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als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
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Abstract

Public cloud storage services are nowadays a data intensive domain and already pro-
ducing a dominant share of the Internet traffic world wide. Huge files are synchronized
between clients and different data centers of each storage provider. Little is known
about the performance of each individual service. Execution times of upload and down-
load operations may vary over time. According to current research the performance
depends on daytime and other factors, e.g. distances to the nearest data center.

In this thesis, a global distributed cluster of servers perform periodic interactions with
three of the most used public cloud storage provider, i.e. Dropbox, Google Drive, and
OneDrive. Collected data is used to obtain insights in the behavior of these services.
Techniques coming from machine learning and statistical analysis are applied in order
to infer knowledge about the geographic performance over the daytime for each single
provider. Different algorithms are compared with each other in order to find the op-
timal regression model. Performances of each storage is evaluated in order to find the
best service in a given situation.

Key words: cloud storage, global regression, geographical modeling, dropbox, google
drive, onedrive
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Cloud Storage Analysis

1
Introduction and Motivation

Consumer cloud storage is getting more popular over recent years. It enables private
people and businesses to store data in the public cloud in order to back it up and
make it available from everywhere at any time. Since personal cloud storage services
synchronize a local folder into the cloud it is a data-intensive domain and is already
producing a significant share of the Internet traffic nowadays. According to Cisco [2]
1136 million users of consumer cloud storage produced 14 exabytes of traffic in the year
2014. They forecast traffic of 39 exabytes in 2019. Large data centers state the physical
environment for storing this extensive amount of data. Providers of cloud storage are
responsible for keeping data available and have to make sure it stays accessible 24
hours a day. This performance can only be achieved by replicating data on several
globally distributed data centers. S. Rhea et al. [3] defines cloud storage as a pool of
distributed resources acting as one, which is highly fault-tolerant by using redundancy
and distributing data, and are highly persistent through the creation of versioned copies.

The number of cloud storage provider is still increasing tremendously. By the end
of 2015 more than 70 different storage solutions were available. One may ask what
differentiates public cloud storage provider from each other, apart from the pricing and
provided features, e.g. sharing functionality or collaboration features. Every single
service has different distributed data centers and distinct algorithms running in the
background. Several research topics analyzed different providers regarding performance
issues. Idilio Drago et al. [4] benchmarked various cloud storage services with respect to
different file types and evaluated features, such as delta encoding and file compression
before uploading. They used a fixed global location of their test framework and assumed
that performance is independent of external parameters, such as time of the day, global
location, and date of benchmark. They are already mentioning that their results may
vary at different locations, but proposed it as future work. Additional research deals
with the performance using different sets of file types [5]. Sets may be composed of
files which are easy to compress (sparse) and files where compression does not affect
the overall file size. In this case execution times for up- and downloads varied for
different set of files and providers. In [6], Dropbox, the most common cloud storage
provider, is tested. Their in depth evaluation focused on used protocols and the impact
of different data sets. They introduced the Round Trip Time (RTT), which is influenced
by the distance of the storage server. Therefore, reached bandwidths depend on the
geographical location of the client. A first global benchmark was executed by [7] on
Amazon EC3, which is an online storage provider. It was selected, because it is used
by the most common cloud storage provider, i.e. Dropbox. Several operations were
performed at different geographical regions and the results compared. According to
their results the effective bandwidth depends on the location of the client.
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1 Introduction and Motivation

In this project mentioned benchmarks are extended to public cloud storage providers,
i.e. performance of three of the most common providers (Dropbox, Google Drive, and
OneDrive) are evaluated with respect to the geographical location of the client and
other parameters, such as different sets of files, time of the day, day of the week,
and month. The following sets of files were chosen: one 1MB file, one 10MB file,
one 100MB file, one 100MB sparse file. Each file set is uploaded and downloaded
repeatedly to a certain provider and the performance is measured. Geographically
distributed measurement servers were setup, which are performing file operations on a
regular basis. Collected data is stored in a central database, evaluated using statistical
techniques (i.e. appropriate outlier detection) and different regression techniques are
applied. In the first phase the influence of external parameters (i.e. month, weekday,
and time of the day) is determined at two locations (London and Singapore). The
second phase extends inferred knowledge to a global scale. Applied regression models
are multiple linear regression, fitting of Gaussian shaped functions, and support vector
machine regression (SVR). At last, a k-nearest-neighbors classification approach was
evaluated.

Knowledge about statistical methods was mainly gathered from [8] and their corre-
sponding online course provided by Stanford Online. They used the statistical language
R in order to perform multiple linear regression and evaluation of the fitted function.
Due to existing knowledge of Matlab, it was chosen to be the environment for data
analysis in this project. Bishop [1] provided material for fitting Gaussian models and
applying Support Vector Machine Regression. It is an excellent book about fundamen-
tals in machine learning.

1.1 Motivation

This thesis was executed in partnership with CrossCloud GmbH. Their product is
called CrossCloud, which is an environment for multiple Cloud Storage Services like
Dropbox or Google Drive that lets users easily use multiple cloud storage accounts
and collaborate with others across different cloud storage services. The environment
consists of an application for desktop operating systems (Windows, Linux, and MacOS),
a mobile application (iOS, Android) and a web application. The user installs the client
applications on all devices. It can aggregate all available cloud storage accounts in a
way where CrossCloud is the only application needed by the user.

Many users of cloud storage have multiple accounts at different cloud storage providers,
but are not able to use all space available. In addition, many users have to use multiple
services in order to collaborate with different groups of people over different services,
but are not able to do this efficiently. This is caused by the fact that the usage of
multiple services implies the installation of different client applications on all devices
as well as the adaptation to various ways of how cloud storage works. When paying
attention to security, it is further complicated to enforce a security policy for files stored
in the cloud across different services since this is dependent on the support of security
features of the different providers. All these facts make it hard for users to use different
services and therefore make them dependent of certain providers they are familiar with.

CrossCloud is now an environment, designed to support multiple cloud storage ser-
vices. It’s components can connect to different cloud storage providers in the back-
ground and use their public API to sync data across services. Users add all their
accounts to CrossCloud (i.e. allow CrossCloud to connect to their accounts). At the
example of the desktop application, the user only interacts with the filesystem (a ded-
icated CrossCloud folder). CrossCloud detects if a synchronization is necessary and
syncs the data to different services. By default, CrossCloud distributes the user’s files
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1.2 Outline

to different services so that the aggregated space of all accounts can be used. Finding
the optimal storage for each individual file can be improved by gaining insights in data
usage and behavioral knowledge of each storage with respect to performance. Figure 1.1
depicts an overview of the CrossCloud’s architecture. Users can specify synchronization

Figure 1.1: The basic structure of CrossCloud’s client application.

rules (e.g. sync all contents of a specific folder to Dropbox) to customize the behavior
of the synchronization or tell CrossCloud to keep a copy of the data on all accounts.
CrossCloud follows a smart management approach, which means that the user does not
necessarily have to know where his or her data is stored. It decides on its own where to
place the files and gives users access to the data in any situation (desktop application,
mobile application and web application). Users can easily share files across services by
simply telling CrossCloud to sync and share files or folders on a specific service. The
user always interacts with the file system (or app) on the target platform which ensures
high usability. Further, CrossCloud allows users to apply client-side encryption to the
data independent from where the data is stored and if the specific provider supports
encryption.

Goal of the project is do perform a global benchmark of the three most used cloud
storage provider i.e. Google Drive, Dropbox and OneDrive. Learned insights are used
to determine the optimal provider for a given situation (i.e. file size, file type, time of
day, etc.). A prototype implementation of the measurement is set up in order to show
that performance depends on the mentioned external parameters. The setup has to be
easily extendable by additional benchmarks, cloud service providers and parameters.
Inferred knowledge can later be used in CrossCloud for a improved decision making
algorithm.

1.2 Outline

Chapter 2 deals with acquisition of performance related data. After showing data cen-
ter locations of each provider, the globally distributed setup of measurement servers is
introduced. Insights in the used architecture are provided and details about the used
technologies are reviewed. The succeeding Chapter 3 deals with modeling execution
times at fixed locations (i.e. London and Singapore). Influences of the external factors,
e.g. daytime, day of the week, and month are evaluated. The first part introduces sta-
tistical methods used for evaluation followed by utilization of this methods in order to
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1 Introduction and Motivation

determine an optimal predictive model. Chapter 4 introduces different approaches for
modeling patterns for global performance. Firstly information about data preprocess-
ing is provided, succeeded by theoretical explanation of the used regression algorithms.
Section 4.2.1 introduces the simplest applied regression, i.e. Multiple Linear Regres-
sion. Fitting of 2-dimensional Gaussian functions with fixed centers is explained in
Section 4.2.2. Applying Support Vector Regression to collected data is discussed in the
subsequent Section 4.2.3. The last technique used k-nearest-neighbor (KNN) methods
in order to select optimal services given certain parameters. Modeling performance and
gained insights are the topic of the last section in the given chapter. The last Chapter
presents future work and how this project will prospectively continued.
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Cloud Storage Analysis

2
Data Acquisition

In order to perform a global benchmark, globally distributed servers were rented, from
which each cloud storage is benchmarked from. Therefore, it was vital to choose the lo-
cation of the server manually. Single servers interact with every cloud storage provider
on a regular basis using different sets of benchmark files. Benchmarks differ from each
other by the file type and size. Files for benchmark execution are listed in Table 2.1.
Every benchmark is performing an upload operation using the corresponding files, pre-
ceded by a download. Time spans for each operation are measured and stored in a
database.

Benchmark Type Description

ONE LARGE SIZE FILE single 100 MB dense text file
ONE MEDIUM SIZE FILE single 10 MB dense text file
ONE SMALL SIZE FILE single 1 MB dense text file
ONE SPARSE FILE single 100 MB sparse text file

Table 2.1: Different file sets used for benchmarks.

Random text files are generated densely, i.e. file compression techniques do not affect
the total file size. In the case of sparse files compression has an impact on the size of
the file. If execution times for sparse and dense files differ, it can be assumed, that files
are compressed before being uploaded or downloaded.

2.1 Data Center Locations

In order to store vast amounts of data in the most reliable way, multiple data centers of
each service provider are distributed over the globe. Knowledge about regions of used
data centers is publicly available in the Internet. It is assumed that client locations near
to data centers provide a better performance. In general, each service provider decides
to which data center the client application connects. This decision is mainly made by
additional servers of which the exact location is unknown. It is assumed that this part
of execution time can be neglected for larger files and affects benchmarks with smaller
files exclusively. An in depth evaluation of generated overhead is done for Dropbox in
[6].
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2 Data Acquisition

2.1.1 Dropbox

Dropbox uses Amazon EC3 data centers for their services. Public information is avail-
able online at http://aws.amazon.com/about-aws/global-infrastructure/. Fig-
ure 2.1 shows a geographical map of stated data centers. It can be seen that there is
a focus on North America, Europa, and East Asia. A single server is located in South
America and Australia. No data centers are located in Africa.
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Figure 2.1: Data center locations of Amazon EC3 used by Dropbox

2.1.2 Google Drive

Google invests over two billion US Dollar a year for expanding and improving their
infrastructure. Information about Googles data center locations can be found at
http://www.google.com/about/data centers/inside/locations/. They are shown
in Figure 2.2. In general Google provides a large number of data centers in North Amer-
ica and Europe. It focuses on the same regions as Dropbox, but excludes Australia. It
can be assumed that a slower bandwidth is achieved in Australia. Again no data center
was placed in Africa.
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Figure 2.2: Data center locations of Google used by Google Drive.

2.1.3 OneDrive

Little is known about Microsoft’s data centers. According to [9] over 100 data centers
are placed in a global network containing more than one million servers. A selected
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2.2 Globally Distributed Measurement Servers

few locations are mentioned in the fact sheet. They are shown in Figure 2.3. Again
they focus on USA and Europe. Microsoft dedicated a data center to South America,
Australia, and Asia (China) each. Up until now over 15 billion US Dollar have been
invested in the infrastructure in order to deliver a reliable and scalable service.
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Figure 2.3: Data center locations of Microsoft used by OneDrive.

2.2 Globally Distributed Measurement Servers

In order to perform a global benchmark, files have to be exchanged with the three men-
tioned cloud storages (i.e. Dropbox, Google Drive, OneDrive) on different geographical
locations. Globally distributed computation power with an appropriate bandwidth is
necessary in order to perform this benchmark. Platform as a service (short PaaS)
provider serve the framework for running such applications in the Internet or Cloud,
respectively. A PaaS provider hosts hardware and software on its own infrastructure.
Unfortunately this model does not focus on the location of specific hardware where
deployed applications are executed. The second potential model is IaaS, i.e. Infras-
tructure as a service. It is a form of cloud computing that provides visualized computing
resources in the Internet. Third-party providers are hosting hardware, software, and
other infrastructure. Certain vendors offer a selection of server locations, at which
execution power is provided. Visualized hardware can be rented on fixed locations in
form of virtual machines (short VM). Other important properties of hosted machines
are pricing, monthly traffic limit, and appropriate bandwidth. Potential IaaS provider
were Vultr [10], Digital Ocean [11], and Amazon Web Services (short AWS) [12].

In case of Vultr computation power in the cloud is provided at dedicated loca-
tions (e.g. Frankfurt, Amsterdam, Paris, London, Tokyo, New York, Georgia, Miami,
Florida, Sydney, Australia, etc.). A virtual machine with 1000GB monthly traffic costs
10e a month. Their bandwidth of 480MB/sec. is appropriate for the given context.
Digital Ocean is providing virtual machines hosted on fast solid state drives. Users
can choose servers in New York, Amsterdam, San Francisco, Singapore, Frankfurt, and
Toronto. All servers come with 1GB/sec. network interfaces. Pricing start with 1TB of
bandwidth per month. The cheapest plan fulfills all requirements and starts at 5e per
month. Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides
resizable computation capacity in the cloud. Servers can be hosted in North America,
Brazil, Europe, and Asia Pacific. For 4e a month users can acquire traffic of 10GB. No
information about connection speed can be found. Other hosting services were either
too expensive or are indeterminate about the exact server location. The mentioned
three providers constitute the necessary hardware for executing the proposed analysis.
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Due to the data intensive domain a lot of reoccurring traffic is produced. After the first
month of execution Amazon complained about potential distributed denial-of-service
attacks originating at the hosted virtual machines. This lead to blockage of this service,
which made it unusable for further benchmark execution.

2.2.1 Cluster of Virtual Machines

Digital Ocean and Vultr were used for hosting virtual machines. The number of total
hosted servers is 19. Table 2.2 lists all measurement server. Nine of them are placed
in the USA, seven in Central Europe, and two in Asia. A single machine is hosted in
Australia. A central database was setup in Amsterdam with endpoints on a dedicated
host. A detailed insight about the central database server architecture can be found in
Section 2.3.

Server Name Location Host Server Name Location Host

VMamsterdam Amsterdam Digital Ocean VMfrankfurtvultr Frankfurt Vultr

VMsanfrancisco San Francisco Digital Ocean VMjapanvultr Tokyo Vultr

VMlondon London Digital Ocean VMatlantavultr Atlanta Vultr

VMnewyork New York Digital Ocean VMlondonvultr London Vultr

VMsiliconvalley Silicon Valley Digital Ocean VMlosangelesvultr Los Angeles Vultr

VMfrankfurt Frankfurt Digital Ocean VMseattlevultr Seattle Vultr

VMsingapore Singapore Digital Ocean VMmiamivultr Miami Vultr

VMdallasvultr Dallas Vultr VMchicagovultr Chicago Vultr

VMsydneyvultr Sydney Vultr VMnewyorkvultr New York Vultr

VMamsterdamvultr Amsterdam Vultr VMparisvultr Paris Vultr

VMnewyorkvultr New York Vultr

Table 2.2: Hosted servers and their geographical location.

Figure 2.4 depicts global locations of all measurement servers, which are used for exe-
cuting benchmark tasks. A higher number of machines are available in North America
and Europe. This results in a higher granularity of measurements at that regions.
Cloud storage provider are focusing on that regions as well, which redounds to the
benefit of this analysis. Due to the limitations of accessible virtual machines in South
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Figure 2.4: Geographical overview of hosted servers used for measurements.

America, Africa, and Central Asia little insight can be gained in these areas.

2.2.2 Applied Technologies

When maintaining this number of servers, administrative tasks have to be done in an
automatized manner. Several technologies exist for application deployment and systems
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administration on a broader scale. In general Linux was chosen as host operating
system for executing web applications. This decision was made, because it is a de facto
standard for web servers. This leads to the fact that a lot of free and open source tools
are available for this domain. Due to existing knowledge of Ubuntu, it was selected
as Linux derivative. Deployment of the application and rolling out software updates
was done using Docker [13]. Docker is an open source project initiated by Solomon
Hykes. Deployment of applications can easily be done inside software containers, which
provide an additional layer of abstraction and isolation to the host operation system.
Once Docker is installed on all servers, it allows containers to be independently run
within a single Linux instance, avoiding the effort of starting and maintaining additional
virtual machines. In general Docker differs between container and software images. A
container is a stripped-to-basic representation of a Linux operating system. Docker
images are loaded and executed inside a container, without affecting other containers or
the host system. Every new version of the benchmarking application is wrapped inside
a Docker image and deployed to containers on all rented machines. In case of Digital
Ocean, virtual machines with pre-installed versions of Docker can be set up. Vultr does
not offer this feature. Therefore, Docker has to be installed on every instance after
initialization of the virtual machine manually. Python in combination with Fabric [14]
was used for executing administrational tasks on multiple servers. Fabric is a Python
library for executing system administration tasks using the SSH network protocol. A
set of basic tools is provided in order to execute local or remote shell commands. In this
project fabric was used to install Docker on virtual machines, administrate operating
systems, and to deploy new versions of the benchmarking software.

2.2.3 Distribution of Benchmarking Software

In order to perform benchmarks on each location, benchmarking software has to be
deployed and executed on all virtual machines. As already mentioned, Docker was
used to realize this task. A Docker image with proper system settings and installed
packages were created. In general, new images are created by deriving from an ex-
isting image. For storing newly created images, a public repository called DockerHub
is officially provided, where images can be publicly stored and retrieved. Figure 2.5
depicts a rough overview of the deployment process. First an image with the iden-
tifier jinnerbichler/cloudmapbase was created. This image is based on the offi-
cial Ubuntu 14.04 image. It represents the base image for further images. Since
software was developed in Java (further details can be found in Section 2.3.1), the
Java Virtual Machine (JVM) was used as platform for executing benchmark execu-
tion. Therefore, Java runtimes have to be installed in all executing Docker containers.
After creating an appropriate directory structure for the project and setting the time-
zone to UTC, this image was uploaded to Docker Hub. All this setup had only been
done once and was therefore executed manually. Up to now no executable bench-
mark software is present on the base image. A separate image with the identifier
jinnerbichler/cloudmap was created containing the executable software. This image
is based on jinnerbichler/cloudmapbase. For each software update a new version
of the Docker image is created and updated on Docker Hub. Since this process is re-
peated for every new update of the benchmarking software is needed to be done in
an automized manner. Docker can build images automatically by reading instructions
from a Dockerfile. A Dockerfile is a text document that contains all commands needed
for assembling a new image. In this case a simple Dockerfile is sufficient for creating
a proper image. First the executable file is copied in the previously created directory
structure. Then software settings are added to the image in form of an SQLite database.
Further information about this database can be found in Section 2.3.1 The developed
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Figure 2.5: Procedure for deploying new benchmarking software using Docker images.

Docker file can be found in the Appendix (see Section 6.1).
After updating the image jinnerbichler/cloudmap on the public repository, each

single virtual machine has to be informed about a new version of the image. As already
mentioned this procedure was automized using the Fabric library. Using Fabric shell
commands can be executed on all hosted instances. First the executable is build locally,
a new version of the Docker image created and deployed to Docker Hub. Finally
the image was updated on the virtual machines and the existing container updated.
Implemented Python source code can be found in the Appendix (see Section 6.2).

2.3 Measurement Architecture

In order to perform benchmarks on a global scale, the entire architecture must be
designed to be easily extendible by additional measurement servers. Therefore, each
measurement server (from now on called client) has to hold as little information as
possible. This makes it possible to set up new clients with little effort. The entire
architecture is controlled by a centralized server (from now on called main server).
Files used for benchmarking are administrated by this server. Every result of a bench-
mark is reported to the main server, which stores the data persistently in a central
database. Figure 2.6 depicts an overview of the applied architecture, where N clients
are bidirectional communicating with the main server.

Figure 2.6: Applied client/server architecture implemented for benchmark execution.

Each newly added client requests necessary data used for initialization from the
main server, i.e. files used for benchmarking (see Table 2.1) or information used for
authenticating to each cloud service. Each client has a static and dedicated Internet
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Protocol address (from now on IP address). This static IP address can directly be linked
to a geographical location. It is added as metadata to each reported benchmark. The
main server uses this information, assigns the report to a single client and geographical
location respectively.

All three cloud storage provider support the OAuth 2.0 authentication standard
[15] with varying optional feature implementations. This authentication mechanisms
exchanges token sets (i.e. access token and refresh token) with the authenticating party,
which may be valid a limited time. The access token is used to obtain authorized access
to certain resources, which is access to storage of a certain service provider. After
expiration of the access token it can be updated using a refresh token. The main idea
behind OAuth is to decouple the authorization server and the resource server, in order
to increase the level of security. Therefore, no user credentials need to be stored in
order to get long term access to protected resources. The documentation states that
it is possible to obtain a static access token, which is not time-limited. This means
that no refresh is necessary to gain long term access, i.e. no refresh token is exchanged.
This adaption of the standard is heavily used by Dropbox. After verifying the user
credentials, a single access token is provided, which is valid for an unlimited time. In
case of Google Drive and OneDrive the access token is valid for 3600 seconds and needs
to be refreshed using a static refresh token. In order to set up a new client, the token
sets have to be initialized and store persistently on the client’s storage.

2.3.1 Applied Technologies

The main server is implemented to be a public representational state transfer service
(REST), which can easily be accessed over the Internet using standard HTTP-based re-
quests. This application service was implemented using the Spring Framework Version
3.1 [16]. It is a web-application framework for the Java platform licensed under Apache
License 2.0. A domain specific RESTful API was implemented in order to provide
functionality for reporting benchmarking and administrative tasks. Many integrations
of persistent database technologies are available for this framework. Apache Tomcat
was used as application web server, which provides a ”pure Java” HTTP web server
environment for Java code to run.

In this project the MongoDB database technology [17] Version 3.0 was used for
storing reported results persistently. MongoDB is a cross-platform document-oriented
database and classified as a NoSQL database, meaning that no static schema has to be
setup in order to store data. Each entry is stored in form of an JSON-like document
with dynamic schemas. This dynamic behavior makes adaption and extension of the
database easy, which is extremely helpful during the conceptual phase. MongoDB is
licensed under GNU AGPL v3.0.

To use the same language and technology on both, the main server and on each
client, the Java Virtual Machine (JVM) was the basis for client-side development.
All three benchmarked services provide SDKs for this platform, which include OAuth
authentication and data-exchange functionality. As already mentioned, authentication
data has to be stored persistently on each client. In order to solve this task, SQLite
[18] was used. SQLite is a relational database management system and licensed under
Public Domain. In contrast to other databases, SQLite is not a client-server database
engine. Data can be directly stored and accessed over a local file.

FreeGeoIp [19] was used to link IP addresses to geographical locations. It provides
location information inform of latitudes and longitudes. In general FreeGeoIp provides
a public HTTP API with limited queries per hours. Additional requests can be made
by hosting it on a dedicated server. In this case the location database is periodically
updated in order to guarantee most recent information. Therefore, this service was
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installed and hosted on the main server.

2.3.2 Client Architecture

As already mentioned the client application was implemented in Java and runs in the
JVM. Therefore, object oriented paradigms can be applied. Figure 2.7 shows a rough
overview of the software architecture. In general, it can be said that each module is
represented by its own class. The core of the application is the Benchmark Engine,
which is in charge of periodic execution of benchmarks and reporting the results to the
main server. Each execution is scheduled to take place n minutes after the previous
run, whereas P (X = n) = U(0, 30). This was necessary to prevent periodic executions
on same day times.

Figure 2.7: Architecture of benchmarking client.

Execution of benchmark is done by the Benchmark Runner. For each of the four set
of files a dedicated benchmark was implemented, i.e. Small File Size Benchmark,
Medium File Size Benchmark, Large File Size Benchmark, and Sparse File Size

Benchmark. The Benchmark Runner executes each single benchmark sequentially on
each cloud service. Afterwards results are reported to the main server. A more detailed
diagram of implemented classes can be found in the Appendix (see Figure 6.1).

2.3.3 Main Server Architecture

Figure 6 gives an overview of the implemented structure on the main server. At Spring
Framework modules called Controller, which provides a structured entry for incom-
ing HTTP requests. The two most important controller are the Benchmark Result

Controller and Benchmark File Controller.
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Figure 2.8: Architecture of central main server.

The Benchmark File Controller allows each client to download necessary files.
This is mainly during the initialization of each individual client. Results of executed
benchmarks are reported to the Benchmark Result Controller, which processes the
result and passes it further to the Benchmark Result Connector. This module imple-
ments a connection to the database and stores the data persistently.

2.3.4 Collected Data Sets

The overall amount of measured data points for each measurement server can be found
in Table 2.3. Due to the fact that VMlondon and VMsingapore were used for evaluating
local dependencies, more samples are available in London and Singapore.

Server Name Location # Samples Server Name Location # Samples

VMamsterdam Amsterdam 175,792 VMfrankfurtvultr Frankfurt 118,784

VMsanfrancisco San Francisco 205,472 VMjapanvultr Tokyo 85,360

VMlondon London 1,463,523 VMatlantavultr Atlanta 170,432

VMnewyork New York 190,944 VMlondonvultr London 90,240

VMsiliconvalley Silicon Valley 136,752 VMlosangelesvultr Los Angeles 140,528

VMfrankfurt Frankfurt 170,624 VMseattlevultr Seattle 142,912

VMsingapore Singapore 1,378,084 VMmiamivultr Miami 188,288

VMdallasvultr Dallas 164,768 VMchicagovultr Chicago 94,144

VMsydneyvultr Sydney 138,896 VMnewyorkvultr New York 112,960

VMamsterdamvultr Amsterdam 77,648 VMparisvultr Paris 133,840

VMnewyorkvultr New York 112,960

Table 2.3: Hosted servers and their amount of measured data points.

For modelling local dependencies 1,664,712 data samples were used. At the end of
the benchmark the global analysis was executed with 4,552,256 data samples.

April 5, 2016 – 13 –



Cloud Storage Analysis

3
Local Modeling Approaches

As already mentioned in the first phase, execution times are modeled at two locations in
order to determine the influence of external parameters omitting the geographic location
at this time. Measures from London and Singapore were used for this approach. The
central main server was placed in Amsterdam. Modelling is done by excluding outliers
in the first step, which may influence regression negatively. The last section deals with
multiple linear regression and statistical methods coming with this kind of regression.
It provides details about this approach, which allows to weight the influence of each
external parameter. If execution times are independent of certain predictors, they will
be neglected in the global model. Due to simplicity reasons, solely Dropbox and Google
Drive are compared with each other. OneDrive will be added later when modeling global
performance.

3.1 Data Preprocessing

Due to some network flaws and other factors (e.g. measurement errors) certain mea-
sured execution times may behave abnormally. In some cases large files are be dis-
sembled into smaller chunks (e.g. 1kB chunks). Each chunk is uploaded/downloaded
separately, whereas the client has to handle error cases. Due to the fact that HTTP
requests are interchanged, timeouts may occur and have to be handled. These time-
outs are occurring randomly and are not part of the normal behavior. This leads to
observations that are distant to other data points. In statistics those data points are
called outliers. They do not represent normal behavior. Outliers need to be detected
and excluded from the obtained data set. In Figure 3.1 a file, with a size of 100MB,
was uploaded on multiple daytimes to Google Drive. Looking at the collected execution
times it can be seen that prominent outlier occurred. Due to the fact that measured
execution times are outstanding by taking up to 10 times longer than the average, they
can be easily detected using the percentile measure. Percentiles are mainly used in
statistics and are indicating the value below a given percentage of observations in a
group of observations fall. For example, the 25 percentile of a data set is the value,
where 25 percent of the data can be found below this value. In this project outliers are
detected by calculating the 99 percentile of each set of execution times and classifying
values above this percentile as outliers. Figure 3.1 depicts detected outliers using the
percentile measure.

This approach works well if outliers exists and are very distinct from the rest of the
data. If a few outliers are close to the main data points (i.e. data points not classified
as outliers) wrongly detected outlier can be observed. Due to the fact that outliers in
the obtained data sets fulfil the first assumption, it was chosen as mechanism for outlier
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Figure 3.1: Detected outliers (blue) and remaining data (green) using a 99 percentile measure.
Applied to collected data for uploaded files with size of 100MB to Google Drive.

detection.

3.2 Modeling Approaches

Simple linear regression deals in the simplest case with a singe scalar predictor variable
x and a single scalar response variable (e.g y = bx2 + ε). By extending to multiple
predictor variables in form of a vector x this becomes multiple linear regression (e.g.
y = βx + ε), which is also known as multivariate linear regression. In the first part of
this section it is shown how linear regression can be used to determine the influence of
external parameter, i.e. daytime, weekday, and month. The second part deals with the
selection of parameters for further global modeling.

3.2.1 Influence of External Parameters

In the first phase multiple linear regression is mainly used to answer tree questions:

1. Is there a relationship between the reached bandwidths and factors, such as time
of the day, weekday, and current month? How strong is the relationship mentioned
above?

2. What is the quality of the fitted model?

3. What is the influence of a single factor in the model?

In order to determine a dependency between reached bandwidths and parameters, e.g.
time of the day, weekday, and month, multiple linear regression is used. It is a very
simple but powerful approach of supervised learning. In general linear regression is
a statistical technique used for modeling a linear relationship between independent
variables x = [x1, . . . , xp] and the dependent variable y. If simple linear regression is
used only a single dependent variable is present. The relationship between the response
y and the input variables x is modeled linearly, i.e. y = β0 + β1x+ ε, whereas ε states
the error term. Linear regression finds the optimal value of β0 and β1, which leads to
a minimal mean squared error on training data.

In case of multiple linear regression p predictors are used to model y, whereas each
predictor gets a separate weight term. This results in the following model, i.e

ŷ = β0 + β1x1 + ...+ βpxp. (3.1)
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Here ŷ states an estimation for the real value of y given x1, x2, . . . , and xp. Therefore,
multiple coefficients βj have to be learned in order to minimize the sum of squared
residuals of n training data samples

RSS =
n∑
i=1

(yi − ŷi)2. (3.2)

Target values of the training data are represented in yi, i.e. measured upload/download
execution times. Predicted values in the model are stated as ŷi. Estimated values for the
coefficients β0, β1, ..., βp are computed using the statistical software package provided
by Matlab and the method fitlm. In the following statistical techniques are briefly
introduced to answer the mentioned questions above.

Is there a relationship between predictors and response? This question is
answered by performing hypothesis tests on the computed model. Here we test the null
hypothesis of

H0: β1 = β2 = ... = βp = 0 (3.3)

against the alternative hypothesis

Ha: at least one coefficient βj is non-zero. (3.4)

This test takes the absolute value of the coefficients into account. Due to the fact that
valid coefficients might be close to zero this test is properly done by calculating the
F-statistic,

F =
(TSS −RSS)/p

RSS/(n− p− 1)
, (3.5)

whereas TSS =
∑

(yi − y)2 and y is the mean of all target values y in the training
data. TSS measures the total variance in y. If there is no relationship F takes values
close to 1. Otherwise, we expect F to be greater that 1, if a strong relationship exists.

What is the accuracy of the model? The question after choosing the alternative
hypothesis concerns the quality of the model. Usually two quantities describe the
accuracy of a fit: the residual standard error (RSE) and the R2 statistics. The
RSE is defined as follows, i.e.

RSE =

√
1

n− 2
RSS, (3.6)

whereas RSS is defined in Equation 3.2. In general it can be seen as a lack of fit to
the model. A small value means that the model fits well. It provides an absolute
measurement of the quality and is measured in units of y. However, small values of
y result in a small RSE. Therefore, it is not always clear what states a good value of
the RSE. The R2 statistics provides a relative solution, because it is normalized to be
between 0 and 1. Therefore, it is independent of the scale of y. The following term

R2 =
TSS −RSS

TSS
(3.7)

is used to calculate the statistics. RSS measures the amount of variability that remains
unexplained after performing regression. Therefore, RSS−TSS measures the amount
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of variability that is explained by the model. R2 measures the part of variability of y
that can be explained by x. Values close to 1 indicate a good model.

How important is a single factor for the overall fit? In order to measure the
influence of a single predictor the standard error SE(βj) is computed for every factor.
Equation

SE(β0)
2 = σ2

[
1

n
+

x2∑n
i=1(xi − x)2

]
(3.8)

and

SE(βj)
2 =

σ2∑n
i=1(x

j
i − xj)2

(3.9)

were used to calculate the SE for each βi. σ2 states the variance of the data. This
values can be used to compute the confidence intervals. A 95% confidence interval is
the range of values, where with a probability of 95% the true value is within that range.
In case of linear regression the confidence interval for each predictor can be obtained
by

βj ± 2 · SE(βj). (3.10)

To get a measure of importance the t-statistic is computed in Equation 3.11, which
measures the amount of deviation that βj is away from 0. This value follows a t-
distribution.

tj =
βj

SE(βj)
(3.11)

The p-value is the probability of observing any value that equals tj or is larger, assuming
that βj is zero. A small p-value indicates that it is likely that a connection between
the predictor and the response exists. In practice p-values smaller than 5% reject the
null hypothesis for the given predictor.

3.2.2 Applied Linear Model

As mentioned before our predictor variables consists of time of the day, weekday, and
current month. Day times are normalized to be between 0 and 1. Therefore, this
predictor states a continuous variable. It is assumed that execution times change non-
linear over time and are modeled with higher order terms up to the order of three.

In case of weekdays and months only discrete values are assigned, i.e values from 1
(Monday) to 7 (Sunday) and 1 (January) to 12 (December), respectively. For each day
and month binary variables are introduced, which have the following meaning:

xwd,i =

{
1 if the ith day of the week is modeled
0 otherwise

(3.12)

and

xm,j =

{
1 if the jth month is modeled
0 otherwise

(3.13)

Each variable gets a dedicated parameter βwd,i or βm,j . Therefore, the overall regression
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function for modeling execution times is modeled as

yex = β0+βday,1 ·xday+βday,2 ·x2day+βday,3 ·x3day+

7∑
i=2

βwd,i ·xwd,i+
12∑
j=2

βm,j ·xm,j , (3.14)

where xwd,i ∈ {0, 1} and xm,i ∈ {0, 1}. It is important to note that both sums start at
2, meaning that β0 +βday,1 ·xday +βday,2 ·x2day +βday,3 ·x3day models execution times on
Monday in January, which states the reference point. βwd,i and βm,j hold information
about the average difference per day respectively month to the reference day. The
overall number of parameters to be learned is 21.

3.3 Evaluation of Local Regression

For each benchmark test and cloud service file set (see Table 2.1) are uploaded to the
cloud storage, preceded by a download. For each benchmark and location (London and
Singapore) a separate model has to be fit to the collected data. The most interesting
model occurred for uploading large files. Since the benchmarks behave similar, this
case is investigated further. In the following sections the model for the benchmark is
discussed with further details for Dropbox and Google Drive in a separated manner.
Afterwards both providers are compared against each other.

3.3.1 Model for Uploading large Files to Dropbox

Measured execution times and fitted model of measurements in London and Singapore
can be seen in Figure 3.2. The red boundaries depict the corresponding confidence
interval (see Equation 3.10). A observation is that after noon (normalized: > 0.5)
larger execution times are observed in London and the other way around in Singapore.

Figure 3.2: Fitted model for uploading large files to Dropbox in London (blue) and Singapore
(green).

A first check is made by fitting a straight line with slope of zero into the area between
the upper and lower confidence bound. In both cases it is not possible. Another obser-
vations is that operations in Singapore are almost three times faster than in London.
Estimated model parameters, SE, and p-values are listed in Table 3.1. Only the first
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three months are evaluated in order to determine the influence of certain months.
In case of modeling the cubic function of the day times in London all three parameters
got a p-value of less than 5%, meaning the null-hypothesis can be rejected in this case.
This proofs that there is a relationship between the time of the day and measured
execution time for large files uploaded to Dropbox. The difference between days of the
week are modeled with parameter βwd,j , where j > 2. In this case Monday is used
as reference point, meaning that βwd,2 states the average difference between execution
times on Monday and Tuesday, which is 0.61 seconds. This little difference results in
a rather large p-value of 0.014. The largest difference can be found on Saturday with
almost one second of variation. If we take a look at the parameter dedicated to mod-
eling the month little dependency exists, which results in rather large p-values. This
means that the dependency of the month is questionable and needs further evaluation.

Having a look at the estimated parameters for Singapore worse p-values are com-
puted. No coefficients trained for modeling the day times have a p-value less than 5%.
So the null hypothesis cannot be rejected for these parameters. On the other hand,
very small p-values occur for days of the week and months, meaning that there is a
relationship between weekday and month and the reached execution time.

London Singapore
Coefficient Value SE p-value Value SE p-value

β0 42.799 0.36684 approx. 0 18.716 0.53617 2.6263 · 10−212

βday,1 -8.4859 2.3399 0.0002956 4.3606 3.3424 0.19216

βday,2 19.796 5.4323 0.00027642 -10.135 7.7999 0.19395

βday,3 -11.289 3.5662 0.0015751 4.4731 5.1383 0.38411

βwd,2 0.61064 0.24753 0.013723 -0.51775 0.35875 0.14911

βwd,3 0.18179 0.259 0.48285 -1.3313 0.38086 0.00048251

βwd,4 0.47006 0.26498 0.076252 -1.1065 0.38088 0.003708

βwd,5 0.88268 0.26492 0.00088145 0.40142 0.38131 0.29258

βwd,6 0.95631 0.26171 0.00026589 0.38497 0.38041 0.31165

βwd,7 0.71557 0.26104 0.0061851 0.27391 0.37323 0.46309

βm,2 -0.27066 0.18475 0.1431 -3.6078 0.28283 5.4432e-36

βm,3 0.80021 0.35642 0.024889 -2.3298 0.53181 1.2382e-05

Table 3.1: Estimated model parameters for uploading large files to Dropbox.

Table 3.2 showed quantities concerning the quality of the fit. Single quantities were
explained earlier in this section.

Quantity London Singapore

Residual Standard Error 2.80 4.56

R2 0.0941 0.2680
F-statistic 17.1 72.4

Table 3.2: Quality of model for uploading large files to Dropbox.

A standard residual error (RSE) of 2.80 was calculated for London, meaning that
on average the response deviates 2.80 seconds from the regression line. A worse RSE
is calculated for Singapore. Mainly because the data set has a larger TSS, which is
hard to model with low complexity. A relatively small value of R2 indicates that there
is a relationship between the predictors, but it is a weak one. It matches with the
observations that a straight line nearly matches into the confidence interval. The F-
statistic values of 17.1 and 72.4 were computed for London and Singapore, respectively.
It is larger that one, so the null hypothesis can be reject twice based on these quantities.
On the other hand it is not large enough to classify the models as good ones. In
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general measurements of Singapore are modeled with a higher accuracy that the model
of London, which was modeled with a residual standard error of 4.56F.

One reason for the short coming of the model for the execution times in London may
be the fact that the relationship between weekday and month is not strong enough.
The next step is to remove this relationship in the model and compare the results.

Adapting the model

Now the parameters for weekdays and months are removed and the model is learned
again. This time the day or month on which the measurement was executed is not
relevant anymore. The quality and accuracy of the fitted model is afterwards compared
to the previous one. The following equation shows the new model

t′ex = β0 + βday,1 · xday + βday,2 · x2day + βday,3 · x3day. (3.15)

Measured data points and the fitted model are depicted in Figures 3.3 to 3.6. Ex-
ecution times measured in London have a mean of 43.42 seconds and a variance of
19.51. At a first glance execution times in Singapore seem to have less deviation, but

Figure 3.3: Adapted model and measured
data points for uploading
large files to Dropbox in Lon-
don.

Figure 3.4: Adapted model and measured
data points for uploading
large files to Dropbox in Lon-
don (zoomed).

outliers are larger and therefore have a bigger impact. Outliers are not yet handled,
because too little measurements are available right now to classify them as discardable
measurements. Execution times in Singapore have a mean of 17.48 seconds and a vari-
ance of 284.31. Ignoring the outliers for now, it can be said that execution times in
Singapore increase beginning with noon. Many outliers are gathered at times around
130 seconds. It can be assumed that there is a weak accumulation point at this region.
Further investigation will be done in the future after collecting more data.
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Figure 3.5: Adapted model and measured data
points for uploading large files to
Dropbox in Singapore.

Figure 3.6: Adapted model and measured data
points for uploading large files to
Dropbox in Singapore (zoomed).

Having a look at the learned parameters it can be seen that the 3rd order factor
is more relevant in the model for London. In case of modeling execution times in
Singapore a linear model is sufficient. This is reflected in large p-values close to one.
Estimated coefficients are listed in Table 3.3.

London Singapore
Coefficient Estimate SE p-value Estimate SE p-value

β0 43.168 0.25795 approx. 0 15.472 0.27143 approx. 0

βday,1 -8.4079 2.2298 0.0001684 -1.471 2.3613 0.53337

βday,2 19.414 5.1747 0.00018157 1.3516 5.51 0.80625

βday,3 -11.011 3.3964 0.0012096 -1.6979 3.6299 0.64002

Table 3.3: Estimated model parameters using the adapted model for uploading large files to Drop-
box.

When it comes to determining the overall quality of the fit, better results occur than
modeling the day of the week and months. Corresponding quantities can be found in
Table 3.4. Especially for Singapore a more accurate model is learned with a rather
good R2 of 0.422 and a larger value for F of 532. In case of London the precision is
worse than in Singapore. The value for R2 reflects that less variability is explained by
this model. Compared to the model which takes additional parameters into account
leads to better results (cf. Table 3.2). Therefore, it can be assumed that only a weak
relationship between weekdays and months exists.

Quantity London Singapore

Residual Standard Error 2.67 3.23

R2 0.095 0.422
F-statistic 59.5 532.0

Table 3.4: Quality of adapted model for uploading large files to Dropbox.

3.3.2 Model for Uploading large Files to Google Drive

For Google Drive the model without weekdays and months leads to better fitting re-
sults. Therefore, the second model is used initially. Looking at Figure 3.7 and 3.8 it can
be seen that beginning with noon execution times are increasing. An additional obser-
vation is that both curves have a similar shape. When comparing β0 of both locations
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in Table 3.4 execution times in London are almost twice as fast as in Singapore.

Figure 3.7: Adapted model and measured data
points for uploading large files to
Google Drive in London (zoomed).

Figure 3.8: Adapted model and measured data
points for uploading large files
to Google Drive in Singapore
(zoomed).

Computed p-values are much smaller than for Dropbox. Therefore, the null hypoth-
esis can be discarded. This means there is a strong relationship between the time of
the day and the execution times. Additionally, it can be said that all four parameters
are strongly involved in the model, because no p-value exceeds 5%.

London Singapore
Coefficient Estimate SE p-value Estimate SE p-value

β0 34.486 0.97529 5.8947 · 10−206 53.904 1.6049 3.6249 · 10−200

βday,1 -26.648 8.4801 0.0017041 -74.482 13.887 9.0092 · 10−08

βday,2 82.928 19.78 2.8994 · 10−5 202.53 32.332 4.493 · 10−10

βday,3 -55.297 13.032 2.3203 · 10−5 -130.64 21.28 9.8156 · 10−10

Table 3.5: Estimated model parameters using the adapted model for uploading large files to Google
Drive.

The quality of the model is reflected in a good value for R2 and F-statistic. A large RSE
is explained by a high value of the total sum of squares (TSS). The initial variability is
very high and can not be explained entirely by the trained model. Both model fit the
data well.

Quantity London Singapore

Residual Standard Error 10.2 18.9

R2 0.213 0.175
F-statistic 154.0 157.0

Table 3.6: Quality of adapted model for uploading large files to Google Drive.

3.3.3 Comparison of Cloud Storage Provider

In the previous sections every cloud service was investigated on its own. In this section
the two cloud service providers are compared for London and Singapore. In case of
London (see Figure 3.9) Dropbox is on average about 10 seconds faster during the
entire day and the performance does not vary that much. Dropbox would be the
optimal provider if the client is located in London. On the other hand, the average
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difference in Singapore is much higher. Dropbox is almost 40 seconds slower than
Google Drive. Here Google Drive is the optimal provider, i.e it is roughly 3 times
faster. Furthermore, there is a stronger dependency on the day time.

Figure 3.9: Comparison of execution times for
Dropbox and Google Drive in Lon-
don.

Figure 3.10: Comparison of execution times
for Dropbox and Google Drive in
Singapore.
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4
Global Modeling Approaches

After determining a local model regression was extended to a global scale by adding
observations from several distributed measurement servers. The goal is to create a
model of execution time for each cloud service provider in order to predict future
performance. Predicted execution times can be used to classify the optimal storage
provider with given location and daytime. In the first step the amount of data is
reduced in order to speed up computation time. This is done by reducing the amount
of possible daytimes to 24, whereas each hour of the day an averaged value is assigned.

In the second step global regression is applied. The input space of the geographic
model consists of latitude and longitude, which are an angular measurement do define
specific points on the Earth’s surface. Latitudes (φ) are geographic coordinates that
specifies the north-south position of a point on the Earth’s surface. On the other hand
longitudes (λ) are the east-west position of a point on the Earth’s surface. Ranges of
each type of coordinate are defined as follows

latitude: φ −90◦ ≤ φ < 90◦

longitude: λ −180◦ ≤ λ < 180◦.

For every hour of the day a separate model is computed. The overall input space x
for predicting results is latitude, longitude, hour of the day. The goal of the following
regression tasks is to find a mapping for each cloud service, file type and operation,
which maps given geographical coordinates and hour of the day on execution time of
certain operations.

Several regression methods are applied to measured data sets and optimal techniques
chosen by evaluating regression performance of each method. Advantages and disad-
vantages are discussed with respect to prediction performance. The preceding Chapter
applies multiple linear regression to collected data and states the simplest and most
intuitive technique for the given domain. Later on, fitting of two dimensional Gaussian
functions with fixed centers is explained, followed by support vector machine (SVM)
regression. SVMs are supervised learning models that analyze data used for classifica-
tion and regression analysis. Several approaches for applying SVMs in order to solve
regression problems exists. This subcategory of kernel methods is used for building a
predictive model for execution times. Finally the K-nearest neighbor classifier is used
in order to find the optimal provider.

4.1 Data Preprocessing

Again, outliers were removed using mechanisms explained in Section 3.1. In order to
reduce training data by a reasonable amount a moving average approach was used. The
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data set is analyzed and reduced by taking the average of different subsets of the data.
Execution times over the day are split into 24 subsets, whereas subsets have a fixed size
and are non-intersecting. Therefore, each subset represents the mean execution time
within a certain hour of the day. This is done after excluding outliers (see Section 3.1).
Applied reduction on data can be found in Figure 4.1. It can be seen that execution
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Figure 4.1: 24 discretized daytimes by taking the mean execution time of each hour. Applied to
collected data for uploaded file with size of 100MB to OneDrive.

times do not change much between consecutive hours of the day. Moving average
smoothing is not influencing the overall model heavily, whereas reducing computation
time. Measured execution times y∗h after discretization are calculated as follows

y∗h =

n∑
i=1

γh,i · yi
n∑
i=1

γh,i

h ∈ {1, 2, . . . , 24}, γh,i ∈ {0, 1} (4.1)

whereas

γh,i =

{
1, if xi ≥ h−1

24 and xi <
h
24 ,

0, otherwise.
(4.2)

4.2 Modeling Approaches

Several regression analysis approaches were taken in order to find an optimal model for
extrapolating future performance. Each created regression function works differently
and provides varying predictive performance. Performances of each technique are com-
pared with each other and the best method that maps input x to target y chosen for
further prediction. The general goal is to find a function

Ψ : x→ y, (4.3)

which minimizes regression error. The variable x states a tuple 〈φ, λ, h〉 containing
geographical coordinates (φ, λ) and the hour of the day h. Values of latitude variables
are defined as

{φ ∈ R | − 90 ≤ φ < 90} (4.4)
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and longitude variables as

{λ ∈ R | − 180 ≤ λ < 180}. (4.5)

Hours of the day range from 1 to 24, therefore

{h ∈ N | 1 ≤ h ≤ 24}. (4.6)

The output domain Y consists of modeled execution time in seconds (y ∈ R). As already
mentioned, the function Ψ predicts execution times for each benchmarked cloud service
separately, which is used to determine the optimal storage provider with given 〈φ, λ, h〉
by choosing the one with the fastest execution time.

4.2.1 Multiple Linear Regression

In order to build a global model using multiple linear regression a similar approach as
in Section 3.2 is taken. Latitudes and longitudes are modeled up to the power of Np.
The used regression function for learning is

yh = Ψmlr(φ, λ, h) = fh(φ, λ) = β0 +

Np∑
i=1

βφ,i,h · φi +

Np∑
i=1

βλ,i,h · λi, (4.7)

where we trained with samples from y∗h. Regression is applied separately for all 24 hours
of a day h and each cloud service provider. The optimal degree of polynomials Np is
determined by applying regressions to a limited amount of data points with different
values for Np and chose the value with the best regression performance on a validation
set.

4.2.2 Fitting Gaussian Functions

It is assumed that performance increases (i.e. low execution times) the closer clients are
located to the closest data center (as mentioned in [6]). Decreasing performance can be
modeled by the natural exponential function. This assumption led to the idea of fitting
two dimensional Gaussian functions with fixed location of the center (mean) to collected
data sets. A separate Gaussian function is dedicated to each data center, whereas the
center of the according Gaussian function is fixed at the geographical location of the
data center. The following equations describe the used modeling function

yh = Ψgc(φ, λ, h) = fh(φ, λ)

=

Ns∑
i=1

Ai,hexp

(
−
(
ai,h(φ− φdc,i)2 − 2bi,h(φ− φdc,i)(λ− λdc,i) + ci,h(λ− λdc,i)2

))
,

(4.8)

where Ns is the number of data centers of a given cloud storage provider. Parameters
ai,h to ci,h are defined as

ai,h =
cos2(θi,h)

2σ2φ,i,h
+

sin2(θi,h)

2σ2λ,i,h
, (4.9)

bi,h = −
sin(2θi,h)

4σ2φ,i,h
+

sin(2θi,h)

4σ2λ,i,h
(4.10)
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and

ci,h =
sin2(θi,h)

2σ2φ,i,h
+

cos2(θi,h)

2σ2λ,i,h
. (4.11)

They describe variance in direction of the latitude and longitude and orientation of
the Gaussian function. The amplitude Ai,h is the learned execution time at the data
center, which location are fixed at (λdc,i, φdc,i). Impacts of single parameters are shown
in Figure 4.2 and Figure 4.3. Both examples use a fictive data center and location (0,0).

Figure 4.2: Example of Gaussian function
with identical variance and no ro-
tation (Ai,h = 1).

Figure 4.3: Example of Gaussian function
with

σφ,i,h
σλ,i,h

= 1
4

and θi,h = π
4

(Ai,h = 1).

Each model for Dropbox, Google Drive, and OneDrive is the sum of Ns Gaussian
functions, whereas each function is defined by four parameters Ai,h, σφ,i,h, σλ,i,h, and
θi,h. In case of intersecting curves, the lower value is selected. This results in an
overall amount of 4Ns of parameters. A function of each data center has to be learned
separately. Measured data in the close surrounding (i.e. measurement servers within
a radius of 50 coordinate units) are used to learn the parameters. The resulting non-
linear least squares problem is solved by using the Levenberg-Marquadt algorithm.
This algorithm was available in the Matlab framework and implemented in the function
lsqcurvefit.

In some regions not sufficient measurement servers were available in order to solve
the least square problem. It is assumed that connections to the data center behave
globally similar. Parameters of Gaussian functions of data center where not enough
data points were available are estimated to be the mean of all other learned parameters.

4.2.3 Support Vector Machine Regression

A more powerful regression tool is support vector machine regression (SVR). In the
field of machine learning support vector machines are models learned by supervised
learning algorithms. It is mainly used for classification and regression analysis. SVM
has been developed mainly from Cortes and Vapnik under the name support vector
networks [20] and was mainly aimed to solve two-group classification problems. One
year after their publication they applied SVM to solve regression problems [21]. The
first part of this Section introduces SVM in general preceded by describing how SVM
solves the given multidimensional regression problem. Knowledge was mainly gathered
from Chapter 7 of [1], from which illustrations in the following Sections are originated.
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Introduction to Support Vector Machines

The main idea of support vector machines is solving a two-class linear classification
problem by usage of the following equation

y(x) = wTφ(x) + b (4.12)

where φ(x) is a feature-space transformation and b is an explicit bias parameter. Pa-
rameters w and b are trained with N input vectors x1, · · · ,xN with corresponding
target values t1, · · · , tN where tn ∈ {−1, 1}. New data points are classified by taking
the sign of y(x) into account. If the data set can be linear separated, there exists at
least one set of parameters w and b for which y(xn) > 0 if tn = +1 and y(xn) < 0 if
tn = −1. Hence,

tny(xn) > 0 (4.13)

is true for all points in the training set. Of course many parameters exist for which
Equation 4.13 holds. SVM finds the best set of parameters by introducing the concept
of margin, which is the smallest distance between the decision boundary and any sample
from the training set. Optimal parameters maximize the margin. Figure 4.4 depicts
this concept and Figure 4.5 shows an example for the optimal decision boundary. The

Figure 4.4: Margin is defined as perpendicu-
lar distance between the decision
boundary (red line) and the near-
est data point in the training data
set. Figure originated from [1].

Figure 4.5: Optimal decision boundary (red
line) and support vectors (circles).
Figure originated from [1].

decision boundary is mathematically a hyperplane where point on the plane fulfil y(x) =
0. According to [1] this hyperplane is defined by parameters which maximize the
perpendicular distance to the closest training point xn. These parameters can be found
by solving

arg max
w,b

{
1

‖w‖
min
n

[
tn(wTφ(xn) + b)

]}
. (4.14)

Division by the norm of w in necessary to penalize complex models and therefore
avoid overfitting. After introducing Lagrange multipliers a = (a1, · · · , aN )T a dual
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representation of the maximum margin can be found by maximizing

L̃(a) =

N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm), (4.15)

with the following constraints

an ≥ 0, (4.16)

and

N∑
n=1

antn = 0, n = 1, · · ·N. (4.17)

In the dual representation the kernel is defined by k(x, x′) = φ(x)Tφ(x′). After solving
this quadratic problem with constraints the following function results

y(x) =

N∑
n=1

anamk(x,xn) + b. (4.18)

Further information about the derivation can be found in Chapter 7 of [1].

Non-linearly separable data points So far training data was linearly separable in
the feature space φ(x). In that case the support vector machine will find the optimal
separation plane. On the other hand, it will fail if linear separation is impossible. In
order to circumvent this behavior [20] introduced so called slack variables ξn ≥ 0 for
each training data point xn. They penalize points, which are on the wrong side of the
margin linearly with the distance. Slack variables are defined as ξn = 0 for points that
are on or inside the correct margin boundary and ξn = |tn − y(xn)| for points on the
other side of the decision boundary. Data points on the decision boundary y(xn) = 0
will have ξn = 1. Points with ξn > 1 are classified wrongly. Figure 4.6 illustrates the
behavior of ξn.

Figure 4.6: Definition of slack variables. Figure originated from [1].

This additional freedom leads to soft margin classification constraints

tny(xn) ≥ 1− ξn, ∀ n = 1, . . . N. (4.19)
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For this case the following function must be minimized in order to apply a soft margin

C

N∑
n=1

ξn +
1

2
‖w‖2, (4.20)

where C > 0 controls the balance between penalty coming from the slack variable and
penalty from the margin. Solving this problem leads to the same dual representation
as in Equation 4.15, but with the following constraints

0 ≥ an ≥ C, (4.21)

and

N∑
n=1

antn = 0, n = 1, · · ·N. (4.22)

The constraint in Equation 4.21 is known as box constraints.

Support Vector Machines for Regression

In order to solve regression problems using SVMs [20], the quadratic error function is
replaced with an ε-sensitive error function,

E(w) = C

N∑
n=1

Eε

(
y(xn)− tn

)
+

1

2
‖w‖2, (4.23)

whereas

Eε(y(x)− t) =

{
0, if |y(x)− t| < ε,

|y(x)− t| − ε, otherwise.
(4.24)

In case of regression y(xn) ∈ R and tn ∈ R are real values. The new error function Eε
is zero if the absolute distance between the prediction and the target is smaller than
ε, where ε > 0. Equation 4.24 states a simple error function, where the error increases
linear with the distance. An example plot of the introduced error function is shown
in Figure 4.7. In order to solve this optimization problem using Lagrange multiplier,

Figure 4.7: Example plot of linear ε-sensitive
error function in comparison with
quadratic error function. Figure
originated from [1].

Figure 4.8: Applied SVM regression with
ε-tube and slack variables. Figure
originated from [1].
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slack variables are used. Two slack variables ξn ≥ 0 and ξ̂n ≥ 0 are needed for each
data point xn. The first slack variable ξ corresponds to points above the ε-tube, where
tn > y(xn) + ε holds. The other variable ξ̂ is dedicated to variables underneath the
ε-tube, where tn < y(xn)− ε is true. If ξ > 0 then ξ̂ = 0 and if ξ̂ > 0 then ξ = 0. Points
inside the tube fulfill the condition y(xn) − ε ≤ tn ≤ y(xn) + ε. Figure 4.8 illustrates
the mentioned conditions graphically. Similar to SVMs with soft margin, this allows
data points to be outside of the ε-tube, whereas the following conditions must hold

tn ≥ y(xn) + ε+ ξn (4.25)

tn ≤ y(xn)− ε− ξ̂n. (4.26)

Using slack variables the following error function for support vector regression results
in

C
N∑
n=1

(ξn + ξ̂n) +
1

2
‖w‖2. (4.27)

Again, by applying Lagrangian multipliers (see Chapter 7 of [1] for further derivation)
the dual representation of the problem is formulated as

L̃(a, â) = −1

2

N∑
n=1

∑
m=1

N(an + ân)(am + âm)k(xn,xm)− ε
N∑
n=1

(an + â)

+

N∑
n=1

(an − â)tn,

(4.28)

where k(x,x′) = φ(x)φ(x′) is the kernel function. Solving this Lagrange problem with
the following constraints

N∑
n=1

(an − ân) = 0, (4.29)

0 ≤ an ≤ C, (4.30)

0 ≤ ân ≤ C, (4.31)

leads to the regression function

y(x) =
N∑
n=1

(an − ân)k(x,xn) + b. (4.32)

The bias parameter b is computed by averaging over all training examples

b =
1

N

N∑
n=1

(
tn − ε−

N∑
m=1

(am − âm)k(xn,xm)
)
. (4.33)

In SVM for regression only support vectors are contributing to the predictive model,
i.e. an 6= 0 and ân 6= 0. Therefore, all points on the boundary of the ε-tube or outside
are support vectors. Points inside the ε-tube are not contributing to the overall model,
because an = 0 and ân = 0. The type of kernel function k(x,x′) is a design decision
and has to be chosen based a priori information of the domain. In order to train a
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global model a Gaussian kernel

kg(x,x
′) = exp

(
‖x− x′‖2

2σ2

)
(4.34)

was used, where σ is the width of the kernel. In order to model execution time over
the day a separate parameter ah, âh, and bh were learned for each hour h and service.
Regression is performed by computing

yh = Ψsvm(φ, λ, h) = fh(φ, λ) =

Ns∑
n=1

(an,h − ân,h)kg

([
φ
λ

]
,

[
φn
λn

])
+ bh (4.35)

for a given location
[
φ λ

]T
. In order to integrate data center locations into to the

model, artificial data points with low execution times may be resampled at locations
of each data center.

4.2.4 K-Nearest-Neighbor Classification

A different approach for finding the optimal provider without building global regres-
sion models is by simply taking executions time of the k closest measurement servers
into account. This is done by performing a k-nearest neighbor search around a given
location. If k > 1 more than one execution time is included in the algorithm. Mea-
surements closer to the given location are modeled to be more important. This is done
by weighting times depending on the distance and summing up all k normalized exe-
cution times (see Figure 4.36). Normalization increases linearly with distance to the
measurement server. Figure 4.9 illustrates this behavior.

Figure 4.9: Factor for linearly normalizing execution times by taken the distance into account.

Based on decision values ρs for each cloud service the optimal provider is chosen,
whereas

ρh,s =
k∑
i=1

di
dmax

th,i,s. (4.36)

Distance between the i-th measurement server, the test location is stored in di and h
states the hour of the day. The distance of the most distant server is dmax and ti,s
states measured execution time of service s at the given server. The provider with the
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smallest decision values is chosen to be optimal (see Equation 4.37).

ρ∗h = argmin
s

(ρh,s) (4.37)

The best value of k is determined by applying leave-one-out crossvalidation, whereas
up to 10 neighbors are evaluated.

4.3 Evaluation of Global Regression

In this section performances of different regression and classification techniques are
discussed and compared with each other. Performance of each model is assessed by
applying leave-k-out-cross-validation, omitting a single measurement server from the
training data. The removed server represents test data. Trained models are used to
determine the best service at the omitted client’s location. The optimal service found by
the model is compared with the optimal server obtained by measurements (test data).
As stated in Section 4.1 a moving average approach was taken in order to reduce the
amount of training data points for each client. This leads to 24 data points (Ntest) for
each service and client and the number of total data points Nd = 24 ·Ns, whereas Ns is
the number of measurements clients of service s. Training data (Ntrain = Nd −Ntest)
is applied to each modeling technique and performances are compared with each other.
As error function the mean absolute percentage error (MAPE), i.e.,

MAPE =
1

24Ntest

Ntest∑
i=1

24∑
h=1

∣∣∣∣yi,h − fi,hfi,h

∣∣∣∣ (4.38)

is used to measure regression errors, where yi,h is the model prediction and fi,h is
the actual value at hour h. It provides information of the error relative to the actual
measurement. This relative error function was necessary, because files with different
sizes were uploaded and downloaded with different averaged execution times. The
MAPE divides the error by the actual value, which makes the error comparable and
independent of the value range of execution times. Due to the fact that modeled
execution times for each type of file only differ by a linear scaling factor, figures and
performances are explicitly shown for downloading a large file (100MB) from each
provider. The last section deals with comparison of execution times for different types
of files and operations, i.e. uploads and downloads.

4.3.1 Evaluation of Multiple Linear Regression

In case of multiple linear regression a design parameter is the order of the applied
polynomials Np (see Equation 4.7). In order to determine Np, 24 random samples are
selected (out of Nd overall data samples) to be the test set. Models are computed
using orders up to 8 and the performance assessed by using the set of test data points.
Performance is measured by comparing the fastest service of all three models sm with
the fastest service in the test set st. The classification error rate (CE) quantifies the
performance and is computed as follows

CE =
1

24

24∑
i=1

ce(sm,i, st,i), (4.39)
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where

ce(sm, st) =

{
0 if sm = st

1 otherwise
. (4.40)

Figure 4.10 shows the reached classification error for each order Np. It can be seen
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Figure 4.10: Classification error rate after applying different orders Np of the used polynomial.

that an order of 1 leads to the smallest classification error rate of approximately 38%
wrongly matched services. The main reason lies in the nature of polynomial curve
fitting. In order to achieve a minimal training error with polynomials up to the 8th
degree, values other than the training set are not modeled well enough. This leads to
values smaller than zero in some regions, which again leads to this overfitted behavior.
Linear modeling of geographical execution times shows the smallest generalization error.
The following Figures depict modeled execution times for the first hour of the day.

Figure 4.11: Multiple linear regression model of execution times for downloading a large file from
Dropbox (Np = 1, h = 1,MAPE = 0.31%). Red dots indicate clients used for
measurement. White dots indicate data centers of Dropbox.
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Figure 4.11 to 4.13 depict trained model for downloading a 100MB file for each cloud
service. The overall model is flat and is strictly monotonically decreasing or increasing
in direction of each coordinate λ and φ. In case of Dropbox (Figure 4.11) modeled
execution times are worse in the western hemisphere. Figure 4.12 shows the global

Figure 4.12: Multiple linear regression model of execution times for downloading a large file from
Google Drive (Np = 1, h = 1,MAPE = 0.40%). Red dots indicate clients used for
measurement. White dots indicate data centers of Google Drive.

regression for downloading a file from Google Drive. Execution times for OneDrive
are shown in Figure 4.13. OneDrive performs better than the other two provides by
having execution times between 20 and 40 seconds. Table 4.1 lists the parameters of
the learned multiple linear regression model. In can be seen that the bias parameter
of OneDrive β0 is smaller than the bias parameters of Dropbox and Google Drive,
which indicates a fast average of execution times. All parameters βφ,1,1 are below zero,
meaning that performance is lower in the northern hemisphere and decreases to the
South. On the other hand, βλ,1,1 is above zero for each service. This indicates higher
execution times in Europa than in North America.

Service β0 βφ,1,1 βλ,1,1
Dropbox 15.121 -0.053 0.091

Google Drive 16.403 -0.042 0.021

OneDrive 8.774 -0.052 0.023

Table 4.1: Learned parameter after fitting Equation 4.7 with Np = 1 and the first hour of the day
(h = 1).

In case of downloading large files OneDrive is the best provider after modeling with
multiple linear regression. Figure 4.14 depicts the best service globally. Due to the
simplicity of the model (Np = 1) no nonlinear global variation in execution times was
considered. Therefore, in certain regions other cloud services may perform better if
regression is done with nonlinear terms.

April 5, 2016 – 35 –



4 Global Modeling Approaches

Figure 4.13: Multiple linear regression model of execution times for downloading a large file from
OneDrive (Np = 1, h = 1,MAPE = 1.30%). Red dots indicate clients used for
measurement. White dots indicate data centers of OneDrive.

Figure 4.14: Classification of the fastest cloud storages for downloading large files (Np = 1, h = 1).
Blue areas indicate Dropbox, green areas indicate Google Drive, and yellow areas
indicate OneDrive.

4.3.2 Evaluation of Gaussian Function Fitting

Each known data center a separate Gaussian function is dedicated. This approach
was based on the assumption that performance of services decrease with increasing
distance to the next data center. Figure 4.15 shows the global model of execution
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times for Dropbox. The more data centers within a certain area are, the lower the
execution times are. This approach leads to higher performance in USA and Europe
and large execution times in Africa and West Asia. Modeled execution times for Google

Figure 4.15: Model with fitted Gaussian functions to execution times for downloading a large file
from Dropbox (h = 1,MAPE = 2.16%). Red dots indicate clients used for measure-
ment. White dots indicate data centers of Dropbox.

Drive are shown in Figure 4.16. Again better execution times can be found in Europe
and USA. In comparison to Dropbox a better overall performance is trained.

Figure 4.16: Model with fitted Gaussian functions to execution times for downloading a large file
from Google Drive (h = 1,MAPE = 0.55%). Red dots indicate clients used for
measurement. White dots indicate data centers of Google Drive.
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Microsoft provides data centers in South America and Australia as shown in Fig-
ure 4.17. Additional data centers lead to smaller execution times in certain regions. In
can be seen that performance at eastern USA is higher than on the West coast.

Figure 4.17: Model with fitted Gaussian functions to execution times for downloading a large file
from OneDrive (h = 1,MAPE = 8.79%). Red dots indicate clients used for mea-
surement. White dots indicate data centers of OneDrive.

Learned and averaged parameters can be found in Table 4.2. Google Drive has
the smallest amplitude Ai, which indicates fast operations. All models have standard
deviation around 49 in both directions, which means that decrease of performance only
slightly correlates with the direction in which distance increases.

Service mean(Ai) mean(θ) mean(σφ) mean(σλ)

Dropbox 88.39 -80.89 49.63 48.93

Google Drive 56.15 50.40 50.40 49.73

OneDrive 111.47 -25.05 43.11 43.52

Table 4.2: Learned parameters after fitting Gaussian functions to execution times for downloading
large files during the first hour of the day (h = 1).

Using Gaussian curve fitting for determination of the fastest service, leads to a global
classification map shown in Figure 4.18. Due to additional data centers in South Amer-
ica and Africa OneDrive has the best overall performance and is the fastest service
except in West Asian and East Africa.

4.3.3 Evaluation of Support Vector Regression

SVM regression provides the highest degree of freedom, because it is not bound to
polynomial functions or any data center location. Furthermore, evaluation was executed
while neglecting artificial resampling of data points at locations of data centers, which
led to poor regression performance. SVM regression led to the smallest MAPE for the
entire fit for each service provider. Figure 4.19 shows a global map of execution times
modeled for Dropbox. A slightly better performance is observed in Europe and USA,
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Figure 4.18: Classification of the fastest cloud storages for downloading large files (h = 1). Blue
areas indicate Dropbox, green areas indicate Google Drive, and yellow areas indicate
OneDrive.

which is reasonable due to the high density of data centers. In case of Australia and
South Asia, a worse performance was modeled. In general no high global variation was
learned.

Figure 4.19: SVM regression model for execution times for downloading a large file from Dropbox
(h = 1,MAPE = 0.16%). Red dots indicate clients used for measurement. White
dots indicate data centers of Dropbox.

The global map of Google Drive has again better performances in Europe and USA
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and worse execution times in Australia. The average execution time is worse than for
Dropbox. In asian regions, execution times are rather constant around 18 seconds.

Figure 4.20: SVM regression model for execution times for downloading a large file from Google
Drive (h = 1,MAPE = 0.15%). Red dots indicate clients used for measurement.
White dots indicate data centers of Google Drive.

OneDrive shows the best overall global performance (see Figure 4.21). This is
achieved due to additional data centers in South America and Australia. The aver-
age time for uploading a large file is around 10 seconds.

Figure 4.21: SVM regression model for execution times for downloading a large file from OneDrive
(h = 1,MAPE = 0.37%). Red dots indicate clients used for measurement. White
dots indicate data centers of OneDrive.
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Similar to other modeling techniques OneDrive has the best global map of execution
time and is classified as the best service around the world.

Figure 4.22: Classification of the fastest cloud storages for downloading large files (h = 1). Blue
areas indicate Dropbox, green areas indicate Google Drive, and yellow areas indicate
OneDrive.

4.3.4 Evaluation of K-NN classification

In order to determine the optimal number of neighbors kopt, 24 random samples are
selected out ofNd samples. The best service is determined by applying K-NN to selected
samples with different number of neighbors. The best found providers are compared
with the fastest provider determined by measurements and the error rate is calculated.
This was done 10 times and error rates are averaged. Figure 4.23 depicts error rates for
different number of neighbors. It can be seen that the lowest error rate of approximately
30% was achieved with k = 1 and k = 6. Due to faster computation time the optimal
number of neighbors was chosen to be 1 (kopt = 1). Hence, K-NN classification is
done by searching the closest measurement client and selecting the fastest measured
service. Figure 4.24 shows a global classification map of the best provider using K-NN
classification. It can be seen that in North America the best provider is Google Drive.
In other regions OneDrive is the best provider.

4.3.5 Model Comparison

The different modeling techniques were applied to measured data in order to predict
the optimal provider of a certain geographic location. All models have different at-
tributes and use different approaches to classify the service with the fastest execution
time. Table 4.3 compares results of different models for uploading a large file with re-
spect to classification error rates on test data and the mean absolute percentage error
of regression models. In case of K-NN classification no MAPE is listed, because no
regression model was created.

The worst error rates resulted after fitting Gaussian functions and k-nearest neighbor
classification. Both approaches led to an error rate of around 50%, meaning that
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Figure 4.23: Averaged error rate for different numbers of neighbors k

Figure 4.24: Classification of the best service for downloading a large file (k = 1). Blue areas indi-
cate Dropbox, green areas indicate Google Drive, and yellow areas indicate OneDrive.

optimal services on every second location were matched wrongly. Building a global
regression model by placing Gaussian functions at data center locations resulted in
the highest mean absolute percentage errors. In case of OneDrive the MAPE is 8.79,
meaning that on average absolute modeled execution time differ by factor of 8 from
measured execution times. Additionally, the approach is computationally the most
expensive one among all four techniques.

Multiple linear regression led to a rather low classification error of 15.6%. Mean
absolute percentage errors between 0.31 % and 1.30% were reached, which states the
second best regression model for uploading large files.
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Error rate
[%]

MAPE
Dropbox Google Drive OneDrive

Multiple Linear Regression 15.57 0.31 0.40 1.30

Gaussian Curve 47.37 2.16 0.55 8.79

Support Vector Regression 11.84 0.16 0.15 0.37

K-nearest-neighbor 54.82 - - -

Table 4.3: Classification error rates and MAPE for different modeling techniques for downloading
a large file for each service.

The smallest classification error of under 12% was achieved with support vector
regression. Additionally, the smallest MAPEs were achieved using SVM for regression.
On average the modeled values differ around 40% to actual measured values. The
highest errors occur for the models of OneDrive, meaning that this cloud service is
hard to predict.

4.3.6 Evaluating Different Filesets

In the previous section modeled execution times of uploading large files were investi-
gated. In this section additional upload and download operations for other file types
(see Table 2.1) are investigated. Table 4.4 shows classification errors and mean absolute
percentage errors for all filetypes and modeling methods. In general, Gaussian curve
fitting results in high classification error and MAPE. Therefore, the assumption that
distances to the closest data center plays a vital role in predicting execution times does
not hold.

In case of determining the optimal provider using the K-NN classification small clas-
sification errors result for upload operations. In contrast to upload operations, relative
high errors occur if optimal services for download operations are classified. In can be
assumed that uploads are performed to the closest data center. Due to replication of
files to multiple data centers it cannot be assured that files are downloaded from the
closest data center. The regression model with the smallest MAPE is the SVM regres-
sion model. For every service, operation and file type the best MAPE was achieved
by SVM regression. Best classification rates were accomplished with SVM regression.
Multiple linear regression states the simplest regression model. Due to the accurate
model rather small mean classification errors and absolute percentage errors occurred.

In general it can be said that models for upload operations have a smaller error rate
and can be modeled with higher accuracy. This is explained by the fact that upload
operations are always executed on a single server. In case of download operations
the corresponding file might be stored on multiple data centers. Each cloud service
selects the optimal hosting data center differently, which leads to distinctive behavior.
Selections are often based on different influences, e.g. data center workload
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Filetype Method
Error rate
[%]

MAPE
Dropbox G. Drive OneDrive

UPLOAD

ONE
SMALL
SIZE FILE

Multiple Linear Regression 24.56 0.72 0.79 1.23
Gaussian Curve 80.48 5.03 105.32 8.46

Support Vector Regression 3.29 0.13 0.14 0.16
K-nearest-neighbours 4.17 - - -

UPLOAD

ONE
MEDIUM
SIZE FILE

Multiple Linear Regression 4.17 0.54 0.42 0.72
Gaussian Curve 64.91 1.59 23.07 3.43

Support Vector Regression 2.19 0.15 0.13 0.13
K-nearest-neighbours 3.07 - - -

UPLOAD

ONE
LARGE
SIZE FILE

Multiple Linear Regression 9.87 0.46 0.26 1.40
Gaussian Curve 7.46 0.33 0.13 0.91

Support Vector Regression 6.80 0.17 0.11 0.32
K-nearest-neighbours 7.68 - - -

UPLOAD

ONE
SPARSE
FILE

Multiple Linear Regression 14.04 0.60 0.28 1.52
Gaussian Curve 5.04 0.40 0.13 0.80

Support Vector Regression 5.04 0.26 0.11 0.26
K-nearest-neighbours 5.92 - - -

DOWNLOAD

ONE
SMALL
SIZE FILE

Multiple Linear Regression 59.87 0.80 1.12 1.84
Gaussian Curve 71.27 9.42 99.50 15.61

Support Vector Regression 14.91 0.15 0.16 0.22
K-nearest-neighbours 37.72 - - -

DOWNLOAD

ONE
MEDIUM
SIZE FILE

Multiple Linear Regression 50.88 0.63 0.98 1.87
Gaussian Curve 81.14 2.73 92.70 4.95

Support Vector Regression 22.59 0.16 0.17 0.31
K-nearest-neighbours 53.51 - - -

DOWNLOAD

ONE
LARGE
SIZE FILE

Multiple Linear Regression 15.57 0.31 0.40 1.30
Gaussian Curve 47.37 2.16 0.55 8.79

Support Vector Regression 11.84 0.16 0.15 0.37
K-nearest-neighbours 54.82 - - -

DOWNLOAD

ONE
SPARSE
FILE

Multiple Linear Regression 17.54 0.30 0.44 1.50
Gaussian Curve 48.46 1.99 0.56 7.67

Support Vector Regression 11.84 0.15 0.15 0.38
K-nearest-neighbours 54.82 - - -

Table 4.4: Error rates and mean absolute error for different modeling techniques and filetypes.
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5
Conclusion

The thesis was set out to explore behavior of the three most common cloud storage
services with respect to time and location and has applied several modeling techniques
in order to gain insight for each service. Used modeling techniques made it possible
to determine the best provider for every location on earth and each hour of the day.
In addition to classification rates, computational performance is an important factor
for further implementations of performed benchmarks. Execution times over the day
do not vary enough to justify complex modeling techniques, which are computational
expensive. Simple models, i.e. multiple linear regression or SVM regression, provide
sufficient modeling capabilities for building a powerful global model. The assumption
that better execution times at locations close to data centers cannot be validated.
Placing Gaussian functions at data center locations did not result in good models. An
increasing number of proprietary networks are spanned over the globe. Amazon for
instance, has many data centers placed on the earth in combination with high speed
networks, which are exclusively used by their services. Many undocumented entry
points to these networks exists. As soon as a client is located close to an entry point,
the distance to the next data center does not play a role anymore. In some cases
the fastest service at the closest measurement location provides enough information to
determine the service with the lowest execution time. Especially upload operations can
be modeled, and therefore predicted, in a very thorough manner. One reason for this
behavior is the fact that data is always uploaded to a single data centers. Decision
making algorithms are simpler, because data is transferred from to client to a single
data center. Once the file is in the cloud it is replicated to multiple data centers
in order to guarantee a maximal uptime and provide backups in case of data loss.
Complex algorithms are shifting data of the user between multiple data centers of a
single provider in the background. At the time the user wants to download the file again
at a given location, data might no be stored on the optimal data center, which leads to a
higher variation of download execution times. This behavior makes is difficult to extract
patterns in form of statistical models. Therefore, it states a vast challenge to predict
execution times of download operations, because sophisticated replication algorithm
must be considered in the model. In most of the cases a two dimensional plane is
sufficient to model global execution times with a relatively small MAPE of a certain
provider at a given hour of the day. This infers strictly monotonic linearly increasing or
decreasing performance alongside the longitude and latitude axes. The multiple linear
regression model does not allow nonlinear variations. Support vector regression states
the overall best modeling technique for both regression of global execution times and
classification of the most performant provider. It allows nonlinearities in the model,
which are necessary to model performance with minimum error. It can be said that all
cloud storage providers heavily focus on Northern America and Europe. It is justified by

April 5, 2016 – 45 –



5 Conclusion

better performance in those regions and a higher density of data centers. For instance,
Google Drive provides 9 data centers within the United States of America. Rather
fast execution times were observed in East Asia, which states an additional economic
region.

5.1 Future Work

Finding the best cloud storage provider at certain daytimes and geographic location
can be useful in several use cases. Especially in the field of file-based collaboration
performance plays a vital role. If two or more persons are working on the same file, each
others changes should be transmitted as fast as possible in order to avoid conflicts. In
addition, cloud storage is ofter used to have access to data in the cloud from everywhere.
This leads to a situation, where a file has to be download before it is firstly used. In
case of many files slow download operations decreases productivity.

Gained insights will be used in a commercial product called CrossCloud, which ag-
gregates many storages into one large pool of data which is constantly synchronized
with a local folder. By default, CrossCloud decides on its own where a certain file or
folder is uploaded to. This is currently done by selecting the storage with the least used
storage in order to guarantee equal distribution of used storages. In the near future,
the behavior of the user with respect to file handling is learned, which will make it
possible to predict usage of certain files at specific location, days, and daytimes. Once
this prediction is combined with knowledge gained in this thesis, it is possible to store
file on storages in such a way that the optimal performances for next file usage can
be guaranteed. This increases productivity and optimizes user experience in case of
file-based collaboration. In addition to data collected from global distributed measure-
ment server, each synchronization action of the user (i.e. upload and download) can
be tracked. In combination with the location of the user it can be used to iteratively
improve global performance models, which makes predictions more accurate. In the
near future, benchmarks will be extended to support additional cloud storage provider,
such as Box.com or any WebDAV storage.
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6
Appendix

6.1 Docker File

1 FROM jinnerbichler/cloudmapbase

2 COPY target/cloudmap.jar /cloudmap/

3 COPY init/prefs.db /cloudmap/

Listing 6.1: Docker file for creating Docker image with benchmark application.

6.2 System Administration and Deployment Script

1 from fabric.api import *

2 from fabric.network import ssh

3
4 # define server

5 server = {}

6
7 # digital ocean

8 server[’45.55.74.113 ’] = ’CloudMapNewYork ’

9 server[’188.166.32.70 ’] = ’CloudMapAmsterdam ’

10 server[’104.236.180.35 ’] = ’CloudMapSanFrancisco ’

11 server[’128.199.254.116 ’] = ’CloudMapSingapore ’

12 server[’178.62.87.245 ’] = ’CloudMapLondon ’

13 server[’46.101.156.131 ’] = ’CloudMapFrankfurt ’

14
15 # vultr

16 server[’45.32.246.252 ’] = ’CloudMapSydneyVultr ’

17 server[’45.32.236.11 ’] = ’CloudMapAmsterdamVultr ’

18 server[’104.238.158.30 ’] = ’CloudMapFrankfurtVultr ’

19 server[’104.238.170.161 ’] = ’CloudMapLondonVultr ’

20 server[’104.238.191.168 ’] = ’CloudMapParisVultr ’

21 server[’108.61.215.249 ’] = ’CloudMapAtlantaVultr ’

22 server[’107.191.51.206 ’] = ’CloudMapChicagoVultr ’

23 server[’107.191.45.63 ’] = ’CloudMapDallasVultr ’

24 server[’45.32.69.67 ’] = ’CloudMapLosAngelesVultr ’

25 server[’45.63.104.28 ’] = ’CloudMapMiamiVultr ’

26 server[’45.63.14.129 ’] = ’CloudMapNewYorkVultr ’

27 server[’104.238.156.184 ’] = ’CloudMapSeattleVultr ’

28 server[’104.207.150.153 ’] = ’CloudMapSiliconValleyVultr ’

29 server[’45.63.120.118 ’] = ’CloudMapJapanVultr ’

30
31 deploy_counter = 1;

32
33 # set fabric config

34 env.hosts = server.keys()

35 env.user = "root"

36
37 INIT_DIR = "init"

38 TARGET_DIR = "target"

39 JAR_NAME = "cloudmap.jar"

40 PREFS_FILE = "prefs.db"

41 CONTAINER_NAME = "cloudmap_container"

42
43 def deploy ():

44
45 build()

46 deploy_docker ()

47
48 host = env.host

49 if host is ’54.94.173.50 ’:

50 host = ’ubuntu@54 .94.173.50 ’

51
52 print("##################################################################################")

53 print("################# DEPLOYING TO %s (%s) - Deploying %d/%d" % (server[host], host ,
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54 deploy_counter , len(server)))

55 print("##################################################################################")

56
57 # set timezone

58 run(’timedatectl set -timezone UTC’)

59
60 deploy_container ()

61
62 global deploy_counter

63 deploy_counter += 1

64
65 @runs_once

66 def build():

67 with settings(warn_only=True):

68 local("rm -rf %s" % TARGET_DIR)

69 local("mvn -q clean compile assembly:single")

70
71 @runs_once

72 def deploy_docker ():

73 # start docker locally

74 run(’eval "$(docker -machine env default)"’)

75 create_docker ()

76 push_docker ()

77
78 @runs_once

79 def create_docker ():

80 local("docker build -t jinnerbichler/cloudmap:latest .")

81
82 @runs_once

83 def push_docker ():

84 local("docker push jinnerbichler/cloudmap")

85
86 def deploy_container ():

87 # stop and remove all previous container

88 with settings(warn_only=True):

89 run("docker stop $(docker ps -a -q)")

90 with settings(warn_only=True):

91 run("docker rm $(docker ps -a -q)")

92
93 run(’docker pull jinnerbichler/cloudmap ’)

94 run(’docker run -d --name %s jinnerbichler/cloudmap bash -c "cd cloudmap && java -jar %s"’ %

\

95 (CONTAINER_NAME , JAR_NAME))

96
97 # sanity check

98 run(’date +"%T"’)

99 run("docker ps")

100 run("docker top %s" % CONTAINER_NAME)

101
102 def auth():

103 local("mvn clean compile assembly:single")

104 local("mkdir -p " + INIT_DIR)

105 local("cp " + TARGET_DIR + "/" + JAR_NAME + " " + INIT_DIR)

106 local("echo ’Authenticating Google Drive ’")

107 local("cd " + INIT_DIR + "&& java -jar " + JAR_NAME + " gd_auth")

108 local("echo ’Authenticating One Drive’")

109 local("cd " + INIT_DIR + "&& java -jar " + JAR_NAME + " od_auth")

110
111 def get_logs ():

112 with settings(warn_only=True):

113 log_dir = "remote_logs"

114 local("mkdir -p %s" % log_dir)

115 log = run("docker exec cloudmap_container tail -n 1000 /cloudmap/logs/cloudmap.log")

116
117 log_path = log_dir + "/" + server[env.host] + ".log"

118 with open(log_path , "w") as text_file:

119 text_file.write(log)

120 print("stored log of %s to %s" % (server[env.host], log_path))

121
122 def install_docker_if_neccessary ():

123 found_string = run("echo $(type docker)")

124 if "not" in found_string:

125 run("sudo apt -get update")

126 run("sudo apt -get install curl")

127 run("sudo curl -sSL https :// get.docker.com/ | sh")

Listing 6.2: Fabric configuration file for administration and deploying software updates.
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Figure 6.1: Class diagram of benchmark client.
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6.4 Class Diagram of Main Server
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Figure 6.2: Class diagram of main server.
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