match names like ”Müller”
or similar.

Still, even with a more sophisticated solution, we need to apply filtering in
order to reduce the false positive rate. When we speak of name detection,
a whitelisting approach arguably is a fairly good approach to limit the
amount of false positives. Thus, only defined sequences are allowed and
matched. The drawback is obvious. If the whitelist is too small, some results
might not be found.

5.3 Email Plugin

Nowadays, it is hard to think of a modern web without emails. They are
virtually everywhere. Be it to send important business information, access
data, or simply for fun. Still, revealing one’s email address can bring certain
disadvantages. Just think about it: on a daily basis more than 300.000 spam
emails are sent [Cis15]. This results in roughly 200 billion(!) unwanted mails
per year.

42

5 Privacy Leakage Plugins

When transmitting an email address trough the world wide web, the user
should therefore be absolutely sure that this process really is essential.

5.3.1 Detection

Compared to name detection, matching emails in a network-dump can be
achieved fairly easy. Based on the definition of an email-address [P R08]
it consists of a local-part and a global part divided by the @ symbol. The
global as well as the local-part follow a strict convention. Matching (almost)
all e-mail addresses can thus be achieved by applying a simple regex:

\b[A-Z0-9._%+-]+[@][A-Z0-9.-]+\.[A-Z]{2,4}\b

Above regular expression has been taken from Goyvaerts [Goy15].

5.3.2 Challenges

Despite the fact that there exists a clear defined structure for a valid email-
address some problems arose during the development process.

In general, email-addresses will either be submitted in a POST request body
or in a GET request url string. In the second case however, the @ symbol has
to be url-encoded in order to become a valid identifier. Thus, this process has
to be undone once this is analyzed. To avoid unnecessary calculations of this
process each time a url-encoded string is analyzed, this feature has already
been implemented in the pre-filtering mechanism mentioned before.

Another problem was that the results during testing showed that a high
percentage of applications contained image names that were successfully
matched as valid email addresses. This can be attributed to the intro-
duced convention of naming those files for Retina-Displays5 with the suffix
@2x.png (a convention indicating twice the image size). Thus, these matches
will be manually filtered in the plugin itself.

5High-Resolution Displays usually found in Apple devices

43

5 Privacy Leakage Plugins

5.4 Username & Password Plugin

Especially when talking about sensitive private data like usernames and
passwords, special care has to be taken to ensure that non of this information
can be read when transmitted via an insecure network.

A User-Credentials plugin would be a perfect example for the need of
(plugin-) intercommunication mentioned in Section 4.2.2. From a user per-
spective, it might for instance not only be important to see which credentials
are sent, but also whether they are sent in a secure way.

5.4.1 Detection: Usernames

We can define a username as a unique identifier for a person. This can for
instance be an existing email-address, a chosen nickname or a randomly
generated sequence of numbers or letters. The key aspect here to note is,
that a username has to be unique within a system, or, in other words: there
must not exist a second username in a system, which equals a given one.

This definition is important to find a regular expression which matches user-
names. However, similar to the name detection plugin, randomly matching
usernames per above mentioned definition probably would not lead to the
desired results as the false positive rate would be too high. We therefore rely
again on the describing parameters for the server requests and responses.
As a result detecting usernames, can be achieved with the following regular
expression:

(user(_)?|u|g)name[=:][a-z0-9_-[.]@]

5.4.2 Detection: Passwords

Although, in the last years several alternative methods have been developed
as user authentication (e.g. iris-scan, fingerprint, vein detection, cloud-
based) [MJ00] a password can be specified as a secret token to authorize an

44

5 Privacy Leakage Plugins

identity. In the traditional sense, however, a password can be defined as a
combination of letters, numbers or special characters.

Again, matching a password by above definition might be too generic and
results in too many false matches. Thus, in the majority cases we will not be
able to avoid matching passwords by a predefined delimiter. Additionally,
most modern architectures require a minimum password length. Hence, the
resulting regular expression looks as follows:

(^|[;\n,.&])((pw)|(passw(or)?d))[=:][^,;&]{4,}

5.4.3 Challenges

Similar to the regular expression for name detection above mentioned terms
might look like they go far beyond the objective of matching usernames or
passwords. The results during testing however showed, that matching user
credentials (be it usernames or passwords) cannot be achieved completely
in a generic way. On the contrary: finding passwords or usernames in a
network-dump with the aid of a regular expression requires a considerable
amount of experience. At the same time, the objective is to maximize the
detection rate but keep the false positive rate as low as possible.

Additionally, the fact that there exists hardly any common definition for
password- or username- delimiters has complicated the work. For in-
stance, found username separators were: username, user name, uname,

gname. Similarly, password indicators included, but were not limited to:
pw, password, pass, passwd. Whats more, finding the last character of a
password, can be difficult: In a form-encoded body, the ”&” symbol usually
serves as a separator between different components. Simultaneously, a pass-
word can contain this character and still be valid. Thus, a mechanism has to
be found to distinguish delimiters from valid password characters.

45

5 Privacy Leakage Plugins

5.5 Credit Card Plugin

Especially with the adaption to technical progress and the increasing ca-
pabilities of smartphones, mobile-payment, that is money-transactions via
smartphones [Hen02], has by now become standard practice. In fact, we
nowadays use our credit-cards more than ever [Sta14a]. In the meantime,
it’s particularly the easy access to those cards that makes debit-cards not
only our daily companion, but also a part of our ever day life.

For this very reason, it is all the more important that this private information
is dealt with in a responsible way. Analyzing network-dumps for credit-card
information can therefore be very useful as it might give possible insights
into whether the entered information is sent over the network or not. For
instance: when using a password-manager, an application which goal it is
to securely store entered information, the network-dump should not show
signs of credit-card information being sent. In contrast, applications which
require payment, e.g. online-shops or software-stores, probably will show
signs of the credit-card information in their associated network traffic, in
order to function properly.

5.5.1 Detection

Due to the special structure of credit cards, matching this information in a
network-dump can be achieved comparatively simple, because commonly
speaking, a credit card consists of a 12- to 16- digit number (in practice the
trend is more towards the latter one), a checksum as well as a corresponding
PIN-code. The first four digits represent the credit-card company associated
with the card, the fifth digit the type (e.g. gold, platinum) and the sixth
digit can be an indicator whether the card is partner or a business card. The
remaining ones give information about the associated account.

Because of the clear structure, and the small amount of credit-card com-
panies, matching credit-cards can thus be performed with the following
regular expression [Goy13]:

46

5 Privacy Leakage Plugins

\b(?:\d[-]*?){12,16}\b

The attentive reader might have already noticed that the above mentioned
regular expression matches all numbers with 12 to 16 digits. Additionally,
these figures may be separated by an arbitrary number of dashes or spaces.
This, however, does not necessarily mean that matched numbers actually
represent valid credit-cards identifiers. The returned data might only repre-
sent a sequence of randomly generated numbers. For this reason, the found
(possible) credit-card information still has to be checked for its validity.

This can be achieved with the Luhn, also known as the Mod 10 algorithm
[LY11]. As a result, most cards contain a validation digit at the end, in order
for the algorithm to function properly. By applying the Luhn validation
three steps have to be performed.

1. In order to perform the validation process, first of all, all alternate dig-
its, beginning from the second from right, have to be multiplied by two.

2. In the next step, the sum of the now generated figures is calculated
and added to the numbers not yet used.

3. In the last step, the calculated sum is divided by ten. If the remainder
is zero (thus modulo operation) the card is valid.

When detecting credit-cards, it might be of interest to not only detect the
card number but also the card type. As mentioned before the first four
digits of a credit-card number indicate its type. It is thus possible to detect
the card types with the following regular expressions taken from Bauman
[Bau14]

Visa - ^4[0-9]{12}(?:[0-9]{3})?$

Master Card - ^5[1-5][0-9]{14}$

American Express - ^3[47][0-9]{13}$

Diners Club - ^3(?:0[0-5]|[68][0-9])[0-9]{11}$

Discover - ^6(?:011|5[0-9]{2})[0-9]{12}$

JCB - ^(?:2131|1800|35\\d{3})\\d{11}$

47

5 Privacy Leakage Plugins

5.5.2 Challenges

Even though detecting credit-card numbers seems to be a very generic
approach, there still exist some pitfalls one might not see right away.

For instance: there is no common definition on how to enter credit card
information. As a result, numbers may be split in groups of four (e.g. 1234

5678 ...) or may contain different separators like dashes or spaces. Thus,
matching these separators should be taken into consideration.

Additionally, as credit card numbers only consist of digits, a primitive
approach was to remove all non-numerical characters from the network-
dump. As a result, it was possible to check the resulting figure whether it
contained any credit card information. However, we have found that the
false positive rate was too high. By removing all non-numerical characters,
the resulting network-dump consisted of a combination of all containing
numbers. Thus digits from dates, sessions or IP-addresses were combined.

Last but not least, it should not be forgotten that credit-card numbers do not
have a defined exact length. As a consequence, it is not possible to build, for
example, figures with a character length of 16 and check for their validity.

5.6 Geo Data/Position Plugin

With the introduction of GPS in smartphones, a lot of useful applications
have been developed making use of this feature (e.g. navigation, tracking,
etc.). Yet, at the same time malicious software takes advantage of this
technology by using it to spy on users or similar.

However, leakage of a users location may not always be the fault of vicious
software as recent reports show. In 2011, researchers proved that a faulty
implementation of the Apple iOS operating system allowed attackers to not
only find out the current location of a user but also track his movements
[Der11]. By connecting the phone to a computer it was possible to read
out a location file which was stored in the backup and contained all recent
movements. As a result, a map showing all recent places could be created.

48

5 Privacy Leakage Plugins

This again shows how network analysis can detect undesired leakage of a
users location, because for most applications like navigation this location
does not necessarily have to leave the device. Signs of GPS coordinates in
the network traffic care therefore give a hint, that the location may be used
for other purposes.

5.6.1 Detection

Although there exist a lot of different geographic information systems like
UTM, UPS or similar, in the mobile sector the usage of longitude (360

◦: 180
◦E

↔ 180
◦W) and latitude (180

◦: 90
◦N↔ 90

◦S) to define locations on a map is
widely spread by now [UNL09]. Usually, one degree (◦) can be converted
into 60 minutes (’), and one minute itself into 60 seconds (”). As a result the
coordinates of Graz would be represented as 47

◦
4’0”N/15

◦
27’0”E. For easier

transmission over the network, these coordinates are sometimes displayed
as decimal numbers by dividing minutes by 60 and dividing the seconds
by 3600. Last but not least, these calculated figures are added up. Before
mentioned location would therefore be converted to: 47.06666666666667,
15.45. Attention should be paid to the fact that degrees range from north to
south or east to west. For this reason, the resulting floating point number
ranges from -90.0 to +90.0 (or -180.0 to +180.0 for longitude).

With above definition matching longitude and latitude within a network-
dump can thus be achieved with one of the following regular expressions:

latitude[=:]()*(-)?[0-9]+[.][0-9]+

longitude[=:]()*(-)?[0-9]+[.][0-9]+

()*(-)?[0-9]+[.][0-9]+[,]()*(-)?[0-9]+[.][0-9]+

5.6.2 Challenges

Even though matching latitude and longitude within a network-dump
works great with above regular expressions, the matching process is very

49

5 Privacy Leakage Plugins

limited. For example, coordinates in any other geographic system like UTM
cannot be found with above definition.

Additionally, above regular expressions only match floating point numbers.
Thus, latitude and longitude coordinates which are transmitted in any other
format (e.g. degrees) will be skipped.

Whats more, matching latitude and longitude only works under the as-
sumption that the sample for analysis uses a clear delimiter to describe
the values. This assumes that either term (latitude or longitude) is used to
describe the variables. Sometimes, however, coordinates are submitted as
one parameter, divided by a comma. This simplifies the matching process,
because it restricts the characters to be matched.

Last but not least, latitude and longitude should always be considered as a
pair. Thus the location plugin matches latitude and longitude, which appear
consecutively within a dump, as such. If the coordinates were, for some
reason, out of order, the matching process would not work. Results during
testing have showed, that not all applications, abide bye the standard, that
latitude coordinates rank first. The values for latitude and longitude are, in
that case, interchanged in the analysis report.

5.7 Phone Number Plugin

Similar to geo-locations, phone-numbers can have a big impact on the
privacy of a user. Not only can they give information about your current
whereabout (e.g. country-code, area-code or carrier) but disclosure of a
phone number can also lead to an interference with the private life. For
instance: it is possible to intercept phone-calls or to find out the users
location by triangulation just by knowing his phone-number.

Who now thinks that this is far-fetched could be wrong. We are actually
not so very far off this situation considering what was revealed by Edward
Snowden [BBC14]. Although, this probably could be considered an extreme
case.

50

5 Privacy Leakage Plugins

In contrast to this, phone-numbers are nowadays increasingly used either
to verify the authenticity of a person or as an additional measurement
to increase account security, like 2-Factor-Authentication [Dis13]. For this
reason, it is important to take measurements to properly protect this infor-
mation and to only submit phone-numbers via the network if absolutely
necessary.

Usage of a phone-number detection plugin can help identify which data
really is transmitted over the network and can also give some indication of
its transmission security.

5.7.1 Detection

Even though phone numbers primarily consist of digits, they heavily vary
from country to country. This is based on the fact that phone numbers
are prefixed with an area-code, a carrier-code or an international exit code
(usually ”00” for European countries).

Moreover, with progress in technology and networks, additional features
have been implemented. It is therefore now possible to dial international
numbers without the need of a specific international exit code. This can be
done by entering a plus sign in front of the number.

Additionally, modern smartphones provide the possibility to format phone-
numbers for better readability. This includes setting parentheses around
area-codes or separating certain parts with dashes. Even spaces might
appear in such telephone numbers.

Keeping this in mind it is necessary to rely on a proper annotation in the
captured network-dump to detect phone-number identifiers:

((phone_number)|(phone)|(telefon))[=:]

([+ 0-9]*(\([0-9]+\))?[0-9- /]+){3,}

51

5 Privacy Leakage Plugins

5.7.2 Challenges

Phone-number detection can be achieved fairly straight-forward if before
mentioned definition is taken into account. Still, there exist some pitfalls
one might stumble over.

First of all, it is necessary to consider the fact that phone-numbers are not
formatted in a unique way. Thus, there most certainly exist country specific
peculiarities. For instance a phone-number in the US could be formatted as
following: (123) 456-7891. The same number in Austria however could be
formatted as follows: 123 / 45 67 891.

What’s more, there even exist country-wide differences. Numbers which
reside in the same country do not need an international exit code. Thus,
dialing +43 123 45 67 891 and 0123 45 67 891 from within Austria result in
the same number.

Last but not least, it should be considered that phone-numbers require a
minimum length. In above example, a phone number has to have a minimum
length of three characters. This accounts for the fact that most emergency
numbers consist of three digits. The tests showed that in rare cases, the
number zero was chosen for not available or omitted phone numbers. By
defining a minimum length these numbers could be filtered.

5.8 Session/Token Plugin

A session or a token is a unique identifier to keep track of a server-user-
interaction. They are commonly used in stateless protocols like HTTP to
uniquely identify a person and keep track of their actions [Bar11]. Usually,
after successful authentication, a randomly generated character sequence
is generated on the server and submitted to the client. On each following
request this token is then sent in order to identify the client. Sessions are a
necessity, because other implementations, like IP-addresses are not unique
on a user basis.

Transmitting these identifiers over the network is obviously essential in
order for the communication to succeed. However, if the implementation is

52

5 Privacy Leakage Plugins

done wrong, sending a session can be of serious consequences. If the token
for some reason can be captured this in return entails that the attacker can
hijack a session and thus impersonate the affected individual.

A user-session plugin can help identify whether the data which is submitted,
is protected appropriately.

5.8.1 Detection

In general, there are several different ways of implementing session-identifiers:

• HTTP Header Cookie: Sessions can be stored in cookies. This way,
they will be automatically submitted by the browser on each request.
When defined as session, the cookie will be deleted after the browser
is closed.

• Part of URL: In a GET-Request, the session identifier can also be trans-
mitted via the URI part. This can either be achieved via an additional
parameter or as part of the URL itself.

• Body: Most certainly it is possible to transmit session information in
a HTTP-Body. The format may then be almost arbitrary (e.g. JSON,
Form Encoded, ...).

With above conventions in mind, matching sessions is only possible if a clear
parameter descriptor is available. Technically, it would be possible to search
for transmitted UUIDs, this however results in too many false matches. We
can construct the following regular expression:

(session|token|sid)[=:][a-z0-9-]+

53

5 Privacy Leakage Plugins

5.8.2 Challenges

Detecting sessions can be a certain challenge because there is no unique
defined standard on how a session should be submitted. Even worse, if the
session is part of the URL, automatic detection of sessions is hardly possible,
without at the same time drastically increasing the false positive rate.

As a result, it is necessary to rely on a proper annotation of the submitted
parameters.

5.9 Device Information Plugin

Sometimes, it is necessary for an application to retrieve device information
in order to optimize the user experience. For this reason, on most mobile
operating systems there exist several mechanisms in order to receive data
about the used phone. On one hand, the operating system provides function-
ality to read out minor records like screen size or the device manufacturer,
on the other hand there exist more invasive techniques like getting the
device identifier or the device name. Usually the latter is chosen by the user
or at least automatically generated by user input. Thus, in most cases it
includes parts of or the complete name of a person.

Although device information might not be seen as private information per
se, test data showed that in certain cases the revealed data can in fact allow
to draw inferences about the user. A device data detection plugin can thus
provide information about the personal records which are being sent.

5.9.1 Detection

To classify which data is seen as device data, it is, first of all important to
know which information generally exists. In fact, modern operating systems
allow the developers of applications to retrieve all kinds of data which
might be necessary to run or to debug an application. In most cases this
includes data about the device like screen size, crashes, the operating system
(including version) or the remaining memory. However, there is more. Some

54

5 Privacy Leakage Plugins

operating systems not only allow to get the device identifier (usually a
unique ID for a device) but also more specific parameters like device-color,
device-name or the device-locale. By combining all these items, is is possible
to get a pretty good profile of a person, under certain circumstances.

In fact, results have shown that in most cases this device information is
used in so called ”tracking” or ”advertisement” -frameworks. Typically, the
usage of those frameworks allows a developer to compile statistical data
(e.g. usage, devices, operating systems) as well as to gain money as most
advertisement frameworks pay to embed their ads.

Due to the fact there exist several different parameters, matching device
information cannot be achieved with one single regular expression, other-
wise the information about the parameter would get lost. However, we have
observed, that most of the time the submitted data contains an identifier like
”device”. Matching this information can thus be achieved with the following
expressions:

(device(_)?id)[=:][a-z0-9-]+

(device(_)?name)[=:][a-z0-9-]+

(battery[a-z_.]*)[=:][0-9.]+

5.9.2 Challenges

As mentioned before, matching device information can, in most cases, be
achieved fairly simple as most parameter descriptors contain the term
”device”. Additionally, most of the time, the device information is used in
tracking or advertisement frameworks. Thus, there exists almost always a
predefined structure which hardly changes.

However, some frameworks use a self-defined protocol with arbitrary pa-
rameter separators. This includes non-ASCII characters and binary data like
null terminators, tab stops or the like. As a result, this information was never
analyzed, because the Private Data Plugin filters binary content by default.

55

5 Privacy Leakage Plugins

For this reason, a threshold for the binary filter has been defined. Depending
on the underlying data set, this filter has to be changed accordingly in order
to analyze this information.

By optimizing the filter and replacing these binary characters with proper
delimiters (e.g. ”=”), a significant detection improvement could be achieved.
In addition, since the format of this tracking provider stays the same for all
applications which rely on this kind of framework, no additional modifica-
tions are necessary for other applications.

5.10 Sample Data

To illustrate the different ways of data representation, this section contains a
selected list of example data, found in the captured network traffic of various
types of applications. Although this represents only a small excerpt of all
available data it demonstrates the prevailing situation of a missing standard
for data representation in mobile applications. Additionally, it already gives
an outline of the varying parameters used to describe variables.

Json

{

"rt":"1",

"uid":"testiaik",

"profile":{

"fullName":"Testfirst",

"birthDate":"14.06.1990",

"uid":"testiaik",

"email":"iaik.analysis.ios@gmail.com",

"lang":"en"

},

"ts":"1434302468",

"pass":"testpassword",

"country_code":"AT",

"gmt_offset":120

}

56

5 Privacy Leakage Plugins

Form Url Encoded

_client=iosapp&_version=3.10.1&_xsrf=1

&app_device_id=7f049bc9ab91ac6437a2f76438d6575ff504ce95

&email=iaik.analysis.ios40gmail.com&first_name=Testfirst

&last_name=Testlast&password=testpassword

Base64

Y2xpZW50JTIyJTNBJTIyaVBob25lK09TJTIyJTJDJTIyY291bnRyeSUyMiUzQSUyM

kFUJTIyJTJDJTIyY3VzdG9tJTVGcHJvcGVydGllcyUyMiUzQSU3QisrJTdEJTJDJT

IyZGV2aWNlJTVGc2Vzc2lvbiU1RnBob25lJTVGY2FycmllciUyMiUzQSUyMjIwMTU

lMkUyNTMzJTIyJTJDJTIycGhvbmUlNUZtb2RlbCUyMiUzQSUyMmlQb2QrdG91Y2gl

MjIlMkMlMjJwbGF0Zm9ybSU1RnN0cmluZyUyMiUzQSUyMmlQaG9uZStPUyUyMiUyQ

yUyMnByb3BlcnRpZXMlMjIlM0ElN0IlMjJtYXglNUZpZCUyMiUzQTElMkMlMjJzcG

VjaWFsJTIyJTNBJTIyc2Vzc2lvbiU1RnN0YXJ0JTIyJTdEJTJDJTIyc2Vzc2lvbiU

1RmlkJTIyJTNBMTQzNTQ5NDg0MDAwMCUyQyUyMnRpbWVzdGFtcCUyMiUzQTE0MzU0

OTQ4NDAwMDAlMkMlMjJ1c2VyJTVGaWQlMjIlM0ElMjI5Y2FjMzZiZTZkNjhkNDNkO

WM3ZTJlNzRlY2U0ODAxOCUyMiUyQyUyMg==

Custom Format (Including Binary Characters)

Figure 5.1: Custom content format detected in the traffic of some applications

57

6 Evaluation

One of the main goals of the developed application was to create an analysis
tool to automatically inspect captured network traffic. As a result, achieving
a detection rate of 100 percent was indeed desirable but not first priority. In
fact, the application should provide possibilities to gain an overview of the
software under investigation without much effort. Therefore, having false
positives in the detection report can indeed be unpleasant, but should in
general not affect the analysis process in a substantial way.

However, we still need mechanisms to determine the usability of this ap-
proach and to verify the applications functionality and its process in prac-
tice.

For this reason, we use the system to analyze the private data leakage of
popular applications on two major mobile operating systems, in order to
detect the performance on real life applications. This gives us the possibility
to test the developed application in terms of usability, stability and accuracy.
However, due to the nature of network traffic analysis and the before
mentioned missing standards in transmission protocols, it is very difficult
to test this system in terms of detection rate. In the analysis phase we
therefore concentrate only on the found characteristics without validating if
the proposed system has found all private data being sent.

Afterwards an evaluation of the generated report will be conducted. This
evaluation should investigate whether the pursued approach is in fact prac-
tical or whether it is necessary to make changes to the detection mechanisms
or the overall approach of network analysis in order to achieve meaningful
results.

58

6 Evaluation

6.1 Goals

The evaluation of the proposed design comprises of investigating top appli-
cations on the Android and iOS mobile operating systems to test the system
with real data. At the same time however, using the data we can perform an
analysis of the impact of the different operating systems on the developed
applications. This can give a us a hint on their vulnerability to unintended
private data leakage as well as an overview of the prevailing situation.

One of the main characteristics of those operating systems is related with
their way of data access. In other words, mobile operating systems rely
on different permission systems to handle access to private information.
Specifically, the Android platform focuses on an ”all or nothing” approach.
This implies that on application installation, all necessary permissions (e.g.
access to private information, sensors or operating system functionality)
have to be granted by the user in advance. If not, the software cannot be
downloaded and thus not be executed. However, once an application is
successfully installed, there is no need to ask for permission to access any
previously approved sensor or functionality. This way, depending on the
implementation, the user may not have any idea whether data actually is
accessed and whether it is sent over the Internet.

In contrast to this, the iOS platform relies on a more ”access-centric” ap-
proach. In short, this means that on first access of any sensor (e.g. location,
microphone, camera, d) or private information (e.g. contacts, photos, ...) the
user has to give his consent to allow the processing of private information.
However it is also possible to deny this access. The application still has to
work properly afterwards.

With this information in mind, one goal of this evaluation is to see whether
the two different approaches have a divergent impact on the data which is
sent. Specifically, it is worthwhile to see if the user knows without inspecting
the network-traffic if access to sensors is happening, whether this data is
sent over to the Internet or not and if it is really vital to do so.

At the same time, this examination allows us to investigate if found dif-
ferences occur because of carelessness in the development process or on
purpose. In the first case we can assume that the permission system does

59

6 Evaluation

not affect the applications at all. In the second case the permission system
may indeed affect the transmitted data in some cases. We will therefore
examine identical applications from the same vendor to see if the behavior
differs. Particularly this includes divergences in data being sent, e.g. de-
vice information or user-owned resources, different implementations (e.g.
certificate pinning) or security leaks (e.g. missing encryption).

However, in order to achieve a meaningful evaluation, test data have to be
chosen accordingly. For this reason the top 50 free applications on each
platform have been downloaded and the network-traffic was captured, if
possible, using Burp-Suite. This decision was made because in general
the top applications entail a large user basis. As a result, usually a lot of
work has been put into the development of those applications, reducing the
probability of unintended leakage of private information. In the following,
the captured dumps were then analyzed using the proposed framework.

Still, it should be noted at this point that even though the top 50 free ap-
plications might differ on each platform it is still a valuable investigation
as we are only interested in the overall usage and transmission of private
data. Different applications due to diverging operating systems and thus
applied permission systems can indeed have great impact on the developed
applications and as a result their tendency towards sending private infor-
mation. However, to have equal prerequisites, usage of sensors or private
information on the iOS platform has always been granted, associated with
the knowledge that data or certain functionality was accessed.

6.2 Limitations and Assumptions

As previously mentioned, the developed toolset as well as all corresponding
plugins serve as a platform to automatically detect (private) information flow
within captured network-dumps. However, there exist certain limitations
for analyzing network traffic.

One of them is, that the transmitted data can be chosen arbitrarily by the
developer. As a result, there is hardly any solution for every application

60

6 Evaluation

to automatically predict and therefore analyze how the data is composed,
without manually inspecting it in the first place.

As a matter of fact, we can therefore not guarantee that every informa-
tion has been detected by the provided solution. Even though there is no
uniquely defined standard for transmitting content, we have observed that
most applications rely on a similar naming convention. For example most
applications which transmit the first name have used a similar parameter to
describe this value.

Additionally, for the analysis process we have always provided the same
values for required user information. Hence, if this data has not been
detected in the network dump, we have manually inspected the traffic in
order to either adapt the plugin to the changed structure or to verify that
the information has indeed not left the device.

By combining these two mechanisms we have observed an increase in the
detection rate of private information

Another limitation of the presented application is that the proposed design
is not suitable for obtaining unauthorized access to data, by for example
monitoring network-traffic from uninvolved individuals and using the
application to extract private-data. Rather, it should be utilized as a tool
to gain insight into technologies used and to reveal which kind of data is
being transmitted. In fact, it is the application’s goal to simplify the way
network analysis is performed and thus it should serve as an additional
and important source of information (e.g. for to detecting potential security
by data leakage of (smartphone-) applications). It should therefore under
no circumstances be misused to attack applications and their users.

Based on this fact, it is no difficulty to trick the detection framework in
order to fail to notice sent private data. In general, it is sufficient to define a
proprietary protocol, or by encoding the data to be sent in an unconventional
way, that the plugins’ matching algorithm will most certainly fail. Obviously,
it would be possible to adapt the plugins to these mechanisms, but as stated
above, this is not the intention of the application.

Below analysis results are thus based on the assumption that the applications
which have been analyzed rely on a common standard like JSON, form-

61

6 Evaluation

encoded parameters or the like. The collected data depends on a clear
structure and a well formed network traffic.

Last but not least, it should be noted that some applications rely on cer-
tificate pinning. That is, defining the server certificate identifier within the
application. As Burp-Suite relies on injecting its own HTTPS certificate, no
secure communication can be established in that case. As a result, (HTTPS)
network-traffic from these applications cannot be captured and thus not
be analyzed. If an application implemented certificate pinning it was re-
moved from the analysis process. However, the number was low enough to
disregard.

6.3 Setup

To receive comparable results, a consistent approach while capturing network-
traffic was necessary. Otherwise, the outcome of the analysis would have
been subject to constant fluctuations. To avoid this, the following procedures
have proven to be effective and have been adhered to:

• Device: Each device used in the analysis process was wiped and re-
stored to its factory settings. This made sure that there is no unwanted
interference in the network-traffic due to previously installed applica-
tions or adjustments.

• First Start: If possible, each application under investigation was newly
installed. This way, data which might have been sent only once were
sure to be captured. Additionally, this strategy avoids (accidentally)
skipping a possible registration or login process.

• Disturbance: As of this writing, there is no possibility in Burp-Suite
to filter for a specific application. As a result, each outgoing network
traffic is captured and saved. To avoid this, the following precautions
have to be taken:

– Turn off automatic application updates
– Turn off automatic system updates

62

6 Evaluation

– Disable email sync
– Close all running applications
– Disable all automatic system services

• Accounts: To avoid falsifying the network-dump, each time an appli-
cation offered the possibility to register a new account a fictitious user
was created. For this purpose, two email addresses were registered in
advance:

– iaik.analysis.ios@gmail.com

– iaik.analysis.android@gmail.com

For obvious reasons, the first was being used on the iOS platform, the
latter on the Android operating systems.

• Phone-Number: While most applications did not require a valid
phone-number, some applications (like Tinder or Handyparken) need
a valid identifier in order to use the application. For privacy reasons a
disposable SIM-Card was used in this process. If number validation
was not necessary usually a combination of 123 45 67 890 or 0664

12 34 567 has been used.

• Credit-Card: As revealing credit-card identifiers can cause great dam-
age, no valid credit-card numbers have been used during the analysis
process. Rather, a randomly generated, but still valid (according to the
verification process) figure was used, whenever credit-card informa-
tion was required.

• Credentials: Last but not least, whenever an account was created,
attention was given to stick to common convention. In general, the
username was either testuser or testuser-android with the pass-
word testpassword. This made the analysis process much easier as it
was possible to see whether this data was being sent and if associated
plugins correctly identified and classified the transmitted information.

63

6 Evaluation

6.4 Top 50 iOS Applications

As of this writing, the following applications were listed under the top
50 in the Austrian iTunes charts1. However, the ranking changes almost
daily, which makes it virtually impossible to generalize which applications
really are downloaded the most and whether this data-set is representative
enough. Still, test data have shown that the evaluation results do not deviate
considerably when interchanging the top 50 applications with the top
100. Thus, it can be assumed that below listed applications give a good
representation of the most commonly downloaded software.

When analyzing the categories (see Figure 6.1), we can see that they are
nearly equally distributed with a slight tendency towards games. Although
this only represents a snap-shot, previous studies have shown that on iOS,
the application categories are approximately equally frequent with a trend
toward games [Sta13].

However, this does not reflect buyer habits for paid application. In fact,
users on iOS tend to spend four times more money on applications, mostly
games, than Android users [Elm14]. This is aggregated, on the one hand by
the fact that users of Android originate mostly from countries with lower
income, on the other hand by the lack of credit cards or a dismissive attitude
towards mobile payment [Hix14].

1https://www.apple.com/at/itunes/charts/free-apps/

64

https://www.apple.com/at/itunes/charts/free-apps/

6 Evaluation

No. Application Category No. Application Category
1 WhatsApp Messenger Social Networks 26 Triple Jump Games
2 Facebook Messenger Social Networks 27 Cow Evolution Games
3 YouTube Photo and Video 28 ÖBB Scotty Travel
4 Facebook Social Networks 29 Viber Social Networks
5 PlayTube Utilities 30 Musify Video Tube Music
6 Loop Drive: Crash Race Games 31 Lockscreen-Designer Lifestyle
7 Instagram Photo and Video 32 Amazon Lifestyle
8 Spotify Music Music 33 H&M Lifestyle
9 Google Maps Navigation 34 iTunes U Education
10 Slayin Games 35 Musicify Music
11 Snapchat Photo and Video 36 Mein iPhone suchen Utilities
12 Layout from Instagram Photo and Video 37 Zalando Shopping Lifestyle
13 Shpock Lifestyle 38 Dude Perfect 2 Games
14 UnWeatherzentrale Österreich Weather 39 Google Utilities
15 Shazam Music 40 LOVOO Social Networks
16 Playtube Entertainment 41 3 Kundenzone Utilities
17 aa Games 42 SoundCloud Music
18 AlphaBetty Saga Games 43 Dino Empire Games
19 Light Player PRO Entertainment 44 Music für iPhone PRO Music
20 Angry Birds Fight Games 45 Google Übersetzer Dictionaries
21 PlayTube Music 46 QR Code Scanner Utilities
22 Skype für iPhone Social Networks 47 Retrica Photo and Video
23 Jurassic World: Das Spiel Games 48 Dropbox Productivity
24 willhaben.at Lifestyle 49 PicsArt Photo Studio Photo and Video
25 Runtastic PRO Health and Fitness 50 Try Harder Entertainment

Table 6.1: Top 50 iOS Applications (22. June 2015)

65

6 Evaluation

Figure 6.1: Top 50 iOS Application Categories (22. June 2015)

66

6 Evaluation

6.5 Top 50 Android Applications

Similar to the top applications on iOS, the app-ranking in the Google Play
Store changes almost daily which makes it almost infeasible to make a gen-
eral statement about app installation times and usage statistics. Naturally,
applications can receive updates and changes to their version number. Thus,
even if the ranking does not change, this does not imply that the same
application versions are still present in the application store after a certain
time period. Additionally, because of the missing certification process, ap-
plications on the Google Play Store receive updates even faster. For this very
reason, the below list has been chosen as a representative snapshot and for
better analysis possibilities.

No. Application Category No. Application Category
1 WhatsApp Messenger Communication 26 Clash of Clans Games
2 Facebook Messenger Communication 27 LOVOO - People like you Social Networks
3 Facebook Social Networks 28 ÖBB Scotty Traffic
4 Cow Evolution Games 29 WoodBall Games
5 Nebulous Games 30 DU Battery Saver & Akku Doktor Productivity
6 Clean Master Games 31 Dude Perfect Games
7 Google Fotos Photography 32 COOKING DASH 2016 Games
8 Instagram Social Networks 33 iTube Pro Music
9 AlphaBetty Saga Games 34 Google Übersetzer Tools
10 Viber Communication 35 Pou Games
11 Skype Communication 36 Retrica Photography
12 Shpock Shopping 37 Extreme Car Driving Simulator Games
13 aa Games 38 Wish - Freude am Einkaufen Shopping
14 willhaben.at Lifestyle 39 Gewicht Abnehmen - Lost Weight Games
15 Amazon Shopping Shopping 40 LEGO Ninjago Tournament Games
16 Ich Einfach Unverbesserlich Games 41 Criminal Case Games
17 Battery Doctor Tools 42 Weather.com Weather
18 Snapchat Social Networks 43 ZEDGES: Ringtones & Wallpapers Personalization
19 Spotify Music Music 44 Kleine Zeitung News & Magazines
20 Kiwi Social Networks 45 Layout from Instagram Photography
21 Shazam Music Music 46 Candy Crush Saga Games
22 Spider Square Games 47 Twitch Games
23 Plastic Surgery Simulator Games 48 Giraffe Evolution - Clicker Games
24 Superhelle LED Taschenlampe Productivity 49 CM Locker (Bildschirmsperre) Personalization
25 Subway Surfers Games 50 PicsArt: Foto-Studio Photography

Table 6.2: Top 50 Android Applications (22. June 2015)

In contrast to the categories listed in Section 6.4, we can see a clear trend
towards games in the Google Play Store. Roughly 50% of the downloaded
applications are games, whereas approximately 20% of all free applications
are intended for entertainment purposes in the Apple App Store. This fact,

67

6 Evaluation

however, is reversed when looking at paid applications. In the Apple App
store, almost 40% of paid applications are games. This statement is also
supported by a recent survey [Gau12], stating that more users tend to buy
games on iOS than on Android. It furthermore states that app piracy is a big
problem on Android due to the different installation and app-certification
process.

Figure 6.2: Top 50 Android Application Categories (22. June 2015)

68

6 Evaluation

6.6 Approach

In general, a well planed approach as well as best-practices are necessary in
order to achieve comparable and usable results. For this reason the before
mentioned top applications on each platform have been downloaded and
the network traffic for each software separately saved and analyzed.

Additionally, the captured network-traffic has been manually filtered to
reduce its size, as this thesis focuses only on private data leakage and their
possible effects. Specifically binary data, such as images or zip files have
been removed a priori, which not only reduces file size, but a positively
impacts the analysis processing time. Additionally, special care has been
taken to avoid interfering traffic from another applications or the operating
system itself.

However, to achieve comparable test results, first of all the different security
systems of the operating systems have to be dealt with [Ahm+13]:

As previously discussed, on iOS, each (first) attempt to access a sensor
(e.g. location, microphone etc.) needs to be granted by the user. Figure 6.3b
illustrates the associated dialog. Naturally, if access has been declined, no
information can be retrieved. For this reason, whenever an application has
tried to access private data during the evaluation phase, permission has
been granted, coupled with the information, that the data might be sent
over the network.

In contrast to this, on Android, all permissions which may be required
during runtime of the application, have to be granted in advance, meaning
before installation (see also figure 6.3a). The user thus might not know,
depending on the implementation of the respective application, whether
the sensor is accessed or not. Moreover, there currently exist 152 system
permissions2 to access all kinds of data as well as to modify the operating
systems behavior. Hence, this vast amount of permissions might also lead
to careless installations of applications from inexperienced users without
looking at the required permissions.

2http://developer.android.com/reference/android/Manifest.permission.html

69

http://developer.android.com/reference/android/Manifest.permission.html

6 Evaluation

In the following, using the obtained data, the developed plugins as well as
the proposed framework have been utilized and subjected to an assessment-
test. In order to be able to draw conclusions from the analyzed network-
dumps, the reports of each plugin have then been documented in a spread-
sheet.

Still, the intended results should not put the different approaches per se to
the test. After all, the granted permissions already indicate, that access to
the sensor might happen. Hence, the user knows that the application might
use this data at some point. Instead the goal of this evaluation is to identify
whether user-owned resources (like geo-position or contact addresses) are
only used internally (e.g. for navigation or messaging purposes) or if they are
sent over the internet. Additionally, this approach helps to identify whether
different data is sent more likely if one or the other permission approach is
used. Thus, the proposed framework helps to visualize (unwanted) leakage
of private data.

Last but not least, it should be noted that, even tough the top lists of Android
and iOS and their respective application stores differ from each other, it does
not influence the outcome of this evaluation. In fact, due to the different
nature of the two operating systems under discussion, there exist certain
peculiarities on each platform, and thus different capabilities as well as cer-
tain applications (e.g. Battery Monitor, Antivirus, Payment - Providers). The
point is, that this study, should document the influence of these possibilities
for each operating system and possibly give an approximate estimate of the
likelihood to private data leakage.

70

6 Evaluation

(a)Permission Dialog in Android (before installation)

(b)Permission Dialog in iOS (at access)

Figure 6.3: Permission Systems on Android and iOS

71

6 Evaluation

6.7 Analysis

In the first step of the analysis phase the network traffic for the top appli-
cations for each platform have been inspected using the proposed work
and the above mentioned strategy. However, because the developed appli-
cation can only inspect network-traffic, one might expect that not every
application listed requires Internet access and can therefore not be ana-
lyzed. Nevertheless, during the implementation and test phase, reports
have shown that there exists no application, under investigation which did
not require access to the world-wide-web. This includes, on the one hand,
software, like social-media or newspapers, which, for obvious reasons, rely
on Internet access to function properly. On the other hand however, rather
unexpected applications like flashlights or battery-safer applications, which
at first glance do not implicitly require network access.

Indeed, the reason for the virtually ubiquitous access can be explained fairly
easily. That is, because most of the analyzed applications rely on tracking or
advertisement software. This implies, that either content for commercials is
being downloaded or logs are sent to dedicated analysis servers. Moreover,
mobile analytics software can be used to capture application crashes or
to document user behavior like app usage statics, current time or view
changes [Spi+10]. However, most of the time, private data is also associated
with these frameworks. As a matter of fact, the developed application
can therefore not only help identify whether an application is sending
private data but also whether this is due to tracking or advertisements
frameworks.

In the next step, the so gained evaluation results of the top applications
of each platform have been documented in separate spreadsheets. Tables
6.5 as well as 6.4 provide an overview of these outcomes. In that regard,
each row represents the analysis result of one application. Cells marked in
red represent a (possible) unwanted data breach or information which has
been sent in plain text without proper encryption mechanisms like HTTPS
or associated warnings that data access might happen. Similarly, cells in
green indicate that the user has been specifically warned that data access is
imminent and that it will be transmitted over the Internet. This information
has then been used for further analysis.

72

6 Evaluation

Figure 6.4: Top 50 iOS Applications (22. June 2015) Analysis Report

73

6 Evaluation

Figure 6.5: Top 50 Android Applications (22. June 2015) Analysis Report

74

6 Evaluation

6.8 General Comparison: Android and iOS

One important aspect during the analysis phase was to evaluate, whether
the two operating systems and their associated permissions systems have
different influence on the data being sent. With this in mind, each time
private data has been detected with our analysis framework, three factors
have been noted:

• Notice: Has the user been informed that data access is imminent?

• Awareness: Does the user know that data might be transmitted over
the Internet?

• Security: Have appropriate measures been taken to protect the data
(e.g. encryption)?

As a result, we can combine this information with the knowledge that data
access has occurred, in order to gain further insight into the application
structure. This can give us hints if this information really was required or if
the application tries to exploit certain functionality. Additionally, this allows
us to draw conclusions whether data access has occurred due to operating
system peculiarities or possible carelessness of a user.

6.8.1 Incidents

By looking at the total incidents per plugin, we can see that in general more
incidents have been reported for the Android platform. One of the most no-
ticeable differences between those reports however, is that on Android more
device related data (e.g. id, name or carrier) has been submitted whereas
on iOS more user credentials have been detected in the associated network
traffic. Still, in principle this does not allow to draw specific conclusions on
the influence of the operating system on the developed applications. In fact
the divergence of the data could be explained due to different applications
being analyzed. For example, on iOS more applications in the categories

75

6 Evaluation

”Social Networks” as well as ”Utilities” have been analyzed. Likewise on
Android more Games have been inspected.

Another important aspect however is, that on Android not only more private
data have been found in the network traffic, but also more cases where data
have been transmitted over an insecure connection. Additionally, we have
documented a higher number of unnoticed usage of sensors. Especially
the access of the device-ID or the location sensor has been reported more
than twice as often on Android than on iOS. In contrast, this could indeed
already be a first indicator that the more the user is aware of data usage
the greater is the probability that he questions the necessity of this access.
Hence, on Android, developers might exploit this situation more easily.

6.8.2 Categories

In the next step, each private data category (e.g. credit-card, phone number,
location, etc.) has been evaluated individually and per platform. Figures
6.6 and 6.7 depict the number of private data being sent, which has been
detected with the developed framework and above mentioned plugins. It is
worth adding that the figures below and the interpretations are based on
the assumption that all sent data have been properly detected as previously
discussed. Again, a ”no” in the dedicated tables does not necessarily mean
that no data have been transmitted but that the current implementation did
not detect any possible private data in the network-dump.

When inspecting the individual category results we can immediately see
that almost twice as many applications on Android have sent the current
user-location than on iOS. This might perhaps not be surprising because
it might be due to social networking or location based applications. After
all, different software was analyzed for both operating systems. However,
looking at the applications and their categories, we can clearly see that
almost 35% of those apps can be categorized as games, a phenomenon
which could not be observed on iOS at all. No game which was inspected
was trying to use the location sensor on the latter platform. This enforces
the previous made statement that the different permission systems could
have quite an impact on the private data being transmitted. Indeed, one

76

6 Evaluation

might wonder why a game would need access to the current user location
if this warning was displayed during usage.

Location

Speaking of location: in some cases, not only user-names but also the
associated locations of other users were found in the network-traffic. Even
though this information was not depicted in the app itself by extracting
this data from the captured dump, it was possible to display a map of all
users nearby who had been using the application and a list of associated
usernames or in some cases full names. This process was possible on both
operating systems, iOS and Android. This illustrates one of the problems
of ubiquitous access to all this information and the careless handling of
certain data. In most cases, it was not necessary to send a precise location of
a user, but rather a parameter of how far away (e.g. in meters) this person is
situated. A potential attacker could use this information to track another
user of the same application. In particular, this can be especially dangerous
when thinking of dating applications or apps which can be used by minors
where revealing an exact location is not always desired. As a result, by
sharing this information, it is possible to reveal the whereabout of a user
without him noticing it. One solution to this problem is to calculate the
distance to another user not on the device itself, but rather on a centralized
server. In this way it is not possible for an attacker to get precise GPS data of
other users, while still providing the same user experience. Simultaneously,
it shows that even though a user might be warned about data-access, the
possible consequences are not always obvious.

Phone Numbers

In contrast to this, on iOS, the phone number is sent approximately twice
as many times as on Android. However, there is, as of this writing, no
possibility to programmatically retrieve the phone number of a device
running iOS. The user thus has to enter it manually. As a matter of fact,
in all cases when the phone number was transmitted, it was necessary to
enter it by hand. Additionally, virtually every time it served as a security

77

6 Evaluation

mechanism to verify the user’s identity. Still, it is alarming to see that this
information has been sent in plain text in some cases, especially, now that
techniques such as HTTPS have been widely established on both operating
systems.

User Credentials

Another observed difference, is that on iOS more user-credentials, that
is either passwords or usernames, have been detected in the associated
network-traffic. However, if we once-again look at the category distributions
listed in Section 6.1, this anomaly can be explained by the high percentage
of apps which offer user registration. In contrast, games usually do not
require user-credentials to be played.

Device Information

Last but not least, a very high percentage of applications sends device-
related information on both platforms. However, in contrast to other user
owned resources, on iOS no special permission is necessary to read out
hardware-related information like device-name or the current battery status.
Developers can therefore use this data without notifying the user in the first
place.

If we now compare these figures with the number of location-based incidents
on iOS we can observe twice as many hits. Whereas on Android these figures
are approximately the same. Again, based on these observations it could be
another indicator, that app developers are more likely to send private data
if the user is not asked for permission while using the app.

6.8.3 Results

All in all, based on these facts and the individual results, it can be assumed
that on Android, due to the different permission approach and the sub-
stantial amount of possibilities, more application developers tend to misuse

78

6 Evaluation

this system by excessively transmitting user-owned resources. However,
this does not imply that the operating system or the permission approach
is insecure per-se. Instead, great caution should be taken when installing
applications and the required permissions should be inspected carefully.

Additionally, we can confirm our assumption that network-analysis is not
only necessary to detect applications with malicious intentions but that
it can also help to identify poorly implemented apps which might not be
aware of the consequences when transmitting certain information like above
mentioned locations.

Figure 6.6: Number of detected private data incidents per category on iOS

79

6 Evaluation

Figure 6.7: Number of detected private data incidents per category on Android

80

6 Evaluation

6.9 Comparison: Common Application per OS

Even though the top lists of the two operating systems under discussion
differ from each other, there exist common elements between the application-
charts depicted in Section 6.1.

These items include the following apps:

• Kiwi
• Whatsapp Messenger
• Facebook
• Spotify Music
• aa
• Sykpe
• willhaben.at
• Cow Evolution

• ÖBB Scotty
• Viber
• Amazon
• Dude Perfect 2

• LOVOO
• Google Translate
• Retrica
• PicsArt Photo Studio

If we now compare these apps in terms of data being sent and their total
number of detected private data based, in general no big difference can
be detected. On Android, private data has been sent 57 times, whereas
on iOS incidents have been reported 52 times. A difference which can, in
general, be neglected. This however does not necessarily imply that the
implementations of the applications differ from each other. Instead, the slight
deviations might be due to different program execution paths, application
versions or operating system’s dependent capabilities and limitations. After
all, the generated network-traffic is influenced by the app usage. To get an
overview, Table 6.8 documents this comparison.

However, stepping further into detail, the results in some cases look com-
pletely different. For this, the comparison mode of developed application
can be used.

Certificate Pinning

For instance: while ”Whatsapp Messenger” on both Android and iOS runs
on a different port and thus prevents a detailed app analysis, reports for

81

6 Evaluation

other applications show that different app implementations have been
realized. To demonstrate, on Android the Amazon Shopping and Instagram
apps do not allow a complete analysis, as certificate pinning prevents
content to be received via Burp-Suite. In contrast, on iOS, this limitation is
not present and thus allows a complete inspection of all web traffic. Likewise,
Facebook on iOS blocks HTTPS traffic routed via Burp-Suite whereas on
Android no such mechanism has been detected. Additionally, more games
of the observed applications on Android rely on certificate pinning than on
iOS.

Tracking Frameworks

However, certificate pinning is not the only difference between those ap-
plications. The analysis reports have revealed, that, most likely due to
different mobile tracking frameworks, different data is sent for each plat-
form. Specifically this affects device information like battery status or device
identifiers.

Another explanation for this phenomenon could be, that there exist more
Android devices with changing hardware than Apple devices. As a matter
of fact, developers therefore rely on the received device information, in
order to optimize their application.

Permission-System

Another strong indicator for the statement, that the different permission
approaches can indeed affect the data which is transmitted, can be found
when inspecting network-traffic at an app basis. For instance: Whereas
”Dude Perfect” on iOS does not require the users location, on Android this
information is transmitted over the network.

In general, one would not expect location functionality in this type of game.
However, if the user is not notified of the access during gameplay, it is much
easier to hide this functionality.

82

6 Evaluation

Figure 6.8: Common Applications of iOS and Android (22. June 2015)
83

6 Evaluation

6.9.1 Results

Concluding, we can see that although one might assume that the same
applications show similar behavior, independent from the operating system,
the analysis has actually proved the opposite. There might exist several
reasons for this.

On the one hand, application-analysis tools for mobile operating systems
might require diverging data to be sent. Additionally, due to the large
number of different devices, application developers might need to gain more
insight into the used hardware, in order to optimize their application.

On the other hand the previously mentioned differences in the permission
system and thus user-interface might also play an important role. We have
observed, that on one platform applications have been accessing the users’
location without explicitly notifying them during usage or explaining the
necessity for this action whereas on the other platform the same application
was not using the location at all.

Generally speaking, we have shown that the operating system and their
associated permission systems might indeed affect the applications and that
developers tend to exploit all possible functionality.

6.10 Challenges

Analyzing network-traffic can be a very time-consuming task. Not only is it
necessary to prepare the device in order that no interferences from other
applications or the operating system are detected in the network-traffic, but
also to set up the detection proxy and the deployment of the associated
certificate, which all in all can be accompanied by great effort. Additionally,
each capture process may last between 5 to 20 minutes, depending on the
applications functionality. Analyzing only 100 applications may all too soon
last several days.

Furthermore, some applications could not handle the injected certificate
from Burp-Suite right away. Sometimes it was necessary to try a couple of
times until an app would proceed. Moreover, some applications required a

84

6 Evaluation

large amount of data to be downloaded in addition to the existing binary
(e.g. game-data). In some cases, the proxy would cause a failure of this
download, and as a consequence another attempt was necessary to achieve
this task.

Even though, that alone is time consuming enough, several other problems
have been observed during the implementation and test phase.

In particular certificate pinning used in some applications would make it
virtually impossible to capture network traffic. In general, certificate pinning
is defined as the process of storing the server-certificate identifier within the
application itself. Despite the fact that this approach in general is to prefer
from a security point of view as it prevents man in the middle attacks it is
simultaneously impractical for network-analysis. These applications could
for this reason not be analyzed.

Another limitation is that Burp-Suite can only analyze network-traffic which
has been routed via a HTTP-Proxy. This setting however can only be applied
on the device itself. As a result, only HTTP Ports, that is Port 80 and 443 are
routed via these settings by the operating system. Applications which rely
on a different protocol (e.g. FTP (Port 21), or XMPP (e.g. Port 5223)) can thus
not be captured with above mentioned approach. Although, the remaining
traffic could be captured with other tools like Wireshark, usage of SSL-
Certificates and encryption would make in virtually impossible to decrypt
this traffic. Additionally, only a small amount of all analyzed applications
was using a different port. The high effort to capture this traffic would
therefore go beyond the scope of this thesis.

Last but not least, the varying communication standard and the differences
in the used protocols made the analysis process a major challenge. In fact,
adapting to the different notations without limiting the results or causing
too many false positives requires a lot of research in this field.

6.11 Notable examples

Although not necessarily subject of this investigation, this section contains
several noticeable examples which have been observed during the analysis

85

6 Evaluation

process. This includes cases of bad practice, private data leakage due to
carelessness as well as critical errors.

At the same time, this shows the effectiveness of network analysis, as we
could make these observations in a fast and easy way without inspecting
the code of the applications under investigation.

6.11.1 Location Map

We have already mentioned that some applications provide functionality
to show the approximate location of users nearby. However, this feature
was limited most of the time to show only distances without revealing
exact coordinates. This helps to protect the privacy of the users while still
providing the same functionality.

Although this approach is favorable in principle, we still observed that in
fact all GPS coordinates were transmitted over the network. As a result,
distances to nearby users were calculated with these data on the device
itself.

As a consequence, we can extract this information from the network-dump
and place those coordinates on a map, as Figure 6.9 depicts. Hence, we are
able to see exactly the whereabouts of nearby users.

Obviously, this was not the intention of the developers. Using the proposed
application during development can therefore reveal such errors, allowing
developers to react at an early stage.

6.11.2 Credentials in Network Traffic

Another incident was revealed during the testing phase of the User Credentials-
Plugin when the analysis report showed an unknown username and an
associated password.

Further inspections then revealed, that the application was in fact connection
to another service, using these credentials. As result, we could not only

86

6 Evaluation

Figure 6.9: Locations of nearby users extracted from the network traffic

identify the service but also log in, using the provided username and
password.

Additionally, these credentials have been transmitted over an insecure con-
nection, basically revealing them to anybody in the same network.

6.11.3 SQL Queries

In general, when using databases to store information on a web-server, a
special query language can be used in order to retrieve or modify data.
However, when exposing this information via a web service it is generally
not advisable to provide a direct interface, which means executing the

87

6 Evaluation

query from a client, but rather only provide means to control the query and
therefore modify or retrieve data.

Still, some applications and their associated network traffic revealed that
the server accepts complete queries and executes them. Depending on the
user rights it might therefore be possible to execute any arbitrary query or
even modify the database structure itself. In the worst case the attacker can
then elevate its user rights or worse delete all data.

6.11.4 Passwords

When dealing with user credentials, we have observed several errors being
made, the most frequent one being password which have been sent without
any security mechanisms at all. In general it is not recommendable to submit
any kind of user credentials without using proper encryption mechanisms.

However, some applications go a step further by sending a unique identifier
derived from a one way function (e.g. hash) from the original password
instead of sending the real credentials in the first place. While in general
this does not improve the security of the overall system, it increases the
security in case the password gets hijacked via a man in the middle attack.
This way, it does not compromise any other system if the password has
been reused by the user.

Summarizing this shows that network analysis can also be used to verify
the security mechanisms of a system and whether they have been deployed
correctly.

88

7 Future Work

Even though automatic network analysis can entail a huge advantage in
terms of analysis speed and detection rate, there is still room for improve-
ment:

• Automatic Capture/Detection: As of this writing, each application
has to be manually analyzed, meaning traffic has to be captured using
Burp-Suite (or any other HTTP Proxy) and afterwards dumped to
disk. The result then has to be uploaded to the developed application
server. As discussed this process can be very time consuming. A more
automatic approach (e.g. capturing traffic from within the framework)
would be more suitable.

• Network Traffic Capture: Likewise, it is time consuming to execute
applications by hand. A more automatic approach similar to user-
interface tests would be preferable. In this way, bulk analysis of appli-
cations in app stores would be more feasible and the results could be
reproduced.

• Machine Learning: The current implementation of the plugins is
based on experience and test results. Changes in protocol (e.g. dif-
ferent delimiters for usernames and passwords) would automatically
cause the plugins to either fail or produce wrong results. An additional
mechanism to detect false positives or new delimiters could improve
the detection rate. However, the current results have showed that most
applications rely on a common standard. Excessive changes are thus
not to be expected.

• Distributed Access: With the usage of elastic-search, a basis for a
global deployment has been established. Especially pervasive usage

89

7 Future Work

would entail a large knowledge base for already analyzed applications.
As a result, changes between application versions or even changes
between different countries could in that way be easily achieved. This
is however based on the prerequisite of global collaboration.

• Plugin Distribution: With the current implementation, all plugins
have to be deployed in conjunction with the application. However, as
mentioned in Section 4.2, it is easy to develop new plugins. Extending
this functionality by dynamically deploying new plugins (e.g. via a
separate plugin store) could help improve the analysis process.

• Android 6.0: We have shown that the permission system of an op-
erating system can indeed influence the capabilities of applications
(e.g. location) and the data being sent. However, as of Android 6.0 a
new permission system, similar to the one on iOS will be introduced.
As a result, this offers a great opportunity to inspect the changes to
applications, if any, due to the new permission approach.

90

8 Conclusion

Altogether, by using the presented work we have shown that the operating
system or more precisely the underlying permission system can have huge
impacts on the developed applications. As a result, the less user interaction
required for certain actions or functionality (e.g. all permissions asked
before installation or no permissions at all (e.g. device id, device name)), the
more frequent developers tend to access and transmit private data. In this
context, it is especially worth noting that on Android a lot of applications
were indeed accessing the users location without providing context based
experience or explicitly stating the cause.

Comparing the presented work to other techniques likes code analysis or
manual traffic inspection, we have observed a fast and easy but especially
operating system independent experience, allowing us to inspect software
without much effort. All in all, we have shown that an automated approach
can indeed speed up the analysis phase in contrast to manual strategies,
without loosing accuracy. This is on the one hand caused by the fact that
most of the time a large amount of data is being transmitted, on the other
hand mechanisms such as Base64-Encoding cause additional effort, which
can easily be handled within the architecture itself. Additionally, by using
a modular architecture, we can enhance the functionality to a virtually
arbitrary extent, making the system future prove and even more versatile to
use.

However, we have not only shown the possible application of the presented
work but have also learned that there was no app listed under the top
50 applications which did not use Internet access, a fact which was not
expected prior to this study. As a matter of fact, automated network analysis
can be used for most available applications.

91

8 Conclusion

Moreover, we have experienced that a large number of applications are
using a similar naming schema for parameters. This allows us to optimize
the application for a great number of apps without knowledge of their
structure.

Last but not least, there exist a vast amount of applications which transmit
not only less critical information but also more sensitive data like usernames
and passwords in plain text, even though secure communication can, by
now, easily be achieved on any platform. Informational work therefore has
to be done especially in this area.

Summarizing, we can therefore argue that by automatic network analysis, a
huge benefit can be derived. However, is important to keep in mind, that
this approach can only inspect part of an application. As a result, a lot of
functionality can still be hidden within the software under investigation
itself. Additionally, the presented approach relies on good structured content.
The possible applications for network analysis therefore heavily depend on
the use case and desired results.

92

Appendix

93

Bibliography

[Ahm+13] Mohd Shahdi Ahmad et al. “Comparison between android
and iOS Operating System in terms of security”. In: 2013 8th
International Conference on Information Technology in Asia - Smart
Devices Trend: Technologising Future Lifestyle, Proceedings of CITA
2013 (2013), pp. 2–5. doi: 10.1109/CITA.2013.6637558 (cit. on
p. 69).

[Ama14] Ron Amadeo. The state of Android updates: Who’s fast, who’s slow,
and why. 2014. url: http://arstechnica.com/gadgets/2014/
08/the-state-of-android-updates-whos-fast-whos-slow-

and-why/3/ (visited on 12/06/2015) (cit. on p. 11).

[App15] Apple. App Review. 2015. url: https://developer.apple.com/
app-store/review/ (visited on 07/07/2015) (cit. on p. 10).

[Bar11] A Barth. “{HTTP} State Management Mechanism”. In: Internet
Engineering Task Force, University of California 2070-1721 (2011)
(cit. on p. 52).

[Bau14] Gabriel Bauman. Credit card type and validation. 2014. url: http:
//stackoverflow.com/questions/20377978/credit- card-

type-and-validation (visited on 06/11/2015) (cit. on p. 47).

[BBC14] BBC. Edward Snowden: Leaks that exposed US spy programme. 2014.
url: http://www.bbc.com/news/world-us-canada-23123964
(visited on 06/14/2015) (cit. on p. 50).

[Ben15] Katie Benner. Apple Confirms Discovery of Malicious Code in Some
App Store Products. Sept. 2015. url: http : / / www . nytimes .

com/2015/09/21/business/apple-confirms-discovery-of-

malicious-code-in-some-app-store-products.html?%7B%

5C_%7Dr=0 (cit. on p. 9).

94

http://dx.doi.org/10.1109/CITA.2013.6637558
http://arstechnica.com/gadgets/2014/08/the-state-of-android-updates-whos-fast-whos-slow-and-why/3/
http://arstechnica.com/gadgets/2014/08/the-state-of-android-updates-whos-fast-whos-slow-and-why/3/
http://arstechnica.com/gadgets/2014/08/the-state-of-android-updates-whos-fast-whos-slow-and-why/3/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
http://stackoverflow.com/questions/20377978/credit-card-type-and-validation
http://stackoverflow.com/questions/20377978/credit-card-type-and-validation
http://stackoverflow.com/questions/20377978/credit-card-type-and-validation
http://www.bbc.com/news/world-us-canada-23123964
http://www.nytimes.com/2015/09/21/business/apple-confirms-discovery-of-malicious-code-in-some-app-store-products.html?%7B%5C_%7Dr=0
http://www.nytimes.com/2015/09/21/business/apple-confirms-discovery-of-malicious-code-in-some-app-store-products.html?%7B%5C_%7Dr=0
http://www.nytimes.com/2015/09/21/business/apple-confirms-discovery-of-malicious-code-in-some-app-store-products.html?%7B%5C_%7Dr=0
http://www.nytimes.com/2015/09/21/business/apple-confirms-discovery-of-malicious-code-in-some-app-store-products.html?%7B%5C_%7Dr=0

Bibliography

[Blu14] Blue Coat Systems. “Blue Coat Systems 2014 Mobile Malware
Report”. In: (2014) (cit. on p. 11).

[Bod13] A Bodhani. “Bad... in a good way [Information Technology
Security]”. In: Engineering & Technology 8.12 (2013), pp. 64–68.
issn: 1750-9637 (cit. on p. 6).

[Cal+09] Arthur Callado et al. “A survey on internet traffic identifica-
tion”. In: IEEE Communications Surveys and Tutorials 11.3 (2009),
pp. 37–52. issn: 1553877X. doi: 10.1109/SURV.2009.090304
(cit. on pp. 3, 16).

[Cis14] Inc. Cisco Systems. “Cisco 2014 Annual Security Report”. In:
(2014) (cit. on p. 11).

[Cis15] Inc. Cisco Systems. SpamCop.net - Total Spam Report. 2015. url:
https://www.spamcop.net/spamgraph.shtml?spamyear (vis-
ited on 06/17/2015) (cit. on p. 42).

[Der11] DerStandard.at. iPhone und iPad speichern Aufenthaltsorte ihrer
Nutzer. 2011. url: http://derstandard.at/1303291098336/
Ueberwachung-iPhone-und-iPad-speichern-Aufenthaltsorte-

ihrer-Nutzer (visited on 06/12/2015) (cit. on p. 48).

[Des+08] Lieven Desmet et al. “Security-by-contract on the .NET plat-
form”. In: Information Security Technical Report 13 (2008), pp. 25–
32. issn: 13634127. doi: 10.1016/j.istr.2008.02.001 (cit. on
p. 16).

[Dis13] Stephen T. Dispensa. Multi factor authentication. 2013. url: https:
//www.google.com/patents/US8365258 (cit. on p. 51).

[Elm14] Philip Elmer-DeWitt. Apple’s users spend 4X as much as Google’s.
2014. url: http://fortune.com/2014/06/27/apples-users-
spend-4x-as-much-as-googles/ (visited on 06/29/2015) (cit.
on p. 64).

[Enc+10] William Enck et al. “TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones”.
In: Osdi ’10 49 (2010), pp. 1–6. issn: 03601315. doi: 10.1145/
2494522 (cit. on p. 15).

95

http://dx.doi.org/10.1109/SURV.2009.090304
https://www.spamcop.net/spamgraph.shtml?spamyear
http://derstandard.at/1303291098336/Ueberwachung-iPhone-und-iPad-speichern-Aufenthaltsorte-ihrer-Nutzer
http://derstandard.at/1303291098336/Ueberwachung-iPhone-und-iPad-speichern-Aufenthaltsorte-ihrer-Nutzer
http://derstandard.at/1303291098336/Ueberwachung-iPhone-und-iPad-speichern-Aufenthaltsorte-ihrer-Nutzer
http://dx.doi.org/10.1016/j.istr.2008.02.001
https://www.google.com/patents/US8365258
https://www.google.com/patents/US8365258
http://fortune.com/2014/06/27/apples-users-spend-4x-as-much-as-googles/
http://fortune.com/2014/06/27/apples-users-spend-4x-as-much-as-googles/
http://dx.doi.org/10.1145/2494522
http://dx.doi.org/10.1145/2494522

Bibliography

[EOM09] William Enck, Machigar Ongtang, and Patrick McDaniel. “On
lightweight mobile phone application certification”. In: Pro-
ceedings of the 16th ACM conference on Computer and communi-
cations security - CCS ’09 (2009), pp. 235–245. issn: 15437221.
doi: 10.1145/1653662.1653691. url: http://dl.acm.org/
citation.cfm?id=1653662.1653691 (cit. on p. 17).

[Fal+10] Hossein Falaki et al. “A first look at traffic on smartphones”. In:
Proceedings of the 10th annual conference on Internet measurement -
IMC ’10 (2010), p. 281. issn: 10636897. doi: 10.1145/1879141.
1879176. url: http://portal.acm.org/citation.cfm?doid=
1879141.1879176 (cit. on p. 15).

[For13] Forbes. Report: 97% Of Mobile Malware Is On Android. This Is
The Easy Way You Stay Safe. 2013. url: http://www.forbes.
com/sites/gordonkelly/2014/03/24/report-97-of-mobile-

malware-is-on-android-this-is-the-easy-way-you-stay-

safe/ (cit. on pp. 8–10).

[Fox15] Thomas Fox-Brewster. Chinese Cybercriminals Breached Google
Play To Infect ’Up To 1 Million’ Androids. Sept. 2015. url: http:
// www. forbes.com /sites/ thomasbrewster/2015 /09 /21/

chinese-hackers-beat-google-bouncer/%7B%5C#%7D3999864a2e19

(cit. on p. 10).

[Fse14] F-secure. “Threat Report H1 2014”. In: (2014), p. 40 (cit. on
p. 12).

[Gau12] John Gaudiosi. New Research Shows Apple Still Winning the Video
Game War Against Android. 2012. url: http://www.forbes.
com/sites/johngaudiosi/2012/05/05/new-research-shows-

apple-still-winning-the-video-game-war-against-android/

(visited on 06/25/2015) (cit. on p. 68).

[Goy13] Jan Goyvaerts. Finding or Verifying Credit Card Numbers. 2013.
url: http://www.regular-expressions.info/creditcard.
html (visited on 06/20/2015) (cit. on p. 46).

[Goy15] Jan Goyvaerts. How to Find or Validate an Email Address. 2015.
url: http://www.regular- expressions.info/email.html
(visited on 06/07/2015) (cit. on p. 43).

96

http://dx.doi.org/10.1145/1653662.1653691
http://dl.acm.org/citation.cfm?id=1653662.1653691
http://dl.acm.org/citation.cfm?id=1653662.1653691
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1145/1879141.1879176
http://portal.acm.org/citation.cfm?doid=1879141.1879176
http://portal.acm.org/citation.cfm?doid=1879141.1879176
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/
http://www.forbes.com/sites/thomasbrewster/2015/09/21/chinese-hackers-beat-google-bouncer/%7B%5C#%7D3999864a2e19
http://www.forbes.com/sites/thomasbrewster/2015/09/21/chinese-hackers-beat-google-bouncer/%7B%5C#%7D3999864a2e19
http://www.forbes.com/sites/thomasbrewster/2015/09/21/chinese-hackers-beat-google-bouncer/%7B%5C#%7D3999864a2e19
http://www.forbes.com/sites/johngaudiosi/2012/05/05/new-research-shows-apple-still-winning-the-video-game-war-against-android/
http://www.forbes.com/sites/johngaudiosi/2012/05/05/new-research-shows-apple-still-winning-the-video-game-war-against-android/
http://www.forbes.com/sites/johngaudiosi/2012/05/05/new-research-shows-apple-still-winning-the-video-game-war-against-android/
http://www.regular-expressions.info/creditcard.html
http://www.regular-expressions.info/creditcard.html
http://www.regular-expressions.info/email.html

Bibliography

[Hen02] Joachim Henkel. “Mobile Payment”. In: Mobile Commerce. Wies-
baden: Gabler Verlag, 2002, pp. 327–351. doi: 10.1007/978-
3-322-90464-5{_}18. url: http://link.springer.com/10.
1007/978-3-322-90464-5%7B%5C_%7D18 (cit. on p. 46).

[Hix14] Todd Hixon. What Kind Of Person Prefers An iPhone? 2014.
url: http://www.forbes.com/sites/toddhixon/2014/04/
10/what- kind- of- person- prefers- an- iphone/%7B%5C#

%7D2715e4857a0b648eae233e5a (visited on 01/13/2016) (cit. on
p. 64).

[Ira+08] D Irani et al. “Evolutionary study of phishing”. In: eCrime
Researchers Summit, 2008 (2008), pp. 1–10. doi: 10.1109/ECRIME.
2008.4696967 (cit. on p. 6).

[Loc12] Hiroshi Lockheimer. Android and Security. 2012. url: http :

//googlemobile.blogspot.co.at/2012/02/android- and-

security.html (cit. on p. 10).

[Loo14] Lookout. 2014 Mobile Threat Report. Tech. rep. 2014, pp. 1–9

(cit. on p. 6).

[LY11] Chiyuan Li and Zhiqiang Yao. “The validation of credit card
number on wired and wireless internet”. In: Journal of Networks
6.3 (2011), pp. 432–437. issn: 17962056. doi: 10.4304/jnw.6.3.
432-437 (cit. on p. 47).

[MJ00] Ruud M and Anil Jain. “Biometrics : The Future of Identification
It is too early to predict where , how , and in which form reliable
biometric”. In: Technology (2000), pp. 46–49 (cit. on p. 44).

[Ng+14] Yi Ying Ng et al. “Which Android App Store Can be Trusted
in China ?” In: (2014). doi: 10.1109/COMPSAC.2014.95 (cit. on
p. 11).

[Ong+12] Machigar Ongtang et al. “Semantically rich application-centric
security in Android”. In: Security and Communication Networks
5 (2012), pp. 658–673. issn: 19390122. doi: 10.1002/sec.360
(cit. on p. 16).

97

http://dx.doi.org/10.1007/978-3-322-90464-5{_}18
http://dx.doi.org/10.1007/978-3-322-90464-5{_}18
http://link.springer.com/10.1007/978-3-322-90464-5%7B%5C_%7D18
http://link.springer.com/10.1007/978-3-322-90464-5%7B%5C_%7D18
http://www.forbes.com/sites/toddhixon/2014/04/10/what-kind-of-person-prefers-an-iphone/%7B%5C#%7D2715e4857a0b648eae233e5a
http://www.forbes.com/sites/toddhixon/2014/04/10/what-kind-of-person-prefers-an-iphone/%7B%5C#%7D2715e4857a0b648eae233e5a
http://www.forbes.com/sites/toddhixon/2014/04/10/what-kind-of-person-prefers-an-iphone/%7B%5C#%7D2715e4857a0b648eae233e5a
http://dx.doi.org/10.1109/ECRIME.2008.4696967
http://dx.doi.org/10.1109/ECRIME.2008.4696967
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
http://googlemobile.blogspot.co.at/2012/02/android-and-security.html
http://dx.doi.org/10.4304/jnw.6.3.432-437
http://dx.doi.org/10.4304/jnw.6.3.432-437
http://dx.doi.org/10.1109/COMPSAC.2014.95
http://dx.doi.org/10.1002/sec.360

Bibliography

[Oxf] Oxford University Press. definition of name in English from the
Oxford dictionary. url: http://www.oxforddictionaries.com/
definition/english/name (visited on 06/03/2015) (cit. on
p. 41).

[P R08] Ed. P. Resnick. “RFC 5322 - Internet Message Format”. In: Net-
work Working Group (2008) (cit. on p. 43).

[PA02] D. Primeaux and J.E. Ames. “Personal, private, secret, public
[ethics of data privacy]”. In: IEEE 2002 International Sympo-
sium on Technology and Society (ISTAS’02). Social Implications
of Information and Communication Technology. Proceedings (Cat.
No.02CH37293). IEEE, 2002, pp. 157–161. isbn: 0-7803-7284-0.
doi: 10.1109/ISTAS.2002.1013811. url: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1013811

(cit. on p. 37).

[Pla13] Chismon Dave Plaskett Alex. Security Considerations in the Win-
dows Phone 8 Application Environment. 2013. url: https://www.
mwrinfosecurity.com/articles/security-considerations-

in-the-windows-phone-8-application-environment/ (vis-
ited on 01/11/2016) (cit. on p. 10).

[Pri98] D. Primeaux. “Using an alternative ethical paradigm for anal-
ysis”. In: Proceedings of the ethics and social impact component
on Shaping policy in the information age - ACM POLICY ’98.
New York, New York, USA: ACM Press, 1998, pp. 52–55. isbn:
1581130384. doi: 10.1145/276755.276776. url: http://portal.
acm.org/citation.cfm?doid=276755.276776 (cit. on p. 37).

[RS10] Alejandro Russo and Andrei Sabelfeld. “Dynamic vs. static
flow-sensitive security analysis”. In: Proceedings - IEEE Com-
puter Security Foundations Symposium (2010), pp. 186–199. issn:
19401434. doi: 10.1109/CSF.2010.20 (cit. on p. 14).

[Seb14] Sebastian. ElasticSearch vs. mySQL: Das zweite Rennen. 2014. url:
http://www.pal-blog.de/entwicklung/elasticsearch-vs-

mysql-das-zweite-rennen.html (visited on 07/07/2015) (cit.
on p. 29).

[Sec13] G Data Securitylabs. “Mobile Malware Report Half-Year Report
July”. In: December (2013) (cit. on p. 12).

98

http://www.oxforddictionaries.com/definition/english/name
http://www.oxforddictionaries.com/definition/english/name
http://dx.doi.org/10.1109/ISTAS.2002.1013811
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1013811
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1013811
https://www.mwrinfosecurity.com/articles/security-considerations-in-the-windows-phone-8-application-environment/
https://www.mwrinfosecurity.com/articles/security-considerations-in-the-windows-phone-8-application-environment/
https://www.mwrinfosecurity.com/articles/security-considerations-in-the-windows-phone-8-application-environment/
http://dx.doi.org/10.1145/276755.276776
http://portal.acm.org/citation.cfm?doid=276755.276776
http://portal.acm.org/citation.cfm?doid=276755.276776
http://dx.doi.org/10.1109/CSF.2010.20
http://www.pal-blog.de/entwicklung/elasticsearch-vs-mysql-das-zweite-rennen.html
http://www.pal-blog.de/entwicklung/elasticsearch-vs-mysql-das-zweite-rennen.html

Bibliography

[Spi+10] A W Spivey et al. Embedded mobile analytics in a mobile device.
2010. url: https://www.google.com/patents/US20100041391
(cit. on p. 72).

[Sta13] Statista. “Most popular Apple App Store categories in January
2013, by share of available apps (in percent)”. In: June (2013),
p. 1 (cit. on p. 64).

[Sta14a] Statista Inc. Credit cards in the United States - Statista Dossier.
Tech. rep. 2014 (cit. on p. 46).

[Sta14b] Statista Inc. Mobile internet usage - Statista Dossier. New York,
New York, USA, 2014 (cit. on p. 5).

[Sta15a] Statista Inc. PCs - Statista Dossier. Tech. rep. New York, New
York, USA, 2015 (cit. on pp. 4, 5).

[Sta15b] Statista Inc. Smartphones - Statista Dossier. Tech. rep. New York,
New York, USA, 2015 (cit. on p. 4).

[Sva12] Vanjal Svajcer. When Malware Goes Mobile: Causes, Outcomes and
Cures. Tech. rep. Boston, USA — Oxford, UK, 2012, pp. 1–5.
url: http://www.sophos.com/en-us/medialibrary/Gated%
20Assets/white%20papers/Sophos%7B%5C_%7DMalware%7B%

5C_%7DGoes%7B%5C_%7DMobile.pdf (cit. on pp. 8, 9).

[Sva14] Vanjal Svajcer. Sophos Mobile Security Threat Report Launched at
Mobile World Congress , 2014. Tech. rep. Oxford, UK: Sophos
Ltd., 2014, p. 10 (cit. on p. 1).

[Tec11] Techtarget Security Media Group. “Information Security”. In:
February (2011). issn: 13613723. doi: 10.1016/S1361-3723(02)
00104-5 (cit. on p. 40).

[TKN12] Alok Tongaonkar, Ram Keralapura, and Antonio Nucci. “Chal-
lenges in network application identification”. In: Proceedings
of the 5th USENIX conference on Large-Scale Exploits and Emer-
gent Threats (2012). url: https://www.usenix.org/system/
files / conference / leet12 / leet12 - final35 . pdf % 7B % 5C &

%7Dembedded=true (cit. on p. 1).

[UNL09] UNL Astronomy Education. Units of Longitude and Latitude.
2009. url: http://astro.unl.edu/naap/motion1/tc%7B%5C_
%7Dunits.html (visited on 06/12/2015) (cit. on p. 49).

99

https://www.google.com/patents/US20100041391
http://www.sophos.com/en-us/medialibrary/Gated%20Assets/white%20papers/Sophos%7B%5C_%7DMalware%7B%5C_%7DGoes%7B%5C_%7DMobile.pdf
http://www.sophos.com/en-us/medialibrary/Gated%20Assets/white%20papers/Sophos%7B%5C_%7DMalware%7B%5C_%7DGoes%7B%5C_%7DMobile.pdf
http://www.sophos.com/en-us/medialibrary/Gated%20Assets/white%20papers/Sophos%7B%5C_%7DMalware%7B%5C_%7DGoes%7B%5C_%7DMobile.pdf
http://dx.doi.org/10.1016/S1361-3723(02)00104-5
http://dx.doi.org/10.1016/S1361-3723(02)00104-5
https://www.usenix.org/system/files/conference/leet12/leet12-final35.pdf%7B%5C&%7Dembedded=true
https://www.usenix.org/system/files/conference/leet12/leet12-final35.pdf%7B%5C&%7Dembedded=true
https://www.usenix.org/system/files/conference/leet12/leet12-final35.pdf%7B%5C&%7Dembedded=true
http://astro.unl.edu/naap/motion1/tc%7B%5C_%7Dunits.html
http://astro.unl.edu/naap/motion1/tc%7B%5C_%7Dunits.html

Bibliography

[Xu+11] Qiang Xu et al. “Identifying diverse usage behaviors of smart-
phone apps”. In: Proceedings of the 2011 ACM SIGCOMM con-
ference on Internet measurement conference - IMC ’11. New York,
New York, USA: ACM Press, 2011, p. 329. isbn: 9781450310130.
doi: 10.1145/2068816.2068847. url: http://dl.acm.org/
citation.cfm?id=2068847%20http://dl.acm.org/citation.

cfm?doid=2068816.2068847 (cit. on p. 1).

100

http://dx.doi.org/10.1145/2068816.2068847
http://dl.acm.org/citation.cfm?id=2068847%20http://dl.acm.org/citation.cfm?doid=2068816.2068847
http://dl.acm.org/citation.cfm?id=2068847%20http://dl.acm.org/citation.cfm?doid=2068816.2068847
http://dl.acm.org/citation.cfm?id=2068847%20http://dl.acm.org/citation.cfm?doid=2068816.2068847

