

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis dissertation.

Graz,

Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Graz,

Date Signature

iii

Acknowledgments

First of all, I would like to thank my supervisor, Gerald Steinbauer, for
supporting me throughout my Master studies. In particular I would like to
thank him for the instructive discussions on any robotic related topics and
for his patience and motivation in supervising my Master thesis.

Further I would like to thank the stuff from the Institute for Software
Technology for their support in scientific and administrative matters. Many
thanks are owed to Clemens Mühlbacher for helpful discussions about
tricky implementation details.

Furthermore thanking the company Incubed IT for supporting this thesis.

Special thanks go to my friends and team colleagues from the RoboCup
Rescue Team TEDUSAR for supporting me with useful tips and tricks
throughout the past two years, or even longer.

Moreover I am thanking my boyfriend a lot, for spending so much time in
seemingly never-ending discussions on any issues and topics occurring in
our studies. Further for supporting me so much in everything, including
moving my things through whole Middle Europe.

Finally, I would like to express my gratitude to my family for supporting
me throughout my whole life in any projects I started.

v

Abstract

Within this work a robotics application in an Industry 4.0 domain is pre-
sented, namely a fully autonomous order picking system. It autonomously
plans actions to perform the order picking task. The task is performed in
an environment designed for human workers. Items are stored in boxes,
which are located at different levels on shelves. The order tells about the
amount and type of items which should be picked. Depending on this order
the box, containing the requested item type, is pulled out of the level. Items
are picked out of the box, placed at a delivery box and finally the box is
returned to its level. Then the next item type is processed. This continues
until the order is finished. We refer to this whole process as order picking.
Due to the non automatized environment, objects cannot be expected to
be on the exact position, where they should be. So this systems needs to
have perception capabilities to detect objects. Further it needs the ability to
plan and execute collision free movements to manipulate objects. And last
but not least it needs the capability to grasp objects. This includes collision
aware grasp planning and grasp execution.
The system is based on a 3-TIER architecture. The planning layer uses an
artificial intelligence (AI) planner to generate a list of skills the robot should
execute. This planner parses Planning Domain Definition Language (PDDL)
descriptions of the system capabilities (further on called skills), as well as
the current state of the environment and the goal state. The planner outputs
a list of skills, the robot needs to execute in order to achieve its goal. Skills
are composed of skill primitives. These primitives can perform perception,
manipulation, grasping tasks or any combination of those. Special attention
is paid to calculating online collision aware grasps. Therefore the framework
GraspIt! is used and extended. For planning and executing motions the
MoveIt! framework is used. All skill primitives are implemented as Robot
Operating System (ROS) actions.
This system can be easily executed on different robotic hardware systems.

vii

We showed a proof-of-concept implementation using the two arm robot
Baxter from Rethink Robotics.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Motivation . 2

1.2 Goals and Challenges . 3

1.3 Contribution . 4

1.4 Outline . 5

2 Formal Problem Description 7
2.1 Environment . 7

2.2 Use Case . 11

3 Related Research 13
3.1 High-Level Planning . 13

3.2 Grasping . 16

3.3 Perception . 19

3.4 Integrated Systems . 20

4 Prerequesites 23
4.1 ROS . 23

4.2 MoveIt! . 26

4.3 GraspIt! . 28

4.4 PCL . 29

4.5 Baxter . 30

4.5.1 ROS support . 32

4.5.2 Sensors, Inputs and Outputs 32

4.5.3 Arm controlling via ROS interfaces 33

ix

Contents

5 System Overview 37
5.1 Overview of the architecture for the robotic order picking . . 37

5.2 Planning Layer . 38

5.2.1 Domain . 39

5.2.2 Problem . 41

5.2.3 Planner . 43

5.3 Executive Layer . 45

5.4 Behavioral control . 47

5.4.1 Detect Handle . 49

5.4.1.1 movement . 50

5.4.1.2 detection . 50

5.4.2 Grasp Handle . 52

5.4.2.1 Initial Measurement 53

5.4.2.2 Visual Servoing 54

5.4.2.3 Validation . 55

5.4.2.4 Local Recovery 55

5.4.3 Move to Support Pose 56

5.4.3.1 Calc. Pose . 57

5.4.4 Pull Box . 59

5.4.5 Move Box . 61

5.4.5.1 Calculate Movement 62

5.4.5.2 Movement Validation 63

5.4.5.3 Grasp Validation 63

5.4.6 Deliver Box on Tray . 64

5.4.6.1 Turn Box . 64

5.4.6.2 Release Handle 65

5.4.7 Detect Item . 65

5.4.7.1 Detect Box . 68

5.4.7.2 Move Over Box 68

5.4.7.3 Item Detection 71

5.4.8 Grasp Item . 73

5.4.8.1 Calculate Grasping Points 73

5.4.8.2 Pick Item . 75

5.4.9 Deliver Item . 75

5.4.10 Deliver Box On Level 76

5.4.10.1 Push Box Into Level 77

5.5 Layout for 3-TIER high-level architecture as HSM 79

x

Contents

6 Implementation 83
6.1 Environment . 83

6.2 High Level Node . 83

6.2.1 Class Structure . 84

6.3 Skill Primitives and System Functionalities 86

6.3.1 Perception Module . 88

6.3.1.1 Detect Handle Node 89

6.3.1.2 AR Tag Detection Node 90

6.3.1.3 Detect Item Node 90

6.3.1.4 Detect Box Node 91

6.3.1.5 Head Node . 95

6.3.2 Arm Movements Module 98

6.3.2.1 Move To Pose Node 98

6.3.2.2 Move Over Box Node 99

6.3.2.3 Move To Level Node 99

6.3.2.4 Move To Support Pose Node 99

6.3.3 Grasping Module . 99

6.3.3.1 Grasp Handle Node 100

6.3.3.2 GraspIt! . 102

6.3.3.3 Pick and Place Node 104

6.3.4 Manipulation Module 107

6.3.4.1 Pull Box Node 107

6.3.4.2 Move Box Node 108

6.3.4.3 Deliver Box On Level Node 108

6.3.4.4 Deliver Box On Tray Node 108

7 Evaluation 109
7.1 Skill MoveBoxFromLevelToTray 109

7.1.1 detectHandle . 110

7.1.2 graspHandle . 111

7.1.3 moveToSupportPose . 113

7.1.4 pullBox . 114

7.1.5 moveBox . 115

7.1.6 deliverOnTray . 116

7.2 Skill graspItem . 117

7.2.1 detectItem . 117

7.2.2 graspItem . 118

xi

Contents

7.3 Skill moveBoxFromTrayToLevel 119

7.3.1 pullBox . 119

7.3.2 deliverOnLevel . 120

7.4 Box Detection . 120

7.5 Grasp Item . 122

7.5.1 Left Middle Item Pose 124

7.5.2 Right Middle Item Pose 125

7.5.3 Upper Left Item Pose 126

7.5.4 Lower Left Item Pose . 127

7.5.5 Upper Right Item Pose 128

7.5.6 Lower Right Item Pose 129

7.5.7 Upper Middle Item Pose 130

7.6 Parallel Jaw Gripper in GraspIt! 131

8 Conclusion 133

9 Future Work 135

Bibliography 137

xii

List of Figures

1.1 Manual Order Picking Station 3

2.1 Single shelving Unit SUi on Plane P 8

2.2 Tray Ra on Plate P . 9

2.3 Transport Box Bi . 10

2.4 Robot Ro With Two Robotic Arms Mounted 11

4.1 Concept of Topics Within ROS 24

4.2 Concept of Services Wssithin ROS 25

4.3 Actions in ROS . 25

4.4 Planning Scene Monitor in MoveIt! 26

4.5 Overall Concept of MoveIt! . 27

4.6 Setup Assistant of MoveIt! . 28

4.7 PCL Point Cloud Viewer . 30

4.8 PCL Sample Point Cloud . 31

4.9 PCL Cluster of Sample Point Cloud 31

4.10 Overview Baxter’s SDK . 32

4.11 Asus Mounted on Baxter’s Head 33

4.12 Overview Baxter’s Sensors . 34

4.13 Detailed View of Baxter’s Endeffector. 35

4.14 Overview of JTAS From Baxter’s SDK 35

5.1 Conceptional Overview of 3-TIER Architecture 38

5.2 Types, Classes, Predicates, Functions in Order Picking Domain 40

5.3 Example for Initial State . 43

5.4 Example for Goal State . 44

5.5 Skill moveBoxFromLevelToTray 47

5.6 Skill moveBoxFromTrayToToLevel 48

5.7 Skill graspItem . 49

xiii

List of Figures

5.8 Detect Handle Skill Primitive 50

5.9 Detection Part of Detect Handle Skill primitive 51

5.10 Pinhole Camera Model . 52

5.11 Poses Detected by DetectHandle 53

5.12 Grasp Handle Skill Primitive 54

5.13 Grasp Handle Visual Servoing Routine 55

5.14 Move to Support Pose Skill Primitive 56

5.15 Support Pose with Respect to Camera Frame 57

5.16 Baxter Maniputlating Box . 60

5.17 Pull Box Skill Primitive . 60

5.18 Move Box Skill Primitive . 61

5.19 Move Box Trajectories From Level To Tray 63

5.20 Deliver Box on Tray Skill Primitive 64

5.21 Turn Box on Tray . 66

5.22 Release Box’s Handle on Tray 67

5.23 Detect Item Skill Primitive . 67

5.24 Inspect Box Poses . 71

5.25 Inspect Box Poses (Detailed) . 72

5.26 Baxter Inspecting Box . 72

5.27 AR Tag . 73

5.28 Grasp Item Skill Primitive . 74

5.29 GraspIt! - Collision Aware Grasp Planning 75

5.30 Deliver Item Skill Primitive . 76

5.31 Grasp Item Skill Primitive . 77

5.32 Pushing Box Into Level . 78

5.33 General HSM for 3-TIER Architecture 80

5.34 General Skill of the PlanExecution State Machine 81

6.1 Objects in Current Setup . 85

6.2 Implementation of Top Level State Machine 86

6.3 Overview of Functionalities Skill Primitives Use 89

6.4 Collsion Scene With Pubished Box 90

6.5 Detected Item . 92

6.6 Sequence Diagram Detect Item Node 93

6.7 Box Model in Blender . 93

6.8 Poses to Verify Box Detection 97

6.9 Collision Scene Sensed and Real 98

xiv

List of Figures

6.10 Sequence Diagram Grasp Handle Node 101

6.11 GraspIt! ROS Nodes . 105

6.12 Grasp Visualization in RViz . 107

7.1 Handle Detection Evaluation 110

7.2 Grasp Handle . 112

7.3 Top View Support Pose . 113

7.4 Pull Box . 114

7.5 Moving the Box . 115

7.6 Moving the Box . 116

7.7 Item Detection . 117

7.8 Box Detection Environmental Setup 121

7.9 Evaluation Box Detection Pose 1 - Pose 7 122

7.10 Evaluation Box Detection Pose 8 - Pose 15 123

7.11 Item Poses Inside the box . 123

7.12 Grasp Item Evaluation Left Middle Pose 124

7.13 Grasp Item Evaluation Right Middle Pose 125

7.14 Grasp Item Evaluation Upper Left Pose 126

7.15 Grasp Item Evaluation Lower Left Pose 127

7.16 Grasp Item Evaluation Upper Right Pose 128

7.17 Grasp Item Evaluation Lower Right Pose 129

7.18 Grasp Item Evaluation Upper Middle Pose 130

xv

List of Tables

5.1 General Skill . 39

5.2 Skills for Order Picking Problem 41

5.3 Skill primitive composition . 46

7.1 Evaluation Grasping Item - Left Middle Pose 124

7.2 Evaluation Grasping Item - Right Middle Pose 125

7.3 Evaluation Grasping Item - Upper Left Pose 126

7.4 Evaluation Grasping Item - Lower Left Pose 127

7.5 Evaluation Grasping Item - Upper Right Pose 128

7.6 Evaluation Grasping Item - Lower Right Pose 129

7.7 Evaluation Grasping Item - Upper Middle Pose 130

7.8 Baxter Gripper and Schunk Gripper in GraspIt! 132

xvii

1 Introduction

Industry 4.0. This is one of the keywords, when we talk about the next
level of production. Industry 4.0 stands for the 4th industrial revolution.
It promises cost reduction through self organizing and self optimizing
processes. It addresses the needs of high quality products, which are also
highly customized, but still ready for mass production. These are products
where the customer can select the base product with different options for
specific parts of the product. It would not make sense to store all possible
combinations of items for the product. But to assemble the base product on
demand, when the customer orders that specific variant of the base product.
Expressions which come along with the 4th industrial revolution are: Internet
of Things or Big Data. All these technologies are used by one center part of
Industry 4.0, namely the Smart Factory.
Smart Factories are intelligent and connected with other factories and cus-
tomizers. So these connections affect the supply chain as well as the product
line. Through interconnection with other factories, these will be self organiz-
ing systems. This leads to optimized processes and as a consequence to cost
reduction. The connection to customizers promises customized products
within a mass production. In order to cope with this new type of products,
robots will assist workers. They will no longer be only in an automatized
process but they will assist human as coworkers. For example they can assist
in lifting heavy goods, they can be used in too dangerous zones for humans,
or they can support workers in monotonous working steps. If robots can
overtake such tasks completely autonomously, human forces could be used
for more demanding tasks.
Within the next section we talk about the motivation, the goals we achieve
and their challenges. Further we give a brief overview over the thesis and
the approaches we contributed to.

1

1 Introduction

1.1 Motivation

Our work contributes to the field of smart factories by developing an
assisting robotic order picking system. This is a new generation of industrial
robotics, where robots can operate in human environments. In a warehouse
system items can be be stored in larger transport boxes. The transport boxes
again can be in shelves to save space. So if a specific item should be picked,
first the transport box needs to be pulled out of the shelf and then the item
can be picked and delivered. This procedure is called order picking. For
items with a moderate frequency this type of picking is usually done by
hand, which is a monotonic and time consuming task. In our scenario we
tend to automize that task.
Our approach will be used in the production of customized products. When
the customizer orders a product, the robot fetches the right parts at its
working station and places it at a delivery point. The picked parts can then
be delivered to the next processing station where either human workers or
robots further assemble the single parts, or even pack it for delivering the
good.
One can argue that those systems already exist in an automatized process.
But there are two main, novel aspects to pick out, which makes this system
such an interesting Industry 4.0 application. First, the robot can work and
operate within an environment designed for humans. It operates fully
autonomously and can adopt to changes in the environment. Secondly,
there is no cage around the robot. A human can safely work side by side
with the robot without being in danger.
In Figure 1.1 a manual order picking station is shown. A worker picks items
which are stored in transport boxes at his working station, or delivered by
a robot shuttle. The worker places the picked item in a transport box and
hands the box over to another robot. Our approach can be used in this kind
of scenarios. It can take over the tasks of the worker. This worker can now
be used for more challenging tasks.

2

1.2 Goals and Challenges

Figure 1.1: This figure shows a manual order picking station. c©2016 INCUBED IT - AUS-
TRIA

1.2 Goals and Challenges

The overall goal is to develop a proof of concept application to show au-
tonomous order picking in a humanly adequate warehouse setup with a
two arm robot. This work focuses mainly on these aspects:

1. Design of modular system architecture : A 3-TIER architecture is used
to keep the system as modular as possible.

2. Manipulation of transport boxes: This deals with grasping the handle
of the transport box and pulling it with a single arm. But this also
includes two arm manipulation, when moving the box.

3. Grasping of items
This includes online grasping point calculation with collision aware-
ness. Because grasps are calculated online, the objects need not be
known in advance. Only the pose and its shape need to be estimated,
as well as the collision scene around the object, which should be
grasped.

3

1 Introduction

4. Perception
The perception pipeline is one key issue in the system. We need to
percept the environment to detect obstacles, which should be avoided
during arm movements and manipulation of objects. Further transport
boxes need to be detected first before they can be manipulated and
also the items pose need to be precisely determined before it can
be grasped. Large errors in the perception pipeline would lead to
unsuccessful manipulation and grasping tasks.

The design itself is challenging to keep it modular and also portable to
different hardware setups. Further the definition of skills and skill primitives
need to be balanced in a way, that primitives can be reused in different skills
but also not too granular to produce a huge overhead in programming skill
primitives.
Problems in manipulation and grasping arise due to various reasons. The
main problems in manipulating and grasping object is the inaccuracy of
the used robot Baxter. So it happens quite often that actions are planned
correctly, but they fail because Baxter is not able to perform the computed
movements. So the design of recovery behaviors is needed. Through these
recovery behaviors many actions which fail at the first time, could be
successfully completed after a recovery and another trial.
Planning collision aware grasps ensures at least during the picking itself the
robot does not collide with the environment. At the first glance it seems to
be an overhead but in this way we ensures, if the grasp is precisely executed,
that the robot is able to grasp the object.

1.3 Contribution

In this work we present a proof of concept implementation of autonomous
order picking that can be easily integrated in industry 4.0 applications.
We show the whole planning queue as well as a system for the successful
execution of the planned tasks on a physical system.
Further we show online grasp planning with collision awareness. We point
out that no predefined grasps are used or selected. In order to plan the
online grasps, we extend the GraspIt! framework. We include a parallel jaw

4

1.4 Outline

gripper model in the framework. In order to proove this model we added
Baxter’s parallel gripper and the Schunk WSG 50 gripper to the framework.
We also implement the physical model for evaluating grasps on different
objects. Further we make available a ROS wrapper for GraspIt! including
an Eigengrasp planning interface. This implementation is developed and
tested under Ubuntu 12.04 and ROS Hydro.

1.4 Outline

The following sections are arranged as follows. In Chapter 2 we introduce
the order pricking problem in a formal way. Further we show a use case for a
better understanding of the task. In the Chapter 3 we discuss related research
in that field. This includes the field of high-level planning, grasping and
perception. In the end of this section we summarize already existing systems
and similar approaches in literature. Because this system includes many well
investigated problems, we extend some frameworks to concentrate on the
goals described in the section 1.2 before. This prerequisites are presented in
Chapter 4. This includes a robotic framework, as well as existing approaches
for motion planning and execution. Following we describe existing grasping
and perception frameworks. At the end of this chapter we describe also the
robotic platform we use for our system. In Chapter 5 we outline the design
of the whole system and all design decisions taken. The different parts of
our system are described in detail. This is followed by the description of the
implementation in Chapter 6. Here the implementation is described using
class diagrams. The system is evaluated and the results are presented in
Chapter 7. The last parts include the conclusion of the thesis in Chapter 8

and outlook for future work in Chapter 9.

5

2 Formal Problem Description

Within the the first section 2.1 of this chapter we define all objects which
appear in the environment. Further the used robot is defined, with a spe-
cial concentration on its robotic arms. Primarily this section contains all
physical objects, but also places and functions which are used. For a bet-
ter understanding of the problem a typical use case is described in the
section 2.2.

2.1 Environment

Given is an empty three dimensional (3D) space E containing a single floor
plane P. A 3D pose is assigned to each object within E through the function
P. Each pose is a 3D pose given in the world frame.

A set of shelving units is defined as SU = {SU0, SU1, · · · , SUn}. All units
have a predefined pose pSUi = P(SUi). The number of shelving units is
defined as su = |SU|. The position of a shelving unit is given through the
coordinates on P (so the z-coordinate will be 0). The orientation is defined
as the normal to the front of the shelving unit ni. SUi has properties of
width wi, height hi and depth di, which describes the geometric shape of
the unit. Further each unit has mounted equal shelves in different heights.
A specific height is defined as hi,j, where i identifies the shelving unit SUi
and j describes the height in meters of the top edge of the shelve. The total
number of shelves of one shelving unit SUi is defined as #si = SUi → N.
The amount of shelves of a single unit SUi is defined as si. Further a set
of levels is defined as L = {L0,0, · · · , L0,n, L1,0, · · · , L1,m, · · · , Lj,0, · · · Lj,r}.
The first index identifies the shelving unit and the second index belongs

7

2 Formal Problem Description

to a single shelf within the unit. The total number of levels is defined as
#L = ∑su−1

i=0 si. In Figure 2.1 a single shelving unit SUi is shown.

Figure 2.1: Single shelving unit SUi mounted on the plane P with 4 shelves mounted on
the levels Li0, Li1, Li2 and Li3. The geometric shape is described through wi, di,
and hi. The orientation is described through ni.

Further E contains a single Tray Ra. The tray has a fixed pose pRa = P(Ra),
where the top plate is mounted parallel to P. So the orientation is defined
through the normal on the top plate na. The tray itself is defined through
the width wa and depth da of the top plate, and the height ha in which the
plate is mounted. In Figure 2.2 the tray Ra is shown.

A set of transport boxes is defined as B = {B0, B1, · · · , Bn}. Each box is
described through a minimum bounding box with width wb, depth db and
height hb. The starting pose of each transport box is uniquely identified
through a level Li,j. Each box has a handle on its’ front ends. The orientation
of a box is the normal nb on its front end, which is nearer to the opening of
the containing shelving unit SUi. The number of transport boxes is limited

8

2.1 Environment

Figure 2.2: The dimensions of the top plate of the tray Ra are given with the depth da, the
width wa and the height of Ra is ha. The orientation is described through the
normal of the top plate na.

due to the number of levels #B ≤ #L. In Figure 2.3 a transport box Bi is
shown.

Furthermore a set of item types is defined as T = T0, T1, · · · , Tn, where the
number of item types is limited through the amount of transport boxes
#T ≤ #B.A set of items is defined as It = It0, It1, · · · , Itn. Each item is
assigned to one item type.

A robot Ro is defined as a subset of E. A set of kinematic links L = {L0,
L1, · · · , Ln}, a set of kinematic joints J = {J0, J1, · · · , Jn} and a set of
gripping devices G = {G0, G1, · · · , Gn} is given. A gripping device Gi has
two control parameters: open and close. Additionally the robot has assigned
a predefined pose pr = P(R), which is defined through the first link L0 .
A robotic arm Ai is defined as a kinematic chain of kinematic links which
are connected with joints. The last link of a chain is called end effector. The
pose of the end efffector is given thorugh the kinematic chain. A relation
between links and joints is defined as C : J→ L×L. The last link Li of Ai
can be a gripping device, Li ∈ (L∩G). A non empty set of Ai is mounted
on Ro in a way that one base link (e.g L0) is shared among the kinematic
chains. (see Figure 2.4). A non empty set of sensors S = {S1, S2, · · · , Sn} is

9

2 Formal Problem Description

Figure 2.3: Transport box Bi, with dimensions wb, db and hb and orienta-
tion nb. Source http://www.auer-packaging.at/images/products/huge/

eurobehaelter-geschlossen-AUER--eg43-17.jpg

attached on the robot(e.g. cameras, infrared sensors, sonar sensors, · · ·).

We assume a consistent warehouse management. This means that a transport
box Bi contains a subset of It, which are all of the same item type Ti. In
this warehouse management the possible location of a transport box Bi is
loci = L∩ {Ro} ∩ {Ra}. The transport box can either be on a defined level
Lij or the robot can manipulate it or it is arranged on the tray and the robot
manipulates its content. Until the robot has not manipulated a transport
box, its place is unique defined by a level Li,j. So #B must be limited by #L,
as mentioned before. If the robot finishes manipulating the content of Bi, it
returns the box to its previous level Li,j
Further a management system has knowledge about how many transport
boxes are in the warehouse and where to find them (on which level Li,j they
are). It also holds information about what kind of item type and how many
items are stored in each box. Further a special transport box D is defined
which is not member of B (D /∈ B). This box stores any items which need to
be delivered. So it can hold items of different item types. The pose of D is
defined through the robot. It is near to Ro, so that it can place any selected
items into D.

10

http://www.auer-packaging.at/images/products/huge/eurobehaelter-geschlossen-AUER--eg43-17.jpg
http://www.auer-packaging.at/images/products/huge/eurobehaelter-geschlossen-AUER--eg43-17.jpg

2.2 Use Case

Figure 2.4: Two robotic arms A1 and A2 are mounted on the robot Ro. The shared base link
is L0. Arm A1 is a kinematic chain of L0, J0,L1, J1,L3, J3,L5, J5, L7, J7,L9, J9 and
L11. Arm A0 is a kinematic chain of L0, J0,L2, J2,L4, J4,L6, J6, L8, J8 and L10. On
arm A1 the end effector link L11 is a gripping device, whereas on arm A0 the
end effector L12 is not a gripping device.

2.2 Use Case

In this section a typical usecase is descirbed for a bette understanding.

1. order
The order O is defined as set O = {o0, o1, . . . , on}. Where oi is defined
as tuple < ni, Ti >. This tuple defines ni items of type Ti . So the order
O = {o0, o1}, o0 = < 2, Ti >, o1 = < 4, Tj > means: ”Get two items of
type Ti and four items of type Tj“.

2. warehouse management system
The system provides the information on which levels the transport
boxes are, which contain the wanted item types. Further it has to check
that enough items are in the transport box or if another transport box
should be chosen which contains the same item type. It provides the
information: ” two items of Ti are in box Bi on Lr,t and four items of
type Tj are in box Bj on Ls,k”

11

2 Formal Problem Description

3. delivering the good
The robot has to move towards the shelving unit SUr, which stores the
first transport box Bi. Next it must lift Bi out of SUr and bring it to the
manipulating place, the tray Ra. Then it has to pick two items out of bi
and place it into the delivering box D. Further it returns the transport
box Bi to its initial level Lr,t and moves towards the next shelving unit
SUs. Again it takes Bj from the level Ls,k and puts it on Ra. Now it
picks four items and places it into D. The robot returns Bj too. The
last step is delivering D.

12

3 Related Research

3.1 High-Level Planning

In literature numerous works about high-level task planning for robotic
systems exist that make use of a set of simpler system capabilities. This
system capabilities are called skills. Dividing a complex task in such skills
has multiple benefits like a good software portability and easier reuse of
software capabilities.
Pederson et al. shows in [1] this concept. Here single complex task is di-
vided into a sequence of smaller subtasks. These subtasks are the so called
skills. These are the capabilities the system has. The authors call them
the ”fundamental building blocks”[1], which can be easily ported to other
robotic systems. Further any other complex task can be executed easily
without reprogramming the whole system, but with reordering skills only.
The authors define a single skill containing a precondition, which checks if
the skill can be executed. This system has an execution monitoring which
surveys the outcome of each primitive. The evaluation of the successful
outcome of a skill is similar to our approach, although the description of a
single skill is not that abstract than mine.
So this works describes how intuitive robots can be reprogrammed by also
unskilled persons. This indicates a good abstraction of the skill layer. In this
paper [2] the authors describe the integration of robot skills on different
robot platforms and how portable a system consisting of skills is. Peder-
son et al. mention that a complex task can be performed, even if having
only a very basic set of skills. A skill is here described as a combination of
primitives, but the authors do not give a strict definition on a skill primitive.
Again a program is defined as sequence of skills, which can be planned but
can also be generated by a user. Within [2] the advantage of modularity and
the abstraction of tasks is clearly shown.

13

3 Related Research

In both papers [1], [2] they concentrate on skills and their benefits for easily
reprogrammable robots. This work [3] of Rodiva et al. is about the division
of a complex task into different layer. They introduce into a 4-TIER structure
with the same idea of abstraction for skills and skill primitives as in the
previous papers. The layers are structured as follows: the lowest level is
called device layer which includes the hardware abstraction, next is the
primitive layer which contains actions and perceptions, followed by the skill
layer for object abstraction and the last layer is the task layer which is for
planning. This structure ensures the portability through the lower two layers
and the abstraction for task planning through the higher two layers. This
works uses the abstraction also for easy human-robot interaction.
So all these papers show a clear division of tasks, skills and primitives and
their portability and how easy new complex tasks can be executed. But
the focus is on human-robot interaction. The human in the loop defines
a new task through reordering skills. The work of Huckaby et al. [4] fo-
cuses on artificial intelligence (AI) planning. Within this paper they want
to automate task modeling and the execution performed by a robot. So a
taxonomy defines the skill primitives and robot specific skills. Higher level
tasks can be build using the knowledge of this taxonomy. The authors see
the advantage of AI planning methods in reducing the constraints on users
and in improving the automation process. They divide the problem into a
model space, which represents all the capabilities of a robot and a process
space, which describes the environment and the goal. This separation refers
to the planning and problem domain of the Planning Domain Definition
Language (PDDL) [5]. They proposed PDDL for AI planning because it is
a standard language for planning tasks. Within this work the advantages
of not having a human in the loop were pointed out. Such ’programmers’
need also deep knowledge on the system and intensive training. Further
humans need not stick to formal specifications like preconditions or effects.
So there is no guarantee if the plan succeeds or if it is the best one. Within
this work information about skills and their primitives is gained from an
ontology. In our work we use an inherent knowledge about skill primitives
and their composition in skills. They showed that PDDL is a good choice for
an abstract planner. They use trajectory constraints to ensure the temporal
order of subgoals (specific in PDDL3 [6]).
So within [3] the authors focused on the high-level itself and not on skills or
their primitives. But they assumed that all skills will always succeed. But we

14

3.1 High-Level Planning

operate within a real environment, with real hardware. Some actions will
fail and so we need at least any strategy to detect failures and perform recov-
ery. Within [7] Okada et al. introduced a high-level which controls systems
in real environment using an advanced hardware/software architecture.
They transfer the high-level description from an AI planner to a behavioral
state machine. The detection of a failure is done by a vision system. Three
different types of recovery are defined within this paper: no recovery, local
recovery and global recovery. They describe no recovery behavior as follows:
performing all actions, evaluate if it succeeded and if not perform all actions
again until it succeeds. Local recovery is defined as checking after each action
if the expected outcome occurs and if not, perform the action again until
it succeeds. Global recovery means performing another action as recovery
behavior and call he first action again. So within this work the authors had
the opportunity to check if a single skill succeeds through a vision system.
We followed a similar approach with a local recovery behaviour but at a
lower level. We performed the local recovery at the skill primitive layer. We
believe that it is easier to recognize a failure earlier and can perform reactive
behaviors more easily. Further in [7] they proposed infinite retries for local
recoveries. For our system this does not make sense because at most failures
the environment changed so much that skill primitives would not be able to
be performed any more (e.g. loses box during manipulation). They proposed
a really good abstract way of failures of actions and how they convert the
output of the planner into a state machine. We use a different state machine
pattern from [8], but we could benefit a lot from this idea.
The following papers deal with AI planning. In [9] the author first discusses
the GRAPHPLAN algorithm (fur further reading please see [10]) and its
optimizations. The author sees the GRAPHPLAN algorithm as a basis for
encoding planning problems into propositional SAT. He explains how the
graph expansion needs to be adopted and how the solution is then extracted.
The first part focuses on the STRIPS1 representation where actions are lim-
ited to conjunctive and quantifier free preconditions and effects. Following
he describes expansions to GRAPHPLAN, so that disjunctive precondition,
conditionals effects and universal quantifiers can be used. Further the author
gives an overview of the compiling of planning problems into propositional

1STRIPS planning is refered in literature as classical planning for restricted state-
transition-systems, see page 17 in [11]

15

3 Related Research

formulas, so that propositional satisfiability problem (SAT) algorithms can
be used for solving them. Further he shortly summarizes SAT planners.
The author shows also a nice example of AI planning using STRIPS like
formalism in a NASA space shuttle.
The fast-forward planning system was the best performance planner in th
artificial intelligence planning systems (AIPS) competition in 2000 and is
presented in [12]. It performs a search in state-space using a heuristic which
guides the search. It tries to escape local minima and plateaus through a
systematic search. The planner is tested on different planning benchmarks,
where it clearly outperforms other planners. However, the author describes
these benchmarks as ’simple’. So he tests the planner on complexer prob-
lems too and compares it to other planners. In these scenarios the other
planner perform much better. The presented one gets stuck in large local
minima where it cannot escape with systematic search.
In [13] also a planner is described, which participated at the AIPS competi-
tion. This planner supports features like soft constraints and preferences, as
well as fluents. The fluents feature allows to assign numbers to variables,
instead of only true or false (like it is the case for predicates). Usually this
feature is used to assign costs to different action. However, because of the
fluent feature the planner is very interesting for our work. It provides the
opportunity for counting.

3.2 Grasping

Grasping is one essential part in object manipulation. In literature different
grasping strategies, grasping poses and evaluations are discussed.
In [14] three special poses during a grasping action are defined. The pregrasp
pose is defined as final pose of the endeffector for grasping the object but
being an offset away from the object. The grasp pose is reached, when the
endeffector needs to close the gripper and reliably grasps the the object.
After grasping the object and moving the endeffector to a specific pose. This
pose is called postgrasp pose. Within this paper the grasps and pregrasps are
recorded manually and saved in a database. Therefore the compliant robotic
arm is moved in the pregrasp pose and the grasp pose. Only the selection of
grasps is performed online. Chosen grasps and their pregrasps are then

16

3.2 Grasping

sent to the inverse kinematic (IK) solver to move the arm first towards the
pregrasp pose and then to the grasp pose. Important to mention is that more
than a single grasp is sent to the IK solver. We pick up this idea because
many grasps have similar quality measures, but one grasp can be easier
reached than another. If not too many grasps are sent to the IK solver, they
can be tested if a solution exists very fast.
Whereas in [14] human taught grasps are saved, the next work [15] also
uses predefined grasps but not human taught ones. Their online selection
focuses also on feasibility of a grasp but also on the stability. In order to
calculate a grasp offline the geometric model of the gripper and the target
object are needed. Then the object model’s surface and valid endeffector
parameters are sampled. From these samples a valid manipulator pose is
calculated and a force closure score is computed for each grasp. A grasp
scoring function is defined to rank the grasps online. This score takes into
account the former computed force closure score, the local environment
of the object (e.g. how far are other objects away from endeffector when
performing the selected grasp) and the robot’s relative pose (prefers grasps
where palm faces away from robot).
Within the work of [14] and [15] a model exists of the known object which
should be grasped. In [16] they describe an approach to calculate grasps
for unknown objects. This planner uses the clustered point cloud of an
object and computes grasps using a heuristic based on shape and local
features. One important observation within [16] is, that good grasps of
human designed objects are along the object’s principle axis. Those grasps
are ranked online. The second grasping planner which is presented in [16] is
a recognition based database planner. Grasps are planned on mesh models
of known objects in advance and then chosen if object is recognized. For
this approach GraspIt! [17] is used, which uses the Eigengrasps from [18].
Here the basic idea is taken from human grasps. It is shown that after
recording human performed grasps and running a principle component
analysis (PCA) on it, that circa 85% of all grasps are a linear combination of
the first and the second principle component. These components are referred
as Eigengrasps within [18]. Each endeffector has predefined contact points,
where the grasped object gets in contact with the endeffector. Ciocarle et al.
defined an energy function which brings these contact points in contact with
the object. This energy function is minimized using simulated annealing.
Due to the ability of the energy function to deal with obstacles this planner

17

3 Related Research

can be used to generate valid grasps online too. We appreciate the idea of
online planning. All obstacles and the graspable object can be considered.
The grasps can be calculated online without defining a complex ranking
function. The obvious drawback in online grasp computation is the time
consumption.
In [14] - [18] errors in sensed poses of objects and obstacles or inaccurate
execution of motion are not taken into account. In order to overcome these
errors some work suggests reactive grasping. In [19] an abstract framework
for grasping is presented. This framework handles with manipulation and
grasping tasks including how correction of these tasks can be achieved
using finite state machines (FSM). In [16] grasping results are improved
using reactive approaches. Within this work the information sensed from
tactile sensors is used to perform reactive behaviors to overcome small
errors in perception. But many platforms have no tactile sensors and so
in [20] a vision control loop is used. Here a single camera observes both
endeffector and object which should be grasped. The authors distinguish
between a so called reaching phase which contains the movement of the arm
towards the object and the grasping itself. The interaction phase is about
the manipulation of the object. A position based visual servoing closed
loop approach is used to successfully perform the reaching phase. This
closed loop approach performs also very good if the robot’s movements
are inaccurate. We pick up the vision control loop idea from [20] to grasp
the handle of the transport box. The camera which senses the environment
is mounted on the endeffector. So the gripper and the object is observed
simultaneously. In our case where both pose estimation of the handle and
movements seem to be inaccurate, this approach works out fine. Although
within this setup the relative error can only be calculated.
In [21] an approach is presented where grasp and motion planning are
combined. In particular a probabilistic planning approach is presented
which is a variation of a rapidly exploring random tree (RRT). A tree is built
up which consists of collission free and reachable configurations for the arm.
Some nodes are tested if the center point of the endeffector can be moved
towards the object and a stable grasp can be performed. The advantage of
this method is the combination of motion planning, IK and grasping point
calculation. It was pointed out that finding grasps online has the benefit
that it is not limited to the finite set of predefined grasps. Although this is
a really different approach, they show that online grasp computation has

18

3.3 Perception

great advantages. So we decide to compute grasps online, but separate it
from IK and motion planning.

3.3 Perception

Due to the introduction of cheap 3D cameras, the environment is sensed
as point cloud. Point clouds of known objects can be compared with the
sensed point cloud of the environment much more easily.
For object recognition and object’s pose determination point clouds of exist-
ing models can be matched with the sensed environmental point cloud. One
idea how they can be matched is the iterative closest point (ICP) algorithm
proposed in [22]. This algorithm tries to minimize the distance between
points. Therefore a distance and minimization function need to be defined.
The minimization function calculates the rotation and translation of the
point cloud for the next iteration. The main disadvantage of this algorithm
is the convergence against local minima. One strategy to overcome local
minima is proposed in the same work [22]. Creating different initial states
and test all the different states for performing in the best way. The advantage
of the ICP is that neither features have to be calculated, nor any surface
normals or curves and their derivates. Nowadays many different variations
and implementations of the ICP exist (see [23] for a comparison of different
implementations). Because this algorithm gets stuck in local minima easily,
it is not appropriate for our purpose in that way.
The next paper [24] follows a different approach. It extracts features and
tries to fit these features and not the whole point cloud. In [24] the point
feature histogram (PFH) is introduced. The local 3D features within the
k-nearest neighbor (KNN) of a point are extracted. Within the PFH all
neighbors are fully connected and the computational complexity of n points
in a point cloud is O(n2 · k) for k neighbors. Rusu et al. therefore presented
a simplified PFH version called fast point feature histogram (FPFH) with
a computational complexity of O(n · k). There the neighbors are not fully
connected and some neighboring pair values can be reused. The authors also
present an alignment method, namely the sample consensus initial align-
ment (SAC-IA). They sample an amount of correspondences and rank them.
They do not try out all combinations and use a non-linear optimization

19

3 Related Research

technique. Although this algorithm works quite good for objects containing
many features, we cannot use it for objects with rare features. The algorithm
aligns the objects not accurate enough.
In [25] a different descriptor is presented which is an extension of the FPFH.
This descriptor includes also information about the view point. For this
descriptor a preprocessing step is very important, so that objects are al-
ready segmented before applying the descriptor. Within [25] they cut out
all planes and performed Euclidean clustering. But there need to remain
enough points within the cloud in order to compute valid descriptors. The
idea of pre-segmenting the objects is really good because this can safe a lot
of computation time. But this is not always possible in clustered scenes or
objects with flat surfaces.
Within [26] a coarse to fine approach is presented where the FPFH is used
for coarse registration and the ICP for refining this registration. The authors
align point clouds of human faces within in a digital face inspection frame-
work. The intention is that dentists can monitor faces during orthodontic
treatments. In the first step a preprocessing is performed. This includes
removing outliers and reducing the resolution of the point cloud through
down sampling. The next step is the coarse registration using FPFH features
for aligning point clouds as initial alignment. The last step is fine regis-
tration which uses the alignment of the coarse registration and then uses
the ICP for refining this registration. The coarse to fine approach is a good
idea. We follow a similar approach to register point clouds of known objects.
Using only the coarse alignment delivers too inaccurate poses. But using
the coarse alignment before the ICP prevents the ICP to get stuck in a local
minima. The combination of both algorithms works out fine for our object
recognition.

3.4 Integrated Systems

In [27] a mobile bin picking application is presented. The task of the robot
is navigating towards a transport box which includes many pipe sections,
grasping one single item and returning it to a process station. The high level
is implemented as FSM which contains following states: navigate towards
transport box, cognition phase (transport box and items are recognized),

20

3.4 Integrated Systems

a pick up phase, navigate to process station and placing object. For object
recognition a RGB-D camera is used and three dimensional (3D) data
is reconstructed from different views on the scene. The transport box is
recognized using an iterative closest point algorithm (ICP) and the items
are recognized using a coarse-to-fine registration. The grasps are calculated
offline through sampling shape primitives. The online selection of feasible
grasps is based on a scoring function which includes information about a
collision free approach and about the IK. The linear bidirectional kinematic
version of motion planning by interior–exterior cell exploration (LBKPIECE)
from [28] is used. The specialty about motion planning while picking items
is that small collisions with other items are allowed. Otherwise no successful
motion plan would have been found.
In [29] a software architecture and their implementation for grasping objects
is presented. Some of these concepts are used in our work too. The collision
environment is a 3D occupancy grid which is produced from a point cloud,
but the robot parts are filtered out. Known and recognized objects are
represented as geometric primitives or as mesh models of the objects. Here
the collision scene is recorded when the arms are moved out of the work
space of the robot. So the whole environment is seen and nothing can be
hide behind the arms. For grasp planning two modules are used. One for
known objects, which uses precalculated grasps. The second one is for
unknown objects, which uses the shape and local features of the objects.
A sample-based motion planner from the Open Motion Planning Library
(OMPL) [30] and a collision-aware IK is used. The planned trajectory is
executed and monitored by an extra controller. Due to noisy sensors and
inaccurate object pose detections a reactive grasping approach is introduced.
This relies mainly on information gained from tactile sensors.
An extension of this work is published in [16] and some of these concepts
are extended. Here Chitta et al. present a pick and place approach where
they have to deal with known and unknown objects, cluttered workspace
and noisy sensor data. The environment is represented as OctoMap [31]
using the data from a 3D sensor. Objects are tracked and recognized using
2D sensors. Those objects are then represented as meshes. Known objects
have a semantic representation too, which is important for making high
level decisions. For global planning a correct and persistent model of the
environment is needed. In order to ensure a collision free motion, the
moving arm is actively monitored by the 3D sensor. For local planning a

21

3 Related Research

more reactive model is needed and so the information from tactile sensors
is used. Again motion planners from the OMPL are used. Some of the
presented concepts are implemented in open source projects called MoveIt!
and GraspIt!, which we discuss in section 4.2 and section 4.3. We benefit a
lot from this work and can also reuse some parts in order to not reinvent
the wheel.

22

4 Prerequesites

In this chapter we describe concepts and software modules which we
reuse.

4.1 ROS

In [32] the Robot Operating System (ROS) is introduced. This is an open
source robotic framework which is a middle-ware and runs on linux-based
platforms. It provides modules for hardware abstraction, driver for hard-
ware components, communication between processes and a management
for different packages. Most concepts are shown in [32]. The latest documen-
tation can be found at http://wiki.ros.org . In the following paragraph
the basic concept of ROS are introduced.
Nodes are processes. The communication between single nodes is via mes-
sages. A message is a clear defined data structure. This communication
between processes is based on the publisher/subscriber pattern. Nodes
sends messages via topics. A topic can be understood as named communi-
cation channel. Nodes publish messages on topics and any other node could
receive those messages when subscribing to the topic. This communication
is a way of broadcasting messages within the whole system. There can be
multiple nodes publishing on the same topic. Sometimes the processing
flow of two nodes need to be synchronized via a request of one and a
reply the other node. A service provides this core functionality. A node can
provide a service under a unique name. Another node sends the request
and waits blocking until the service replies. The ROS master is the core of
the running system. It needs to be started before any other node. It provides
naming and registration services, keeps track of publishing and subscribing
messages and surveys service requests and replies. In Figure 4.1 the concept

23

http://wiki.ros.org

4 Prerequesites

of publishing and subscribing to a specific topic is shown. In Figure 4.2 the
service request and service reply scheme is shown.

(a)A node is the publisher if it adver-
tises a topic. At the beginning it
registers the topic at the master.

(b)A node which wants to subscribe
to a specific topic is called sub-
scriber. First it looks up the topic
at the master.

(c)The master takes care of directing
the advertised topic to the sub-
scriber

Figure 4.1: This figure describes the publishing and subscribing to a topic. Concept taken
from http://wiki.ros.org

The parameter server is used to store static values like configuration pa-
rameters. This server can be accessed during runtime by all nodes. All
bold features are the core functionalities of ROS. A preemptable task is still
missing. This is implemented in another library called actionlib. One node
implements the server application and any other node can implement the
client application, which calls the server and starts the execution of the task.
In Figure 4.3 the concept of actions is visualized.

24

http://wiki.ros.org

4.1 ROS

(a)At the beginning the node regis-
ters the service at the master.

(b)A node which wants to use this
service is called service client.
First it looks up the service at the
master.

(c)Then client establishes a connec-
tion with the service. After a
handshake the client sends the re-
quest and waits for the response
of the service

Figure 4.2: This figure describes how a service client establishes connection to a service.
Concept taken from http://wiki.ros.org

Figure 4.3: The concept of actions in ROS. Within Node B the action server callbacks (cb) are
implemented within the user code. The callbacks are called by the action server
when the action client communicates via the ROS communication channels. The
user code interacts with the server directly using function calls. In Node A the
user can start an action using function calls from the action client. Information
about the state of the action can be accessed using function calls or implemented
as callbacks. Concept taken from http://wiki.ros.org

25

http://wiki.ros.org
http://wiki.ros.org

4 Prerequesites

4.2 MoveIt!

In [33] and on http://moveit.ros.org/ MoveIt! is presented. It is a frame-
work for manipulating robotic arms. It also wraps some external libraries
and ROS packages, so that users can easily access the whole manipulation
pipeline through defined interfaces. It provides an environmental representa-
tion, includes libraries for motion planning and monitors motion execution.
The Planning Scene Monitor monitors both: the robot and the environment.
The later builds upon the octomap package [31]. It contains a voxel grid
representation for unknown obstacles and a representation for recognized
objects based on geometric primitives. In figure 4.4 the concept of the Plan-
ning Scene Monitor is shown. The main input of the motion planning

Figure 4.4: The planning scene monitor consists of the state monitor, the scene monitor and
the world geometry monitor. The state monitor keeps track of the current pose of
robot and the poses of the arm links. It uses the information which are provided
by the robot sensors. The scene monitor gains information from the robot’s 3D
sensors. It builds up the voxel grid and refreshes it continuously. The world
geometry monitor maintains the information from all geometric primitives
which were registered at the planning scene. The user can access the planning
scene through defined interfaces (e.g. introducing new geometric primitives or
attaching it to a robot link). The concept is taken from http://moveit.ros.org/

module are the planning scene, a kinematic and semantic description of the
robot. The kinematic information is stored as Unified Robot Description
Format (URDF) and the semantic information as Semantic Robot Descrip-
tion Format (SRDF) on the ROS parameter server. With this information the
motion planning module computes collision free motion plans. On default
OMPL is loaded via a plugin system, but other libraries can be used as well.
After generating a motion plan, the plan gets smoothed and a trajectory is

26

http://moveit.ros.org/
http://moveit.ros.org/

4.2 MoveIt!

generated, which is then forwarded to a controller. This controller executes
and monitors the execution of the trajectory. If an error occurs the controller
aborts the execution. In figure 4.5 the concept of MoveIt! is visualized. The
move group node is the core of the MoveIt! interface. It provides the user
interface, fuses the information from sensors in modules like the planning
scene monitor and interacts with the trajectory execution module. For exam-
ple the move group node provides interfaces to define the pose goal for a
specific link. Then it handles the trajectory planning as well as the trajectory
execution. So if the environment would change during the execution in
the area of the arm, it aborts the movements. MoveIt! provides also the

Figure 4.5: The move group node loads all necessary configuration parameters from the
ROS parameter server. It holds also the planning scene monitor and the motion
planning module. Therefore it gains information from the robotic sensors and
the current robotic state. It provides planned trajectories to the robot controller.
Through the user interface it informs the user about a successful execution of
the trajectory. If an error occurs it reports the error from the controller. Concept
taken from http://moveit.ros.org/

opportunity to integrate other robotic frameworks. If the robot’s description
is in an URDF odr Collada file format, it can be loaded by a MoveIt! setup
assistant, which the sets up the MoveIt! package for the specific robot. A
screenshot can be seen in Figure 4.6

27

http://moveit.ros.org/

4 Prerequesites

Figure 4.6: This figure shows the setup assistant for the Baxter robot. This assistant loads
the robot’s description and generates a MoveIt! package.

4.3 GraspIt!

GraspIt! [17] is a simulation tool for grasp analysis and grasp planning.
Within GraspIt! it is possible to load obstacles, graspable objects and dif-
ferent kind of endeffectors. Because all bodies are defined within files, it is
quite easy to introduce new objects and endeffectors.
If a grasp is simulated, GraspIt! provides real time collision and contact
information. The unit grasp wrench space (GWS) is constructed for deter-
mining the quality of the grasp (grasp analysis). Two quality measures are
introduced: the ε and v measurement. The ε measurement corresponds to

28

4.4 PCL

the minimal ball which fits into the convex hull of the GWS space. The
radius of this ball is the ε measurement. The v corresponds to the volume
of the convex hull. GraspIt! also provides a visualization of the GWS. Due
to the fact that the GWS is a six dimensional space, the user has to choose
three fix axis so that the space can be visualized.
GraspIt! has not only the ability to evaluate grasps but also to plan new
grasps. Within GraspIt! the Eigengrasp [18] approach is implemented. So
new grasps can be planned and immediately simulated as well as evalu-
ated.

4.4 PCL

The point cloud library (PCL) is presented in [34]. A very good documenta-
tion and tutorial can be found on http://pointclouds.org/documentation/.
This library collects algorithms and functionalities for processing point
clouds fast and efficiently. Further it is fully integrated in ROS. PCL pro-
vides the the possibility for recording and loading point clouds but also to
process them in real time. Visualization tools from ROS can be used to show
point clouds online. Nevertheless PCL provides some tools for visualizing
point clouds too.
The following overview is taken from http://pointclouds.org/documentation/.
PCL provides a viewer named PCD viewer. It displays point clouds as can
be seen in Figure 4.7. PCL provides different kind of algorithms and effi-
cient data structures. For example the octree and kd-tree data structures is
implemented.
PCL provides filtering algorithms for noisy data and offers interfaces to
load point clouds from hardware devices like laser scanner or 3D cameras.
When point clouds are not generated artificially, but recorded by hardware
devices they are often very noise. PCL provides different algorithms and
strategies to remove noise or outliers. Points are called outliers if they do
not fit in the statistical characteristics of their neighbors.
In order to compare point clouds, PCL provides different feature extractors
for point clouds. Due to the nature of a point cloud, these feature are 3-
dimensional and computed using information of the k next neighbors (also
referred as k-neighborhood). Beside the feature extractors they also provide

29

http://pointclouds.org/documentation/
http://pointclouds.org/documentation/

4 Prerequesites

Figure 4.7: This figure shows the visualization tool of PCL. It shows the point cloud of the
PCL logo.

so called keypoint calculation. Keypoints are special points in point clouds
which have different features than other points. Such interesting points can
be used as sparse features to represent the point cloud in a compact form.
There are also algorithms for point cloud alignment implemented (registra-
tion), as well as sample consensus algorithms for fitting different models
into point clouds. Such models can be loaded, but there are already com-
puted ones like lines, planes, cylinders and spheres.
In the PCL different kinds of segmentation algorithms are implemented.
So point clouds can be split into sub-point clouds and only sub clouds are
further processed to save computation time. One well known algorithm is
the Euclidean clustering algorithm. In Figure 4.8 a sample point cloud from
the PCL is shown and in Figure 4.9 one of the sub-point clouds produced
by the clustering algorithm.

4.5 Baxter

Baxter [35] is a two arm, collaborative robot built by Rethink Robotics. Each
arm has seven degrees of freedom (DOF). In addition each arm has one
RGB camera and one infra red (IR) sensors to supervise performed grasps.

30

4.5 Baxter

Figure 4.8: This figure shows the visualization of the sample point cloud of PCL

Figure 4.9: This figure shows one cluster which was generated by the Euclidean clustering
algorithm of the sample point cloud shown in Figure 4.8

Different types of gripper can be mounted, like an electrical parallel gripper,
vacuum cup gripper or custom made grippers.

31

4 Prerequesites

4.5.1 ROS support

Baxter is fully ROS supported. Figure 4.10 shows an overview of its software
development kit (SDK). Baxter is delivered with an in-built-computer. On
this computer embedded controller software is running, as well as the ROS
master, motor controller nodes, ROS diagnostics, the transform library (tf)
node and the robot state publisher. The transform library node keeps track
of all frames in the system over time. It can calculate relative transformations
between the different frames [36]. The robot state publisher subscribes to
topics which are related to the robot state (e.g. joint angles) and publishes
this information as tf. Another computer can be used as workstation if ROS
is installed. It communicates with Baxter over ROS networking connection
using defined application programming interfaces (API). So own nodes can
be run on the workstation, or other ROS tools can be started.

Figure 4.10: Overview of Baxter’s software development kit (SDK) and its ROS nodes. Con-
cept taken from http://sdk.rethinkrobotics.com/wiki/Baxter_Research_

Software_Developers_Kit_(SDK)

4.5.2 Sensors, Inputs and Outputs

Baxter provides a number of different sensors. On its head a ring of sonar
sensors is mounted, it has two RGB cameras on its end effectors and one
RGB camera in its head mounted display. We installed an additional RGB-D

32

http://sdk.rethinkrobotics.com/wiki/Baxter_Research_Software_Developers_Kit_(SDK)
http://sdk.rethinkrobotics.com/wiki/Baxter_Research_Software_Developers_Kit_(SDK)

4.5 Baxter

camera on top of its head display to gain 3D information about the environ-
ment. In Figure 4.11 the mounted Asus can be seen from two perspectives.
Buttons and scrolls on Baxter’s arms and buttons on Baxter’s back provide

(a)Asus camera, frontal per-
spective.

(b)Asus cam-
era, side
perspective.

Figure 4.11: This figure shows the Asus on Baxter’s head from front and side position

the opportunity to use them as user input for applications. Information
or user interfaces (UI) can be presented on Baxter’s head display. An ad-
ditional output is the LED ring on Baxter’s head. It can be colored green,
red or anything in between. In figure 4.12 Baxter is shown. For this task
an electrical parallel jaw gripper is mounted on Baxter’s end effector. A
detailed view is shown in figure 4.13.

4.5.3 Arm controlling via ROS interfaces

Baxter’s SDK provides a joint trajectory action server (JTAS) node which is
started on the workstation. This action takes a joint trajectory, which can
be send via a ROS action call from another node (e.g which is using the
move group interface). This joint trajectory provides information of each
joint’s position with a time stamp. Optionally it provides information about
velocity or acceleration. The JTAS interpolates these points and sends a
command to a controller which is running on Baxter. In turn the controller
provides information about Baxter’s state. The JTAS monitors this state and
if any value runs out of its constraints it aborts the trajectory execution. The

33

4 Prerequesites

Figure 4.12: Within this figure Baxter is shown. It can be seen that it has two 7DOF arms
with the scrolls and buttons on the upper arms. On Baxter’s head the sonar
sensor ring, the display with the RGB camera and the 2.5D camera is marked.
The endeffectors are equipped with electrical parallel jaw grippers, a RGB
camera and a IR sensor.

controller on Baxter forwards the commands to a real time motor controller
to guarantee precise execution. This scenario is shown in figure 4.14.

34

4.5 Baxter

Figure 4.13: The RGB camera as well as the IR sensor are integrated in the endeffector. The
electrical parallel jaw gripper could be exchanged by another gripper. On the
gripper two fingers are mounted. The position of the fingers is adjustable for
each finger. The fingers can be exchanged by wider or longer fingers too. The
additional fingers are delivered with the electrical parallel jaw gripper.

Figure 4.14: Overview of joint trajectory action server from Baxter’s SDK and how provided
joint trajectories are executed. Concept taken from http://wiki.ros.org/

joint_trajectory_action

35

http://wiki.ros.org/joint_trajectory_action
http://wiki.ros.org/joint_trajectory_action

5 System Overview

Within this chapter an overview of the Industrial Grasping system is given.
We start with describing breifly a general 3-TIER architecture. Then we
discuss the planning layer. This layer receives information about the skills,
as well as information about the start and the goal state of the environment.
It outputs a list of skills, which leads to successful execution of the given
task, if the skills are executed successfully. Next the execution layer is
discussed, which handles the execution of the list of skills. It relies on the
decomposition of skill into skill primitives. Finally we talk about the skill
primitives in detail.

5.1 Overview of the architecture for the robotic
order picking

Within this secttion a general 3-TIER architecture is described. Moreover the
specialization of this architecture to solve the problem described in chapter 2

is presented. In Figure 5.1 the conceptional overview of a general 3-TIER
architecture is shown. The 3 layers for planning, executive and behavioral
control are clearly separated. The communication is clearly defined. The
top layer represents the planning layer. The planner uses the information of
the domain and the problem to generate a plan. The plan is a sequence of
skills that have to be executed to reach a given goal. The plan is forwarded
to the next layer. The executive layer takes care of the execution of each
skill. It knows about the composition of the skill primitives. The primitives
are located in the behavioral layer. The advantage of this model is its clear
structure and its modularity. For for further reading about the 3-TIER
architecture please see [37, p. 244–277].

37

5 System Overview

Figure 5.1: This figure illustrates the concept of a 3-TIER architecture. It consists of a
planning layer, executive laer and behavioural control layer.

In the following sections each layer is explained in detail and how this
concept can be implemented.

5.2 Planning Layer

The top layer of a 3-TIER architecture is the planning layer. The planning
layer contains a domain and problem description of the given environment
and task. The planner itself is also in this layer and takes the domain and
problem as input.
We use the classical representation for planning problems which is based
on first order logic. It is described in [11, Chapter 2.3].

38

5.2 Planning Layer

5.2.1 Domain

The domain contains information about all the objects and classes which
can appear in the environment. Further it holds information about all the
skills (= actions) the robot is able to perform. A skill is defined through its
name and the it’s parameters. A skill has a conjunctive precondition and a
conjunctive effect. The precondition is the state of the environment which
needs to be fulfilled before the action can be performed. The effect of a
skill is the description of the environment after the skill is performed. In
table 5.1 a general skill is described. Further the domain contains predicates
and functions which describe the environment.
Types offer the opportunity to group different classes. Classes are any

Table 5.1: General Skill
name precondition effect

name of skill and
〈Params〉 in use

any condition that need
to be fulfilled to perform
skill

how the skill changes the
environment

Within this table a general skill is shown. The parameters of the skill are marked with
pointed brackets (〈, 〉)

objects that appear in the environment. Within the industrial grasping
domain following types exists: boxes, locations and places. A class can
belong to more than a single type. The classes DeliveryBox, Box, Tray and
Level are needed. Predicates and functions can belong to types, or to single
classes. The predicate f ree is defined for the places type, to model if a place
is free or occupied. The functions currentLoad and hasType are defined for
boxes. The currentLoad function returns the amount of stored items within
a box. The function hasType returns the type of item which are stored in the
box. The function location is defined for the locations type. It returns the
current location of the class. The function hasLevel is only defined for the
class Box. This function returns the Level where the Box should be stored.
These relations are visualized in figure 5.2.

In order to solve the problem, the robot must have the following skills:

• move〈 Box 〉From〈 Level 〉To〈 Tray 〉

39

5 System Overview

Figure 5.2: In this figure the different types, classes, predicates and functions are listed and
their relations are visualized. Classes can belong to more than a single type.
Predicates and function can either belong to types or single classes.

• move〈 Box 〉 From 〈 Tray 〉 To〈 Level 〉
• graspItemFrom〈 Box 〉PlaceTo〈 DeliveryBox 〉On〈 Tray 〉

They are explicitly listed in Table 5.2.

The preconditions and effects for each skill are intuitive. For the skill
move〈 Box 〉 From 〈 Level 〉To〈 Tray 〉 the box needs to be on the level and tray
must be free. The effect is that the box is on the tray, so the tray is obviously
not free any more, but the level is. More or less the same holds the other
way round. To perform move〈 Box 〉 From 〈 Tray 〉To〈 Level 〉, the box needs
to be on the tray, the level needs to be free and it must be allowed to store

40

5.2 Planning Layer

Table 5.2: Skills for Order Picking Problem
name precondition effect

move〈 Box 〉 From
〈 Level 〉To〈 Tray 〉

• 〈 Box 〉 On〈 Level 〉
• 〈 Tray 〉 Free

• 〈 Box 〉 On 〈 Tray 〉
• 〈 Tray 〉 NotFree
• 〈 Level 〉 Free

move〈 Box 〉 From
〈 Tray 〉 To〈 Level 〉

• 〈 Box 〉 On〈 Tray 〉
• 〈 Level 〉 Free
• 〈 Box 〉 BelongsTo〈 Level 〉

• 〈 Box 〉 On 〈 Level 〉
• 〈 Tray 〉 Free
• 〈 Level 〉 NotFree

graspItemFrom〈 Box 〉
PlaceTo 〈 Delivery-
Box 〉On〈 Tray 〉

• 〈s Box 〉On〈 Tray 〉
• #Items(〈 Box 〉) > 0
• ItemType(〈 Box 〉) =

ItemType(〈 DeliveryBox 〉)

• Decrease
#Items(〈 Box 〉)
• Increase #Items(〈 De-

liveryBox 〉)

Within this table the skills are described which are needed to solve the industrial grasping
problem.

this specific box in the level. The last constraint is not intuitive on the first
glance, but due to a order management system specific boxes are stored at
specific levels so that they can be found easily again (by a robot or human).
This action’s effect is that the box is on the level, the level is not free any
more but the tray. The graspItemFrom〈 Box 〉 PlaceTo 〈 DeliveryBox 〉On〈 Tray 〉
requires that the delivery box holds the same items as the box. Further the
box needs to be on the tray and it must not be empty. The effect is that
inside the box the amount of items is decreased by one and the amount of
picked items in the delivery box is increased by one.

5.2.2 Problem

The problem describes the initial state s0 and the goal g, which is a set of
propositions [11]. The goal state sg is a state, that satisfies g. Further the
problem holds information about additional constraints, which are taken
into account by the planner (e.g. costs which are minimized). First object

41

5 System Overview

instances are defined, which occur in the environment and their initial
properties are stored. In Figure 5.3 a possible initial state is shown and
in Figure 5.4 a reachable goal state is shown. For this example we define
following constants:

• box A
• box B
• box C
• dbox A
• dbox B
• dbox C
• type A
• type B
• type C
• level 0
• level 1
• level 2
• level 3
• tray

In the initial state s0 three boxes are stored respectively on the levels level 1,
level 2, level 3. box A holds five items of type A , box B holds one item
of type B and box C holds three items of type C . The tray is free and the
delivery boxes (dbox A, dbox B, dbox C) are empty . Each delivery box
can load only a specific item type. The different delivery boxes can be
understood as part of one single large box. Of course this can be a single
box too. For the initial state s0 following holds:

• location(box A) = level 1
• location(box B) = level 2
• location(box C) = level 3
• currentLoad(box A) = 5
• hasType(box A) = type A
• currentLoad(box B) = 1
• hasType(box B) = type B
• currentLoad(box C) = 3
• hasType(box C) = type C
• free(tray)

42

5.2 Planning Layer

• currentLoad(dbox A) = 0,
• currentLoad(dbox B) = 0
• currentLoad(dbox C) = 0
• hasType(dbox A) = type A
• hasType(dbox B) = type B
• hasType(dbox C) = type C

When the goal state sg is reached, in the dbox C should be one item. In
delivery box A should be two items. The tray is free again and so all boxes
must be returned to their level. Following holds for the goal state sg:

• currentLoad(dbox C) = 1
• currentLoad(dbox A) = 2
• free(tray)

level_0

level_1

level_2

level_3

hasType(box_A) = type_A
currentLoad(box_A) = 5
location(box_A) = level_1

hasType(box_B) = type_B
currentLoad(box_B) = 1
location(box_B) = level_2

hasType(box_C) = type_C
currentLoad(box_C) = 3
location(box_C) = level_3

hasType(dbox_A) = type_A
currentLoad(dbox_A) = 0

hasType(dbox_B) = type_B
currentLoad(dbox_B) = 0
hasType(dbox_C) = type_C
currentLoad(dbox_C) = 0

free(tray)

Figure 5.3: This figure shows an example of a possible initial state s0.

5.2.3 Planner

The planner uses the information from the domain and the problem and
generates a plan. A plan is basically a list of skills which need to be per-
formed to solve the given problem. This list of skills is forwarded to the
executive layer of the 3-TIER architecture.
Among a huge space of different planning languages and planners I decided

43

5 System Overview

level_0

level_1

level_2

level_3

box_A

box_B

box_C hasType(dbox_A) = type_A
currentLoad(dbox_A) = 0

hasType(dbox_B) = type_B
currentLoad(dbox_B) = 0
hasType(dbox_C) = type_C
currentLoad(dbox_C) = 0

free(tray)

Figure 5.4: This figure shows an example of a possible goal state sg.

to use the PDDL language. The authors of [4] showed that it is an appro-
priate choice for robotic tasks. Further PDDL is a standard language for
planning problems and so very fast open source planners are available (like
sgplan5 from Hsu et al. [13]). PDDL requires the definition of the robotic
skills and functions within a domain file. The skill graspItemFrom〈 Box 〉
PlaceTo 〈 DeliveryBox 〉On〈 Tray 〉 (short form graspItem used in) is defined
in PDDL as shown in Listing 5.1.

Listing 5.1: The graspItem skill in the PDDL domain file.

(: a c t i o n graspItem
: parameters (? b − t ranspor t box ?d − del ivery box ? r − t ray)
: precondi t ion (and (= (has type ?b) (has type ?d))

(> (c u r r e n t l o a d ?b) 0)
(= (l o c a t i o n ?b) (l o c a t i o n ? r)))

: e f f e c t (and (i n c r e a s e (c u r r e n t l o a d ?d) 1)
(decrease (c u r r e n t l o a d ?b) 1))

)

The definition of initial and goal state are defined in an extra problem file.
For example all propositions that are used are defined at the beginning. For
the example initial and goal state presented before in Section 5.2.2 the initial
state is shown in Listing 5.2 and the goal state is in Listing 5.3.

44

5.3 Executive Layer

Listing 5.2: The definition of propositons used in PDDL problem file.

(: o b j e c t s
box A box B box C − t ranspor t box
dbox A dbox B dbox C − del ivery box
t ray − t ray
l e v e l 0 l e v e l 1 l e v e l 2 l e v e l 3 − l e v e l
typ a typ b typ c − i tem typ

)

Listing 5.3: The definition of a goal state used in PDDL problem file.

(: goal (and (= (c u r r e n t l o a d dbox A) 2)
(= (c u r r e n t l o a d dbox C) 1)
(f r e e t ray)

)
)

For the example initial and goal state presented before in Section 5.2.2 the
planner could produce following output (see Listing 5.4)

Listing 5.4: Output of planner for example domain and problem. The name of the action is
the first parameter

0 (MOVEBOXTOTRAY BOX C LEVEL 3 TRAY)
1 (GRASPITEM BOX C DBOX C TRAY)
2 (MOVEBOXTOLEVEL BOX C LEVEL 3 TRAY)
3 (MOVEBOXTOTRAY BOX A LEVEL 1 TRAY)
4 (GRASPITEM BOX A DBOX A TRAY)
5 (GRASPITEM BOX A DBOX A TRAY)
6 (MOVEBOXTOLEVEL BOX A LEVEL 1 TRAY)

5.3 Executive Layer

As the name already suggests, the executive layer handles the execution
of single skills. Each skill is composed of skill primitives which are the
fundamental building blocks of each skill. The executive layer knows about
this composition and ensures that primitives are executed in right order to

45

5 System Overview

guarantee a successful skill execution. The skill primitives theirselves are
part of the lowest layer of the 3-TIER architecture.
The executive layer receives a list of skills from the planner. The list looks
like the Listing 5.4. The executive layer executes each single skill by calling
its skill primitives. Further it surveys the outcome of each primitive, aborts
if an error occurs and reports an error to the planning layer. The only
exception is the skill inspectEnvironment which is shown in figure 5.1. This
skill is not contained in list received from the planner but added by the
executive layer. It has no preconditions or effects. With adding the skill it is
ensured that the environment around the robot is sensed before any other
action is performed.
The composition of skill primitives for each skill is intrinsic knowledge
of this layer. For the given skills following skill primitive composition is
defined in Table 5.3.

Table 5.3: Skill primitive composition
skills moveBoxToRack graspItem moveBoxToLevel

skill
primi-
tives

detectHandle detectItem detectHandle
graspHandle graspItem graspHandle
moveArmToSupportPose deliverItem moveArmToSupportPose
pullBox pullBox
moveBox moveBox
deliverBoxOnTray deliverBoxOnLevel

Within this table the skill primitive composition of all skills are listed.

The executive layer is not only responsible for the execution of the primitives
but also to verify their correct execution. So if one skill primitive fails, it
must report this failure. The decomposition and verification procedure for
all skills is shown in figure 5.5, figure 5.6 and figure 5.7. The primitives are
visualized in all figures as rectangular boxes. The verifications are visualized
as diamonds. The executive layer has an intrinsic knowledge about all skill
compositions. So if the skill should be executed, the executive layer calls the
skill primitives in right order. This is the decomposition of skills. Further
the executive layer monitors the outcome of all skill primitives. If one skill
primitive fails it aborts the skill and reports the failure to the high level.
This is called verification.

46

5.4 Behavioral control

Figure 5.5: In this figure the skill moveBoxFromLevelToTray is visualized containing its
primitives and verifications if everything works out. It can only report success
or error.

5.4 Behavioral control

This layer holds all skill primitives. Within this layer the primitives are
defined and programed for a specific robotic platform. All upper layers are
still portable to other platforms. The primitives have a defined interface but
are programed separately for all platforms.
A skill holds information about its execution and reports any error. But if a
local recovery can be performed it can be done at this stage. Skill primitives
usually try to recover from errors if possible. But if it is impossible skill
primitives report their error. A skill primitive can be used by different skills.
Our approach with skills and their decomposition in skill primitives is
comparable to hierarchical task networks (HTN) presented in [11, Chapter

47

5 System Overview

Figure 5.6: The skill moveBoxFromTrayToToLevel is shown. It looks similar to the skill
moveBoxFromLevelToTray. Most primitives can be reused in this skill.

11]. Within this HTNs a problem is also reduced to different tasks. These
tasks are then also decomposed into subtasks, in a similar manner as we do
the decomposition of skills into skill primitives. These are following skill
primitives:

• DetectHandle
• GraspHandle
• MoveArmToSupportPose
• PullBox
• MoveBox
• DeliverBoxOnTray
• DeliverBoxOnLevel
• DetectItem
• GraspItem

48

5.4 Behavioral control

Figure 5.7: This graphic shows the graspItem skill. Its structure is the same like the one of
the other two skills. Due to the purpose of this skill, it has different primitives.

• DeliverItem

5.4.1 Detect Handle

The aim of this skill primitive is to return the measured pose of the handle
of a transport box. The primitive contains two main parts visualized in Fig-
ure 5.8. This primitive receives the expected place of the transport box and
returns the measured poses. So the primitive searches at the expected place
or the handle, this can be also understood as heuristic search. The expected

49

5 System Overview

place is sent form the executive layer and depends on which skill uses this
primitive. For example, if the skill move〈 Box 〉From〈 Level 〉To〈 Tray 〉 is
performed, then the place 〈 Level 〉 is forwarded to the primitive. Both parts
are implemented as ROS action.

Figure 5.8: This figure shows the main parts of the skill primitive detect handle. It receives
the expected place of the transport box. First the arm is moved there. Then the
handle is detected and the measured poses are returned. If the detection fails
for any reason, the poses are set invalid.

5.4.1.1 movement

It plans and executes a collision free path for the grasping arm from its
current pose to the received pose. The grasping arm is defined as the hand
or endeffector which should grasp the handle later on (in this system left
or right arm). The choice if the grasping arm is the left or the right arm
depends on the were the gripper is mounted (at first there was only one
gripper available for both hands).

5.4.1.2 detection

This part detects the handle using the camera and the IR range sensor
of the endeffector of the grasping arm. This step is shown in Figure 5.9.
This part detects the handle within the image of the camera in the end
effector. Simultaneously it measures the IR range distance to the transport
box. Because the detection of the handle lays outside the scope of this work,
this task is simplified and so the handle is marked with a yellow dot. So the
detection itself is a simple color detection.

50

5.4 Behavioral control

Figure 5.9: The detection part of the primitive detect handle is shown. It contains two
measurements. One is performed in the image taken by the camera of the end
effector. The other one is the measurement of the IR range sensor. Both are used
to transform the poses in the global frame.

A pinhole camera model is used to transform the measured poses in the
image to the camera frame. Further the poses in the camera frame are trans-
formed to the global coordinate system. This transformation is possible due
to the knowledge about the current robot state. The robot state publisher pro-
vides this transformation. The pinhole camera model is shown in Figure 5.10.
The origin of the camera frame is named OC. The origin of the global frame
is named OG. The origin of the image plane is in the upper left corner
marked with vectors in x and y direction. The principle point P is shown in
the image plain at the coordinates (px, py). The point Hi(hix, hiy) in the im-
age plane is first transformed formed to the camera frame HC(hCx, hCy, hCz)
and afterwards to the global frame HG(hGx, hGy, hGz). Transformation in-
formation from the GlobalFrame OG to the CameraFrame OC is provided by
the robot state publisher. So the transformation HC → HG can be applied. If
the pose Hi is detected within the image with the coordinates (hix, hiy) and
the IR sensor measured the range of r meters, the pose HC in the camera
frame can be calculated as follows:

hCx =
Hix− px

fx
· r (5.1)

hCy =
Hiy− py

fy
· r (5.2)

hCz = r (5.3)

51

5 System Overview

The intrinsic camera parameters focal length fx and fy as well as the princi-
ple point P(px, py) are known. So the coordinates of HC can be calculated
using equation 5.1, equation 5.2 and equation 5.3. The output of the de-

P(px, py)

x
y

Hi(hix, hiy)

Hc(hcx, hcy, hcz) →

y
x

z

CameraFrame
Oc

y

z
x

GlobalFrame
OG

HG(hGx, hGy, hGz)

Figure 5.10: This figure shows the pinhole model.

tection step are following poses in the global frame: handle pose, pre-grasp
pose, left finger pose and right finger pose. The handle pose is the actual pose
of the handle. The pre-grasp pose is the pose where the endeffector should
be, before it moves forward and closes the gripper. This pose is an offset
in z-direction away from the handle pose in the camera frame. Further both
fingers are detected in the image plane and their pose is also returned.
These poses within the camera frame are shown in Figure 5.11. In the last
step the poses are transformed in the global coordinate system.

5.4.2 Grasp Handle

This primitive performs the grasping of the handle. It uses the camera in the
endeffector to track both fingers and the handle. The arm controls towards
the pre-grasp pose using visual servoing. The visual servoing is needed,
because first of all the detection of the handle could have some small

52

5.4 Behavioral control

Hc
Pc

Lc

Rc

Figure 5.11: Here all detected poses are visualized within the camera frame. These are the
handle pose HC, the pre-grasp pose PC, the left finger pose LC and the right finger
pose RC

measurement errors. But the main reason for performing visual servoing is
the inaccurate execution of trajectories. Once pre-grasp pose is reached, the
endeffector is moved to the handle and gripper closes. Then it is validated
if the gripper grasps the handle and if it does the success is returned. If it
fails a local recovery is performed. After a finite amount of trails without
success the skill returns the failure of execution. This procedure is shown in
Figure 5.12.

5.4.2.1 Initial Measurement

This block measures the pose of the handle in the same way as described
in section 5.4.1.2. If the handle cannot be detected, the error is reported.
This inital measurement is very important after the local recovery was
performed. Because the robot could have lost the box (fall to the ground)

53

5 System Overview

Figure 5.12: Within this figure the routine of the grasp handle skill primitive is shown.

and it is not where it is expected to be. After the initial measurement is
successful completed, the visual servoing is performed.

5.4.2.2 Visual Servoing

The visual servoing routine is shown in detail in Figure 5.13. It measures
the handle pose HG, pre-grasp pose PG and the current pose of the endeffector
MG with respect to the base coordinate frame. MG is the midpoint between
the left finger pose LG and the right finger pose RG with respect to the global
coordinate system. The error e between the pre-grasp pose and the current
pose of the endeffector is defined as follows:

e = ‖MG − PG‖ (5.4)

54

5.4 Behavioral control

If the error is smaller than a threshold ε (e < ε), then the gripper moves
towards the handle and closes the gripper. If e ≥ ε, the endeffector is moved
along the correction vector MG - PG. This is repeated until e < ε holds.

Figure 5.13: Here the visual servoing block of the grasp handle skill primitive is shown.
First the midpoint pose MG, the pre-grasp pose PG and the handle pose HG, with
respect to the global coordinate system are measured. If MG and PG are
approximately the same, the endeffector moves towards the handle and closes
the gripper. Otherwise the endeffector is moved to PG

5.4.2.3 Validation

The validation gives the primitive the opportunity to report about execution
status and the execution layer can react to it.

5.4.2.4 Local Recovery

The local recovery is performed if the visual servoing part fails to grasp
the handle. This recovery consists of two parts. First it opens the gripper.
Then the movement of the arm to its initial pose is planed and executed.
The initial pose is where the primitive was started. The movement back
to the initial pose should always be possible. However if the movement

55

5 System Overview

cannot be planned or executed the primitive returns with an error. Through
performing the initial measurement it is guaranteed that the box is still
standing on the same place and is not lost. Afterwards the visual servoing
is performed again.

5.4.3 Move to Support Pose

In Figure 5.16 the box manipulation with both arms is shown. It is not
possible for Baxter to manipulate the box with a single arm, because it is too
weak. So it needs to manipulate it with both arms. This primitive moves the
second arm in a pose where it can support the grasping arm with manipu-
lating the box. The scheme of this primitive is shown in Figure 5.14. First
the pose is calculated. Then the trajectory towards this pose is computed
and executed. If it is executed successfully the success is reported. If the
trajectory cannot be planed or executed the planner is called again. Because
a sample based planner with a random sampling strategy and random
projection is used (LBKPIECE described in [28]) it makes sense calling it
multiple times. After a finite times of trials the primitive reports the error.

Figure 5.14: Here the scheme of the move to support pose skill primitive is shown. It
returns success if the support arm reaches the previous calculated support
pose.

56

5.4 Behavioral control

GHc

Sc

Figure 5.15: Here the current grasp hand pose (GHC) with respect to camera frame is shown.
The support pose SC with respect to the camera frame is the GHC rotated by
90
◦around the x-axis.

5.4.3.1 Calc. Pose

An example support pose is shown in Figure 5.15. The current support SC
with respect to the camera frame is calculated rotating the current grasp
pose GHC and translating it. First we discuss the rotation. α is the rotation

57

5 System Overview

around the x-axis, β is the rotation around the y-axis and γ is the rotation
around the z-axis. Setting α = π

2 , β = 0 and γ = −π
2 gives the orientation

shown in Figure 5.15. This orientation guarantees that the support arm is
normal to the grasping arm. So the box movement can be supported by the
support arm. The rotations around the axis are notated as Rx, Ry and Rz.
The rotation matrices are defined as follows:

Rx(α) =

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 (5.5)

Rx

(
α =

π

2

)
=

1 0 0
0 0 −1
0 1 0

 (5.6)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

 (5.7)

Ry(β = 0) = I (5.8)

Rz(γ) =

cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (5.9)

Rz

(
γ =

−π

2

)
=

 0 1 0
−1 0 0
0 0 1

 (5.10)

The final rotation matrix RSc GHc is defined as:

RSc GHc = Rz

(
−π

2

)
· Ry (0) · Rx

(π

2

)
=

 0 0 −1
−1 0 0
0 1 0

 (5.11)

58

5.4 Behavioral control

The translation tSc GHc is just a movement in the negative y-coordinate. The
length of this translation is the box height hb:

tSc GHc =

 0
−hb

0

 (5.12)

So the transformation of the support pose Sc with respect to the grasping
arm camera frame can now be written in homogeneous coordinates:

TSc GHc =

(
RSc GHc tSc GHc

0 1

)
(5.13)

Because the transformation for the grasping hand with respect to the global
coordinate system is known TGHc GHG , the transformation for the support
pose with respect to the global coordinate system can be calculated:

TSc SG = TSc GHc · TGHc GHG (5.14)

The position of the support pose is now given through the translation vector
in the transformation TSc SG . The orientation is gained from the rotation
matrix.

5.4.4 Pull Box

This primitive moves the arm along the axis of the lower arm. The distance
is given as input. After the movement it is checked if the gripper still holds
the box or if the box was lost during the movement. The information if
the gripper is still holding the object can be received from the Baxter SDK.
When the gripper receives the signal to close, but the force which needs to
be applied to close the gripper is larger then usual when closing it. So it is
concluded that an object is grasped. In this primitive no local recovery is
performed. Because if the box is lost during pulling, it is quite likely that
it fall to the ground. There is no possibility to recover from that due to the
action radius of Baxter. The scheme of this primitive is shown in Figure 5.17.

59

5 System Overview

Figure 5.16: This figure shows Baxter carrying a box, where its right arm grasps the box.
Its left arm supports supports the manipulation.

Figure 5.17: The scheme of the pull box skill primitive is shown. It moves the grasping arm
for the given distance. It reports success if Baxter still holds the box after the
movement. Otherwise error is returned.

60

5.4 Behavioral control

5.4.5 Move Box

This skill primitive handles the manipulation of the box by both hands. It
makes sure that both arms move in a way that the box is not lost. First it
ensures that the arms keep the same distance and orientation from each
other. Second it executes the movements time shifted. It calculates a single
movement because both arms should perform the same movement. The
routine is shown in Figure 5.18.

Figure 5.18: The scheme of the move box skill primitive is shown. It receives the goal as
input. It calculates the movements for both arms. Then the support arm is
moved first and the grasping arm afterwards. If the distance to goal vanishes
and the box is still hold the primitive returns success. If the distance towards
the goal is not approximately zero and both arms are still able to move, the
new movement is calculated and the routine is executed again.

61

5 System Overview

5.4.5.1 Calculate Movement

Within this block the next movement is calculated according to the current
poses of the arms and the goal. The trajectories the arm should follow
are visualized in Figure 5.18. First the trajectory for the support arm is
calculated. It starts at the current position of the support arm, when the
primitive is started. This position is marked as SS (start position support
arm). The goal position for the support arm (SG) is directly in front of the
tray and known in advance. The trajectory the support arm should follow
is marked in bright blue (trajectoryS). The grasping arm follows the same
trajectory but starting at the current grasping arm position (trajectoryG).
The trajectoryG is marked in yellow. Because the arms move one after each
other, starting with the support arm, one single movement is not allowed
to be longer the box length. Otherwise the box would be dropped. So the
arms move iteratively, along this trajectory. The first movement for the
support arm is to the intermediate point IS1. The grasping arm follows to
its intermediate point IG1. These points are calculated the following way.
First the direction vector d id defined:

d =
SG − SS

‖SG − SS‖
(5.15)

The next intermediate point for the support arm is calculated using the
current position of the support arm SC and the box width wb:

ISi = SC + d · wb (5.16)

The same holds for the next intermediate point for the grasping arm. Here
the current position of the grasping arm is used GC:

IGi = GC + d · wb (5.17)

The reason why the current position of the arms are used, instead of the
previous intermediate point IGi−1, or ISi−1 is that the execution is not that
accurate to ensure that arm will exactly move to intermediate point. Further
it is important to mention that for both arms their path is constrained in
all orientations of the endeffector. So only translation is allowed, otherwise
the box would be dropped. The maximum path length depends on the box
proportions. It is not allowed to move too far with one arm only. It is an
iterative movement.

62

5.4 Behavioral control

Ss

Gs

SG

GGIG1

IS1

IG2

IS2

tray

trajectoryS

trajectoryG

Figure 5.19: This figure shows the trajectories both arm should follow in order to get from
the level to the tray.

5.4.5.2 Movement Validation

The validation consists of two parts. First it is checked if the goal has already
been reached. This check is similar to the check in Section 5.4.2.2. if the
error to the calculated pose is smaller than a threshold, it is assumed that
the pose is reached. If the pose is not yet reached, it is checked if another
movement is still possible and the next movement is calculated. If the pose
is reached the grasp validation is performed.

5.4.5.3 Grasp Validation

If the box is still grasped after the movement success is returned. Otherwise
the error is returned.

63

5 System Overview

5.4.6 Deliver Box on Tray

This primitive handles the box delivery on the tray. First the box is moved
towards the center of the tray. The grasp validation checks if the box is still
grasped after moving it to the center. If not an error is returned. Then the
box is turned towards the robot. When the handle is released, the pose is
returned to the executive layer for later usage when the box’s handle is
grasped again. This scheme is shown in Figure 5.20. .

Figure 5.20: Here the different blocks of the deliver box on tray skill primitive are shown.
First the box is moved towards the center, then turned and finally the handle
is released. If the box gets lost an error is returned. Otherwise the box release
pose BRG with respect to the global coordinate system is returned.

5.4.6.1 Turn Box

In Figure 5.21 the box pose is shown schematically, after the box is moved
towards the rack center. Due to friction the end where handle is not grasped
does not move that far. This results in a box pose, where it is not easy to
grasp the handle again. So the box is ”turned” towards the robot. This is not
a real rotation of the box, but a small translation towards the origin of Baxter.
This movement m is visualized as yellow vector in Figure 5.21. Again, due

64

5.4 Behavioral control

to friction, the box’s end, where the handle is grasped, moves further which
results in twisting the box. This movement is small but it ensures that the
handle can be grasped again. The handle pose HG with respect to the global
coordinate system is known, because Baxter grasps the handle. Because the
should be turned only and not lifted, only the x hGx and y hGy coordinates
are considered. The origin of the global coordinate system is marked in
Figure 5.21 with OG. The movement has the length l, which is only about a
few centimeters (0.02m). So the movement is calculated as follows:

m =

mx
my
0

 =

−hGx
−hGy

0


∥∥∥∥∥∥
−hGx
−hGy

0

∥∥∥∥∥∥
· l (5.18)

5.4.6.2 Release Handle

First the gripper is opened. Then the arm is moved back for half of the
box length along the movement shown in Figure 5.22. This movement is
represented in the grasping arm camera frame. As shown in Figure 5.11 the
z-axis is along this movement. So in the camera coordinate system frame
the movement for releasing the box mr is represented as follows:

mr =

 0
0
−wb

2

 (5.19)

The current pose of the arm is now the box release pose BRG, which is
returned.

5.4.7 Detect Item

The aim of this primitive is the detection of the item pose with the hand
camera. Due to the environmental setup it is not possible to detect it with

65

5 System Overview

Shelf
Tray

Box

Baxter

y x

movement

OG

Figure 5.21: The box is moved in the middle of the rack. Due to friction the box end, where
the handle is grasped is moved further than the the other end of the box.

the head mounted camera due to perspective occlusions like the box borders.
The box’s approximate pose is given as input. The pose is uncertain due to
some uncertainties within the arm’s movement. So first the exact pose of
the box need to be determined. Based on this pose the arm can be moved
over the box in a way that the hand camera can look into the box. If the arm
is over the box it detects the item with the hand camera. If it cannot detect
the item it purely turns the wrist and tries to detect it again. The item could
be occluded by one of the fingers within the camera image. The output of
this primitive is the exact box pose and the item pose with respect to global
coordinate system. This procedure is shown in Figure 5.23. If either the box
or the item cannot be detected, the primitive returns the failure.

66

5.4 Behavioral control

Shelf
Tray

Box

Baxter

movement

Figure 5.22: After the box is turned the box’s handle is released and the grasping arm
moves away from the handle.

Figure 5.23: In this figure the different blocks of the detect item skill primitive are shown.
First it detects the transport box, then it moves the arm over the box and
detects the item using the hand camera. If the skill succeeds the item pose PPG
and the box pose BPG ares returned.

67

5 System Overview

5.4.7.1 Detect Box

In order to detect the box the information from the head mounted 3D
camera is used. In particular only the point cloud is used. A coarse to fine
template matching approach is used for detection.

1. Preprocessing
Because the approximate pose of the box is known, all points which
are too far away are cut out. Further it is known that the box should
be standing on the table. So all large planes are also cut out. Euclidean
clustering is performed on the remaining points. The output of the
preprocessing step are the different clustered point clouds.

2. Coarse Alignment
A template of the box is aligned using the fast point feature his-
togram (FPFH) and the sample consensus initial alignment (SAC-IA)
described in [24]. The alignment is performed on each single clustered
point cloud from the preprocessing step. The point cloud which gives
the highest score and the detected pose there is forwarded to fine
alignment step.

3. Fine Alignment
The fine alignment receives a single point cloud and an approximate
pose. An iterative closest point (ICP) algorithm is performed.

The last two steps are repeated 15 times and the best result is taken so a
very robust detection is guaranteed. Because the SAC-IA alignment contains
random sampling, it makes sense to repeat this two steps more often. We
show in Section 7.4 that this chain outperforms a single ICP or FPFH and
SAC-IA algorithm in our setup.

5.4.7.2 Move Over Box

Once the box pose is known, possible poses over the box for the grasping
endeffector are calculated. These poses ensure that the box content will be
visible in the camera image of the endeffector’s camera. The poses are in
increasing height above the box. Beginning with the closest pose to the box,
it is tested , if a motion plan can be found. If a plan is found the trajectory
is executed, else the next pose is tested. Some example poses can be seen in

68

5.4 Behavioral control

Figure 5.24. In Figure 5.26 Baxter is shown while inspecting the box.
For the inspect box pose calculations the box pose with respect to global
coordinate system is given with BPG. The transformation of the box frame
with respect to global coordinate system is denoted with TB G. The first
inspection pose IP1 is directly over the box origin (see Figure 5.25), z-
direction pointing towards the origin (content is visible in camera frame).
This transformation can be presented as TIP1 B

TIP1 B =

(
RIP1 B tIP1 B

0 1

)
(5.20)

The translation tIP1 B is only a translation in z-direction, because the first
pose is directly over the box:

tIP1 B =

 0
0

2 · hb

 (5.21)

The rotation is a 180
◦rotation around the x-axis of the box, so the rotation

matrix RIP1 B is defined as:

RIP1 B = Rx (α = π) =

1 0 0
0 −1 0
0 0 −1

 (5.22)

The inspection poses are sampled starting from IP1 in direct line to IPend.
The position of IPend can be calculated with respect to the box frame (for
right grasping hand), given the box depth dB, box width wB and box height
hB:

tIPend B = tIP1 B +

 −dB
−wb

1.5 · hB

 (5.23)

For the inspecting with the left hand the translation would look like follow-
ing:

tIPend B = tIP1 B +

 −dB
wb

1.5 · hB

 (5.24)

69

5 System Overview

So possible poses are now chosen in uniform distance from each other on
the direct line between the positions of IP1 and IPend. The direction of the
direct line is described with the normed vector dir. The translation from IP1
to the nth point, with a distance d is calculated the following:

dir =
IPend

‖IPend‖
(5.25)

tIP1 IPn = d · dir (5.26)

If the nth position with respect to the first pose IP1 is chosen, the orientation
is calculated as described now. First the connecting vector c to the origin
position of the box BPIP1 from IPnIP1

position is calculated:

c = BPIP1 − IPnIP1
(5.27)

The rotation around the y-axis is given:

β = atan
(

cx

cz

)
(5.28)

and the rotation around the x-axis is given with:

α = atan
(

cy

cz

)
(5.29)

So the rotation matrix for the nth pose is defined as following:

RIP1 IPn = Ry(β) · Rx(α) (5.30)

and the transformation is given with:

TIP1 IPn =

(
RIP1 IPn tIP1 IPn

0 1

)
(5.31)

and the transformation to the global coordinate system:

TIP1 G = TIP1 IPn · TIPn IPG (5.32)

The desired position and orientation for IPn can now be gained from the
transformation TIP1 G.

70

5.4 Behavioral control

IP1

IP2

IP3

detected
box

Figure 5.24: In this figure some example inspection poses (IP1, IP2, IP3) are marked. This
poses are orientated in a way, that ensures the box content being on the camera
image of the endeffector’s camera. The detected box is shown as white point
cloud. The orange voxels indicate the collision scene.

5.4.7.3 Item Detection

Because the item detection itself is out of the scope of this work, the item
is marked with an augmented reality (AR) tag. An AR tag is shown in
Figure 5.27. Because the AR tags and the dimensions of the tags in real
world are known the object pose can be detected using the camera image
only. No additional information like depth need to be measured, because
the pose can be reconstructed from the tag template and the knowledge of
the dimensions. AR tags are also used in mobile phone AR applications. So
there are already existing open source libraries for the detections of AR tags.
This eases the detection also.

71

5 System Overview

IP1

IPend
IPn

desired
orientation

Figure 5.25: This figure shows the inspection points in more detail.

(a)Baxter inspecting the box with it’s
endeffector camera.

(b)Baxter inspecting the Box visualized in
RViz. The white point cloud indicates
the detected box. The orange voxels vi-
sualize the collision scene.

Figure 5.26: This figure shows Baxter inspecting the box in reality as well as visualized in
RViz.

72

5.4 Behavioral control

Figure 5.27: An example AR tag.

5.4.8 Grasp Item

This primitive receives the box pose BPG and the item pose PPG. Based on
those poses it calculates good grasping points. It grasps the item and checks
if the movement is correctly executed and the item grasped. If not it return
an error. Then the item is placed to the delivery box. Again the movement
is checked. If all works out the primitive succeeds, otherwise it returns a
failure. This procedure is shown in Figure 5.28.
It calculates grasping points using the Eigengrasp approach from [18]. Using
the ten best grasping points to calculate a pre-grasp pose to the corresponding
grasping points. It plans a trajectory for all grasping points and takes the
first one which is feasible. It validates the grasp and finally places the item.
If no grasping points can be found, or no valid trajectory can be planned or
the grasp validation fails the skill primitive returns an error.

5.4.8.1 Calculate Grasping Points

The planner plans within the Eigengrasp space, which leads to a reduction
of the search space [18]. The reduction to the Eigengrasp space is useful for
manipulators with high degree of freedom (e.g. humanoid hands). Grasp
postures can be represented as linear combination of Eigengrasps. A single

73

5 System Overview

Figure 5.28: In this figure the different blocks of the grasp item skill primitive are shown.

Eigengrasp can be understood as direction vector of the grasping motion
in joint space. However this should not effect a parallel jaw gripper that
much, but this approach plans good grasps also for this kind of grippers.
For planning grasps first regions on the gripper are sampled. These sampled
points will be considered as good contact points for the gripper. The energy
function in the Simulated annealing optimization strategy is designed to
bring those presampled contact points in contact with the object, that should
be grasped. So if points on the fingertips and the palm are sampled, then
the planner plans enclosing grasps. The planner minimizes the distance of
these points towards the object and optimizes the angle between the surface
normals and the the contact regions of the gripper. The planner has also a
feasibility check, if the gripper is in collision with the environment. So only
feasible grasps are considered. Due to the nature of Simulated Annealing
in early steps nearly all feasible grasps are considered. The algorithm con-
verges towards good grasps in later simulation steps.
There was no parallel jaw gripper modeled within GraspIt!, so we modeled
Baxter’s gripper and lower arm. Because Baxter can nearly turn its wrist
around 360

◦, we also added the lower arm model to the gripper. So feasible
grasps can be computed which will not result in a collision with the envi-
ronment. And it does not effect the execution the grasps, because Baxter
can turn the wrist to nearly all arbitrary angles. In Figure 5.29 the GraspIt!
graphical interface is shown. GraspIt! provides the possibility to run own
physics simulation which calculates the forces applied by the gripper on

74

5.4 Behavioral control

transport box

item

Figure 5.29: In this figure one possible grasping pose for Baxter is shown. The transport
box model, as well as the item model are loaded. The planner works on this
environment to ensure grasps which are not in collision with the box.

an object. We visualize within Section 7.6 planned and executed grasps on
different objects.

5.4.8.2 Pick Item

First the transport box borders are included into the collision scene as
collision objects. This ensures that the transport box is not moved or touched
be the grasping arm. Then for the corresponding grasping points the arm
motion is calculated to reach this grasping posture. If for one grasp a feasible
arm motion is found, the motion is executed and the pick is performed. The
pick is closing the gripper.

5.4.9 Deliver Item

This skill primitive consits of only one block shown in Figure 5.30. In order
to be able to place the item, the gripper needs to hold the item. In the place

75

5 System Overview

item block the trajectory for the grasping arm to the delivery box is planned
and executed. The box borders are still recognized as collision objects. So
the arm does not touch the box while moving over the delivery box. The
placing of the package is simply opening the gripper while being over the
box. So the item drops into the delivery box. After this movement the box
borders are removed from the collision scene again. If no trajectory can
be planned or the execution is aborted an error is returned. Otherwise the
primitive returns the success.

Figure 5.30: In this figure the only block of the eliver item skill primitive is shown.

5.4.10 Deliver Box On Level

This skill primitive delivers the box back into the level. Therefore it is first
pushed into the level of the shelf, so that it securely stands inside the level.
After this step a grasp validation is performed to make sure the box was
not lost during the first step. If the box is lost the primitive returns the error.
Otherwise it can be assumed the box stands now securely on the level of
the shelf. Now the grasp is released and the arm is moved back the same
way as it is described in Section 5.4.6.2. The primitive returns the successful
execution. This is flow is visualized in Figure 5.31.

76

5.4 Behavioral control

Figure 5.31: This figure shows the deliver box on level primitive. First the box is pushed
into the level, then it is turned so that it stands normal towards the shelf.
Finally the grasp is released and the arm is moved back.

5.4.10.1 Push Box Into Level

For a better understanding of this part in Figure 5.32a the robot is shown
before pushing the box into the level and after it pushed into to level
(see Figure 5.32b). So a trajectory needs to be calculated from the current
grasping pose (see Figure 5.32a) to the end pose (see Figure 5.32b). First
the orientation of the end pose is calculated. This calculation is the inverse
computation from Section 5.4.3. Now the support pose is given and the
grasping arm pose is calculated. So this can be thought of a rotation around
z-axis by 90

◦(γ = π
2) and a rotation around the y-axis by 90

◦(β = π
2) and no

rotation around the x-axis (α = 0). So the rotation matrices are:

Rx(α = 0) = I (5.33)

Ry

(
β =

π

2

)
=

 0 0 1
0 1 0
−1 0 0

 (5.34)

Rz

(
γ =

π

2

)
=

0 −1 0
1 0 0
0 0 1

 (5.35)

77

5 System Overview

So the final rotation matrix from the support orientation to the grasping
orientation RGHc Sc is:

RGHc Sc = Rz · Ry · Rx =

 0 −1 0
0 0 1
−1 0 0

 (5.36)

This rotation matrix RGHc Sc is the inverse of RSc GHc (see Section 5.4.3):

RGHc Sc = RSc GHc
−1 (5.37)

The translation is same as the movement m in Section 5.4.6.2. But now it is
not moving away from the box, but pushing the box. So the z-coordinate
has a positive sign. Because the box is pushed in the level, length of the
translation vector tGHc Sc is wb.

m =

 0
0

wb

 (5.38)

The pose GHG can be retrieved the same way as in Section 5.4.3.

Box

Baxter

Shelf

(a)Baxter before pushing the box
into the level.

Box

Baxter

Shelf

(b)Baxter after pushing the box into
the level.

Figure 5.32: This figure shows Baxter pushing the box into the level.

78

5.5 Layout for 3-TIER high-level architecture as HSM

5.5 Layout for 3-TIER high-level architecture as
HSM

A general mission control for a 3-TIER high level can be implemented as
hierarchical state machine (HSM). If the plan gets started, first a planner
(representing the planning layer) is called with a current environment
description and the goal which should be achieved and a domain description.
It creates a list of skills and forwards this list to an instance of a planning
execution. This represents the executive layer. This is a nested state machine.
The skills are called in the order of the received plan. If the skills succeed,
the success is reported. If an error occurs the planner is informed about the
error. An overview of the HSM is shown in Figure 5.33. Each single skill is
decomposed into its skill primitives. So the skill itself is also implemented
as state machine. Each primitive represents a state which is followed by
a monitor state. These monitor states report if the skill primitive aborts
with an error. Then the skill is aborted and the error is reported to the
PlanExecution state machine. The state machine of the skills is represantively
shown in Figure 5.34.

79

5 System Overview

Figure 5.33: This figure shows a general HSM of a 3 TIER architecture. Once started it
enters the planning instance, which gets a domain and problem description
as input. It delivers a plan (list of skills) to the executive instance. Within the
PlanExecution state, which is itself a state machine. Each skill represents a state
of this state machine.

80

5.5 Layout for 3-TIER high-level architecture as HSM

Figure 5.34: This figure shows a general skill of the PlanExecution state machie. Each skill
is state machine for its self. Each primitive it consists of represented as own
state followed by a monitor state.

81

6 Implementation

In this chapter the implementation of the system design, presented in
Chapter 5, is explained in detail. This system is developed in C++ utilizing
ROS.

6.1 Environment

All poses of fixed objects in the environment like the one of the shelf or the
tray are known in advance and stored in rosparam files. Also geometric spec-
ifications (e.g: box dimensions wb, db and hb) are stored in such files. These
parameter files are loaded at system start up to the ROS parameter server.
There the parameters can be directly accessed by the nodes, which need the
information about it. Further we implemented a library config envrionment
which provides convenient functions to load multiple parameters, which
are often used together, at once with one function call. This includes loading
the box or tray dimensions. Further this library provides one function to
load information about the tf frame names of the grasping and the support
arm.

6.2 High Level Node

Within this section 6.2 the node (baxter control node) which implements the
high level is discussed in detail. The HSM for the order picking problem
looks like shown in Figure 5.34. The top level state machine is implemented

83

6 Implementation

following the pattern proposed in [38]. We introduce a base state Baxter-
ControlState which defines the interface for transitions between different
states, so called modes. Further this base state defines the interface for the
arguments a state takes. It also defines a timedExecution function. This func-
tion is called periodically, if the state is active. All states (Idle, Planning,
PlanExecution) in the top level state machine are derived from this base
state. Further all states hold the same instance of the BaxterControl class.
This class manages all resources. The ressources can be accessed through
interfaces of this class. All skill primitives are implemented as ROS actions.
So the BaxterControl class holds the clients for these actions. So this actions
clients need not be implemented in all states and nested states, but simply
accessed through this resource class. Further this class holds information
about the current state and calls the timedExecution from the current active
state periodically.
The hierarchical state machines are implemented straight forward and access
also the resources from the BaxterControl class.

6.2.1 Class Structure

The class diagram of the top level state machine is visualized in Figure 6.2.
The ressource class holds action clients from following functionalities: Detect
Handle, Grasp Handle, Pull Box, Move To Support Pose, Move Box, Deliver Box
On Tray, Deliver Box On Level, Scan Environment, Link Follower, Move To
Level, Detect Box, Move Over Box, Grasp Item, Place Item, Move To Pose. The
implementation details of these functionalities are discussed in Section 6.3.
During a successful execution, the state machine starts with the Idle state, as
the name already suggests it idles during its timedExecution function until
the start of the order is invoked. Then the state machine transitions to the
Planning state. Within this timedExecution function, the planning itself is
performed. The domain and problem descriptions are saved as plain text
files. The problem description grounds the objects which occur in this setup.
Some of this objects are marked in Figure 6.1. This setup contains two boxes
(box 0 and box 1) which are stored respectively on level 0 0 and level 0 1.
The dimensions of the box are stored in the transport box con f ig.yaml file.
The poses of the levels in the world are stored in the levels.yaml . Further

84

6.2 High Level Node

the tray defined in the problem file is described by its position and the
radius (environment con f ig.yaml) because it is a round table. The current
load of the transport boxes is also defined in the problem description as well
as the different item types which occur in this setup (type A and type B).
The parameters which are stored in different ∗.yaml files can be accessed as
described in Section 6.1. So for the current implementation only one order

TRAY

LEVEL_0_1

LEVEL_0_0

BOX_0

BOX_1

Figure 6.1: In this figure objects in the system are visualized with their corresponding name
in the domain description file.

is considered. This order is saved in the problem description file. This order
asks for one item of type type A. If this order is finished, the next order
can only be executed if the problem file is replaced with a new problem
file containing the next order. The planner is a pre-compiled executable. So
if the planning is invoked, this high level process is forked. In the child
process the planner is executed with the problem and domain description
as input. The output of the planner is piped into a file descriptor. The main
process waits for the child process to terminate. Then it parses the output of
the planner and saves the list of skills as std::vector<command>. A command
is a struct and defined as shown in Listing 6.1. It holds the name of the
command and its arguments as strings.

Listing 6.1: command struct

85

6 Implementation

s t r u c t command
{

std : : s t r i n g command str ;
s td : : vector<std : : s t r i n g> command args ;

} ;

Planning state transitions to the PlanExecution state and passes the list of
planned skills to this state. Within the PlanExecution state the hierarchical
state machines for the skills and furthermore their primitives are called. As
long as no error occurs, the PlanExecution state remains active. If an error
occurs the PlanExecution reports this error and transitions back to the Idle
state.

Figure 6.2: This figure shows the top level state machine. BaxterControl holds resources
needed in all different layers of the state machine so that they can be accessed
easily and spread this information. The abstract BaxterControlState class de-
fines all the transitions and the timedExecution function for the implemented
states. The implemented top level states are IdleState, PlanningState and the
PlanExecutionState

6.3 Skill Primitives and System Functionalities

In this section the skill primitives and basic functionalities of the system are
described in detail. We start with the general functionalities skill primitives

86

6.3 Skill Primitives and System Functionalities

can use. They are either provided by Baxter or other frameworks. We con-
tinue with a deeper look in the implementation of the primitives itselves.

In Figure 6.3 functionalities and hardware parts are visualized that skill
primitives can directly access. The skill primitives can access these func-
tionalities. They directly read out status information published by Baxter
or can directly control different Hardware parts. Orange colored parts are
provided by Baxter, the yellow colored part visualizes MoveIt! component,
the purple colored part belongs to the GraspIt! framework, the green part
represents the Asus 3D camera using the OpenNI driver and blue parts
belong to our Industrial Grasping system.
The first hardware component which can be controlled via a topic is Bax-
ter’s head. In order to control the head a baxter core msgs/HeadPanCommand
message is published on the topic /robot/head/command head pan. Within the
HeadPanCommand.msg the target angle of Baxter’s head and the speed how
fast it should move there is defined. The data of the IR sensor in the grasp-
ing (in our case right) endeffector can be accessed through listening to the
/robot/range/right hand range topic. There the standard sensor msgs/Range mes-
sage is published which includes the currently measured range. The camera
image is also transmitted via a ROS image message (sensor msgs/Image)
on the topic /cameras/right hand camera/image. Further the cameras intrinsic
parameter (see sensor msgs/CameraInfo) are also published on a separate
topic named /cameras/right hand camera/camera info. This parameter are im-
portant for calculating the back projection from image pixel into world
coordinates. The next very important part on the endeffector is the gripper.
With listening to the gripper state (/robot/end effector/right gripper/state) it
can be easily evaluated if the gripper currently grasps an object or is empty.
On this topic a EndEffectorState.msg message is published. This message
contains the boolean flag gripping. This flag is true if the gripper grasps an
object and false otherwise (described in Section 5.4.4). The gripper state
topic can also be used to control the gripper. When publishing the ’closing’
or the ’opening’ command, the gripper immediately moves.
The arms are not accessed directly, but using the MoveIt! interface as de-
scribed in Section 4.2. Further the MoveIt! node is also connected to the point
cloud provided by the Asus 3D camera. Therefore the MoveIt! node keeps
track of the environment and its changes, as well as on recognized objects.

87

6 Implementation

MoveIt! stores the information about the environment and the robot state in
the planning scene. The Planning Scene Monitor manages the planning scene,
like handling sensor updates and registers objects. All in all the planning
scene contains objects, which are allowed to be touched and manipulated. It
also contains objects not allowed to be touched, which are called collision
objects. So all the collision objects are further referred as collision scene. A
visualization of the collision scene can be seen in Figure 6.4.
Skill primitives can also access the point cloud (see sensor msgs/PointCloud2)
delivered by the Asus 3D camera via the topic /camera/depth/points. Alter-
natively not the raw point cloud need to be used, but a filtered one by
the MoveIt! node (move group/filtered cloud). MoveIt! excludes all visible
robot parts in the Asus 3D camera image from the depth map. Therefore
it uses information about the current robot state as well as the meshes of
the robotic parts. Further skill primitives have the opportunity to access the
GraspIt! framework via ROS services. Therefore the GraspIt! framework was
wrapped into a ROS node and basic functionalities like loading a gripper,
collision and grasping objects can be used through service calls. Further the
Eigengrasp planner, can also be started through a service and the planned
grasps are returned. In particular the gripper can be loaded via the service
/ros graspit interface/load local gripper and the Eigengrasp planning is invoked
with the /ros graspit interface/generate grasps and the response of this service
returns the generated grasps.

Skill primitives and core functionalities in our system are grouped in four
modules: perception, manipulation, grasping and arm movements. In the
following sections we describe the primitives and functionalities in the
former described order. All nodes provide their functionalities as ROS
actions, or ROS services.

6.3.1 Perception Module

Here all nodes are described, which handle perceptional tasks.

88

6.3 Skill Primitives and System Functionalities

Figure 6.3: This figure shows the basic functionalities and information that is provided by
the system.

6.3.1.1 Detect Handle Node

This node implements the handle detection functionality described in Sec-
tion 5.4.1.2. Therefore it subscribes to the camera image topic for detecting
the handle. Further it subscribes the camera info topic and the IR range
sensor topic to back project the detected pose in the global frame. As soon
as the box’s handle gets detected a cuboid of (a little bit larger than) box
size is published to the MoveIt! Planning Scene Monitor. It is also marked
as an object, which is allowed to be touched by Baxter. This ensures that
afterwards a motion plan can be generated to grasp the handle. The box
published to the Planning Scene Monitor is larger than the real box. This
ensures the the visual servoing routing afterwards encounters no problems
with false detections of the collision scene around the box. In Figure 6.4 the
published box can be seen. When the box is published, the collision scene in
this area is removed. It is important to notice, that these voxel are removed
when the collision scene updates this region, this happens only if a new
point cloud in this area is captured. So in order to really update the collision
scene, where the box is inserted, the Asus 3D camera(or any other sensor)
must deliver a new point cloud in that region.

89

6 Implementation

Detected BoxColision Scene

Figure 6.4: This figure shows the detected collision scene with the published box. Baxter is
allowed to touch the box but not the collision objects

6.3.1.2 AR Tag Detection Node

As described in Section 5.4.7.3 the item is marked with an AR tag. In order
to detect the AR tag the ROS wrapped version1 of the library ARToolKit2

(version 2.72.1) is used. This is a commonly used library for detecting AR
tags. The ROS wrapper subscribes to the camera image and info topic and
publishes detected tags on the topic ar pose marker.

6.3.1.3 Detect Item Node

This node implements the functionalities described in Section 5.4.7. When
this action is invoked, it listens to to ar pose marker topic. If no tag is detected

1please see http://wiki.ros.org/artoolkit
2for more information about this library please see the documentation on http://

artoolkit.org/

90

http://wiki.ros.org/artoolkit
http://artoolkit.org/
http://artoolkit.org/

6.3 Skill Primitives and System Functionalities

it utilizes the MoveIt! interface to turn the wrist of the grasping arm around
90
◦. Therefore the current pose of the endeffector is taken and the rotated

pose is calculated. This calculated pose is packed into a trajectory message
and send via the MoveIt! interface to the JTAS. The JTAS is described
in detail in Section 4.5.3. This is the only node, which does not use any
trajectory planner. If the AR tag is detected it returns the pose as ROS action
result and continuously publishes the pose as ROS tf. This is an easy way
to steadily publish the pose of an object and utilizing the transformation
functionalities of the tf package. This item is then presented as cubic object
in the world. This object is also registered in the MoveIt! framework as
object which is allowed to be touched and not a collision object anymore.
This is visualized in Figure 6.5.
For a better understanding of the interaction of this node with the AR tag
detection a sequence diagram is shown in Figure 6.6. First the detect item
node requests an AR tag pose from the AR tag detection. Because it has
not detected any tags yet, it returns no pose. Meanwhile the detection is
running on current camera images. If one tag would be detected this pose
is stored and returned on request. The detect item node turns the wrist to
capture another view of the content of the box. It requests an AR pose and
again non has been detected. The wrist is turned for the third time and a
tag pose is requested. Now a tag has been registered. The detect item node
returns the success.

6.3.1.4 Detect Box Node

Here the coarse to fine approach described in Section 5.4.7.1 is imple-
mented. This node does not subscribe to the raw point cloud published
by the OpenNI driver but uses the already preprocessed point cloud from
MoveIt! framework. This point cloud has the big advantage, that the parts
belonging to the robot are already filtered out. It uses the PCL interfaces
for the Euclidean clustering (pcl::EuclideanClusterExtraction), FPFH extraction
(pcl::FPFHEstimation), SAC-IA alignment (pcl::SampleConsensusInitialAlignment)
and the ICP (pcl::IterativeClosestPoint). For this approach previous generated
box template is needed. This template is generated using the open source

91

6 Implementation

detected package

detected box

Figure 6.5: This figure shows the detected item published as cuboid object in orange. The
former detected box is published as white point cloud. The collision scene are
red colored voxel.

software Blender3. Therefore five cuboid objects, which represent the box
borders and the box bottom, are arranged. This model is shown in Figure 6.7.
Because the box has obviously a smooth surface, a surface subdivision is
performed to get more points on the surface. Then the box can be stored
as point cloud (*.ply) file. PCL can load these files. This box model is now
used as template for the box detection.
The action returns the detected box pose in the ROS action result. The
detected box can be seen as white point cloud in Figure 6.5. The white
points represent the points which were exported by Blender.
The general detectBox routine is presented in Algorithm 1. The preprocessing
routine is shown in Algorithm 2. This preprocessing routine makes use of
the pcl::PassThrough function to crop the point cloud around the approximate
pose, which is passed in via an argument. The pcl::EuclideanClusterExtraction
functionality returns possible pointcloud candidates. These pointclouds are
used by the coarseFitting presented in Algorith 3. It uses the pcl::FPFHEstimation
for estimating the features and the pcl::SampleConsensusInitialAlignment func-
tion to align it. The fineFitting performs the final alignment in Algorithm 5

using the pcl::IterativeClosestPoint functionality. Finally it is verified that

3see https://www.blender.org/

92

https://www.blender.org/

6.3 Skill Primitives and System Functionalities

Figure 6.6: This figure shows an example sequence of the detect item nodel

Figure 6.7: Here the transport box model in Blender is visualized.

93

6 Implementation

z-direction of the pose points in the same direction as the z-direction of
the global coordinate system. If it would not point in the same direction,
that means that the box would have a wired orientation, but we know that
it should stand on the tray. So either the detection failed, or the box does
not stand on the tray. In this case the failure is returned, the box pose is
empty. This check is computed the following way. First a translation t Bz B
in z-direction of the box (w.r.t the box frame) is performed.

t Bz B =

0
0
1

 (6.1)

Because there is no rotation the transformation T Bz B is given with:

T Bz B =

(
I t Bz B
0 1

)
(6.2)

So the resulting pose Bz with respect to the origin O is given with:

T Bz O = T Bz B · T B O (6.3)

We now take a closer look at the translation tzB from the box B to Bz with
respect to the origin:

tzB = t Bz O− t B O (6.4)

This vector should ideally be tzO:

tzO =

0
0
1

 (6.5)

Due to the special shape of the vectors it is tested if their dot product is
between 1− ε and 1 + ε. Then our check evaluates with true otherwise it is
not valid.

valid =

{
true, if 1− ε < tzB · tzO < 1 + ε

f alse, otherwise
(6.6)

The poses are schematically visualized in Figure 6.8. Please note that this
verification, only checks one axis of the box pose. Because we cannot make
a statement about the others. But the one tested is already a good indicator
for a false detection.

94

6.3 Skill Primitives and System Functionalities

Algorithm 1: detectBoxPose
Data: cloud in, template, approximate pose
Result: box pose

1 box pose←− emptyPose;
2 clusters←− preprocessing(cloud in, approximate pose);
3 i←− 0, score best←− 0, pose best;
4 while i <#ATTEMPTS do
5 p coarse, cloud←− coarseFitting(clusters, template);
6 p f ine, score←− f ineFitting(cloud, p coarse, template) ;
7 if score >score best then
8 pose best←− p f ine;
9 score best←− score;

10 end
11 i←− i + 1;
12 end
13 origin←− globalcoordinatesystem ;
14 valid←− checkPose(pose best, origin);
15 if valid then
16 box pose←− pose best;
17 end

Algorithm 2: preprocessing
Data: cloud in, approximate pose
Result: clusters

1 cloud←− cutAroundApproximiatePose(approximate pose);
2 clusters←− euclideanClustering(cloud);

6.3.1.5 Head Node

This node implements two functionalities namely the Scan Environment and
the Link Follower functionality.
The first functionality ensures that the whole collision scene is scanned
before any other detections or arm movements are performed. Therefore
this functionality is invoked immediately after the system start. It sends

95

6 Implementation

Algorithm 3: coarseFitting
Data: clusters, template
Result: p coarse, cluster

1 f p f h template←− computeFPFH(template);
2 score best←− 0, pose best, cluster best;
3 forall the cluster in clusters do
4 f p f h←− computeFPFH(cluster);
5 pose, score←− sacIA(f p f h, cluster, f p f h template, template);
6 if score >score best then
7 pose best←− pose;
8 score best←− score;
9 cluster best←− cluster;

10 end
11 end
12 cloud←− cloud best;
13 p coarse←− pose best;

Algorithm 4: fineFitting
Data: cloud, p coarse, template
Result: p fine, score

1 alignment←− icp(cloud, p coarse, template) ;
2 score←− alignment.getScore();
3 p f ine←− alignment.getFinalPose();

target positions to Baxter’s head joint reaching from −π
2 π to π

2 in incremental
steps, of 0.2 radiants, so that the Asus 3D camera, that is mounted on the
head, can capture the whole workspace. After each incremental step, it stops
for a short time to ensure that MoveIt! Planning Scene Monitor captures the
new received point cloud. The collsion scene is represented as Octomap4.
Such a collision scene is visualized in Figure 6.9.

The Link Follower functionality let the head follow any tf link so that the

4see http://octomap.github.io/

96

http://octomap.github.io/

6.3 Skill Primitives and System Functionalities

B
O

Bz

T_Bz_B T_Bz_O

T_B_O

Figure 6.8: This figure shows the poses of the box and the pose translated in z-direction.
The poses are needed to verify the orientation of the detected box.

Algorithm 5: check
Data: p best, origin
Result: valid

1 T Bz B.rotation←− IdentityMatrix;
2 T Bz B.translation←− Vec3(0, 0, 1);
3 T Bz O←− T Bz B · T B O;
4 tzB ←− T Bz O.translation− T B O.translation;
5 tzO ←− Vec3(0, 0, 1);
6 if (tzB · tzO >1-ε) AND (tzB · tzO <1+ε) then
7 valid←− true;
8 else
9 valid←− f alse;

10 end

Asus 3D camera can observe this link continuously. This functionality is
used to observe the grasping arm with the Asus 3D camera, while the arm

97

6 Implementation

(a)Baxter before pushing the box
into the level.

(b)Baxter after pushing the box into
the level.

Figure 6.9: The left figure shows the sensed collision scene by the Asus 3D camera. The
Planning Scene Monitor in MoveIt! keeps track of the environment. It is stored
as Octomap. The right figure shows a picture taken of the real collision scene.

is moving or manipulating objects. This offers the opportunity to detect, if
any object is moving into the workspace while manipulating objects. For
example, the trajectory execution can be aborted, if a person walks into the
workspace of Baxter. This node therefore uses the position of the grasping
endeffector published as tf and calculates the corresponding head angle and
publishes this angle as HeadPanCommand.

6.3.2 Arm Movements Module

The following nodes handle the arm movements and make use of the
MoveIt! interface.

6.3.2.1 Move To Pose Node

The action provides a basic functionality for the system. It receives a pose
the grasping arm should move to. Therefore it utilizes the MoveIt! interface
to plan and execute a collision free trajectory. For planning the trajectory the
LBKPIECE algorithm of the OMPL is used. The planned trajectory is sent to
the JTAS, which handles the execution. If any errors occur, it is reported in
the result of the action.

98

6.3 Skill Primitives and System Functionalities

6.3.2.2 Move Over Box Node

This node implements the skill primitive described in Section 5.4.7.2. It re-
ceives the box pose as input and calculates the inspection poses as described
in Algorithm 6. This algorithm receives the box pose BPG, the box dimen-
sions (hb, db, wb) and the distance between the single inspection poses dist.
It calculates the first inspection pose IP1 and last inspection pose IP end as
described in Section 5.4.7.2. The algorithm calculates new inspection poses
as long as their distance to IP1 is not longer as the distance from IPend to
the starting position. The orientation of each inspection pose is computed
as described in Section 5.4.7.2.
This primitive also utilizes the MoveIt! framework to plan and execute a
trajectory for the inspection poses. Again the LBKPIECE planner is utilized
for planning and the JTAS handles the execution.

6.3.2.3 Move To Level Node

Within this node the movement part of the detect handle skill primitive
(see Section 5.4.1.1) is implemented. It receives a semantic level name (e.g
”Level 0 1”), looks up this name from the ROS parameter server, to which
pose in the global coordinate system it belongs to, and moves the arm there,
also using the MoveIt! framework. Like before the LBKPIECE plans the
trajectory and the JTAS executes it.

6.3.2.4 Move To Support Pose Node

Here the calculations are implemented described in Section 5.4.3. Like in
the previous described nodes, the LBKPIECE planner is used and the JTAS
handles the execution.

6.3.3 Grasping Module

The following described functionalities cope with grasping objects.

99

6 Implementation

Algorithm 6: cacluateInspectionPoses
Data: BPG, hb, wb, db, dist
Result: inspection poses

1 inspection poses←− [];
2 IP1 ←− calculateFirstInspectionPose(BPG, hb);
3 IPend ←− calculateEndInspectionPose(BPG, wb, hb, db);
4 maxl ←− (IPend − IP1).length();
5 dir ←− (IPend − IP1).norm();
6 i←− 1;
7 while true do
8 vec←− dir · i · dist if vec.length() <maxl then
9 IP←− newinspectionpose;

10 IP.position←− IP1 + vec;
11 IP.orientation←− calculateOrentation(IP.position, boxpose);
12 inspection poses←− inspection poses.pushBack(IP);
13 i←− i + 1;
14 else
15 inspection poses←− inspection poses.pushBack(IPend);
16 break ;
17 end
18 end

6.3.3.1 Grasp Handle Node

Here the functionalities of the primitive described in Section 5.4.2 are imple-
mented. The visual servoing makes use of the functionalities implemented
in the detect handle node (see Section 6.3.1.1). Therefore it just calls the ROS
action to receive the measured poses. The repositioning is performed fol-
lowing the servoing strategy from Section 5.4.2. For a better understanding
of the grasp handle primitive’s routine and its interaction to the perception
module as well as to the gripper, a sequence diagram is visualized in Fig-
ure 6.10. First it requests the poses PG,HG,LG and RG from the the detect
handle module. It then evaluates this poses. The arm is not on at the desired
pre-grasp pose. It moves the arm correspondingly. Meanwhile the detection
module is sensing and updating the poses. The grasp handle node again

100

6.3 Skill Primitives and System Functionalities

requests the poses and evaluates it. Because it still has not reached PG it
moves the arm again. The poses are requested and evaluated for the third
time now. This time the arm reached PG. It moves the arm to grasp the
handle. Now the validation from the gripper module is requested. it returns
a valid grasped. The primitive returns the success.
When performing the local recovery behavior it calls the actions imple-
mented in the Move To Pose Node (see Section 5.4.3). As soon as the box is
grasped securely, the box is attached to the grasping endeffector. This means
that MoveIt! stores the information, that the box is now held by this arm and
moves this collision object whenever the arm is moved. This is especially
useful when the box is manipulated. So that the sensed point cloud of the
box does not interfere as collision object with any planned trajectories of
the arms.

Figure 6.10: This figure shows an example sequence of the grasp handle node

101

6 Implementation

6.3.3.2 GraspIt!

6.3.3.2.1 GraspIt! ROS msgs These messages define the ROS services
which can be called to interact with GraspIt! in ROS. For our project we
need two services: LoadLocalGripper.srv and GenerateGrasps.srv. As the name
already suggests the LoadLocalGripper.srv loads a local gripper. A local
gripper is stored in the GraspIt! folders and not loaded from any database.
The service is defined in Listing 6.2. The gripper name consists of the folder
and the name of the loaded model (e.g: BaxterHand/baxter hand.xml) and
needs to be passed via this service. The service returns if the gripper can be
loaded or if it fails.

Listing 6.2: LoadLocalGripper.srv

std msgs/ S t r i n g gripper name
−−−
i n t 3 2 LOAD SUCCESS = 0

i n t 3 2 LOAD FAILURE = 1

i n t 3 2 r e s u l t

The GenerateGrasps.srv service is defined in Listing 6.3. Please note that
float32[][] datatypes are not a valid datatype in ROS. Instead
std msgs/Float32MultiArray.msg are used. We use the notation float32[][]
for a clarification reasons. The model name is the name of the object that
should be grasped and the model pose the corresponding pose. The flag
reject fingertip collision indicates if fingertips are allowed to be in collision
with the object to be grasped. This can be useful if the fingertips are made
of a soft materials, which deform when touching an object. Because Baxter’s
fingertip are rather inflexible, we set that flag to false. Although the name
of the request tabletop flag is misleading, this flag indicates if an collision
object should be load with the name passed by the tabletop file name.
The service returns about any errors in the result variable. If the service
succeeded it returns the grasping poses. One grasping pose contains of:

• bool hand object collision
• geometry msgs/Pose grasp pose
• float32[] grasp joint angle
• float32 grasp energy
• float64 gripper tabletop clearance

102

6.3 Skill Primitives and System Functionalities

• float64 gripper object distance

If the flag hand object collision is false then the hand is in collision with a
collision object and the grasp should be ignored. If the flag is true, the grasp
is valid. The grasp pose contains the position and orientation of the wrist
with respect to the object which should be grasped. The grasp joint angle
holds the joint angle of the gripper. In the case of the parallel jaw grip-
per we use this is a single value, because it has only one degree of free-
dom. A quality measure is returned with the grasp energy variable. The
gripper tabletop clearance holds the distance to the next collision object
and the gripper object distance holds the distance to the object which
should be grasped. This is one grasp. Hopefully more then one grasp
could be planned. And all the grasping informations are stored one after
each other in the corresponding vectors. So the ith grasp consists of fol-
lowing values: hand object collision[i], grasp joint angle[i], grasp energy[i],
gripper tabletop clearance[i] and gripper object distance[i].

Listing 6.3: GenerateGrasps.srv

std msgs/ S t r i n g model name
geometry msgs/Pose model pose
bool r e j e c t f i n g e r t i p c o l l i s i o n
bool r e q u e s t t a b l e t o p
s t r i n g t a b l e t o p f i l e n a m e
−−−
i n t 3 2 GENERATE SUCCESS = 0

i n t 3 2 GENERATE FAILURE = 1

i n t 3 2 r e s u l t

bool [] h a n d o b j e c t c o l l i s i o n
geometry msgs/Pose [] grasp pose
f l o a t 3 2 [] [] g r a s p j o i n t a n g l e
f l o a t 3 2 [] grasp energy
f l o a t 6 4 [] g r i p p e r t a b l e t o p c l e a r a n c e
f l o a t 6 4 [] g r i p p e r o b j e c t d i s t a n c e

6.3.3.2.2 GraspIt! ROS package The GraspIt! framework itself is wrapped
into a ROS package. This package does not include any source or header

103

6 Implementation

files, but a CMakeLists.txt and package.xml file only. During building this
package, it invokes the external build command for the GraspIt! framework,
which is a QT4 project. Further it copies the compiled executables to the
build directory of the current ROS workspace. So the library graspit can be
handled as a ROS library. Other packages can depend on it and the ROS
build chain handles the linking.

6.3.3.2.3 GrapIt! ROS wrapper package This node provides a ROS wrap-
per for the GraspIt! library. It implements all the service servers for the
services defined in the GraspIt! ROS messages package. It calls the appro-
priate GrapIt! functions provided by the graspit library. So if the LoadLo-
calGripper.srv service is called via ROS the loadLocalGripperCB callback is
executed. It loads the gripper model using the function loadGripper. This
calls functions from the graspit library to load the gripper model. In the case
of the GenerateGrasps.srv service the generateGraspsCB call back is invoked. It
first loads the collision object loadCollisionObject and the object to be grasped
(loadObject). Then it invokes the Eigengrasp planner. The invokeEigenGrasp-
Planner initalizes and starts the planner. When it is finished, the planned
grasps are extracted. The results are returned via the ROS service interface.
The ROS interfaces of this node are used by the Pick and Place Node. The
relation between these packages is shown in Figure 6.11.

6.3.3.3 Pick and Place Node

This node implements two actions: Grasp Item and Place Item (see description
in Section 5.4.8).
The Grasp Item action receives the box and the item pose. Because the col-
lision object defines the origin in the later used GraspIt! ROS wrapper,
the item pose is first transformed into the box coordinate system. Then
the services described in Section 6.3.3.2 are used to load the box as col-
lision object, the item and the gripper. The grasps are planned using the
GenerateGrasps.srv. The proposed grasping poses are returned via the ROS
service. The generated grasps are returned with respect to the object pose.
So they are first transformed to global coordinates and then packed into a

104

6.3 Skill Primitives and System Functionalities

Figure 6.11: This figure shows the different nodes which use either GraspIt! libraries directly
or access it via ROS interfaces

moveit msgs::Grasp message (see Listing 6.4). The id sets the name of the cur-
rent grasp. The pre grasp posture and the grasp posture represent the joint
angles of the gripper in the pre-grasp pose and the grasp pose. In our system
these values are the same for all grasps. In the pre grasp posture the gripper
should be open as much as possible and in the grasp posture the gripper is
closed. If a more sophisticated gripper is used, the grasp joint angle from
the graspit message should be set. The grasp pose is set to the pose retrieved
from the service, as well as the grasp quality. The pre grasp approach de-
fines how the gripper should approach towards the object. Because in our
setup we have a table top grasp we set this for all grasps to the direction
pre grasp approach direction:

pre grasp approach direction =

 0
0
−1

 (6.7)

This ensures that the gripper performs a table top grasp. The
post grasp retreat defines the direction of the gripper after the grasp, which

105

6 Implementation

is in our case the negative direction of the pre-grasp approach direction:

post grasp retreat = −pre grasp approach direction (6.8)

So the arm is basically lifted after the grasp. We do not define the
post place retreat. This would define the place movement of the gripper,
which is immediately opened after the movement. We decided to sepa-
rate this behavior to the Place Item action. The max contact force is set
to a positive number so that the gripper closes, but we do not mind to
much about a too strong grasp, because our item cannot break. We add
our item collision object, visualized in Figure 6.12 as orange box, to the
allowed touch objects. In the top left corner of the Figure 6.12 the grasp
is visualized again. Motion trajectories are planned now in a way, that the
gripper is allowed to touch the item. All the different grasps are stored in a
vector (std::vector<moveit msgs::Grasp>). The generated grasps are then also
visualized in RViz as markers (see Figure 6.12). For the visualization of the
grasps the moveit visual tools package is used. The grasps can be passed to
MoveIt! via an interface. It then plans and executes the grasps. So it provides
basically an interface to hand over different possible grasps and to perform
a ”pick”, when a valid motion plan for one of those grasps can be found.

The Place Item action just moves the arm to the delivery place using MoveIt!
and opens the gripper directly.
For both described actions the LBKPIECE planner is invoked and JTAS
handles the execution.

Listing 6.4: moveit msgs/Grasp.msg

s t r i n g id
t r a j e c t o r y m s g s / J o i n t T r a j e c t o r y pre grasp posture
t r a j e c t o r y m s g s / J o i n t T r a j e c t o r y grasp posture
geometry msgs/PoseStamped grasp pose
f l o a t 6 4 g r a s p q u a l i t y
moveit msgs/GripperTrans la t ion pre grasp approach
moveit msgs/GripperTrans la t ion p o s t g r a s p r e t r e a t
moveit msgs/GripperTrans la t ion p o s t p l a c e r e t r e a t
f l o a t 3 2 max contac t force
s t r i n g [] a l l o w e d t o u c h o b j e c t s

106

6.3 Skill Primitives and System Functionalities

detected Box

visualized grasp

item

Figure 6.12: This figure shows one visualized grasp in RViz as marker. In the top left corner
the grasp itself is visualized in more detail (zoomed in)

6.3.4 Manipulation Module

The following nodes which are described, all implement functionalities to
manipulate the transport box.

6.3.4.1 Pull Box Node

This node implements the concept described in Section 5.4.4. In order to
ensure that the wrist does not turn during the movement, this joint is
constraint in its orientation. MoveIt! already provides a planner that handles
this constraint: ComputeCartesianPath. This interface expects the waypoints
the endeffector should follow without turning the wrist. It also returns an
estimation, if the path can follow the waypoints or not. So the pull box action
uses this interface to plan the motion and executes it using the standard
MoveIt! interface (sending the trajectory to the JTAS). If no plan can be
found it returns with an error.

107

6 Implementation

6.3.4.2 Move Box Node

Within this node the concept of Section 5.4.5 is implemented. Therefore
MoveIt! interfaces for both arms are initialized. Again the ComputeCartesian-
Path interface is used. Because none of the arms is allowed to turn the wrist,
otherwise the box is lost during manipulation. Like in the other movements
and manipulation nodes the planned trajectory is sent to the JTAS, which
handles the execution.

6.3.4.3 Deliver Box On Level Node

This node implements the action for delivering the box on the level as
described in Section 5.4.10. Therefore it also implements a MoveIt! interface.
When the box is finally delivered on the level, the box is detached from the
endeffector. Now MoveIt! registers, that the box is no longer hold by the
gripper any more and handled as normal collision object.

6.3.4.4 Deliver Box On Tray Node

In comparison to the node before, this node implements the action to deliver
the box on the tray (see Section 5.4.6). When the box is delivered on the tray
it is also detached from the gripper.

108

7 Evaluation

Within this chapter the different parts of the system are evaluated. Each skill
is decomposed in its skill primitives and the primitives are evaluated sepa-
rately. In order to see the robustness of the different subtasks the focus of the
evaluation is on the single primitives. In addition three parts of the system
are picked out and evaluated in detail. The box detection is compared to an
ICP algorithm and to the FPFH with SAC-IA alignment, both implemented
in the PCL. The next detailed evaluation concerns planning and execution
of grasps for different positions of the item inside the transport box. The
last part shows grasps, planned by the Eigengrasp planner, for the Baxter
gripper and the Schunk WSG 50 gripper in the GraspIt! framework. Besides
the presentation of the evaluation results particular aspects of the evaluation
will be discussed in detail.

The skill primitive evaluation has the same structure for all primitives. First
the environmental setup - including the robot state - is described the primi-
tive starts with. Then the expected outcome is described. A skill primitive’s
execution is called successful if the expected outcome is achieved. Otherwise
the execution is called a failure. The failure cases are distinguished into two
groups: failures which are detected by the system and failures which are
not detected. The detected failure rate is a measure for the robustness of the
system.

7.1 Skill MoveBoxFromLevelToTray

As described in Section 5.3 this skill is composed of skill primitives. These
primitives are tested separately. First the primitive detectHandle is evaluated
followed by the graspHandle primitive. Then the moveToSupportPose primitive

109

7 Evaluation

is tested, afterwards the pullBox and moveBox are evaluated. Finally the
deliverOnTray primitive is evaluated. For all primitives a start state is defined
and the expected outcome. The success of a primitive execution is verified
by the person who runs the tests. For perception primitives the detected
poses and objects were visualized in RViz and verified as success or failure
by the user. The same holds for the manipulative primitives. Within this test
setup there is no opportunity to externally verify the robot’s ground truth
arm poses, or the poses of the manipulated objects. So there is a person in
the testing loop, which verifies the successful outcome of the primitive.

7.1.1 detectHandle

detected
handle

fingers

(a)Handle detection in the camera
image.

handle pose

(b)Marked handle in the collision
scene.

Figure 7.1: This figure shows the handle in the camera image as well as in collision scene.
In the left figure the detected handle pose is marked with a green dot by the
perception module, as well as the red diamonds for the finger poses. The text
and the arrows were added to highlight the perception.

110

7.1 Skill MoveBoxFromLevelToTray

Setup The environment is already scanned and the collision scene loaded.
Baxter is standing in front of the shelf. Both arms are in a neutral pose.
Their endeffectors are pointing towards the floor. The box is on the level
which is delivered via parameter.

Expected Outcome The grasping arm is moved in front of the level. The
primitive returns the handle pose with respect to the global coordinate system
HG, the left finger pose LG, the right finger pose RG as well as the pre-grasp
pose PG. The poses are then visualized in the sensed collision scene. The
user verifies the outcome with success, if the arm is moved in front of the
level and the poses are visualized at corresponding poses in the sensed
collision scene. First the handle detection in the image is verified (visualized
as green dot, see Figure 7.1a) and the handle pose is visualized in the scene
(Figure 7.1b).

Results This primitive executes 79.3% times successfully of 58 trials. Of the
20.7% failure cases, 30% are correctly detected as error. This happens when
the trajectory for an arm movement is planned, but not correctly executed
by Baxter. In 70% of the failure cases the whole planning node (movegroup
node) crashed and this failure is not detected. So the primitive needs to be
aborted and the whole system restarted.

7.1.2 graspHandle

In Figure 7.2 Baxter is shown while it tries to grasp the handle.

Setup The environment is already scanned and the collision scene loaded.
Baxter is standing in front of the shelf. The grasping hand is already in front
of the level, where the box stands on.

111

7 Evaluation

Figure 7.2: This figure shows Baxter while the grasping handle skill primitive.

Expected Outcome Baxter grasps the handle securely and reports about
the success. The user verifies the secure grasps in pulling and pushing a
little bit. If the box does not slip out of the gripper the user verifies the
successful outcome.

Results This primitive executes 70% successfully out of 49 trials. 50% of
the fails were correctly detected as failures and reported. Here the biggest
problem was the inaccurate path execution. Due to this inaccuracies some-
times not the handle but a different part of the box was grasped. This grasps
were not stable but reported as success by the primitive, but were failure
cases. The box slipped out of the gripper when the user touched the box.

112

7.1 Skill MoveBoxFromLevelToTray

Figure 7.3: This figure shows the top view of the support pose. Within the next step Baxter
pulls the box on the support arm.

7.1.3 moveToSupportPose

Setup The environment is already scanned and the collision scene loaded.
Baxter is standing in front of the shelf and securely grasps the box.

Expected Outcome Baxter moves the support arm in support position, so
that the box could be pulled out. After the movement the user tries to pull
out the box of the level. If the box is supported by the support arm and not
lost, the execution is called successful.

Results It successfully executes in 85% of 34 trials. During the failure
cases it detected errors with 80%. These errors were mainly either that no
trajectory could be planned, or that the arm got stuck in the rack due to a
inaccurate execution of the trajectory.

113

7 Evaluation

7.1.4 pullBox

Figure 7.4: This figure shows Baxter pulling the box

Setup Baxter grasped the box securely and the second arm is in support
pose.

Expected Outcome Box is pulled out of the level on the support arm.
Baxter is now balancing the box on both hands in front of the level. The user
again pushes and pulls the box a little bit. If the box is not lost, the execution
of this primitive is called successful. If the box is already lost during this
small movements, it is not grasped securely any more. This is considered
being an error, as well as loosing the box during the arm movement. In
Figure 7.4 Baxter is shown after the pull Box primitive was performed. It
still securely grasps the box while supporting it with the second arm.

114

7.1 Skill MoveBoxFromLevelToTray

Results This primitive executed 82% of 28 cases without failure. During
all the failure cases it detected the error. When an error occurred Baxter
always lost the box and the box fell to the ground.

7.1.5 moveBox

Figure 7.5: This figure shows Baxter while moving the box.

Setup Baxter is balancing the box in front of the level.

Expected Outcome Baxter moves the box towards the tray. It balances the
box in front of the tray but does not deliver it on the tray. The execution
is called successful if the box is balancing in front of the tray (about 5

centimeters verified by the user). If the box is lost during the movement this
is called an error.

115

7 Evaluation

Results During the evaluation this primitive never failed (22 trails). This
primitive performs that well, because auch single movement of the arms
is relatively small and slow. So the trajectory execution seems to be more
precisely in small and slow motions. So Baxter is very unlikely to loose the
box. Furthermore in this setup the distance between the shelf and the tray is
also quite short. In Figure 7.5 Baxter is moving the box towards the tray.

7.1.6 deliverOnTray

Figure 7.6: This figure shows Baxter after it delivered the box on the tray.

Setup Baxter is balancing the box in front of the tray.

Expected Outcome Baxter delivers the box on the tray. It is considered
being a success if the box stands on the tray (not falling to the ground) and
if the robot could grasp the item inside the box. Further it reports the box
release pose BRG were it releases the handle. The user verifies if the robot
could grasp the item. Therefore it moves the grasping arm in the box and

116

7.2 Skill graspItem

grasps the object using the compliant arm mode. Figure 7.6 shows the box’s
successful delivery on the tray.

Results This primitive executes successfully in 82% of 22 cases. In the
failure cases, it either looses the box, or no possible grasp afterwards was
be possible (verified by the user).

7.2 Skill graspItem

This skill is composited of three primitives: detectItem, graspItem and de-
liverItem. Again the primitives are tested separately. The user still has to
verify the success of one primitive. Because parts of this skill are evaluated
later on in detail, some parts are not discussed here. This includes the box
detection, as well as a further analysis of grasping items.

7.2.1 detectItem

detected item

box

Figure 7.7: This figure shows the detected item and the box.

117

7 Evaluation

Please note that the box detection is tested separately and the results are
stated in Section 7.4.

Setup The box is standing on the table. In this case the box pose is known
in advance.

Expected Outcome Baxter moves with its grasping arm over the box and
detects the item using the camera mounted on the endeffector. It reports
box pose and item pose. If the skill primitive succeeds the box and the item
pose is visualized in RViz (see Figure 7.7). If it is verified by the user, the
primitive is counted as success.

Results During the evaluation Baxter was always able to move over the box
and detect the item. Only in one case out of 22, where one finger disturbed
the camera image, the item position was correct but not its orientation.

7.2.2 graspItem

One part of the grasp item analysis was tested during the test of this skill.
More tests on grasping the item in different poses inside the box are shown
in Section 7.5.

Setup The box and the item pose are given.

Expected Outcome Good grasps are calculated utilizing the Eigengrasp
planner. Trajectories are planned to perform this grasps and Baxter executes
one of those. If the primitive returns about the success, the user needs to
verify if the item is really grasped.

118

7.3 Skill moveBoxFromTrayToLevel

Results Baxter was only able to grasp it securely two times out of 22. One
big problem was, that no trajectory could be planned, because the collision
scene was corrupted. It had some strange obstacles directly in front of Baxter.
This obstacles especially appeared, when the arm moved in front of the
3D camera. Because this problem caused many error cases this evaluation
is more or less worthless. Experiments on grasping object were repeated,
where this changes in front of Baxter are ignored and the trajectories are
simply executed. Nevertheless the second problem here was, even when the
collision scene was correct detected and the trajectory could be planned,
that the trajectory execution was too inaccurate to grasp the small item. The
actual grasp pose was only a few centimeter (one to two cm) away from the
planned one. So quite often the item was nearly grasped but slipped out of
the gripper.

7.3 Skill moveBoxFromTrayToLevel

For this skill only the primitives pullBox and deliverOnLevel are evaluated.
Because during testing the other primitives worked as well as in the Move-
BoxFromLevelToTray skill. pullBox is evaluated again, because pulling the box
on the tray behaves a little bit different than pulling on the level, due to dif-
ferent surfaces. The user verifies the successful outcome of the primitives.

7.3.1 pullBox

Setup The box is on the tray. Baxter securely grasps the handle. The
support arm is in support position.

Expected Outcome Baxter pulls the box on the support hand. It balances
the box in front of the tray. If the primitive returns success, the user verifies
if the box is securely hold on the support arm in pushing and pulling the
box a little bit. If the box is lost, then has not been grasped securely any
more. This is counted as failure of the primitive.

119

7 Evaluation

Results This skill primitive worked out also 82% correctly. During the
failure cases it was not able to pull it completely on the support arm. It
would have been lost during the first next movements, so this cases were
marked as failure.

7.3.2 deliverOnLevel

Setup Baxter is balancing the box in front of the level.

Expected Outcome The box is on the level and Baxter released the handle.
This primitive is succeeds if the box is placed in the level and not falling to
the ground. This is verified by the user.

Results Only 60% tests were successfully executed. The main problem was,
after releasing the box handle and moving back as described in Section 5.4.10,
the finger got caught on a small part of the handle. So Baxter pulled out
the box from the level again and the box fell to the ground. The trajectories
were planned correctly but the execution was to inaccurate.

7.4 Box Detection

Three different algorithms for detecting the correct box pose are evaluated:
ICP1, FPFH with SAC-IA alignment 1 and the coarse to fine approach pre-
sented in Section 5.4.7.1. The box was detected three times per pose on 15

different poses on the tray. Some of these poses are visualized in Figure 7.8.
The results are plot in Figure 7.9 for the testing poses Pose 1 to Pose 7 and
in Figure 7.10 for the testing poses Pose 8 to Pose 15. Our coarse to fine
approach detects the box robustly. But whereas the ICP’s average computa-
tion time is about 10 seconds as well as the FPFH with SAC-IA alignment,
our algorithm needs around 1.2 minutes, which is the drawback of this
approach. For continuing primitives a stable box detection is a necessary

1Algorithm as it is provided in the PCL

120

7.4 Box Detection

Shelf

Tray

Box
Baxter

Figure 7.8: In this figure the schematic test setup for detecting the box is shown. Some of
the different box poses are visualized.

prerequisite for a successful execution.
There are multiple reasons why the coarse to fine approach works better in
this environment than the pure FPFH with SAC-IA alignment or the ICP.
First due to occlusions and no 360

◦view around the box, only some parts
of the box are captured by the Asus 3D camera and represented as point
cloud. Further for the FPFH approach the surface of the box is simply too
smooth and features are mainly detected on the edges. If the point cloud
is preprocessed this approach gives a good guess of the pose but no exact
pose. If the point cloud is not preprocessed and the FPFH with SAC-IA
alignment is run on the raw cloud, there are too many similar shapes in the
environment and this algorithm cannot find a good guess. The same holds
for the ICP, it runs in a local minima if is performed on the raw cloud or on
the preprocessed one. Some times the ICP is able to detect the pose (Pose 8

and Pose 15), maybe because the camera was able to capture a slightly larger
point cloud of the object. But if ICP receives a good initial guess it aligns the
box really well. Of course only three detections per pose shown in Figure 7.9
and Figure 7.10 are far too few to make any conclusions on a statistic, but
they show at least that our approach is able to detect the box.

121

7 Evaluation

Pos
e 1

Pos
e 2

Pos
e 3

Pos
e 4

Pos
e 5

Pos
e 6

Pos
e 7

0

1

2

3
C

or
re

ct
D

et
ec

ti
on

(o
ut

of
3
)

ICP FPFH with SAC-IA Alg. prop. Sec. 5.4.7.1

Figure 7.9: In this figure the evaluation for the different algorithms (ICP, FPFH with SAC-IA
alignment, algorithm proposed in Section 5.4.7.1) is shown for testing poses
Pose 1 to Pose 7

7.5 Grasp Item

For this evaluation the box pose remained the same. The pose of the item
inside the box was changed. For each pose the following is tested for five
times:

1. Detect item
2. Plan Grasp
3. Execute Grasp

Within this experiment the item positions on the border of the box were
tested. These positions are marked with a blue rectangle in Figure 7.11. The
lower middle pose was not tested, because it was outside of Baxter’s arm
workspace. So it could not reach this positions. We tested if Baxter could at
least move to the positions using the compliant mode.

122

7.5 Grasp Item

Pos
e 8

Pos
e 9

Pos
e 10

Pos
e 11

Pos
e 12

Pos
e 13

Pos
e 14

Pos
e 15

0

1

2

3

C
or

re
ct

D
et

ec
ti

on
(o

ut
of

3
)

ICP FPFH with SAC-IA Alg. prop. Sec. 5.4.7.1

Figure 7.10: In this figure the evaluation for the different algorithms (ICP, FPFH with
SAC-IA alignment, algorithm proposed in Section 5.4.7.1) is shown for testing
poses Pose 8 to Pose 15

upper
right

middle
left

lower
right

upper
left

middle
right

lower
left

upper
middle

lower
middle

Figure 7.11: This figure shows different item positions which were tested.

123

7 Evaluation

7.5.1 Left Middle Item Pose

The schematic setup is shown in Figure 7.12. The results of the outcomes of
the evaluated steps are shown in Table 7.1. In Experiment 2 the item was
not detected, in all other experiments no valid trajectory could be planned.
From this experiments it looks like that this was an unreachable pose for
Baxter.

Shelf

Tray

Box

Item

Baxter

Figure 7.12: In this figure the schematic test setup for grasping the item at the left middle
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.1: Evaluation of grasping an item at the left middle pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! ! Failed
2 Failed - -
3 ! ! Failed
4 ! ! Failed
5 ! ! Failed

124

7.5 Grasp Item

7.5.2 Right Middle Item Pose

The schematic setup is shown in Figure 7.13. The results of the outcomes of
the evaluated steps are shown in Table 7.2. Whereas in Experiment 1 and
Experiment 4 a motion plan was found and a grasp was executed unsuc-
cessfully, in Experiment 2, Experiment 3 and Experiment 5 no trajectory
could be planned.

Shelf

Tray

Box

Item

Baxter

Figure 7.13: In this figure the schematic test setup for grasping the item at the right middle
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.2: Evaluation of grasping an item at the right middle pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! ! Failed
2 ! ! Failed
3 ! ! Failed
4 ! ! Failed
5 ! ! Failed

125

7 Evaluation

7.5.3 Upper Left Item Pose

The schematic setup is shown in Figure 7.14. The results of the outcomes of
the evaluated steps are shown in Table 7.3. In Experiment 2 and Experiment 5

the item was successful grasped. In Experiment 3 no feasible trajectory
could be planned. In Experiment 4 a motion plan was executed but the item
slipped out of the gripper. In Experiment 1 no grasps could be planned. The
item was detected but at a slightly wrong position. This lead to unfeasible
grasps only.

Shelf

Tray

Box

Item

Baxter

Figure 7.14: In this figure the schematic test setup for grasping the item at the upper left
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.3: Evaluation of grasping an item at the upper left pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! Failed -
2 ! ! !

3 ! ! Failed
4 ! ! Failed
5 ! ! !

126

7.5 Grasp Item

7.5.4 Lower Left Item Pose

The schematic setup is shown in Figure 7.15. The results of the outcomes of
the evaluated steps are shown in Table 7.4. In Experiment 1 and Experiment 5

no trajectory could be planned so that Baxter would have grasped the object.
In Experiment 2 it grasped the item but it slipped out of the gripper. In
Experiment 3 the item was not detected and in Experiment 4 the detection
was slightly wrong, but that much that no feasible grasps could be calculated.

Shelf

Tray

Box

Item

Baxter

Figure 7.15: In this figure the schematic test setup for grasping the item at the lower left
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.4: Evaluation of grasping an item at the lower left pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! ! Failed
2 ! ! Failed
3 Failed - -
4 ! Failed -
5 ! ! Failed

127

7 Evaluation

7.5.5 Upper Right Item Pose

The schematic setup is shown in Figure 7.16. The results of the outcomes of
the evaluated steps are shown in Table 7.5. Within this experimental setup
the item was never detected, because it was either occluded by one finger
or it was not visible in the camera image. So no grasping evaluation could
be performed.

Shelf

Tray

Box

Item

Baxter

Figure 7.16: In this figure the schematic test setup for grasping the item at the upper right
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.5: Evaluation of grasping an item at the upper right pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 Failed - -
2 Failed - -
3 Failed - -
4 Failed - -
5 Failed - -

128

7.5 Grasp Item

7.5.6 Lower Right Item Pose

The schematic setup is shown in Figure 7.17. The results of the outcomes
of the evaluated steps are shown in Table 7.6. Within all these experiments
the item was detected correctly and valid grasps were calculated. But in no
experiment a valid motion plan could be found. This indicates that in this
pose of the item simply cannot be reached by Baxter.

Shelf

Tray

Box

Item

Baxter

Figure 7.17: In this figure the schematic test setup for grasping the item at the lower right
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.6: Evaluation of grasping an item at the lower right pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! ! Failed
2 ! ! Failed
3 ! ! Failed
4 ! ! Failed
5 ! ! Failed

129

7 Evaluation

7.5.7 Upper Middle Item Pose

The schematic setup is shown in Figure 7.18. The results of the outcomes of
the evaluated steps are shown in Table 7.7. Within all these experiments the
item detected and grasps were planned correctly. Also motion plans were
calculated. During execution the item always slipped out of the gripper.

Shelf

Tray

Box

Item

Baxter

Figure 7.18: In this figure the schematic test setup for grasping the item at the upper middle
pose is shown. Baxter is marked as red rectangle. The shelf is represented as
gray rectangle, and so the tray. The box is shown as blue rectangle. The item is
marked as yellow square.

Table 7.7: Evaluation of grasping an item at the upper middle pose inside the box.
Experiment Nr. detect item plan grasps executes grasps

1 ! ! Failed
2 ! ! Failed
3 ! ! Failed
4 ! ! Failed
5 ! ! Failed

130

7.6 Parallel Jaw Gripper in GraspIt!

7.6 Parallel Jaw Gripper in GraspIt!

In Table 7.8 different grasps are visualized which were planned by the
Eigengrasp planner for Baxter parallel jaw gripper and the Schunk WSG
50 paralell jaw gripper. Then the physics simulation from GraspIt! for
the parallel jaw gripper model is started on the best grasp planned. This
evaluation shows the successful implementation of the gripper modell in
the GraspIt! physics engine. The first two objects (castle and bird) are taken
from the Columbia grasp database (see [39]). The other objects are delivered
with the GraspIt! framework.
In the different figures in Table 7.8 red cones can be seen. This cones
represent friction cones, which visualizes the possible forces that can be
applied at this contact point taking the friction of the material into account.

131

7 Evaluation

Table 7.8: Visualization of grasps on different objects of Baxter and the Schunk WSG 50

gripper.
Object Baxter’s gripper Schunk WSG 50

castle

bird

flask

ball on stick

glass

132

8 Conclusion

Within this thesis an autonomous order picking system was presented.
In order to keep the system modular and portable a 3-TIER architecture
was developed. The planning layer utilized an AI planner, which uses a
PDDL description of the planning problem. The planner received the de-
scription of system skills, as well as start and goal state and provided a
list of planned skills. Each skill is composed of skill primitives. These skill
primitives needed to address manipulation of the box, grasping items and
perceptual tasks. Manipulation of the transport box included grasping its
handle through a visual servoing routine. It also included a two arm ma-
nipulation of the box for moving it from the level to the tray and vice versa.
Therefore iterative arm movements were planned and executed. Grasping
tasks addressed the problem of picking and placing items including an
online collision aware grasping pose calculation. Perception tasks were used
in many skill primitives. For instance the exact box pose was detected out
of a point cloud using a coarse to fine approach. The item was marked
with an AR tag and so its pose could be detected. Further the box handle is
measured continuously in the visual servoing routine.
This work used the middleware ROS and its components. For computing
arm trajectories the MoveIt! framework was used. Grasping parts built
uppon and extended the GraspIt! framework. Perceptional tasks on point
clouds applied algorithms implemented in the PCL. For the proof-of-concept
implementation the robot Baxter was used.

The evaluation pointed out the problems of this proof-of-concept system. In
the evaluation the outcome of single skills was evaluated first. Within most
skills, the biggest problem was that the execution of planned trajectories
was aborted because Baxter was not able to execute them precisely enough.
However these errors were detected by our system and reported to our high-
level. Further we encountered the problem that the successful execution of

133

8 Conclusion

trajectories was related to influences like room temperature or how long the
robot had been switched on.
Further the our transport box detection algorithm was compared to two
other algorithms implemented in the PCL. The evaluation showed, that in
this setup our algorithm performs better than the other two algorithms.

Further we included the parallel jaw gripper model in the GraspIt! frame-
work, and added two parallel grippers to it: Baxter’s gripper and the Schunk
WSG 50.

134

9 Future Work

In this chapter improvements for the current system are discussed. The
evaluation showed that the grasping skill need to be improved. There are
two main reasons why the results are not overwhelming. First the detection
of the transport box and the item have small uncertainties. Nevertheless
these perceptions are already quite good. The second or the major reason
for failing in grasping the item are Baxter’s inaccurate movements. In order
to cope with that, tactile sensors could be installed on the gripper. Therefore,
after the endeffector reaches the pre-grasp pose, it can perform a reactive
behavior using data from the tactile sensors. So the item should be securely
grasped.
An alternative to the parallel yaw gripper would be Baxter’s vacuum gripper.
This gripper offers different opportunities for picking and placing items.
Especially for not small objects the success rate in grasping is higher than
with the parallel jaw gripper. Because the items cannot slip out of the gripper
that easily. But the gripper would not be preferable if the objects are too
heavy or have a very rough surface. Then the objects would properly more
often lost then with using the parallel jaw gripper.

As already mentioned, Baxter’s inaccurate movements should be improved.
Therefore a better controlling strategy or a different controlling algorithm
should be developed and implemented. This modifications should be im-
plemented in the Baxter’s Motor Controller. This controller processes the
incoming joint commands and then the motors are actuated. This controller
takes currently the incoming joint commands, joint limits, velocities into
account and also ensures (in some modes) that the robot’s arms do not
collide with each other or the torso. But this controller does not take the
current state of the robot like running time, temperature or environmental
influences into account.

135

9 Future Work

The execution time of the box detection should be improved. One suggestion
concerns the coarse detection. The FPFH should not be calculated on the
whole point cloud, since most parts of the box are smooth surfaces. In order
to save computation time, only on the interesting parts of the cloud should
be considered: the edges of the box. This edges could be detected using a
Harris corner detector.
A further improvement of the perception modules concerns the item detec-
tion. An item detector could be implemented, that detects the item pose
without being marked with an AR tag.

The suggested improvements concern the current system only, the next
improvement makes the system applicable in Smart Factories. If the system
should be employed in a real factory, the robot must be able to work at
different working stations. Otherwise it would be very expensive to have
one robot for one explicit working station. So if the robot should work
at different working stations, the system needs to be expanded to cope
also with path planning and execution for mobile platforms. This effects
the manipulation too. For example if the movement’s trajectory cannot be
planned the robot could reposition itself in a way the movement can be
planned.

136

Bibliography

[1] M.R. Pedersen, D.L. Herzog, and V. Kruger. Intuitive skill-level pro-
gramming of industrial handling tasks on a mobile manipulator. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4523–4530, Sept 2014.

[2] Mikkel Rath Pedersen, Lazaros Nalpantidis, Aaron Bobick, and Volker
Krüger. On the integration of hardware-abstracted robot skills for use
in industrial scenarios. In 2nd International IROS Workshop on Cognitive
Robotics Systems: Replicating Human Actions and Activities, (Tokyo, Japan),
Nov 2013.

[3] Francesco Rovida, Casper Schou, Jens Skovand Dimitris Chrysostomou
Andersen, Rasmus Skovgaardand Damgaard, Simon Bøgh, Mikkel Rat-
hand Bjarne Grossmann Pedersen, Ole Madsen, and Volker Krüger.
Skiros: A four tiered architecture for task-level programming of indus-
trial mobile manipulators. In International Workshop on Intelligent Robot
Assistants, (Padova, Italy), 2014.

[4] J. Huckaby, S. Vassos, and H.I. Christensen. Planning with a task mod-
eling framework in manufacturing robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5787–5794,
Nov 2013.

[5] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. Pddl - the planning domain definition
language. Technical Report TR-98-003, Yale Center for Computational
Vision and Control,, 1998.

[6] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3.
In ICAPS Workshop on Soft Constraints and Preferences in Planning, 2006.

137

Bibliography

[7] K. Okada, Y. Kakiuchi, H. Azuma, H. Mikita, K. Murase, and M. Inaba.
Task compiler : Transferring high-level task description to behavior
state machine with failure recovery mechanism. In IEEE International
Conference on Robotic and Automation (ICRA), May 2013.

[8] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head
First Design Patterns. O’ Reilly & Associates, Inc., 2004.

[9] Daniel S Weld. Recent advances in ai planning. AI magazine, 20(2):93,
1999.

[10] Avrim L Blum and Merrick L Furst. Fast planning through planning
graph analysis. Artificial intelligence, 90(1):281–300, 1997.

[11] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning:
theory & practice. Elsevier, 2004.

[12] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine,
22(3):57, 2001.

[13] Chih-Wei Hsu, Benjamin W Wah, Ruoyun Huang, and Yixin Chen.
Handling soft constraints and goals preferences in sgplan. ICAPS,
page 54, 2006.

[14] A. Cowley, B. Cohen, W. Marshall, C.J. Taylor, and M. Likhachev. Per-
ception and motion planning for pick-and-place of dynamic objects.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 816–823, Nov 2013.

[15] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner. Grasp
planning in complex scenes. In 7th IEEE-RAS International Conference
on Humanoid Robots, pages 42–48, Nov 2007.

[16] S. Chitta, E.G. Jones, M. Ciocarlie, and K. Hsiao. Mobile manipulation
in unstructured environments: Perception, planning, and execution.
IEEE Robotics & Automation Magazine, 19(2):58–71, June 2012.

[17] A.T. Miller and P.K. Allen. Graspit! a versatile simulator for robotic
grasping. IEEE Robotics & Automation Magazine, 11(4):110–122, Dec
2004.

138

Bibliography

[18] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. Dexterous grasping
via eigengrasps: A low-dimensional approach to a high-complexity
problem. In Robotics: Science and Systems Manipulation Workshop-Sensing
and Adapting to the Real World, 2007.

[19] J. Felip, J. Laaksonen, A. Morales, and V. Kyrki. Manipulation primi-
tives: A paradigm for abstraction and execution of grasping and ma-
nipulation tasks. Robot. Auton. Syst., 61(3):283–296, March 2013.

[20] M. Prats, P. Martinet, A.P. del Pobil, and Sukhan Lee. Vision force
control in task-oriented grasping and manipulation. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages
1320–1325, Oct 2007.

[21] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann. Integrated grasp
and motion planning. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2883–2888, May 2010.

[22] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes.
In Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[23] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane
Magnenat. Comparing icp variants on real-world data sets. Autonomous
Robots, 34(3):133–148, 2013.

[24] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3212–3217. IEEE, 2009.

[25] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu.
Fast 3d recognition and pose using the viewpoint feature histogram.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2155–2162. IEEE, 2010.

[26] Cheng-Tiao Hsieh. An efficient development of 3d surface registration
by point cloud library (pcl). In International Symposium on Intelligent
Signal Processing and Communications Systems (ISPACS), pages 729–734.
IEEE, 2012.

139

Bibliography

[27] Matthias Nieuwenhuisen, David Droeschel, Dirk Holz, Jorg Stuckler,
Alexander Berner, Jun Li, Reinhard Klein, and Sven Behnke. Mobile bin
picking with an anthropomorphic service robot. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2327–2334. IEEE,
2013.

[28] Ioan Sucan and Lydia E Kavraki. A sampling-based tree planner
for systems with complex dynamics. IEEE Transactions on Robotics,
28(1):116–131, 2012.

[29] Matei Ciocarlie, Kaijen Hsiao, Edward Gil Jones, Sachin Chitta,
Radu Bogdan Rusu, and Ioan A Şucan. Towards reliable grasping
and manipulation in household environments. In Experimental Robotics,
pages 241–252. Springer, 2014.

[30] Ioan Sucan, Maciej Moll, Lydia E Kavraki, et al. The open motion
planning library. IEEE Robotics & Automation Magazine, 19(4):72–82,
2012.

[31] Kai M Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. Octomap: A probabilistic, flexible, and compact 3d
map representation for robotic systems. In Proc. of the ICRA 2010 work-
shop on best practice in 3D perception and modeling for mobile manipulation,
volume 2, 2010.

[32] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

[33] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit! IEEE Robotics &
Automation Magazine, 1(19):18–19, 2012.

[34] R.B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In IEEE
International Conference on Robotics and Automation (ICRA), pages 1–4,
May 2011.

[35] Conor Fitzgerald. Developing baxter. In IEEE International Conference
on Technologies for Practical Robot Applications (TePRA), pages 1–6. IEEE,
2013.

140

Bibliography

[36] Tully Foote. tf: The transform library. In IEEE International Conference
on Technologies for Practical Robot Applications (TePRA), Open-Source
Software workshop, pages 1–6, April 2013.

[37] Robin Murphy. Introduction to AI robotics. MIT press, 2000.

[38] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head
first design patterns. ” O’Reilly Media, Inc.”, 2004.

[39] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K Allen. The
columbia grasp database. In IEEE International Conference on Robotics
and Automation (ICRA), pages 1710–1716. IEEE, 2009.

141

	First name and surname, university degree already held, e:
	g:
	 BSc: Julia Nitsch, Bsc.

	Title and subtitle of the thesis: Industrial Grasping
	to achieve the university degree of: to achieve the university degree of
	MASTER'S THESIS: MASTER'S THESIS
	Masterstudien: [Master's degree programme: Telematics]
	submitted to: submitted to
	Graz University of Technology: Graz University of Technology
	University degree, first name and surname of the supervisor: Ass.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer
	Institutsname: Institute for Softwaretechnology
	Di: [Diplom-Ingenieurin]
	Supervisor: Supervisor
	optional field:
	Graz, month and year: Graz, March 2016

