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Abstract

Unlike mobile phones, modern smart phones are no longer designed for a spe-
cific, definite use case. They not only feature a fully-fledged general purpose CPU
but are also equipped with a multitudinous and permanently increasing set of
application software. It is extremely difficult to have such a big software stack
completely free of bugs. Hence, smart phones nowadays face increased suscepti-
bility to malware, comparable to notebooks and personal computers. To tackle
this issue, recent work has put a lot of effort into building a secure execution
environment where applications are protected by a completely isolated execu-
tion container. Thus, bugs in the big software stack do not directly affect the
protected application.

However, secure execution alone is not enough. Many applications on a mobile
device require secure interaction with the user. Consider a secure application
requesting user passwords and credit card information or providing secure chat.
No piece of untrusted code outside the secure application shall have access to user
input and output. Without a method for secure I/O, secure execution technology
might be of no value to the end user at all, since sensitive information cannot
be securely communicated. Therefore, secure I/O is needed.

To achieve secure I/O, one can encrypt sensitive content between I/O device
and secure application. Thus, no malicious software can sniff on user input/out-
put. However, mobile devices such as a smart phone or notebook are typically
restricted to use legacy I/O devices, which do not support encryption at all.
Therefore, secure I/O has to be assisted by the secure execution technology.

Apart from ARM TrustZone, there is currently no appropriate secure execution
technology available which addresses secure I/O with legacy I/O devices. Intel
Software Guard Extensions (SGX), for example, is a major upcoming player
in secure execution technology but completely lacks support for secure I/O.
Due to its broad dissemination in the near future, we investigate on enabling
secure I/O with Intel SGX. In a proof-of-concept, we supplement SGX with a
security microkernel, called seL4. We use seL4 to transparently and exclusively
bind an I/O device to an SGX-hardened application. This enables to do secure
I/O from within that application, even in the presence of malware. By trusting
the security kernel, we approve an increased Trusted Computing Base. This is
acceptable since seL4 is both, small and verifiable. Finally, we discuss possible
modifications to SGX hardware in order to support secure I/O by design. This
would eliminate the need for a security kernel, which would be easier to integrate
in existing software stacks.

Keywords: secure input, secure output, secure I/O, secure port I/O, mobile
device, smart phone, notebook, secure chat, Intel Software Guard Extensions,
SGX, secure execution, seL4, security microkernel, RefOS, OpenSGX



Kurzfassung

Im Gegensatz zu klassischen Mobiltelefonen sind Smartphones nicht mehr
beschränkt auf einen bestimmten Anwendungsfall. Sie stellen nicht nur gehörig
Rechenleistung zur Verfügung, sondern sind auch mit einer ständig wachsenden
Fülle an Programmen ausgestattet. Es ist extrem schwer, umfangreiche Soft-
ware frei von Programmierfehlern zu halten. Daher sind Smartphones heutzu-
tage ebenso von einer erhöhten Anfälligkeit für Schadsoftware betroffen wie
Notebooks und der Personal Computer. Um dem zu begegnen, können sichere
Ausführungsumgebungen verwendet werden, in denen Anwendungen durch einen
komplett isolierten Container geschützt werden. Damit können Sicherheitslücken
in fremder Software das geschützte Programm nicht mehr gefährden.

Sichere Ausführung ist jedoch nicht genug. Auf mobilen Endgeräten benötigen
viele Anwendungen die Möglichkeit für sichere Interaktion mit dem Benutzer,
um zum Beispiel Passwörter oder Kreditkarteninformationen abzufragen oder
sichere Kommunikation mit anderen Benutzern zu ermöglichen. Keine andere
Software darf Zugriff auf sensible Benutzerein- oder ausgabe (E/A) erlangen.
Ohne eine Möglichkeit für sichere E/A ist sichere Ausführungstechnologie ohne
großen Mehrwert für den Endbenutzer, da sensible Daten nicht sicher kommu-
niziert werden können. Daher ist sichere E/A notwendig.

Um sichere Ein- und Ausgabe zu erreichen, können sensible Daten zwis-
chen einem E/A Gerät und der Anwendung verschlüsselt übertragen werden.
Dadurch kann keine Schadsoftware diese Daten abgreifen. Jedoch sind Mobil-
geräte wie Smartphones oder Notebooks üblicherweise nur mit handelsüblichen
E/A Geräten ausgestattet, welche keine Verschlüsselung unterstützen. Daher
muss sichere E/A von sicherer Ausführungstechnologie unterstützt werden.

Abgesehen von ARM TrustZone gibt es derzeit keine Technologie für sichere
Ausführung, die sichere E/A mit handelsüblichen E/A Geräten erlaubt.
Zum Beispiel ermöglichen Intel’s Software Guard Extensions (SGX) sichere
Ausführung, lassen jedoch sichere E/A vermissen. Wegen der weiten Verbreitung
von SGX in naher Zukunft erforscht diese Arbeit die Möglichkeit von sicherer
E/A mit SGX. In einer Machbarkeitsstudie wird SGX von einem sicheren Mikro-
kernel, genannt seL4, ergänzt. Dieser Mikrokernel wird verwendet, um eine trans-
parente und exklusive Bindung zwischen E/A Gerät und einer SGX-geschützten
Anwendung herzustellen. Dadurch wird sichere E/A möglich. Da seL4 vertraut
werden muss, erhöht sich die Komplexität der Trusted Computing Base (TCB),
also die Menge aller vertrauenswürdigen Komponenten. Das ist vertretbar, da
seL4 nicht nur klein sondern auch verifizierbar ist. Zum Ende werden mögliche
Hardware-Erweiterungen für SGX diskutiert, um sichere E/A per Design zu un-
terstützen. Damit würde die Notwendigkeit für einen Mikrokernel wegfallen, was
die Integration von sicherer E/A in bestehende Software erleichtern würde.

Stichwörter: Sichere Eingabe, Sichere Ausgabe, Sichere E/A, Sichere Anschluss-
E/A, Intel Software Guard Extensions, SGX, Sichere Ausführung, seL4, Mikro-
kernel, RefOS, OpenSGX
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Chapter 1

Introduction

Information and Communications Technology (ICT) is nowadays a fixed part
of everyday life. This is underlined by the global smart phone market, which
already exceeded 1.4 billion devices in 2014 [54]. Classical ICT addresses infor-
mation processing and exchange. Its successor, the Internet of Things (IoT), also
incorporates real-world physical actors such as self-driving vehicles and medical
devices. Following technical forecasts, the evolution of the Internet of Things
will reach between 21 and 34 billion devices by 2020 [39,18]. Applications are
no longer limited to a specific device but can assemble a whole compound of
devices. Having such a broad and emergent technology, security aspects are es-
sential. GlobalPlatform, a main driver of establishing industry standards for IoT,
concludes:

”As devices and services proliferate, there are increasing privacy and
security concerns: personal privacy must be respected, vehicles must re-
main safe and not endanger the general public, and critical infrastructure
(such as water and energy systems) must not be hacked. Because IoT De-
vices and services impact others – and potentially society as a whole –
these security concerns are paramount.” [33]

In the IoT, security is typically addressed by a dedicated and restricted hardware
and software architecture. However, for general-purpose mobile devices like smart
phones and notebooks, security often fails for reasons of usability and complexity.
A majority of users prefers a rich and intuitive feature set over security. This is
not only true for consumers but also for business users. The term bring-your-
own-device summarizes the desire of employees for self determination with regard
to the mobile device. Thus, companies often establish security policies on top of
highly diverse and partially insecure devices.

In addition, the software stack of mobile devices increases rapidly. Steady raise of
computing power enables more complex and computation-intense applications,
even on battery-powered devices. Other catalysts are a rich set of sensors, en-
abling new use cases, as well as high bandwidth network interfaces with perma-
nent internet connection. Several incidents in the past showed that it is infeasible
to keep a big and dynamic software stack free of bugs and backdoors [1,24,31,8].
The gateway for malware is still wide open. Hence, the main attack surface on
mobile devices arises from insecure software.

In order to address this issue, research investigates secure code execution tech-
nology to defend against both, logical and physical attacks. A Secure Execution
Environment (SEE) aims at keeping sensitive information safe within a secure

1



Chapter 1 – Introduction 2

container. The SEE is enforced by CPU hardware. It isolates an application from
the rich and insecure software stack, ideally protecting against all kinds of mal-
ware. While secure execution is essential in protecting applications, it does not
address the orthogonal challenge of secure I/O. Secure I/O explicitly requires
sensitive information to enter or leave the SEE for interacting with its phys-
ical environment. Secure I/O is not only relevant for cyber-physical systems,
where sensor input and actuator output needs protection, but also for classi-
cal ICT with human interaction. Especially end users, frequently entering PINs
and passwords, exchanging private messages, accessing medical data or doing
electronic payment, would greatly benefit from secure I/O on mobile devices.

Secure I/O requires a secure communication between SEE and the I/O device.
For specific use cases like electronic payment, dedicated I/O devices can be used.
Secure I/O is achieved by a cryptographic channel between I/O device and ap-
plication. However, when addressing general-purpose mobile computing devices
such as smart phones and notebooks, one is limited to legacy I/O devices which
are either built-in or off-the-shelf. These typically do not provide cryptography.
Hence, secure I/O can only be provided up to the I/O port where the legacy
I/O device is connected. This secure port I/O requires hardware assistance by
the CPU and the chipset.

There is little state-of-the-art technology available which covers both, secure
execution and secure port I/O. To our knowledge, ARM TrustZone is the only
secure execution technology which allows secure I/O by design. Others like Intel
Software Guard Extensions (SGX) can protect outsourced computation in the
cloud where no local interaction between the SEE and the user is required.
However, secure I/O with legacy devices is not possible with SGX at all. This
means that SGX cannot significantly improve security of mobile applications
such as secure password stores or secure chat, which all require secure I/O.
Since SGX will have a wide dissemination among modern x86 CPUs in the near
future, its lack of secure port I/O is unpleasant.

1.1 Contributions

This thesis bridges the gap between SGX and secure I/O on general-purpose
mobile devices. We develop a secure I/O architecture, which links Intel SGX
with secure port I/O features in software.

Our architecture considers an SGX-protected application running on an insecure
rich OS. To allow the application to do secure port I/O, we operate a secure
I/O driver on top of the trusted microkernel seL4. We use the strong resource
management capabilities of seL4 to establish a transparent binding between
the driver and the I/O device as follows: First, giving the driver exclusive and
non-revocable ownership of the I/O device. Second, giving the driver tools to
transparently verify if the I/O binding is indeed exclusive and non-revocable.
Third, allowing the driver to identify the I/O device.
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We demonstrate our secure I/O architecture in a proof-of-concept. Therefore, we
modify seL4 to support transparent verification of the I/O binding. Furthermore,
we integrate SGX support in seL4.

Our concept highlights shortcomings in combining SGX’s overly strict trust
model with secure port I/O. We outline possible modifications to SGX hard-
ware to reduce total complexity of secure port I/O with SGX. We show how
SGX could even do I/O binding in hardware, without the need for a security
kernel.

The rest of this thesis is structured as follows: Chapter 2 describes related work
in the area of secure execution and secure I/O. Chapter 3 gives general back-
ground on secure information systems with a focus on how such systems are built
securely. Chapter 4 discusses our secure I/O architecture in detail. It is followed
by an introduction to Intel SGX (Chapter 5) and the seL4 kernel (Chapter 6).
In Chapter 7 we describe our proof-of-concept and give details on how we im-
plemented secure port I/O with standard SGX and seL4. Chapter 8 discusses
identified shortcomings and recommends modifications to SGX hardware to mit-
igate them. Finally, Chapter 9 summarizes our work.



Chapter 2

Related Work

This section gives an overview of research in secure execution technology. We
pay special attention to ARM TrustZone and its approach to secure I/O. Finally,
some existing proprietary and dedicated secure I/O technologies are mentioned.

2.1 Secure Execution

Secure execution technology ranges from virtualization and architectural isola-
tion to memory encryption and verification of code authenticity. In literature,
the terms secure execution, isolated execution, trusted execution, shielded ex-
ecution, etc. emphasize on different aspects and are often intermixed. In this
work, we use the term secure execution to refer to a security container, which is
isolated from other software, providing verified launch, protected code execution,
protection of secrets and means for attestation.

The Trusted Computing Group [75] initiated a lot of research on secure exe-
cution. Using their Trusted Platform Module (TPM) [73], a dedicated, passive
security co-processor, one can verify the security state of a whole software stack,
beginning at the system boot. Having issues with building such a static trust
hierarchy over a large software stack, Intel came up with its Trusted Execution
Technology (TXT) [43]. Intel TXT dynamically verifies the system state only
when needed. However, a security co-processor alone is a rather passive tool. It
does not provide strong isolation between applications. Hence, research tends
towards stronger protection mechanisms, solely built into the CPU.

Early software solutions like SP3 and Overshadow virtualize an untrusted oper-
ating system on top of a security hypervisor [79,21]. The hypervisor does mem-
ory cloaking – a context-aware page encryption. A security-critical application,
launched by the untrusted OS, is encrypted by the hypervisor as soon as the
OS illegitimately accesses it. As such, strong memory isolation between the ap-
plication and the untrusted OS is provided. Since then, a lot work was done
in moving memory cloaking to hardware and building isolation mechanisms into
the CPU [72,22]. IBM SecureBlue++ additionally addresses the issue of running
legacy software in a secure execution environment [13]. It furthermore reduces
the Trusted Computing Base (TCB) to the CPU and the protected application.
Secure execution can also be achieved by keeping all sensitive data on-chip. Us-
ing Cache-as-RAM, one can create a secure execution container, entirely running
in the CPU cache, with interrupts disabled [64,76].

4
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Recently, Intel released the Software Guard Extensions (SGX) for its x86 main-
line CPUs. SGX is a comprehensive secure execution technology, combining dif-
ferent methods for process isolation and memory encryption with TPM-like code
attestation and sealing features. Intel is shipping SGX with Skylake CPUs since
October 2015 [49], being available to the broad community. We explain SGX in
more detail later on.

The secure execution methods, discussed so far, mostly isolate an application
from an untrusted OS. Even with secure execution in place, the communication
with the underlying, potentially untrusted operating system is problematic [20].
Baumann et al. therefore shifted most OS functionality into the secure execution
environment, when experimenting with SGX [10].

ARM TrustZone. ARM is a main player in designing processing systems for
low-power mobile platforms, complementing Intel’s prevalence in servers, desk-
tops and notebooks. ARM TrustZone not only supports secure execution but
also secure I/O with legacy I/O devices.

TrustZone adds a new, orthogonal protection domain to existing CPU privilege
modes [4]. In accordance to GlobalPlatform’s specification of Trusted Execution
Environments [32], TrustZone partitions software into a secure and an insecure
world. Both worlds are isolated from each other. Each world has its own software
stack.

Figure 1: The ARM TrustZone architecture allows protecting on and off-chip
memory as well as Memory-Mapped I/O (MMIO) devices, which are bound to
the secure world.

TrustZone is complemented by a set of security modules for extending the se-
cure world concept to memory and peripherals. Therefore, a secure world bit is
tracked to peripherals via a separate wire. Figure 1 gives an overview of a typical
TrustZone architecture. A TrustZone Memory Adapter (TZMA) protects on-chip
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Figure 2: ARM TrustZone Address Space Controller distinguishes between secure
and insecure world and does identity filtering for insecure accesses.

memory, a TrustZone Protection Controller (TZPC) secures on-chip peripher-
als [5,6]. The TrustZone Address Space Controller (TZASC) protects off-chip
DRAM and memory-mapped devices [7]. ARM also provides a System MMU for
more demanding designs. The System MMU is similar to an x86 IOMMU and
can prevent DMA attacks on the main memory.

The TZMAs and the TZASCs implement memory access filtering based on a
software-defined security policy. For example, the TZASC does address filtering
for multiple non-overlapping address regions. For each address region, one can
specify, who is permitted or refused access to it. Therefore, the entity, which
issued the memory access, is identified by a bus master ID. Furthermore, an ad-
dress region can be restricted to the secure or the insecure world. The permission
checking is outlined in Figure 2. In addition, read and write access policies are
configured independently.

With that, secure-world software can bind memory and devices to secure-world
only. Also, TrustZone can route interrupts directly into the secure world, making
the implementation of secure I/O drivers feasible. This enables secure I/O as
required for mobile devices.

Despite its comprehensive security features, ARM TrustZone requires more effort
by software developers than what would be necessary, for the following reasons:

First, it does not directly provide transparent hardware encryption and integrity
protection of DRAM as others do [72,22,13,40]. Encryption could be enabled by
software [37], leveraging TrustZone’s hardware encryption accelerators.
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Second, TrustZone does not isolate on a process granularity, as done by Secure-
Blue++ and Intel SGX [13,40]. Instead, it only uses a single bit of information
to isolate the secure and the insecure world. In order to allow multiple secure
applications, one needs to run a full software stack in the secure world, including
a secure OS with scheduling and process abstraction. This certainly increases the
TCB by the secure OS. Also, when deploying apps from multiple vendors to one
device, all vendors have to trust the secure OS.

2.2 Proprietary and Dedicated Secure I/O

Secure I/O can be achieved with specialized hardware, either in form of a CPU
or chipset extension or as dedicated I/O device. Intel already supports a bunch
of secure I/O technologies in its CPUs. However, it is unclear if and how these
could actually support SGX in doing secure I/O. Hoekstra et al. mention trusted
I/O very vaguely when discussing possible applications of SGX in [38]. In their
experiment, they claim to have used Protected Audio Video Path (PAVP) to
do secure output. However, no further information is provided. Moreover, secure
input is left for future work.

Very little information is publicly available about how to actually make use
of PAVP. Ruan describes PAVP on a very high-level in [68]. PAVP basically
decrypts protected content in GPU hardware such that the host OS cannot access
it. Thus, it allows to securely output audio and video content. Key management
is assisted by Intel’s Management Engine (ME). The successor of PAVP is called
Intel Insider, for which details are also scarce [50].

On a higher level, Intel invented High-bandwidth Digital Content Protec-
tion (HDCP) [53] to secure the communication between the graphic chip and flat
screens. HDCP, in special, underwent a wealth of security breaches in the past,
leaving it a rather tame content protection mechanism [29,34,36]. Intel Insider
together with Intel Wireless Display (WiDi) extend this concept and protect
multimedia content content over WLAN [50,42]. Both, Insider and HDCP are
discussed highly controversial, not least because its main beneficiary is the film
industry [50]. One can safely conclude that existing secure output technology
from Intel mainly focuses on enforcing Digital Rights Management (DRM).

Protected Transaction Display (PTD) is a secure input technology as a part
of Intel’s Identity Protection Technology (IPT) [19,68]. The PTD makes use of
PAVP to display a protected virtual numeric block to the user. The user enters
a PIN by clicking the corresponding numerical buttons with the mouse. The
numerical buttons are randomly arranged to avoid information leakage via the
mouse coordinates. However, PTD is only designed for numerical input. When
considering more generic use cases, secure input is typically implemented in
motherboard’s input controllers, as suggested by some patents [69,25]. Another
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example is Intel’s Trusted Mobile Keyboard Controller (TMKBC), for which
almost no information is publicly available 1.

A big problem of using existing secure I/O technology from Intel is its propri-
etary, closed nature. Insider, PTD and similar incorporates proprietary firmware,
running on the Intel ME. The ME is a separate embedded processor running
within the chipset. It has highest privileges, as it runs in System Management
Mode (SMM). Hence, bugs in the ME firmware are critical to overall system
security. However, Intel does not disclose ME firmware code for transparent se-
curity analysis. Moreover, Intel lacks thorough documentation of how its I/O
technology can be accessed from the OS. Instead, Intel just provides closed-
source drivers and libraries for a limited number of OSes, if publicly available at
all. For example, the WiDi software stack is only available for Microsoft Win-
dows 7 and higher as well as for Android since 4.2.2 [42]. This makes existing
technology rather worthless for the open-source community.

If existing CPU or chipset extensions cannot be used or are insufficient, dedi-
cated I/O devices are an option. For example, dedicated secure input devices
are often used for electronic payment applications like an automated teller ma-
chine (ATM). Devices for secure PIN entry and transmission are standardized
and certified by the Payment Card Industry Security Standards Council (PCI),
which currently hosts a list of over 500 approved secure PIN devices [65].

1 TMKBC is part of the MEC5025 controller, which has been included in several dated
motherboards.



Chapter 3

Secure Information and Commu-
nication Systems

Secure Information and Communications Technology (ICT) is both complex and
versatile. This section describes secure ICT as a system of cooperating devices.

First, we give some informal but intuitive definitions used throughout this thesis.
Next, typical ICT applications are described. Among them are cloud computing,
digital rights management, remote-controlled systems and private communica-
tion. Our secure I/O architecture will stick to latter scenario, relevant for many
mobile device applications. Finally, we show how to combine and protect differ-
ent building blocks to build a secure ICT system2. Special attention is paid to
secure execution and secure I/O in defending the system against attacks from
software. This lays the foundation for our secure I/O architecture, which imple-
ments secure port I/O on mobile devices.

3.1 Definitions

In the context of ICT, the term security typically refers to the properties confi-
dentiality and integrity of sensitive information. Integrity covers both, data in-
tegrity and origin integrity. These security properties need to be fulfilled during
the whole lifetime of sensitive information, from input, transport and processing
to output. In addition, this requires execution integrity for any piece of code,
which processes sensitive information. Use cases in mobile computing typically
stick to the above properties. However, further properties like anonymity and
availability can be encountered in the more general ICT context. In the following,
we define security properties as well as other common terms used throughout
this thesis.

Data confidentiality is the main objective of most secure ICT systems. It refers
to protection of actual data from unauthorized access. For example, a password
needs to be kept secret. Also, chats, emails and business contracts often require
confidentiality.

Data integrity means that alteration of data can be detected. A financial trans-
action, for instance, needs integrity on the amount of money to be transferred.
In general, data integrity is especially important for communication protocols,

2 For a more comprehensive discussion of secure mobile communication systems, we
refer to Open Mobile Terminal Platform (OMTP) [63].

9
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signature schemes and data storage where illegal or accidental manipulation of
data shall be detected.

Origin integrity refers to the authenticity of the entity from which data origi-
nates. For example, in a private communication scenario, users want to be sure
that they are indeed talking to each other. If origin integrity is not enforced, an
attacker could impersonate users and read and manipulate the communication
data on their behalf. A subset of origin integrity is non-repudiation. This charac-
terizes the authenticity of a signer. The signer cannot deny having signed some
data. Non-repudiation is important for signing contracts and any other sort of
legally binding actions.

Execution integrity means that code is indeed executed exactly as specified by
the programmer. This is essential in order to entrust code with security-critical
tasks.

Anonymity refers to keeping sender and receiver addresses in a communica-
tion covert. Thus, anonymity is a subset of confidentiality, where the sensitive
information is the sender’s and receiver’s identity.

Availability typically means high service uptime, which can be threatened by
Denial-of-Service (DoS) attacks. In cyber-physical systems unavailability might
affect human safety. In contrast, unavailability of ICT systems typically causes
financial or reputational damage only.

Entity. Any instance which is part of the ICT system is called an entity. This
typically includes computing devices, routers and devices for input and output.
Also the end user is an entity in the system.

Secure input is the way an ICT application securely retrieves information from
the physical world, and the user in special. For instance, if the user enters a PIN
on a keyboard, this PIN shall be only accessible to the application. Secure input
is required for any input device acquiring sensitive information. Examples are
keyboard, mouse, touchscreen, microphone, camera, fingerprint reader and other
sensors.

Secure output is the way of securely transferring processed data back into
the physical world. For example, the current bank balance or some private chat
messages shall be displayed to the user in a secure way. Secure output is necessary
for any device outputting sensitive information. This can be displays, speakers
or all kinds of actors, for instance.

Secure Environment. An ideal secure environment is a closed environment,
which is tamper resistant and fully side-channel secure. No information in any
form can leave or enter it under any circumstance except through a defined
interface, see Figure 3. All entities within the secure environment are trusted.
Hence no additional security measures are needed and one can safely operate on
sensitive information.
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Figure 3: Within a secure environment, no additional protection is needed.

Typically, a secure environment protects security-critical data against different
kinds of attacks. Note that from a security perspective one can also speak of a
secure environment in the absence of an attacking surface. For example, consider
a notebook that is operated within a secure room without network connection.
The notebook might be vulnerable to different kinds of software attacks. How-
ever, since it is operated within a secure room with no network connection, these
attack vectors simply do not apply.

In information and communication technology, there exist two forms of secure
environments, a secure communication channel for secure data transport, and
a Secure Execution Environment (SEE) for secure data processing. A secure
communication channel is passive, just allowing some entity to forward data in a
secure way. In contrast, an SEE is active in the sense that it allows manipulation
of and operation on data.

Secure Execution Environment. Secure execution describes the way, a pro-
cessor securely operates on data. When processing sensitive data, one has to
prevent unauthorized inspection and alteration of this data as well as manipu-
lation of the execution flow. An environment which provides this protection, is
called Secure Execution Environment (SEE).

Secure Communication Channel. Secure communication is a key asset of
many ICT applications. Transport of sensitive information needs to be secured
against wire tapping and man-in-the-middle attacks from untrusted entities.
Therefore, a secure communication channel is required.

Attestation. In distributed ICT applications it is not enough to provide secure
execution along with secure communication. If a malicious instance could manage
to trick execution into a simulated execution environment, it could circumvent
any of its security mechanisms. To tackle this issue, attestation mechanisms need
to be in place. These allow a verifier to assess the security state of the computing
device.

Trusted Computing Base. The Trusted Computing Base (TCB) comprises
all hardware and software parts which must be trusted in order to guarantee
certain security properties. Typically, the TCB covers at least the CPU and
some secure application running on it.
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General-purpose Mobile Device. A mobile device is general-purpose if it is
not restricted to a specific use case. It typically allows installation of applications
on the discretion of the user. Thus, general-purpose mobile devices are highly
user-centric. Prominent examples are smart phones and notebooks.

3.2 Applications

To have a common notion of security in drawings, we distinguish between solid
and dashed lines. Solid lines are used for both, security because of the absence
of an attacker and security due to security measures in an insecure environment.
In contrast, dashed lines denote both an insecure environment and an insecure
communication path, as an attacker is able to infiltrate it. Figure 4 shows an
example where Alice and Bob are communicating over a secure communication
channel that protects against wiretapping, for instance.

Figure 4: Solid lines indicate secure components while dashed lines are used for
insecure components.

3.2.1 Secure Cloud Computing. Cloud computing allows to use remote
computing power for executing CPU-intensive tasks. When considering security-
critical applications, not only the communication network to the cloud provider
has to be considered insecure but also the cloud provider itself. While the commu-
nication can be easily secured using any form of secure communication channel,
there is special need for protecting remote code execution against a malicious
cloud provider. The cloud provider shall only be able to choose between securely
executing user code or refusing execution at all.

This requires a secure execution environment at the cloud provider’s infrastruc-
ture. Security of the SEE needs to be independent of the cloud provider’s software
framework. Hence, the SEE has to build its security solely on tamper-resistant
CPU hardware and/or user’s secure code. In addition, the user has to be able
to remotely attest the trustworthiness of the SEE. With that it is possible to
do cloud computing in a secure way, as demonstrated by Microsoft Haven [10].
Secure cloud computing comes without the need for secure I/O at the cloud
provider, since all communication with the user is done via a secure channel, as
shown in Figure 5.
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Figure 5: Secure cloud computing allows secure applications to be executed by
an untrusted cloud provider.

3.2.2 Digital Rights Management (DRM) aims at protecting content from
disallowed usage, copying or modification. The term DRM is also used for other
protection mechanisms such as vendor locks. However, we focus on content pro-
tection only. Users get access to protected content only via authorized media
players and output devices as shown in Figure 6. The media player receives pro-
tected content from the content provider, which can be a broadcast as well as a
local BluRay disc. This content is then presented to the user via a secure output
device.

Figure 6: Digital rights management protects content up to the secure output
device.

For DRM, the user is considered as malicious, trying to obtain an illegal copy of
protected content. Since regular users are able to consume what they purchased
legally, they eventually have access to this protected content. A malicious user
could legally buy content which he then records during playback. This discrep-
ancy between regular and malicious users poses certain limits on DRM. Thus,
the goal for DRM is to push content protection as far into the output device as
possible. Ideally, the malicious user can only reveal an analog representation of
protected content, which cannot be easily reconstructed in a lossless way.

An example of DRM is High-bandwidth Digital Content Protection (HDCP).
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3.2.3 Remote-controlled Systems are typically operated within a hostile
environment. A system operator remotely controls the system by querying re-
mote sensors and instructing remote actuators. Autonomous systems also fall
into this category. Apart from doing most of the controlling tasks on their own,
autonomous systems are also instructed by a system operator via some form of
high-level instructions.

On the operator’s side there is no special need for secure I/O since the opera-
tor has to be trusted anyway. Besides a secure communication channel to the
remote-controlled system, there is need for the remote system to run an SEE, see
Figure 7. Secure I/O is limited up to the sensors and actuators. At some point,
sensors capture physical input and actuators produce physical output. If the
physical environment is not secure, an attacker can at least mount physical at-
tacks, manipulating sensor data or actuator output. This can only be prohibited
by physical access control mechanisms, if possible at all.

Figure 7: A remote-controlled system is operated in a physically insecure envi-
ronment.

Especially for critical infrastructure like traffic control systems and industrial
control units, a system operator also wants to attest correct behavior of the
system. This is also true for any kind of monetary application such as smart
meters, for example. Hence, strong attestation methods are required.

Cloud computing can be seen as subset of a remote-controlled system, which only
provides computing power but no sensors or actuators. Also, DRM can be seen as
an inverse remote-controlled system from the viewpoint of the content provider
acting as system operator. DRM output devices have to operate remotely within
a malicious user environment. Typically, there are no remote sensors or input
devices on the user’s side. However in contrast to remote-controlled systems,
DRM and cloud computing traditionally suffer from software attacks. Conversely,
remote-controlled systems can have a decreased susceptibility to software attacks
due to a rather static firmware and the possibility for regular maintenance.
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3.2.4 Private Communication. Much societal attention is paid to private
communication, not least because of disclosures on governmental mass surveil-
lance in the past. Key goal is to enable a group of humans to communicate over
an untrusted network in a secure and privacy-preserving way, see Figure 8.

Figure 8: Private communication.

To protect communication data, a secure communication channel is established
over the untrusted network. This might involve complex authentication meth-
ods, which are not detailed here. To enhance security, users can mutually attest
the trustworthiness of their mobile devices. Since secure communication is pos-
sible with today’s cryptographic protocols, the focus shifts towards securing the
mobile communication devices. While physical attacks have to be considered for
theft and bugging, for example, the far more dangerous threat is an insecure soft-
ware stack, running on the device, that might be exploited locally or remotely.
The challenge is to combine secure I/O with an SEE such that no malware can
sniff on sensitive traffic.

The above attack model does not only support private communication such
as secure chat, audio and video calls. It can also be applied to authentication
schemes, where a secret password, PIN or TAN code is entered on an insecure
device. This is of special interest for e-government, e-payment, e-health and
similar applications.

3.2.5 Application Requirements. Summarizing the threats and security
requirements for different applications yields Table 1. We distinguish between
a local environment in the scope of the user and a remote environment. Latter
contains any devices, which interact with the user remotely. Hardware attacks
refer to physically tampering of a device. Software attacks are all kinds of attacks
which can be carried out by software, either locally or remotely.
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Table 1: Application threats and security requirements are marked with an x.
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Cloud Computing x x x x x

Remote-controlled Sys-
tem

x x x x x x

DRM x x x x x x

Private Communication x x x x x x x x

All of these application require an SEE with the ability for attestation. Likewise,
secure communication channels are part of each application scenario. Secure I/O
is needed for remote-controlled systems, DRM and private communication. How-
ever, hardware attacks on secure I/O only apply to remote-controlled systems
and DRM. Private communication requires secure I/O in the presence of soft-
ware attacks, with a strong focus on mobile devices. Latter is the main scenario
addressed by this thesis.

3.3 Building a Secure ICT System

This section describes how a secure ICT system is built from some basic build-
ing blocks. In order to understand how security can be enforced, we introduce
different dimensions of access control. Then, we give examples of concrete access
control mechanisms for each building block. Special attention is paid to securing
against software attacks.

3.3.1 Building Blocks. Secure ICT systems rely on building blocks which
provide security in an insecure environment. These cover secure input, execution
and output as well as secure communication channels, as depicted in Figure 9.
In addition, to evaluate the security state of running ICT applications, a secure
execution environment has to provide attestation methods.

To get a secure system, these building blocks are arranged to create a gapless
secure environment, spanning the whole processing chain from input to output.
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Figure 9: Hierarchy of building blocks in a secure communication system.

This is achieved by a continuous concatenation of SEEs with secure communi-
cation channels. The remaining link to the user is done by secure I/O, as shown
in Figure 10.

Figure 10: Processing chain: A secure ICT system is built by connecting SEEs
with secure communication channels and interacting with the user via secure
input and output.

3.3.2 Dimensions of Access Control. In order to enforce certain security
properties, access control mechanisms are needed. This comprises a physical and
a logical dimension. Unlike in literature, we introduce a semantic dimension to
furthermore refine the logical dimension. This distinction is useful in understand-
ing the underlying trust model. In our notion, logical access control is enforced
via a piece of hardware or software. Hence, one has to trust exactly those parts of
hardware or software to behave well. Semantic methods only rely on the strength
of cryptographic algorithms. Hence they relax this spatial restriction to specific
secure software or hardware. Semantic methods are useful if some entities in the
processing chain are entirely distrusted.

The physical dimension addresses physical attacks that exploit weaknesses in the
hardware design. Among them are fault injection and tampering with memory,
for example.
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The logical dimension covers all kinds of attacks, which exploit implementation
bugs or misconceptions of the architecture or the interfaces. Logical access con-
trol primarily deals with attacks from software. Thus, it is of particular interest
for hardening an SEE against an insecure software stack.

The semantic dimension addresses data directly, letting surmise its strength in
building secure environments. Rather than actively enforcing access restrictions,
one obfuscates sensitive information to get a ciphertext. The ciphertext might be
accessible to anyone, without breaking the confidentiality of data. Access to the
original information is only possible for those entities which have certain semantic
knowledge. Therefore, Kerckhoffs prepared the way for modern cryptography: A
strong cryptographic scheme binds access to sensitive data to a cryptographic
key [47]. Since only the encryption key needs to be protected, semantic methods
provide kind of a self-contained secure environment, which is independent of
the security of the underlying hardware and software. Hence, they can defend
against both, physical and logical attacks.

3.3.3 Secure Execution Environment. Depending on the use case, an SEE
might require protection against hardware and software attacks. The SEE can
be protected using a combination of physical, logical and semantic measures, as
described hereafter.

Physical Access Control. Depending on the level of security, physical coun-
termeasures range from mechanical barriers and fault resistance to intrusion
detection sensors and automated erase of sensitive data. A detailed list of phys-
ical defense methods is found in [77]. However, with sufficiently big effort an
attacker will be able to break any computing device based on CMOS or similar
technology. This is not least because CMOS inherently leaks information via
power side channels [55]. In the future, quantum technology could yield a new
level of side-channel resistance which, is currently unreachable [14].

Logical Access Control. In the past, a lot of effort was put into securing user
applications from each other and protecting an operating system kernel from
malicious applications. The Memory Management Unit (MMU) provides mem-
ory isolation between different applications via the concept of virtual memory.
Privilege modes or protection rings separate the OS from applications. Special
page protection flags shall inhibit damage on security breaches. Virtualization
and sandboxing introduce another layer of isolation between the virtualized app
and the host.

In contrast, recent work focuses on the opposite direction: securing a user appli-
cation against a malicious operating system. This reduces the amount of soft-
ware in the TCB. Since the OS is responsible for resource handling, one requires
stronger protection mechanisms. For example, the application’s memory needs
to be protected against manipulation by a malicious OS. Hence, new isolation
mechanisms for processes and memory need to be enforced solely by CPU hard-
ware. The CPU typically achieves this by identifying a secure application and
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tagging all of its memory in CPU caches as well as in RAM with the application’s
identity [13,40]. Thus, the CPU can deny access if the identity of the currently
running application does not match the memory tag.

Furthermore, integrity of code execution is crucial for security. If an insecure
piece of software could change code execution to jump right into an SEE, this
opens powerful attacks, completely breaking confidentiality of SEE data. The
attacker could for example choose to execute an SEE function from within a
wrong context, possibly outputting sensitive information from the SEE stack.
Return-oriented programming might enable arbitrary code execution, given that
the SEE code base is big enough [16]. Thus, executing SEE application code
needs to be restricted to defined entry points. This is typically achieved by
confining SEE launch to special CPU instructions, which adhere to those defined
entry points.

Also, if the insecure OS can dynamically map pages into the SEE, the SEE,
needs to have control over which pages shall be mapped to which location. This
can be achieved using a cooperative approach where the SEE acknowledges new
pages with a special instruction, for example [40].

Whenever an SEE can be interrupted by an external signal, additional protection
is necessary. Typically, the application traps into the kernel. If the kernel is
considered insecure, it might has access to sensitive information, stored in the
CPU registers. Hence, the register file needs to be protected by the SEE. This
can be achieved by copying the register file to encrypted SEE memory before
clearing it and giving control to the OS [13,40].

Semantic Methods. Semantic methods for secure execution evolved during the
last years. Memory cloaking prevents information leakage by transparent mem-
ory encryption. This can protect against software attacks as well as hardware
attacks [79,21,22,13,40].

Also, integrity of the secure application is decisive as soon as untrusted code is
responsible for building and maintaining a secure application process. To verify
integrity, the application’s state is typically derived as a chained hash over all
secure code and data. In literature, such a hash is called measurement [73,40].
If the measurement is correct, the secure application is in an authentic state.
This can be used for sealing data. Sealing means that data is encrypted under
a key, which is dependent on the application’s measurement. Hence, only if the
application is loaded correctly, it can decrypt sealed data again.

Furthermore, one can combine the concept of measurements with logical access
control to provide verified application launch and attestation. Verified applica-
tion launch means that the SEE verifies if secure application has been loaded
correctly before actually launching it. Therefore, the application vendor typi-
cally includes the expected measurement in the application’s binary and signs
the binary. Only if the vendor’s signature is valid and the application state
matches the expected measurement, the SEE decides to launch the application.
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Attestation is similar to verified application launch. Attestation typically allows
to verify integrity of the secure application during runtime. The SEE therefore
signs the application’s current measurement. By verifying the measurement and
the signature, a remote party can gain confidence in the integrity of the secure
application. Thus, the remote party could refuse provisioning secrets to an SEE
which has been tampered with.

Homomorphic Encryption. A completely different approach to secure execu-
tion is homomorphic encryption. In theory, secure execution does not only work
on plaintext data. Homomorphic encryption schemes operate on encrypted data.
This allows outsourcing computation to an insecure entity, without having spe-
cial hardware or software protection mechanisms in place. The insecure entity
is not able to see plaintext data since it has no access to the decryption key.
When computation is finished, the results are transferred back to a local SEE,
where they are decrypted, integrity checked and evaluated. Thus, homomorphic
encryption schemes can be used to build a secure execution environment, solely
based on cryptography.

In order to support arbitrary calculation on encrypted data, Fully Homomorphic
Encryption (FHE) is required, This comes, however, with enormous computa-
tional costs. For example, recent practical implementations of FHE easily require
several gigabytes of RAM, apart from computation times in the range of seconds
and minutes [35]. Furthermore, standard FHE only deals with data confidential-
ity but does not give any guarantee about the integrity of computation results.
There exist, however, FHE approaches which provide verifiable computation [23].

FHE is a purely semantic method for providing secure execution. However, due
to practical limitations of FHE, one needs to build secure execution using a
combination of different access control methods, as described before.

3.3.4 Interaction with Insecure Code. Whenever the TCB interacts with
an insecure entity, it has to ensure that security properties are not violated.
This is in fact just a different view of our security definition, requiring security
during the whole processing chain. Yet, it is an important principle for designing
a secure system, worth mentioning here. We briefly give some examples on the
basis of secure execution.

When an insecure OS is able to dynamically map pages into a running SEE, this
needs cooperation by the SEE. For example, the SEE verifies external changes in
its virtual memory mapping and either refuses or accepts them. Likewise, secure
application launch relies on insecure code. Hence, the SEE implements verified
application launch where it verifies if the application is in a secure state before
running it. Furthermore, when insecure code enters an SEE, this is restricted by
the SEE to secure code entry points. Also, when leaving secure execution, the
SEE protects sensitive content in the CPU register file before giving control to
insecure code.
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Thus, the SEE has to verify or restrain every action carried out by insecure code
that might threaten security of the SEE.

3.3.5 Secure Communication Channel. A physically secure communica-
tion channel is rarely practical, if not impossible for many applications. For
example, wired networks are not physically secure as soon as a malicious entity
might gain access to it. Wireless communication even increases the attack surface
since anyone being in radio range can easily tap the communication. Further-
more, in an internet setting any gateway or internet service provider involved in
the communication can do packet inspection and manipulation.

Luckily, semantic methods can be applied here. Cryptographic protocols allow to
set up a secure communication channel on top of such untrusted networks. With
end-to-end security, no other network entity needs to be trusted. There exist
various cryptographic protocols for different security requirements. In any case,
security essentially reduces to bootstrapping cryptographic keys among secure
ICT entities. A detailed classification of different key bootstrapping methods is
given in [59].

3.3.6 Secure I/O. Secure I/O addresses the interaction between I/O device
and user. However, if the user is either untrusted or within a physically inse-
cure environment, security might be violated. This is the case for DRM, where
protected content is given to a potentially malicious consumer. The same way
one cannot guarantee full security for a remote-controlled system, whose sensors
and actuators operate within a physically insecure environment. They might be
exposed to all kinds of physical attacks, manipulating physical sensor input or
actuator output directly. Hence, from the perspective of ICT systems, the scope
of secure I/O ends where data enters or leaves the physical world.

Depending on the application scenario, secure I/O is either done with dedicated
secure I/O devices or with legacy I/O devices off-the-shelf. Dedicated devices
can be specifically designed to achieve secure I/O. As already mentioned, this
is rather impractical for many mobile applications. Hence, we have to consider
legacy I/O devices, which have no special security built in. This requires security
up to the I/O port, where the legacy device is connected.

Dedicated secure I/O devices typically support cryptographic protocols in
order to establish a secure communication channel to an SEEs in the system. The
secure channel not only protects against a malicious driver stack. It also detects
tampering of the physical connection to the mobile device. Hence, having the
dedicated secure I/O device as close to the user as possible can significantly
decrease the attack surface. Furthermore, a small and dedicated design can be
protected much easier than a rich-featured general purpose computing device.

As an example, we briefly discuss card TAN generators. The bank provide its
customers a special piece of hardware, the card TAN generator, allowing them
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to do online banking in a secure way. When initiating online transactions on
an insecure notebook, the user has to authenticate the transaction. First, the
user feeds transaction details into the card TAN generator. Next, he enters a
secret PIN on the card TAN generator. Finally, the generator outputs a one-time
Transaction Authentication Number (TAN) which is then used to authenticate
the transaction.

Malware on the notebook cannot comprise secure transactions since it has no
access to the generator. Thus, shifting secure I/O from an insecure environment
(the notebook) into a dedicated secure I/O device (the card TAN generator),
significantly improves security.

Secure Port I/O and Secure MMIO. Most legacy I/O devices such as Hu-
man Interface Devices (HID) do not support cryptographic channels. Typically,
also I/O controllers are closed legacy devices, incapable of cryptography. This
completely eliminates the possibility of using semantic access control for secure
I/O. Hence, security can only be established up to the I/O port or the I/O con-
troller, respectively, where the device is connected to. This is not only true for
classical x86 I/O ports but also for Memory-Mapped I/O (MMIO) devices.

Note that there is no point in using physical access control either since hard-
ware attacks will easily succeed when directly targeting an unprotected legacy
I/O device. Thus, one can only use logical access control to achieve secure I/O
on general-purpose mobile devices. The next section shows how to build a se-
cure I/O architecture which achieves secure port I/O with logical access control
mechanisms. This essentially establishes an I/O binding between the I/O port
and the SEE.



Chapter 4

Secure I/O Architecture for General-
Purpose Mobile Devices

In this section we develop an architecture for doing secure I/O on a general-
purpose mobile device such as a smart phone or notebook. Since mobile devices
typically do not feature dedicated secure I/O devices, our architecture focuses on
secure port I/O with legacy I/O devices. We combine Intel SGX with the seL4
security kernel. SGX provides a secure execution environment for applications,
called enclave. seL4 enables the implementation of secure port I/O features.
The architecture protects against all kinds of malicious software, running on the
mobile device. This enables and enhances security of a vast amount of mobile
applications doing private communication, authentication, electronic payment,
etc.

First, we explain our secure I/O architecture. We then discuss security aspects
of the architecture. Next, we show how secure port I/O is achieved with seL4.
Finally, we address secure I/O from a user’s perspective.

4.1 Secure I/O Architecture

In our setting, a big and mostly untrusted software stack is installed on the
mobile device. The software stack contains a rich OS like Android or Linux,
including a bunch of software libraries, frameworks, drivers and applications.
This properly reflects the situation of current general-purpose mobile devices,
which are designed to fit a vast amount of use cases.

Our architecture considers a security-critical application, which wants to ex-
change private messages with a user via a legacy I/O device. The user applica-
tion might be a front end to a larger private communication network, such as
a secure chat, for example. It runs in an SEE on top of the insecure software
stack, as shown in Figure 11.

The user application wants to securely communicate with the I/O port. However,
secure port I/O is not possible over the insecure software stack due to lack of
support by SGX. Therefore, the security kernel seL4 runs below the rich OS
stack. We add a secure I/O driver directly on top of the bare-metal seL4 kernel
to implement secure port I/O. The user application talks with the I/O driver via
secure Inter-Process Communication (IPC) and the I/O driver securely mediates
private messages between the application and the I/O port.

23



Chapter 4 – Secure I/O Architecture for General-Purpose Mobile Devices 24

Figure 11: Secure I/O architecture: A user application, running on top of an an
untrusted software stack, securely communicates with a secure I/O driver. The
I/O driver does secure port I/O to a legacy I/O device for interacting with the
user.

Secure Execution. As already discussed, experience in the past showed that a
big software stack is likely to have bugs. Hence, the rich OS has to be considered
as insecure. We use the term insecure equivalently with the term untrusted. To
protect the user application and the driver from the untrusted rich OS, both are
running critical code in an SGX enclave.

Secure IPC. IPC is provided by the untrusted rich OS. Since the rich OS can
arbitrarily inspect or alter communication data between the application and the
driver, IPC has to be protected. To make IPC secure, we set up a secure commu-
nication channel. This involves mutual authentication between the application
and the I/O driver. The authentication process typically includes the exchange of
a symmetric encryption key. When authenticated, both, the application and the
driver can exchange encrypted messages. SGX directly supports authentication
between the application’s and the driver’s enclaves.

Secure Port I/O. SGX lacks methods to protect actual I/O between driver and
I/O port. Malware could grab port input by issuing the proper CPU instruction.
While it might not be able to directly inspect outgoing port traffic, it can at
least subvert it by outputting wrong data. Hence, secure port I/O requires an
exclusive binding between I/O port and driver, that cannot be forged by any
kind of malware. To implement such an I/O binding, the driver runs directly
on top of seL4 and uses seL4’s strong resource management capabilities to get
exclusive access to the I/O port.

Having secure execution, secure IPC and secure port I/O in place, the application
can eventually interact with a user in a secure way, even in the presence of
malware. Figure 12 gives an example flow from authentication over establishing
an encrypted channel to secure input and output.
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Figure 12: Secure interaction between application, driver and user: SGX supports
authentication and key exchange between application and driver to set up a
secure channel. Note that the channel might not only encrypt but also integrity-
protect messages. seL4 supports secure port I/O with the user.

Bootstrapping. The seL4 kernel is the most trusted software in our architec-
ture. To prevent manipulation of the seL4 kernel by the rich OS, it is the first
piece of code that is executed. seL4 protects itself from other software by a strict
memory management. The rest of the software stack is executed on top of seL4.
To provide a way of checking the integrity of the seL4 boot process, one can
leverage Intel TXT and the TPM.

Our architecture is nonrestrictive in the sense that the rich OS shall be able to
maintain I/O resources. Thus, the secure I/O driver is bootstrapped dynamically
by the insecure rich OS when needed.

4.2 Security Aspects

To assess the security of our architecture, we first describe the Trusted Comput-
ing Base (TCB). We then give the threat model and explain why seL4 is secure
even in unprotected memory. Finally, we argue why malicious peripherals do not
threaten our design.

4.2.1 Trusted Computing Base. SGX can be effectively used for secure
cloud computing, in which all code from the cloud provider is untrusted. Hence,
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in SGX the TCB only consists of the CPU and the enclave. However, for our
scenario, this has to be relaxed. Apart from the CPU, the user application and
the driver, the TCB contains other components as well. First of all, the seL4
kernel is essential part of the TCB, providing secure port I/O functionality in
software. Second, the chipset needs to be part of the TCB as well, since the
mobile device might contain untrusted peripherals, attached to the memory bus.
Hence, the chipset needs to protect the communication between CPU and I/O
port from these potentially malicious peripherals. The full TCB is shown in
Figure 13.

Figure 13: The trusted computing base contains the CPU and the chipset as well
as seL4, the user app and the I/O driver.

4.2.2 Threat Model. SGX protects enclaves against both, hardware attacks
on memory and software attacks. Memory protection does not only cover mem-
ory bus probing and forcing but also direct attacks on the RAM, tampering
with memory content. Note that memory is also protected against attacks from
malicious peripherals on the memory bus. Software attacks comprise malware at
any privilege level. The following list gives an overview of threats against which
SGX enclaves are protected:

– Physical threats

• Bus probing and forcing

• Memory tampering

• Malicious peripherals

– Logical threats

• Malicious applications
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• Malicious drivers

• Malicious rich OS

However, since SGX’s trust model considers all kernel code as insecure, SGX
only allows user applications to leverage enclave protection. Hence, the seL4
kernel does not benefit from SGX protection at all. It remains unprotected in
memory. Since seL4 is critical in providing secure port I/O, we have to refine
the SGX threat model to our architecture.

In the beginning, we stated that the main attack surface arises from software
threats. We argued that the big software stack has an increased susceptibility to
bugs. However, this is not the sole reason for sticking to software threats. In the
mobile device scenario, users typically have no interest in attacking their own
device. Hence, we can safely ignore physical attacks for normal device operation.
However, if the device gets lost or stolen, physical attacks eventually apply. When
distinguishing between normal operation and device loss, we eventually get the
same level of security as with pure SGX for latter case.

Device states. We differentiate between two operating states of the mobile
device: an active and a passive state. In active state the device is actively used
to do secure I/O by a legitimate user. No physical attacks apply as long as the
user is not malicious. The unprotected seL4 kernel is safe in RAM.

When in passive state, the device is locked and cryptographic keys are unloaded3.
If the device gets lost or stolen, an attacker could actively mount physical at-
tacks on hardware, possibly subverting seL4. Since there is no sensitive com-
munication with the user, sensitive data remains safe within the SGX enclave.
Figure 14 shows the physical attack surface in both device states. Note that
software threats are not depicted but apply equally in both cases.

Thus, our architecture not only protects against software attacks but in addition
defeats hardware attacks on the memory of a lost or stolen mobile device. Fur-
thermore, our architecture protects against malicious peripherals in both device
states.

4.2.3 Malicious Peripherals. Often, a computing device features multiple
peripherals of different vendors like mass storage controllers or network inter-
face controllers. Such peripherals might be untrusted, either because of a weak
security design, allowing malware to rewrite its firmware, or because of built-in
backdoors. If such untrusted peripherals have Direct Memory Access (DMA),
they can directly manipulate RAM content. Since the seL4 kernel is unprotected
in RAM, it needs special protection against malicious DMA peripherals. Modern
chipsets therefore feature an IOMMU. Like a Memory Management Unit (MMU)

3 Note that such mechanisms are already implemented by iOS data protection
classes [3] and BlackBerry two-factor encryption key generation [11].
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Figure 14: Top: In active state, the application is exchanging sensitive content
with the legitimate user (blue line). The user is trusted, no physical attacker
is present. Bottom: The device is in locked passive state, doing no secure I/O.
If it gets lost or stolen, it might be subject to physical attacks, however secret
information is protected by SGX.

translates virtual to physical addresses, the IOMMU does device to physical ad-
dress translation, restricting the portions of physical memory accessible to the
device. When properly configured, each DMA-enabled peripheral has limited ac-
cess only to those memory regions it is allowed to. Configuration is done by the
seL4 kernel. Thus, an IOMMU protects against malicious peripherals.

Recent research suggests direct communication between DMA-capable periph-
erals [52]. In that case an IOMMU must not only protect the kernel in RAM but
also any Memory-Mapped I/O (MMIO) device used for secure user communica-
tion, as depicted in Figure 15.

Figure 15: Malicious peripherals might not unauthorizedly access and manipulate
RAM or other MMIO devices via DMA. This is enforced by an IOMMU within
the chipset.
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4.3 Building Secure Port I/O

In order to do secure port I/O, the driver needs to have a transparent binding
to the I/O port. In the following, we first give requirements for such an I/O
binding. Afterwards we argue why each requirement is necessary, and outline
how such an I/O binding can be enforced by seL4.

An I/O binding is characterized by

– Exclusive ownership of the resource

– Non-revocability of this ownership

An I/O binding is transparent to the driver if the driver is capable of doing the
following checks:

– Verification of the I/O binding

– Identification of I/O resource

I/O Binding. The first requirement of an I/O binding states that the driver
needs to be assigned the I/O port exclusively. This means that only the driver
can access the I/O port at a specific moment in time. This is required to prevent
malware from simultaneously accessing the same I/O port. However, malware,
which has enough privileges, might be able to simply revoke such an exclusive
ownership. It might even remain stealthy by just temporarily revoking the own-
ership while tampering the communication. Hence, the I/O binding needs to be
non-revocable.

Transparency is essential because the establishment of the I/O binding involves
insecure code. Without transparency checks, a malicious OS could for example
violate exclusivity and keep a backdoor open for accessing the I/O port. There-
fore, the driver needs a way to verify if its ownership of the I/O port is indeed
exclusive. Furthermore, if a malicious OS assigns the driver a wrong resource, all
sensitive I/O might be redirected to a different resource. Therefore, the driver
needs to be able to identify the acquired resource.

SGX does not directly support such an I/O binding in hardware. Its main objec-
tive is to protect software execution in an adverse environment. Hence, we have
to entrust privileged software with this task. While standard resource manage-
ment features are part of every OS, the above I/O binding demands a highly
restrictive permission system. To meet this requirements, we use a modified ver-
sion of seL4.

I/O Binding with seL4. In order to establish an I/O binding, seL4 provides
strict but dynamic resource management with an appropriate permission system.
This can be used to give the driver exclusive ownership of the I/O port. In seL4,
exclusive ownership not only covers exclusive access to the resource but also full
control over the ownership. Once established, no other process can revoke this
ownership. Furthermore, seL4 implements strong process isolation. Thus, the
driver process can be hardened such that no other process has control over it.
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To get transparency of the I/O binding, we need some adaptations to seL4. If a
process just wants to check ownership of a resource, it can simply try to access
the resource. seL4 will refuse access if the process has no access permission.
However, verification of exclusive ownership is not possible with seL4. Although
a process might have exclusive access, it simply cannot know if that is the case.
There are two alternatives to still provide this transparency: 1. trust other seL4
processes to behave correctly, or 2. provide methods to dynamically assess the
exclusive ownership of caps.

The first option is unacceptable in a generic software architecture, where re-
source management is delegated to the insecure software stack. Furthermore,
the insecure OS shall be able to load and unload the secure I/O driver dynami-
cally.

Therefore, we consider the second option. It requires a dynamic and transparent
method for the driver to verify the I/O binding. This method has to be pro-
vided by the trusted seL4 kernel itself. Hence, we extend seL4 by a new syscall,
named HasExclusive, which implements this missing functionality. Using that,
the driver can verify exclusivity of a resource.

Identification of the I/O port is easy. When attempting to access the I/O port,
the driver provides the port address. If the I/O binding does not match this port
address, seL4 will reject access.

Security Considerations. Once the secure driver is loaded and the I/O binding
is established and verified, no malware can sniff or manipulate the communica-
tion between driver and I/O port. Thus, secure port I/O is possible.

However, bootstrapping the secure I/O driver is also a security critical task. Since
the I/O driver is loaded by the insecure rich OS, this OS could manipulate not
only driver’s code but also the I/O binding. Code manipulation can be detected
by SGX. Likewise, manipulation of the I/O binding is detected by the driver by
verifying exclusive ownership and identifying the I/O port. However, if the rich
OS refuses loading the driver at all, it could load malware instead, which in turn
could forge the communication with the user.

One cannot hinder the rich OS to load malware instead of the secure I/O driver.
However, even if it does so, secure port I/O can still be protected. In any case,
secure output cannot be undermined. If the security application is not able
to talk to a genuine, secure I/O driver, which has been loaded correctly, it
simply withholds secret information. Protection of secure input is addressed in
the following.

4.4 Secure Input from a User’s Perspective.

So far we have discussed security from an application’s perspective. Now consider
an unlock screen of a smart phone, where the user has to enter a secret PIN.
How can the user know that he is indeed communicating with the correct unlock
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application and not with phishing malware? With secure input alone, a user
does not learn anything about the security state of the application or the driver.
There is simply no reliable feedback channel to the user. Hence, we combine
secure input with secure output to provide this feedback.

In order to notify the user that the application and the driver have been loaded
correctly, the user is presented a distinctive, unforgeable feature via secure out-
put. The user shall only provide sensitive input to the smart phone if he observes
the correct distinct feature. Note that each secure application requires a differ-
ent feature. There are two options to make such features unforgeable: First, by
specialized hardware and second, by a user-defined secret identifier.

The first option requires additional support from either the output device or
the chipset and the CPU. Although our architecture sticks to legacy devices, we
explain this option for the sake of completeness. For example, a security LED,
could directly reflect the driver state to the user. Likewise, a graphic controller
could draw a green frame overlay for indicating a secure driver. The graphic
controller prevents software from forging this green frame. Such secure output
devices either require a separate wiring to the chipset and the CPU or have to
support cryptographic channels.

The second option applies to our architecture. The user provisions a secret iden-
tifier to the unlock application beforehand4. This secret identifier is protected
by an SGX enclave against malware. When attempting to query the PIN from
the user, the unlock application first acquires the secure input driver and verifies
its security state. It then acquires a secure output driver and displays the secret
identifier to the user. When the user sees the correct secret identifier, he knows
that he is indeed talking to the unlock application.

Physical Attacks do not apply. One might think that the user-defined secret
identifier can be easily forged by a physical attacker. In the above scenario, the
attacker could easily grab the smart phone and attempt to unlock it. The unlock
app then reveals the secret identifier to the attacker. The attacker can provision
this secret identifier to malware on the smart phone, which in turn forges the
unlock application.

However, we consider physical attacks only for theft or loss of the mobile device.
In both cases, the device might not be returned to the user. If the attacker would
return the device to the user after manipulating it, he could also choose to install
a wiretap on the unprotected buses. Hence, the secret identifier scheme does not
degrade security.

4 To avoid attacks on provisioning of the secret identifier, the user could do this from
a secure remote device via remote attestation.
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Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) add secure execution features to exist-
ing Intel x86 mainline CPUs. SGX provides a secure and verifiable execution
environment, called enclave, that can be leveraged by an application to execute
securely on the processor. Security covers privacy and integrity of data. SGX
not only protects against hardware attacks on memory but also against attacks
from privileged software. Even the operating system cannot access the protected
enclave domain. Hence, the trust model of SGX only considers the CPU and the
enclave as trusted while the OS is entirely untrusted.

Apart from the SGX programming reference [40], which is superseded by the
software developer’s manual [41], there exists other useful literature. Explanatory
tutorial slides are available at [27]. A comprehensive analysis of SGX is given
by Costan and Devadas in [28]. McKeen et al. give a quick overview of SGX
features in [58]. Sealing and attestation is explained in [2]. Possible applications
of SGX are outlined in [38]. A user guide for using the SGX evaluation SDK on
Windows is given in [44].

The rest of this section shows how SGX achieves secure execution: First, we
discuss SGX’s application model and memory protection in more detail. Next,
an overview of SGX instructions is given. In the following, we show how enclave
startup, secure execution and dynamic memory management is done with these
instructions. Furthermore, SGX key derivation is outlined to allow attestation
and sealing. In the end, we give a short discussion on certain security aspects
and elaborate on the business model of SGX.

5.1 Application Model and Memory Protection

In SGX, the enclave is part of an application process. The application is parti-
tioned into an insecure non-enclave area and a secure enclave area, both sharing
the same virtual address space. This partitioning has the advantage that only
application’s critical code needs to run within the enclave, having a minimal
amount of software within the TCB.

Pages mapped within the enclave always belong to the so-called enclave page
cache (EPC). The EPC is a contiguous part of RAM, which is protected by a
hardware memory encryption engine (MEE). The MEE hardens the EPC against
physical memory attacks. To defend bus probing attacks, it encrypts the EPC
using AES in counter mode of operation. To defend bus forcing and memory
replay attacks, the MEE does integrity protection using a MAC algorithm over

32
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Figure 16: SGX memory protection: The Memory Encryption Engine (MEE)
encrypts and integrity-protects the Enclave Page Cache (EPC). Enclave code
can access non-enclave area while access into the enclave is prohibited from
software running outside the enclave.

a multilinear universal hash function [27]. The MEE works transparently to the
last-level CPU cache: memory writes are encrypted on-the-fly. Likewise, memory
reads trigger verification and decryption of data from RAM.

Furthermore, EPC pages are protected against unauthorized software access
from any privilege level. An application’s enclave area can only be accessed from
within the enclave. Any access from none-enclave code results in a fault signal.
In contrast, enclave code can read and write non-enclave memory. Figure 16
gives an overview of SGX memory protection features.

The CPU does internal book-keeping in an Enclave Page Cache Map (EPCM)
to associate EPC pages with enclaves. The EPCM holds a slot for each page in
the EPC, as shown in Figure 17. This slot contains an enclave identifier as well
as the virtual enclave address of the page, some status information and access
permission flags. If the enclave identifier does not match the currently running
enclave, access is denied. This restricts enclaves to access their own EPC pages
only. Furthermore, by checking the virtual enclave address, SGX can verify if
the untrusted OS has mapped the EPC page to the correct location.

5.2 Enclave Instructions

Intel SGX adds new instructions to the x86 architecture. These are divided
into privileged enclave system (ENCLS) and unprivileged enclave user (ENCLU)
instructions. ENCLS instructions are used for creating and maintaining enclaves
and EPC memory, hence they are only accessible from protection ring-0. ENCLU
instructions cover all necessary operations during enclave runtime: entering and
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Figure 17: The Enclave Page Cache Map (EPCM) keeps track of all EPC pages.
If an enclave page is resolved (green), the corresponding EPCM slot is queried.
If the slot matches the currently running enclave and the virtual address, access
is granted.

exiting an enclave, accepting new EPC pages from system software, attestation
and key generation. ENCLU is only accessible to user mode applications (ring-3).
Thus, an enclave cannot be run in kernel mode.

Table 2 lists all SGX user instructions. Table 3 gives an overview of SGX system
instructions. The following section briefly explain the usage of most important
instructions. For a detailed description refer to the SGX manual [40].

5.3 Enclave Startup

A new enclave is initialized with the ECREATE instruction. This reserves a contigu-
ous part of the application’s virtual address space as enclave region. The enclave

Table 2: SGX ENCLU instructions.

ENCLU Description

EENTER Enter an enclave

EEXIT Exit an enclave

ERESUME Resume an enclave from interruption

EACCEPT(COPY) Accept EPC pages during enclave
runtime

EREPORT Report generation for attestation

EGETKEY Query keys for report verification,
sealing, provisioning
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Table 3: SGX ENCLS instructions.

ENCLS Description

ECREATE Create a new enclave

EADD Add EPC pages to enclave

EEXTEND Measure added EPC pages

EINIT Verify measurement and initialize enclave

EAUG Add new EPC page during enclave runtime

EMODPE/R Extend/Restrict EPC page permissions

EWB Evict EPC page to memory

ELDB/U Reload an EPC page from memory

EREMOVE Remove an EPC page from enclave

EBLOCK Block an EPC page for eviction

ETRACK Check if TLB is ready for page eviction

EPA Create version array to track evicted EPC
pages

EMODT Prepare for new enclave thread

EDBGRD/WR Read/write into running debug enclave

region is filled with content by subsequent invocation of the EADD instruction.
EADD maps a protected EPC page into the enclave region and initializes it with
content from the non-enclave area. Furthermore, each EPC page is measured in
blocks of 256 bytes, using the EEXTEND instruction. EEXTEND measures not only
the content of an enclave page but also its relative position in the virtual address
mapping.

Measurements are stored as a chained cryptographic hash in a measurement
register, called MRENCLAVE. This is comparable to a Platform Configuration Reg-
ister (PCR) in a Trusted Platform Module (TPM) [73]. If for any reason the en-
clave is not loaded exactly as intended by the enclave software vendor, MRENCLAVE
will have a wrong value.

After loading the enclave, the instruction EINIT is invoked. This involves a secu-
rity data struct, called SIGSTRUCT, which is signed by the software vendor. This
data struct contains the expected enclave measurement and is used to verify the
final value in the measurement register MRENCLAVE. If the verification process
succeeds, enclave startup is completed and the enclave is ready to be used. If
verification fails, SGX will refuse to run the enclave. The enclave startup proce-
dure is summarized in Algorithm 1.
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Algorithm 1 Enclave startup

ECREATE(enclave region)
for all pages p do

epc = AllocateEpcPage()
EADD(p, epc)
for i = 0 to 16 do

EEXTEND(epc + i · 256)
EINIT(SIGSTRUCT)

5.4 Secure Execution

Integrity of code execution is crucial for security of the enclave. Therefore, SGX
distinguishes between enclave mode and non-enclave mode. Switching between
these two modes is restricted to certain instructions.

5.4.1 Regularly Entering and Exiting an Enclave. To switch to enclave
mode, the instruction EENTER has to be executed from application’s non-enclave
code. Code execution is then started at a pre-defined point within the enclave.
This entry point is specified during enclave initialization. Once in enclave mode,
any direct jump to non-enclave code yields a fault. The enclave can be regularly
left with the EEXIT instruction.

EENTER passes the caller’s return address to the enclave. Enclave code has to
manually store the caller’s stack in order to set up its own enclave stack. Before
invoking EEXIT, the enclave needs to restore the caller’s stack. EEXIT takes an
arbitrary non-enclave code address as argument. In order to resume non-enclave
code where it has left, the enclave can provide the caller’s return address, ob-
tained from EENTER.

5.4.2 Asynchronous Exit. When executing in enclave mode, any interrupts
such as page faults trigger an Asynchronous Enclave Exit (AEX). All CPU
registers are automatically saved in enclave memory. The enclave has reserved
some pages as State Save Area (SSA) for this purpose. The CPU register file is
then masked to avoid information leakage to the OS. The OS interrupt handler
is invoked to process the interrupt event. When finished, the interrupt handler
issues the IRET instruction, which resumes operation at a pre-defined non-enclave
trampoline code. The trampoline invokes ERESUME for re-entering enclave mode
and restoring the original enclave register file from the SSA. Figure 18 shows a
typical execution flow, where enclave code is interrupted by an AEX.

Note that typically an AEX needs an additional pair of EENTER and EEXIT to fix
the cause for the AEX inside the enclave.
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Figure 18: Enclave is entered and left via EENTER and EEXIT. An asynchronous
enclave exit (AEX) event interrupts enclave execution. The CPU stores and
masks the enclave state. It invokes the OS interrupt handler. If finished, the
handler returns to non-enclave trampoline code. By issuing ERESUME, the enclave
gets restored and continues its operation.

5.5 Dynamic Memory Management

Dynamic memory management was added to SGX in revision two, following
recommendations of Baumann et al. [10]. This allows for dynamically growing
enclave memory as well as for swapping out rarely used enclave pages.

Dynamic page mapping is done cooperatively between the untrusted OS and
the enclave. The OS initiates mapping of a new EPC page by invoking EAUG

instruction. In order to make use of the page, the enclave has to accept it using
the instruction EACCEPT. Likewise, changes to the EPC page type (EMODT) or
permissions (EMODPR) have to be acknowledged by the enclave via EACCEPT.

The OS can decide to evict an EPC page from the enclave and write it to
(unencrypted) main memory using EWB, as a preparation for a swap out. EWB
encrypts the EPC page while it is moved to unencrypted RAM. The OS can
reload the EPC page again into the enclave by invoking ELDB or ELDU.

EREMOVE removes an EPC page from a running enclave. Removal or eviction of
EPC pages needs no cooperation by the enclave because it does not directly break
enclave’s security. However, as we will see later on, this opens up a dangerous
paging side-channel.
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5.6 SGX Identities and Key Derivation

SGX knows two identities: the enclave identity, also denoted as EID, and the seal-
ing identity. The EID represents the security state of the enclave after startup,
including all measured enclave pages and some attributes. The EID is directly
reflected by the measurement register MRENCLAVE. The sealing identity describes
the software vendor which signed the enclave code. It is represented by the mea-
surement register MRSIGNER. This register holds a hash of the vendor’s public
signing key.

SGX enables enclaves to derive keys for sealing, attestation and provisioning.
Key derivation is done using the EGETKEY instruction. By making key derivation
dependent on MRENCLAVE or MRSIGNER, derived keys can be bound to a specific
enclave or a specific software vendor, respectively. Apart from MRENCLAVE and
MRSIGNER, key derivation can include other values as well, as seen in Figure 19.

Figure 19: SGX key derivation.

All keys are device dependent, since key derivation includes a device-specific key.
Furthermore, an owner epoch is merged into key derivation, allowing the device
owner to revoke all derived keys by simply changing the owner epoch. By adding
a Security Version Number (SVN) to key derivation, one can build an enclave
version hierarchy, which is useful for sealing data.

5.7 Sealing

SGX allows enclaves to query seal keys. Seal keys can be used to encrypt sensitive
data for persistent offline storage outside the enclave. By binding the seal key
to MRSIGNER, all enclaves of the same software vendor can derive the same seal
key to access encrypted data. When binding the seal key to MRENCLAVE, only
the exact same enclave can access its sealed data. Alternatively, the seal key can
also be derived from a Security Version Number (SVN) instead of the enclave
identity. Thus, the seal key gets dependent on the current SVN. If a software
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vendor releases an update to enclave code, the SVN is increased. This yields
a different seal key. However, SGX permits decreasing the SVN when issuing
EGETKEY. Thus, the new enclave can access data sealed by an old enclave but
not vice versa. This allows migrating sealed data to the new enclave version.

5.8 Enclave Attestation

In order to assess the security of a running enclave, SGX provides methods for
attestation [2]. Attestation comes in two ways: local and remote attestation.
Local attestation allows an enclave to verify another enclave running on the
same physical CPU. Remote attestation can be used by a remote party to check
if the attested enclave is indeed running on a genuine Intel CPU and was not
tampered with. Remote attestation thus allows initial provisioning of keys and
secrets to an enclave.

5.8.1 Local Attestation. Enclave E wants to proof its authenticity to a
target enclave T. Authenticity of an enclave depends on its value of MRENCLAVE,
which reflects the enclave state after startup. If MRENCLAVE has a correct value,
the enclave has been indeed loaded correctly. To do local attestation, enclave E
generates a signed report over its MRENCLAVE. By verifying the report, the target
enclave T can assess authenticity of E.

Figure 20: Report structure generated for attestation.

The report is a data structure, which is cryptographically signed. As seen in
Figure 20, the report contains MRENCLAVE, MRSIGNER, some user-defined data
and some additional fields. In order to create a report, an enclave issues the
EREPORT instruction. SGX then derives the report key of the target enclave by
calculating a SHA-256 over the target enclave’s identity. Next, SGX signs the
report by calculating a Message Authentication Code (MAC) over the report
structure. It therefore uses AES-CMAC [71].

Algorithm 2 gives the steps involved in report generation. For the sake of sim-
plicity, we denote EID of enclave X with XID, which equals MRENCLAVE of X.
Note that we omit some implementation details which are not necessary for un-
derstanding attestation. For a detailed description, see the SGX programming
reference [40].
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Algorithm 2 GenerateReportEID
(TID, userdata)

Enclave E generates a report for attesting itself to target enclave T .
userdata ∈ {0, 1}256 is an arbitrary data blob which gets signed in the final report.
E → SGX : EREPORTEID (TID, userdata)
SGX : reportkeyT ← SHA256(TID||...)
SGX : mac← AES CMACreportkeyT (EID||userdata||...)
SGX → E : report = (EID||userdata||...||mac)

The target enclave can verify the report by requesting its report key from SGX
hardware with EGETKEY and manually recalculating the MAC. Algorithm 3 ex-
plains report verification.

Algorithm 3 V erifyReportTID
(report)

Target enclave T verifies a report generated by enclave E.
T → SGX : EGETKEYTID (REPORT KEY )
SGX → T : reportkeyT ← SHA256(TID||...)
T : mac← AES CMACreportkeyT (report.EID||report.userdata||...)
if mac = report.mac then

T : accept report
else

T : reject report

A MAC is a symmetric signature since the same key is used for signature creation
and verification. Symmetric signatures do not provide non-repudiation. Since
both, the signature creator (enclave E) and the verifier (enclave T) use the same
key, one cannot distinguish, who actually created a signature. Thus, enclave T
could forge reports targeted at itself. This is no problem in practice since enclave
T has no benefit in doing so. However, as we will see later on, this symmetry of
the report key can be exploited to do an efficient key exchange.

5.8.2 Remote Attestation. A remote verifier can use remote attestation to
assess the security state of an enclave. Remote attestation involves multiple steps:
First, the enclave of interest attests itself to a so-called quoting enclave. Then,
the quoting enclave signs the report of the enclave being attested. Therefore,
the quoting enclave owns a device key. The device key is an asymmetric, private
signing key, which is bound to the CPU. Finally, the remote verifier can use the
public verification key to verify the signed quote. Remote attestation is sketched
in Figure 21.

Intel uses a variant of direct anonymous attestation to sign and verify quotes,
called Enhanced Privacy ID (EPID) [15]. The verifier can only verify member-
ship in a group, without being able to distinguish individual group members.
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Figure 21: Remote attestation process.

During manufacturing, Intel installs unique keys on each CPU, identifying them
as genuine. These keys are in turn used to derive attestation keys. The attes-
tation key proves membership in the group of genuine CPUs while maintaining
anonymity.

Official information about the quoting enclave and the provisioning of the device
keys is relatively scarce [2,27]. By combining existing sources with some educated
guesses, Costan et al. draw a more complete picture of remote attestation in [28].

5.9 Further Discussion

So far we have discussed the main features of SGX, which can be combined
to build a secure execution environment. To clarify things, we shortly discuss
security implications, if SGX is simulated. Afterwards, a powerful attack on
SGX’s dynamic paging support is outlined. In the end, we address Intel’s business
model behind SGX.

5.9.1 Simulation of SGX. Enclave startup is always done by the (untrusted)
OS kernel, which issues the proper ENCLS instructions. During enclave startup,
the whole enclave code is accessible to the OS in an unencrypted form. Hence,
a malicious OS can easily choose to run enclave code in an SGX emulator. It
can simply bypass any hindering SGX security checks, being able to inspect
the enclave state over the whole simulation. This cannot be prevented by SGX
at all. For this reason, IBM SecureBlue++ requires that an application binary
is encrypted for the target CPU. Only the CPU knows the proper decryption
key [13] and can actually execute the binary.

For SGX, simulation is no problem when adhering to the following rule: enclave
code must never contain hard-coded secrets. The only way to provision secrets
is via remote attestation. Remote attestation allows a remote verifier to check if
the enclave is being simulated or not. Only if attestation succeeds, the remote
verifier provisions secrets to the enclave. If attestation fails, it withholds secret
data.
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Remote attestation is based on genuine attestation keys, which are derived from
the quoting enclave’s device key. Since this key is protected by the CPU, the
attacker has no access to it. Thus, the attacker fails to simulate remote attes-
tation. For the same reason, the simulated enclave cannot decrypt sealed data
which has been encrypted on a genuine SGX CPU, because it cannot derive the
correct seal key.

Hence, an attacker can indeed simulate enclaves as long as no secret data is
accessed. As soon as the enclave does remote attestation or sealing, the simulated
execution deviates from the genuine one. The attacker does not obtain sensitive
information.

Having enclave code in an unencrypted form opens up other use cases. It allows
for example virus scanners to inspect enclave code before executing it.

5.9.2 Paging Side Channel. Xu et al. describe a powerful side channel
which an untrusted OS can exploit to attack an SEE [78]. This also affects
SGX. By allowing dynamic page mapping of enclave pages, SGX has an inherent
weakness, leaking information from within the enclave. When an enclave accesses
unmapped memory, a page fault is triggered. The OS is notified, where the page
fault has occurred. Normally, the OS uses this information to map the missing
page. However, it can also misuse it to profile memory access patterns of enclave
code. In order to limit information leakage, SGX masks the lower 12 bits of the
page fault address. Thus, the OS can only observe the page which caused the
fault but not the exact virtual address.

Yet, this leads to a powerful attack. Since the untrusted OS is in charge of
page mapping, it can control this side channel. By evicting an EPC page during
enclave runtime with EWB, the OS can force a page fault as soon as the enclave
tries to access the unmapped page. Then, the OS reloads the page again with
ELDU to allow enclave code to resume. Although this only leaks information on
a page granularity, Xu et al. exploit this side channel to do recovery of secret
documents [78].

This side channel could be in principle mitigated by disabling EWB and ELDU

for enclave pages. Alternatively, the enclave could be required to acknowledge
EWB. Both is not possible in SGX. Hence, developers have to rely on mitigation
mechanisms on application level. This essentially means that code has to be
aligned in such a way that page faults do not leak sensitive information [26].

5.9.3 Intel SGX Business Model. SGX has an under-documented ”fea-
ture”, called launch enclave. During enclave initialization with EINIT, SGX not
only checks MRENCLAVE and some other enclave attributes, as previously de-
scribed. EINIT also involves a so-called EINITTOKEN which has to be issued by
the launch enclave. Without a correct EINITTOKEN, the enclave is not initialized.
Thus, the launch enclave is the only door to ever run custom-code enclaves on
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the CPU. After digging deeper into some SGX patents, Costan et al. conclude
that the sole purpose of the launch enclave is to enforce a licensing scheme for
business users [28]. This apprehension has been confirmed with the release of
the SGX evaluation SDK in January 2016 [44]. The SDK only supports launch-
ing enclaves in debug mode, that is, without full enclave protection. Production
enclaves need to be licensed by Intel in order to get white-listed for the launch
enclave [46].

However, the pricing schemes for licensing an enclave are not revealed. One
can speculate that SGX is just the logical continuation of Intel’s tradition in
providing DRM for the well-paying film industry. Also PAVP, Intel Insider and
WiDi are primarily targeted at building strong DRM into consumer devices.
DRM is a lucrative business. The total loss among all US industries due to
movie piracy has been estimated to $20.5 billion in 2006 [70]. Hence, it would
not surprise if Intel reinforces this business model with SGX.

However, the enclave licensing scheme turns SGX rather useless for the open
source community since Intel has an effective way of locking out any low-budget
projects. Moreover, this undermines the freedom to modify open source enclaves
at own will. As long as Intel does not publish further details on its pricing, one
has to assume that Intel is not seriously interested in providing SGX for the
broad community at all.



Chapter 6

seL4 Microkernel

The security kernel seL4 is the most trusted software in our secure I/O archi-
tecture. To better understand its role for secure port I/O, this section describes
seL4 in more detail. First, we give some background information on seL4 and
outline its design objectives and features. We then explain seL4’s capability
model in detail, followed by a brief discussion about the syscall API. Finally, we
describe RefOS, an operating system running on top of seL4, that is used in our
proof-of-concept.

L4 is a family of microkernels aiming at high-speed and security applications
while maintaining a low memory footprint. Its success is highlighted by the
wide deployment of OKL4, an L4 implementation by Open Kernel Labs. In
2012, OKL4 was used in almost 1.5 billion mobile devices [51]. To furthermore
push development of high assurance microkernels, the NICTA group maintains
a secure L4 kernel, called seL4 [60]. It is specifically designed to allow formal
verification of correctness. In 2009, the seL4 implementation for ARMv6 could be
formally verified, claiming to have “the first formal proof of functional correctness
of a complete, general-purpose operating-system kernel” [48]. Klein et al. proved
that the C implementation adheres to its specification, given that hardware,
assembly code and the compiler are correct. Verification was only possible due
to the small code base. seL4 consists of only “8,700 lines of C code and 600 lines
of assembler”, according to [48]. One can infer that also the x86 implementation,
used in this thesis, is mostly correct as well since it shares all generic code with
ARMv6.

A main design principle of microkernels such as seL4 is having the kernel as
small and generic as possible with a small and defined syscall API. The majority
of common operating system tasks such as resource management is exported to
user processes. Thus, process and memory management, device drivers and even
scheduling algorithms run in restricted user mode only. Due to seL4’s strong
process isolation mechanisms, both the kernel and any independent user process
can be isolated from malicious or buggy drivers, which could otherwise take
complete control over a system in a monolithic kernel design such as Linux.

Features. seL4 supports threads. Typically, each thread is assigned a sepa-
rate virtual address space. By doing so, a single seL4 thread corresponds to an
application process in Linux, for example. Hence, we use the term process to
describe such an seL4 thread. Multi-threading is possible by assigning multiple
seL4 threads the same virtual address space. Processes can interact via message
passing. Therefore, seL4 supports asynchronous and synchronous endpoints. In
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order to enforce certain security policies, the kernel implements access control
mechanisms based on capabilities.

6.1 Capability Model

By owning a capability, also referred to as cap, a process is able to perform certain
actions on defined objects. This includes thread management, page mapping,
interrupt handling, I/O access and Inter-Process Communication (IPC), among
others. Hence, device drivers, memory managers and likewise are implemented
by assigning the correct capability.

seL4 caps can be dynamically migrated among user processes during runtime,
at the discretion of the user process itself. This is referred to as discretionary
access control. With such a generic approach one can encode various different
security policies directly into applications.

Capabilities are protected and managed by the kernel, allowing user processes to
invoke its caps only through defined syscalls. In seL4, the set of caps, assigned to
a certain process, is stored in a capability space, called CSpace. Initially, when
booting seL4, the first invoked user task has access to all root capabilities from
which other caps can be derived. This root task is responsible for invoking other
processes and migrating capabilities in accordance with a given security policy.

Capability Types. seL4 knows capabilities for all kinds of core resource han-
dling tasks. Table 4 gives an overview of different types and their usage. There
exist further capabilities dealing with large pages and virtualization, for example,
which are not mentioned here.

Capability Migration. seL4 supports different methods for migrating capabil-
ities among processes. This basically includes the operations copy, mint, delete
and revoke and some variations of it. When copying a capability, the original
cap remains unchanged and the child inherits its parent’s capability, possibly
restricted in read/write access rights. Minting allows copying and restricting the
access range of the child. For example, the capability representing the whole
RAM can be minted into two disjunct parts. The delete operation deletes a
capability from the process’ CSpace. Be aware that when deleting the last refer-
ence to a capability, it gets irreversibly lost. In contrast to the delete operation,
a revoke deletes all children which were derived from a cap. To achieve this, seL4
maintains a capability derivation tree.

Note that certain types of capabilities have restrictions in allowed operations.
Also, not all capabilities can be minted. For more details see the manual [61].

Capability Derivation Tree. seL4 keeps a record of all capabilities and its
derivatives in a so-called Capability Derivation Tree (CDT). This CDT is used
for revocation of capabilities. Each capability is a node in this global tree. When
a cap is copied, minted or retyped, the new cap typically becomes a child node
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Table 4: seL4 knows capability types for each kernel object. The types are
grouped into capability and thread management, memory management as well
as I/O and interrupt handling.

Cap Type Description

CNode Holds other caps in a list

CSpace The thread’s root CNode, holding all its caps

Domain Allows creation of new threads (TCB objects)

TCB The thread control block of a thread. Allows to run, suspend,
resume a thread, manipulate its registers, change priority, etc.

Endpoint Allows IPC between threads

Untyped Represents unused physical memory or devices

PD Page Directory allows to manipulate thread’s virtual address
mapping. Also called VSpace.

PT Page Table

Page A memory page frame or an IO frame, when derived from an
untyped device region. Can be mapped into PT or IO PT.

IO Space Represents a PCI hardware device in the IOMMU

IO PT IO Page Table which can be mapped into IO Space

IO Port Allows direct access to certain x86 I/O ports

IRQ Control Allows creation of an IRQ Handler

IRQ Handler Management and consumption of specific interrupts

of the original cap in the tree. When a process revokes a cap, the seL4 kernel
traverses the CDT and deletes all derived children caps.

Typed Memory. To allow a coarse type-checking, all physical memory in seL4
is type sensitive. Physical memory is initially represented as a large, contiguous
untyped cap. Untyped means that memory is not in use. This large untyped cap
can be iteratively refined by retyping it to smaller untyped regions.

Furthermore, retyping allows to create specifically typed objects in an untyped
memory region. These typed objects are again represented by capabilities. Note
that by revoking an untyped memory cap, all typed objects, which were derived
from it, are destroyed.

Figure 22 shows an example of a CDT, where a Thread Control Block (TCB),
a page directory, a page table and some pages are derived from an initially
large untyped memory block. Note that the CDT does not represent the virtual
memory layout of a process. Rather, it tracks the hierarchy of caps in the system.
In order to set up a virtual memory space, one has to map the page table and
page caps appropriately into a page directory, that is assigned to a specific TCB.
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Figure 22: Example CDT with derived caps for the Thread Control Block (TCB),
Page Directory (PD), Page Table (PT) and some pages. One page is in addition
minted to read-only (r/o).

Typed objects can only be used in accordance to their type. Most objects can-
not be accessed directly. Instead, a syscall has to be invoked. Thus, the kernel
can restrict allowed operations on the object. The only object type, which an
application can directly access, is a properly mapped page.

6.2 Syscalls

seL4 has a reduced syscall API. It only supports roughly three operations:
sending messages, receiving messages and yielding. Table 5 lists the available
syscalls5.

As seen, most syscalls deal with message passing. Therefore, seL4 defines a
lightweight message format. Short messages are directly passed via CPU reg-
isters, which makes message passing extremely fast. Longer messages are backed
by a pre-defined message buffer.

When sending data to an endpoint cap, the message is delivered to the process,
owning that endpoint. To wait for data to receive, a process issues the syscall
seL4_Wait on its endpoint. Another process that has access to the same endpoint
can then send data by issuing the syscall seL4_Send on the endpoint. That way,
IPC is possible.

When sending data to a capability other than an endpoint, the message is de-
livered directly to the kernel. By coding additional tags and arguments into the
CPU registers or the message buffer, the kernel can distinguish between different
operations it shall carry out on that cap. For example, to map a new page, the
caller sends a message to the PD cap alongside with a page and a tag indicat-
ing page mapping. If the sender expects some data to be returned, it can issue
seL4_Call instead of seL4_Send. Thus, seL4 effectively enables a whole lot of

5 Note that the table shows API version 1.2 [61], which is used in the proof-of-concept.
In a more recent specification, Wait is renamed to Recv [62].
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Table 5: seL4 syscalls.

Syscall Description

seL4 Send() Send a message and block until delivered

seL4 NBSend() Send a message non-blocking

seL4 Wait() Wait for a message from an endpoint

seL4 Call() Send a message and block until received a reply. This is
a combination of seL4 Send() and seL4 Wait(), using a
special reply endpoint for the response.

seL4 Reply() Reply to a seL4 Call(). This sends a response to the
reply endpoint, received via seL4 Call().

seL4 ReplyWait() Reply to a seL4 Call() and immediately wait for the
next call.

seL4 Yield() Give up remaining CPU time

different kernel calls via seL4_Call. We refer to those calls also as syscalls, since
they interact with the kernel.

6.3 RefOS

RefOS is a small reference operating system, targeted at the seL4 kernel [67]. It
runs entirely in the userspace. RefOS follows a multi-server design, splitting core
OS features into several distinct servers. If one particular server for whatever
reason denies its service, other independent servers and applications are not
affected at all. Therefore, a multi-server design lowers the risk of total system
failure by partitioning the attack surface among all servers. Thus, RefOS greatly
complements seL4 in building a dependable system.

To understand the multi-server design, we first explain existing RefOS servers.
Next, available RefOS libraries are given. Finally, we show how IPC is possible
with RefOS.

Servers. A server is a separate process, implementing specific functionality. It
is accessible through message passing. RefOS defines certain interfaces, which
might be implemented by a server. These are:

– Name interface

– Server interface

– Data interface

– Proc interface

The name interface defines how servers can register itself for service discovery.
This is needed such that applications can find other servers on the system. The
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server interface has to be implemented by every server. It defines, how appli-
cations can interact with the server. The data interface maps the server’s func-
tionality to a so-called dataspace. The dataspace represents concrete data the
server provides or consumes. For example, a dataspace can represent a region of
memory, file content, a network interface, an attestation service, etc. Depending
on the sort of data, the server might implement different dataspace handlers
such as open, close, read, write, lseek, getc, putc, among others. The data in-
terface is typically also implemented by every server. The proc interface defines
functionality of the process server, which is the root task of RefOS.

Based on the clear interface definition, servers can be easily integrated into the
multi-server design. RefOS already provides some basic servers, which implement
core OS features. These are:

– Process server

– File server

– Timer server

– Console server

The process server is the root task which is initially spawned by seL4 on sys-
tem startup. It invokes other servers and implements server discovery, memory
management and process management. As such, the process server holds capa-
bilities to all other processes’ TCB, CSpace and page directory as well as to all
system resources. Thus, the process server is the most privileged process running
on top of seL4.

The file server implements a small file system, providing access to all exe-
cutables. It is initialized from a static archive. When the process server loads
new applications or resolves page faults, it queries the file server for retrieving
the actual page content from the executable.

The timer server provides nanosecond-accurate timings. It therefore queries a
hardware timer.

The console server provides I/O to the COM1 port. It is accessible via stdin,
stdout and stderr file descriptors.

Libraries. RefOS comes with a basic set of libraries, accessible to applications
and servers. These libraries help in implementing and accessing RefOS interfaces
and provide high-level abstraction of some server functionalities. Table 6 gives
an overview of the most relevant libraries.

IPC with RefOS Servers. In RefOS, the process server propagates its own
endpoint cap to each newly launched process. Hence, any other process can
contact the process server via this endpoint. Furthermore, the process server
hosts a discovery service, where every other server registers under its name. If
an application process wants to use a specific server, it queries the process server
to resolve the server’s name and establish a session to it.
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Table 6: RefOS libraries.

Library Description

libsel4xxx Several seL4 libraries for syscall invocation, bootstrap-
ping, thread management, memory allocation and ca-
pability management

librefos Definition of RefOS interfaces and implementation of
helper functions

libmuslc Partial libc implementation for RefOS

libplatsupport Access to platform specifics like I/O ports

To simplify this procedure, RefOS’ standard library, the libmuslc, hides the
functionality of server discovery in the POSIX filesystem. This allows to contact
other servers by directly accessing a pseudo file, which identifies the service.
A server can provide multiple services. The naming scheme for pseudo files is
"[server]/[service]".

For example, the console server is registered under the name "dev_console". It
provides access to the COM1 port under the service name "serial". Listing 1
gives an example, how an application can send data to COM1.

Listing 1: Accessing COM1 via MUSLC.

fd = open ( ” dev conso l e / s e r i a l ” , OWRONLY) ;
i f ( fd < 0)

e r r o r ( ) ;
wr i t e ( fd , ” He l lo world ! ” , 1 3 ) ;
c l o s e ( fd ) ;

The console server implements the open and the write handler for the serial
dataspace. The write handler eventually outputs data to COM1.
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Proof-Of-Concept Implementation

Our proof-of-concept implementation basically uses RefOS on top of seL4 to im-
plement secure port I/O. This section first discusses the competing trust models
of seL4 and SGX. This motivates our software architecture, which is given next.
Then, we show how inter-process communication between the application and
the I/O driver can be secured. Next, secure port I/O is discussed in great de-
tail, explaining how we use our implemented HasExclusive syscall to build a
transparent I/O binding. We also address shortcomings due to missing syscall
support for SGX enclaves. Afterwards, we give our modifications to seL4 and
RefOS, which are necessary to integrate support for SGX. Finally, we briefly
explain OpenSGX, the SGX emulator which we adapt to work with the seL4
kernel.

7.1 Competing Trust Models

In order to correctly combine SGX and seL4, we have to understand the un-
derlying trust models. After looking at seL4 and SGX, we motivate a sandwich
trust model for our secure I/O architecture, as seen in Figure 23.

seL4 Trust Model. seL4 follows a classical, hierarchical trust model. Trust is
extended from the bottom up. The seL4 kernel is the most trusted software.
It invokes the root task which initially owns all capabilities. The root task fur-
thermore distributes its capabilities among less privileged processes. Processes,
which are higher up in the software stack, are more prone to errors since they
have to rely on all software running below it. These processes are typically less
trusted and therefore have less privileges (capabilities). Sensitive information of
the user enters the kernel via I/O. It might be passed up the stack as far as trust
is sufficient.

The root task, the most privileged user process, has to be ultimately trusted.
Other tasks have to rely on the root task to do process launching and page
mapping correctly, for example. Even if the root task would give away all of its
capabilities to other processes, it might have already manipulated those processes
beforehand. Hence, the hierarchical trust is a consequence from the fact that seL4
does not support verified launch of any process.

SGX Trust Model. SGX inverts the classical bottom-up trust model. The
SGX enclave is a secure execution environment for user applications, with veri-
fied launch, secure page mapping and some other protection mechanisms. Thus,
the enclave can protect itself from untrusted software and even from an insecure

51



Chapter 7 – Proof-Of-Concept Implementation 52

Figure 23: Competing trust models of SGX, seL4 and secure port I/O. Green
indicates trusted components. Gradual blending to red shows increasing distrust.
Sensitive information flow is depicted with arrows.

OS. Secrets are provisioned to the user enclave only from outside via remote at-
testation. These secrets might be propagated to other enclaves as well. However,
they shall never leak to insecure software. Hence, in SGX trust is built top-down.
Indeed, Intel SGX entirely distrusts the kernel. It does not only deny invocation
of ENCLU instructions from kernel code but also prevents syscalls from enclave
code. Furthermore, SGX distrusts the end user owning the computing device.
Therefore, it does not provide secure port I/O features in the CPU.

Sandwich Trust. Both trust models do not fit secure port I/O in our mobile
device use case. We combine them to get a sandwich trust, as seen in Figure 23.
On the top, we trust the user enclave, which gets provisioned some secrets. On
the bottom, we trust the driver, the seL4 kernel, the SGX-enabled CPU and the
end user. Thus, sensitive information can transition between the end user at the
bottom and user enclave at the top.

7.2 Architecture

For our architecture we implement a user application, which wants to securely
communicate to the COM2 port, where a user has connected a legacy I/O device.
Our architecture reuses existing RefOS servers and libraries. We add a RefOS
server, called I/O driver, which has access to COM2. We furthermore add some
libraries to support enclave management. The software stack is outlined in Fig-
ure 24.
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Figure 24: RefOS software stack: A user application communicates with the I/O
driver (blue line) to securely access COM2.

The whole RefOS stack is considered as untrusted. The trusted software covers
the seL4 kernel and the SGX enclaves within the user app and the I/O driver.
We show that trust can be extended to non-enclave driver code as well.

Secure IPC. To get access to the COM2 port, the application has to talk to
the I/O driver via some form of Inter-Process Communication (IPC). Since IPC
involves untrusted RefOS code such as the process server, we implement a way
of doing IPC securely.

Secure I/O Driver. The I/O driver implements secure port I/O. It has di-
rect access to COM2, a platform-specific I/O port, which is intended for com-
municating with the user. The I/O driver is registered under the server name
"dev_secure". It provides direct write access to COM2 under the service name
"serial". Since this service is unprotected, it cannot be used for secure IPC
but only for debugging purposes.

Table 7: Services provided by the I/O driver. Note that all services implement
the open and close dataspace handlers.

Service Handlers Description

serial putc, write Direct output to COM2 (debug only)

attest write Secure, attested output to COM2

eid read Retrieve the driver’s EID
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To achieve secure IPC, the driver also implements two services, called "attest"

and "eid", which will be explained later on. Table 7 shows the driver’s services
and the RefOS dataspace handlers, which they implement.

SGX Libraries. To make use of SGX within RefOS, additional support is
needed. Based on existing code from the OpenSGX emulator, we construct two
SGX libraries for non-enclave and enclave code. The libsgxnonenclave pro-
vides support for building and maintaining an enclave from within non-enclave
code. It integrates enclave startup procedures as well as some SGX wrappers
for libc functions. The libsgxenclave implements SGX functions needed inside
an enclave. Furthermore, it provides the counterpart of the SGX libc wrap-
pers to allow access to certain libc functions from within the enclave. Note that
libsgxenclave is direct part of the TCB since it runs within the enclave.

7.3 Secure Inter-Process Communication

In the following, we show how IPC is actually implemented in RefOS. Therefore
we give a detailed flow through all untrusted software layers. To protect IPC
over this untrusted software stack, we explain how SGX enclaves can be used
to build a secure communication channel. Finally, we give our proof-of-concept
implementation, in which we do secure IPC via an authentic channel.

7.3.1 IPC in RefOS. IPC between the application and the I/O driver is
done via the RefOS data interface. The I/O driver implements a dataspace,
which the application accesses. To find the driver, the application does service
discovery via the process server. The process server then assists in building up
a session between the application and the secure I/O driver. Once the session
is established, the application can send data to or read data from the driver’s
dataspace. For IPC, the application has to leave the enclave and run through
the whole non-enclave stack of support libraries.

Figure 25 shows an example flow how the application would send data to the
driver for outputting it to COM2. Therefore, the application accesses the driver
under the pseudo file "dev_secure/serial". The libsgxenclave wraps the
libc functions open and write and routes data to the application’s non-enclave
code. The libsgxnonenclave then invokes the corresponding libmuslc func-
tion. MUSLC resolves the driver’s pseudo filename using server discovery, pro-
vided by the process server. It then passes data to IPC message handling of
librefos. Note that a large chunk of data might be scattered upon multiple
IPC messages. The librefos wraps data in an IPC buffer and seL4_Send()

eventually traps to the seL4 kernel to transmit data to the I/O driver. seL4
wakes up the driver, which is listening for new input via seL4_Wait(). Data is
unwrapped from the IPC buffer and passed to the dataspace write_handler().
This handler re-assembles the original data and stores it in a non-enclave buffer,
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Figure 25: IPC has to go through a bunch of non-enclave libraries.

before invoking the driver’s enclave. Finally, the enclave can access this buffer
and output data to COM2.

One can see that IPC involves untrusted code at many layers, which does not
allow to do IPC securely. For example, the untrusted process server is responsible
for server discovery, establishing a session between application and driver. By
manipulating this session, the process server could redirect all communication
to itself and sniff or alter the traffic. Likewise, when loading the application,
the process server or the file server could arbitrarily manipulate non-enclave
library code to hijack IPC. To protect against such Man-In-The-Middle (MITM)
attacks, we build a secure communication channel between the driver’s and the
application’s enclave. This is achieved by leveraging SGX to do secure inter-
enclave communication.

7.3.2 Secure Inter-Enclave Communication is directly assisted by SGX’s
local attestation mechanism. With local attestation, one can set up an authentic
communication channel. Depending on the use case, enclaves might be fine with
integrity protection. However, the majority of security-critical applications also
demands confidentiality of the communication. This requires exchanging key
material to set up an encrypted communication channel. This section shows
how both can be achieved by SGX local attestation.

Integrity Protection. Local attestation provides an integrity-protected com-
munication channel out of the box. Enclave A, wishing to send an arbitrary
document to enclave B in an authentic way, issues EREPORT. The report struc-
ture is able to hold 256 bit of user-defined data. Enclave A includes a SHA-256
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hash over the document as user-defined data in the report structure. It sends the
signed report to enclave B, alongside with the document. B then simply verifies
the hash and the report. The whole procedure is listed in Algorithm 4.

Algorithm 4 Integrity-protected communication

Enclave A sends a document to enclave B in an authentic way.
A : report← EREPORTAID (BID, SHA256(document))
A→ B : (document||report)
if report.userdata 6= SHA256(document) then

B : reject document
else if V erifyReportBID (report) fails then

B : reject document
else

B : accept document

Confidentiality essentially requires exchanging a symmetric encryption key. If
the symmetric key is established, enclaves should implement an authenticated
encryption scheme6 in software to maintain confidentiality and integrity of the
channel.

There are different ways of doing key exchange between enclaves. We first de-
scribe Diffie-Hellman key exchange, to which Anati et al. refer in [2]. Also, the
SDK user guide gives an example of how to implement Diffie-Hellman [44]. How-
ever, existing work does not investigate further on this topic. Hence, we also give
a non-interactive, symmetric key transport scheme, which nicely exploits a single
SGX local attestation procedure.

Diffie-Hellman key exchange [30] is straight forward, as shown in Algorithm 5.
Since both parties influence the key material, it is also referred to as key agree-
ment. Diffie-Hellman involves exponentiation of large numbers7. To avoid this,
SGX local attestation can be used to directly implement a non-interactive, sym-
metric key transport, as shown in Algorithm 6. Since only one party influences
the established key, it is called key transport. Our protocol is based on the sym-
metry of the target’s report key. Any enclave can sign reports for a target by
issuing EREPORT. Although it has no direct access to the target enclave’s report
key, it can indirectly use it via the EREPORT instruction. In turn, the target en-
clave is able to access its own report key. Thus, we already have a pre-shared
secret from which other keys can be derived.

6 Currently, authenticated encryption is achieved by using existing block ciphers in
special modes of operation, like Galois Counter Mode (GCM) [57]. However, research
seeks for new fast and dedicated authenticated encryption algorithms [17].

7 NIST recommends to use 224 bit exponents and a 2048 bits modulus up to the year
2030 [9,12].
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Algorithm 5 Diffie-Hellman key agreement

A symmetric key is established between enclave A and B.
Public parameters: p ∈ P, q ∈ [2, p− 1]

A : rA
R← [2, p− 1] chosen uniformly at random

A : qA ← qrA mod p
A : reportA ← GenerateReportAID (BID, SHA256(qA))
A→ B : (reportA||qA)
if reportA.userdata 6= SHA256(qA) then

B : abort()
if V erifyReportBID (reportA) fails then

B : abort()

B : rB
R← [2, p− 1] chosen uniformly at random

B : qB ← qrB mod p
B : key ← qrBA mod p
B : reportB ← GenerateReportBID (AID, SHA256(qB))
B → A : (reportB ||qB)
if reportB .userdata 6= SHA256(qB) then

A : abort()
if V erifyReportAID (reportB) fails then

A : abort()
A : key ← qrAB mod p

Algorithm 6 Non-interactive, symmetric key exchange

Enclave A sends a symmetric key to enclave B.

A : nonce
R← {0, 1}256 chosen uniformly at random

A : key ← GenerateReportAID (BID, nonce).mac
A→ B : (AID, nonce)
B : reportkeyB ← EGETKEYBID (REPORT KEY )
B : key ← AES CMACreportkeyB (AID||nonce||...)

GenerateReport eventually does the same AES-CMAC operation as enclave B
but with the distinction that enclave A has no direct access to the reportkeyB .
Since the generated report is never transmitted, the report’s MAC can serve as
shared, symmetric encryption key.

This non-interactive key exchange has zero overhead, compared to local attes-
tation. It is not only fast but has also a negligible memory footprint. Report
generation and key derivation is done by SGX hardware, and the AES-CMAC
implementation is typically already part of enclave code for doing local attesta-
tion.

7.3.3 Proof-Of-Concept. Our proof-of-concept implementation demon-
strates the interaction between application and driver with a simplified protocol.
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Instead of implementing the full mutual authentication and channel encryption,
we stick to a one-way authentication. Therefore we use local attestation to build
an integrity-protected channel, similar to Algorithm 4. This is enough to demon-
strate the feasibility of secure port I/O with SGX and seL4.

Figure 26: Proof-of-concept: Integrity-protected secure output is achieved with
local attestation.

The application wants to output a short hard-coded message to COM2 in an
authentic way. The message has a maximum length of 32 bytes and does not need
to be kept private. The protocol works as follows: The application attests itself
to the I/O driver. Therefore, it first queries the Enclave ID (EID) of the driver.
The driver makes its EID (the value of MRENCLAVE) available under the service
name "eid". Then the application generates a report, targeted at the driver’s
EID, and includes the message in the report’s user data field. Thus, the report
does not only authenticate the application itself but also the message. Now, the
application sends the report to the driver. Therefore, the driver implements an
attestation service under the service name "attest". When receiving a report at
this service, the driver first checks if the application is white listed. It therefore
verifies the software vendor (the value of MRSIGNER) stored in the report. Next,
it recalculates the report’s MAC with its own report key. If the MAC matches,
the driver outputs the user data to COM2, as shown in Figure 26.

Note that hard-coding user data into the application only demonstrates func-
tionality. Since our implementation just requires authenticity of this user data,
confidentiality is no issue. In practice, when dealing with confidential data, this
data has to be provisioned to the application via remote attestation. Further-
more, a confidential communication channel, as described before, is required.
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7.4 Secure Port I/O

Secure port I/O requires a transparent I/O binding between driver and COM2
port. The COM2 port is accessible at address range 0x2F8 ... 0x2FF. We first
describe our new HasExclusive syscall which we implemented to achieve trans-
parency of the I/O binding. Then we give the necessary steps to do I/O binding
with seL4. Afterwards, we pay special attention to the role of SGX in protect-
ing the driver’s code base. Unfortunately, SGX does not support syscalls from
enclave code. Hence, we finally show ways to get around those shortcomings.

7.4.1 HasExclusive Syscall. We implement a new seL4 syscall, called
HasExclusive. This syscall takes as argument a capability. It returns the number
of capabilities that overlap the region of the given capability.

Figure 27: Example CDT showing all I/O port capabilities. All colored caps
overlap with the COM2 port cap.

In order to achieve this, the syscall traverses the Capability Derivation
Tree (CDT) and checks both, parents and children of the queried cap. It only
counts those caps which have the same type as the queried capability and over-
lap with it. In Figure 27, an example CDT is given. Here, HasExclusive has
been invoked on the COM2 port cap. The overlapping caps are colored. Note
that also the original COM2 port cap is counted. In this case, the syscall returns
the number 6. If one would invoke HasExclusive on the root port cap, it would
return 9 overlapping caps.

If the syscall returns 1, the capability is indeed owned exclusively by the caller.
Note that this syscall can also be used to probe if a given capability is empty,
in which case 0 is returned.

Implementation Notes. To count the number of overlapping caps, the syscall
traverses the CDT in both directions, starting at the queried cap. The CDT is
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internally stored as an ordered tree. Hence, we can use this ordering and stop
traversal as soon as a neighboring cap does not overlap anymore or has a different
type.

We implement this syscall especially for testing I/O port capabilities. The imple-
mentation could be also extended to other cap types. However, when considering
caps which were retyped from untyped memory, such as memory or I/O pages,
special care must be taken. In that case, one cannot only check against neigh-
boring caps in the CDT but also against the untyped memory, from which the
tested cap is derived. Otherwise, a process might falsely assume that it has ex-
clusivity over the cap forever. Consider a process having exclusivity over an I/O
page. A malicious process, owning the original untyped memory chunk, could
revoke this untyped memory in which case the I/O page is destroyed. Then it
could retype the I/O page for itself.

7.4.2 Transparent I/O Binding with seL4. When the I/O driver process
is loaded, it has to establish a transparent I/O binding to the COM2 port. We
briefly recap the requirements of the I/O binding, before explaining, how each
one is achieved with seL4.

– I/O binding

• Exclusive ownership of I/O resource

• Non-revocability of this ownership

– Transparency

• Identification of I/O resource

• Verification of the I/O binding

Exclusive Ownership. The process server initially owns a root I/O port ca-
pability covering all I/O ports. By minting this root cap to the COM2 range,
we get a capability, directly representing COM2. The process server assigns this
COM2 cap to the driver. In order to ensure that the driver has exclusivity over
COM2, the process server removes the COM2 address range from its root I/O
port cap.

Non-Revocability. When having exclusive ownership over COM2, the driver
is the only piece of software (apart from seL4) that has control over COM2.
However, seL4 knows some capabilities that can be misused to impersonate a
process and act on its behalf. These are the CSpace, the TCB and the PD
capability.

The CSpace cap represents all capabilities of a certain process. It allows invoca-
tion and manipulation of any capability of that process. By owning the driver’s
CSpace, one could simply duplicate the driver’s I/O port capability for own us-
age. To remain stealthy, one can delete the duplicate before resuming the driver.
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The PD cap represents a process’ page directory. It is used to map pages into
its virtual address space. When owning the driver’s PD cap, an attacker could
map malicious code into the driver. Thus, the driver can be forced to duplicate
the exclusive I/O port cap and migrate the double to the attacker.

The same can be achieved with the TCB cap. The Thread Control Block allows
to modify the register set of a process. Thus, an attacker, who has access to
the driver’s TCB cap, could manipulate the instruction pointer to do Return-
oriented Programming (ROP) [16]. If the driver’s code base is large enough, it is
likely to have enough gadgets for arbitrary code execution on the driver’s behalf.

To prevent such impersonation attacks, the driver not only requires exclusivity
over COM2 but also over its own CSpace, TCB and PD cap. To achieve this,
the process server first loads the complete driver into RAM. Therefore it creates
a new TCB for the driver, assigns it a fresh CSpace and PD, migrates necessary
caps to the driver and sets up its virtual memory. Then, the process server uses
the TCB cap to launch the driver. If the driver is running, it notifies the process
server to do a LockOut, as shown in Algorithm 7. LockOut means that the process
server deletes all its copies of the driver’s CSpace, TCB and PD cap.

Algorithm 7 LockOut()

Delete all references to the driver’s TCB, CSpace and PD cap.
DeleteCap(TCB driver)
DeleteCap(CSpace driver)
DeleteCap(PD driver)

Note that, if the process server is locked out, the driver needs to cooperate on
unloading. The process server can kill the driver by revoking the untyped memory
region from which the driver’s TCB has been derived. However, when doing so,
the whole driver is destroyed, including its CSpace. By destroying the driver’s
CSpace, the COM2 cap gets irreversibly lost and COM2 remain inaccessible to
the system until the next reboot. Hence, the driver has to freely migrate the
COM2 cap back to the process server before getting killed.

However, this is no loss of generality. Also, existing monolithic kernels such as
Linux have to rely on drivers to properly free certain resources, when unloading.

Resource Identification. Identification is implicitly provided, since the driver
knows the address range of the COM2 port. The driver accesses COM2 by in-
voking seL4 Call with the COM2 port cap and the COM2 port address 0x2F8,
for example. seL4 then checks if the port address matches the cap. On a match,
I/O succeeds. On a mismatch, seL4 returns an error.

Alternatively, the driver could identify an I/O port cap without accessing it. This
is achieved by minting the COM2 cap to the address range 0x2F8 ... 0x2FF. If
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minting succeeds, the COM2 cap indeed covers the minted address range. The
minted copy can be safely deleted afterwards.

Verification of I/O Binding. To verify if the process server indeed removed
its reference to the COM2 cap and the driver’s TCB, CSpace and PD caps, the
driver invokes the HasExclusive syscall on those caps. Note that the seL4 kernel
itself maintains a copy of each process’ CSpace and PD cap. Thus, HasExclusive
on these caps will always return at least the number 2. The verification of the
I/O binding is summarized in Algorithm 8.

Algorithm 8 VerifyBinding()

1: Return true if the I/O binding is exclusive and non-revocable.
2: io ← HasExclusiveCap(COM2)
3: tcb ← HasExclusiveCap(TCB)
4: cs ← HasExclusiveCap(CSpace)
5: pd ← HasExclusiveCap(PD)
6: if io 6= 1 or tcb 6= 1 or cs 6= 2 or pd 6= 2 then
7: return false
8: else
9: return true

Verification of Driver Code. Once VerifyBinding succeeds, the driver has
exclusivity over its own CSpace, TCB and PD. Hence, the driver’s caps are
shielded against all other processes running on top of seL4. The driver can do
secure I/O with the COM2 port. Moreover, we have effectively created a secure
execution environment for driver’s non-enclave code. This is necessary because
seL4 binds capabilities to the whole driver process, not just the driver enclave.

Since the driver process is bootstrapped by untrusted code, we have to ensure
that VerifyBinding is tamper resistant. Otherwise, the process server could
simply disable the check in VerifyBinding while loading the driver, for example.
Hence, we protect VerifyBinding by an SGX enclave.

Moreover, the driver enclave needs to verify driver’s non-enclave code before
ever interacting with it. Doing so is comparable to verified launch. Verification
could be done by calculating a chained hash over all non-enclave code and data,
similar to SGX measurements done with EADD. This is possible since the enclave
can access non-enclave memory. The expected hash could be stored in enclave
code, which is protected by SGX. Thus, trust is effectively extended to the whole
driver.

To sum up, a proper driver startup involves establishment of an I/O binding
and verification of this binding from within the driver’s enclave. Furthermore,
secure execution can be extended to the whole driver process by verifying driver’s
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Figure 28: Driver startup involves establishing an I/O binding and verifying it.
Furthermore, the driver enclave can extend trust to non-enclave code.

non-enclave region from within the enclave. The whole process is outlined in
Figure 28.

Towards Atomicity of VerifyBinding. VerifyBinding is non-atomic, even
when executed within an enclave. Consider that the process server has loaded
the driver correctly but withholds a copy of the CSpace cap. If it could manage
to interrupt the enclave after line 3 of Algorithm 8, the TCB check will succeed.
The process server could then use its CSpace cap to steal the driver’s TCB
cap. Before resuming the driver, it deletes its copy of the CSpace cap. Thus,
all subsequent HasExclusive checks also succeed. The driver verifies the binding
correctly although the process server is in possession of the driver’s TCB cap.

However, the process server cannot directly interrupt enclave code at any specific
position. SGX disables hardware breakpoints for production enclaves. Hence, the
process server would need to rely on page faults or probabilistic timer interrupts
or similar. To avoid page faults during verification, the driver should page-align
VerifyBinding. To get rid of the probabilistic sources of interrupts, the driver
could call VerifyBinding multiple times.

However, the preferred way of mitigation is to make VerifyBinding atomic by
shifting it into the seL4 kernel. Therefore, we introduce a new syscall, named
HasLockOut, which consolidates the HasExclusive checks for the driver’s TCB,
CSpace and PD cap, as shown in Algorithm 9.
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Algorithm 9 HasLockOut(TCB, CSpace, PD)

Return true if calling process has exclusivity over its TCB, CSpace and PD cap.
if TCB, CSpace or PD do not belong to calling process then

abort()
tcb ← HasExclusiveCap(TCB)
cs ← HasExclusiveCap(CSpace)
pd ← HasExclusiveCap(PD)
if tcb 6= 1 or cs 6= 2 or pd 6= 2 then

return false
else

return true

7.4.3 Enclave Syscalls. In order to successfully combine SGX with secure
port I/O, one requires to execute the HasLockOut syscall from driver’s en-
clave code. Unfortunately, this is not possible in SGX. When issuing SYSCALL,
SYSENTER, INT or similar instructions within an enclave, the CPU throws an in-
valid opcode exception. Syscalls can only be invoked by a detour to non-enclave
code. In general, SGX does not allow enclaves to directly exchange informa-
tion with the kernel. Each interaction has to be mediated by non-enclave user
code. This shows a fundamental incompatibility of SGX’s trust model with our
sandwich trust model. Hence, in our proof-of-concept, the driver implementa-
tion does not protect VerifyBinding by an enclave. Instead, it is executed in
non-enclave driver code, knowing that this does not protect against a malicious
process server. In the following we show how one could exploit a covert channel
to build a direct communication path between enclave and kernel. This would
allow to verify the binding within the enclave again.

Exploiting SGX Page Handling. Although SGX provides no defined path
for enclave-to-kernel communication, one can exploit paging side channels to do
so. By accessing an unmapped EPC page, a page fault occurs. Thus, an enclave
can send information about which exact page faulted to the kernel. To get a
channel from the kernel back to the enclave, one can also exploit dynamic page
management. The kernel can issue EMODPE to extend page permissions of an
already mapped EPC page. Then, the enclave issues EACCEPT to accept these
permission changes. If the page protection flags of EMODPE and EACCEPT do not
match, EACCEPT returns an error code. With each call to EACCEPT, the enclave
can derive one bit of information about the page protection flags. Hence, the
kernel and the enclave can agree on certain semantics of the page protection
flags to exchange data.

Though this procedure might seems complicated, it only needs to be done once
to signal the enclave a single bit of information, namely whether HasLockOut

succeeded or not. This bit indicates if the process server correctly did LockOut

and the driver has exclusivity over its own TCB, CSpace and PD. As soon as
this is the case, the I/O driver can extend trust to driver’s non-enclave code,
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as previously described. All subsequent syscalls can be safely delegated to the
verified non-enclave region.

To implement this, one could add a syscall wrapper, called HasLockOutWrapper,
as given in Algorithm 10. This syscall wrapper issues HasLockOut, as described
before. Since HasLockOut verifies if the passed TCB, CSpace and PD caps belong
to the calling process, the wrapper can be safely issued from driver’s non-enclave
code. Furthermore, HasLockOutWrapper takes the address of a read-only enclave
page, which serves as test page. It codes the result of HasLockOut into the write
permission of the test page by issuing EMODPE.

Algorithm 10 HasLockOutWrapper(TCB, CSpace, PD, test page)

Signal an enclave if its process has exclusivity over its TCB, CSpace and PD cap.
This is done by mapping an EPC test page either with or without write permission.

if HasLockOut(TCB, CSpace, PD) = true then
permissions.write = true

else
permissions.write = false

permissions.read = true
permissions.execute = false
EMODPE(epc page, permissions, test page)

Algorithm 11 EnclaveVerifyLockOut(test page)

Verify if the write permission of the EPC test page is set or not. Return true if the
calling enclave has indeed exclusivity over its TCB, CSpace and PD cap.
permissions.read = true
permissions.write = true
permissions.execute = false
result = EACCEPT(permissions, test page)
if result = SGX PAGE ATTRIBUTES MISMATCH then

return false
else

return true

Now the driver enclave can verify if the write permission is true. This is done by
issuing EACCEPT with the expected permissions. If there is a mismatch, EACCEPT
fails and the enclave knows that some other process still has access to it. The
verification is shown in Algorithm 11.
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7.5 SGX Integration

The seL4 kernel does not support Intel SGX out of the box. This section de-
scribes necessary changes we implemented to make SGX known to seL4. First,
the seL4 kernel has to be aware of the Enclave Page Cache (EPC). Therefore, we
change bootstrapping of seL4 in order to propagate the EPC up to the process
server. Furthermore, we modify the process server to allow allocation of EPC
pages. Next, we implement a generic way to bootstrap enclaves within RefOS.
Finally, we add a new capability to seL4, which allows issuing of privileged SGX
instructions (ENCLS) from user processes.

Figure 29: EPC memory is handled by a special memory allocator in the process
server. The dashed arrows show how memory is acquired.

Bootstrapping the EPC. The EPC is a contiguous region of memory, which
enjoys special access protection. The EPC region is specified as Processor Re-
served Memory (PRM) during system boot. The BIOS therefore initializes cer-
tain region registers of the PRM properly. To simplify matters, the OpenSGX
emulator we use allows specification of the EPC region via a special CPU in-
struction. Hence, we initialize the EPC region from RefOS code rather than from
the BIOS.

To make the EPC region accessible to software, we have to dig into the seL4
boot process. On system startup, seL4 partitions memory into a kernel-reserved
region and untyped memory, usable by RefOS processes. To make seL4 aware of
the EPC, we split this untyped region into an EPC untyped region and normal
untyped memory. The EPC region is propagated to the root task (process server)
via an architecture-specific bootinfo structure.

The process server already implements a memory allocator, which manages all
untyped memory. If an application claims more memory, it can acquire it from
this allocator. The allocator then retypes new pages from untyped memory. We
reuse the exiting allocator implementation to also provide an allocator for EPC



Chapter 7 – Proof-Of-Concept Implementation 67

memory. This allows an application to acquire EPC pages. Figure 29 gives an
overview of how EPC memory is propagated up to user processes.

Figure 30: Bootstrapping an enclave involves several steps: After loading the
ELF file via a selfloader, the startup code initializes and loads the enclave region
before giving control to the enclave. Execution flow is marked with bold frames.

Bootstrapping an Enclave. A RefOS application is stored in an ELF file [56].
For enclave applications, the ELF binary contains both, non-enclave code/data
and enclave code/data. The ELF file is statically linked. Hence, enclave code
and data is linked for the target address within the enclave region, at which the
enclave will be executed. However, to ease the process of enclave startup, the
whole enclave’s virtual region is spared out in the ELF binary. We shift enclave
code/data to a higher address range in the ELF file. This shifted region is never
executed but serves as a shadow region for initializing the actual enclave.

Enclave loading involves several steps, as seen in Figure 30. It basically follows
the enclave startup procedure, described in Section 5.3. In RefOS, new applica-
tions are loaded by an in-application selfloader.

Step 1: The selfloader loads the ELF content (non-enclave and enclave shadow) into
its own virtual address space.

Step 2: It gives control to the application, which invokes enclave startup routines
from libsgxnonenclave.

Step 3: Startup code first reserves an EPC page for the SGX Enclave Control Struc-
ture (SECS). The process server assists in allocating EPC pages and mapping
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them into the application’s enclave region. Then, ECREATE is invoked, which
reserves the enclave region and initializes the SECS.

Step 4: Again, startup code reserves EPC pages for the Thread Control Struc-
ture (TCS), Thread Local Storage (TLS), enclave code and data, State Save
Area (SSA) and the enclave stack and heap. By executing EADD, it fills the
enclave region with content. The TCS page is initialized to hold the enclave
entry point and to keep track of the SSA. Enclave code and data pages are
initialized from the enclave shadow region. Other EPC pages (TLS, SSA,
stack, heap) are initialized with zeros. EEXTEND measures all initialized EPC
pages. See the SGX manual for details about TCS, SSA and SECS [40].

Step 5: The enclave is verified and finalized by EINIT. It can be executed with
EENTER.

Note that EINIT involves a SIGSTRUCT for verifying correct loading of the en-
clave. For our proof-of-concept we generate this SIGSTRUCT dynamically during
enclave loading. For real-world usage, the enclave software vendor would create
the SIGSTRUCT during compile time and link it to the ELF file.

To reduce the memory footprint, one could unmap the enclave shadow region as
well as the selfloader when enclave bootstrapping is complete.

SGX Capability. All processes running on top of seL4 execute in protection
ring-3. However, SGX requires ring-0 for special, privileged instructions, called
ENCLS. In order to execute ENCLS instructions from RefOS processes, running in
ring-3, we add an SGX capability to seL4. Any process, owning the SGX cap,
can instruct the seL4 kernel to execute ENCLS instructions in ring-0.

7.6 OpenSGX QEMU

We ran our implementation on OpenSGX, a QEMU fork. OpenSGX provides
a rudimentary implementation of Intel SGX and is available at [74]. QEMU is
a machine emulator, supporting a lot of different CPU architectures like x86
and ARM, among others [66]. QEMU comes in two forms: as a Linux emulator
and as a system emulator. The Linux emulator simulates the Linux syscall API
to run a single program. In contrast, the system emulator directly simulates the
CPU. Hence, it is used to run a complete kernel. For optimizing execution speed,
QEMU translates simulated code to host code before executing it. Furthermore,
in system emulation mode, QEMU uses a soft-MMU for caching translations
from guest virtual to host virtual addresses, similar to a translation lookaside
buffer. This reduces the number of time-consuming guest address translations,
see Figure 31.

By the time of writing, OpenSGX does not support full system emulation
but only Linux syscall emulation, see also [45]. However, in order to run the
seL4 kernel, we require full system emulation. Hence, we reworked most of
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Figure 31: In Linux emulation mode, QEMU maps guest virtual to host virtual
addresses by adding a constant offset. In system emulation, translation involves
ordinary guest address translation via page directory and page tables, before
mapping it to host memory.

OpenSGX’s memory accesses to fit the soft-MMU translation process. Also, orig-
inal OpenSGX library code does not support x86 32-bit compatibility mode, also
referred to as i386. However, seL4 contains 32-bit assembler code, especially for
system startup and interrupt handling. Hence, we migrated OpenSGX to i386
in order to emulate seL4. Furthermore, OpenSGX has some incompatibilities
with the SGX manual regarding SSA, error handling and other implementation
details.
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Further Discussion

We have seen how secure port I/O can be done with SGX in conjunction with
the seL4 security kernel. In this section we explain memory-mapped I/O as a
common alternative to I/O ports. Then we discuss possible hardware modifica-
tions for making the integration of secure port I/O easier. Finally, we explain
one modification in detail, showing how an I/O binding can be directly assisted
by SGX hardware. This comes without the need for a security kernel.

8.1 Memory-Mapped I/O Binding

Nowadays, most devices are accessed via Memory-Mapped I/O (MMIO) rather
than I/O ports. We discuss MMIO from an enclave’s perspective and outline
how one can create an MMIO binding with seL4.

I/O ports are accessible via a separate I/O bus. In contrast, an MMIO device is
mapped into the same address space as RAM. Thus, MMIO devices are subject
to the same address translation process as memory pages. Once mapped into a
process’ virtual address space, the MMIO device can be directly addressed.

Figure 32: An enclave can access memory mapped I/O devices only via the
non-enclave region.
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MMIO from Enclaves. When mapping an I/O device directly into the enclave
region, address translation will fail due to SGX memory access checks. SGX
requires that, if the virtual address is within the enclave region, the translated
physical address must be part of the EPC [58]. Since MMIO cannot be part of
the EPC, MMIO devices have to be mapped into the non-enclave virtual address
range. This is no problem because enclaves have direct read/write access to non-
enclave memory, as shown in Figure 32.

MMIO with seL4. In seL4 an MMIO device is represented as a chunk of un-
typed memory, covering the device’s physical address range. The device becomes
accessible by retyping the device’s untyped memory to pages and mapping these
pages into a process’ virtual address space. Once MMIO is set up, access to
MMIO devices does not involve any interaction with the kernel. I/O is directly
carried out by accessing the virtual address of the mapped device. Hence, MMIO
has speed advantages over I/O ports because in seL4, access to an I/O port is
only possible via syscalls.

For secure MMIO, we again require a transparent MMIO binding between a
driver and an MMIO device. It is not enough that the device is properly and
exclusively mapped into the driver’s virtual address space. In order to verify the
binding with the HasExclusive syscall, the driver needs to have access to the
device’s page capabilities. Furthermore, it needs to know at which exact virtual
address the device is mapped. Thus, the easiest way to achieve transparency
is giving the driver exclusive ownership of the whole device’s untyped memory.
Then, the driver can directly verify exclusivity of the untyped memory. The
driver itself retypes memory and maps it appropriately.

Non-revocability of the MMIO binding is achieved the same way as for I/O
ports. However, identification of the MMIO device is not directly possible in
seL4. A device is identified by its physical address. In seL4 it is not possible to
determine the physical address of an untyped memory or retyped page capability.
seL4 keeps the mapping between cap and physical address hidden from user
processes. Hence, one would require a new seL4 syscall which can query the
physical address of certain memory caps.

8.2 Reducing Complexity.

We see two possible improvements for making SGX more suited to secure port
I/O by reducing total complexity. First, allowing syscalls from enclave code or
second, providing secure port I/O in hardware. Note that latter improvement
makes the first one obsolete. Both options require changes to SGX hardware.
We motivate them in the following.

Syscall Support. SGX lacks support for issuing syscalls from an enclave. How-
ever, this is necessary for doing secure port I/O in software. A syscall is needed
to establish a secure path between I/O driver and seL4 kernel. Without this
syscall, one needs to build a workaround by exploiting paging side channels.
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This is neither performant nor good practice. Furthermore, since paging side
channels exist in both directions between enclaves and kernel, it would be of no
harm for SGX to also provide a direct channel. Hence, direct syscall support for
SGX enclaves is desirable.

SGX could introduce a new ENCLU user-mode instruction, called ESYSCALL.
When the CPU traps into the kernel, the enclave register file is stored in the
enclave’s SSA. Then all registers are masked. ESYSCALL could preserve certain
registers to allow passing information to the kernel. When returning from the
kernel with ERESUME, SGX restores the enclave register file from the SSA. Again,
certain registers could be spared out. Thus, the kernel could return data to the
enclave. Note that ERESUME is currently an ENCLU instruction, which cannot
be executed from within the kernel (ring-0). ERESUME would need to be changed
in order to allow invocation from both, ring-0 and ring-3.

Hardware Support for Secure Port I/O. The use of a security kernel like
seL4 gives a cheap and flexible method of doing secure port I/O with SGX.
However, integration of secure port I/O in an existing software stack might be
difficult due to additional complexity. Doing the I/O binding in hardware would
help reduce this complexity.

Without additional hardware support, the insecure rich OS has to integrate the
seL4 kernel in its resource management. This might be quite intrusive since the
rich OS has to be aware of seL4 capabilities. This is, however, required in order
to dynamically load the secure I/O driver.

Figure 33: Hardware binding comes with little overhead, allowing secure port I/O
directly from within an enclave. Software binding in addition requires verified
launch of seL4 and the non-enclave driver.
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Also, doing secure bootstrapping of our architecture is quite complex. Verified
launch of the seL4 kernel is done using secure boot features of Intel TXT and
the TPM. Furthermore, the driver’s non-enclave is protected by seL4’s strong
process isolation. Last, verification of the driver’s non-enclave code is performed
by the driver enclave, as shown in Figure 33.

If an enclave could directly do secure port I/O without relying on some secu-
rity kernel, this would reduce the number of verification steps necessary to set
up secure port I/O. In special, driver’s non-enclave code would neither require
verified launch nor secure execution. Likewise, seL4 and the trusted boot would
be avoided.

8.3 I/O Binding in SGX Hardware

In this section we show how a secure I/O binding could be directly enforced by an
SGX-enabled CPU. We distinguish between hardware-assisted secure port I/O
and hardware-assisted secure MMIO. Finally, we discuss how the I/O binding
can be initialized and destroyed during driver (un)loading.

Our proposed modifications only affect the SGX CPU. In contrast, ARM Trust-
Zone propagates the secure world status to other peripherals as well via a sep-
arate wire. Hence, a peripheral can decide on its own whether to grant access
or not. Note that this is impractical for SGX since different enclaves need to be
distinguished. In SGX, the enclave process is identified by its SECS page. The
physical address of the SECS page has 8 bytes. Using this SECS identifier, one
would require at least propagation of a 64 bit identifier to other peripherals.

8.3.1 Hardware-assisted Secure Port I/O. Similar to the EPCM, SGX
reserves an I/O Port Map (IOPM) in processor-reserved memory. Each port
address maps to a slot in the IOPM. When an I/O port is accessed, the CPU
looks up the corresponding slot in the IOPM. If empty, access is granted. This
allows unprotected port I/O for legacy applications. If non-empty, the current
process must be in enclave mode and its SECS identifier must match those in
the IOPM slot. The access check is depicted in Figure 34.

I/O ports range from 0x0000 ... 0xFFFF. One IOPM slot needs to hold at
least an 8-byte SECS identifier. If each slot addresses 8 I/O bytes, the size of the
IOPM is 64KB. This is reasonable since RAM is cheap. Even if most ports are
unused, one does not loose much memory. Moreover, a granularity of 8 bytes is
sufficient for most purposes. The serial COM ports, for example, are addressed
by 8 bytes each.

8.3.2 Hardware-assisted Secure MMIO. To integrate secure MMIO in
SGX hardware, we outline two options: Either one could extend the EPCM to
handle MMIO pages as well, or one could add an I/O protection unit.
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Figure 34: Secure port I/O in SGX hardware.

Extending the EPCM. The EPCM could not only be used to keep track of
enclave pages but also of MMIO pages. To achieve this, a contiguous MMIO
region is defined as protected. Each page in this protected MMIO region is
assigned a slot in the EPCM. During address translation, the CPU checks if a
protected MMIO page is accessed. In that case, SGX looks up the corresponding
slot in the EPCM and does permission checks, similar to ordinary EPC pages
checks.

An EPCM slot mainly contains the virtual address, under which the page is
mapped, and the SECS identifier. Furthermore, the slot covers some protection
and status flags. Thus, a slot has at least a size of 17 bytes, as shown in Figure 35,
although the exact layout is left as an unspecified implementation detail in SGX.

Figure 35: The EPCM slot contains the SECS identifier, the virtual page address
and some flags.

For deciding if a page is within the EPC or not, SGX implements a very fast and
cheap region check in hardware, as detailed in [28]. This check requires that the
size of the EPC region needs to be a power of two. Furthermore, its base address
needs to be naturally aligned. Consider L as the region’s lower bound and U as
the inclusive, upper bound. An address A is within the region if A∧¬(L⊕U) = L.
This check only requires a bitwise XOR, AND, negation as well as comparison,
which are both cheap and fast operations in hardware.
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We reuse this region check for the MMIO region. Hence, the MMIO region check
comes with minimal changes to hardware. Also, the permission checks for normal
EPC pages might be directly reused for checking permissions of MMIO pages.
The biggest hardware cost is the increased memory demand of the additional
MMIO slots. The memory demand strongly depends on the size of the MMIO
region.

To get an understanding of a typical MMIO layout, we inspect a modern Dell Lat-
itude. Its MMIO region covers the address range 0xD0000000 ... 0xF7FFFFFF,
as seen in Figure 36. To enumerate each MMIO page separately, one would re-
quire about 164.000 additional slots in the EPCM. With a slot size of at least
17 bytes, the EPCM increases by at least 2.7MB in this example.

Figure 36: Typical MMIO layout with many holes of unused addresses. Note
that sizes are not true to scale.

Two key observations can be made: First, different devices might have signifi-
cantly different sizes of their address region. This cannot be properly represented
on page granularity. For example, the VGA graphics controller claims 256MB
of the memory addresses, which are 216 pages. In contrast, Intel’s Management
Engine only claims 32 bytes of memory, which is less than one-hundredth of a
single page. Second, not all addresses of the MMIO region are actually used.
The inspected notebook has unused address holes of over 330MB. To be more
memory efficient, one should distinguish devices rather than pages. This can be
achieved by an I/O protection unit.

I/O Protection Unit. The I/O Protection Unit (IOPU) solves the issue of
a sparsely-used and inhomogeneous MMIO region. It keeps track of each pro-
tected device in a special cache. The IOPU caches all MMIO bindings, that is,
it maps protected physical device regions to enclaves. The IOPU cache is fully
associative. Hence, each IOPU slot can represent one arbitrary device region.
To lookup a specific address, the IOPU performs address region checks on all
slots in parallel. This can be done by the same fast and cheap region checking
as before, given that a device region is a power of two.
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Figure 37: Device A is bound to the enclave. Hence, it can only be accessed from
the enclave region. Device B can be mapped to non-enclave code as well since it
is not claimed by any enclave.

SGX and the IOPU basically have to implement the following rules: If an en-
clave page resolves to the EPC, ordinary SGX checks apply. If it points to the
protected MMIO region, the IOPU has to find a corresponding slot in its cache.
Moreover, the slot has to match the virtual address and the SECS identifier of
the calling enclave. If it resolves to unprotected memory, access fails. For non-
enclave code there is one difference, compared to standard SGX: If a non-enclave
page maps to a protected MMIO device, the device region must not be claimed
by any enclave, that is, the IOPU must not find a non-empty slot for the device
region. Figure 37 illustrates this restriction. In contrast, the non-enclave can map
unclaimed MMIO devices. This allows compatibility with existing non-enclave
code.

The big advantage of an IOPU is that each device region is addressed by only
one IOPU slot, regardless of its size. Typical notebooks have around 20 dis-
tinct device regions. Moreover, the IOPU only caches those device regions which
actually need protection. Hence, 64 IOPU slots should be fairly enough.

8.3.3 Driver (Un)loading. To set up an I/O binding, one has to initialize
the corresponding slot, either in the IOPM for secure port I/O or in the EPCM or
the IOPU for secure MMIO. This slot initialization can be safely delegated to the
untrusted OS by adding a new ENCLS instruction, called EADDIO, for example. A
device driver typically handles a single device during its whole lifetime. Hence, it
is legitimate to do this binding statically when loading the driver. During enclave
setup, EADDIO establishes the binding by initializing the corresponding slot. This
only works out if the slot is empty, that is, no other enclave has currently access.
Furthermore, EADDIO includes the physical address range of the I/O port or the
MMIO device in the measurement. Thus, the I/O resource gets identified. If
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enclave initialization (EINIT) succeeds, the driver can be sure that it has been
assigned the correct device or port and that it has exclusivity over it.

In the case of an MMIO binding, additional care must be taken. To detect if
MMIO pages are correctly mapped, the expected virtual address needs to be
measured by EADDIO. Since potentially many MMIO pages are represented by
the same IOPU slot, there is certain ambiguity. MMIO pages might be mapped
into the enclave in a scrambled order. Hence, we require the IOPU to enforce that
the contiguous physical address region is also mapped to a contiguous virtual
address region.

To guarantee non-revocability of the I/O resource, deallocation of the corre-
sponding slot requires cooperation by the owning enclave. Note that the slot
cannot be automatically deallocated by SGX if the enclave is destroyed. Oth-
erwise the untrusted OS could simply kill the driver enclave while doing secure
I/O, grab the resource and impersonate the driver enclave. To avoid this, slot
deallocation could be bound to a special ENCLU instruction, called EREMOVEIO,
for example. When the driver unloads, it issues this instruction and the slot is
freed. If the untrusted OS kills the enclave beforehand, the slot and the corre-
sponding resource remain inaccessible until the next reboot.



Chapter 9

Conclusion

In this thesis we investigated secure port I/O with Intel SGX. We argued that a
secure execution technology alone is rather worthless for an end user, who wants
to protect secret data on a mobile computing device. Even if data is protected
by an SEE, the user simply cannot access this data in a secure way without
secure I/O. Therefore, for mobile devices the combination of secure execution
with secure port I/O is crucial in enabling user-centric security applications like
secure password entry, electronic payment, secure chat and similar.

Intel Software Guard Extensions is a comprehensive modern secure execution
technology for x86 CPUs. Unfortunately, it lacks support for secure port I/O.
Our main contribution is to enable secure port I/O with Intel SGX. We developed
a secure I/O architecture in which a user application communicates with a secure
I/O driver to securely interact with a user. Our architecture permits to run
an insecure rich OS stack on the mobile device. We leveraged SGX enclaves
to protect the user application and the driver from the insecure rich OS. The
user application uses SGX local attestation to securely communicate with the
I/O driver. We added secure port I/O features to SGX using the seL4 security
kernel, which runs below the rich OS. We used seL4 to bind an I/O resource
to the secure I/O driver. This binding ensures the driver exclusivity and full
control over the I/O resource. Furthermore, we modified seL4 to allow the driver
to transparently verify if the I/O binding is properly established. Hence, our
architecture effectively enables to do secure port I/O from within SGX-protected
user applications.

In our architecture, the security kernel seL4 is part of the TCB. This is accept-
able since seL4 is small and verifiable. From a security point of view one can
compare our architecture with ARM TrustZone in that sense that TrustZone also
employs a security kernel for setting up a secure world stack. In order to reduce
complexity, we discussed possible modifications to SGX hardware. Therefore, we
outlined methods for integrating secure port I/O directly in SGX. This basically
shifts management of the secure I/O binding to hardware.

Intel already has experience in hardware-assisted secure I/O features like PAVP,
Intel Insider and PTD. However, these are on the one hand not generic enough
to support arbitrary legacy I/O devices and on the other hand not available to
the broad public. Hence, we see it as a necessary step for Intel to add generic
and transparent secure I/O features to its x86 CPUs, which are not subject to
licensing schemes of any kind. This would allow Intel to catch up with ARM
TrustZone, which already supports generic secure I/O in hardware for several
years now.
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