
Jürgen Wurzinger, BSc

Data Security in Vehicular Control Units
and Communication Systems

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

 Univ.-Prof. Ph.D. Roderick Bloem

Institute of Applied Information Processing and Communications
Head: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

 Diplom-Ingenieur

Supervisor

Second Supervisor
Dipl.-Ing. Daniel Hein

Graz, April 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

With the introduction of sophisticated, networked entertainment and safety
features in modern cars, like for instance Vehicle-To-Everything technologies,
a large number of new attack surfaces evolved. In the last few years many
researchers focused on the exploitation of this interconnection of modern
cars. They showed that almost all cars are vulnerable to possible hacking
attacks. This fact highlights the demand that besides securing the interfaces
also the internal vehicular networks need protection.

Most research in this domain focuses on revealing new ways of hacking
a car or on the development of possible countermeasures. Little is done
to develop suitable security testing environments to complement existing
safety and functional tests. However, as research showed those traditional
tests cannot satisfy security needs of modern cars. With this thesis we want
to introduce an application called CAN Communication Tester (CAN-CT)
which addresses this problem for the Controller Area Network.

The CAN-CT is an application that makes use of known hacking attacks
and injects, replays and invalidates messages systematically. We show that
we can successfully spoof messages, suppress all communication on the bus
and bring electronic control units in error states. The CAN-CT is capable
of learning from the traffic on the bus and can execute targeted attacks.
By attacking an electronic control unit the same way a hacker would, we
are able to examine the implementation of protection mechanisms in an
intuitive yet effective way. Furthermore this approach allows us to test the
proper working of possible attack detection techniques as well.

iii

Using Hardware in the Loop Systems we tested the CAN-CT with actual
state of the art electronic control units. We revealed vulnerabilities like lacks
in the plausibility checking of messages or completely omitted examinations
of the frame structure. Those flaws opened up serious threats to hackers.
Exploiting those vulnerabilities we showed that we were able to take over
message IDs owned by another electronic control unit and hence achieve
targeted manipulations.

Revealing weaknesses in real-world electronic control units allowed us
to demonstrate the applicability and the impact of applications like the
CAN-CT for automotive systems. Our results highlighted the need for
security tests to complement traditional testing environments.

iv

Kurzfassung

Durch die Einführung komplexer, vernetzter Unterhaltungs- und Sicherheits-
funktionen in modernen Autos, wie beispielsweise Vehicle-To-Everything
Technologien, entstand eine Vielzahl neuer Angriffsvektoren. In den letzten
Jahren stand der Fokus vieler Wissenschaftler dieses Bereichs auf der Aus-
nutzung von Schwachstellen in der Vernetzung moderner Fahrzeuge. Es
wurde gezeigt, dass jedes untersuchte Auto anfällig gegenüber möglichen
Hacking-Angriffen ist. Dieser Umstand unterstreicht die Forderung, ne-
ben der Sicherung der Schnittstellen mit der Außenwelt auch die internen
Fahrzeugnetzwerke zu schützen.

Der Großteil aktueller Forschungen in diesem Bereich beschäftigt sich mit
der Aufdeckung neuer Möglichkeiten, ein Fahrzeug zu hacken und geeigne-
te Gegenmaßnahmen dafür zu finden. Im Gegensatz dazu mangelt es jedoch
an der Erforschung entsprechender Security-Testumgebungen, um beste-
hende funktionssicherheits-relevante und funktionale Tests zu ergänzen.
Wie Forschungen jedoch gezeigt haben, genügen diese traditionellen Te-
stumgebungen den wachsenden Security-Anforderungen nicht mehr. Mit
dieser Arbeit stellen wir eine Applikation, genannt CAN Communication
Tester (CAN-CT), vor, die genau dieses Problem für das Controller Area
Network behandelt.

Der CAN-CT ist eine Applikation, die bekannte Hacking-Angriffe verwen-
det, um Controller Area Network (CAN) Nachrichten gezielt zu manipulie-
ren und eine andere Herkunft der Nachrichten zu imitieren. Wir demons-
trieren, dass wir erfolgreich Nachrichten fälschen, jegliche Kommunikation
am Bus unterdrücken sowie Steuergeräte in Fehlerzustände bringen können.
Der CAN-CT lernt vom Verkehr am Bus und nutzt dieses Wissen, um ge-

v

zielte Attacken auszuführen. Durch die Art, Steuergeräte auf dieselbe Weise
anzugreifen, wie es ein Hacker würde, können wir die Implementierung
von Schutzmaßnahmen in einem intuitiven und doch effektiven Weg testen.
Weiters erlaubt es uns diese Vorgehensweise, die einwandfreie Funktion
möglicher Angriffserkennungstechniken zu überprüfen.

Mit Hilfe von Hardware in the Loop Systemen testeten wir den CAN-CT mit
aktuellen Steuergeräte. Wir konnten Schwachstellen aufdecken, beispielswei-
se bei der Überprüfung der Plausibilitätschecks sowie eine gänzlich unterlas-
sene Überprüfung der Nachrichtenstruktur. Diese Fehler ermöglichen ernst-
hafte Bedrohungen durch Hacker. Durch die Ausnutzung dieser Schwach-
stellen konnten wir beispielsweise Nachrichten-IDs von anderen Steuer-
geräte übernehmen und somit gezielte Manipulationen erreichen.

Mit der Aufdeckung solcher Schwachstellen in modernen Steuergeräte konn-
ten wir die Anwendbarkeit und die Bedeutung von Programmen wie des
CAN-CTs aufzeigen. Unsere Ergebnisse unterstreichen somit die Notwendig-
keit von Security-Tests als Ergänzung von traditionellen Testumgebungen.

vi

Acknowledgments

First of all I would like thank my supervisors Roderick Bloem and Daniel
Hein for their great support. Their advices, reviews and comments guided
me through this work and helped me overcome all challenges.

This thesis would not be possible without the support and contribution
of the AVL LIST GmbH Graz. I wrote it during my employment in the
global research and technology department of this company. Here I would
like to explicitly thank Peter Priller for supporting me not only during
this work but rather throughout my whole employment at the AVL LIST
GmbH. Without his precious assistance this work would not be possible
at all. Furthermore his great advices and his efforts in establishing the
connections needed for our test setups laid the foundation for this work.

This leads me to the great support of all members of the HiL-Team (PTE/DFM)
at AVL LIST GmbH with Michael Kordon, Ales Kolar and Mohan Swami-
nathan leading the way. Without their help and contribution I would not
have been able to test my work in a real-world scenario.

Besides these persons I want to thank my colleagues and friends for sup-
porting and motivating me. Here I would like to mention Markus Nager,
who’s ideas and advices during the one or the other coffee break helped me
to overcome certain challenges in my work.

Finally, I would particularly like to thank my family for their invaluable
support. They always encouraged and enabled me to pursue my goals. A
special thanks goes to my partner, Lisa Kandlhofer, for her precious support
and motivation during everyday life.

vii

Contents

Abstract iii

Kurzfassung v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 3
1.3 Solution . 4

1.3.1 Objectives . 5
1.3.2 Outlook on Results . 5

1.4 Outline . 6

2 Preliminaries 7
2.1 Terminology and Definitions 7

2.1.1 Electronic Control Unit 7
2.1.2 Hardware in the Loop System 8
2.1.3 Attack . 8
2.1.4 Test Case . 9
2.1.5 Plan of Attack . 9

2.2 In-Vehicle Communication Systems 9
2.2.1 Overview of Current Automotive Networks 10
2.2.2 Limitations of Current Automotive Networks 11

2.3 Controller Area Network . 12
2.3.1 History and Standardization 12
2.3.2 Characteristics . 13
2.3.3 Physical Layer Attributes 14
2.3.4 Frame Formats . 15

viii

Contents

2.3.5 Arbitration . 18
2.3.6 Error Handling . 18
2.3.7 Higher Layer Protocols 20
2.3.8 Current Protection Mechanisms 22

2.4 Car Hacking . 23
2.4.1 Attack Vectors and Security Threats 23
2.4.2 Attacks . 25

3 Related Work 27
3.1 Car Hacking Techniques . 27
3.2 Attack Detection and Prevention Approaches 29
3.3 Security Testing . 30
3.4 Conclusion . 32

4 CAN Communication Tester (CAN-CT) 33
4.1 Overall Concept . 33

4.1.1 Underlying Attack Scenario 34
4.2 Software and Hardware . 35
4.3 Architecture . 35
4.4 Overview of Application . 39

4.4.1 CAN Monitor . 39
4.4.2 Capturing Tool . 40
4.4.3 Attack Features . 41
4.4.4 CAN Network Simulator 44

4.5 Attack Templates . 46
4.5.1 Replay/Spoofing Attack 46
4.5.2 Bus Off Attack . 48
4.5.3 Denial of Service Attack 49

4.6 Observability . 50
4.6.1 Log Files . 50
4.6.2 Observation via Oscilloscope 51
4.6.3 Debugger/Calibration Software 51
4.6.4 Analysis of other CAN Messages 51
4.6.5 Attack-Based Detection 52
4.6.6 Higher Layer Protocols 53
4.6.7 Conclusion . 53

4.7 Extensibility . 53

ix

Contents

4.8 Limitations and Solutions . 54
4.8.1 Hardware Delay . 54
4.8.2 Message Receipt . 55
4.8.3 Proprietary Higher Layer Protocols 55

4.9 Conclusion . 56

5 Results 57
5.1 Overview of Test Systems . 57
5.2 Laboratory Experiments . 60

5.2.1 Test Setup . 61
5.2.2 Event-Based Replay/Spoofing Attack 64
5.2.3 Time-Based Replay/Spoofing Attack 65
5.2.4 Bus Off Attack . 67
5.2.5 Denial of Service Attack 69
5.2.6 Conclusion . 70

5.3 Heavy Duty Vehicle . 71
5.3.1 Test Setup . 72
5.3.2 Message Spoofing . 76
5.3.3 Resilience Against Bus Off Attacks 78
5.3.4 Behavior during Denial of Service Attacks 80
5.3.5 Correctness of Time Out Window 81
5.3.6 Compliance with Expected Message Format 83
5.3.7 Plausibility Checks for Illegal Values 85
5.3.8 Conclusion . 86

5.4 Passenger Car . 86
5.4.1 Test Setup . 87
5.4.2 Plausibility Checks . 91
5.4.3 Alive Counter . 94
5.4.4 Additional Cyclic Redundancy Check 95
5.4.5 Conclusion . 96

5.5 Interpretation of Results . 97
5.5.1 Lack of “Real” Security Approaches in CAN Commu-

nication . 98
5.5.2 Universal Validity . 98

5.6 Conclusion . 99

6 Outlook and Conclusion 101

x

Contents

Bibliography 105

xi

List of Figures

2.1 CAN signal interference filtering according to ISO 11898-2
(Mischo et al., 2015) . 14

2.2 CAN 2.0a Data Frame (Mayer, 2006) 17
2.3 Depiction of the arbitration process between two CAN nodes

(Mayer, 2006) . 19
2.4 CAN error handling state machine 21
2.5 Digital I/O channels in a modern car and corresponding

attack vectors (Checkoway et al., 2011) 24

4.1 Basic concept of the CAN-CT and its underlying attack scenario 34
4.2 Simplified UML2 class diagram of the CAN-CT 38
4.3 Monitoring the CAN bus with the CAN-CT 40
4.4 CAN-CT’s CAN capturing functionality 41
4.5 CAN-CT’s plan of attack definition 42
4.6 Customized attacks via the CAN-CT’s scripting engine 44
4.7 USB to CAN adapter configuration and CAN node simulator 45

5.1 Pictures of the heavy duty vehicle Hardware in the Loop
System setup . 59

5.2 Architecture of the laboratory experiments test setup 62
5.3 Frame structure of the targeted CAN frame used in the labo-

ratory setup . 63
5.4 Frame structure of the attacking CAN frame used in the

laboratory setup . 63
5.5 Event-based replay attack observed via oscilloscope in the

laboratory setup . 64
5.6 Overview of time-based spoofing attacks with a different

offset in the laboratory setup 66

xii

List of Figures

5.7 Overview of CAN frames sent during a bus off attack in the
laboratory setup . 68

5.8 Active and passive error frames captured during a bus off
attack in the laboratory setup 69

5.9 Denial of Service attack with an ID of 00Dh in the laboratory
setup . 70

5.10 Overview of the VGS at high and at low engine speeds 73
5.11 Architecture of the heavy duty vehicle HiL setup 74
5.12 Example communication between the VGS controller and the

actuator in the heavy duty vehicle HiL system setup 75
5.13 Time-based spoofing attacks with an offset of 1.5 ms and a

target value of zero respectively 30 percent in the heavy duty
vehicle HiL system setup . 77

5.14 Bus off attack with an DLC of 5 and the target value set to 30
percent in the heavy duty vehicle HiL system setup 79

5.15 DoS attack with ID 1BEh in the heavy duty vehicle HiL system
setup . 81

5.16 Overview of different time offset values and their success on
spoofing the target position of the VGS in the heavy duty
vehicle HiL system setup . 82

5.17 Overview of different frame structures with regard to their
data length code and their impact on the acceptance by the
targeted ECU in the heavy duty vehicle HiL system setup . . 84

5.18 Reaction of the observed ECU when confronted with illegal
values in the heavy duty vehicle HiL system setup 85

5.19 Network architecture of the second Hardware in the Loop
System setup, a passenger car 89

5.20 Speed related CAN messages with example values used for
our attacks in the passenger car HiL system setup 90

5.21 Plausibility checks for the internally calculated vehicle speed
based on the received wheel speeds in the passenger car HiL
system setup . 93

xiii

Index of Abbreviations

CAN Controller Area Network . 101
CAN-CT CAN Communication Tester. .102
CAN-FD Controller Area Network Flexible Data Rate 11
CiA CAN in Automation . 20
CRC cyclic redundancy check . 75
DCU dosing control unit . 72
DLC data length code . 62
DoS Denial of Service . 102
DUT device under test . 71
ECU electronic control unit . 101
GUI graphical user interface . 36
HiL Hardware in the Loop System . 102
IDE identifier extension . 16
LIN Local Interconnect Network . 10
MOST Media Oriented Systems Transport . 10
NRZ non-return-to-zero . 15
OBD-II On-Board Diagnostics II . 35
QPC QueryPerformanceCounter . 37
RTR remote transmission request . 16
SAE Society for Automotive Engineers . 10
SUT system under test . 57
VGS variable geometry turbocharger system . 72

xiv

1 Introduction

1.1 Motivation

A few years ago vehicles were mere mechanical machines, containing but
a few electronic devices communicating in a closed network. However,
as time changed so did vehicles. Nowadays premium cars contain up
to 100 electronic control units (ECUs) with almost 100 million lines of
code (Charette, 2009). These ECUs are tightly connected via different bus
systems and are continuously exchanging information with each other in
a real time setup. Upcoming, next-generation features like autonomous
driving, vehicle to everything (V2X) communications or the already existing
interconnectivity via 3G/4G, WiFi, Bluetooth etc. are changing our mobility
significantly.

Even though these new technologies improve safety and comfort, they are
also accompanied by a vast number of security-related threats. Due to the
continuously increasing complexity and the growing number of external
interfaces of the vehicle’s internal network with its environment, new attack
surfaces emerge.

Manufacturers have seen cars as closed networks without the primary need
of security mechanisms in the automotive networks for too long. Many
researchers already demonstrated the serious lack of security in modern cars.
Already in the year 2006 Wolf, Weimerskirch, and Paar (2006) highlighted a
major security issue of vehicular networks in their paper “Secure In-Vehicle
Communication.” They showed that the Controller Area Network (CAN) is
inherently vulnerable to possible hacking attacks, as it connects the most
critical components (for instance brakes, engine, powertrain) with hardly
any security features implemented.

1

1 Introduction

By exploiting this lack of security mechanisms on the CAN bus, researchers
showed that taking over control of a car via sending malicious messages
on the bus has become reality (Koscher et al., 2010; Miller and Valasek,
2013; Hoppe, Kiltz, and Dittmann, 2011; Staggs, 2013). In fact, by taking
advantage of modern technologies like for example the brake or parking
assist systems serious attacks are possible.

These results already highlighted the severe vulnerabilities of the internal
vehicular network and the urgent need of implementing countermeasures.
However, as all of these attacks were executed with direct, physical access
to a cars internal network, these works were still not considered as realistic
threats (BBC News, 2010; Leyden, 2010).

However, Checkoway et al. (2011) showed that it is possible to hack a car,
compromise the attacked ECU and take over control of the vehicle via
almost every externally facing I/O interface. They were able to control
arbitrary vehicular functions even from a distance. In 2015 Valasek and
Miller (2015) exploited a vulnerability in a car’s cellular interface. This
vulnerability allowed them to hack and remotely control every affected
car just by knowing its IP address. No changes to the manufacturer’s
configuration had to be made beforehand.

This research clearly demonstrates the urgent need to secure cars. It is vital
to establish ways to protect those networks from hackers. However, just
securing the external interfaces of a car is not enough. It is crucial to also
find ways to impede and to detect malicious messages within an internal
vehicular network.

Although various approaches with regard to encryption, authentication
and attack detection mechanisms were published in the last few years (see
Section 3.2), none of them were officially accepted in the automotive sector
so far (Navet and Simonot-Lion, 2013). Hardware limitations, the heteroge-
neous networks consisting of distributed ECUs from various vendors and
proprietary higher layer protocols, impeded an integration of new security
techniques. As a result there is still no common, standardized solution for
authentication, authorization or encryption within the CAN.

2

1 Introduction

Car hacking research highlighted that the automotive industry needs tools
and techniques to protect their CAN communication mechanisms. Besides
sophisticated security measures it needs tools to efficiently test ECUs for
possible vulnerabilities as well.

With this thesis we want to introduce a tool that efficiently tests ECUs for
such vulnerabilities. By carrying out various hacking attacks we are trying
to manipulate or to take over control of an ECU. This approach allows us to
detect implementation flaws of the CAN communication mechanisms and
thus helps assuring a safe and secure CAN bus. We called our solution the
CAN Communication Tester (CAN-CT), which we are going to introduce in
the following chapters.

1.2 Problem

The inherent issue with today’s vehicles is the ECU communication via
a non-secure bus. Almost all crucial ECUs are connected via the CAN
bus. Before the recent development security measures and possible hacking
attacks were hardly a concern. CAN communication was just tested for
safety and functional requirements but not for malicious behavior.

However, as research demonstrated hacking a vehicle is reality. Securing the
I/O channels of a car is not sufficient. For instance considering the attack
scenario that a hacker was able to take over control of an ECU via a remote
attack; without any further security mechanisms on the vehicle’s internal
communication systems, he or she would be in a position to manipulate
arbitrary ECUs with facing hardly any obstacles.

This scenario shows, that manufacturers have to secure their vehicular
communication systems as well. Stronger emphasis is and will be put on
more secure CAN communication. Yet due to the growing complexity of
modern ECUs and in-vehicle communications it is very likely that flaws
in the implementation of such safety and security measures exist. This
implies that we need a testing environment to assure the proper working of
these techniques. We are convinced, the one key factor of such a security
testing environment is the verification of these security measures through the

3

1 Introduction

simulation of hacking attacks. This requirement illustrates that such a testing
environment differs in its fundamental testing concept from traditional
safety and functional tests. We feel certain, that such a testing environment
would be ideally suited to complement those existing environments to
ensure a higher level of safety and security.

1.3 Solution

With this thesis we develop a software application prototype named CAN
Communication Tester (CAN-CT) to efficiently test vehicular electronic
control units (ECUs) for security (and potentially safety) vulnerabilities.

The CAN-CT is based on the attack scenario that a hacker was able to gain
full access to the CAN bus by compromising an ECU via an I/O channel.
Based on this scenario the CAN-CT behaves like an actual attacker on the
bus. This approach allows us to examine the behavior of ECUs during the
execution of arbitrary attacks and thus lets us analyze ECUs and their CAN
networking in exceptional states.

We validate the correct implementation of CAN networking including safety
measures like sequence numbers, application layer checksums, time outs,
plausibility checks and error/failure handling mechanisms. We will test
these mechanisms by carrying out hacking attacks like invalidating, manip-
ulating, replaying or injecting messages into the CAN bus.

The CAN-CT will be based on the assumption that sufficient knowledge of
the CAN communication is available and that direct and full access to the
bus exists. It can be understood as an application of the Man-in-the-Middle
attack model with the aim to highlight faulty implementations of safety and
security measures. Attack vectors to gain access to the CAN bus are not
examined within this thesis.

4

1 Introduction

1.3.1 Objectives

Our goals for the CAN-CT are:

• Testing the correct implementation of CAN networking including
current protection mechanisms

• Supporting for attacks that invalidate, manipulate, replay and inject
CAN messages

• Supporting various higher layer protocols for analysis and attacks
• Testing the implementation against an unknown ECU in a real world

scenario
• Implementing the prototype as a learning system by analyzing the

traffic on the CAN bus directly. We determine important message
IDs and their respective purpose in the CAN communication and use
them as the input for further attacks

1.3.2 Outlook on Results

In this thesis we show that we were able to prove the CAN-CT working
properly in a laboratory setup as well as in real world scenarios. For the
latter we made use of two different Hardware in the Loop Systems (HiLs).
One represented a heavy duty vehicle while the other simulated a passenger
car. Both HiLs consisted of multiple hardware ECUs, sensors and actuators.
For our tests we mainly focused on the engine control unit as well as on
turbocharger control units.

These test setups allowed us on the one hand to demonstrate the proof of
concept of being able to hack a vehicular communication network with the
CAN-CT, while on the other hand we detected serious weaknesses in the
implemented protection mechanisms of the targeted ECUs.

5

1 Introduction

In more detail these flaws consisted of serious lacks in the plausibility check-
ing of messages, of a too loose time out window for incoming messages,
a not strict enough alive counter checking procedure and a completely
omitted examination of the correct frame structure. We detected all of those
weaknesses by attacking the targeted ECU with the implemented hacking
attacks. These attacks consisted mainly of series of impersonation attacks
and special forms of Denial of Service (DoS) attacks.

The flaws we identified in the protection mechanisms make it easier for
attackers to manipulate ECUs. We exploited those flaws to take over message
IDs owned by another ECU. For instance with our attacks we were able to
fully control the turbocharger. Thus we were able to define the air pressure
in the combustion chamber. Causing the turbocharger to generate a too
high air pressure over a longer period of time might finally lead to damages
of the engine.

In summary, with this thesis we demonstrate, that with the CAN-CT we are
able to manipulate ECUs, suppress all communication on the bus and bring
ECUs into error states.

1.4 Outline

This thesis starts with preliminaries (Chapter 2). This chapter provides a ba-
sic understanding of the technologies, protocols and other measures needed
for this thesis. Chapter 3 gives an overview of related work. It is divided
into the three main areas that influenced this thesis: car hacking techniques,
attack detection mechanisms and attack prevention measures. In Chap-
ter 4 we introduce our tool - the CAN Communication Tester (CAN-CT).
Chapter 5 then gives a detailed overview of the real world applicability and
impact of the CAN-CT. The thesis concludes with Chapter 6. Here the main
points are summarized and possible future work is discussed.

6

2 Preliminaries

This chapter introduces the major technologies, protocols and concepts on
which this thesis is based. We define important terms and give an overview
of relevant topics with regard to automotive communication systems.

2.1 Terminology and Definitions

In this section describe and define different terms and concepts used within
this thesis.

2.1.1 Electronic Control Unit

Modern cars consist of a large number of electronic devices that control
almost every aspect of a car. These devices are self-contained automotive
embedded systems called electronic control units (ECUs) (Koscher, 2014).

Virtually every component of a car, including the breaks, the engine, the
throttle, lighting controls, entertainment system and so on are governed by
these embedded systems (Koscher, 2014). This leads to almost 100 ECUs
in a modern luxury sedan (Charette, 2009). These computers monitor and
control not only sensors and actuators but also technologies supporting the
driver, the passengers or even certain driving situations. Those features
encompass technologies like ABS, ESP or further advanced driver assistant
systems.

7

2 Preliminaries

Historically the first ECU in a car was in charge of controlling and mon-
itoring the engine. Therefore many researchers still define the acronym
ECU as Engine Control Unit. However, because these control units are now
operating various aspects of a car - and not only the engine - we are defining
the term ECU as electronic control unit.

2.1.2 Hardware in the Loop System

A Hardware in the Loop System (HiL) can be understood as a test frame-
work where parts of the system are simulated while other parts are actual
hardware devices. This approach allows to test a hardware in a true-to-
nature test condition without the need of the actual system to be built (Ren,
Steurer, and Woodruff, 2007).

Furthermore the actual hardware can be tested in extreme conditions, which
helps identifying hidden defects. This is especially useful for a cost and risk
effective development of the investigated system.

A vehicle represents one use case for a HiL. A HiL therefore helps develop-
ing certain parts of the vehicle without the need of the actual vehicle. The
missing hardware components are just simulated by the HiL.

The hardware ECU under test gets all the information from the HiL as
if it was coming from the actual vehicle components. Therefore for the
device under test (DUT) there is little to no difference between the HiL and
nature.

In a HiL it is possible to manually put the DUT in different states and
imitate arbitrary situations.

2.1.3 Attack

For our tests in Chapter 5 we define an attack as follows:
An attack consists of at least one injected message. If it is composed of
multiple messages, these messages must have the same message ID (see
Section 2.3.4) as well as the same kind of attack described in Section 2.4.2.

8

2 Preliminaries

2.1.4 Test Case

We define the term test case as follows:
A test case consists of at least one attack and serves exactly one purpose.

An example of such a test purpose can be the verification of certain plausi-
bility checks of an ECU. Such a verification can consist of multiple attacks
but will be treated as one test case.

2.1.5 Plan of Attack

We define a plan of attack as follows:
A plan of attack consists of at least one test case. If it combines multiple test
cases, it further states how and when they are executed.

An example of such a plan of attack is the consecutive execution of multiple
test cases. For instance, one can base the execution of the second test case
on the success of the previous one. This means the second test case might
need a prior exploitation of a vulnerability caused by the first test case to
work.

Thus, we can say, a plan of attack includes one or more test cases which in
turn use at least one attack to reach their purpose.

2.2 In-Vehicle Communication Systems

Until the beginning of the 1990s most ECUs were connected via point to
point links (Navet and Simonot-Lion, 2013). The growing number of ECUs
made it necessary to use more sophisticated communication systems.

The varying characteristics of a state of the art vehicle demanded various
attributes of such a system. For example, fast communication for multimedia
services or safe real time connections for critical power train functions. This
requirement led to multiple, separate vehicular networks in state of the
art vehicles (Tuohy et al., 2015). These network technologies encompass
protocols like CAN, LIN, FlexRay or MOST.

9

2 Preliminaries

For example, the BMW 7 series, launched in 2008, contains four Controller
Area Network (CAN) buses, a FlexRay bus, a Media Oriented Systems
Transport (MOST) bus, multiple Local Interconnect Network (LIN) buses,
an Ethernet bus and several wireless interfaces. Most of these different
networks are connected via a central gateway (Navet and Simonot-Lion,
2013).

2.2.1 Overview of Current Automotive Networks

The reason why modern cars use many different communication systems
lies in the varying types of data that has to be transmitted. Based on the re-
quirements on transmission speed and function, the Society for Automotive
Engineers (SAE) established a classification for automotive communication
protocols (Navet and Simonot-Lion, 2013). This classification divides the
requirements for data transmission into four categories: Class A, Class B,
Class C and Class D.

Class A networks are characterized by cost efficient technologies for low
bandwidth transmissions (< 10 kbit/s). This is suitable for simple control
data like a car’s lighting, the seat control or the door lock. For these kind of
data rates mostly LIN is used.

A class B network operates at a rate between 10 kbit/s and 125 kbit/s. Its
main purpose is to reduce the number of sensors by sharing information
between ECUs. In most cars this is realized with a low-speed CAN bus.

High speed real-time communications happen at speeds of 125 kbit/s to
1 Mbit/s and are subsumed by class C. Data transmitted on class C networks
have high demands regarding real-time and failure resistance. In modern
cars the powertrain and the chassis domain communicate with networks in
this class. Mostly a high-speed CAN bus is used for this purpose.

The last class introduced by the SAE is Class D. It requires speeds of more
than 1 Mbit/s. These high speed networks are mostly used for multimedia
data or as gateways between other networks. The common protocol for
this class is MOST. This protocol can reach a maximum bandwidth of 150
Mbit/s with the standard MOST150 (Tuohy et al., 2015).

10

2 Preliminaries

Besides these protocols there are also other communication systems like
FlexRay, Automotive Ethernet or Controller Area Network Flexible Data
Rate (CAN-FD). The latter two especially were developed as next generation
protocols to overcome limitations of current systems.

FlexRay was released in 2004 with the aim to replace the CAN protocol.
Its main advantages are a higher data rate (10 Mbit/s), its deterministic
time-triggered time division multiplexed access (TDMA) media sharing and
its high flexibility (Tuohy et al., 2015). However, due to higher costs of the
nodes it was not able to gain wide acceptance.

With the introduction of the CAN-FD in 2012, we believe it is most likely
that CAN-FD will be the CAN protocol’s successor.

2.2.2 Limitations of Current Automotive Networks

An increasing number of data-intensive functions changed the requirements
of vehicular communication systems. Due to its limitations the CAN proto-
col for instance cannot fulfill all demands of modern ECUs. It is necessary
to process larger quantities of data at real-time while working more energy
efficiently. Furthermore it is crucial to solve the inherent security issues of
current protocols (Navet and Simonot-Lion, 2013).

Especially these vulnerabilities to attacks became a great concern of many
manufacturers. As research in the last few years demonstrated the CAN
protocol with its payload of eight bytes is too limited to provide sufficient
security techniques. Happel, 2014 states that CAN-FD can overcome this
issue. Due to the increased payload of 64 bytes CAN-FD meets the require-
ments of modern vehicular communication systems while allowing for the
integration of security mechanisms as well.

11

2 Preliminaries

2.3 Controller Area Network

Since 1994-1995 the CAN bus is the most widely used communication
system for automotive applications (Lawrenz, 2013). Besides its application
in Class B networks it is mostly used for Class C data transmission (see
Section 2.2.1). As it connects the most critical components within a car, it is
one of the most important buses.

2.3.1 History and Standardization

The CAN protocol was first introduced in 1986 at an SAE conference in
Detroid (Lawrenz, 2013). In 1991 it was the first bus system that was
implemented in a vehicle in mass production (Mischo et al., 2015).

The current version of the CAN protocol is the version 2.0. This version
is divided into two parts - 2.0a and 2.0b. Both specifications are identical
except for the additional support of 29-bit message identifiers in version
2.0b, whereas 2.0a just uses 11-bit identifiers (Navet and Simonot-Lion, 2013).
Due to the larger number of different message IDs version 2.0b is mostly
used for heavy-duty vehicles, while 2.0a principally is used for passenger
cars.

The CAN protocol is standardized since 1993. It is defined in the ISO
Standard 11898 which is split into five parts, where the first three parts
are the most relevant for the automotive industry. ISO 11898-1 defines the
CAN protocol and the entire data link layer as well as parts of the physical
layer. The second part (ISO 11898-2) defines the physical layer behavior
for the High-Speed CAN, whereas the third part describes the Low-Speed
CAN bus (Mayer, 2006). ISO 11898-4 defines a time-triggered CAN based
communication protocol (TTCAN) and ISO 11898-5 outlines a high-speed
medium access unit with low-power mode (Lawrenz, 2013). Navet and
Simonot-Lion, 2013, however, note that the time-triggered CAN protocol
has not been used in production cars so far.

Besides these ISO standards, the CAN protocol is also standardized by other
organizations like the SAE (J2284-1 to 3).

12

2 Preliminaries

In this thesis we limit the discussion to the CAN 2.0a version and the
ISO 11898-2 standard, as this is the most widely used standard for CAN
networks (Di Natale et al., 2012).

2.3.2 Characteristics

The main goal of the CAN protocol is to efficiently support distributed real
time control with a very high level of security even in large and complex
networks. The CAN specification in its version 2.0 (Bosch, 1991) states the
following points as main characteristics:

• prioritization of messages based on their identifier,
• guarantee of maximum latency times,
• configuration flexibility,
• multicast reception with time synchronization,
• system wide data consistency,
• multimaster bus access,
• error detection and signaling,
• automatic retransmission of corrupted messages as soon as the bus is

idle again, and
• distinction between temporary errors and permanent failures of nodes

and autonomous switching off of defect node.

The CAN bus is a broadcast medium that consists of nodes with equal
rights (multimaster). Every node has the same right to send a message. The
prioritization mechanism helps avoiding possible collisions on the medium.
The node sending a message with a lower ID (higher priority) will prevail
on the bus. The other node has to wait. If, however, a collision still occurs,
the error handling techniques signal an error and the failed message will
be retransmitted. In this way the protocol assures a system wide data
consistency.

In the further sections we will detail most of those points again.

13

2 Preliminaries

(a)CAN-H and CAN-L data transmission
according to ISO 11898-2

(b)Differential amplifier subtraction of
CAN-H and CAN-L signals according
to ISO 11898-2

Figure 2.1: CAN signal interference filtering according to ISO 11898-2 (Mischo et al., 2015)

2.3.3 Physical Layer Attributes

According to the ISO 11898-2 standard - the most common standard for
CAN networks (Di Natale et al., 2012) - the network is based on a two-wire
differential bus. These wires are named CAN-H (CAN High) and CAN-L
(CAN Low).

The idle state of both wires lies around 2.5 V (Mischo et al., 2015). This
voltage is also the recessive state of the CAN bus and represents a binary
1. In the dominant state both wires change their voltage by 1 V. For the
CAN-H this means a dominant state of 3.5 V and for the CAN-L a drop to
1.5 V. The dominant state of the CAN bus represents the binary 0. If two or
more nodes simultaneously transmit different messages, the dominant bit
always overwrites the recessive bit. This behavior is also used for the CAN
protocols prioritization mechanism described in Section 2.3.5.

By comparing the symmetry of both signal flanks the CAN controller is
resistant against interferences. A differential amplifier subtracts the CAN-L
voltage from the CAN-H and converts it back into logical states (Mischo
et al., 2015). This approach is depicted in Figure 2.1.

14

2 Preliminaries

Table 2.1: Bit rates, maximum bus lengths and corresponding bit times according to
CANOpen (Mischo et al., 2015)

Bit Rate Bit Time Bus Length
1 Mbit/s 1 µs 25 m

800 kbit/s 1.25 µs 50 m
500 kbit/s 2 µs 100 m
250 kbit/s 4 µs 250 m
125 kbit/s 8 µs 500 m
62.5 kbit/s 16 µs 1000 m
20 kbit/s 50 µs 2500 m
10 kbit/s 100 µs 5000 m

In an ISO 11898-2 CAN network data rates up to 1 Mbit/s are possible.
Dependent on the speed, the maximum bus length differs. Di Natale et al.,
2012 cite the speeds, bus lengths and bit times from CANopen listed in
Table 2.1.

The CAN bus uses non-return-to-zero (NRZ) as the encoding method for
data transmission. This means there is no compulsory return to zero
between two equal states. This method provides the advantage of requiring
only a minimum bandwidth (Lawrenz, 2013). After the transmission of
five consecutive bits of the same value, a stuff bit of the inverted value is
inserted.

Based on the edges from the recessive to the dominant state (and optionally
vice versa in case of low bit rates) the CAN controllers synchronize their
internal bit time (Bosch, 1991).

2.3.4 Frame Formats

The CAN protocol differentiates four types of frames - data frame, remote
frame, error frame and overload frame. The data frame is the only frame
that actually transmits message data. The other frames are used to request
the transmission of a data frame, to allow for fault confinement, for syn-
chronization and for flow control (Lawrenz, 2013; Di Natale et al., 2012).

15

2 Preliminaries

In the following section we are going to detail the data frame. The error
frame will be described in Section 2.3.6.

Data Frame

The data frame is used to transmit information on the bus. As the CAN
network is a broadcast medium, every node receives every message. The
CAN protocol does not use any source or destination address. Instead it
uses an identifier which defines the message’s content (for instance the
vehicle speed, engine parameters and so on). Based on this identifier each
CAN node decides if the message will be further processed or if it will be
ignored (Mischo et al., 2015).

This approach allows for a high flexibility of the network. It does not need
any information or configuration of the nodes. A new node just connects to
the network and it can send and receive messages immediately. However,
without any prior knowledge of the messages sent on the bus, a new node
cannot determine their meaning or ascertain which messages are relevant.

The data frame in the CAN version 2.0a (Bosch, 1991) is depicted in Fig-
ure 2.2. After a Start of Frame bit (SOF) the data frame starts with an ID
of eleven bits. After the ID section, the frame has a remote transmission
request (RTR) bit. This bit states, if the frame is a data frame (binary value
1), or if it is a remote frame (binary value 0). Combined with this RTR bit
the ID gives the arbitration field which will be detailed in the next section.

The subsequent control field is composed of an identifier extension (IDE), a
reserved bit and the data length code (DLC). The IDE represents the current
version of the frame. A binary 1 represents the version 2.0a and a binary
0 refers to the version 2.0b. The DLC then states how many data bytes the
message uses. The minimum value is 0 - no data at all - and the maximum
length is eight (8 bytes).

After the control field the actual data is transmitted. Based on an optional
higher layer protocol each bit of this section can have additional meanings.
The CAN protocol per se does not make any assumptions regarding this
part.

16

2 Preliminaries

Figure 2.2: CAN 2.0a Data Frame (Mayer, 2006)

The data frame uses a 15 bit checksum to provide a check for the correctness
of the received frame. This cyclic redundancy check (CRC) is obtained by
defining the input polynomial, the coefficients of which are given by the
destuffed stream of bits starting from the Start Of Frame bit to the data
bytes (if present) (Bosch, 1991). The resulting polynomial is then divided by
the following generator-polynomial:

X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1

The remainder of this polynomial division is the CRC sequence. More
details about this calculation can be found in the CAN specification (Bosch,
1991).

After this checksum, the frame consists of a delimiter and an acknowledg-
ment bit. This bit is sent out with a value of 1 (recessive state). Every
node that correctly receives the message overwrites this bit with a binary
0 (dominant state). This means the initial recessive state for this bit, will
be set to the dominant state by every recipient that received the message
correctly. This way the sender notices if its message was received correctly
by at least one node. It is, however, not possible to determine if every node
received the message correctly (overwriting a dominant bit with a recessive
state is not possible).

The frame concludes with an acknowledgment delimiter and 7 recessive bits
representing the end of frame (EOF). After these bits an interframe spacing
of another 3 bits is used. This means the next message can be send after ten
recessive bits of waiting.

17

2 Preliminaries

2.3.5 Arbitration

The CAN protocol uses the carrier sense multiple access/collision avoidance
(CSMA/CA) technique to avoid collisions on the bus. This approach is
realized by the arbitration mechanism (Johansson, Törngren, and Nielsen,
2005). For this purpose the arbitration field of a CAN frame is used to
determine who is allowed to send.

Arbitration is a technique to handle possible bus access conflicts. Whenever
two or more nodes start transmitting a frame at the same time, it is used.

Every node transmits its message bit per bit while simultaneously watching
the actual signals on the bus. If the signals received correspond with the
signals sent, the node continues transmitting; if not, it stops immediately.
A difference between those values occurs when a sent recessive bit (binary
1) was overwritten by the dominant bit (binary 0) of another message. The
node then has lost arbitration and must withdraw without sending one
more bit (Bosch, 1991).

Due to the dominant state of 0 the node sending a message with the lowest
ID gets the highest priority. It will prevail in the arbitration process and can
transmit its message.

Figure 2.3 illustrates this approach. Two nodes are sending at the same
time. The first three bits of both messages are equal. Both nodes continue
sending. At bit four the binary 1 (recessive state) of sender C is overwritten
by the binary 0 (dominant state) of sender A. Sender A won the arbitration.
Sender C thus stops transmitting.

2.3.6 Error Handling

The CAN protocol knows five different types of errors (Bosch, 1991):

• Bit-Error: A sent bit differs from the actual bit on the bus (after
arbitration),

• Stuff-Error: More than five consecutive bits of the same value were
sent (except for end of frame and interframe spacing),

• CRC-Error: The CRC contained in the transmitted frame is not correct,

18

2 Preliminaries

Figure 2.3: Depiction of the arbitration process between two CAN nodes (Mayer, 2006)

• Form-Error: The frame format (delimiters, end of frame) is corrupted,
• Acknowledgment Error: The acknowledgment bit of the message re-

mains in the recessive state - this implies no other node received the
message correctly.

When any of those errors are detected by either the sending node or the
receiving nodes, it immediately sends an error frame. The error frame with
an active error flag consists of six consecutive dominant bits. This frame
overwrites the currently transmitted frame that caused the error. Due to
the violation of the bit-stuffing rule caused by the error frame other CAN
nodes start sending an error frame as well (Lawrenz, 2013). This leads to a
possible superposition of error frames for up to twelve dominant bits. After
the error frame each node sends eight recessive bits (error delimiter).

To confine faulty CAN nodes the protocol defines three operation states,
which will be detailed in the following paragraph (Johansson, Törngren,
and Nielsen, 2005):

1. Error Active: a node in this state works properly. If an error is detected
it sends an error frame with active error flag.

2. Error Passive: in this state the node is seen as potentially faulty. It still
can receive and send messages but an error will be signaled with an
passive error flag (six recessive - not dominant - bits).

3. Bus Off : a node that entered the bus off state is not allowed to partici-
pate on the bus anymore. It is seen as defective.

19

2 Preliminaries

To enter these states, each node uses two counters (transmit error counter
(TEC) and receive error counter (REC)). A detected/signaled error increases
the receive/transmit error counter by eight; a correctly received/sent mes-
sage reduces it by one. If one of those counters reaches a value of more
than 127 the node enters the error passive state. In this state the node uses
six recessive bits to signal an error. This serves the purpose to not destroy
messages sent by other nodes with this error flag. The reason is that the
error passive CAN controller might be faulty itself. Only after both counters
dropped under the limit of 127 the node is allowed to send active error flags
again.

If the transmission error counter is raised to a value of more than 255 the
node has to enter the bus off state. It is not allowed to send nor to receive
messages on the bus. This means no messages will be further processed
by the CAN controller or forwarded to higher layer applications. The CAN
controller ignores all traffic on the bus. Only after reseting its counters the
node can participate again. If, however, a CAN controller does not conform
to the CAN protocol’s error handling procedure, there is no possibility to
isolate it. Thus, the CAN bus relies on the conformity with the protocol of
each node.

These state transitions are depicted in Figure 2.4

2.3.7 Higher Layer Protocols

The CAN protocol per se just defines the lower two OSI layers. For higher
layer applications a large number of protocols exist. According to Kvaser,
2012 there are several dozens of protocols. Many of those are standardized
by different organizations. Examples are the SAE J1939 (defined by the
SAE), the CANopen standardized by the CAN in Automation (CiA) or the
DeviceNet protocol (Johansson, Törngren, and Nielsen, 2005).

20

2 Preliminaries

Error Active

Error Passive Bus Off

REC <= 127
And

TEC <= 127 REC > 127
Or

TEC > 127

TEC and REC reset

TEC > 255

Error | +8OK | -1

OK | -1 Error | +8

Figure 2.4: CAN error handling state machine

Besides these three protocols Kvaser, 2012 lists the following protocols as
the most common ones:

• CANKingdom,
• CCP/XCP,
• MilCAN,
• NMEA2000,
• OSEK/VDX, and
• SDS.

These protocols differ in their characteristics regarding the targeted applica-
tion they should support. This is reflected in their real-time control abilities,
their flexibility regarding network configuration or their data rates (Johans-
son, Törngren, and Nielsen, 2005). Some protocols are used especially for
diagnostic purposes (for instance ISO 14229, ISO 14230) while others are
used for normal communication between ECUs.

21

2 Preliminaries

To harmonize the communication techniques of different vendors a common
automotive industry standard architecture named AUTOSAR was devel-
oped (Lawrenz, 2013). However, as research showed (Miller and Valasek,
2013; Koscher, 2014; Staggs, 2013; Tuohy et al., 2015) most manufactur-
ers still use proprietary extensions, modifications or higher layer services.
Koscher et al., 2010 even states that many ECUs deviate from their own
protocol standards as well.

2.3.8 Current Protection Mechanisms

Vehicular communication networks followed a security by isolation ap-
proach. As, however, this isolation is not existent anymore, new security
techniques are needed. So far no standardized security measures for CAN
communication exist. Staggs, 2013 considers the security through obscurity
approach still as the prevailing technique to protect cars. Message IDs and
content encoding are confidential. This correlates with current car hacking
research (Valasek and Miller, 2015; Miller and Valasek, 2013; Koscher, 2014).
However, they clearly demonstrated that these techniques fail to secure a
car.

Miller and Valasek, 2013 showed that normal CAN communication is not
protected at all. Besides the nondisclosure of the message IDs and the
encoding of the content some manufacturers use additional CRC checks,
alive counters and time out windows - but no security measures.

Application layer CRCs use a simple calculation over the data bytes and the
ID to assure the integrity of the message. Alive counters serve as a sequence
number which increases with every sent message. This assures the receipt
of the messages in the right order and lets the ECU determine if a message
got lost. A time out window defines the time when a message is allowed to
be received. If it arrives before or after this window it is rejected.

Authentication mechanisms are only implemented for diagnostic purposes,
like flashing the ECU (Koscher, 2014; Miller and Valasek, 2013; Valasek
and Miller, 2015). Koscher et al. (2010) state, in their examinations these
mechanisms use weak keys, a fixed challenge (seed) and are both just 16
bits long.

22

2 Preliminaries

Summing up, the current way to protect the CAN bus against unauthorized
manipulation is the nondisclosure of message IDs and the proprietary
encoding of data, the usage of mechanisms like application layer CRC,
alive counter and time out windows as well as a (weak) authentication for
diagnostic applications (Tao, Antunes, and Aggarwal, 2014). Besides those
techniques, ECUs use plausibility checks to determine the correctness of a
received message. These plausibility checks verify the validity of a received
CAN signal by comparing it to other signals. These other signals can be
generated by any sensor, sent by another ECU or calculated from other
similar values.

2.4 Car Hacking

As research shows, CAN buses have been treated as closed networks for too
long. Nowadays these buses are connected to a broad number of interfaces
to the outside world. This reveals a large number of possible attack vectors.
Research demonstrated in the last few years that car hacking is reality; for
instance, Valasek and Miller (2015) were able to fully remote control a car
just by knowing its IP address.

2.4.1 Attack Vectors and Security Threats

After being criticized by the media for building their research on an unreal-
istic attack scenario (Leyden, 2010; BBC News, 2010), Checkoway et al., 2011;
Valasek and Miller, 2015 decided on focusing on possible attack surfaces.
While Checkoway et al., 2011 demonstrated that they were able to take
over a car via almost every connection with its outside world, Valasek and
Miller, 2015 revealed an exploit in the cellular interface of a car that would
let them remote control up to 471,000 vehicles. Both showed that even
though these interfaces use sophisticated security mechanisms, there are
also vulnerabilities.

23

2 Preliminaries

Figure 2.5: Digital I/O channels in a modern car and corresponding attack vectors (Check-
oway et al., 2011)

Figure 2.5 depicts typical connection of a modern car with its outside
world. Checkoway et al. (2011) roughly grouped the ECUs according to
their function (indicated by their color). In their paper they analyzed the
vulnerability of those I/O channels. Checkoway et al. demonstrated that
they could gain full control of all connected ECUs on the respective CAN bus
and, by transitivity, of all ECUs in the vehicle by exploiting those interfaces.
Their examination encompassed hacks via the car’s radio through a specially
prepared audio CD, via the OBD-II channel (a diagnosis port for mechanics),
the bluetooth interface, the tire pressure monitoring system (TPMS) or even
the cellular modem by calling it and playing a crafted audio signal.

24

2 Preliminaries

2.4.2 Attacks

Each attack surface needs individual examination for vulnerabilities. The
focus of this thesis is already one step further. We are dealing with possible
hacking attacks when an attacker already gained access to the CAN bus.

Here we distinguish between the following types of attacks.

Replay Attack

C.-W. Lin and Sangiovanni-Vincentelli, 2012 define a replay attack as a sub-
category of a masquerade attack. This means the attacker sends a message
in which he claims to be a node other than himself. For a replay attack this
means that the message is not altered at all. The exact copy of a previously
received message will be sent out by the attacker.

Knapp and Langill, 2015 state that a replay attack consists of two tasks:
recording and replaying. The attacker is able to listen on the bus and
starts recording interesting packets; for instance, when an authentication
mechanism takes place on the network. By replaying the recorded message
the attacker then might be able to gain access to certain resources.

Spoofing Attack

The spoofing attack is similar to the replay attack. It is also a form of a
masquerade attack. The difference is that instead of replaying a previously
recorded message, an altered or completely different message will be sent.
Yet, the attacker still claims to be a node other then himself.

Based on the results of Koscher et al. (2010), Koopman and Szilagyi (2013)
consider a spoofing attack as a way to make an embedded system unsafe in
essentially limitless ways.

25

2 Preliminaries

Denial of Service Attack

Knapp and Langill, 2015 define a Denial of Service (DoS) attack as a ma-
licious attempt to make a resource unavailable. This type of attack en-
compasses ways of inhibiting or crashing a particular service in a device,
suppressing all communication with a device or every other way of ham-
pering an attacked device to communicate.

In traditional business systems, Knapp and Langill state, this does not typi-
cally cause significant negative consequences if resolved in time. However,
in industrial environments this attack can lead to serious consequences if
not managed accordingly.

26

3 Related Work

The underlying research area of this thesis can be divided into 3 sections.
Our thesis is influenced and motivated by the results of current car hacking
research. Based on these findings a lot of research was done to protect
against those kind of attacks. Here we distinguish between attack detection
and attack prevention mechanisms. We took these approaches into consid-
eration for the design of the application we are going to introduce with this
thesis. The third part, which influenced our research, are current efforts
regarding automotive security testing approaches.

3.1 Car Hacking Techniques

In the last few years extensive academic as well as non-academic research
was done to determine the vulnerability of vehicles against hacking attacks.
Koscher et al. (2010) were one of the first to test this vulnerability compre-
hensively in a real-world scenario. Before most research dealt with more
theoretical questions regarding possible hacking threats and their investiga-
tion (Larson and Nilsson, 2008; Wolf, Weimerskirch, and Paar, 2004; Wolf,
Weimerskirch, and Paar, 2006; Nilsson, Phung, and Larson, 2008).

For instance Nilsson, Phung, and Larson (2008) discussed the specifics of
performing a digital forensic investigation of cyber attacks on vehicular
networks. Based on an attacker model similar to ours (see Section ??) Nils-
son, Phung, and Larson developed requirements for a digital investigation.
In contrast to our work this paper states guidelines to carry out forensic
investigations of car hacking attacks. It does not aim to systematically reveal
possible vulnerabilities in automotive ECUs as we do.

27

3 Related Work

Similar to Koscher et al. Hoppe, Kiltz, and Dittmann (2011) did a thorough
examination of security threats to Controller Area Network (CAN) buses.
Besides a theoretical analysis of possible vulnerabilities and selected coun-
termeasures, Hoppe, Kiltz, and Dittmann provided practical examples in
a self-made testing environment. In their tests they demonstrated various
attacks on the CAN bus. Those attacks, however, where achieved by sending
special commands to a targeted electronic control unit (ECU). No systematic
bus off, spoofing of recurring messages, or Denial of Service (DoS) attacks
were carried out, as we introduce with this thesis. Furthermore their pa-
per aimed to point out consequences and possibilities of hacking attacks
and did not systematically examine vulnerabilities in CAN communication
protection mechanisms.

Especially the results published by Koscher et al. led to high attention in
the academic as well as the non-academic sector. In 2013 Miller and Valasek
(2013) published a detailed analysis about a CAN bus car hack. They
showed that they could control almost every functionality when physically
connected to the car. As opposed to Hoppe, Kiltz, and Dittmann (2011)
Miller and Valasek used more sophisticated attacks and exploited diagnostic
protection mechanisms as well. The spoofing attack described in their paper,
however, used a simpler approach than ours. Miller and Valasek just flooded
the bus with their attack, whereas we are injecting just one, precisely timed,
additional message right after the original one. This way, we believe, our
attack would not been detected by their proposed detection mechanism.

Similar to the research of Miller and Valasek further CAN hacks followed
(Evenchick, 2015; Staggs, 2013; Valasek and Miller, 2014). All those papers
followed the same goal, to point out what an attacker can do when connected
to the CAN bus.

As, however, the need for a physical connection of CAN hacks was consid-
ered to be an unrealistic threat many researchers focused on the exploitation
of remote interfaces of a car. Miller and Valasek (2014) carried out a broad
survey of remote attack surfaces. They examined dozens of cars based on
predefined parameters for their hackability.

28

3 Related Work

Checkoway et al. (2011) demonstrated that they were able to take over
control via almost every interface of the vehicle with its outside world (see
Section 2.4.1). In 2015 Valasek and Miller (2015) were able to reveal a serious
vulnerability in a car’s cellular interface which let them completely remote
control affected cars just by knowing their IP address.

Besides these hacking attacks, Rouf et al. (2010) used the tire pressure
monitoring system (TPMS) for their attacks. Andy Davis (Vallance, 2015)
was able to hack a car by sending data via digital audio broadcasting (DAB)
radio signals. While all these papers revealed vulnerabilities in a car’s I/O
channels, we are validating CAN communication protection mechanisms
directly on the bus.

Other than these approaches we are focusing not on ways how to hack a
car, but we are using CAN attacks as the basis for our systematical tests
to efficiently detect possible vulnerabilities of the CAN communication by
penetrating the system. Thus, these papers motivated our work and laid
the foundations for our hacking attacks.

3.2 Attack Detection and Prevention Approaches

As no common security standard for CAN communication was found so
far, we are focusing on the communication mechanisms of current vehicles
in this thesis. However, based on the large number of proposed attack
detection and prevention approaches and the need to protect the CAN bus
in the near future, we designed our application to prepare for possible
future adaptations to integrate such techniques easier.

For that reason we want to give a quick overview of current efforts in this
field in the following paragraphs:

29

3 Related Work

Based on their own car hacking findings Hoppe, Kiltz, and Dittmann (2011)
as well as Miller and Valasek (2013) proposed possible ways of detecting
hacking attacks on the bus. They mainly searched for abnormalities and for
a higher traffic rate on the network. Other than that Larson and Nilsson
(2008) proposed a specification-based approach to detect attacks. With our
application we can validate if these approaches can spot and prevent our
attacks.

In “Securing Embedded Systems: Analyses of Modern Automotive Systems
and Enabling Near-Real Time Dynamic Analysis” Koscher (2014) started a
discussion whether detection or prevention approaches are more applicable
to secure a vehicular network. While some researchers suggest external
means to secure automotive communication systems (Wolf and Gendrullis,
2012; Koscher, 2014; Tao, Antunes, and Aggarwal, 2014; Kammerer, Frömel,
and Wasicek, 2012; Cassettari, Fanucci, and Boccini, 2014), other efforts
are paid to secure the CAN communication per se by using various types
of security mechanisms (Bittl, 2014; C. W. Lin et al., 2013; C.-W. Lin and
Sangiovanni-Vincentelli, 2012; Groza, S. Murvay, et al., 2012; Groza and
P.-s. Murvay, 2012; Groza and S. Murvay, 2013).

We believe that the modular design and the generic attack definition of
our implemented application, makes it combinable with most of the above
listed approaches. Thus, these approaches should not influence our work
directly.

3.3 Security Testing

As every security mechanism is just as good as its implementation, it still
needs testing environments to assure their correct implementation and
behavior. At the moment the prevalent approach to validate an ECU are
traditional safety and functional tests. Although these tests work properly
to validate an ECU’s normal functioning, they cannot verify, if the tested
ECU is vulnerable to hacking attacks.

30

3 Related Work

Marinescu et al. (2014), for instance introduced a model-based testing
framework. Model-based testing can be understood as a way to model the
software and/or its environment. Based on these models test cases can be
extracted. Even though this approach validates internal functions in detail,
it still cannot sufficiently simulate the malicious intelligence of a hacker. We
believe that this is also true for other traditional testing methodologies.

In 2008 Armengaud, Steininger, and Horauer (2008) introduced methods to
systematically test the FlexRay communication mechanisms of embedded
systems. Based on a careful and detailed analysis of the bus traffic and the
exploitation of the clock synchronization service they were able to validate
the correct behavior of the DUT. As this work exploited details of the time
triggered FlexRay protocol, while our work is based on the event triggered
CAN protocol, little correlation exists. Furthermore our application focuses
on the revealing of weaknesses in higher protocol layers.

Bayer et al. (2014) already dealt with the topic of a systematical execution
of automotive security evaluations and penetration tests on a theoretical
level. Based on above mentioned examples of car hacking they highlighted
the importance of such a system. However, no actual implementation was
introduced.

In his master’s thesis Talebi (2014) follows a similar approach as Bayer.
He studied the field of security evaluations by looking at the CAN bus
as a fully simulated environment. The practical tests described in his
theses were based on the network simulation software CANoe. In his
thesis Talebi used a similar strategy for vehicular security testing as we did.
However, while Talebi used a simulation software to carry out his tests, we
are actually introducing a software application prototype for the CAN bus
that follows this approach of a systematical execution of hacking attacks to
reveal vulnerabilities.

Although the papers of Talebi and Bayer et al. already stress the urgent need
of a testing infrastructure for a correct and secure CAN communication,
there is no actual implementation realized so far.

31

3 Related Work

In October 2015, Jenik (2015) presented a black box testing approach based
on a concept called exhaustive fuzzing. Similar to this approach also our im-
plemented application can be used for black box testing; however, instead of
fuzzing we learn from the traffic on the bus and execute targeted attacks. We
further implemented special attacks that let attackers suppress all communi-
cation on the bus or systematically kick an ECU off the bus. Our approach
further offers the possibility to examine not only the correct communication
of ECUs but also to test potential attack detection mechanisms.

3.4 Conclusion

The application we introduce in this thesis makes use of the findings of mod-
ern car hacking research activities. We are creating attacks similar to those
described in car hacking research papers like in Adventures in Automotive
Networks and Control Units from Miller and Valasek (2013). These attacks will
then be executed to test the correct implementation of CAN communication
mechanisms. As until now no security standard was specified, we prepared
for possible future adaptations with the design of our application. In this
thesis, however, we are focusing on the communication mechanisms of
currently available vehicles.

This attack-based testing approach differs from previously introduced func-
tional or model-based testing frameworks by its systematic and comprehensive
execution of hacking attacks. Although Bayer et al. as well as Talebi already
outlined similar concepts on a more theoretical level, to the best of our
knowledge, a fully working prototype of such a testing environment has
not been presented so far. Other than Jenik we introduce an application
that uses attack techniques to determine the proper working of ECUs and
of possible attack detection mechanisms.

32

4 CAN Communication Tester
(CAN-CT)

This chapter introduces the CAN Communication Tester (CAN-CT). The
CAN-CT is an application we developed to automatically examine Controller
Area Network (CAN) communication protection techniques for possible
vulnerabilities.

We will present the CAN-CT and its functionality in more detail. Further-
more we will provide a critical analysis of arisen challenges and possible
solutions.

4.1 Overall Concept

The inherent goal of the CAN-CT is to check CAN communication protec-
tion mechanisms of vehicular electronic control units (ECUs) for possible
weaknesses.

As opposed to functional testing of the device under test (DUT) we are
targeting a more generic approach. CAN-CT executes hacking attacks on the
CAN bus. Various kinds of attacks (see Section 4.5) are implemented, can
be parameterized, combined and will then be sent on the bus. Our aim is
causing unexpected behavior of the targeted ECU provoked by the executed
attacks to unearth flawed implementations of the CAN communications.

Besides the possibilities to carry out hacking attacks a key component of
the CAN-CT is to monitor the success of the executed attacks. Based on
different requirements for each attack, several techniques are used (see
Section 4.6).

33

4 CAN Communication Tester (CAN-CT)

CAN Bus

Engine
Control

Unit

Gearbox
ECU

Break ECU

Telematics
Control

Unit

P PCAN-USB

(a)Basic concept of the CAN-CT

CAN Bus

Engine
Control

Unit

Gearbox
ECU

Compromised
Control Unit

Break ECU

Telematics
Control

Unit

(b)Underlying attack scenario

Figure 4.1: Basic concept of the CAN-CT and its underlying attack scenario

In other words the overall concept of the CAN-CT can be understood as
a way to automatically carry out various hacking attacks on the CAN bus
by simultaneously watching the reaction of the targeted ECU. Potential
implementation flaws in the ECU shall be highlighted by the CAN-CT.

4.1.1 Underlying Attack Scenario

As the CAN-CT aims at detecting weaknesses of the observed ECU by
automatically executing hacking attacks, it is based on a realistic attack
scenario. For a real world setting such an underlying attack scenario is
best described by understanding the CAN-CT as a compromised ECU. This
means the CAN-CT has full access to the vehicle’s CAN bus and thus, is
capable of reading and writing arbitrary CAN messages sent on the bus.
As the CAN bus is a broadcast medium deleting messages sent between
two nodes is not possible.

Our attack scenario assumes that the attacker already got full access to the
CAN bus by, for instance, exploiting a vulnerability in an ECU. This means
we are not targeting ways of gaining access to the vehicle’s CAN bus but
rather we are establishing the assumption that we, as an attacker, already
found a vulnerability in an ECU, that has full access to the CAN bus. By
taking over this ECU we are now in a position to sent arbitrary messages
on the bus. This concept is visualized in Figure 4.1.

34

4 CAN Communication Tester (CAN-CT)

Besides the hostile takeover there are also other realistic scenarios conceiv-
able that suit our concept. One for example is the physical connection of a
malicious device to the CAN bus via for example the On-Board Diagnos-
tics II (OBD-II) port. This port is typically used for diagnostic sessions to
analyze, update or fix a vehicle’s ECUs.

As a consequence the attack scenario can be understood as either a com-
promised ECU or a third-party hacking device physically connected to the
CAN bus.

4.2 Software and Hardware

The key component of the CAN-CT is the connection of the application to
the CAN bus. For this task we made use of the PCAN-USB1 adapter. This
adapter connects an USB port to a CAN network. With this adapter it is
possible to read and write CAN message from a PC.

To communicate with the adapter we used the basic library provided by
PEAK-System2. This library offered us the core functionality to configure
and connect to the adapter as well as to send and receive messages on the
CAN bus.

We implemented the features described in the following in the C# program-
ming language.

4.3 Architecture

For the CAN-CT’s architecture we focused on a modular design and an
easy extensibility. With the realized architecture we tried to avoid any
dependencies on the GUI, the used hardware to connect to the CAN bus or
the attacking types. We concentrated on a clear software architecture and
adapted various design patterns.

1see http://www.peak-system.com/PCAN-USB.199.0.html?&L=1
2see http://www.peak-system.com/PCAN-Basic.239.0.html?&L=1

35

http://www.peak-system.com/PCAN-USB.199.0.html?&L=1
http://www.peak-system.com/PCAN-Basic.239.0.html?&L=1

4 CAN Communication Tester (CAN-CT)

We summarize our goals for the CAN-CT as follows:

1. Easy extensibility and modular design
2. Avoidance of dependencies regarding GUI and USB to CAN adapter
3. Highly performant execution of attacks
4. High accuracy (< 100 µs)
5. Great flexibility in the plan of attack definition
6. In-depth analysis of existing CAN traffic

A simplified class diagram of the CAN-CT is depicted in Figure 4.2. One of
the core components is the ControllerManager. This class is based on the sin-
gleton pattern and holds all references to the other controllers. This allows
us to access every controller instance without creating any dependencies.
Thus it helps fulfilling the first goal.

Besides this the ControllerManager also takes care of providing a reference
to the used GUI. The graphical user interface (GUI) itself has to implement
the interface IGui. This offers us the possibility to easily separate the view
from our logic (second goal).

The other controllers are in charge of controlling specific functionalities and
instances. For example the HWController takes care of communicating with
the PCAN-USB as well as with the nodes that use this hardware handle to
send and receive messages through it. This approach allows us to be more
flexible when exchanging the used USB to CAN adapter (second goal).

A node can be seen as either the attacker that consists of functions necessary
for executing the attacks or as a simulated node used for the CAN network
simulator. These different types are subtypes of the Node class.

Similar also the CANMsg class is divided into the subclasses IncCANMsg
(incoming message) and OutCANMsg (outgoing message), which in turn
is being extend by the AttackCANMsg - a message that holds additional
information for an attack. The MsgController then takes care of creating,
maintaining, amending and sending these messages.

The plan of attack is managed by the AttackController. This controller treads
every kind of attack the same way via its IAttack interface. This makes it
easy to extend the CAN-CT for possible further attacks (first goal).

36

4 CAN Communication Tester (CAN-CT)

Besides these core components the CAN-CT consists of multiple other
classes. These classes are needed to carry out supporting tasks like for
instance the capturing functionality. Classes that realize this feature, pro-
vide sophisticated measures of analyzing the CAN traffic. We can extract
information about incoming messages regarding the cycle time of recurring
messages, their attributes (ID, data length code (DLC), payload) and if and
where additional protection mechanisms like an application layer cyclic
redundancy check (CRC) or an alive counter are placed within the mes-
sage (sixth goal). This knowledge can then be used as the basis of further
attacks.

The definition of our attacks can be done either with the CAN-CT or with
MS Excel. Here we took care for a larger range of different types of attacks
and parameters to define them as well as an intuitive and convenient way
to create the plan of attack within the CAN-CT. All generated attacks can
then be exported or imported as a MS Excel file (xlsx). Furthermore the
implemented C# scripting/dynamic compilation engine provides the user
with additional and mere limitless ways to define attacks. With this engine
it is possible to generate complex attacks, compile the code directly within
the CAN-CT and monitor its success (fifth goal).

In addition to these functions we implemented complex calculations to
allow cyclic executions of attacks with a high performance and accuracy
(third and fourth goal). Especially the latter is very important as our attacks
need an accuracy of a few microseconds. This was realized by using the
QueryPerformanceCounter (QPC) API which guarantees high resolution
and accuracy of time stamps (<1 µs). This QPC uses the performance
counter of the processor to obtain these high-resolution time stamps.

37

4 CAN Communication Tester (CAN-CT)

Figure 4.2: Simplified UML2 class diagram of the CAN-CT

38

4 CAN Communication Tester (CAN-CT)

4.4 Overview of Application

The CAN-CT can be divided into four main parts:

• CAN Monitor
• Capturing Tool
• Attacking Features
• CAN Network Simulator

Even though the attacking part serves as the central component of the
CAN-CT, all other areas are needed to support the functionality or to make
the interaction with the CAN-CT as well as the execution of attacks more
convenient. In the following sections these parts will be explained in more
detail.

4.4.1 CAN Monitor

One of the basic components of the CAN-CT is the CAN monitor. The CAN
monitor allows the user to watch all traffic on the bus. All incoming and
outgoing messages are listed and extended with important parameters like
cycle time and message count (see Figure 4.3). Furthermore it is possible to
limit the incoming messages to a certain ID range which offers a comfortable
possibility when dealing with a large amount of messages on the bus.

Besides the mere visualization of the events on the bus it is also possible to
directly send simple messages from this area.

39

4 CAN Communication Tester (CAN-CT)

Figure 4.3: Monitoring the CAN bus with the CAN-CT

4.4.2 Capturing Tool

The capturing tool analyzes the incoming messages in more depth. Every
received message will be examined for the presence of specific protection
mechanisms like application layer CRCs or alive counters. By comparing the
content of the currently analyzed message with its corresponding, preceding
messages, we can figure out if and in which data byte such protection
measures are used. Based on the time difference between the reception of
the current message and its preceding, the cycle time is calculated as well.

The results of these analyses are then displayed in the table depicted in
Figure 4.4. The gathered intelligence is of great importance for further
attacks, as it offers a profound knowledge about possible targets. Each row
in the table represents the general description of all messages belonging to
one message ID. This information can directly be used to start an attack.

Furthermore it is possible to export the capture data to and import it from
Microsoft Excel.

40

4 CAN Communication Tester (CAN-CT)

Figure 4.4: CAN-CT’s CAN capturing functionality

4.4.3 Attack Features

Based on the information captured with the functionality described above
we can define our plan of attack (see Section 2.1.5). We can choose which
messages we want to use for our attacks. It is also possible to define
attack messages completely by hand; however, the capturing tool provides
a more convenient way of specifying these. The CAN-CT further allows for
importing and exporting the description of those attacks as Microsoft Excel
files (xlsx).

As we can see in Figure 4.5 we can define multiple options for the each
message. These options include the DLC, various settings for every data
byte (CRC, Alive Counter, randomization, etc.) and parameters which
describe the characteristics of the attack per se. The plan of attack depicted
in this figure consisted of attacks like a bus off attack, a spoofing attack, a
replay attack and a Denial of Service (DoS) attack. Furthermore we specified
when the attack was triggered (after a certain time or at the first occurrence
of a specific message ID).

41

4 CAN Communication Tester (CAN-CT)

Figure 4.5: CAN-CT’s plan of attack definition

We divided these triggers into event-based and time-based triggers:

Event-Based Attack Trigger

An event-based attack is triggered by the receipt of a specified ID. This ID
can be either the same as the attack message itself or another one. The latter
is especially interesting for attacks that should be executed whenever a
certain message is received for instance as a form of a reply or a feedback.

Time-Based Attack Trigger

The second trigger we implemented is a time-based trigger. Here we monitor
the target message, calculate its cycle time (the time span between each
receipt of a periodic message) and anticipate the time of receipt of the next
corresponding message. We then define an offset to this point in time when
we want our attack to be executed.

This approach allows us to place our attack for instance directly before or
after the target message without any delay. This also offers us the possibility
to circumvent a delay caused by the used hardware - the PCAN-USB.

42

4 CAN Communication Tester (CAN-CT)

Further Options

To allow for more complex attacks, we implemented additional options that
can be used together with any of the attacks described in Section 4.5.

The first option is a start trigger. This option allows us to execute our attack
or any subsequent attack just when a specific event occurs. These start
triggers are similar to the above described attack triggers. However, this
event occurs just once with the goal to start the attack. The attack in turn
can use one of the above described triggers for its execution additionally.

The start triggers can be either time triggered, for instance the attack starts
after a specified time, or they can be triggered by the receipt of a specific
message. The latter for example allows us to start a second attack as soon
as the first one was successful. This can be triggered for example by the
receipt of a status message caused by a bus off attack.

Additionally every data byte of the attack message can be defined with
specific options. These options allow to adapt the message dynamically
during the attack. Every data byte can either be specified by a fixed value
or it can use any of these options:

• calculation of the application layer CRC

– correct CRC
– correct CRC minus a specified value
– correct CRC plus a specified value
– correct CRC minus a random value
– correct CRC plus a random value

• calculation of the alive counter and optionally synchronization with
the target

– correct alive counter
– correct alive counter minus a specified value
– correct alive counter plus a specified value
– correct alive counter minus a random value
– correct alive counter plus a random value

43

4 CAN Communication Tester (CAN-CT)

Figure 4.6: Customized attacks via the CAN-CT’s scripting engine

• increasing an initial value to an end value by a given step
• decreasing an initial value to an end value by a given step
• randomizing the data byte

C# Scripting Engine

If the above described options are not sufficient we can also program
our own attacks with the built-in C# scripting engine. Figure 4.6 depicts
some easy sample code which creates an attack message and displays an
information on the GUI when the attack was carried out successfully.

4.4.4 CAN Network Simulator

To verify the proper functioning of the CAN-CT we implemented a CAN
network simulator. This functionality allows us to use one or more PCAN-
USBs additionally to our attacking PCAN-USB adapter. These additional
adapters are then connected with each other and used to simulate actual
ECUs on the CAN bus. The description of the outgoing messages sent by

44

4 CAN Communication Tester (CAN-CT)

Figure 4.7: USB to CAN adapter configuration and CAN node simulator

such a simulated CAN node is specified in a Microsoft Excel or CSV file.
These files use the same format as the captures generated by the CAN-CT
or as the plan of attack without attack information. The additional PCAN-
USBs are then used to send the messages according to their specification in
the provided files.

Thus, these CAN nodes, used to simulate ECUs, are controlled by the
CAN-CT as well. These nodes, however, do not run any model of an
actual ECU. They cyclically send the messages defined by the user. The
attacking PCAN-USB adapter then can execute its attacks based on the
traffic generated by these CAN nodes.

Figure 4.7 shows the CAN network simulator and CAN controller configura-
tion tab. This tab allows us to specify and configure the available hardware
as well as to choose the file on which the simulated CAN nodes are based.

This setup was used for our laboratory experiments described in Sec-
tion 5.2.

45

4 CAN Communication Tester (CAN-CT)

4.5 Attack Templates

To fully support a simple yet efficient way of testing the safety and security
mechanisms of the observed ECU the CAN-CT offers a number of attack
templates out of the box. By specifying different parameters various attacks
can be carried out.

These attacks can be divided into

• replay and spoofing attacks,
• bus off attacks, and
• Denial of Service attacks.

Besides these attack templates, the user can create additional attacks with
the provided C# scripting engine.

In the following sections we will introduce the above mentioned attacks in
more detail.

4.5.1 Replay/Spoofing Attack

Replay as well as spoofing attacks are masquerade attacks (see Section 2.4.2).
In both cases the attacker claims to be a node other than itself. On a CAN
bus, this masquerade is performed by sending messages of a certain ID that
is originally sent by another node. The difference between a replay and
a spoofing attack is just the content of the respective message that is sent
along with this attack.

While the spoofing attack just uses the message ID that belongs to another
node and defines parts of the message anew (payload, DLC...), the replay
attack copies the message as a whole and sends it back again. This means
the whole message of a replay attack is identical to the original message,
whereas the spoofing attack has just the ID in common with it.

We used spoofing attacks to falsify messages to manipulate control units.
With replay attacks we tried to identify possible weaknesses in the imple-
mented protection mechanisms of an ECU.

46

4 CAN Communication Tester (CAN-CT)

Event-Based

In the CAN-CT we implemented two different forms of the replay/spoofing
attack. The difference here is the trigger that executes the attack.

The first version we implemented is the event-based attack. This kind of
attack triggers the replay or spoofing attack by the receipt of a specified
ID.

For a replay attack we normally use the corresponding ID as trigger. As
soon as the targeted message arrives, it will be copied as a whole and
immediately sent back on the bus. The same is true also for spoofing
attacks, with the exception that not the received message will be transmitted
but the predefined one.

Time-Based

The time-based attack can be triggered even before the actual receipt of
the target message. This implies that the replay attack is not an actual
replay anymore. As basis for our attack we take the lastly received message,
analyze it for special contents like an application layer CRC or alive counter,
and adapt these components accordingly. Due to the adaption of these
components the message should be valid. However, as we cannot predict,
whether the remaining payload changed, we cannot guarantee the replay
attack to be an exact copy of the original message.

Therefore a real replay attack is just possible when it is triggered by the
corresponding ID. This circumstance, however, does not interfere with
the spoofing attack. As we define the message content for this attack by
ourselves, it is not dependable on the previously received message.

47

4 CAN Communication Tester (CAN-CT)

4.5.2 Bus Off Attack

The bus off attack we implemented takes advantage of the CAN protocols
error handling mechanisms (see Section 2.3.6). It aims to cause transmission
errors whenever the targeted ECU sends a message. This approach increases
the targeted ECU’s error counter until it enters the bus off state. When the
bus off state is reached, the ECU is no longer allowed to send nor to receive
messages. Thus, it got successfully kicked off the bus.

In more detail, we anticipate the time of receipt of the targeted message
with the goal to send our attacking message at the exact same time. This
attack then causes a collision on the bus and destroys the originally sent
message. The attacked controller notices that the signals on the bus do not
correspond with the ones sent. For that reason it sends an error frame and
stops transmitting its current frame.

After a certain time the attacked controller tries to sent anew, but the
message is overwritten again immediately by our attack. This approach
causes the ECU’s transmission error counter to increase. This firstly makes
the ECU under attack to enter the error active, then the error passive and
finally the bus off state. In this state the node does no longer receive nor
send messages on the bus.

The message used for this attack has to conform to certain rules. First of all
it has to use the same ID as the target. Otherwise arbitration would handle
a simultaneous transmission of two frames.

Secondly due to the dominant state of zero on the bus (see Section 2.3.2)
the first difference between the attacking and the target frame has to be a
binary one in the target frame and a zero in the attacking frame. If it is vice
versa the target would overwrite our message and therefore we would be
kicked off the bus. This happens as the PCAN-USB conforms to the same
rules as the other nodes do.

48

4 CAN Communication Tester (CAN-CT)

It makes no difference if the collision occurs in the DLC field or the payload.
Therefore the attacking message must be of the same length or shorter
than the targeted one. For instance a DLC of 8 in binary code equals 1000
whereas a DLC of 7 is represented by 0111. As this shorter DLC has a zero
in the beginning (dominant state) it overwrites a message with a longer one
already in this part of the message.

To increase the probability of causing a collision we use a time-based attack.
Here our attack actually uses three messages right before and after the
anticipated time of receipt. This way we can cope with possible inaccuracies
of the targeted node.

4.5.3 Denial of Service Attack

A Denial of Service attack is characterized by the malicious attempt to make
a resource unavailable (see Section 2.4.2). On a CAN bus this goal can be
achieved by flooding the bus with high prior messages. The consequence of
a successful DoS attack is the suppression of a part or of all the communi-
cation on the bus. For instance, this attack allows us to completely disable
this communication system.

Due to the arbitration process (see Section 2.3.5) the message with the
highest priority (lowest ID) prevails. This means if we continuously send
messages with any specified ID with the shortest possible intervals, no
messages with a higher ID (lower priority) can be transmitted anymore.
Thus a resource can be made unavailable.

The content of the attacking message used, is not relevant as long as there
is no other ECU trying to send a message with the same ID. Otherwise
collisions will occur.

The best option for suppressing all communication on the bus is by using
the ID 0h. This ID has the highest priority as it consists of just zeros (the
dominant state) and therefore wins in every arbitration.

49

4 CAN Communication Tester (CAN-CT)

4.6 Observability

Besides the actual execution of the attack it is also crucial to monitor whether
an attack was successful or not. We use multiple observation approaches
for this purpose. These approaches can be divided into two main tasks -
obtaining and analyzing data.

We used the following approaches to gather information about our attacks:

1. CAN traffic related log files generated by the CAN-CT,
2. CAN traffic capturing with an oscilloscope, and
3. observation via a debugging/calibration tool.

Based on the characteristics of the test case we then analyzed this data by
hand or processed it with the CAN-CT. One interesting use case is the anal-
ysis of this data with regard to specific CAN messages (see Section 4.6.4).

Besides these mere data gathering techniques the CAN-CT uses following
approaches that combine both tasks:

1. Automatic recognition of success based on the characteristics of the
current attack

2. Use of (diagnostic) higher layer protocols

All these approaches will be explained in the following.

4.6.1 Log Files

One of the simplest yet not most efficient or accurate ways to determine the
success of an attack is the analysis of the CAN traffic log files generated by
the CAN-CT. Here we examine the received and sent messages. Based on
these log entries we make conclusions about success; for instance the time
offset between the target and the attack message or the mere (non)existence
of a message can be indicators whether an attack was successful.

50

4 CAN Communication Tester (CAN-CT)

4.6.2 Observation via Oscilloscope

The second method to gather data about the attacks is the observation of
the bus with the oscilloscope. The analysis of this data may not provide us
with details whether the attack was successful in manipulating the targeted
ECU or in causing internal errors, but it shows if the attacks were carried
out the way they should be. Therefore the analysis with the oscilloscope
allows us to examine, if attacks like for example DoS are working properly
or if the time offset we specified is adhered to. The latter is important to
determine the compliance of the actual time offset with the specified one,
even when we have to cope with time variances between the supposed and
the actual receipt of the target message caused by inaccuracies of the ECU
under attack.

The main difference between the CAN-CT’s log files and the oscilloscope
observations is the examination of the results on a different ISO/OSI layer.
While the CAN-CT provides logs generated by the application itself, the
oscilloscope shows the actual physical signals on the bus. This more in-
depth analysis of the oscilloscope provides more accurate results without
any delays caused by software or hardware components. Furthermore in
the laboratory setup (see Section 5.2) it allowed us to verify if the CAN-CT’s
logging function is working properly.

4.6.3 Debugger/Calibration Software

Another method of collecting information about the attacks is using a de-
bugger respectively a special calibration software connected to the targeted
ECU. With such a tool we are able to monitor almost all details about the
internal behavior of the attacked ECU. A calibration tool for instance is also
integrated in a Hardware in the Loop System (HiL) setup.

4.6.4 Analysis of other CAN Messages

Based on the data gathered by one of the above described methods we can
look for messages of particular interest.

51

4 CAN Communication Tester (CAN-CT)

Sometimes we can ascertain the success by looking at other related messages
on the CAN bus. An example of this is given in Section 5.3. Here we make
use of the knowledge that one message provides information about certain
values (observation message) while another message allows to set these
values (attack message).

Even though this way works pretty well and provides us with accurate
details whether the targeted ECU accepted the spoofed messages, it requires
significant knowledge about the underlying system. Furthermore very often
such a feedback message does not exist.

4.6.5 Attack-Based Detection

Whereas the approaches described above were mere information gathering
techniques, which in most cases needed a manual analysis of the data, the
CAN-CT can automatically determine the success for certain attacks based
on their characteristics. These attacks are:

• DoS: Only messages with lower ID than the attack message should be
present on the bus.

• Bus-Off: After executing the attack no more messages from the attacked
ECU should be received.

In both cases the CAN-CT is able to monitor the bus at the same time it
transmits messages. This allows us to determine whether our attacks are
successful or not.

However, not every attack is suitable to determine its success automatically
with the CAN-CT. Spoofing or replaying a message is a simple task with the
CAN-CT but proving that this message was accepted by the attacked ECU is
not as trivial. Thus, if we want to know whether it was possible to overwrite
original values with our attack we have to use a different means.

52

4 CAN Communication Tester (CAN-CT)

4.6.6 Higher Layer Protocols

Another promising approach is the use of diagnostic or proprietary higher
layer protocols. Many protocols allow for requesting information about the
internal variables or states of an ECU. By sending particular messages we
can gain knowledge if the attack was able to manipulate the target.

This approach is similar to the approach described in Section 4.6.4; however,
instead of taking advantage of the normal communications of an ECU under
attack, we are using diagnostic messages to request information or read
memory addresses.

Due to the huge number of different higher layer protocols, we decided on
not implementing any of those in the current version of the CAN-CT (see
Section 4.8.3). Instead we used a generic design of the CAN-CT to be able
to handle most requirements for these protocols. This means, although a
higher layer protocol is not implemented so far, the user can manually send
diagnostic messages with the CAN-CT. A build-in solution is subject to
future work.

4.6.7 Conclusion

As it was shown there are a number of ways to determine the success of an
attack. Which way is best suited always depends on the attack that should
be monitored, the knowledge of the underlying system and the means
that are available. Except for an observation via a higher layer protocol all
options were used in our practical examination of the CAN-CT.

4.7 Extensibility

As stated in Section 4.3 we focused on a modular design that allows for easy
extensibility of the CAN-CT. This decision was made due to the current
lack of more sophisticated protection mechanisms in modern vehicular
communication networks. Therefore we prepared the CAN-CT for future
extensions with regard to the implementation of further attacks.

53

4 CAN Communication Tester (CAN-CT)

Due to the communication between the AttackController and the actual
attacks through an interface (see Figure4.2) we can easily extend the set of
attacks. This allows us to prepare for potential changes in the requirements
of hacking attacks caused by newly implemented security mechanisms.

Nevertheless, we think that the currently implemented set of attacks already
serve as a sound base for hacking future security techniques as well. Based
on the characteristics of the particular security mechanism the CAN-CT
will have to be adapted, but in our opinion for most attacks the basis
functionality of the tool will remain the same. We will still have to attack
the target via one of the above described attack mechanisms.

As we outline in the next section we had to cope with limitations of the
PCAN-USB. We can exchange the PCAN-USB with another CAN controller
in a future version of the CAN-CT. This would provide us with a shorter
hardware delay as well as with the possibility to carry out attacks without
having to conform to the CAN protocol. To realize such a change, we
would have to adapt the HWController class. Only minor changes would
be necessary for the CAN message classes. All other functionality is fully
decoupled and will continue to work.

4.8 Limitations and Solutions

Although we were able to implement almost all initially planned function-
alities, we still had to cope with some unforeseen circumstances. These
challenges will be described in the following sections.

4.8.1 Hardware Delay

One problem we discovered during the implementation and the testing of
the CAN-CT was the high delay between the receipt of a message and the
subsequent transmission of our attacking frame (see Section 4.5.1).

54

4 CAN Communication Tester (CAN-CT)

With the CAN-CT we measured a mean delay of 1.1 ms for this task. More
than 95 percent of this delay was caused by the hardware used to connect
to the CAN bus - the PCAN-USB.

To overcome this delay we implemented time-based attacks which anticipate
the time of receipt of the next target message (see Section 4.5.1). This
allows us to time our messages right before or right after the target message
without any delay.

4.8.2 Message Receipt

The PCAN-USB and its corresponding API provided us just with the incom-
ing message as a whole. It was not possible to read the incoming signals bit
per bit. This limitation made on the fly manipulations of incoming messages
impossible.

To overcome this issue it would be necessary to program a CAN controller
ourself or respectively to use another one that is capable of carrying out
this task like for instance a Field Programmable Gate Array (FPGA) based
solution.

4.8.3 Proprietary Higher Layer Protocols

Although proprietary higher layer protocols are still prevalent in the au-
tomobile industry, we decided on not implementing any of these. This
decision was made as we did not want to focus on just one or a few manu-
facturers. However, we created the application in a way that it can handle
most requirements of such protocols as we will demonstrate in Chapter 5.
Furthermore due to the design of the CAN-CT future extensions can easily
be integrated into the existing application.

Besides these proprietary higher layer protocols there exist standards espe-
cially with regard to diagnostic protocols as well. These protocols were not
implemented so far and are subject to future work.

55

4 CAN Communication Tester (CAN-CT)

4.9 Conclusion

With the implementation of the CAN-CT we were able to cover almost all
goals set in Section 1.3.1.

We were able to implement a tool that can be used to efficiently test vehicular
ECUs against some security (and potentially safety) vulnerabilities. The
correct implementation of CAN networking including safety measures like
sequence numbers, application layer checksums, time outs, plausibility
checks etc. can be examined with the CAN-CT.

All these mechanisms can be tested by carrying out attacks like invalidating,
replaying, or injecting messages to the CAN bus. While the last two points
can fully be achieved with the implemented replay and spoofing attacks,
invalidating a message is just partly possible. We can invalidate messages
on the bus, but by causing a collision. A manipulation of the transmitted
frame on the fly is not possible with the CAN-CT.

Because we use the PCAN-USB adapter for our attacks we did not have to
implement the CAN controller ourself, but it limited our possibilities. We
had to find workarounds to overcome the delay caused by the PCAN-USB,
we were not able to manipulate messages on the fly, and furthermore all
our attacks had to conform to the CAN protocol. This means we could not
send random signals or invalid frames on the bus.

These limitations made us face challenges, but for most issues we were able
to find a solution. We were still fully able to prove the CAN-CT working as
required and achieved almost all goals for this thesis, as we will demonstrate
in the following chapter.

56

5 Results

This chapter states the results of a practical application of the CAN Com-
munication Tester (CAN-CT) explained in Chapter 4. To fully examine the
functionality of the CAN-CT we validated it in three different test setups.

The first setup was a laboratory test, in which we installed a Controller Area
Network (CAN) bus and simulated traffic according to the test cases. The
attacks described in Section 4.5 were verified by oscilloscope. The objective
of this experiment was to test all implemented attacks in detail. We were
able to show the functioning of the CAN-CT.

In the second and third test scenario we made use of different Hardware
in the Loop Systems (HiLs). We showed that the CAN-CT was capable of
properly spoofing messages on an actual vehicular CAN bus and hence
bringing the system under test (SUT) in a manipulated state. Furthermore
we were able to highlight weaknesses in the implementation of mechanisms
to secure the communication of the attacked electronic control unit (ECU)
on the CAN bus.

5.1 Overview of Test Systems

To verify the general functioning of the CAN-CT and to prove its applica-
bility we examined it in multiple setups. We carried out the first task in a
laboratory setup.

57

5 Results

For the laboratory setup we created our own network based on CAN
consisting of three PCAN-USB adapters. All those adapters were controlled
by the CAN-CT. The CAN-CT as a network simulator on the one side
generated traffic, which simulated actual ECU communication, while on the
other side it attacked one of these CAN controllers. With this experiment
we verified that all implemented attacks work properly. A more detailed
insight will be provided in Section 5.2.

After showing the general functioning of the CAN-CT we proved the ap-
plicability and importance of such a tool for actual vehicular ECUs and
communication systems. For this purpose we decided to make use of HiLs
(see Section 2.1.2).

We used two different HiLs to verify the CAN-CT. AVL LIST GmbH1

provided us with both HiLs and offered great support for our tests. The first
HiL was a heavy duty vehicle HiL while the other one was a passenger car
HiL. Each HiL consisted of at least one real hardware ECU (see Figure 5.1).
The detailed architectures of those systems are described in Section 5.3.1
and Section 5.4.1. All details regarding make and model of these vehicles
and manufacturers are confidential. However, all used ECUs are state of the
art.

To validate the CAN-CT we applied it to real life ECUs, like turbocharger
and engine control units, to demonstrate that it can find weaknesses in
the implemented communication techniques. We chose the tested ECUs to
efficiently support the proof of concept of the CAN-CT. The targeted ECUs
have interesting characteristics like for instance, possibilities to observe the
success of an attack by monitoring certain CAN messages (see Section 5.3) or
additional safety/security mechanisms (see Section 5.4). We explicitly want
to mention that to the best of our knowledge these targets do not consist of
any fundamental differences to any other vehicular control units.

Furthermore all measurements were carried out at a bit rate of 500 kbit/s -
the standard bit rate for most vehicle CAN buses. This implies that one bit
takes 0.002 ms (2 µs) on the bus.

1see https://www.avl.com/

58

https://www.avl.com/

5 Results

(a)Photo of the heavy duty ve-
hicle Hardware in the Loop
System setup

(b)Connecting the CAN-CT via
the PCAN-USB adapter

Figure 5.1: Pictures of the heavy duty vehicle Hardware in the Loop System setup

59

5 Results

5.2 Laboratory Experiments

The goal of the laboratory experiments was to test the proper functioning of
the CAN-CT. Thus, we aimed to answer the following questions:

• Can we analyze and learn from the traffic on the bus?
• Do all attack templates, options and parameter settings work as ex-

pected?
• Can we use the CAN-CT to cause an ECU under attack to enter the

bus off state?
• Can we suppress all/part of the communication on the bus?
• Does the CAN-CT’s attack logging functionality comply with the

physical signals on the bus?

To answer these questions we examined the following attacks in detail:

• event-based replay/spoofing attack,
• time-based replay/spoofing attack,
• bus off attack, and
• Denial of Service attack.

Furthermore we tested functionalities like the monitoring, capturing and
simulation features of the CAN-CT.

Using an oscilloscope we were able to check if the spoofed messages are
sent as expected. Furthermore we could validate the compliance of the log
files generated by the CAN-CT with the actual signals on the bus. The key
task was the manual inspection of the electric signals on the CAN bus. Here
we could examine the order of the arrival of the messages as well as the
time offset between the target and the attacking message(s).

60

5 Results

5.2.1 Test Setup

As stated above, for the laboratory experiments we made use of three PCAN-
USB adapters, which were described in section 4.2. We used two of those
adapters as “normal” CAN nodes to simulate actual ECUs. These nodes
can be understood as any vehicular ECUs. The third adapter served as the
attacking node. In our attack scenario (see Section 4.1.1) this node can be
seen as a compromised ECU.

We then carried out the validation of the results in multiple ways. First of
all we logged the sent and received messages with the CAN-CT. To verify
these logs we also made use of the log functionality of the PCAN-View2

application. However, as these logs were just software-based and therefore
may not fully reflect the physical signals on the bus, we used an oscilloscope
to monitor the actual events on the CAN bus. This approach provided us
with a more accurate way of validating the CAN-CT. For instance we could
see the exact number of bits between two messages or the physical signals
during a collision on the bus.

Architecture

The architecture of this setup is depicted in Figure 5.2.

As stated above, we used one PCAN-USB adapter as a compromised, mali-
cious ECU. The tasks of this attacker can be divided into three areas:

1. learning the communication on the bus,
2. carrying out attacks based on the previously gained knowledge, and
3. optionally observing the success of the attack.

We carried out all these tasks as well as the simulation of the other two
CAN nodes with the CAN-CT. Furthermore also the initial validation of
the results - the logging - was done by the CAN-CT. By connecting the
oscilloscope to the CAN bus’ high and low wires we were able to fully
monitor the events on the bus and prove the correctness of the CAN-CT.

2see http://www.peak-system.com/PCAN-View.242.0.html?&L=1

61

http://www.peak-system.com/PCAN-View.242.0.html?&L=1

5 Results

CAN

PCAN-USB

USB

Oscilloscope

P P P

Figure 5.2: Architecture of the laboratory experiments test setup

CAN Communication Characteristics

The simulated traffic on the CAN bus was generated to fit the needs of
the current test case. It did not reflect actual CAN messages captured in
a vehicle. For most test cases neither the actual message format nor the
structure of the payload was relevant. The actual payload of a message
has no impact on the success of an attack and thus, does not interfere with
the proper functioning of the CAN-CT in a real life scenario. Therefore
we used short IDs as well as a simple payload for most messages within
this setup. This decision was made to focus the attention on the essential
characteristics.

In most test cases the target and the corresponding attack frame followed
the frame structure depicted in Figure 5.3 and Figure 5.4. Both messages
used the ID 00Dh and a data length code (DLC) of eight. The data of the
target frame consisted of eight bytes with the hex value AA. The attacking
frame used all zeros as payload. The additional, inverted bits in some parts
of the frames are stuff bits. Please refer to Sections 2.3.3 and 2.3.4 for a
description of the encoding as well as of the other parts of the message.

62

5 Results

Figure 5.3: Frame structure of the targeted CAN frame used in the laboratory setup

Figure 5.4: Frame structure of the attacking CAN frame used in the laboratory setup

Detecting a Successful Attack

As described in Section 4.6 there exist a number of possible ways to ascertain
the success of an attack. To prove the correct and proper functioning of the
CAN-CT we decided on using the following means of observation:

• log files,
• attack-based detection, and
• observation via oscilloscope.

By choosing these approaches we focused on the lower layers of the network
protocol as well as on the characteristics of the particular attack. Other
means introduced in Section 4.6 were not used as all of the CAN nodes
were simulated and no actual vehicular communication took place in this
setup.

63

5 Results

Figure 5.5: Event-based replay attack observed via oscilloscope in the laboratory setup.
Both frames depicted are identical. The left frame represents the original
message, whereas the right frame is the replay attack message.

5.2.2 Event-Based Replay/Spoofing Attack

For the purpose of testing the correct functioning of the CAN-CT we cat-
egorized attacks based on their underlying functionality. As replay and
spoofing attacks just differ in their payload we do not differentiate between
them in this section. Instead our focus is on the time it takes between re-
ceiving the respective message and placing the attack on the bus. This time
offset examination allowed us to determine the performance and accuracy
of our attacks.

The mean time between the receipt of the targeted message and the place-
ment of the attack message is 1.3 ms at a sample size of 104 measured with
the oscilloscope. This correlates also to the measurements done by CAN-CT
itself. We noted an average delay of 1.1 ms at a bit rate of 500 kbit/s. A
more detailed analysis of this delay highlighted that more than 95 percent of
this delay were caused by the PCAN-USB whereas the internal processing
of the CAN-CT took just around 0.05 ms.

The calculated standard deviation of 0.337 ms of this delay was mainly
based on limitations of the used system. Due to the communication via USB
and the nondeterministic characteristics of the system’s scheduler we could
not achieve more stable results.

64

5 Results

Figure 5.5 visualizes a measurement of the replay attack with a short delay
of 0.36 ms. The first frame is the targeted frame which triggered the attack
within the CAN-CT. After the receipt of this frame (identified by its ID) the
CAN-CT copied the message content and sent it back again on the bus. The
results are two identical frames on the CAN bus.

As shown with the CAN-CT we were able to spoof or replay messages
triggered by the respective receipt. Even though the execution of the attack
took around 1.3 ms the attacks per se worked as expected.

5.2.3 Time-Based Replay/Spoofing Attack

Similar to the above attack also this test case does not distinguish between
replay and spoofing attacks. The main advantage of this kind of attack, in
contrast to the event-based attack, is that it is possible to overcome the delay
caused by the PCAN-USB.

As described in Section 4.5 this attack learns from the incoming messages
and anticipates the time of receipt of the next message. Based on this feature
it is possible to add or subtract an arbitrary time offset to this point in time.
This means, we try to send the message sooner, later or at the same time as
the original message.

To validate the correct time calculation of this feature the tests consisted of
various time offsets. We were able to show that the attack works properly.
This can be seen in Figure 5.6. The left figure depicts a time offset attack of
-0.1 ms. This allows the attacker to place the malicious message right before
the original. The right figure demonstrates the attack with a time offset of
0 ms. This means the attack will either be received just before the original
message or right after it, as shown here. Furthermore it is also possible that
this attack will cause an collision on the bus.

65

5 Results

(a)Time-based spoofing attack (left frame)
with an offset of -0.1 ms

(b)Transmission of target (left frame) and
attack message (right frame) at the
same time (time offset of 0 ms)

Figure 5.6: Overview of time-based spoofing attacks with a different offset in the laboratory
setup

The problem with these time offset attacks close to the original receipt
is, that it is quite likely that such collisions occur on the bus. Generally
the CAN protocol’s arbitration mechanism should take care of collision
avoidance. As mentioned in Section 2.3.5 arbitration just works for the
ID-part of a message. The placement of two or more messages with the
same ID but different payload data at the exact same time will result in a
collision.

Therefore, if our goal is to spoof messages and not to destroy other frames,
these collisions can hamper the success of the attack. However, as we
detected in the real world test setups (see sections 5.3.2 and 5.4.2) the ECUs
under attack accept messages until a predefined time out window is reached.
We discovered that this time out window is large enough to use a time gap
of around 1 ms between the target and our attack message to still be able to
successfully spoof messages.

In this test setup we observed that the PCAN-USB adapters are not perfectly
accurate. The expected receipt of the target message differed by up to 0.05
ms. This made it possible to use an automatic adaption of the calculated
point in time (see Section 4.5.1). As a consequence, the desired time offset
value can not be satisfied at all times.

66

5 Results

5.2.4 Bus Off Attack

The bus off attack aims to directly cause a CAN controller to fail. By
anticipating the receipt of a recurring message, the CAN-CT tries to send
its message with the same ID as the target at the exact same time. When
carried out correctly this leads to a collision on the bus.

We were able to show that the targeted CAN controller can be put into the
bus off state immediately after executing the attack. The CAN-CT antici-
pates the time of receipt of the target message, sends the attack message at
the exact same time as the target and hence causes a collision on the bus.

However, overwriting a value on the bus only works for values that are
smaller than the original value because 0 is the dominant state (see Sec-
tion 2.3.3). We found out that this problem can be circumvented by using
a different DLC which leads to an earlier collision and hence allows for
spoofing higher values as well. This means we do not have to prevail by
transmitting zeros with the payload but instead we overwrite the original
message already at the DLC. As we will show in Section 5.3.6 spoofing a
message with a different length does not lead to rejection by the ECU.

For this test we used the same frames as introduced before (see Section 5.2.1).
In Figure 5.7 these frames are depicted once again. In comparison with the
active error frame caused by the bus off attack, this figure offers an overview
of why and where the attack occurs. Here we can see that right after the
message header - when the payload starts - the collision occurred. This is
illustrated by the error frames depicted in this graphic. We can distinguish
between two separate error frames. The first is sent by the targeted CAN
controller that detects a deviation of the signals sent and read back (bit
error). The second error frame then gets sent by the other CAN nodes on
the bus, that discover more than five consecutive bits of equal value (stuff
error).

67

5 Results

Figure 5.7: Overview of CAN frames that are present during a bus off attack. The first
two frames reflect the target and the attack message. When they are sent
simultaneously, a collision occurs and an error frame will be sent. The last trace
depicts a symbolic overlay of all these frames.

Whenever such an error is detected, the affected CAN controller increases
its error counter (see also Section 2.3.6). After reaching a counter value of
128 the controller enters the error passive state. Now for every collision
the controller sends a passive error flag (six recessive bits) which do not
destroy the traffic on the bus (see Figure 5.8). Instead we just see the general
characteristics that happen during an arbitration process. Additionally
the internal error counter gets increased further. After raising the counter
above 255 it will finally enter the bus off state. The absence of message IDs
belonging to the target allows us to detect this state.

With this attack we are able to put the targeted controller into the bus-off
state within seconds. This can be interesting, for example, when we want to
occupy IDs owned by this controller to spoof messages in the future.

68

5 Results

Figure 5.8: Active and passive error frames captured during a bus off attack in the labora-
tory setup. The passive error frame starts at the exact same bit position as the
active error frame. We detect the passive error as the voltage level decreased.
This means just one ECU (the attacker) keeps sending bits in dominant state.
The target sends recessive bits to signal the error. These bits, however, are not
visible in this figure as they are overwritten by the message of the attacker
immediately.

5.2.5 Denial of Service Attack

The last kind of attack we verified within the laboratory test setup was
the Denial of Service attack. Here we examined whether we can suppress
all communication with higher IDs than the attack message. Due to the
arbitration process of the CAN protocol, only messages with a lower ID
than the one that is flooding the bus should prevail.

We examined this behavior again with the oscilloscope and the log files
created by the CAN-CT. We could determine that the CAN-CT completely
flooded the bus. Between two messages just eleven recessive bits remained
on the bus. This is the minimum between two frames defined in the
protocol (1 bit acknowledgment delimiter, 7 bit end-of-frame, 3 bit interframe
spacing).

Therefore, we were able to demonstrate the intended behavior. As it is
depicted in Figure 5.9 the attack was carried out with an attacking frame of
ID 00Dh and the payload of all zeros. The only remaining communication
on the bus were frames below this value. Here we can see a message with
the ID of 00Ah prevail in the arbitration. All other communication with a
higher ID is blocked due to our attack.

69

5 Results

Figure 5.9: Denial of Service attack with an ID of 00Dh in the laboratory setup

5.2.6 Conclusion

Summing up we demonstrated that all implemented attacks work properly
within the bounds of the PCAN-USB. We showed that although there are
limitations, like delays and inaccurate transmission times, caused by this
adapter, we can find ways to circumvent those.

As, however, the cycle time of a message depends on multiple factors like
the respective CAN controller or the bus load an exact prediction of the
target message is not always possible. Nevertheless as we showed during
the bus off attacks this precision is still accurate enough to cause collisions
on the bus. Based on this observation we think that every implemented
attack can be successfully carried out with the CAN-CT.

For a real world scenario this means that the CAN-CT offers

• multiple ways to spoof a message,

– event-based attacks,
– time-based attacks,
– bus off attacks,

• possibilities to kick an ECU off the bus and take over its IDs in further
consequence, and

• to suppress all/part of the communication on the bus.

However, not all kind of attacks are equally effective for all use cases.
Therefore based on the particular behavior we want to test and the aim we
are trying to achieve, we have to choose the most suitable attack.

70

5 Results

5.3 Heavy Duty Vehicle

To prove that the CAN-CT works properly in real world scenarios, we made
use of a HiL system. In this test setup the HiL-System simulated a heavy
duty vehicle. A HiL system combines actual hardware with simulated
components. The goal is that the tested hardware behaves exactly the same
as it would in a complete vehicle.

For our purpose this setup suits us perfectly as we have a real vehicular
bus system as well as actual ECUs to test. The main advantage here is that
these ECUs are all monitored by the HiL setup. Hence, it was possible to
read internal variables and states of the device under test (DUT).

With this setup we aimed to answer the following questions:

• Can we use the CAN-CT to test real world ECUs or are there differ-
ences to the laboratory test setup?

• Can we circumvent current communication protection mechanisms
with the CAN-CT?

• Can we use the CAN-CT to cause an actual ECU under attack to enter
the bus off state?

• Can we suppress all/part of the communication on a vehicular CAN
bus?

• Can we reveal weaknesses in the communication mechanisms of the
targeted ECU?

Thus, the goal of this setup was to verify the implemented attacks for their
real world applicability and impact. We aimed to apply the CAN-CT to
reveal weaknesses in the communication mechanisms of the targeted ECU
by executing the following attacks:

• spoofing attacks (time- and event-based),
• bus off attacks, and
• Denial of Service attacks.

By applying these attacks we monitored protection mechanisms like the
time out window, plausibility checks or the general behavior of the ECU in
certain situations (for instance during a Denial of Service (DoS) or a bus off
attack).

71

5 Results

5.3.1 Test Setup

The setup of this HiL system consisted of three separate CAN buses which
connected a dosing control unit (DCU), an engine control unit, an urea tank,
a variable geometry turbocharger system (VGS), and a controller for the
VGS (see Figure 5.11).

After a comprehensive analysis of this setup we decided to bring the VGS
into focus of our examinations. The VGS and its corresponding controller
were very promising as they offered a comfortable feedback channel for the
observation of our success.

In the following paragraphs we introduce these components in more de-
tail.

Architecture

The VGS is the turbocharger of the vehicle under test. Its main task is
to regulate the boost pressure in the combustion chamber. The amount
of pressure generated depends on internal computations within the VGS
Controller and is mainly influenced by the engine speed. It is determined by
the position of the vanes of the VGS (see Figure 5.10). The result, that is the
command of how much boost pressure should be generated (the position
of the vanes), is then transferred via CAN from the VGS Controller to the
actual VGS - an actuator that consisted of a CAN controller as well.

After an internal plausibility check of the received values, the VGS moves
its vanes to the position that is requested. The actual actuator position is
then sent back on the CAN bus in form of a feedback.

By taking advantage of this communication mechanism we can influence the
performance of the engine. Furthermore a continuously too high pressure
can cause serious damage to the VGS or even to the engine. As the VGS
is just connected via the CAN bus to its control unit, it does not know, if
the engine, or any other component, signals a dangerous state, when we
suppress or falsify those messages.

72

5 Results

(a)VGS with partially closed
vanes (normally at a low en-
gine speed). Higher boost
pressure will be generated.

(b)VGS with fully opened vanes
(normally at a high engine
speed). Lower boost pressure
will be generated.

Figure 5.10: Overview of the VGS at high and at low engine speeds3

Figure 5.11 visualizes this setup. The grayed out components were not
directly attacked during these tests as we focused on the engine CAN bus.
This bus system connects VGS, its Controller as well as, the engine control
unit. The engine control unit per se was not used for spoofing messages
but it was tested for bus off and DoS attacks. By making use of the HiL PC
and its calibration access to the ECUs we were able to monitor the internal
states of the targeted hardware devices at all times.

The AVL PUMA Open4 and the HiL system itself is needed for the simulation
of the rest of the vehicle as well as for modeling the respective environment.
The AVL PUMA Open is the global industry standard for testbed automation
and serves as the basis for virtual environments and HiL testbeds. With
these tools various driving maneuvers as well as system operations can
be simulated. For our tests these components were needed to run the
simulation.

3see http://www.autozine.org/technical_school/engine/Forced_Induction_2.

html
4see https://www.avl.com/-/avl-puma-open-automation-platform

73

http://www.autozine.org/technical_school/engine/Forced_Induction_2.html
http://www.autozine.org/technical_school/engine/Forced_Induction_2.html
https://www.avl.com/-/avl-puma-open-automation-platform

5 Results

HiL Simulator

Engine CAN

Aftertreatment CAN

DYNO Control CAN

Dosing Control
Unit

Engine Control
Unit

VGS

VGS Controller

Urea Tank

AVL PUMA
Open

HiL Host PC
Calibration Access

Calibration Access

Calibration Access

Test Automation

P

Figure 5.11: Architecture of the heavy duty vehicle HiL system setup

As depicted in Figure 5.11 we connected our tool via the PCAN-USB adapter
(bold, yellow lines). The monitoring of the test cases was then done with
the HiL PC as well as via the oscilloscope.

CAN Communication Characteristics

Our main focus was on the communication between the VGS and its con-
troller. We made use of the two messages depicted in Figure 5.12.

74

5 Results

Figure 5.12: Example communication between the VGS controller and the actuator in the
heavy duty vehicle HiL system setup. The bold, blue values represent the
target respectively the actual position of the VGS

The first message (ID: 1BDh) was sent by the VGS controller every 15 ms
and consisted of information about different states as well as the target
position of the VGS. As the states contained within the message just defined
basic characteristics which were not relevant for our tests we will not detail
these here.

The bold values shown in the figure are the ones that are of special interest
to our tests. These values specify the requested target position calculated
within the controller. The hex value 0261 corresponds to the decimal value
609 which divided by ten gives the percentage 60.9. This percentage stands
for the requested position of the VGS.

The second message (ID: 1BFh) gets sent back by the VGS actuator itself. It
contains, besides other status information, the actual position of the VGS.
Normally this should match the target position within a small tolerance. In
this example we have the hex value 0264 which represents 61.2 percent. We
can see that this value differs from the target position just by 0.3 percent.

As, however, the heavy duty vehicle does not use any safety/security
measures besides internal plausibility checks and bus load monitoring,
additional techniques like an ancillary application level cyclic redundancy
check (CRC) or alive counter are not used in this setup.

75

5 Results

Detecting a Successful Attack

We carried out the monitoring of the success of our attacks mainly via the
back channel messages of the VGS actuator. Together with the HiL PC we
were able to watch internal variables that were relevant for determining
error states or bus off conditions.

Besides these techniques an oscilloscope as well as the CAN-CT’s ability to
observe the success and create log files were used.

5.3.2 Message Spoofing

The first test case aimed to examine whether we can successfully spoof
messages on the bus. For that reason we tried to falsify the messages with
the ID 1BDh to change the target position of the VGS.

The main task in this context was finding out how the VGS actuator de-
termines whether a message is valid and should be accepted. We found
different ways to reach this goal. However, not all approaches were equally
efficient and successful.

The first option was kicking the actual controller for the VGS off the bus.
However, as we will explain in detail in Section 5.3.3 this attack did not
meet our expectations.

The second possibility was to make use of an event-based attack (see Sec-
tion 4.5.1). We triggered our attack on the detection of the target message
(1BD). As stated in Section 5.2.2 this leads to a mean delay of around 1.3
ms.

Although this strategy already yielded consistent results, as a next step,
we tried using the time-based attack mechanism of the CAN-CT as well.
Here we discovered that the actuator always accepted the last incoming
message as valid. This implied that the previously received messages will
be overwritten in the receive buffer of the targeted ECU before they are
actually used. However, as we detected that the time variance between the
actual and the supposed receipt of the original message differed significantly

76

5 Results

Figure 5.13: Time-based spoofing attacks with an offset of 1.5 ms and a target value of
zero respectively 30 percent in the heavy duty vehicle HiL system setup. The
originally sent target value was 61 percent. During our attack we successfully
blocked this value and overwrote it with our target value. At the moment we
stopped the attack the value was set back to the initial value.

(around 1.5 ms) it was not trivial timing the manipulated message right after
the original. We were always susceptible to the threat of being overwritten
by the real CAN controller or of causing a collision. Thus we found that a
time offset of 1.5 ms is the most suitable time offset value for this kind of
attack.

Figure 5.13 shows the time offset attack with this delay which sets the target
value to zero respectively to 30 percent. The fluctuations in the charts are
based on internal calculations of the VGS. We can see that the originally
sent target value of 61 percent is successfully blocked by our attack and the
actual values are set according to our attack.

In summary we can say that the time offset attack of 1.5 ms as well as
the event-based attack achieved consistent success. Therefore we were
able to prove that we can manipulate an ECU over the CAN bus with the
CAN-CT.

77

5 Results

5.3.3 Resilience Against Bus Off Attacks

As already mentioned in the previous section the bus off attack was just
partly successful. On the one hand we were able to prove that we can cause
a bus off error of the targeted ECU, but on the other hand this attack is not
suitable for message spoofing. We can kick the target off the bus - at least
for a certain amount of time - but as the tests showed the recipient of those
messages also noticed the bus error and thus, did not accept the spoofed
messages either in most cases.

This circumstance is illustrated by Figure 5.14. We tried to use the bus off
attack to, on the one hand, cause the ECU under attack to enter the bus
off state and on the other hand, to take over this message ID and set the
position of the vanes to 30 percent. In just a few points in time the VGS
actuator accepted the spoofed value that was sent along with this attack.
In most cases a bus error was detected. The VGS then ignored all other
messages with this ID and set the value to zero percent to signal an error
state.

The fact, that the VGS noticed the bus error, did not allow us to spoof
messages along with this attack; nevertheless, we were able to make the
ECU under attack unavailable for all communications. During our tests we
were able to highlight that we could turn the targeted ECU into a bus off
error state whenever we wanted just by causing collisions each time the
respective ECU tried to sent.

However, as opposed to the laboratory setup, both tested ECUs (VGS,
engine control unit) did not give in that easily. The target can be put into
the bus off state but it resets its error counter on a regular basis. The first
time it is attacked it is reseted within a few hundred milliseconds. After a
longer time executing this attack these periods increased. The longest bus
off state measured was over three seconds. The problem, however, is, that
once the target is able to place a correct message on the bus these periods
are decreased again.

78

5 Results

Figure 5.14: Bus off attack with an DLC of 5 and the target value set to 30 percent in the
heavy duty vehicle HiL system setup. The position before and after the attack
was 35 percent. During our attack the position fell to zero percent as a bus
error was detected (error state). Just at the beginning the targeted ECU was
able to prevail (between 760 s - 770 s). Then we were able to spoof our target
value for a short time (between 780 s and 810 s). After that neither we nor the
actual ECU could transmit the target value anymore. However, the target was
successfully kicked off the bus.

79

5 Results

Summing up, we were able to prove that we can turn all tested ECUs into a
bus off state as well as to cause the internal reset counter of the target to
overrun. All these attacks conform to the CAN protocol and did not need
any modification of the CAN controller. Combining the bus off attack with
a spoofing attack, however, did not work as expected. The target can be
made unavailable on the bus, but other ECUs might notice this error state
as well.

5.3.4 Behavior during Denial of Service Attacks

To test the VGS during a Denial of Service attack we chose the ID 1BEh as
the attacking message to flood the bus. The reason was that this ID lies
between the two IDs in charge of the VGS control. This way we can test if
we can suppress part of the communication while other messages can still
be transmitted.

The target position of the VGS (ID 1BDh) should still be received by the
actuator but the feedback message (ID 1BFh) is blocked on the bus. This
behavior is illustrated in Figure 5.15. Here we can see, that, when the attack
started at around 90 seconds, no more feedback messages were received (no
fluctuations anymore). Just in the middle of the attack the actuator was able
to prevail over the attack.

During the DoS attack we were able to observe no error states or failures
of the monitored devices. This implies that the ECUs continue their work
with the lastly received values. However, when all communication on the
bus is blocked we would have expected the ECU to enter a safety mode or
at least display a warning. Yet we were not able to observe any of those. In
a real world hacking attack this could cause serious threats to the driver as
no communication over this CAN bus is possible anymore. Thus each ECU
knows just what it gets from its own sensors. This, however, might not be
enough to assure safety in all situations.

80

5 Results

Figure 5.15: DoS attack with ID 1BEh in the heavy duty vehicle HiL system setup

5.3.5 Correctness of Time Out Window

Most vehicular ECUs rely on periodically incoming status messages. These
messages have a predefined cycle time that states how many time passes,
till the next message will be sent. However, a higher bus load or other
problems may cause the transmitting ECU to not exactly adhere to this
defined cycle time. For instance, during our tests we discovered, that the
hardware in this test setup fluctuated by almost 1.5 ms. This circumstance
makes it necessary for the ECUs to also accept messages further away from
the expected time of receipt. As a consequence, ECUs use a specified time
tolerance to determine the validity of a cyclic message. This tolerance is
called time out window.

To determine the impact and the consequences of the window size we
carried out a few time-based spoofing attacks with different time offset
values. The cycle time of both VGS messages is 15 ms.

81

5 Results

(a)Spoofing attack with a
time offset of -1.5 ms

(b)Spoofing attack with a
time offset of 1.5 ms

(c)Spoofing attack with a
time offset of 5 ms

Figure 5.16: Overview of different time offset values and their success on spoofing the
target position of the VGS in the heavy duty vehicle HiL system setup. The
spoofed target position was 30 percent, the original target position was 61
percent.

Figure 5.16 shows the success rate of three different time offset values. All
three aimed to set the target value of the VGS to 30 percent. The first chart
depicts a time offset attack with a value of -1.5 ms (see Figure 5.16a). This
means that the attack message is received before the original message. We
can see that almost at all points in time our attack was ignored or caused a
collision on the bus. These collisions in turn caused a target value of zero,
which indicates a bus error.

The middle chart shows the attack with a time offset of 1.5 ms. This
means our message should arrive 1.5 ms after the original message was
received. In this figure we can see that our attack was successful in almost
all instances. Just at the end of the attack a short collision happened on the
bus (value of zero at second 240). The deviation of the mean value from its
expected target value and the fluctuations depicted in the chart, are caused
by internal computations of the VGS actuator itself. This noise during the
attack suggests, that the original messages were sometimes able to prevail.
Instead of moving its vanes directly to this higher percentage, the VGS

82

5 Results

actuator might use an interpolation technique to adapt to these changes;
however, before the actually requested value could be reached, the spoofed
messages lower this value again. Thus, the mean value of 28.845 percent
suggests that we cannot guarantee an entirely accurate spoofed value at all
time (see Figure 5.16b).

The last chart of Figure 5.16 visualizes the attack with a time offset of 5.0 ms.
Here we can see that the attack was still successful, but the noise is higher
than in the previously described attack. Due to the long time offset the
actuator did not always accept the injected value and adapted its position
more frequently (see Figure 5.16c).

As a consequence we can say that the best results were achieved with a
time window of 1.5 ms. Nevertheless the targeted ECU still allowed us to
send messages even later than that. The example showed that the success
rate of the attack decreased but it was still possible to attack the target
(Figure 5.16c). Therefore the time out window seems to be larger than it has
to be. This makes it easier to spoof messages without being susceptible to
the threat of being overwritten by the real CAN controller.

5.3.6 Compliance with Expected Message Format

The next test we carried out was to validate how well the ECUs are checking
their incoming messages with regard to their frame structure. Here we
noticed that the VGS did not carefully verify the messages. Messages with a
shorter data length code (DLC) were equally accepted as messages without
any data at all. Missing values were just treated as zeros.

This behavior is demonstrated in Figure 5.17. The picture shows a spoofing
attack with different DLC values. The target value changed for each plot
due to the shorter data length. For the first plot (DLC: 5) it was set to 80
percent (hex 0320), the second with the DLC of 4 already missed the last
part of the target position. So instead of the hex value 0320 we just sent 03
which equals 76.8 percent when completed with zeros to the value 0300.
The last graphic shows the attack without any data (DLC: 0). Instead of
detecting this message as faulty it is again completed with all zeros which
led to a target position of zero percent.

83

5 Results

(a)Spoofing attack with a
data legth code of 5

(b)Spoofing attack with a
data legth code of 4

(c)Spoofing attack with a
data legth code of 0

Figure 5.17: Overview of different frame structures with regard to their data length code
and their impact on the acceptance by the targeted ECU in the heavy duty
vehicle HiL system setup

As a message without any data does not contain any information, it should
under no circumstances be complemented with zeros and treated as valid.
This implies that the VGS lacks a tight enough verification of incoming
messages. This makes it easy for attackers to spoof messages without the
need of any detailed knowledge of the underlying system.

As stated above (see Section 5.3.5), the noise, especially in Figure 5.17b, is
caused by a not perfectly successful spoofing attack. The VGS Controller
was able to place some messages in between our spoofed messages. This
caused an adaption of the VGS actuator which resulted in the noise depicted
in this chart.

84

5 Results

(a)Spoofing attack which increased the
target position to 100 percent

(b)Spoofing attack which increased the
target position to 102 percent

Figure 5.18: Reaction of the observed ECU when confronted with illegal values in the heavy
duty vehicle HiL system setup

5.3.7 Plausibility Checks for Illegal Values

Another important test was to see how the observed ECU reacts when illegal
values are sent with the attack.

We sent messages to the ECU with a target value of more than 100 percent
(see Figure 5.18b). The left plot (Figure 5.18a) shows the spoofing of 100
percent whereas the right graph shows the error handling of the ECU. At
the moment when the target value exceeded 100 percent the ECU ignored
the message and accepted the original messages as valid again.

As we already demonstrated with the tests in the previous sections, the
VGS did not make any checks whether a rapid change from 60 percent
to 0 percent is plausible or if extreme positions like 0 or 100 percent are
valid. Thus, we can say that the VGS might lack plausibility checks for the
positioning of the vanes.

85

5 Results

5.3.8 Conclusion

We were able to prove that every functionality of the CAN-CT worked
properly also in a HiL setup. Furthermore, we highlighted the impor-
tance for such a tool by pointing out weaknesses of the observed ECU’s
communication mechanisms.

By using the CAN-CT’s functionality to spoof messages we were able to
demonstrate on the one hand the simplicity of manipulating a vehicular
control unit while on the other hand we could reveal serious shortcomings
regarding the plausibility checks of incoming messages.

Although, we observed a big deviation between the supposed and the actual
receipt of the original message, the time out window of the tested ECU
seemed to be too large. Even after a time offset of 5 ms our message was
accepted by the VGS. Furthermore, the expected frame structure of the
messages was not checked at all.

All the weaknesses we revealed with the CAN-CT ease potential hacking
attacks as no knowledge of the underlying system is needed. As the common
security principle for normal CAN communication in a vehicle is still best
described by the security through obscurity approach, these flaws even
weaken this protection mechanism and offer susceptibilities for a number of
attacks.

5.4 Passenger Car

In the last two test setups we were already able to on the one hand prove
the CAN-CT working properly and on the other hand highlighting its
importance for securing the CAN communication by pointing out serious
lacks of the implemented safety/security measures.

However, the heavy duty vehicle did not use all possible techniques to
protect CAN controllers from malicious communication. For that reason
we decided to also test a vehicle that implemented ancillary checks like
additional cyclic redundancy checks or alive counters.

86

5 Results

5.4.1 Test Setup

The underlying vehicle for this HiL setup was a modern passenger car.
It differed from the heavy duty vehicle as it made use of the following
techniques:

• integration of an additional application layer CRC to protect the message
payload,

• use of an alive counter, which serves as a sequence number to assure
the correct receipt of a series of messages, and

• more sophisticated plausibility checks.

Based on these ancillary protection mechanisms we aimed to answer the
following questions:

• Can these protection mechanisms hamper our attacks?
• Can the CAN-CT be used to reveal implementation flaws in these

techniques?
• Are all previously introduced attacks also working for this test setup?

As a consequence, our goal was to verify whether these protection measures
were implemented correctly by making use of the CAN-CT. In detail we
used the following attacks to test for unexpected behavior of the targeted
ECU:

• time-based spoofing attacks,
• event-based replay attacks, and
• bus off attacks.

With these attacks we aimed to manipulate the vehicle speed up to 250
km/h.

We carried out DoS attacks as well. However, as the result was similar to the
DoS attack described in the previous section (see Section 5.3.4) and thus did
not reveal any new findings, we are not detailing this attack any further.

87

5 Results

Architecture

The architecture of this HiL setup was similar to the one described in
Section 5.3.1. However, as we see in Figure 5.19 it was less complex. Here
we were using just one CAN bus (engine CAN) that connected the engine
control unit to the HiL system.

We again connected the CAN-CT via the PCAN-USB adapter to the engine
CAN. To observe our attacks we made use of the oscilloscope and the
HiL-PC to monitor internal states of the engine control unit.

The other components depicted in Figure 5.19 fulfilled the same tasks as
in the previous setup. The HiL Simulator as well as the AVL PUMA Open
were used to run the simulation and to model the environment. These
components assure the proper working of the DUT.

We used the engine control unit as the recipient of our attack messages.
We monitored, if we were able to manipulate the engine control unit and
if we can cause it to enter error states. The falsified messages used for
these tests are originally coming from the break control unit. This control
unit periodically provides the engine control unit, among others, with
information about the speed of each wheel and the vehicle speed in general.
As, however, this control unit is not physically attached to the CAN bus in
this setup, it is simulated by the HiL system.

CAN Communication Characteristics

As stated above, we made use of the communication between the HiL and
the engine control unit. Here we identified the two messages controlling
the vehicle’s speed, originally sent from the break control unit, as possible
targets. Due to the absence of the break control unit in this setup, both
messages are sent by the HiL simulator. These messages are then received
by the engine control unit, which in turn took these values as input to
calculate the vehicle speed.

88

5 Results

HiL Simulator

Engine CAN

DYNO Control CAN

Engine Control
Unit

AVL PUMA
Open

HiL Host PC

Calibration Access

Test Automation

P

Figure 5.19: Network architecture of the second Hardware in the Loop System setup, a
passenger car

89

5 Results

Figure 5.20: Speed related CAN messages with example values used for our attacks in the
passenger car HiL system setup. The bold blue numbers within the payload
represent the bytes that control the vehicle speed.

The first message we focused on had the ID 1A0h. This message got sent
every 20 ms from the HiL simulator and consisted of information about the
vehicle speed (bold, blue numbers in Figure 5.20), the state of the vehicle
(parking position, driving forward/backward and so on) and other speed
related information. This message used an application layer CRC as well as
an alive counter to protect the message.

The second message we used for our attacks (ID CEh) provided the ECU
with speed related information as well. This message, however, did not
contain an additional CRC or an alive counter as the transmitted data
required the full payload. This data is divided in four sections of two bytes
each. It consisted of the current wheel speed for each wheel separately.
Based on these four wheel speeds the ECU then calculated the average
speed, checked its plausibility and used it as the internal vehicle speed.

Figure 5.20 depicts this traffic in more detail. For our test cases we mainly
focused on the bold, blue data values of the messages illustrated in the
figure. These values were used by the ECU to calculate the internal vehicle
speed and to make certain actions plausible. For example the internally
calculated speed will then be used for applications like the cruise control,
the turbocharger, the gearbox, or the engine per se.

90

5 Results

Detecting a Successful Attack

The detection of a successful attack was carried out the same way as in
the previous setup (see Section 5.3.1). The oscilloscope as well as the HiL
PC’s monitoring functionality was used along with the CAN-CT’s ability to
determine success and to create log files.

5.4.2 Plausibility Checks

Our tests showed that the CAN-CT’s spoofing attacks work in this setup the
same way as described in the previous sections. Thus, in the following tests
we concentrated on the validation of the implemented measures to protect
the communication.

Our first test was the examination of the internal plausibility checks of the
ECU. By trying different time offsets for our spoofing attack, we achieved
the highest success rate with a time offset of 1.0 ms.

Rejection of Values

Our assumption was that we have to make the manipulated increase of
speed plausible for the ECU to accept it. Thus, we spoofed the speed rise
from the ground speed to the desired speed using multiple messages over
several seconds.

By comparing these results with a spoofing attack that directly set the speed
to the desired level we discovered that the ECU’s internal calculation of the
vehicle speed took care of making changed values plausible by itself. This
means a direct rise from zero to 250 km/h (respectively vice versa the fall of
this speed) within one spoofed message for example was internally spread
over a few steps to the manipulated value. The then following messages
with the same spoofed value were made plausible by the ECU without our
contribution. This behavior is depicted in Figure 5.21b. Here we can see
that the attack stopped around the time 43,25 seconds. The following speed
decrease was then spread over several steps.

91

5 Results

We further tested if we could use this behavior to overcome possible prob-
lems during our attack. We intentionally weakened our attack to allow the
original sender of the speed messages to prevail sometimes. The interesting
situation that occurred, was that the ECU actually helped us to cope with
these problems by ignoring these (original) values. This was done by the
ECU as it assumed that based on previous signals these values are poten-
tially faulty. The circumstance that our attack was ever successful is based
on the large number of manipulated messages coming after the first one that
also stated this changed value. The ECU could not ignore these messages
and had to adapt. On the contrary, occasionally received messages, stating
a contradicting value, are ignored. This fact helped us when we had to cope
with problems to take over the targeted message.

The result of this test can be seen in Figure 5.21. Figure 5.21a shows
the attack as a whole. Especially interesting is the behavior of the ECU
depicted in Figure 5.21b. Here we can see the difference between the internal
calculation of the vehicle speed and the actually received values in more
detail.

Combination of Speed Related Messages

For the attack described above we just needed to spoof the message with the
ID CEh. However, for some internal calculations or plausibility checks, for
instance the calculation of the vehicles acceleration, both messages combined
are necessary.

Hence we had to spoof both messages at the same time. The task per
se did not differ much from a simple spoofing attack. However, it needs
more sophisticated knowledge about the dependencies of the underlying
system.

If an attacker has this knowledge, combining multiple messages to one
attack is not a problem and thus does not protect from being hacked.

92

5 Results

(a)Overview of the validation of the internal vehicle speed during disturbances of
the spoofing attack

(b)Detailed plot of the validation of the internal vehicle speed during disturbances
of the spoofing attack

Figure 5.21: Plausibility checks for the internally calculated vehicle speed based on the
received wheel speeds in the passenger car HiL system setup. The attack
started at around second 6 and ended at second 43,30. The value of 250 km/h
reflects our spoofed signal; the value of 0 km/h the actual vehicle speed.
At the end of the attack (starting at around second 31) the sender was able
to continuously prevail over our attack (right plot); however, based on the
previous contradicting signals these disturbances were ignored by the receiving
ECU (left plot) .
Left: internally calculated vehicle speed based on the received wheel speeds,
Right: actually received wheel speeds over CAN

93

5 Results

5.4.3 Alive Counter

For the next part we focused our attention on the alive counter. The alive
counter is used to help the recipient determine whether there exists a
problem with the transmitter. Every message sent increases the counter by
one. The alive counter is part of the message’s payload and therefore gets
transmitted every time (see CTR part in data-byte 7 of message ID 1A0h
in Figure 5.20). Based on this mechanism the recipient then knows if all
messages where received correctly and arrived in the expected sequence.

As we used message ID CEh, which did not contain an alive counter, in
the previous test, we did not have to care about this protection mechanism
before. For that reason we tried to figure out whether this protection
measure can prevent us from spoofing messages, or if we can discover flaws
in the implementation to cause unexpected behavior of the attacked ECU.

Dependence on Previous Value

For these tests we started by capturing the current value of the alive counter.
We then calculated the next time of receipt of this message, adapted the
alive counter (increased it by one) and sent our messages with a time offset
of 1.0 ms after the next planned time of receipt. This means we complied
with the correct alive counter and overwrote the original message in the
recipients receive message buffer. This way were able to successfully spoof
messages protected by the alive counter as well.

During our tests we noticed that we do not actually have to be in sync with
the alive counter of the sender. The first message may have been rejected
by the recipient but as soon as it recognized that the next message’s alive
counter equaled the last received message’s counter increased by one it
accepted it. We were able to show that as long as the sent message depends
on the previous message we do not even need to be in sync with the last
original message.

94

5 Results

Omission of Alive Counter

After we examined the behavior of the alive counter’s checking procedure
in more detail we further wanted to analyze the reaction of the ECU when
the alive counter is completely omitted or placed in another data-byte.

However, we were not able to detect any weaknesses. If the alive counter is
placed in another byte of the payload or completely omitted, the message
will be rejected.

This makes it at least harder for attackers without any knowledge to cause
harm to the system. Nevertheless when analyzing the traffic on the bus an
alive counter can be detected quite easily as shown with the CAN-CT.

5.4.4 Additional Cyclic Redundancy Check

Many manufacturers use an application layer cyclic redundancy check (CRC)
besides the CAN protocol’s CRC to protect important message content. The
application layer CRC is part of the message and can be transmitted in any
data byte of the payload (see CRC part in data-byte 8 of message ID 1A0h
in Figure 5.20). The CRC used in this test setup is similarly calculated as
the CAN protocol’s CRC (see Section 2.3.4). However, instead of using the
CAN frame’s control fields as well for its computation, it just made use of
the ID and the remaining data bytes.

We aimed to examine if an application layer CRC can hamper our attacks
or if we can take advantage of any flaws in its implementation. We made
use of the CAN-CT’s functionality to determine which data byte contained
the CRC. As we figured out that just one of our two observed messages (ID
1A0h) contained an additional CRC, all further described tests were based
on this message.

By adding a correctly calculated CRC to our spoofed message, the ECU
accepted it without any problems. Therefore, if one knows how to calculate
the CRC, the containing data byte can be identified. Thus, this approach
does not protect from malicious messages either.

95

5 Results

Off by X

The first test we carried out to identify possible weaknesses in the imple-
mentation of the CRC, was to see, if we can detect any unexpected behavior
of the ECU when sending lower or higher CRCs than expected. At first we
calculated the CRC for our spoofed messages correctly and then increased
respectively decreased a given value from this figure.

However, every message that did not comply with the correct CRC got
rejected by the ECU. The spoofed messages were just ignored when the
CRC was not calculated properly.

Omission of CRC

The same result was observable when we omitted the CRC completely
respectively placed it in a wrong data byte. Here again our attack did not
cause any effect and was ignored.

As a consequence we can say that the CRC checks are properly implemented.
We were not able to reveal any weaknesses regarding this protection mecha-
nism.

5.4.5 Conclusion

With this test setup we were able to successfully extend our tests in a
HiL-based vehicular communication network. In addition to the already
introduced attacks in the previous section we were able to test the effect of
ancillary safety measures like additional CRC and alive counter.

We examined if these measures are representing any obstacles for our attacks.
However, we were able to automatically identify these mechanisms within
a message easily with the CAN-CT’s capturing function (see Section 4.4.2)
and furthermore could integrate it into our attacks without any problems.

96

5 Results

On the contrary we further were able to prove for the observed ECU that
we do not even have to be in sync with the last original alive counter value
when starting our attack. We just have to spoof our message with an alive
counter at the right data byte position of the message and increase it with
every message. The ECU then just checks whether the new message’s value
correlates to the previous one.

Besides the examination of these techniques we further figured out that the
plausibility checks of the observed ECU actually support our attack as they
made implausible values plausible over time. In other words, if we started
our spoofing attack without increasing it slowly over a certain period of
time, and instead setting the speed directly to a given value, the attack was
not rejected. On the contrary the ECU even adapted its internal vehicle
speed to comply with our spoofed values.

This test setup allowed us again to successfully reveal weaknesses or at least
strange behavior in the implemented protection mechanisms of the CAN
communication.

5.5 Interpretation of Results

Due to the HiL setups it was possible to test the CAN-CT in a scenario that
is very similar to a real vehicle. The only difference is that there might be
less traffic on the bus due to simulated ECUs. Most HiL setups implement
only those messages that are necessary for their tasks. This, however, should
not interfere with our tests. Messages of these simulated ECUs are just
not implemented if and only if their absence does not impair the actual
hardware ECU’s working. Furthermore to the best of our knowledge the
reduced bus load does not make any differences either. As long as the bus
is not working to capacity no divergences should be present. Although, it
might be possible, that a message cannot always adhere to its cycle time,
as we demonstrated, the CAN-CT is capable to dynamically adapt to those
delays in the time of receipt.

97

5 Results

Besides this a HiL offers a complete setup of actual vehicle ECUs commu-
nicating with each other the same way as they do in a real vehicle. The
monitoring functionality of this setup further gave us a detailed insight how
and when messages are accepted from the CAN bus.

5.5.1 Lack of “Real” Security Approaches in CAN
Communication

Even though we tested three separate ECUs, just one implemented slightly
more sophisticated protection mechanisms for the CAN communication.
These included an additional application layer CRC, more sophisticated
plausibility checks and an alive counter to determine a message’s validity.
These measures are not an obstacle for an attacker. One must have a more
profound knowledge about the system but it is still not enough to hamper
hacking attacks in general.

The underlying problem here is that, in contrast to some diagnostic pro-
tocols, there is no protection of the normal CAN communications with
security mechanisms like encryption, authentication or attack detection
techniques (see Sections 2.3.8 and 3.2).

Nevertheless, as stated in Section 4.7 the CAN-CT was developed consider-
ing possible extensions for future security mechanisms. Due to the current
lack of more sophisticated security approaches in modern vehicles we were
not able to take these techniques already into account, but prepared for
future adaptations.

5.5.2 Universal Validity

In our test setups we mainly focused on one (passenger car HiL system) or
two (heavy duty vehicle HiL system) ECUs. To the best of our knowledge
there do not exist fundamental differences to any other vehicular control
units. These ECUs were chosen based on their special characteristics and
interesting applications. Furthermore we were able to demonstrate that our
tests were applicable for two different vehicle types as well.

98

5 Results

5.6 Conclusion

The aim of this chapter was the practical validation of the developed tool -
the CAN Communication Tester - detailed in Chapter 4. We were able to
validate the CAN-CT in a laboratory setup as well as in real world scenarios.
Furthermore besides the proof of concept of being able to hack a vehicular
communication network we even could point out serious weaknesses in the
implemented protection mechanisms of the targeted ECUs.

In more detail these flaws consisted of serious lacks in the plausibility check-
ing of messages, of a too loose time out window for incoming messages,
a not strict enough alive counter checking procedure and a completely
omitted examination of the correct frame structure. Regarding the latter we
were able to show that even messages that did not consist of any data, were
still seen as valid and accepted by the targeted ECU without any problems.
This shortcoming poses a serious vulnerability to a number of attacks, as no
underlying knowledge is needed to manipulate an ECU.

Another flaw we want to highlight is that neither the heavy duty vehicle
nor the passenger car made any checks whether the received values are
plausible or not. Especially the latter even supported our attacks as it made
implausible values plausible by itself. As we showed in Section 5.4.2 this
fact can help for instance when we have to face problems in prevailing over
the original ECU.

In addition to revealing these weaknesses we were able to show that every
attack described in Section 4.5 was carried out successfully. We were able
to kick a targeted ECU off the bus and even causing the internal reset
counter to overrun. We proved how to spoof messages even when they were
protected by an application layer CRC and alive counter and further we
suppressed the whole or specific parts of the CAN communication with our
DoS attacks.

99

5 Results

Nevertheless not all implemented attacks are suitable for every purpose
the same way. This may be caused by the characteristics of the particular
attack per se, by limitations of the PCAN-USB, or by a different behavior of
the attacked real world ECUs to the simulated CAN nodes. Especially the
latter showed us that other than our expectations the ECU would not give
in, even when consequently kicked off the bus.

However, all things considered we can say that we were able to successfully
prove every aspect of the CAN-CT. In fact by revealing different weaknesses
in the communication techniques of state of the art ECUs we were able to
highlight the urgent need for such an application to test against malicious
behavior.

100

6 Outlook and Conclusion

Modern cars consist of up to 100 electronic control units (ECUs) com-
municating over various vehicular networks (Charette, 2009). With the
interconnection with their environment vehicles introduced advances re-
garding safety and entertainment. However, these features opened up a
large number of new attack surfaces. The prevalent security by isolation
approach is broken and the internal communication systems are no closed
networks anymore (Koscher, 2014).

Even though manufacturers use strong security measures to protect those
interfaces from hackers, there is no 100 percent secure system. This fact was
demonstrated by many researchers, who were able to exploit almost every
interface of a car with its outside world (Checkoway et al., 2011; Valasek
and Miller, 2015). This circumstance makes it necessary that besides the
protection of those interfaces also the communication on internal vehicular
networks has to be secured. This is especially true for the Controller
Area Network (CAN) bus, as it connects the most critical components in a
vehicle.

The inherent problem, however, is, that the CAN protocol per se does not
define any standards regarding security. Although researchers proposed
various means to protect those networks (see Section 3.2), so far there is
no commonly realized mechanism. Currently, most vehicles use safety
mechanisms like application layer CRCs, alive counter, time out windows
and internal plausibility checks to protect their communication. These
means, combined with the effort to keep message IDs and data encoding
confidential, hamper attacks, but do not provide sufficient protection.

101

6 Outlook and Conclusion

As car hacking becomes a serious threat, it is getting increasingly important
to ensure a correct and secure behavior of every single ECU. Protection
mechanisms are just as good as their implementation. To test if an ECU is
vulnerable to an attack, it is necessary to attack it the same way as a hacker
would; while simultaneously tracking whether undesired or unspecified
behavior was detected.

Although we are aware that no actual security measures are implemented for
normal communication on vehicular CAN buses so far, it is still important to
assure the proper working of currently implemented protection techniques.
Therefore, with the CAN Communication Tester (CAN-CT) we implemented
an application that allows for detecting weaknesses in those protection
techniques by penetrating the system. We are using CAN attacks as the
basis for our systematic tests to efficiently detect possible vulnerabilities of
the CAN communication.

With the CAN-CT we developed an application that learns from the traffic
on the network and automatically detects possible protection mechanisms.
This knowledge is then used as the basis for further attacks to inject, replay,
spoof and invalidate CAN messages.

By making use of the Hardware in the Loop Systems (HiLs) we were able
to test the impact and applicability of the CAN-CT in close to real world
scenarios. Here we revealed various weaknesses and strange behaviors of
the ECUs under test. For instance these flaws encompassed serious lacks
in the plausibility checking of messages, a too loose time out window for
incoming messages, a not strict enough alive counter checking procedure
and a completely omitted examination of the correct frame structure.

Besides the attack types to invalidate, replay and inject messages set out
as objectives for this thesis we further implemented attacks to suppress all
communication on the bus (Denial of Service (DoS)) as well as a method
to specifically kick ECUs off the bus. However, we were not able to realize
attacks to manipulate transmitted messages on the fly. These attacks would
have needed special hardware that would be able to dismiss rules of the
CAN protocol.

102

6 Outlook and Conclusion

As we made use of a third party USB to CAN adapter (PCAN-USB) all
our actions had to conform to the CAN protocol. This limitation as well
as a high delay caused by the hardware hampered the development of the
CAN-CT. The latter, however, we were able to circumvent by implementing
time-triggered attacks. These attacks anticipate the next time of receipt of a
target message and react accordingly.

Due to the large number of different higher layer protocols we decided to
use a more generic approach in the CAN-CT. We did not implement any
higher layer protocol so far. Yet based on its flexible design it is possible to
define attacks in a way to meet most requirements of higher layer protocols.
The design of the CAN-CT further allows to extend it to support future
functions and attacks.

However, in this version of the CAN-CT all our attacks mostly follow a
unidirectional approach. We can define specific replies to certain messages
but we do not cover the full complexity needed for more sophisticated
interactions used in some higher layer protocols (for instance diagnostic
protocols). Adding a higher layer protocol to the CAN-CT can be done
by implementing the IAttack interface (see Section 4.3). All attacks that
implement this interface can easily be integrated into the CAN-CT. Another
option is making use of the C# scripting engine of the CAN-CT to imple-
ment higher layer protocol attacks directly in the CAN-CT. This approach,
however, allows just for temporary attacks and might be too limited for
complex tasks.

The implementation of more sophisticated interactions between ECUs as
well as the support for diagnostic protocols would be subject for future
work. By supporting those protocols it would be possible to examine the
correct protection mechanisms for certain commands like re-flashing an
ECU. Another interesting complement to the CAN-CT would be the use
of a specifically designed hardware to connect to the CAN bus. By not
conforming to the CAN protocol many more attacks are possible.

Summing up, we demonstrated that we successfully reached almost all of
the goals for this thesis outlined in Section 1.3.1. In the following we listed
each goal with additional information to which extend we were able to
accomplish it:

103

6 Outlook and Conclusion

• Testing the correct implementation of CAN networking
including current protection mechanisms �

• Supporting for attacks that
- invalidate, �
- manipulate (manipulation of target via spoofing, not

manipulation of original message on the fly), :
- replay, and �
- inject CAN messages. �

• Supporting various higher layer protocols for analysis and
attacks (generic design to be protocol independent) :

• Testing the implementation against an unknown ECU in a real
world scenario �

• Implementing the prototype as a learning system by analyzing
the traffic on the CAN bus directly.

- We determine important message IDs and their respective
purpose in the CAN communication (the purpose of the
message cannot be determined with the CAN-CT, but all
protection mechanisms are identified) :

- and use them as the input for further attacks. �

With the CAN-CT we implemented an application that is capable of at-
tacking ECUs the same way a hacker would do. This allows us to test the
correct implementation of protection mechanisms on the one hand, while
on the other hand future attack detection techniques can be examined this
way as well. With the use of the HiLs we were able to prove the CAN-CT
working properly also in a real-world scenario. We revealed many vulnera-
bilities in the CAN communication and thus showed its applicability and
impact for current automotive systems. For that reason we want to highlight
once again the importance of a security testing framework to complement
existing safety and functional testing environments.

104

Bibliography

Armengaud, Eric, Andreas Steininger, and Martin Horauer (2008). “Towards
a systematic test for embedded automotive communication systems.” In:
IEEE Transactions on Industrial Informatics 4.3, pp. 146–155. issn: 15513203.
doi: 10.1109/TII.2008.2002704 (cit. on p. 31).

Bayer, Stephanie, Thomas Enderle, Dennis-Kengo Oka, and Marko Wolf
(2014). “Security Crash Test - Practical Security Evaluations of Automo-
tive Onboard IT Components.” In: Automotive - Safety and Security 2014
(2015), Sicherheit und Zuverlässigkeit für automobile Informationstechnik,
Tagung, 21.-22.04.2015, Stuttgart, Germany, pp. 125–139 (cit. on pp. 31,
32).

BBC News (2010). Hack attacks mounted on car control systems - BBC News. url:
http://www.bbc.com/news/10119492 (visited on 04/30/2015) (cit. on
pp. 2, 23).

Bittl, Sebastian (2014). “Attack potential and efficient security enhancement
of automotive bus networks using short MACs with rapid key change.”
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 8435 LNCS,
pp. 113–125. issn: 16113349. doi: 10.1007/978-3-319-06644-8_11
(cit. on p. 30).

Bosch (1991). CAN Specification Version 2.0 (cit. on pp. 13, 15–18).
Cassettari, Riccardo, Luca Fanucci, and Giorgio Boccini (2014). “A new hard-

ware implementation of the advanced encryption standard algorithm for
automotive applications.” In: 2014 10th Conference on Ph.D. Research in
Microelectronics and Electronics (PRIME), pp. 1–4. isbn: 978-1-4799-4994-6.
doi: 10.1109/PRIME.2014.6872672 (cit. on p. 30).

Charette, Robert N. (2009). This car runs on code. url: http://spectrum.
ieee.org/transportation/systems/this-car-runs-on-code (visited
on 04/30/2015) (cit. on pp. 1, 7, 101).

105

http://dx.doi.org/10.1109/TII.2008.2002704
http://www.bbc.com/news/10119492
http://dx.doi.org/10.1007/978-3-319-06644-8_11
http://dx.doi.org/10.1109/PRIME.2014.6872672
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Bibliography

Checkoway, Stephen, Damon McCoy, Brian Kantor, Danny Anderson, Ho-
vav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno (2011). “Comprehensive Experimental
Analyses of Automotive Attack Surfaces.” In: 20th USENIX Security
Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings (cit. on
pp. 2, 23, 24, 29, 101).

Di Natale, Marco, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal (2012).
Understanding and Using the Controller Area Network Communication Proto-
col: Theory and Practice. Springer-Verlag New York. isbn: 978-1461403135.
doi: 10.1007/978-1-4614-0314-2 (cit. on pp. 13–15).

Evenchick, Eric (2015). An Introduction to the CANard Toolkit (cit. on p. 28).
Groza, Bogdan and Pal-stefan Murvay (2012). “Broadcast Authentication in

a Low Speed Controller Area Network.” In: E-Business and Telecommuni-
cations, pp. 330–344. isbn: 978-3-642-35755-8. doi: 10.1007/978-3-642-
35755-8_23 (cit. on p. 30).

Groza, Bogdan and Stefan Murvay (2013). “Efficient protocols for secure
broadcast in controller area networks.” In: IEEE Transactions on Industrial
Informatics 9.4, pp. 2034–2042. issn: 15513203. doi: 10.1109/TII.2013.
2239301 (cit. on p. 30).

Groza, Bogdan, Stefan Murvay, Anthony Van Herrewege, and Ingrid Ver-
bauwhede (2012). “LiBrA-CAN: A lightweight broadcast authentication
protocol for controller area networks.” In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 7712 LNCS, pp. 185–200. issn: 03029743. doi:
10.1007/978-3-642-35404-5_15 (cit. on p. 30).

Happel, Armin (2014). “Secure communication for CAN FD.” In: CAN
Newsletter 4/2014, pp. 1–3 (cit. on p. 11).

Hoppe, Tobias, Stefan Kiltz, and Jana Dittmann (2011). “Security threats
to automotive CAN networks - Practical examples and selected short-
term countermeasures.” In: Rel. Eng. & Sys. Safety 96.1, pp. 11–25. doi:
10.1016/j.ress.2010.06.026 (cit. on pp. 2, 28, 30).

Jenik, Aviram (2015). “Increasing resilience by finding unknown vulnerabili-
ties.” In: iCC 2015 Proceedings - 15th international CAN Conference, Vienna,
Austria, October 27-28, 2015, pp. 06-1–06-5 (cit. on p. 32).

106

http://dx.doi.org/10.1007/978-1-4614-0314-2
http://dx.doi.org/10.1007/978-3-642-35755-8_23
http://dx.doi.org/10.1007/978-3-642-35755-8_23
http://dx.doi.org/10.1109/TII.2013.2239301
http://dx.doi.org/10.1109/TII.2013.2239301
http://dx.doi.org/10.1007/978-3-642-35404-5_15
http://dx.doi.org/10.1016/j.ress.2010.06.026

Bibliography

Johansson, Karl Henrik, Martin Törngren, and Lars Nielsen (2005). “Vehicle
Applications of Controller Area Network.” In: Handbook of Networked and
Embedded Control Systems. Vol. VI, pp. 741–765. doi: 10.1007/0-8176-
4404-0_32 (cit. on pp. 18–21).

Kammerer, Roland, Bernhard Frömel, and Armin Wasicek (2012). “Enhanc-
ing security in CAN systems using a star coupling router.” In: 7th IEEE
International Symposium on Industrial Embedded Systems, SIES 2012 - Con-
ference Proceedings. Karlsruhe: IEEE, pp. 237–246. isbn: 9781467326841.
doi: 10.1109/SIES.2012.6356590 (cit. on p. 30).

Knapp, Eric D. and Joel Thomas Langill (2015). “Hacking Industrial Control
Systems.” In: pp. 171–207. doi: 10.1016/B978-0-12-420114-9.00007-1
(cit. on pp. 25, 26).

Koopman, Philip and Christopher Szilagyi (2013). “Integrity in embedded
control networks.” In: IEEE Security and Privacy 11.3, pp. 61–63. issn:
1540-7993. doi: 10.1109/MSP.2013.61 (cit. on p. 25).

Koscher, Karl (2014). “Securing Embedded Systems: Analyses of Modern
Automotive Systems and Enabling Near-Real Time Dynamic Analy-
sis.” PhD thesis. University of Washington. url: https://digital.
lib.washington.edu/researchworks/bitstream/handle/1773/26024/

Koscher%5C_washington%5C_0250E%5C_13805.pdf?sequence=1 (cit. on
pp. 7, 22, 30, 101).

Koscher, Karl, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-
son, Hovav Shacham, and Stefan Savage (2010). “Experimental Security
Analysis of a Modern Automobile.” In: 31st IEEE Symposium on Security
and Privacy, S and P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA, pp. 447–462. doi: 10.1109/SP.2010.34 (cit. on pp. 2, 22, 25, 27,
28).

Kvaser (2012). CAN Protocol Tutorial (cit. on pp. 20, 21).
Larson, Ulf E. and Dennis K. Nilsson (2008). “Securing Vehicles Against

Cyber Attacks.” In: Proceedings of the 4th Annual Workshop on Cyber
Security and Information Intelligence Research: Developing Strategies to Meet
the Cyber Security and Information Intelligence Challenges Ahead. CSIIRW
08. Oak Ridge, Tennessee, USA: ACM, 30:1–30:3. isbn: 978-1-60558-098-2.
doi: 10.1145/1413140.1413174 (cit. on pp. 27, 30).

107

http://dx.doi.org/10.1007/0-8176-4404-0_32
http://dx.doi.org/10.1007/0-8176-4404-0_32
http://dx.doi.org/10.1109/SIES.2012.6356590
http://dx.doi.org/10.1016/B978-0-12-420114-9.00007-1
http://dx.doi.org/10.1109/MSP.2013.61
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/26024/Koscher%5C_washington%5C_0250E%5C_13805.pdf?sequence=1
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/26024/Koscher%5C_washington%5C_0250E%5C_13805.pdf?sequence=1
https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/26024/Koscher%5C_washington%5C_0250E%5C_13805.pdf?sequence=1
http://dx.doi.org/10.1109/SP.2010.34
http://dx.doi.org/10.1145/1413140.1413174

Bibliography

Lawrenz, Wolfhard (2013). CAN System Engineering. Springer-Verlag London.
isbn: 978-1-4471-5612-3. doi: 10.1007/978-1-4471-5613-0 (cit. on
pp. 12, 15, 19, 22).

Leyden, John (2010). Boffins warn on car computer security risk - The Register.
url: http://www.theregister.co.uk/2010/05/14/car%5C_security%
5C_risks/ (visited on 12/01/2015) (cit. on pp. 2, 23).

Lin, Chung Wei, Qi Zhu, Calvin Phung, and Alberto Sangiovanni-Vincentelli
(2013). “Security-aware mapping for CAN-based real-time distributed
automotive systems.” In: IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD, pp. 115–121. issn: 10923152.
doi: 10.1109/ICCAD.2013.6691106 (cit. on p. 30).

Lin, Chung-Wei and Alberto Sangiovanni-Vincentelli (2012). “Cyber-Security
for the Controller Area Network (CAN) Communication Protocol.” In:
2012 International Conference on Cyber Security SocialInformatics, pp. 1–7.
doi: 10.1109/CyberSecurity.2012.7 (cit. on pp. 25, 30).

Marinescu, Raluca, Mehrdad Saadatmand, Alessio Bucaioni, Cristina Sece-
leanu, and Paul Pettersson (2014). “A Model-Based Testing Framework
for Automotive Embedded Systems.” English. In: 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications. IEEE,
pp. 38–47. isbn: 978-1-4799-5795-8. doi: 10.1109/SEAA.2014.70 (cit. on
p. 31).

Mayer, Eugen (2006). Serial Bus Systems in the Automobile. Vector Informatik
GmbH, pp. 1–6 (cit. on pp. 12, 17, 19).

Miller, Charlie and Chris Valasek (2013). Adventures in Automotive Networks
and Control Units. url: http://can-newsletter.org/assets/files/
ttmedia/raw/c51e81bf7c09578c37e3f7a1f97c197b.pdf (cit. on pp. 2,
22, 28, 30, 32).

Miller, Charlie and Chris Valasek (2014). A Survey of Remote Automotive Attack
Surfaces. url: http://illmatics.com/remote%20attack%20surfaces.
pdf (cit. on p. 28).

Mischo, Stefan, Jörn Stuphorn, Rainer Constapel, Peter Häussermann,
Alexander Leonhardi, Heiko Holtkamp, Norbert Löchel, Stefan Powolny,
and Hanna Zündel (2015). “Bus systems.” In: Automotive Mechatronics,
pp. 70–143. isbn: 978-3-658-03974-5. doi: 10.1007/978-3-658-03975-
2_6 (cit. on pp. 12, 14–16).

108

http://dx.doi.org/10.1007/978-1-4471-5613-0
http://www.theregister.co.uk/2010/05/14/car%5C_security%5C_risks/
http://www.theregister.co.uk/2010/05/14/car%5C_security%5C_risks/
http://dx.doi.org/10.1109/ICCAD.2013.6691106
http://dx.doi.org/10.1109/CyberSecurity.2012.7
http://dx.doi.org/10.1109/SEAA.2014.70
http://can-newsletter.org/assets/files/ttmedia/raw/c51e81bf7c09578c37e3f7a1f97c197b.pdf
http://can-newsletter.org/assets/files/ttmedia/raw/c51e81bf7c09578c37e3f7a1f97c197b.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://dx.doi.org/10.1007/978-3-658-03975-2_6
http://dx.doi.org/10.1007/978-3-658-03975-2_6

Bibliography

Navet, Nicolas and Françoise Simonot-Lion (2013). “In-vehicle communi-
cation networks - a historical perspective and review.” In: Industrial
Communication Technology Handbook, Second Edition. Ed. by Richard Zu-
rawski. CRC Press Taylor&Francis (cit. on pp. 2, 9–12).

Nilsson, Dennis K., Phu Phung, and Ulf E. Larson (2008). “Vehicle ECU
classification based on safety-security characteristics.” In: Road Transport
Information and Control - RTIC 2008 and ITS United Kingdom Members’
Conference, IET, pp. 1–7. issn: 0537-9989 (cit. on p. 27).

Ren, Wei, Michael Steurer, and Steve Woodruff (2007). “Accuracy evaluation
in power hardware-in-the-loop (PHIL) simulation center for advanced
power systems.” In: Proceedings of the 2007 Summer Computer Simula-
tion Conference, SCSC 2007, San Diego, California, USA, July 16-19, 2007,
pp. 489–493. doi: 10.1145/1357910.1357987 (cit. on p. 8).

Rouf, Ishtiaq, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan
Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar (2010). “Security
and Privacy Vulnerabilities of In-car Wireless Networks: A Tire Pressure
Monitoring System Case Study.” In: Proceedings of the 19th USENIX
Conference on Security. USENIX Security 10. Washington, DC: USENIX
Association, pp. 21–21. isbn: 888-7-6666-5555-4 (cit. on p. 29).

Staggs, Jason (2013). How to Hack Your Mini Cooper : Reverse Engineering CAN
Messages on Passenger Automobiles (cit. on pp. 2, 22, 28).

Talebi, Sareh (2014). “A Security Evaluation and Internal Penetration Testing
Of the CAN-bus.” Master of Science Thesis. Chalmers University of
Technology (cit. on pp. 31, 32).

Tao, Zhang, Helder Antunes, and Siddhartha Aggarwal (2014). “Defend-
ing Connected Vehicles Against Malware: Challenges and a Solution
Framework.” In: IEEE Internet of Things Journal 1.1, pp. 10–21. doi:
10.1109/JIOT.2014.2302386 (cit. on pp. 23, 30).

Tuohy, Shane, Martin Glavin, Ciarán Hughes, Edward Jones, Mohan M.
Trivedi, and Liam Kilmartin (2015). “Intra-Vehicle Networks: A Review.”
In: IEEE Transactions on Intelligent Transportation Systems 16.2, pp. 534–
545. doi: 10.1109/TITS.2014.2320605 (cit. on pp. 9–11, 22).

Valasek, Chris and Charlie Miller (2014). Car Hacking : For Poories. url:
http://www.ioactive.com/pdfs/IOActive_Car_Hacking_Poories.pdf

(cit. on p. 28).

109

http://dx.doi.org/10.1145/1357910.1357987
http://dx.doi.org/10.1109/JIOT.2014.2302386
http://dx.doi.org/10.1109/TITS.2014.2320605
http://www.ioactive.com/pdfs/IOActive_Car_Hacking_Poories.pdf

Bibliography

Valasek, Chris and Charlie Miller (2015). Remote Exploitation of an Unaltered
Passenger Vehicle. url: http://www.ioactive.com/pdfs/IOActive%5C_
Remote%5C_Car%5C_Hacking.pdf (cit. on pp. 2, 22, 23, 29, 101).

Vallance, Chris (2015). Car hack uses digital-radio broadcasts to seize control
- BBC News. url: http://www.bbc.com/news/technology-33622298
(visited on 07/27/2015) (cit. on p. 29).

Wolf, Marko and Timo Gendrullis (2012). “Design, Implementation, and
evaluation of a vehicular hardware security module.” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 7259 LNCS, pp. 302–318. issn:
03029743. doi: 10.1007/978-3-642-31912-9_20 (cit. on p. 30).

Wolf, Marko, André Weimerskirch, and Christof Paar (2004). “Security in
automotive bus systems.” In: Proceedings of the Workshop on Embedded
Security in Cars (escar) 2004 (cit. on p. 27).

Wolf, Marko, André Weimerskirch, and Christof Paar (2006). “Secure In-
Vehicle Communication.” In: Embedded Security in Cars. Berlin/Heidel-
berg: Springer-Verlag, pp. 95–109. doi: 10.1007/3-540-28428-1_6
(cit. on pp. 1, 27).

110

http://www.ioactive.com/pdfs/IOActive%5C_Remote%5C_Car%5C_Hacking.pdf
http://www.ioactive.com/pdfs/IOActive%5C_Remote%5C_Car%5C_Hacking.pdf
http://www.bbc.com/news/technology-33622298
http://dx.doi.org/10.1007/978-3-642-31912-9_20
http://dx.doi.org/10.1007/3-540-28428-1_6

