
Patrick Koch, BSc

Smelly Spreadsheet Structures:

Structural Analysis of Spreadsheets

to enhance Smell Detection

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Dipl.-Ing. Dr.techn. Birgit Hofer

Institute for Software Technology

Graz, April 2016

Abstract

The use of spreadsheets is the most popular form of end-user programming. As
spreadsheets are in general not created and maintained by professional program-
mers, error rates are high. As a remedy, many approaches were proposed to avoid,
find, and fix errors in spreadsheets. A number of these approaches, mostly proposing
unit- and type inference techniques, take the structure of spreadsheets into consid-
eration. However, in general, structural information is rarely used in established
spreadsheet quality assurance (QA) techniques. This is attributable to structure in-
ference being a difficult problem. Hence, no general process exists for the extraction
of these structures. In this master’s thesis, we present a novel analysis process to
identify spreadsheet structures. Our analysis process follows three main concepts:
First, our approach focusses on structural information provided by formula cells and
formula relations. Second, wherever possible, we utilize one-dimensional areas for
our analysis purposes, merging individual cells or partitioning two-dimensional areas.
Third, in case of ambiguity during the analysis process, we opt for the interpretation
which requires the least amount of assumptions. We evaluated the performance of
our structural analysis process using the EUSES and ENRON spreadsheet corpora.
We compared expected high-level structures, detected by manual inspection, with
the results of our structural analysis process. Almost all of the expected structures
could be found at least partly by our approach. Moreover, more than 80% of struc-
tures could be inferred in their entirety. We conclude that these structures are well
suited to enhance spreadsheet QA techniques. To demonstrate how structural infor-
mation could be applied, we enhance the detection processes of spreadsheet smells
(a QA technique) by following two approaches: First, we propose five updates to
the catalogue of established smells making use of structural information. Second,
we introduce seven new smells based on spreadsheet structures. The proposed en-
hancements reduce the runtime of smell detection routines, lower the number of
false positive smell detections, and allow for the detection of further issues in form
of new smells.

Kurzfassung

Kalkulationstabellen sind die gebräuchlichste Form von Programmierung durch End-
nutzer. Sie sind jedoch fehleranfällig, da sie zumeist nicht von Fachkundigen erstellt
werden. Um dem entgegenzuwirken wurde eine Vielzahl von Techniken zur Vermei-
dung, Aufsprüng, und Behebung von Fehlern in Kalkulationstabellen entwickelt.
Einige dieser Techniken, zum Beispiel Unit- und Type-Inference, verwenden Struk-
turinformationen von Tabellen. Der Großteil der Techniken zur Qualitätssicherung
(QS) von Kalkulationstabellen macht jedoch keinen Gebrauch von Strukturinfor-
mationen. Dies ist darauf zurückzuführen, dass die Ermittlung dieser Informationen
ein schwieriges Problem darstellt. Es gibt folglich noch keinen allgemeinen Pro-
zess, welcher solche Strukturen offenlegt. In dieser Masterarbeit stellen wir einen
neuartigen Prozess zur Analyse von Strukturen in Kalkulationstabellen vor. Unser
Prozess befolgt drei grundlegende Prinzipien: Erstens, wir verwenden Strukturin-
formationen die durch Formel-Relationen gedeckt sind. Zweitens, wir verwenden
eindimensionale Zellbereiche. Einzelne Zellen werden hierzu zusammengefügt, und
zweidimensionale Zellbereiche werden geteilt. Drittens, in Fällen die mehrere Inter-
pretationsmöglichkeiten bieten, folgen wir jener Interpretation welche die wenigsten
Annahmen voraussetzt. Wir haben die Funktion unseres Analyseprozesses unter An-
wendung der EUSES und ENRON Kalkulationstabellen-Sammlungen begutachtet.
Zu diesem Zweck wurden oberflächliche Strukturen, die durch manuelle Inspektion
festgestellt wurden, mit den Ergebnissen unserer strukturellen Analyse verglichen.
Nahezu alle erwarteten Strukturen konnten anteilsweise von unserem Ansatz ent-
deckt werden. Über 80% dieser Strukturen konnten in ihrer Gesamtheit erschlossen
werden. Wir folgern, dass diese Strukturen dazu geeignet sind um QS-Techniken zu
verbessern. Wir demonstrieren eine solche Anwendung am Beispiel von Spreadsheet
Smells, einer QS-Technik. Zum einen schlagen wir fünf Erweiterungen die durch
Strukturinformationen ermöglicht werden für bestehende Spreadsheet Smells vor.
Zum anderen etablieren wir sieben neue Spreadsheet Smells, deren Funktionsweise
auf Strukturinformationen basiert. Die vorgeschlagenen Verbesserungen verringern
die Laufzeit von Smell-Detektierung, verringern falsch-positive Smell Detektionen,
und ermöglichen es neue Qualitätsmängel mit Hilfe von Spreadsheet Smells offen-
zulegen.

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master’s thesis.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden
Masterarbeit identisch.

Graz, am

Datum Unterschrift

Acknowledgements

First of all, I would like to thank Professor Wotawa, whose leadership enabled and
inspired me to take on this master’s thesis in the first place. Furthermore, I would
like to express my sincerest gratitude to Birgit Hofer, my guiding light in the aca-
demic twilight, who, despite personal time constrains, provided me with a near
infinite amount of feedback and invaluable insights. Thank you for your guidance
and support. A big thank you is also well deserved by Elisabeth, my resident proof-
reader, whose many and well-considered advices allowed me to push the language
level of this work from half-decent to decent or beyond. Thank you for sharing your
wisdom with me. Not least of all, I would like to express my deepest gratitude to
my family and friends, who accompanied and supported me all the way throughout
my studies and during my work on this thesis.
Thank you. All of you.

Table of Contents

1 Introduction 14

2 Preliminary Definitions 17

3 Structural Analysis 25

3.1 Ucheck Analysis . 25

3.1.1 Cell Classification . 26

3.1.2 Header Assignment . 30

3.2 Analysis Targets . 32

3.3 Novel Analysis Approach . 33

3.3.1 Grouping . 35

3.3.2 Blocking . 54

3.3.3 Header Assignment . 57

4 Evaluation 67

4.1 Evaluation Corpora . 67

4.1.1 Filtering of Spreadsheet Corpora 68

4.1.2 Corpora Comparison . 70

4.2 Evaluation Approach . 80

4.2.1 Evaluation Goal . 80

4.2.2 Evaluation Method . 80

4.2.3 Evaluation Data . 82

4.3 Evaluation Results . 83

11

4.4 Discussion . 86

5 Spreadsheet Smells: State of the Art 90

5.1 Known Spreadsheet Smells . 91

5.1.1 Standard Deviation . 91

5.1.2 Empty Cell . 94

5.1.3 Pattern Finder . 95

5.1.4 String Distance . 96

5.1.5 Reference to Empty Cells . 98

5.1.6 Quasi-Functional Dependencies 99

5.1.7 Multiple Operations . 100

5.1.8 Multiple References . 102

5.1.9 Conditional Complexity . 103

5.1.10 Long Calculation Chain . 105

5.1.11 Duplicated Formulas . 106

5.1.12 Inappropriate Intimacy . 108

5.1.13 Feature Envy . 110

5.1.14 Middle Man . 112

5.1.15 Shotgun Surgery . 114

5.2 Overview and Comparison . 115

5.3 Utilization of Spreadsheet Smells . 120

5.3.1 Smell Indication . 120

5.3.2 Smell Removal . 122

5.3.3 Other Approaches . 123

5.4 Issues . 124

6 Structure-Based Spreadsheet Smells 126

6.1 Updating Existing Smells . 126

6.1.1 Sliding Window Smells. 126

6.1.2 Similarity-Based Smells. 128

12

6.1.3 Formula-Based Smells. 130

6.1.4 Long Calculation Chain. 131

6.1.5 Inter-Worksheet Smells. 133

6.2 Introducing Novel Spreadsheet Smells 134

6.2.1 Duplicated Formula Groups 134

6.2.2 Formula Group Distance . 137

6.2.3 Unrelated Neighbours . 139

6.2.4 Inconsistent Reference Dimensions 142

6.2.5 Inconsistent Formula Group Reference 144

6.2.6 Missing Header . 146

6.2.7 Overburdened Worksheet . 148

6.2.8 Overview . 150

6.3 Discussion . 151

7 Related Work 155

8 Conclusions and Future Work 158

List of Figures 163

List of Tables 164

References 166

13

1. Introduction

Spreadsheets are an established all-purpose tool for management and business ap-
plications. This is owed to the key strengths of the spreadsheet paradigm: intuitive
operation, wide availability, and diverse applicability. An analysis of computer us-
age across 95 international organisations [Taylor, 2007] summarized that 7.4% of
computer working hours are spent using Microsoft Excel. 95% of businesses utilize
spreadsheets for financial accounting. The amount of individual spreadsheets in use
is considerable. Panko and Port [2012] highlight some results of a 2010 spreadsheet
census: For instance, a large government agency had 630,000 spreadsheets in use.
A large health insurance company estimated to use about 2,000 spreadsheets. In
reality, they had 42,000. A very large global bank had 8 to 10 million spreadsheets
in use, while estimating to have one to two million. These examples indicate that
spreadsheets are far more common and influential than widely believed.

Spreadsheets are used by many professions and in various levels of hierarchical
structures. Entrepreneurs and white-collar workers are among spreadsheet users,
as are financial experts. However, only 15% of spreadsheet users are trained ex-
perts. Consequently, errors in spreadsheets are a common occurrence. In some
cases, such errors can lead to costly consequences. The European Spreadsheet Risk
Interest Group (EuSpRiG) lists economically significant incidents which are related
to spreadsheet errors [2013]. In 2011, a calculation error of the financial advisory
firm Ehelers resulted in a spreadsheet underestimating the total cost of a 10-year
bond by $400,000. In the same year, a spreadsheet error lead the Norwegian Cen-
tral Bank to issue wrong information regarding a change of rate hikes. Lastly, the
2010 paper by Harvard economists Carmen Reinhart and Kenneth Rogoff, ‘Growth
in a Time of Debt’, was quoted to justify widespread international austerity mea-
sures. However, the spreadsheet employed by Reinhart and Rogoff contained wrong

14

assumptions and calculation errors, each biasing the outcome of the calculations
in favour of their result. Without these issues present, the result of their paper is
inconclusive.

These and other incidents in recent years lead to a heightened awareness for the
necessity of spreadsheet Quality Assurance (QA) techniques. Various approaches to
prevent, detect, and fix faults within spreadsheets have been proposed. In particu-
lar, numerous approaches were made to adopt common techniques for code quality
improvement into the spreadsheet domain. Jannach et al. [2014] provide a compre-
hensive overview of noteworthy approaches to improve spreadsheet quality. They
also establish a classification of these approaches into six categories, based on their
general working principle.

One of these categories is static spreadsheet analysis. Approaches within this cat-
egory attempt to adapt established techniques of static code analysis to the spread-
sheet domain. Two general types of approaches are part of this category. First,
spreadsheet smells that detect suspicious characteristics based on particular calcu-
lated metrics. Second, unit and type inference approaches which attempt to relate
cell values to labels and other information within a spreadsheet. Consequently, es-
tablished relations can be used to infer unit information for related values. This
unit information can then be applied to validate formula calculations.

Structural analysis is employed by some unit and type inference approaches.
However, hardly any other established spreadsheet QA techniques we are aware of
apply structural information in any significant amount. This is likely due to the fact
that identification of meaningful structures within a spreadsheet is no trivial task.
While spreadsheet users usually follow some conventional guidelines, spreadsheet
structures in general do not follow specific rules. However, structural analysis could
potentially provide valuable information to benefit spreadsheet QA.

As a consequence, we established a novel analysis approach to identify spread-
sheet structures. During the process, we attempt to infer groups of related formula
cells and referenced value cells. We further detect calculation blocks which denote
separate areas containing groups of formula and value cells. Lastly, we infer relations
of matching header cells to the columns and rows of detected calculation blocks.

15

Structural information inferred by our analysis process may benefit various spread-
sheet QA techniques. We focus on enhancement of spreadsheet smell detection by
following two basic approaches: First, we propose updates to existing smells to make
use of structural information. A catalogue of spreadsheet smells was already estab-
lished by the scientific community. We point out possibilities of enhancement for
either groups of related smells, or specific individual smells. Second, we introduce
new smells based on the results of our structural analysis process.

The main contributions of this master’s thesis are (A) a novel analysis approach
to infer structural information of a spreadsheet, (B) empirical evaluation of the
performance of our structural analysis, (C) a set of proposals to update existing
spreadsheet smells based on structural information, and (D) a set of new spreadsheet
smells which utilize structural information in their detection mechanisms.

The remainder of this thesis is structured as follows: Section 2 provides prelim-
inary descriptions and formal definitions used throughout the rest of the thesis. In
Section 3, we introduce the principle of structural analysis, presenting the UCheck
Header Inference process as an example. We outline the goals and concepts em-
ployed by our structural analysis approach. We then establish the general workflow
of our novel analysis process, and explain each step within the workflow in greater
detail. In Section 4, we present the spreadsheet corpora we used for our evaluation
purposes and describe the filtering process we applied to each corpus. We then de-
scribe our evaluation process and present our findings. In Section 5, we introduce
the notion of spreadsheet smells and present the catalogue of spreadsheet smells pro-
posed by the scientific community. For each smell within the catalogue, we provide
detailed information based on a defined set of criteria. We highlight similarities and
interactions between specific smells and describe how the concept has been utilized
throughout literature. Section 6 outlines possibilities to apply structural informa-
tion to spreadsheet smells. We point out approaches to enhance existing spreadsheet
smells, and also present a list of novel spreadsheet smells which utilize structural
information. In Section 7, we summarize the relevant research related to spreadsheet
smells. Section 8 concludes the thesis and points out opportunities for future work.

16

2. Preliminary Definitions

In this section, we provide preliminary descriptions and formal definitions used
throughout the rest of the paper. In specific, we establish the terminology de-
scribing spreadsheets, spreadsheet components, and their interdependencies. We
also establish a set of functions, providing a formal language to access and work
with the previously defined terms.

Definition 1 (Cell). A cell C is the basic building block of a spreadsheet. Each cell
contains a specific item of information and is located at a specific position within
a spreadsheet. Each cell can either be empty or contain one item of user-supplied
content.

Definition 2 (Cell content). Cell content refers to the information a user supplied
for a specific cell. Each cell may either be empty, symbolized by the value ε, or
contain one item of one of the following content types:

• a Boolean value, representing a logic or truth value. Allowed values for
Boolean items are true and false.

• a numeric value, representing a number or quantity. Allowed values are
integer as well as floating point numbers. Dates are also represented as a
numeric value with special formatting.

• a formula, representing some form of calculation. Formulas allow for the
calculation of values based on a number of supported spreadsheet functions
and operators. Each formula is made up of a combination of operators and
operands. Operators describe the applied calculations of the formula. Operands
provide input values for operators. These are either references to values of
other cells, or constant values.

17

• a string value, representing textual information stored within a character
string. Strings are typically used as column and row headers to annotate data
contained within the spreadsheet. However, strings may also be used as input
values for spreadsheet formulas.

• an error value, representing an error which was detected during the evalua-
tion of a formula. Various different error values are available to signal specific
error circumstances (e.g.: division by zero).

The function content(cell C) provides access to the content of a specific cell. It is of
the form C→ content. Thus, providing the function with a cell C it returns an item
of content. Content denotes either an empty result ε or the user-supplied content of
cell C.

Definition 3 (Content view). The cell contents of all cells in a spreadsheet make
up the content view, or input view, of that spreadsheet. This view describes the
state of a spreadsheet before any evaluation of cell content items has taken place.
Thus, formulas in this view are represented by their formula string.

The content view is one of the two views, commonly employed when representing
spreadsheets. Static analysis methods, like the ones we describe in this paper, use
this view of a spreadsheet. The other established spreadsheet view is the value view,
described in Definition 7.

Definition 4 (Cell type). Each cell has a specific cell type that is based on the type
of cell content it contains. The function type(cell C) provides access to the type of
a specified cell. It is of the form C → type, and defined as

type(C) =

empty if content(C) ≡ the empty value ε

boolean if content(C) ≡ a Boolean value

numeric if content(C) ≡ a numeric value

string if content(C) ≡ a string value

formula if content(C) ≡ a formula

error if content(C) ≡ an error value

.

18

Definition 5 (Cell value). Beside the static, user-supplied content, each cell also
features a cell value. The value of a cell is determined via evaluation of the cell’s
content.

Cell values allow for value-based calculations in formula cells. The function
value(cell C) provides access to the value of a specific cell. It is of the form C→ value,
whereby the resulting value depends on the cell’s content. The function value(cell
C) depicts this evaluation process and is defined as

value(C) =

the numeric value 0 if type(C) = empty

{boolean, numeric, string, error} if type(C) = formula

content(C) otherwise

.

Evaluation of an empty cell results in the numeric value 0. Evaluation of a formula
cell results in either a Boolean, numeric, string, or error value, depending on the
evaluated formula. The specific evaluation process of formula cells is not relevant
for the type of static analysis we apply in this paper and is therefore not described
in further detail. Evaluation of boolean cells, numeric cells, string cells, and error
cells results in the respective cell’s content as value.

Definition 6 (Value cells). The cells of the types boolean, numeric, string and error
are summarized into the set of value cells of a spreadsheet. These cells provide the
input values for formula-based calculations within spreadsheets. Each value cell’s
value is equal to its cell content.

Definition 7 (Value view). The value view of a spreadsheet encompasses non-empty
cells within a spreadsheet, represented by each cell’s value. Thus, it provides the
state of a spreadsheet after evaluation, omitting values of empty cells for the purpose
of clarity.

The value view is one of the two views commonly employed when representing
spreadsheets. Spreadsheet environments like Microsoft Excel usually present the
value view of a spreadsheet to their users. The other established spreadsheet view
is the so-called content view, described earlier in Definition 3.

19

Definition 8 (Worksheet). A worksheet W is a collection of cells within a spread-
sheet. Each cell is contained in exactly one worksheet. The set of cells contained in
a worksheet is returned by the function cells(worksheet W) such that

cells(W) = {cell C | C is contained in W}.

Likewise, the worksheet a cell is contained in is returned by the function work-
sheet(cell C) such that

worksheet(C) = worksheet W | C is contained in W.

Definition 9 (Coordinates). Cells within a worksheet are arranged in a matrix.
Columns and rows of this matrix are identified by an ascending index. Specific
indexing practice depends on the writing system applied by the spreadsheet’s author.
In Left-To-Right (LTR) systems, indexing starts at the leftmost column, assigning
the index one to it. In Right-To-Left (RTL) systems, indexing starts at the rightmost
column, assigning the index one to it. Independent of the writing system, the
topmost row always has the index one. Cell coordinates uniquely define the position
of a cell within this matrix. The column coordinate matches the column index of
the matrix. The row coordinate matches the row index of the matrix.

The functions column(cell C) and row(cell C) provide access to the coordinates
of a specific cell. They are of the form C → coordinate, whereby coordinate denotes
the column- or row-index of the cell within the worksheet.

Definition 10 (Coordinate notation). Coordinates allow to identify a specific cell
within a worksheet. A coordinate notation specifies the form these coordinates
may be provided in. Within spreadsheet environments and scientific literature, two
distinct coordinate notations are commonly used: the A1-notation and the R1C1-
notation.

• The A1-notation is the standard notation used within spreadsheet environ-
ments. Using this notation, the coordinates of the leftmost, topmost cell of
a spreadsheet created in a LTR writing system are stated in the Form “A1”.
The first part of the coordinate information comprises one or multiple letters
which symbolize the column index. The letter A, being the first letter of the

20

alphabet, thereby refers to the first column within the spreadsheet at index 1.
The letter B refers to index 2, and so on. The second part of the coordinate in-
formation is a number which symbolizes the row-index within the spreadsheet.

• The R1C1-notation is mainly used to communicate formal properties and
relationships within worksheets, as it allows for easy tracking and compre-
hension of formula references. Using this notation, the coordinates of a cell
within a worksheet are stated in the form “R<row>C<col>”. The <row>
and <col> parts of each coordinate statement are integer values. The <row>
value symbolizes the row index of the cell. The <col> value symbolizes the
column index of the cell. For example, the coordinates R0C0 refer to cell A1,
while the coordinates R1C1 refer to cell B2.
When used in a formula, coordinate statements may also define a relative ref-
erence to another cell within the spreadsheet. To symbolize this, the <row>
and <col> parts of the coordinate statement may take the form “[<offset>]”.
The value <offset> within the blocked quotes symbolizes an integer offset.
To determine the position of the referred cell, <offset> should be added to
the row or column coordinate of the formula cell which holds the reference
accordingly. For example, the reference R[0]C[1] located at position A1 refers
to the next neighbour within the same row, cell B1. The reference R[1]C[0]
located at position A1 refers to the next neighbour within the same column,
cell A2. Lastly, the reference R[2]C[2] located at position A1 refers to the cell
two positions to the right and two positions below itself, cell C3.

Definition 11 (Area). An area allows to identify a rectangular section of the cell
matrix of a worksheet. Area information in spreadsheets is provided following the
area-notation. This notation has the form “<start>:<end>”, whereby both <start>
and <end> are coordinates in either A1- or R1C1-notation. The referred rectangular
section starts with the coordinates of <start> as left-upper corner, and ends with
the coordinates of <end> as right-lower corner of the area. Each cell contained
within the section of the cell matrix is regarded as part of the area.

Definition 12 (Spreadsheet). A spreadsheet S is a non-empty collection of work-
sheets. Each worksheet within S is uniquely identified by an alphanumeric name.

21

WORKSHEETS is the set of all worksheets W contained in the spreadsheet S.
CELLS is the set of all cells C contained in the spreadsheet S.

Definition 13 (Position). A position defines the location of a cell within a spread-
sheet. The position of a cell is uniquely defined by the name of the worksheet W it is
contained in and its coordinates within W. Position statements follow the notation
“<worksheet>!<coordinates>”.

The <worksheet> part of the notation refers to the name of the worksheet in
S. The !-symbol acts as separator between worksheet and coordinate part of each
statement. The <coordinates> part of the notation defines the coordinates of the
cell within the named worksheet. This information may be supplied in either A1-
or R1C1-notation.

Access to the worksheet, the coordinates of a particular position, and the cell
which is described by this position is required for the description of our static analysis
process, and provided by the following functions:

• The function worksheet(position P) provides access to the worksheet of a spe-
cific position. It is of the form P→ worksheet, whereby worksheet denotes the
worksheet of the position.

• The function coordinates(position P) provides access to the coordinates of
a specific position. It is of the form P → coordinates, whereby coordinates
denotes the coordinates of the position within its worksheet.

• The function cell(position P) is of the form P → cell and provides access to
the cell that is defined by position P.

Definition 14 (Area Position). An area position defines the location of an area
within a spreadsheet. The position of an area is uniquely defined by the name of the
worksheet W it is contained in and its start- and end-coordinates within W. Area
position statements follow the notation “<worksheet>!<start>:<end>”.

The <worksheet> part of the notation refers to the name of the worksheet in
S. The !-symbol acts as separator between worksheet and coordinate part of each
statement. The <start> and <end> parts of the notation define the start- and
end-coordinates of the area within the named worksheet. This information may be

22

supplied in either A1- or R1C1-notation. Area position references to areas within
the same worksheet may omit the <worksheet>- and !-symbol-parts of the format.

Access to the worksheet, the area of a particular area position, and the set of
cells that is described by this area position is provided by the following functions:

• The function worksheet(area position Pa) provides access to the worksheet of
a specific area position. It is of the form Pa → worksheet, whereby worksheet
denotes the worksheet of the position.

• The function coordinates(area position Pa) provides access to the area of a
specific area position. It is of the form P → area, whereby area denotes the
area of the area position within its worksheet.

• The function cells(area position Pa) is of the form P → {cell} and provides
access to the set of cells that is defined by the area position Pa.

Definition 15 (Reference). A reference is defined by a pair of positions within a
spreadsheet: a base position and a target position. The base position identifies
the cell containing the reference while the target position identifies the cell that the
reference refers to. Consequently, the target position may contain relative coordinate
information while the base position may not contain relative coordinate information.
A reference indicates that the base cell contains a formula reference which points to
the target cell.

References in formulas provide values stored within other cells of the spreadsheet
to be used for calculations. Thus, a reference to a specific cell implies that the
referencing cell is dependent on the referenced cell. Circular references as well as
self-references are not allowed within the spreadsheet context.

The functions basePosition(reference R) and targetPosition(reference R) provide
access to the positions of a specific reference. They are of the form R → position,
whereby position denotes either the base or target position of the reference. The
functions isColRelative(reference R) and isRowRelative(reference R) provide infor-
mation about whether the target position is referred to in either absolute or relative
fashion. They are of the form R → Bool, whereby the Bool value indicates whether
the coordinate in question is relative.

23

Definition 16 (Area Reference). An area reference is defined by a position and
an area position within a spreadsheet. The position identifies the base cell of the
reference while the area position identifies the target area of the reference. Conse-
quently, the target area position may contain relative coordinate information while
the base position may not contain relative coordinate information. An area reference
indicates that the base cell contains a formula reference which refers to the target
area.

Area references in formulas provide access to values stored within an area of the
spreadsheet to be used within aggregating calculation functions. Thus, a reference
to a specific area implies that the referencing cell is dependent on the referenced
area.

The functions basePosition(area reference Ra) and targetArea(area reference Ra)
provide access to the contents of a specific area reference. They are of the form
Ra → position and Ra → area position, whereby position denotes the base position
and area position denotes the target area of the reference.

Definition 17 (Predecessor). A predecessor is a cell which a formula cell refers to.
The function predecessors(cell C) identifies all predecessors of a specific formula cell.
It is of the type C → {C} and is defined such that

predecessors(C) = {cell Cp | (∃ reference R : cell(basePosition(R)) = Cp

∧ cell(targetPosition(R)) = C)

∨ (∃ area reference Ra : cell(basePosition(Ra)) = Cp

∧ C ∈ cells(targetArea(Ra)))}.

Definition 18 (Connection Set). A tuple of cells (A,B) form a connection K if they
adhere to the relation A ∈ predecessors(B). Thus, cell A is a predecessor of cell B.
KS denotes the set of all connections in a spreadsheet.

Definition 19 (Neighbour). Neighbours of a cell C are cells which are contained in
the same worksheet W and are located next to C. The set of neighbours of cell C is
returned by the function neighbours(cell C) such that

neighbours(C) = {cell C2 | worksheet(C) = worksheet(C2)

∧ |column(C)− column(C2)|+ |row(C)− row(C2)| = 1}.

24

3. Structural Analysis

As we pointed out in previous work [2015], structural analysis of spreadsheets is al-
ready an essential part of established spreadsheet QA methods. Spreadsheet smells
rely on structural analysis data for their metric calculations. Unit-checking ap-
proaches require structural analysis to establish links between header and content
cells. Rather than extracting a single metric for further processing, these analysis
approaches attempt to externalize information which is provided within the content,
structure, and relations of cells within a spreadsheet. Such information also may
be employed to formulate further spreadsheet smells, as well as may be utilized to
enhance profound refactoring-operations for spreadsheets.

We develop a static analysis approach to generate structural information and
relations within worksheets. The analysis employed by the UCheck [2007] system
serves as starting point for this approach. To that end, we discuss the structural
analysis methods proposed as part of UCheck. Based on this insight, we distinguish
which type of spreadsheet we target with our own analysis approach and which
structural components we attempt to discern. Next, we present the core contribution
of this master’s thesis; We describe our structural analysis approach for spreadsheets.
We conclude the chapter by discussing some notable edge cases we identified for our
analysis approach.

3.1 Ucheck Analysis

UCheck is an error-detection system for spreadsheets which relies on unit informa-
tion. It automatically processes header and unit inference and reports detected unit
errors. Headers are string or value cells, which serve to annotate other cells within
a worksheet. Units are related to the concept of units of measurement. A unit

25

Figure 3.1: Workflow of UCheck Header Inference process.

provides context information to the value of a cell. Consequently, header relations
can be applied to provide units to related value cells. The UCheck system relies on
two static analysis phases, inferring header and unit information accordingly.

Figure 3.1 outlines the Header Inference process performed by UCheck. In a
first step, the cells within a given spreadsheet are classified into predefined roles.
Based on this categorization, in a second step, cells that were classified as potential
headers are assigned to cells that are likely to be affected by those headers. Lastly,
the inferred header information is aggregated and passed on to subsequent processing
steps.

3.1.1 Cell Classification

The analysis process of UCheck assumes that a spreadsheet consists of one or mul-
tiple tables. Based on this assumption about the spatial arrangement of cells, the
system classifies the cells in a given spreadsheet using the following roles:

• Header. Cells which are used to label the data.

• Footer. Formulas which are typically placed at the end of rows or columns,
containing some sort of aggregation function.

• Core. Data cells of a spreadsheet.

• Filler. Cells which are used to separate tables within the spreadsheet. Filler
cells can either be blank or feature a special formatting.

26

To facilitate successful role-classification in a wide variety of scenarios, Abraham
et al. introduced a framework to combine the results of several classification algo-
rithms. Each algorithm assigns each cell within the spreadsheet a certain role and
specifies a numeric confidence value for this assignment. The applied confidence
value indicates the confidence in the classification. Confidence values may range
from 1, indicating that the assigned role is not necessarily correct, to 10, indicating
that the assigned role is most likely correct. Whenever a cell is classified in multiple
categories by different algorithms, the classification with the highest confidence is
picked.

Abraham et al. established a number of strategies to determine initial classifica-
tion values. Figure 3.2 provides an illustration of these strategies, when applied to
a spreadsheet. Figure 3.2a depicts the value-view of the example spreadsheet. The
sheet contains sales figures for various auto mobile brands over a number of years.
The successive figures show the classification results of each strategy when applied
to the provided example spreadsheet. The classification of a cell into a specific
group is indicated by its background colour. The intensity of the colour represents
the confidence level of the classification result. However, the strategy descriptions
provided by Abraham et al. focus on the purpose and general working principle of
each strategy. Consequently, the classification results we provide in Figure 3.2 are
based on our interpretation of the strategies.

• Fence identification: Fences are columns or rows which form a boundary (top,
bottom, left, or right) of a table within the spreadsheet. Fences are categorized
in terms of hardness: Fences consisting only of blank cells are regarded as hard
fences, any other fences are regarded as soft fences (e.g. in case of headers and
footers of a table). Hard fences are classified with high confidence. Soft fences
obtain a low confidence value. To enable detection of soft fences, fence identi-
fication may be applied after other classification algorithms already provided
initial role-classification results for each cell. Figure 3.2b depicts the identi-
fied fences for the auto mobile-sales example. Cells on the border of the filled
table area are categorized as soft fences, as they are non-blank. The borders
surrounding this area are made up entirely out of blank cells. Consequently,
these borders are categorized as hard fences.

27

(a) Formula-view of the auto mobile-sales example.

(b) Fence identification results.

(c) Content-based cell classification results.

(d) Region-based cell classification results.

(e) Footer-to-core expansion results.

Figure 3.2: An example worksheet, demonstrating the UCheck Cell Classifi-
cation process. The spreadsheet depicts sales numbers of various
auto mobile brands. Background-colour indicates classification of
a cell into a specific role. Colour hue indicates confidence of the
classification.

28

• Content-based cell classification: Cells are classified into header, footer and
core roles based on cell content. Following this algorithm, cells containing
string values are classified as headers, cells containing numerical values are
classified as core cells, and cells containing aggregation formulas are classified
as footers. Classification results of this algorithm are assigned with a low level
of confidence. Figure 3.2c depicts the results of content-based cell classification
of the auto mobile-sales example. The aggregation formulas in column F and
row 6 are correctly classified as footers. Each occurring string is correctly
classified as header. However, the year dates in row 2 are incorrectly indicated
as core cells, along with the correctly classified sales numbers.

• Region-based cell classification: This process employs knowledge about the
extent of a table to classify roles with a higher level of confidence. Abra-
ham et al. suggest to use identified fences to detect separate tables within a
spreadsheet. Based on this information, if the top row or leftmost column of
a table contains only strings, those cells are classified as headers with a high
confidence level. Likewise, if the bottom row or rightmost column of a table
contains aggregation formulas, those cells are classified as footers with a high
confidence level. Figure 3.2d depicts the classification of header and footer
cells in the auto mobile-sales example. Strings in column A are correctly clas-
sified as headers. Aggregation formulas in row 6 and column F are correctly
classified as footers. However, header-classification for the remaining header
cells of row 2 and cell B1 is failing.

• Footer-to-core expansion: This is a multi-step algorithm. Similarly to content-
based cell classification, in a first step, cells containing aggregation formulas
are classified as footers with a low confidence level. In the next step, cells
referenced by the classified footer cells are classified as core cells with a high
level of confidence. These cells are referred to as so-called seed cells. In the
next step, cells that are immediate neighbours of and share the same type
with seed cells are also classified as core cells and act as new seed cells for
the analysis. Lastly, cells that are yet uncategorised are assigned a role: cells
featuring any content are classified as header cells, whereas empty cells are
classified as filler. Figure 3.2e depicts the results of footer-to-core expansion

29

when applied to the auto mobile-sales example. Footer cells are correctly
classified. However, expansion of the core-region wrongly encompasses the
year dates in row 2. The remainder of the header cells is correctly classified.

3.1.2 Header Assignment

Based on the results of cell classification, UCheck assigns detected header cells to
other cells they are related to. This assignment process is carried out in two steps:

1. First-level headers are assigned to core and footer cells. In this step, each core
cell is assigned to the nearest header cells within the same row and column as
first-level headers.

2. Higher-level headers are assigned to lower-level header cells. In this step, the
original set of headers is separated into two sets depending on whether or not
they have already been assigned in a header-relation. Some of the contents
of the set containing unassigned headers might be candidates for higher-level
headers. Other elements in the set might be comments or other additional
string-values. Assignment of higher-level headers follow a set of restrictions,
guaranteeing a well-formed header hierarchy.

Figure 3.3 illustrates Header Assignment based on the previous example. Fig-
ure 3.3a presents the established cell roles for the worksheet. Figure 3.3b visualizes
the inferred header relations. First-level Header Assignment establishes the first-
level headers in column A and row 2. Higher-level Header Assignment relates cell
A2 to the underlying column, and cell B1 to the first-level headers of the underlying
row.

Discussion. The analysis of UCheck offers valuable insights into advanced struc-
tural analysis methods for spreadsheets. First off, it is important to be aware which
type of spreadsheet is applicable for the intended analysis operation. For example,
unit-inference may only be applied to spreadsheets that provide inherent unit in-
formation (e.g. in form of applicable column and row headers). Moreover, analysis
methods require to be hand-crafted for detecting specific features within a spread-
sheet. Thus, definition of expected structures and roles within processed spread-
sheets should be the starting point of any advanced analysis approach. Lastly, the

30

(a) Cell Roles.

(b) Header Assignment results.

Figure 3.3: Example of UCheck Header Assignment Process. Headers are
assigned based on previously determined cell roles. First-level
headers in column A and row 2 directly related to core and footer
cells. Higher-level headers in cells A2 and B1 relate to other
headers.

approach of using a combination of multiple classification algorithms and employing
confidence values to form conclusive results appears to be good practice.

While our analysis of the UCheck system revealed valuable information, we would
also like to point out some drawbacks we encountered: Provided descriptions of
the employed cell classification methods are too general and lack a comprehensible
example. Additionally, while the confidence values used for cell classification are
stated for some of the presented classification algorithms, no reasoning for those
specific values is provided. Lastly, classification results of the provided examples are
partially incomprehensible. The results cannot directly be inferred by the provided
rules. Cells B2, C2, D2, and E2 within Figure 3.3a illustrate one such example.
Given the context of the spreadsheet, those cells are clearly intended to provide
header information. This classification is even required for the subsequent header
assignment process. However, none of the previously applied application steps,
illustrated in Figure 3.2, would successfully categorize those cells as headers.

31

3.2 Analysis Targets

Worksheets harbour implicit structural information. The position of, content of, and
formula relations between cells each offer cues to the overall structure of the work-
sheet. Structural analysis attempts to extract the structural information implied
by these cues by means of static analysis. Results from structural analysis may be
used to enhance problem detection within spreadsheets. Consequently, better sug-
gestions how to solve those problems can be offered to users. Moreover, profound
structural information is necessary to support automatic refactoring operations, as
such operations often require structural alterations within a worksheet.

Spreadsheets may be used for a variety of purposes. Examples include the prepa-
ration of input-forms, the creation of number-based models, and data management.
Our structural analysis approach focusses on the last use case. In general, we ex-
pect to analyse calculation-based spreadsheets. The aim of such spreadsheets is
the collection of input-data and calculation of results based on the collected data.
Thus, calculation-based spreadsheets’ main features are formulas, input-data, and,
optionally, labels for both.

As our analysis approach focusses on calculation-based spreadsheets, we expect
relevant worksheets to contain:

• formula groups: groups of formula cells applying a specific calculation narra-
tive to each part of the input-data.

• input groups: groups of input cells providing their data to formula groups.

• descriptive headers: identifying formula groups and input groups.

• instance headers: identifying single items within formula groups and input
groups.

• calculation blocks: concise areas within the worksheet which aggregate related
formula and input groups and allow assignment of matching labels.

Figure 3.4 highlights the basic structural blocks we expect within worksheets.
The example features one concise calculation block, or area. This calculation block
consists of two columns featuring input data (columns B and C), indicating input

32

Figure 3.4: Example of expected worksheet structures.

groups. Moreover, two columns feature formulas (columns D and E), indicating
formula groups. Each group is related to one header which is descriptive of the
group in row 1. Each formula- and data-item within the group is related to one
instance header in column A within the same row. The column of instance-headers
in column A also indicates a group of its own and has a related descriptive header
at cell A1.

By identifying expected content entities, we can draw conclusions about the
purpose of each non-empty cell, and how it relates to other cells within the worksheet.
Moreover, more elaborate analysis allows us to unite functionally similar and locally
neighbouring cells into concise groups. For each of those groups, we draw conclusions
about its purpose and relations to other groups within the worksheet. Lastly, we
analyse the coupling between the various groups within a worksheet in order to
determine separate functional sections within the worksheet.

3.3 Novel Analysis Approach

Our analysis intends to reveal the underlying structures which were provided by
spreadsheet creators. On a basic level, a spreadsheet is simply a collection of cells.
Each individual cell either provides an item of data or combines existing data items
to generate new data. However, spreadsheet creators have an overarching goal in
mind when creating and altering these cells. Usually, this goal takes shape as a
thread of calculations which are simultaneously applied to multiple sets of input
data. While each individual data item is different, the basic calculation procedure
remains the same. Thus, we propose the following alternative interpretation of
spreadsheets: A spreadsheet is a collection of cell groups. Each group is devoted to

33

a specific purpose and connected to other cell groups by means of formula relations.
The goal of our analysis approach is to detect these cell groups within a given
spreadsheet. This approach provides a number of benefits. We provide a summary
of possible areas of application in Chapter 8. The main benefits for this thesis are
as follows:

• During group synthesis, we detect individual cells and groups that do not follow
the expected calculation narrative. We report such outliers as suspicious and
therefore smelly.

• We apply the area- and group-information resulting from our structural anal-
ysis to conceptualize new quality metrics. These metrics are utilized to for-
mulate additional spreadsheet smells.

• While refactoring operations are usually applied to a limited set of cells, they
tend to also affect a number of cells that are related to the initial targets.
Structural information allows us to better estimate the effect of refactoring
operations and, in consequence, offer better refactoring operations to users.

The following guidelines were applied during conception of our analysis process.

1. Follow the formula. Our analysis approach focusses on calculation-based
spreadsheets. This focus enables us to ground the analysis process on struc-
tural information provided by formula cells and formula relations: Formula
relations are the foundation of each of the grouping and blocking mechanisms
employed. Likewise, the presented Header Assignment process only allows for
the assignment of headers to groups of either formula cells, or cells referred
to by formula cells. We do, however, acknowledge that other focal points are
viable as well. We suggest those alternatives in Chapter 8.

2. 1D is key. Areas can be categorized into one of three classes, depending on the
dimensions of the area. Zero-dimensional (0D) areas encompass one cell. One-
dimensional (1D) areas either encompass only one column but multiple rows,
or one row but multiple columns. Two-dimensional (2D) areas encompass
both, multiple columns and multiple rows. On various occasions during the
analysis approach, we infer areas within a worksheet. Wherever possible, we

34

will opt to interpret 1D-areas. 0D-areas only contain a single cell. Thus,
such areas are already the foundation of usual static analysis and do not yield
additional benefit. Consequently, we attempt to merge 0D-areas into 1D-areas
wherever possible. Merging of 1D-areas into 2D-areas results in potential loss
of information. Therefore, we opt not to infer merged two-dimensional areas,
choosing a set of neighbouring 1D-areas instead.

3. Concrete & Concise. Lastly, our analysis approach attempts to cover the
actual state of the spreadsheet in question. However, even after applying
the first two guidelines, opportunities may arise to interpret data in different
ways. The drawn conclusions potentially influence results of follow-up analysis
steps. Consequently, in case of ambiguity we opt for the interpretation that
requires the least amount of assumptions while still allowing the process chain
to continue.

With those guidelines in mind, we established the following analysis approach for
spreadsheets. The overarching work-flow of our approach is depicted in Figure 3.5
and contains the following three processing steps:

1. Grouping. Synthesizes groups of related cells, based on various criteria.

2. Blocking. Aggregates groups into cohesive calculation blocks.

3. Header Assignment. Assigns header cells to calculation blocks and underlying
groups.

Each step in the process chain relies on information provided by preceding processing
steps, as well as additional information provided by the spreadsheet. In the following
subsections, we will cover each of those steps in greater detail.

3.3.1 Grouping

Grouping represents the cornerstone of our analysis approach and detects cohesive
groups of cells which conform with each other based on various cell attributes.
Keeping the Follow the Formula principle in mind, the employed attributes are
associated with formula content and formula relations within cells.

35

Figure 3.5: Workflow of the novel Structural Analysis process. Structural
data of a provided spreadsheet serves as input data of the process
and is supplied to each of its sub-processes. The sub-processes
Grouping, Blocking, and Header Assignment supply their results
to the successive follow-up processes. In addition, these sub-
results are aggregated and supplied as result of the overall process.

We employ a bottom-up analysis approach whereby follow-up steps in the pro-
cess chain utilize results of previous analysis steps. However, each step within the
process chain also provides grouping information which is aggregated and serves as
combined result of our grouping analysis. Figure 3.6 illustrates the process structure
of our grouping approach, featuring the following three processing steps: Type-based
Grouping, Formula Group Partitioning, and Reference-based Grouping.

Type-based Grouping

The Type-based Grouping step is employed to detect groups of cells that fulfil the
same purpose. We utilize the cell type of each cell as criterion to form groups. In
case of formula cells, the purpose of each cell is more strictly defined by its formula.
Thus, in order to detect groups of formula cells fulfilling the same purpose, we need

36

Figure 3.6: Workflow of novel Grouping process. Structural data provided
by the spreadsheet serves as input for this process and is sup-
plied to each step within the process chain. In addition, follow-
up steps in the process chain utilize results of previous analysis
steps. The steps Type-based Grouping, Formula Group Partition-
ing, and Reference-based Grouping are employed in the process.
The results of each of those steps are aggregated to form the result
of the Grouping process.

to match formula cells that contain the same formula. We strengthen the grouping
criteria in this instance. Consequently, cells within a group are required to fulfil the
following qualities:

• Each cell within the group features the same cell type.

• Each cell within the group is neighbour to at least one other member cell of
the same group.

• For groups of formula cells, each cell within the group features the same for-
mula in R1C1 representation.

By employing the R1C1-notation, the contained formula string remains independent
of the position of the cell within the worksheet. This allows us to detect groups of
formula cells that apply the same calculation to different input values. While type-
based groups of other cell types may also be employed within further processing, the
set of detected formula groups is the main result of this processing step. It represents
the complete set of calculations employed within the provided spreadsheet.

37

Algorithm 1 describes the utilized grouping process. We consider a group G to
be a set of cells {C}. Likewise, a map M is considered a set of mappings (C → G)
from a cell C to a group G which also allows access to the set of mapped keys
M.keys. Provided with a worksheet W, the algorithm determines the set of con-
tained type-based groups GroupSet and the map, relating each cell of the worksheet
to a matching group CellGroupMap. The function determineTypebasedCellGroups()
in Line 1 iterates through each cell within the worksheet. For each cell, the func-
tion checks whether the provided cell has already been processed. To that end, the
function verifies whether a mapping is already present in the CellGroupMap. If this
is not the case, an empty group is initialized for the cell and the expansion of the
group is started by a call to the function expandGroup(cell C, group G). Lastly, the
new group is added to CellGroupMap, the set of known groups. The function ex-
pandGroup(cell C, group G) in Line 9 is a recursive function which first adds the cell
to the provided group. Next, the function iterates the spatial neighbours of the cell.
Neighbouring cells are accessed via the function neighbours(C) (see Definition 19).
For each neighbouring cell, it is checked whether the neighbour is similar to the pro-
vided cell. Similarity checking is provided by the function similar(cell C, cell Cn) in
Line 15. The checked similarity requirements follow the grouping requirements we
stated beforehand. To check for similarity of formula cells, the R1C1-representation
of the cells’ formulas is accessed via calls to the function R1C1formula(cell C) in
Line 18. If a similar neighbour is found, and the neighbouring cell is not yet part
of any group, the group is expanded with the neighbour cell via call to expand-
Group(cell Cn, group G).

Figure 3.7 illustrates the result of our grouping algorithm when applied to the
car sales example spreadsheet. Cells contained within the same group share the
same background colour. The SUM-formulas in area B6:F6 were correctly matched
in the light-red formula group. So were the formulas in area F3:F5. The groups in
orange, cyan, and red indicate string groups. The green group indicates the only
group containing numeric values within the spreadsheet. While the year dates in
row 2 are used as headers within the example, type-based grouping matches them
into the same numeric group as the input values of the spreadsheet in area B2:E5.
This indicates a need for further processing.

38

Algorithm 1: determineTypebasedCellGroups
Require: worksheet W
Ensure: set of groups in worksheet GroupSet; map relating cells to groups Cell-

GroupMap
1: procedure determineTypebasedCellGroups
2: init GroupSet
3: init CellGroupMap
4: for all C ∈ cells(W) do
5: if C /∈ CellGroupMap.keys then
6: init G
7: expandGroup(C, G)
8: GroupSet ← GroupSet ∪ G
9: procedure expandGroup(C, G)

10: G ← G ∪ C
11: CellGroupMap ← CellGroupMap ∪ (C → G)
12: for all Cn ∈ neighbours(C) do
13: if {(Cn /∈ CellGroupMap.keys) ∧ similar(C, Cn)} then
14: expandGroup(Cn, G)
15: procedure similar(C, Cn)
16: if type(C) ≡ type(Cn) then
17: if type(C) ≡ formula then
18: return (R1C1formula(C) ≡ R1C1formula(Cn))
19: else
20: return true
21: else
22: return false

Figure 3.7: Result of Type-based Grouping when applied to the car sales ex-
ample. Cells indicated by the same background colour share the
same type-based group. Groups indicated by the colours orange,
cyan, and red are groups of string cells. The group indicated by
the colour green is a group of numeric cells. The groups indicated
by the colours purple and light-red are groups of formula cells
that share the same formula in R1C1-representation.

39

Formula Group Partitioning

The Formula Group Partitioning step is based on the results of the preceding Type-
based Grouping. The preceding step provides formula groups which represent the
calculations of the spreadsheet. However, those groups are solely defined by the
individual cells contained within them. As recognized by our 1D is key concept,
this complicates further analysis steps. Hence, Formula Group Partitioning infers a
set of area-based formula groups for each type-based formula group. Each area-based
group is defined by a 1D-area within a worksheet. Partitioning of the reference-based
group is processed such that each cell contained in the initial reference-based group
is also contained within the areas of the resulting area-based groups. In addition, the
partitioning process follows our Concrete & Concise concept. We keep the partition
concrete, as all of the resulting area-based groups feature the same orientation. We
keep the partition concise, as we choose the orientation that results in the least
amount of area-based groups for the partition.

The type-based formula groups inferred for the car-sales example in Figure 3.7
already form one-dimensional areas. Hence, Formula Group Partitioning results in
area-based groups each covering the same area. To illustrate the partitioning-effect
of Formula Group Partitioning, Figure 3.8 presents another example. The illus-
trated worksheet depicts calculation of the Fibonacci series for different starting
values. Each formula cell in the area C3:E6 features the same formula in R1C1-
representation. To facilitate further processing, this area is partitioned into mul-
tiple 1D-areas. Following the Concrete & Concise principle, two valid options are
available for partitioning: Horizontal partitioning leads to four horizontal groups,
covering the areas C3:E3, C4:E4, C5:E5, and C6:E6. Vertical partitioning leads
to three vertical groups, covering the areas C3:C6, D3:D6, and E3:E6. As vertical
partitioning results in fewer resulting groups, this method is chosen by the pro-
cess. The resulting partition is depicted in Figure 3.8c. Cyan, purple, and green cell
backgrounds highlight the area-based groups resulting from the partitioning process.

Reference-based Grouping

Like Type-based Grouping, the Reference-based Grouping process is employed to
detect groups of cells that share the same purpose. Cells of a reference-based group

40

(a) Formula-view of the Fibonacci-calculation
example.

(b) Type-based Grouping results.

(c) Formula Group Partitioning results.

Figure 3.8: An example worksheet demonstrating the Formula Group Parti-
tioning process. The table depicts the calculation of the Fibonacci
series for various starting values. Cells of detected type-based and
partitioned formula groups within the example share the same
background-colour.

serve as input value for one of the calculations of the spreadsheet. To that end, the
Reference-based Grouping process is based on the results of the preceding Formula
Group Partitioning step. Formula Group Partitioning provides a set of formula
groups fit for further processing. Reference-based Grouping iterates each entry in
this set of groups. For each reference and area-reference contained in the formula
of each group, the process attempts to determine either a single group, or a set of
reference-based groups. The exact outcome depends on the type of the processed
relation.

Cell references. Figure 3.9 illustrates the concept of Reference-based Grouping
for cell-references. Each sub-figure follows the same structure. The input data for
the example is provided in area A1:C3. The employed formula for the example is
presented in cell B6. Columns E to G present the formula groups of the example.
Formula groups are constructed by copying the base formula in either horizontal,
vertical, or both orientations. Columns I to K represent the resulting reference

41

groups within the input data. The blue border indicates the dimensions of the ap-
plied formula group for comparison. Cells with blue background-colour represent the
resulting reference-based group. The reference-based groups resulting of the process
depend on two key features: First, the relativity of the processed reference. Second,
the orientation and extent of the processed formula group. In case of a fully-static
reference, the resulting reference group always contains only 1 cell, independent of
orientation and size of the formula group. This case is illustrated in Figure 3.9a. Fig-
ures 3.9b and 3.9c depict the results for column-static and row-static references. In
case of a static row reference, horizontal and two-dimensional formula groups result
in a horizontal reference group whereas a vertical formula group results in a 1-cell
reference group. Likewise, in case of a static column reference, vertical and two-
dimensional formula groups result in a vertical reference group whereas a horizontal
formula group results in a 1-cell reference group. In case of an all-dynamic reference,
the resulting group follows the form of the formula group. This case is illustrated
in Figure 3.9d. A horizontal formula group results in a horizontal reference group.
A vertical formula group results in a vertical reference group. A two-dimensional
formula group would result in a two-dimensional reference group. However, the For-
mula Group Partitioning process only infers one-dimensional formula groups. Hence,
no two-dimensional reference groups are created based on references.

Area references. Reference-based Grouping for area-references poses a further
problem. Depending on the dimensions of the referred area, different approaches
are required: In case of a 0D-area, the area-reference targets a single cell. Conse-
quently, the area-reference can be converted into a normal cell-reference, and the
grouping process for cell-references can be employed. When handling 1D-areas, the
grouping process is dependent on the orientation of the target area in relation to
the orientation of the formula group that refers to the area. Handling of 2D-areas
require a specific approach of their own.

1D area references in matching orientation. If the target area and the formula
group share the same orientation (i.e. both are horizontal or both are vertical) the
referred areas of each cell within the formula group overlap. These areas only differ
by a translation of one cell in the orientation of the formula group. Thus, the result-
ing reference-based group can be assembled by aggregation of each of the individual
area-references within the formula group. Figure 3.10 illustrates this process for

42

(a) Static reference. (b) Static row reference.

(c) Static column reference. (d) Dynamic reference.

Figure 3.9: Concept of Reference-based Grouping when different expansion
operations are applied to static, column-static, row-static, and
dynamic cell-references within formulas.

a horizontal formula group containing an area-reference to a horizontal area. The
resulting reference-based group is one-dimensional in horizontal orientation as well,
containing every cell that is referred to at least once by cells within the formula
group. A formula group in vertical orientation referring to a 1D-area in vertical
orientation leads to a similar result: a one-dimensional reference-based group in
vertical orientation, containing every cell that is referred to at least once by cells
within the formula group.

1D area references in non-matching orientation. If the orientation of the target
area does not match the orientation of the formula group, the areas referred to by
each individual cell of the formula group do not overlap. Rather, the areas align
next to each other, forming a two-dimensional area. Figure 3.11a illustrates this

43

(a) Formula-view.

(b) Indication of one area-reference.

(c) Indication of all area-references.

(d) Indication of the resulting area-reference.

Figure 3.10: Concept of Reference-based Grouping for one-dimensional area-
references in matching orientation.

scenario within the car-sales example worksheet. Area-references of formula group
in area F3:F5 align next to each other and form the referred area B3:E5. The
resulting 2D-area could already be employed as result for this grouping operation.
However, our analysis process follows the 1D is key principle. Thus, we partition the
resulting 2D-area into a set of 1D-areas. Two different approaches can be employed
for this partition operation. The first approach utilizes the areas referred to by
each individual area-reference within the formula group as basis for the partition.
Consequently, the operation results in a set of one-dimensional areas which are in
opposite orientation than the referring formula group. This result option is depicted
in Figure 3.11b. While this partition option is not chosen for our Reference-based
Grouping approach, this result will be applied in the successive Formula Group
Reference Matching step. The second approach considers individual cells the target
area as basis for the partition. Partition takes place as if the target area was made
up of individual cell-references that are combined by binary operators within the
formula. As a consequence, applying the Reference-Based Grouping process to a
formula group containing the formula =SUM(A1:C1) leads to the same result as

44

applying the process to a formula group containing the formula =A1+B1+C1. The
operation results in a set of one-dimensional areas with the same dimensions as the
initial formula group. This result is depicted in Figure 3.11c. Following the Concrete
& Concise guideline, this interpretation is chosen for our analysis approach, as it
leads to consistent results for formulas that fulfil the same intent independent of the
applied formula-format.

(a) Indication of area-references.

(b) Area-based result.

(c) Area-element-based result.

Figure 3.11: Result of Reference-based Grouping for one-dimensional area-
references in non-matching orientation. Each of the cells within
the vertical formula group in area F3:F5 refers to the horizon-
tal area left to it. The group as a whole refers to the area
B3:E5. The resulting set of 1D reference-based groups depends
on the applied area-partition. Area-based partition utilizes the
areas provided by each individual reference of the formula group.
Area-element-based partition aligns with results of single-cell ref-
erences.

2D area references. Reference-based Grouping of a two-dimensional area-reference
is not directly supported in our analysis process. Following our 1D is key princi-
ple, we partition two-dimensional areas into a set of one-dimensional target areas
before further processing. Each area within the resulting set is then applied to our
analysis-process for 1D-areas. The orientation of the partitioning-operation is chosen

45

with regard to further processing. We consider our analysis approach for 1D groups
in non-matching orientation to be more meaningful than the analysis approach for
matching orientation. Groups in matching orientation can be interpreted as a sliding
window which applies the same calculation on groups which differ by only one cell,
whereas groups in non-matching orientation can be interpreted as a sliding window
which applies the same calculation on entirely different groups. Based on previous
experience, we argue that spreadsheet users are more likely to apply calculations
following the second principle. Consequently, in case of a horizontal formula group,
the 2D-area is partitioned into a set of vertical 1D-areas. In case of a vertical formula
group, the 2D-area is partitioned into as set of horizontal 1D-areas.

Algorithm 2 describes the process to detect reference-based groups in a work-
sheet. For purpose of this algorithm, the following prerequisites need to be ful-
filled: Partitioned formula groups provide access to references and area-references of
the group formula. To that end, the functions references(group G) and areaRefer-
ences(group G) return the references and area-references of a specific group. They
are of the form G → {reference} and G → {area-reference}, whereby reference and
area-reference denote the references and area-references contained in the formula of
the group. Moreover, partitioned formula groups and reference-based groups are
both expressions of area-position-based groups. Such groups are defined by their
area-position within the spreadsheet. The worksheet of the area-position defines
the worksheet of the group. The area of the area-position defines the area of the
group within the worksheet. This area position may be accessed by the function
areaPos(area-position-based group G) of the form G→ area-position. Lastly, a new
reference-based group can be initialized, using an existing area-position as parame-
ter.

The initial function of the algorithm, determineReferencebasedCellGroups(), ini-
tializes the data structures and iterates the provided set of partitioned formula
groups. For each group within the set, the function iterates the sets of refer-
ences and area references of the provided group and initializes new reference-based
groups via the functions initReferenceGroup(group G, reference R) and initRef-
erenceGroup(group G, area reference Ra). The initialized reference-based groups
are registered within the data structures via a call to the function registerNew-
Group(partitioned formula group G, reference-based group Gr) in Line 36. The

46

Algorithm 2: determineReferencebasedCellGroups
Require: set of partitioned formula groups in worksheet FormulaGroups
Ensure: set of reference-based groups in worksheet GroupSet; map relating cells to

reference-based groups CellGroupMap;
1: procedure determineReferencebasedCellGroups(FormulaGroups)
2: init GroupSet
3: init CellGroupMap
4: for all G ∈ FormulaGroups do
5: for all R ∈ references(G) do
6: Gr ← initReferenceGroup(G, R)
7: registerNewGroup(G, Gr)
8: for all Ra ∈ areaReferences(G) do
9: for all Gr ∈ initReferenceGroups(G, Ra) do

10: registerNewGroup(G, Gr)
11: procedure initReferenceGroup(G, R)
12: init RefGroup
13: areaPos(RefGroup) ← processAreaPosForRef (G, R)
14: return RefGroup
15: procedure initReferenceGroups(G, Ra)
16: init RefGroups
17: if isZeroDimensional(targetArea(Ra)) then
18: RefGroups ← RefGroups ∪ initReferenceGroup(G, convertToRef (Ra))
19: else
20: init TargetAreas
21: if isOneDimensional(targetArea(Ra)) then
22: TargetAreas ← targetArea(Ra)
23: else
24: TargetAreas ← partitionArea(targetArea(Ra), G)
25: for all A ∈ TargetAreas do
26: if orientation(A) ≡ orientation(G) then
27: init RefGroup
28: areaPos(RefGroup)← processAreaPosForMatchingAreaRef (G, A)
29: RefGroups ← RefGroups ∪ RefGroup
30: else
31: for all PtargetArea ∈ processAreaPosForPerpAreaRef (G, A) do
32: init RefGroup
33: areaPos(RefGroup) ← Ptargetarea

34: RefGroups ← RefGroups ∪ RefGroup
35: return RefGroups
36: procedure registerNewGroup(G, Gr)
37: GroupSet ← GroupSet ∪ Gr

38: for all C ∈ cells(Gr) do
39: CellGroupMap ← CellGroupMap ∪ (C → G)

47

function initReferenceGroup(group G, reference R) in Line 11 initializes a new
reference-based group based on the provided reference. The area position of the
new group is determined by the function processAreaPosForRef (G, R) in Line 13.
This function implements the grouping process for cell references illustrated in Fig-
ure 3.9. The function initReferenceGroups(group G, area reference Ra) in Line 15
initializes a set of new reference-based groups based on the provided area reference.
It starts with initializing RefGroups, the set of resulting reference-based groups. The
content of RefGroups depends on the dimensions of the target area of the provided
area reference. The target area is accessed via the function targetArea(area refer-
ence Ra). In case of a 0D area reference, the area reference is converted into a cell
reference, and the cell reference is further processed via the function processAreaPos-
ForRef (G, R). The resulting reference-based group is added to RefGroups. In the
case of either a 1D or 2D area reference, TargetAreas, a set of areas, is initialized.
This set is filled depending on the dimensions of the area reference:

• 1D area reference. The area of the area reference is added to TargetAreas.

• 2D area reference. The referred area is partitioned into multiple 1D-areas via
a call to the function partitionArea(area A, partitioned formula group G) in
Line 24. Partitioning by the function follows the previously stated criteria.
The resulting areas are added to TargetAreas.

The process continues by iterating TargetAreas, the resulting set of 1D-areas. Each
inferred area A is further processed depending on its orientation in relation to the
orientation of the referring formula group G. Two different cases are possible:

• A shares the orientation with G. In this case, the process for areas in matching
orientation is applied by the function processAreaPosForMatchingAreaRef (G,
A) in Line 28. This function follows the guidelines illustrated in Figure 3.10
and returns a new area position. This resulting area position is used to initial-
ize a new reference-based group. The resulting group is added to RefGroups,
the result set of the function.

• A does not share the orientation with G. In this case, the process for areas in
non-matching orientation is applied via the function processAreaPosForPer-
pAreaRef (G, A) in Line 31. This function follows the guidelines outlined in

48

Figure 3.11, and returns a set of inferred area positions. The area positions
of this set are used to initialize a set of new reference-based groups. These
groups are added to RefGroups, the set of resulting reference-based groups of
the function.

Lastly, RefGroups, the set of inferred reference groups for all cases, is returned as
result of the function.

Figure 3.12 illustrates the result of Reference-based Grouping when applied to
the car sales example. In contrast to Type-based Grouping and Formula Group
Partitioning, each cell within a worksheet can be part of multiple reference-based
groups. The vertical groups, indicated in Figure 3.12a are the result of processing
of the formula group in column F. The horizontal reference-based groups illustrated
in Figure 3.12b are the result of processing the formula group in row 6.

(a) Inferred vertical reference-based groups.

(b) Inferred horizontal reference-based groups.

Figure 3.12: Result of Reference-based Grouping when applied to the car sales
example spreadsheet. Formulas in column F lead to the illus-
trated vertical reference groups. Horizontal reference groups are
inferred based on formulas in row 6.

Extended Grouping

The analysis process we presented up until now is fit to detect type-based groups,
partitioned formula groups, and reference-based groups within a worksheet. How-
ever, to enable the ensuing processing steps, further information about these de-
tected groups is required. To that end, the basic grouping approach is extended by
two additional processing steps:

49

• Formula Group Reference Matching provides information about references be-
tween partitioned formula groups.

• Reference Group Merging condenses results of the reference-based grouping
process.

Figure 3.13 illustrates the relation of processing steps within the extended grouping
process.

Figure 3.13: Workflow of the extended Grouping process. Results of the For-
mula Group Partitioning and Reference-based Grouping pro-
cesses are refined by the introduction of additional process-
ing steps: Partitioned Formula Group Matching and Reference
Group Merging.

Formula Group Reference Matching. References between formula cells build a
network which can be used to analyse connectivity of cells within a spreadsheet.
Detected formula groups do not yet offer such connectivity information. The For-
mula Group Matching process aims to establish such relations between detected
partitioned formula groups.

To that end, Formula Group Matching compares the areas that are referenced
within a formula group to the areas encompassed by other formula groups. If
the areas match, a relational link between the two formula groups is established.
Reference-based Grouping already utilizes approaches to generate cell groups based
on references of formula groups. The same basic grouping methods can be applied

50

for Formula Group Matching. The working principle of these grouping processes are
illustrated in figures 3.9, 3.10, and 3.11.

The reference-processing strategy employed by Formula Group Matching only
differs in case of area references in non-matching orientation. In this scenario, the
group reference can be processed into a 2D area within the worksheet. Following our
1D is key principle, this area needs to be partitioned into a set of 1D areas. While
the previous Reference-based Grouping employs area-element-based partitioning,
Formula Group Matching employs area-based partitioning instead. This allows for
preservation of the areas of each individual contributing area-reference. This is in
line with the way spreadsheets are usually organized.

Figure 3.14 provides an example of the Formula Group Matching process when
applied to a worksheet. The illustrated worksheet is an expansion of the previous
car-sales example. Figure 3.14a provides the formula view of the updated worksheet.
Column E calculates the average number of car sales per year. Column F offers an
estimate for the next year, based on the calculated average. Figure 3.14b illustrates
the detected formula groups for the worksheet. Figures 3.14e, 3.14d, and 3.14c
present the calculated reference areas for each formula group. Whenever a reference
area of a formula group matches the area of another formula group, a relational link
between the two formula groups is established. Thus, the formula group in area
B6:F6 refers to the formula groups in areas E3:E5 and F3:F5, as the areas of those
groups match one of the reference areas of the group in B6:F6. Likewise, the formula
group in area F3:F5 refers to the group encompassing area E3:E5. The reference
areas of the formula group in area E3:E5 do not match any other formula group.

Reference Group Merging. The result of reference-based grouping is a set of
1-dimensional reference-based groups within a worksheet in both horizontal and
vertical orientation. If multiple different formula groups refer to data within the
same area of a worksheet, cells within this area may be part of multiple reference-
based groups of different dimensions and orientations at the same time. However,
to facilitate the following analysis processes, we require a more Concrete & Concise
summary of the reference-based groups within a worksheet. In particular, we pose
the requirement that each cell may be a member of only one horizontal, and only
one vertical reference-based group. To fulfil this requirement, we merge overlapping
groups of the same orientation.

51

(a) Formula view of example worksheet.

(b) Partitioned formula groups.

(c) References of formula group B6:F6.

(d) References of formula group F3:F5.

(e) References of formula group E3:E5.

Figure 3.14: Example of Formula Group Matching. The example worksheet
is an extension of the car-sales example. Formula groups are
indicated by a coloured background. Inferred reference areas for
each group are indicated by hatched borders. Formula groups
are related to other formula groups matching any reference area.
Formula group B6:F6 refers to formula groups E3:E5 and F3:F5.
Formula group F3:F5 refers to formula group E3:E5.

Algorithm 3 describes the process to condense reference-based groups in a work-
sheet. For the purpose of this algorithm, the following prerequisites need to be

52

fulfilled: (1) Reference-based formula groups provide access to the orientation of
the group. To that end, the functions orientation(group G) returns the orientation
group G. It is of the form group ⇒ Orientation, whereby Orientation is either
horizontal or vertical. (2) The function overlap(reference-based group G, reference-
based group G2) provides information as to whether two provided reference-based
groups overlap. It is of the form (G, G2) → {Boolean} and defined as

overlap(G,G2) =

true if {G ∩G2 6= ∅}

false otherwise
.

(3) The function mergeGroups(G, G2) allows to merge two reference-based groups.
It is of the form (G, G2) → {reference-based group}, whereby reference-based group
denotes the resulting group which encompasses the union of the areas of group G

and group G2.

GroupSet, the set of all detected reference-based groups, serves as input for the
algorithm. Groups within GroupSet are expected to be either zero-dimensional or
one-dimensional in horizontal or vertical orientation. The algorithm iterates each
reference-based group G and compares it to each other reference-based group G2 in
GroupSet. If the groups G and G2 are not the same, but share the same orientation
and overlap according to the overlap(G, G2) function, both groups are removed from
the set of known groups. Instead, a new reference-based group is initialized via a call
to the function mergeGroups(G, G2). This resulting group is consequently added to
the set of merged reference-based groups.

Algorithm 3: mergeReferencebasedCellGroups
Require: set of reference-based groups in worksheet GroupSet
Ensure: set of merged reference-based groups in worksheet GroupSet;
1: procedure mergeReferencebasedCellGroups(GroupSet)
2: for all G ∈ GroupSet do
3: for all G2 ∈ GroupSet do
4: if G 6= G2 ∧ orientation(G) ≡ orientation(G2) ∧ overlaps(G, G2)

then
5: GroupSet ← GroupSet \ ({G} ∪ {G2})
6: GroupSet ← GroupSet ∪ mergeGroups(G, G2)

53

3.3.2 Blocking

Blocking allows for the detection of calculation blocks within a worksheet. As de-
fined in Section 3.2, calculation blocks are concise areas within a worksheet which
aggregate related formula groups and input groups. Detected blocks allow for as-
signment of matching labels to the block, and therefore to each individual group
within the block. In perspective of the previous processing steps, this definition
can be adapted as follows: Calculation blocks are concise areas within a work-
sheet which consist of neighbouring partitioned formula groups and reference-based
groups. Partitioned formula groups combine neighbouring formula cells sharing the
same R1C1-representation. Reference-based groups contain cells which are pointed
to by a reference of a formula group. Detected blocks serve as basis for the suc-
cessive Header Assignment process, assigning labels to matching calculation blocks.
Consequently, each block fulfils the following requirements:

1. A block defines an area within a worksheet.

2. A block consists of a collection of area-based groups: partitioned formula
groups or reference-based groups.

3. Each group within a block features a certain degree of proximity to at least
one other group within the block.

4. Blocks may not contain potential label and header cells.

The blocking process we employ is based on the expansion of individual blocks.
Block expansion follows the work-flow illustrated in Figure 3.15. A block is initialized
for a specific area-based group. Successively, we check for presence of an eligible
neighbour group. If one such neighbour is present, the validity of the possible
expansion is checked. If expansion to the detected group results in a valid block, the
expansion is conducted. If no neighbour for valid block expansion can be detected,
expansion of the block concludes. This process is continued until each partitioned
formula group and reference-based group of the worksheet is part of a block. While
the presented blocking work-flow leads to sound results, a number of challenges
remain to be discussed:

54

Figure 3.15: Workflow of Block Expansion process. A block is initialized for
a specific area-based group. Successively, we check for presence
of an eligible neighbour group. If one such neighbour is present,
the validity of the possible expansion is checked. If expansion
to the detected group results in a valid block, the expansion is
conducted. If no neighbour for valid block expansion can be
detected, expansion of the block concludes.

1. How to determine whether a group is part of a block? Blocks should only be
initialized for groups that are not yet part of another block. To that end, we
need a method to determine whether a group is already part of a block. Area-
comparison can be employed for this check. As stated in our requirements, a
block defines an area within a worksheet. Likewise, both partitioned formula
groups and reference-based groups are defined by an area within the worksheet.
Consequently, to determine whether a group is participating in a block, we can
determine whether the area of the group is entirely located within the area of
the block. If this is the case, the group in question is part of the block.

2. How to detect eligible neighbours? Eligible neighbours for a block are cell
groups that are not yet part of the block and contain at least one cell that is
in the neighbourhood of the current block. Neighbourhood implies location
at either a vertical or horizontal border of the current block. Depending on
which distance is acceptable for valid neighbours, a gap between the border of
the block and the neighbouring group may be allowed. Figure 3.16 illustrates
the neighbourhood-criteria for various employed distances. To confirm neigh-
bourhood, at least one cell of the group to be checked needs to lie within one
of the colour-indicated border areas.

3. How to expand a block towards a neighbouring group? If a valid neighbouring
group is detected, we need to expand the block to contain the neighbour in
question. As a block defines an area within a worksheet, we need to expand
the area in such a way that the area of the neighbouring group is contained.

55

Figure 3.16: Concept of detection-areas for eligible neighbours of a block.
Expansion of blocks is only allowed in direct vertical or horizon-
tal neighbourhood based on the current dimensions of the block.
Coloured areas at the border of the block indicate the cells which
are checked for neighbouring groups. Depending on the distance
which is employed to consider neighbouring groups as valid, the
detection areas allow for greater expansion perpendicular to the
border of the block.

Figure 3.17 illustrates block expansion for various scenarios. In each scenario,
the neighbouring group is already deemed a valid expansion neighbour for the
block. The blocks are expanded in such a way as to integrate the area of the
neighbouring groups into the area of the block. Depending on the case, this
may introduce cells into the block which were not part of the initial expansion
group. This implies the need to check for validity of block expansions.

4. How to check the validity of an expansion? For each detected eligible neigh-
bour, we need to process the validity of the possible expansion. Based on our
requirements, each cell within the neighbouring group already is a valid expan-
sion cell. However, as illustrated in Figure 3.17, expansion of a block may also
introduce cells into the area of the block that are not part of the neighbouring
group. Consequently, we need to check for validity of these cells as well. Only
one requirement concerns validity of cells within a group: Labels and headers
are not part of blocks. Thus, for each cell that is newly introduced to a block,
we need to check whether those cells contain any labels or potential header
cells. If this is the case, the block expansion is deemed invalid.

56

(a) Before expansion. (b) After expansion.

Figure 3.17: Concept of Block Expansion in different neighbourhood scenar-
ios. Valid neighbourhood for the neighbour groups in each sce-
nario is already determined. Blocks are always expanded in such
a way as to integrate the neighbour group into the block area.
Additional cells that were not originally part of the neighbouring
group may be introduced to the block as a result.

Figure 3.18 illustrates the result of the Blocking process, when applied to the car-
sales example worksheet. Figures 3.18a, 3.18b, and 3.18c depict which groups serve
as input for the blocking process. The resulting block is illustrated in Figure 3.18d.
It encompasses each of the participating formula groups and reference-based groups.
Surrounding blank cells, numeric cells and strings are not part of the block. The
dimensions and position of the resulting block are only depending on the individual
groups which form the block. The exact initial group selection and sequence of
groups to expand the block do not influence the result.

3.3.3 Header Assignment

Header Assignment is the final step of our novel structural analysis process. Header
Assignment intends to detect header relations within a worksheet. A header in the
worksheet scenario is a string or value cell which supplies contextual information for
one or multiple related cells. Unlike formula-based relations, headers rely on prox-
imity and positioning of the header cell in comparison with affected cells to establish
the connection. Header-relations are required for certain spreadsheet QA techniques
(e.g. unit-detection). Header information can also be applied to infer spreadsheet
smells, as we demonstrate in Section 6.2. Most importantly, refactoring operations

57

(a) Partitioned formula groups of worksheet.

(b) Horizontal reference-based groups of worksheet.

(c) Vertical reference-based groups of worksheet.

(d) Blocks of worksheet.

Figure 3.18: Blocking applied to the car-sales example worksheet. The re-
sulting block in area B3:F6 encompasses every formula groups
and reference-based group of the worksheet. The bottom edge of
the area is defined by the formula group B6:F6. This group also
expands the area to its leftmost and rightmost limits. The top
border may be established by either the formula group F3:F5,
one of the vertical reference-based groups or the topmost hori-
zontal reference-based group.

to improve spreadsheet quality often require relocation of certain structures within
the spreadsheet. To remain consistency, related headers need to be relocated as well.

The Header Assignment step works in accordance with our established analysis
process. Consequently, instead of detecting general header relations, we attempt to
detect headers based on our established blocking-concept. Headers provide contex-
tual information for individual columns and rows of detected blocks. Hence, header
cells are positioned in a way that implies a hierarchical relation to the column or
row in question. Specific positioning depends on the writing system applied by the
spreadsheet’s author. In LTR systems, row headers are located next to the left bor-

58

der of a block. In RTL systems, row headers are located next to the right border
of a block. Column headers are always positioned above the related block. With
exception of blank cells, no other cells are allowed to be positioned between the
edge of a block and a related header cell. Moreover, header cells may be affected by
other header cells, forming a hierarchy of headers. In case of column headers, over-
lying header cells are positioned above subsequent headers. In case of row-headers,
overlying header cells are positioned next to subsequent headers depending on the
writing system. In LTR systems, overlying header cells are positioned left of, in RTL
systems, overlying header cells are positioned right of subsequent headers. Lastly,
a group of header cells on the same hierarchy level may be affected by an overlying
header next to it. For instance, a layer of row headers may have a header cell above
the layer which supplies context to the entire layer. As our evaluation data was
created using the LTR writing system, our analysis approach expects row headers,
higher-level row headers and layer-headers of column-header layers on the left side
of the affected entity.

In summary, headers fulfil the following requirements:

• String cells and value cells that are not referred to by any formula are regarded
as possible header cells.

• Valid header cells are located either above or left of the borders of a block.

• Only blank cells and other header cells may be positioned between a header
cell and a related block.

• Headers may be organized in multiple layers.

• Lowest-level headers are related to either columns or rows of a block.

• Headers of higher layers affect subsequent headers in lower layers.

• Layer-headers are higher-level headers that are placed next to a header layer,
affecting each header cell within the layer.

Based on these criteria, we propose the Header Assignment process illustrated
in Figure 3.19 to identify block-based headers within a worksheet. The process as a
whole requires access to the results of previous processing steps like identified blocks

59

and established formula-relations. The work-flow of the process is separated into
three successive steps. Layer Detection identifies potential header layers for blocks
within a worksheet. Header Propagation establishes relations between header lay-
ers, lowest-level headers and the affected blocks. Layer-Header Detection identifies
headers that affect an established header-layer of a block. Each step within the
Header Assignment process supplies its results to successive processing steps.

Figure 3.19: Workflow of Header Assignment process. Layer Detection iden-
tifies potential header layers for each block in the worksheet.
Header Propagation establishes header-relations between differ-
ent header layers, as well as between header layers and the
related block. Layer-Header Detection identifiers higher-level
headers situated next to a specific header layer.

Layer Detection

Layer detection detects layers of potential header cells in relation to a specific block.
A header-layer is a set of cells that may provide header-information for a block.
Consequently, a header layer may only contain either potential header cells in ac-
cordance to our requirements or empty cells. Each block may feature two different
sets of header-layers: a set of layers of column-headers above the individual block,
and a set of layers of row-headers, left of the individual block. Each header-layer
shares the same dimensions as the border of the block it affects. A layer of column-
headers is a horizontal group of cells which is as wide as the block it relates to. A
layer of row-headers is a vertical group of cells which is as high as the block it relates
to. Only blank cells and other header cells may be positioned between a header cell
and a related block. Likewise, only valid header-layers may be positioned between
a header-layer and a related block.

60

Figure 3.20 illustrates the working principle of Layer Detection. For each block,
a set of successive layers of column-headers and row-headers is detected. To that
end, an area matching the size of the border of the block is projected upwards and
left of the block. If any potential header cells are contained in the projected area,
a header-layer is initialized for this area. Header-layers are ordered based on the
distance to the related block. This allows correct dependency propagation between
different layers regarding the same block.

Figure 3.20: Detection-areas for header-layers of a block. Header-layers are
detected via continuous projection of the top and left border-
areas of a block. Detected layers are ordered ascending by the
distance of the layer to the related block.

Based on these guidelines, Algorithm 4 describes the Header Detection process
for a specific orientation of a specific Block B. The process first initializes the list
to organize detected header-layers, LayerList. Consequently, the variable layerArea
is initialized by a call to function borderArea(B) in Line 3. For column-header
detection, this function returns the area of the top border of block B. For row-
header detection, this function returns the area of the left border of Block B. The
process continues by projecting the initialized area onto the worksheet by calling the
function traverseArea(layerArea). In case of column-header detection, this function
moves the provided area upwards by one cell. In case of row-header-detection, the
function moves the provided area one cell to the left. The algorithm proceeds by
checking whether the current area describes a valid header layer by a call to the
function isValidLayer(layerArea) in Line 6. This function returns true if the area
contains at least one potential header cell and no invalid cells (e.g. formulas). If
a valid layer area was detected, a new layer is initialized by call to the function
intializeLayer(layerArea) and the new layer is added to the list of detected layers

61

LayerList. This process repeats until a check by the function isValidArea(layerArea)
in Line 8 fails. This function checks whether the current area has either reached the
borders of the worksheet, or contains any cells that are not allowed to be positioned
between header-layers and related blocks.

Algorithm 4: detectHeaderLayers
Require: block B
Ensure: ordered list of header-layers LayerList;
1: procedure detectHeaderLayers
2: init LayerList
3: layerArea ← borderArea(B)
4: do
5: layerArea ← traverseArea(layerArea)
6: if isValidLayer(layerArea) then
7: LayerList ← LayerList ∪ intializeLayer(layerArea)
8: while isValidArea(layerArea)

Figure 3.21 illustrates the result of Layer Detection when applied to the car-sales
example worksheet. Previous analysis revealed one calculation block in area B3:F6.
Layer Detection results in a set of two layers of column-headers for this block. The
first layer is located in area B2:F2. The second layer is located in area B1:F1.
Analysis of the block also results in one layer of row-headers in area A3:A6. The
header in cell A2 cannot be inferred by Layer Detection, as it is not located directly
above or next to the related block. Instead, the Layer-Header Detection step will
establish the relation for this header.

Figure 3.21: Example of Layer Detection result, when applied to the car-
sales example. Detected areas within the worksheet are indicated
by background colour. The identified block of the worksheet is
indicated yellow. Layer Detection detects two layers of column-
headers for the block. The first layer of column-headers in row
2 is indicated by dark-blue, the second layer in row 1 by a light-
blue colour. The one detected layer of row-headers in column A
is indicated by green colour.

62

Header Propagation

Header Propagation intends to establish header relations between a set of header-
layers, as well as between header-layers and the related block. Header-relations
are ordered top-down: headers further away from the block influence underlying
headers located between the position of the header and the block. Moreover, if no
neighbouring higher-level header is present, an individual higher-level header may
expand its influence and relate to a set of neighbouring lower-level headers. If no
underlying header is present, a higher-level header may relate to a column or row of a
block. However, even if no neighbouring header is present, an individual higher-level
header may not relate to any column or row other than the column or row underlying
the header. Lowest-level headers always relate exclusively to the underlying column
or row of the block.

Figure 3.22 illustrates the working principles of header propagation for column-
headers. Top-level headers influence underlying header cells. Lowest-level header
cells are related to columns of the underlying block. If a higher-level header has
no header cell next to it, it influences the underlying lower-level header as well
as additional lower-level headers in direct neighbourhood. However, this influence
expansion only works for right-hand neighbours in the case of column headers, and
bottom-side neighbours in the case of row headers. Not every header and every
column or row of a block is guaranteed to relate to a header cell. Lastly, headers
in higher-level layers may directly relate to columns or rows of a block, if no lower-
level headers are present in-between. However, even if no neighbouring higher-level
header is present, the header may not relate to neighbouring columns or rows of the
block. Each header may directly influence only one column or row of a block.

The process of layer-propagation is applied top-down based on the results of the
layer-detection step. The process iterates each detected layer beginning with the
layer with the greatest distance to the block. Each header cell contained in the cur-
rent layer is propagated downward the successive layers. To that end, the process
iterates every remaining layer and checks whether the successive layer contains a
valid header cell at the same position, if that is the case, header-relations are es-
tablished following the previously described guidelines. If no lower-hierarchy header

63

Figure 3.22: Working principles of Header Propagation. Present header cells
within layers are indicated by background colour. Header cells
in the first header-layer are indicated in dark-blue. Header cells
in the second header-layer are indicated in light-blue. A v sur-
rounded by a hatched border indicates connection between a
header cell and an underlying headers or columns of the block.

could be detected, a connection between the current header and the underlying
column or row of the block is established.

Figure 3.23 presents the results of Header Propagation when applied to the car
sales example. The header in cell B1 is a higher-level header and affects the entirety
of the header-layer in area B2:F2. Each individual header in header-layer B2:F2
refers to the underlying column of the block in B3:F6. Likewise, each individual
header in the layer of row-headers A3:A6 refers to the row next to it in the block
B3:F6.

Layer-Header Detection

Layer-Header Detection is the last step of the Header Assignment process and aims
at detecting headers next to header-layers. In many spreadsheets, the column- or
row-headers are themselves related to an additional header next to the header group.
To detect layer-headers of a block, the step iterates each header-layer of the block.
In case of column-header layers, the process checks cells left of the current layer.
In case of row-header layers, the process checks cells above the current layer. If
any of the checked cells is a valid header cell with regard to our requirements, and
the header is not yet part of any other header relation, Layer-Header Detection es-

64

(a) Relations inferred for column-header layer in row 1.

(b) Relations inferred for column-header layer in row 2.

(c) Relations detected for row-header layer in column A.

Figure 3.23: Example for Header Propagation when applied to the car-sales
worksheet. Each figure illustrates propagation of headers of
one header-layer. The current layer is indicated by the same
background-colour utilized during Layer Detection. Related ar-
eas are indicated by hatched borders of various colours.

tablishes a connection between the detected cell and the related header-layer. In
cases where a layer-header may be applicable to both, a layer of row-headers and a
layer of column-headers, we assign the layer-header to the layer of row-headers by
default. We base this decision on our expectations regarding table-layout outlined in
Section 3.2. Following this expectation, column headers act as descriptive headers
for different characteristics of a set of instances. Row headers act as identifiers for
single instances within the set. Consequently, a conflicting layer-header should be
applied as descriptive header for the layer of instance headers. Figure 3.4 illustrates
this behaviour. The cell A1 could be applied as layer-header for both the layer of
descriptive headers in area B1:E1 and the layer of instance headers in area A2:A7.
As we expect the header in A1 to provide descriptive information for the underlying
column, we assign it to the underlying layer of row-headers. We acknowledge that
our expectation regarding table-layout may not be met in all practical instances.

65

The results of a more elaborate blocking-analysis could provide insight in the pre-
ferred orientation within the current block. We point out ideas for such blocking-
approaches in Chapter 8. This orientation information could be applied to resolve
undecided cases, instead of relying on a default decision.

Figure 3.24 presents the result of Layer-Header Detection when applied to the
car sales example. The string cell at Position A2 could be applied to both, the layer
of column headers to the right of it, as well as to the layer of row headers below it.
Following our established guideline, we conclude that the cell acts as layer-header
for the layer of row-headers in area A3:A6.

Figure 3.24: Example for Layer-Header Detection when applied to the car-
sales worksheet. The identified layer-header in cell A2 is indi-
cated by green background colour. The layer-header relates to
the layer of row-headers in area A3:A6 which was identified by
Layer Detection.

66

4. Evaluation

In this section, we present and discuss the methodology and results of our evaluation.
In specific, we introduce the spreadsheet corpora our evaluation is based on. We
establish which criteria evaluation data has to meet and how filtering guarantees
these criteria for the provided corpora. In addition, we offer a comparison of the
resulting filtered corpora, based on a number of quality metrics. We establish the
evaluation methodology entertained in our work. Lastly, we state and discuss the
results of our evaluation.

4.1 Evaluation Corpora

To evaluate the performance of our static analysis mechanisms, we analyse how
effective our test implementation performs when applied to real-world spreadsheets.
Thanks to the effort of various contributors, such input data is available in form
of so-called evaluation corpora: collections of spreadsheets dedicated to scientific
research and analysis. For our evaluation, we considered two spreadsheet corpora
which are publicly available for research purposes. In this section, we present these
corpora of interest, describe the necessary filtering-options we applied to them, and
compare them by a number of performance characteristics. Our analysis operations
were applied to spreadsheets which passed the previously mentioned filtering process
and to non-empty worksheets contained in those spreadsheets.

EUSES
EUSES [Fisher and Rothermel, 2005] was the first extensive collection of spread-
sheets which was accessible to the scientific community. Since suitable alternatives
to the EUSES corpus were not available at the time this corpus was published,
it was used as basis for evaluation of spreadsheet-related research projects for the

67

greater part of the last decade. The corpus contains about 4,500 spreadsheets which
were mainly aggregated by a web search. Some contributions from numerous smaller
evaluation- and validation-sets are contained as well. An in-depth analysis of various
performance and structure metrics for the corpus is also available [2005]. Spread-
sheets within the corpus are categorized into a set of labelled sub-categories. This
allows researchers to choose which subset of spreadsheets best fits the needs of their
evaluation processes.

ENRON
ENRON was introduced by Felienne Hermanns and Emerson Murphy-Hill [2015]

as alternative to the popular EUSES corpus. The 15,770 Spreadsheets contained
in this new corpus were extracted from the Enron Email Archive, a collection of
emails containing inter-concern communications of the ENRON corporation, made
publicly available during legal investigation of the corporation. As this corpus is
still relatively new, no in-practice performance data is available yet. However, ex-
tensive analysis of the corpus published by Hermans and Murphy-Hill suggests that
the corpus features similar characteristics to those of the EUSES corpus. An in-
depth comparison of both corpora, conducted by Jansen [2015], came to the same
conclusion.

4.1.1 Filtering of Spreadsheet Corpora

In this chapter, we seek to evaluate the performance-characteristics of the static
analysis methods we proposed in our work. For this purpose, we apply our analysis
methods to a collection of input files and statistically evaluate the aggregated anal-
ysis results. However, the employed spreadsheets originate from publicly available
collections. As those collections do not follow any quality criteria, input files may
not fulfil the functional requirements of our static analysis methods. Consequently,
some form of filtering is required beforehand to ensure that utilized input data fulfils
the following requirements:

1. Input files are correctly read by the employed Apache POI [2015] library.

2. Input files are correctly handled by our application, i.e. do not contain non-
supported spreadsheet-components.

68

3. Input files contain at least one formula cell.

To ensure compliance of input data to these requirements, we introduced the
filtering mechanism outlined in Figure 4.1. Input-data-collections are applied to a
multi-tier filtering-process which ensures for passing files that each of the require-
ments is fulfilled. The first preprocessing step ensures that passing input files are
readable by the employed POI library components. The second preprocessing step
ensures that passing input files are readable and processable by our application.
Thus, passing files do not contain any non-supported spreadsheet functionalities.
Lastly, the third preprocessing step ensures that passing input files contain at least
one formula cell. In addition, preprocessing operations may fail due to unforeseen
reasons like insufficient memory capacity. In such cases, the relevant input file is
moved to a designated quarantine folder to allow for further problem handling.

Figure 4.1: Multi-step filtering mechanism for spreadsheet corpora.

Table 4.1 illustrates the results of the filtering-process after application to the
EUSES and ENRON corpora. In total, the EUSES corpus contains 4,495 files sep-
arated in 22 folders. Of those files, 323 spreadsheets cannot be opened by required
POI components. 155 files contain non-supported spreadsheet components. 2,354
files do not feature any formula cells. 4 files could not be analysed correctly due to
other issues. 1,659 spreadsheets are fit for evaluation. The ENRON corpus features
15,929 files contained in a single folder. All of those files, can be opened by required
POI components. 2,527 files contain non-supported spreadsheet components. 6,656
files do not feature any formula cells. 55 files could not be analysed correctly due
to other issues. The remaining 6,691 spreadsheets are fit for evaluation.

Total POI Application Formula Other Fit for evaluation
EUSES 4,495 323 155 2,354 4 1,659
ENRON 15,929 0 2,527 6,656 55 6,691

Table 4.1: Result of the filtering-process applied to the EUSES and ENRON
corpora. Numbers indicate total and remaining file numbers, as
well as how many files were blocked by each filtering step.

69

4.1.2 Corpora Comparison

We performed a set of two initial analysis operations on the spreadsheets contained
in the filtered corpora. Those operations were chosen to provide a set of relevant per-
formance metrics. These metrics are the basis of our comparison of both evaluation
corpora. Moreover, these metrics allow us to adapt the follow-up evaluation steps ap-
plied to our static analysis methods, as well as to formulate performance-predictions
for those methods. The first analysis operation gathered performance metrics on a
spreadsheet basis. This operation was applied to each spreadsheet within the fil-
tered corpora. Based on this operation, we gathered size and performance metrics
for each spreadsheet. The second analysis operation gathered performance metrics
on a worksheet-basis, and was applied to each non-empty worksheet within the fil-
tered corpora. We present and compare the results of this operation based on the
following focus-categories:

• Cell count: Number of cells for each cell type per worksheet.

• Reference count: Number of incoming and outgoing references for each cell
type and based on occurrence-numbers per worksheet.

• Relation status: Number of input -, intermediate -, output -, and isolated cells
per worksheet.

• Unique values: Number of unique occurring numbers, strings, and formulas
based on occurrence per worksheet.

• Areas: Number of area references in formulas per worksheet.

The resulting metric data was aggregated for both corpora and is provided in table-
form. In addition, we offer a discussion for the spreadsheet-based analysis result, as
well as for each focus-category of the worksheet-based analysis results.

The first analysis operation focussed on spreadsheet-based evaluation. We anal-
ysed processing times for each spreadsheet, as well as how many worksheets and
non-empty worksheets are contained within spreadsheets of the filtered corpora.
Table 4.2 presents the results of the spreadsheet-based evaluation. Analysis of the
EUSES corpus required about 43s of processing-time per file and indicates an av-
erage of 4.3 worksheets contained in each spreadsheet. On average, 3.5 of these

70

worksheets are non-empty, for a total of 5,732 non-empty worksheets. Analysis of
the filtered ENRON corpus on average required 89s of processing-time per file. This
is about double the time required for the average file in the EUSES corpus. Work-
sheet sizes between ENRON and EUSES are similar, with 4.6 worksheets contained
in each spreadsheet on average, and 3.7 of these worksheets being non-empty in
the ENRON corpus. In total, the preprocessed ENRON corpus contains 24,330
non-empty worksheets.

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES

worksheets 1 2 3 4.3 5 55
non-empty worksheets 1 1 2 3.5 4 55
runtime in seconds 0.3 24.5 33.5 42.1 68.0 84.0

ENRON
worksheets 1 2 3 4.6 4 86
non-empty worksheets 1 1 2 3.7 4 85
runtime in seconds 0.4 38.3 82.4 89.8 141.3 179.7

Table 4.2: Spreadsheet-based evaluation of filtered EUSES and ENRON cor-
pora.

The first focus-category of the worksheet-based evaluation regards cell counts per
worksheet. We tallied how many relevant cells in total, as well as how many cells
of each specific cell type are contained within each non-empty worksheet. Table 4.3
presents the evaluation results of this category. For the EUSES corpus, worksheets
between the 1st and 3rd quartile contain between 127 and 755 cells in total, including
counted blank cells. This lies beneath the average of 1,775 cells, which is inflated due
to a low number of worksheets containing significantly more than the average amount
of cells. About 73% of the cells contained in the filtered corpus are blank. For a
blank cell to be counted in our evaluation, it has to either contain style information,
or be referred to by any formula cell. 11% of cells contain strings, followed by 10%
numeric values and 4.5% formulas. Boolean and error cells are hardly used at all.
In general, worksheets contained within the filtered corpus seem to contain mostly
labelled numeric and string data, with a relatively few formulas for processing and
analysis-purposes of this data. Worksheets of the ENRON corpus within the 1st
and 3rd quartile contain between 240 and 1,589 cells in total. This lies beneath the
average of 3,840 cells. Both values, however, indicate that the average worksheet

71

within the ENRON corpus is twice the size of worksheets in the EUSES corpus.
Type distribution of cells is similar within both corpora. About 72% of the cells
contained in the filtered ENRON corpus are blank. 9% of cells contain strings, 12%
contain numeric values and 6% formulas. Boolean and error cells are rarely used.

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES
total 1 128 303 1,755 755 289,430
blank 0 22 118 1,297 384 288,872
boolean 0 0 0 0.21 0 547
error 0 0 0 0.05 0 194
formula 0 0 1 82 52 20,490
numeric 0 3 30 176 105 121,582
string 0 21 44 200 88 206,053
ENRON
total 1 240 537 3,840 1,589 468,278
blank 0 45 181 2,775 742 450,029
boolean 0 0 0 0.15 0 1,770
error 0 0 0 0.90 0 5,897
formula 0 2 36 242 103 141,664
numeric 0 9 53 464 258 182,448
string 0 21 46 358 116 115,599

Table 4.3: Worksheet-based cell count evaluation of filtered EUSES and EN-
RON corpora.

The second focus-category of the worksheet-based evaluation regards reference
counts per worksheet. We tallied how many cells are referred to in total, as well
as how many cells of each cell type are referred to in each worksheet. Moreover,
we counted how many cells within a given worksheet are referred to once, twice,
and three times. Similarly, we tallied how many references are contained within
formulas of each worksheet in total, and how many of those references are targeting
specific cell types. Moreover, we counted how many area references are contained in
formulas of each worksheet. The results of this evaluation are presented in Table 4.4.

Worksheets within the filtered EUSES corpus contain a low number of references
(median: 6 references per worksheet), and are only sparsely referenced themselves
(median: 30 references per worksheet). The average numbers (184 and 526 re-
spectively) of these indicators are, again, inflated by a low number of worksheets
contributing a significant amount of references. With an average of 381 cells per
worksheet, a surprising high amount of blank cells is target of references. This is

72

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES

in
co
m
in
g

total 0 0 30 526 136 262,144
blank 0 0 0 381 15 261,839
boolean 0 0 0 0.19 0 459
error 0 0 0 0.001 0 4
formula 0 0 1 55 26 20,489
numeric 0 0 2 79 38 40,546
string 0 0 0 11 0 16,845
referenced once 0 0 16 315 76 262,144
referenced twice 0 0 0 51 11 12,606
referenced thrice 0 0 0 12 0 12,526

ou
tg
oi
ng

total 0 0 6 185 67 88,804
blank 0 0 0 49 0 57,900
boolean 0 0 0 0.42 0 943
error 0 0 0 0.001 0 4
formula 0 0 0 66 20 19,804
numeric 0 0 0 59 15 23,938
string 0 0 0 10 0 11,100
area 0 0 1 20 9 9,173
ENRON

in
co
m
in
g

total 0 11 104 1,052 343 230,415
blank 0 0 2 698 48 131,422
boolean 0 0 0 0.001 0 27
error 0 0 0 0.024 0 211
formula 0 0 17 146 91 130,676
numeric 0 0 24 196 116 118,151
string 0 0 0 13 0 14,334
referenced once 0 5 48 797 118 156,675
referenced twice 0 0 9 155 99 118,151
referenced thrice 0 0 0 45 0 34,404

ou
tg
oi
ng

total 0 0 21 490 144 204,218
blank 0 0 0 125 1 97,746
boolean 0 0 0 0.002 0 50
error 0 0 0 0.007 0 1,688
formula 0 0 2 163 53 158,137
numeric 0 0 5 187 72 82,554
string 0 0 0 14 0 23,790
area 0 0 5 40 20 17,345

Table 4.4: Worksheet-based reference count evaluation of filtered EUSES and
ENRON corpora. The category incoming counts the number of
individual cells of specific types that are referred to by at least one
formula. The category outgoing counts the number of formula-
references which target cells of a specific type.

73

likely due to area references also containing blank cells in their areas and formulas
referring to blank cells which are meant to be filled in by spreadsheet users as part
of an input form. The first assumption is supported by the fact that a significantly
lower average number of outgoing references (49) are targeting blank cells. In terms
of non-empty cells, numeric cells are referred to the most (14%), followed by for-
mula cells (10%). String cells are rarely referenced (2%). References to error and
Boolean cells are only contained in a small number of specific spreadsheets. 60% of
referenced cells are referred to only once. The rest of them are referred to multiple
times. Worksheets within the filtered ENRON are about thrice as connected than
worksheets in the EUSES corpus. The median for outgoing references lies at 21, and
the median for incoming references lies at 104 references per worksheet. Average val-
ues are significantly higher. This is in line with previous observations. The trend
of a high number of blank cells being target of incoming references continues in the
ENRON reference. Also the distribution of incoming references to non-empty cells
is similar. Numeric cells are referred to the most (18%), followed by formula cells
(14%). String cells are rarely referenced (1%). References to error and Boolean
cells are only contained in a small number of specific spreadsheets. In comparison
to EUSES’ 60%, 75% of ENRON’s referenced cells are referred to only once. The
rest of them are referred to multiple times.

The third focus-category of the worksheet-based evaluation regards cell relation
status counts per worksheet. We tallied how many cells within each worksheet can
be categorized in the following categories:

• Input cells. Non-formula cells which are referred to at least once.

• Intermediate cells. Formula cells which are referred to at least once.

• Output cells. Formula cells which are not referred to.

• Isolated cells. Non-formula cells which are not referred to.

Table 4.5 presents the results of this evaluation. Even within the filtered EUSES
corpus, more than a quarter of contained worksheets neither contain any refer-
ences themselves, nor are target of referenced by external formulas. Even indicators
between the median and 3rd quartile are significantly below the average of the re-
spective values. In general, about 31% of cells are concerned with any relations,

74

whereas the remaining 69% are isolated. 85% of relation-relevant cells are input
cells. 10% contain intermediate calculations. About 5% are formulas containing
output values which are not further referenced. The average distribution numbers
of relation-relevant cells within worksheets are similar between ENRON and EU-
SES. In general, about 30% of cells are concerned with any relations, whereas the
remaining 70% are isolated. 80% of relation-relevant cells are input cells. 12%
contain intermediate calculations. About 8% are formulas containing output values
which are not further referenced. However, in comparison with EUSES, a larger
amount of worksheets contribute to the relation status averages, as 1st quartiles of
the indicators for input and output cells feature values greater than 0, unlike the
results of the ENRON dataset.

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES

input 0 0 18 473 88 262,144
intermediate 0 0 1 55 26 20,489
output 0 0 3 27 16 9,173
isolated 0 73 196 1,202 500 289,430
ENRON

input 0 6 70 910 261 145,242
intermediate 0 0 17 146 91 130,676
output 0 1 7 96 26 27,504
isolated 0 94 308 2,692 971 468,270

Table 4.5: Worksheet-based relation status evaluation of filtered EUSES and
ENRON corpora.

The fourth focus-category of the worksheet-based evaluation regards unique value
counts per worksheet. For each worksheet, we tallied how many unique numeric and
string values occur once, twice, three times, and in total. In addition, we counted
how many unique formulas, based on the R1C1-representation of each formula,
are contained in each worksheet. The results of this evaluation are presented in
Table 4.6. Worksheets in the preprocessed EUSES corpus contain an average of 77
unique string and 69 unique numeric values. These indicators are significantly higher
than the respective median values, due to an expected power-law distribution of
worksheet sizes in general. However, this follows the trend, established by Table 4.3,
indicating that worksheets contain on average more strings than numeric values.
Occurrence frequencies for both string values and numerics are similar: About 80%

75

of values only occur once, 10% twice, 3% thrice. Worksheets contain an average
of 8 distinct formulas. Worksheets in the preprocessed ENRON corpus contain an
average of 73 unique string and 134 unique numeric values. These indicators are
significantly higher than the respective median values, due to an expected power-law
distribution of worksheet sizes in general. However, while the indicators for string
values are similar, the ENRON dataset includes significantly more unique numeric
values than the EUSES corpus. Occurrence frequencies for both string values and
numerics are similar to the EUSES results: About 80% of values only occur once,
10% twice, 3% thrice. Worksheets contain an average of 15.5 distinct formulas. This
is in line with our projections, as EUSES featured about eight and most size-related
metrics are double in value when comparing EUSES and ENRON spreadsheets.

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES

numerics 0 2 17 69 54 16,833
numerics occurring once 0 0 11 54.68 41 15,969
numerics occurring twice 0 0 1 6.51 5 2,492
numerics occurring thrice 0 0 0 2.51 1 3,222
strings 0 17 33 78 61 27,767
strings occurring once 0 14 28 63.11 53 14,715
strings occurring twice 0 0 1 7.03 4 8,052
strings occurring thrice 0 0 0 2.60 1 5,526
formulas 0 0 2 8 8 960

ENRON
numerics 0 4 25 135 79 50,966
numerics occurring once 0 2 16 104 54 38,783
numerics occurring twice 0 0 1 15 9 9,174
numerics occurring thrice 0 0 0 5 2 4,056
strings 0 15 32 7 62 25,133
strings occurring once 0 10 25 54 47 25,097
strings occurring twice 0 0 2 8 6 7,156
strings occurring thrice 0 0 0 3 2 2,340
formulas 0 1 4 16 10 730

Table 4.6: Worksheet-based unique value evaluation of filtered EUSES and
ENRON corpora.

The last focus-category of the worksheet-based evaluation regards area counts per
worksheet. For each worksheet, we tallied how many unique areas of the following
area-categories are referred to in area-references of each worksheet.

• Single-cell: Areas encompassing only a single cell.

76

• Multi-column: Areas encompassing multiple columns, but only a single row.

• Multi-row: Areas encompassing only a single column, but multiple rows.

• Multi-dimensional: Areas encompassing multiple columns and multiple rows.

In addition, we counted how many references to each of the described area-types
are contained in each worksheet. Lastly, we tallied how many unique areas are
contained, in total, in area-references of each worksheet, as well as how many of
those unique areas are referred to once and more than once. The results of this
evaluation are presented in Table 4.7. Analysis of the results features a number of
focal points:

• Analysis of the EUSES corpus shows that only 50% of worksheets in the corpus
contain any references. Most of the referred areas are referred to once. Merely
10% of worksheets contain multiple references to the same area, for a total of
about 5% of all occurring areas. In comparison, 67% of all worksheets in the
ENRON corpus contain area references. About 95% of the referred areas are
referred to once. 6% of worksheets contain multiple references to the same
area, for a total of about 5% of all occurring areas.

• In the EUSES corpus, multi-column areas appear to be more abundant than
multi-row areas. However, the biggest worksheet already contributes about
17% of all occurring multi-column areas. Moreover, multi-column areas only
appear in 17% of all worksheets, whereas multi-row areas appear in 44%.
Both area types are referred on average only slightly more than once. This
is probably based on single instances, where a single area is repeatedly re-
ferred to many times, while most areas are referred to only once. In terms
of usage, no generic favourite amongst users can be discerned for the EUSES
corpus. In comparison, multi-row areas appear to be more abundant than
multi-column areas in the ENRON corpus. Worksheets in general contain
about 20% more references to unique multi-row areas than to unique multi-
column areas. Moreover, only 26% of all worksheets contain references to
any multi-column areas, whereas 64% contain references to multi-row areas.
Both area types are referred on average only slightly more than once. This

77

Sum. Median Mean Max (>0)%
EUSES

single-cell 1,046 0 0.18 500 1%
multi-column 53,465 0 9.33 9,173 17%
multi-row 34,624 0 6.04 792 44%
multi-dimensional 632 0 0.11 40 4%
single-cell references 1,046 0 0.18 500 1%
multi-column references 59,815 0 10.44 9,173 17%
multi-row references 44,268 0 7.72 792 44%
multi-dimensional references 9,137 0 1.59 1,571 4%
unique areas 89,767 1 15.66 9,173 50%
unique areas #ref. =1 85,238 0 14.87 9,173 47%
unique areas #ref. >1 4,529 0 0.79 144 10%

ENRON
single-cell 13,211 0 0.53 2,188 4%
multi-column 360,894 0 14.63 8,784 26%
multi-row 431,519 3 17.49 16,116 64%
multi-dimensional 8,822 0 0.36 405 3%
single-cell references 14,497 0 0.59 2,188 4%
multi-column references 409,131 0 16.58 8,784 26%
multi-row references 542,266 3 21.98 17,345 64%
multi-dimensional references 35,806 0 1.45 1,488 3%
unique areas 814,446 5 33.01 16,116 67%
unique areas #ref. =1 770,706 4 31.24 16,116 67%
unique areas #ref. >1 43,740 0 1.77 4,389 6%

Table 4.7: Area references in formulas per worksheet of filtered EUSES and
ENRON corpora. The table lists how often specific area types
were contained in individual worksheets of a corpus, as well as
how many references to those area types occur. Besides common
statistical categories, the table features a column ‘(>0)%’. Values
of this column indicate the percentage of worksheets that featured
at least one area or reference of a specific type.

is probably based on single instances, where a single area is repeatedly re-
ferred to many times, while most areas are referred to only once. In terms of
layout-preferences, multi-row references and coinciding table layouts seem to
be favoured amongst the creators of the ENRON corpus.

• Multi-dimensional areas only appear in 4% of all worksheets of the EUSES
corpus. However, occurring multi-dimensional areas are referred to signifi-
cantly more often than multi-row and multi-column areas. On average, each
multi-dimensional area is referred to about 15 times. One likely explanation

78

of this trend is infrequent usage of multi-dimensional areas as data storage. In
such instances, multiple LOOKUP- and other analysis functions are required
to work on the same dataset. In general, multi-dimensional areas are rare
enough to be of no concern during most structural analysis approaches. How-
ever, if a worksheet contains multi-dimensional area references, those instances
probably require adjusted analysis methods. In comparison, multi-dimensional
areas only appear in 3% of all worksheets of the ENRON corpus. Occurring
multi-dimensional areas are referred to more often than multi-row and multi-
column areas. On average, each multi-dimensional area is referred to about 4
times.

• Within the EUSES corpus, single-cell areas only occur in 1% of all worksheets.
One single worksheet contributes 50% of those occurrences. For comparison,
single areas occur in 4% of worksheets of the ENRON corpus. Each individual
area is on average referred to only slightly more than once. Thus, for structural
analysis those instances of single-cell areas can be regarded as edge cases.
Moreover, in most cases, those instances can be handled by converting the
single-area reference into a usual cell reference during the analysis process.

Based on the analysed focal points, ENRON is comparable to the EUSES corpus.
However, we did find some differences as well. Firstly, ENRON contains slightly
more unique referred areas than ENRON, both in terms of average occurrence and
in the number of worksheets containing any area reference. Secondly, while the
occurrence of multi-column area references is similar between both corpora, ENRON
contains significantly more multi-row area references. This is likely explained due to
preferences in worksheet layouts. Spreadsheets of the ENRON corpus were created
with the same business-context in mind, leading to a common preference of multi-
row layouts employed in these spreadsheets. In contrast, the EUSES corpus contains
a wide variety of spreadsheets fulfilling various purposes. Hence, no preferential
spreadsheet layout could be established. Lastly, ENRON contains slightly more
multi-dimensional area references than EUSES. However, each individual area is, on
average, only referred to 4 times whereas EUSES’ areas are referred to about 15 times
on average. This is likely due to EUSES containing a collection of spreadsheets that
are used as databases. Such spreadsheets contain expansive data-areas, allowing the

79

application of multi-dimensional area references in LOOKUP- and similar analysis
functions.

4.2 Evaluation Approach

In the following section, we describe the evaluation approach employed in this thesis.
In particular, we determine the goal of our evaluation and derive the evaluation
method we use in order to fulfil our evaluation goal. Lastly, we outline the process
we apply to generate a sets of evaluation data for the EUSES and ENRON corpora.

4.2.1 Evaluation Goal

As main contribution of this thesis, we established a novel structural analysis process
for spreadsheets. This process generates explicit structural information based on the
inherent structure of a spreadsheet. Applicability of the analysis results depends on
the quality of the inferred structure information. We argue that the quality of the
detected high-level structures is an adequate indicator for the overall performance
of the analysis process, because detection of these high-level structures is directly
dependent on all previous processing steps. The high-level structures discerned by
our analysis approach are calculation blocks and collections of either row- or column
headers. Hence, we evaluate the ability of our novel analysis process to accurately
discern blocks and headers of a spreadsheet.

4.2.2 Evaluation Method

Blocks and header collections are novel features within spreadsheets. To the best of
our knowledge, no collection of spreadsheets is available that provides information
about these or similar features. Consequently, evaluation by means of automatic
comparison with an existing dataset is not applicable. Instead, a manual evalua-
tion approach is required. We establish the following method for evaluation of our
analysis process for using an individual spreadsheet:

1. We manually inspect the spreadsheet and infer blocks, collections of column
headers, and collections of row headers.

80

2. We apply our analysis on the same spreadsheet, and list the detected blocks,
collections of column headers, and collections of row headers.

3. For each block and header collection we manually inferred, we check whether
structural analysis was able to:

(a) Detect the expected high-level structure.

(b) Infer the area of the expected high-level structure.

(c) Infer the dimensions of the expected high-level structure.

The conducted checks for each expected structure pose increasingly hard condi-
tions on the detection performance of our analysis process. Requirement (a) checks
whether the process is able to determine any block or header area located in the
area of the expected block or header area. Requirement (b) checks whether the
determined structure encompasses at least the same area as the expected structure.
Requirement (c) checks whether the discerned block or header area matches the ex-
pected size of the related block or header area. Structures which encompass an area
that is greater than the area of the expected structure do not fulfil this requirement.

Evaluation is limited to eligible worksheets within the chosen spreadsheet. Work-
sheet eligibility is based on two factors. First, eligible worksheets must contain at
least one expected calculation block based on a formula within the worksheet. Sec-
ond, spreadsheets often contain multiple worksheets which are structurally equiva-
lent. Only one structurally equivalent worksheet within each spreadsheet is eligible
for evaluation. The comparison-results for each structure type within each worksheet
are tallied and serve as result of the evaluation of the worksheet.

Figure 4.2 presents an example of the applied evaluation method. The example is
based on an excerpt of a worksheet of the ENRON corpus. Sub-figure 4.2a illustrates
the manual inspection of the worksheet. Based on this inspection, a block is expected
to encompass area D15:I24 of the worksheet, highlighted in dark green. The result
of process-based analysis of the same excerpt is presented by Sub-figure 4.2b. The
actually detected block is highlighted in bright-green. Structural analysis is able to
detect a block within the expected area. Furthermore, structural analysis is able to
completely infer the area of the expected block. However, structural analysis proves
unable to infer a block which correctly matches the dimensions of the expected block.

81

This is due to the fact that cells in rows 14, 26 and 27 contain formulas instead of
static values. Consequently, these cells do not limit block expansion, but instead
contribute to the size of the block; Block Expansion infers a block which exceeds
the expected dimensions.

(a) Expected block.

(b) Detected block.

Figure 4.2: Example of the applied evaluation method. The example illus-
trates an excerpt of a worksheet of the ENRON corpus. Expected
and inferred blocks in each sub-figure are indicated in green. The
formula-view reveals that header information is provided via for-
mula cells. Hence, the inferred block exceeds its expected dimen-
sions.

4.2.3 Evaluation Data

We already established an evaluation method to apply to a certain worksheet. How-
ever, the spreadsheet corpora we intend to employ in our evaluation encompass a
substantial number of spreadsheets. Hence, for the scope of this master’s thesis,
manual evaluation applied to each spreadsheet of the chosen evaluation corpora is
not feasible. Instead, we propose a selection of representative spreadsheets for both
evaluation corpora.

82

Spreadsheets of the EUSES corpus are categorized into one of eleven categories.
After application of our filtering process, nine of these categories still contain spread-
sheets. As representatives of the EUSES corpus, we select typical spreadsheets of
each category. As measure of typicality, we apply the quotient of the number of
formula cells to the overall number of cells contained in spreadsheets of each cate-
gory. Up to five of the most typical spreadsheets within each category (the category
‘personal’ only features four spreadsheets) are picked for evaluation. In total, 44
spreadsheets in nine categories serve as evaluation data.

For spreadsheets of the ENRON corpus, we apply additional information pro-
vided by Dou et al. [2016]. Dou et al. presented VEnron, a spreadsheet corpus
which features version information based on the ENRON corpus. To establish VEn-
ron, Dou et al. clustered the spreadsheets of ENRON into 360 groups. Spreadsheets
within the same group are different versions of the same spreadsheet. The authors of
VEnron argue, that spreadsheet versions in the ENRON corpus were introduced by
manual alteration by a user and successive re-issuing of the spreadsheet in form of an
e-mail attachment. We therefore assume that groups featuring the most individual
versions indicate spreadsheets that were of importance within the business processes
of the ENRON company. We take advantage of this information by choosing the
groups featuring the greatest version history as basis for our evaluation. To that
end, we iterate each group within VEnron in order of cardinality. Each group whose
spreadsheets meet the analysis criteria established in Subsection 4.1.1 is added to
the pool of valid evaluation groups. We continue this process to establish the 30
most relevant evaluation groups. The most recent spreadsheet from each group is
chosen as representative of the ENRON corpus.

4.3 Evaluation Results

We proceed to present the results of our evaluation of the structural analysis process.
During this process, we applied our evaluation method to eligible worksheets of
chosen spreadsheets of both, the EUSES and ENRON corpora. The results for the
detection performance on individual worksheets were combined using two different
evaluation modes:

83

• Worksheet-based evaluation. This evaluation mode is based on the percentage
of expected structures that were found within each analysed spreadsheet. For
example, manual appraisal of a worksheet results in five expected blocks. Our
structural analysis process detects all five blocks; Four of them are complete;
Three of them are correct. Consequently, worksheet-based evaluation indicates
that 99% of expected blocks were detected, 80% of blocks were completely
found, and 60% of blocks were correct. Worksheet-based evaluation provides
a statistical assessment of these detection rates for each analysed worksheet of
both corpora.

• Corpus-based evaluation. This evaluation mode is based on the total number
of structures that were detected within all analysed spreadsheets of a specific
corpus. Figure 4.3 provides an example for this evaluation mode based on the
results of the ENRON corpus. Of the 205 blocks that were expected based on
manual inspection, 204 were detected, 169 were completely inferred, and 93
were correctly inferred by our structural analysis process.

Table 4.8 summarizes the results of the worksheet-based evaluation mode. Anal-
ysis of both corpora resulted in an average block detection rate of 99%. In average,
most of the expected blocks could be completely inferred. Inference of complete
blocks was slightly more successful in spreadsheets of the EUSES corpus (89%)
than in spreadsheets of ENRON (83%). In both corpora, the expected blocks within
three quarters of all spreadsheets could be completely inferred. The average rate
of correctly deduced blocks in both corpora is noticeably lower than the detection
rate of complete blocks. Again, inference of correct blocks for the EUSES corpus
(69%) was more successful than for ENRON (55%). In more than one quarter of the
analysed spreadsheets of the ENRON corpus, none of the corrected blocks could be
inferred correctly. In both corpora, overall header detection was less successful than
block detection. Detection of column headers (EUSES: 96%, ENRON: 86%) was
more successful than detection of row headers (EUSES: 94%, ENRON: 76%). In
both cases, most of the detected headers were completely inferred. Overall, header
detection rates for both corpora were lower than related block detection rates. With
exception of row headers in ENRON, the percentage of complete headers inferred
in both corpora is comparable to the rates achieved for blocks. Detection rates

84

of correct headers were higher in all cases than related detection rates for correct
blocks.

Min. 1st Qu. Median Mean 3rd Qu. Max
EUSES

detected blocks 67 100 100 99 100 100
complete blocks 0 100 100 89 100 100
correct blocks 0 42 100 69 100 100
detected column headers 0 100 100 96 100 100
complete column headers 0 100 100 89 100 100
correct column headers 0 50 100 77 100 100
detected row headers 0 100 100 94 100 100
complete row headers 0 95 100 84 100 100
correct row headers 0 50 100 76 100 100

ENRON
detected blocks 92 100 100 99 100 100
complete blocks 0 100 100 83 100 100
correct blocks 0 0 67 55 100 100
detected column headers 0 100 100 86 100 100
complete column headers 0 100 100 82 100 100
correct column headers 0 0 100 60 100 100
detected row headers 0 73 100 76 100 100
complete row headers 0 38 100 72 100 100
correct row headers 0 0 93 63 100 100

Table 4.8: Worksheet-based evaluation results. Metrics indicate success-rates
to identify occurring high-level structures within a worksheet of the
related corpus.

Figure 4.3 summarizes the results of the corpora-based evaluation. Most of the
expected blocks could be detected by structural analysis. Most of expected block
could be completely inferred. A noticeable drop is visible between detection rates for
complete blocks and correct blocks. This drop is more pronounced for spreadsheets
of the ENRON corpus. In general, detection rates for headers are slightly lower than
block detection rates. Inference of complete blocks was slightly more successful for
headers than for blocks. The rate of correctly inferred headers is noticeably higher
than the rate of correctly inferred blocks.

85

Blocks Column headers Row headers
0

100

200

300

400

St
ru
ct
ur
e
co
un

t

Expected
Detected
Complete
Correct

(a) Result for EUSES corpus.

Blocks Column headers Row headers
0

50

100

150

200

St
ru
ct
ur
e
co
un

t

Expected
Detected
Complete
Correct

(b) Result for ENRON corpus.

Figure 4.3: Results of structure-based evaluation based on selected spread-
sheets of EUSES and ENRON corpora. Bars illustrate how many
blocks, column headers, and row headers were Expected, in com-
parison to how many of those structures were Detected, inferred
Completely, and inferred Correctly.

4.4 Discussion

The main purpose of this evaluation was to assess the ability of our analysis ap-
proach to detect high-level structures. In general, 99% of the blocks as well as more
than 80% of expected headers could be detected. Most of the detected structures

86

could be inferred featuring their complete dimensions. However, a noticeably lower
percentage of expected structures could be inferred featuring their correct dimen-
sions.

The key finding of our evaluation is that an average of 99% of the expected
blocks are detectable and most of detected blocks are complete. Hence, blocks
inferred by our analysis can be used as basis for spreadsheet QA techniques with a
high confidence. When applied to enhance spreadsheet smells, the main advantage
of using blocks is limiting the number of cells which need to be analysed during
smell detection. Completely inferred blocks fulfil this requirement, as they provide
a smaller scope for smell detection. However, we acknowledge that non-correctly
inferred blocks still introduce superfluous cells to smell detection processes and are
therefore prone for improvement.

We observed that headers, in general, are less successfully detected than blocks
of the same corpus. This is likely based on the employed definitions of high-level
structures and our analysis process. Blocks are expected to emerge in areas within a
worksheet that are related to calculations. Calculations are based on formulas, and
blocks are inferred based on the position of formulas within a worksheet. Hence,
blocks are reliably detected by our analysis process. However, detection of a header
requires a cell to contain a value of a specific type, and be positioned in correct
relation to a specific other block which was already inferred by the analysis process.
Hence, more individual requirements need to be fulfilled for detection of an expected
header. Consequently, a lower rate of successful detections is to be expected. Nev-
ertheless, the rates of completely, and correctly inferred headers match and even
exceed the rates for block detection. This is likely due to the fact that the total area
and internal structure of header areas is lower than the total area internal structure
of blocks. Hence, detection of header areas in their entirety is more reliable than
block detection.

We found that the detection rates of structures (most pronounced for correct
blocks) is noticeably higher for spreadsheets of the EUSES corpus than for those of
the ENRON corpus. This correlates with our observation, that spreadsheets of the
EUSES corpus feature varying amounts of structural complexity, whereas structural
complexity of spreadsheets of the ENRON corpus is mostly similar. We reason that

87

a common idea of spreadsheet structures might be established as part of company
culture. However, further analysis is required to verify this finding.

During our evaluation, we noticed a number of reoccurring circumstances which
lead to unsuccessful inference of the correct block area. These circumstances can be
divided into two categories. First, circumstances which leads to a block being not
completely detected: Non-referred strings and decimals being placed within blocks.
Our analysis process does not allow for non-referred value cells to occur within
a block. However, in some cases spreadsheet users supply additional information
and commentary for values and areas within a calculation block by means of such
cells. In these cases, blocks may are not expanded past the introduced value cells,
leading to non-completely inferred blocks. Second, circumstances which lead to
blocks being not correctly detected as consequence of expanding in unexpected areas
of a worksheet:

• Formulas in header cells. Block headers are supplied either by formulas re-
ferring to the headers of other blocks, or by formulas calculating ascending
indices. However, our analysis process expects any formula to be part of a
block. Hence, depending on the position of the header cells, the areas con-
taining such headers might be incorporated into neighbouring blocks, and the
related blocks inferred featuring incorrect dimensions as a consequence.

• Referred header cells. Block headers are referred to by formulas within other
parts of the spreadsheet. However, our analysis process expects any cell that is
referred to by a formula to be part of a block. Hence, depending on the position
of the header cells, the areas containing such headers might be incorporated
into neighbouring blocks, and the related blocks inferred featuring incorrect
dimensions as a consequence.

• Lacking block separation. Different blocks within a worksheet are positioned
right next to each other, featuring only limited or no dividing space and no
separating layer of headers. Distinct blocks might be separated by cell borders.
However, borders are not part of our analysis process. Hence, such calculation
areas are merged into a common block, and the block is featuring incorrect
dimensions for both of the areas it is based on.

88

It is evident that detection rates for header areas are improvable, as well. During
our evaluation, we discovered a number of reoccurring circumstances which limited
the effectiveness of header detection. These circumstances can be divided into the
following categories:

• Formula-related header cells. Header cells may either contain formulas or be
referred to by other formulas. However, our analysis process does not consider
formulas cells as well as cells that are referred to by any formula to be eligible
header cells. Hence, such header cells cannot be inferred by the current analysis
process.

• Incorrectly inferred blocks. Header detection infers layers of header cells based
on the dimensions of detected blocks within a worksheet. Hence, incorrect de-
tection of blocks which feature deviating dimensions leads to possible detection
of header areas featuring the same deviating dimensions.

• Ambiguous worksheet structure. Header detection infers layers of header cells
in the vicinity of of detected blocks within a worksheet. Hence, if any unre-
lated but valid header cell is positioned within such a vicinity, it is incorrectly
detected as header of a block. Likewise, if any other cell that is not blank and
not a valid header cell is positioned between an expected header cell and its
related block, the relation for this header cell cannot be correctly established.

89

5. Spreadsheet Smells: State of the Art

The idea of spreadsheet smells is based on the notion of code smells, which was
introduced by Martin Fowler [1999]. In his work, Fowler promoted refactoring as a
method to improve the quality of object-oriented code. However, common guidelines
for appropriate use of refactoring were unavailable at that time. Therefore, Fowler
proposed the utilization of a new concept for that purpose: code smells. Accord-
ing to Fowler’s definition, a smell is a certain circumstance within object-oriented
source code which suggests a certain refactoring. As such, a smell is defined by a
specific anticipated flaw within the structure of object-oriented code. Duplicated
code sections in unrelated classes are an example of such a flaw. Fowler proposed a
list of 22 smells concerning object-oriented source code.

Spreadsheet smells are a recent development within the field of static spreadsheet
analysis. As the name suggests, this method revolves around the conception and
detection of smells within a spreadsheet. Cells and worksheets that contain a smell
are either more likely to contain a fault or harder to maintain than non-smelly
ones. Therefore, spreadsheet smells define a quantifiable measure of suspiciousness
towards specific cells and worksheets.

Code smells do not directly indicate faulty code statements by themselves. In-
stead, code smells indicate code segments that are hard to comprehend, hard to
maintain, or error-prone. Likewise, spreadsheet smells in general do not indicate
faulty cells by themselves, but rather highlight localized quality issues in a spread-
sheet.

90

5.1 Known Spreadsheet Smells

In recent years, a number of different advances have been made to adopt the notion
of smells into the spreadsheet domain. These advances contributed to the set of
spreadsheet smells known to the scientific community. In the following section, we
present this collection of known spreadsheet smells. For each smell, we discuss the
following aspects:

• Origin & Intent: We name the origin and intent of the smell.

• Target: We define which parts of a spreadsheet can contain the smell.

• Detection: We describe how the smell can be detected.

• Example: We provide an example, based on an exemplary spreadsheet pre-
sented in Figure 5.1.

• Cause: We state possible causes of the smell.

• Consequences: We elaborate on which subsequent issues may be indicated by
the smell.

• Alleviation: We suggest ways to remove the smell.

The example spreadsheet in Figure 5.1 describes the basic internal processes of a
warehouse company. Figure 5.1a depicts the Sales worksheet, aggregating product
sales and revenues per period. Figure 5.1b illustrates the Employees worksheet, con-
taining employee data and summarizing working hours. Lastly, Figure 5.1c presents
the Totals worksheet, combining revenue and expenses to calculate total and pe-
riodic results as well as a productivity quota for the current period. Illustrated
worksheets feature a number of highlighted cells. These highlights indicate detected
smells that we will elaborate on throughout the section.

5.1.1 Standard Deviation

Origin & Intent. Standard Deviation was first proposed by Cunha et al. [2012b].
The smell is designed to detect statistical outliers within groups of numeric cells.

91

(a) Sales worksheet.

(b) Employees worksheet.

(c) Totals worksheet.

Figure 5.1: Warehouse example spreadsheet.

92

Target. Standard Deviation detects smelly numerical values. Thus, it can only
be applied to cells that contain such values. Moreover, the smell is usually applied
to input cells only. Numeric results of formula cells are ignored in the detection
process.

Detection. Detection of the Standard Deviation smell relies on the statistical
properties of a group of cells. To that end, groups of neighbouring cells in either
column or row orientation are formed. For each occurring group, the normal distri-
bution model of its contained numeric values is calculated. Based on this model, cells
within the group are marked as smelly, if their cell value deviates by two standard
deviations from the calculated average of the group.

Example. An occurrence of the Standard Deviation smell can be seen in cell B3
of the Sales worksheet depicted in Figure 5.1a. We calculated the average of the
values within column B to be 921,209,151 and the standard deviation of the values
in the column to be 290,113,805. Therefore, values within the column are expected
to lie within the range [340,981,541,1,501,436,762]. However, cell B3 contains the
value 1,079. This lies outside the expected range. Thus, cell B3 is marked as smelly.

Cause. Standard Deviation indicates the occurrence of unexpected numeric cell
values. Such values are usually introduced due to errors at the stage of data entry.
Smelly numerical values may also be a result of ill-considered copy & paste oper-
ations. Furthermore, accidental alteration of cell values throughout the life cycle
of a spreadsheet can introduce deviating values. Poor spreadsheet layout may also
cause the smell. For example, a row or column may contain multiple successive
groups of related numerical values to be computed alongside. However, such groups
do not necessary follow the same mathematical distribution. Without some form of
boundary between such value groups, some values within the row or column may be
marked as smelly as a result.

Consequences. The Standard Deviation smell affects numerical cells. Spread-
sheet users rely on the values provided by this type of cell to conduct various com-
putations and statistic analyses. Therefore, a deviating input value will in most
cases propagate throughout the spreadsheet and result in an error in at least one of
the output values.

93

Alleviation. Correction of a cell that is tagged with the Standard Deviation smell
depends on the circumstance that caused the cell to be smelly. In any case, the cell
value should be examined at first. If a faulty cell value is detected, correcting it
will usually also remove the smell. If the cell value was not faulty, or the cell is still
indicated as smelly after correcting the value, structural considerations need to be
applied. As described before, Standard Deviation may be detected due to successive
groups of numeric values within the same row or column. In such cases, we suggest
structural refactoring of the worksheet in question: Either introduce some form of
boundary between the value groups, or split the groups into corresponding tables.

5.1.2 Empty Cell

Origin & Intent. The smell Empty Cell was proposed by Cunha et al. [2012b]. They
proposed this smell to indicate cells that are empty, but occur within a context that
suggests that the cell should contain a value.

Target. Empty Cell detects smelly empty cells. Consequently, it can only be
applied to cells that do not contain any values, labels, formulas or errors.

Detection. This smell intends to detect empty cells occurring in a suspicious
context. Such a context is described by a number of neighbouring cells that do not
contain any other empty cells. Cunha et al. proposed to utilize windows of five
cells for this purpose. During smell detection, for each row or column every possible
window of 5 neighbouring cells is considered and verified whether it holds precisely
one empty cell. If an empty cell only occurs within such groups, it is indicated as
smelly.

Example. Cell F6 of the Sales worksheet, depicted in Figure 5.1a, is empty. Addi-
tionally, it is exclusively contained in 5-cell-neighbourhoods that do not contain any
other empty cells. As a result, for this cell the Empty Cell smell is signalled. Cells
in row 14 also contain empty cells. However, those cells occur in neighbourhoods
with other empty cells. Subsequently, they are not marked as smelly.

Cause. The Empty Cell smell indicates empty cells that are surrounded by non-
empty cells. Empty cells within a table are usually introduced by mistake. During
data entry or spreadsheet creation, sometimes a cell is overlooked by accident. An
empty cell within a table may also be the result of an ill-considered copy & paste

94

operation. Lastly, the empty cell may have been introduced by an accidental delete
operation later within the life cycle of the spreadsheet.

Consequences. Empty Cell indicates empty spots within the bulk of a worksheet.
Cells within this area usually contain numeric input values or formulas. Those
formulas either calculate final results or are themselves referenced by other formula
cells. Thus, empty cells within those areas usually lead to missing or erroneous
interim and final results.

Alleviation. In order to remove the Empty Cell smell, we suggest to check
whether the cell in question should indeed be empty. If this is not the case, deter-
mine the missing content and insert it. Suggestions for the missing content may be
automatically derived from the surrounding context and presented to the user.

5.1.3 Pattern Finder

Origin & Intent. The Pattern Finder smell was proposed by Cunha et al. [2012b].
It is an extension of the Empty Cell smell. Instead of focussing on empty cells,
Pattern Finder attempts to detect more general deviations of expected cell types:
for example, a string cell situated in a neighbourhood of cells containing numeric
values.

Target. Pattern Finder attempts to detect unexpected deviations of occurring
cell types within rows or columns of a worksheet. The focus thereby lies on the
deviation itself, rather than the specific type. Thus, every cell within the active
area of a worksheet is a potential target for the detection of the Pattern Finder
smell.

Detection. The method of detecting the Pattern Finder smell is based on the
methods that are applied to detect the Empty Cell smell. Detection of Pattern
Finder relies on the inspection of the local neighbourhood of the cell in question. To
that end, Cunha et al. proposed to form windows of 4 neighbouring cells for each
row or column in the spreadsheet. For each of those windows, we need to check
whether it contains exactly one cell containing a different type than the remainder
of the group. If such a cell is detected, it is flagged as smelly.

Example. In the Sales worksheet, illustrated in Figure 5.1a, cell D6 contains the
String "o". This cell thus has the cell type label. However, the surrounding cells in

95

the same column contain number values. Therefore, D6 is indicated as smelly. It is
likely that the cell should have contained the number 0 instead of the label "o": a
typing error occurred.

Cause. Cells that are flagged with the Pattern Finder smell usually indicate
some form of inconsistency within the spreadsheet. This inconsistency can might be
introduced due to a mistakes during the creation or an update of the spreadsheet.
Cells marked with the Pattern Finder smell may also contain temporary placeholder
values, which were intended to be replaced eventually.

Consequences. Pattern Finder indicates inconsistencies within the bulk of a
spreadsheet table. Cells within this area usually contain numeric input values or
formulas that calculate interim results and are themselves referenced by other for-
mula cells either directly or by use of area operations. Thus, inconsistencies within
those areas usually lead to erroneous interim and final results.

Alleviation. To remove the Empty Cell smell, we suggest to check whether the
indicated cell holds the correct value type. Otherwise, determine which type and
value should be contained and replace the faulty value. Suggestions for the missing
content may be automatically derived from the surrounding context and presented
to the user.

5.1.4 String Distance

Origin & Intent. The String Distance smell was first introduced in [Cunha et al.,
2012b]. Cunha et al. noticed that typographical errors are frequently introduced
during data input by typing. Consequently, they implemented the String Distance
smell in order to detect typographical errors within spreadsheets. To that end, the
smell indicates string cells that differ minimally from other strings contained within
the same worksheet.

Target. String Distance is a spreadsheet smell that detects smelly string cells. As
such, only cells containing string values may contain this smell. Other cell types, like
formulas containing strings, are not taken into consideration during the detection of
this smell.

Detection. In order to detect the String Distance smell, Cunha et al. proposed
to utilize an algorithm introduced by Levenshtein [1966]. This algorithm takes two

96

strings as input and calculates the number of single transformation operations that
need to be applied to one of the strings in order to transform it into the other.
During the detection process, this algorithm is applied to each pair of strings within
a row or column. If such a pair of strings only differs by one transformation, the
string in question is signalled as smelly. Cunha et al. suggest to limit the detection
to strings that contain more than three characters. Moreover, String Distance may
indicate ascending numeric and alphanumeric designations within neighbouring cells
as smelly, e.g. cells in a row or column that contain the values Product 1, Product 2
etcetera. Sequences like this are common within spreadsheets and should therefore
be excluded from the detection of this smell.

Example. The cell C9 of the Sales worksheet, displayed in Figure 5.1a, contains
the String Distance smell. This cell contains the label "Productt two". By removal
of a ’t’ character, this string can be transformed to the label contained in cells C6
to C8. Removal of a character only amounts to a single operation. Consequently,
cell C9 is indicated as smelly.

Cause. Cells that contain the String Distance smell contain string values that
differ minimally from other occurring strings. Such instances usually indicate faults
that were introduced by typing errors during data entry. A cell may also smell of
String Distance as result of an accidental alteration of a cell value later on in the
life cycle of a spreadsheet.

Consequences. String cells are typically used as labels and headers within a
spreadsheet. In such cases, relating faults may predominantly lessen the accountabil-
ity of a spreadsheet. However, string values can also be used as part of conditional
branches of a formula, or to encode values within the same row or column using a
lookup operator. According faults directly affect the corresponding calculations
and lead to erroneous results.

Alleviation. To remove the String Distance smell, check whether the string value
contained in the indicated cell is correct. Otherwise, determine which string should
be contained and insert it, replacing the faulty value. Suggestions as to which string
should be contained may be automatically derived from the surrounding context
and presented to the user, or even applied automatically.

97

5.1.5 Reference to Empty Cells

Origin & Intent. Reference to Empty Cells is a spreadsheet smell that was defined
by Cunha et al. [2012b]. They pointed out that formulas that include references
to empty cells are a typical source of errors in spreadsheets. Consequently, they
introduced the Reference to Empty Cells smell to indicate such occurrences.

Target. The smell indicates formula cells that contain at least one reference to
an empty cell. As such, only formula cells can contain this smell. Other cell types
are not taken into consideration during the detection process of Reference to Empty
Cells.

Detection. Detection of Reference to Empty Cells requires for every cell’s formula
within the spreadsheet to be analysed. For each formula, the cells that are referenced
within the formula are determined. If one of those referred cells does not contain a
value, the cell containing the formula in question is flagged as smelly with Reference
to Empty Cells.

Example. Figure 5.1a depicts the Sales worksheet of our example. The formula
at cell G6 of this worksheet contains a reference to the cell F6, which does not
contain any value. As a result, G6 is marked as smelly.

Cause. Formula cells that are indicated to be smelly contain at least one refer-
ence that points to an empty cell. Such references may be introduced due to errors
when entering formulas during spreadsheet creation. References to empty cells may
also occur as a result of ill-considered copy & paste operations. When a formula cell
containing a relative reference is copied, the reference indices are updated according
to the position difference between base and target cells of the copy operation. How-
ever, it is not guaranteed that the value type of the newly referenced cell complies
with the requirements of the formula. Lastly, accidental alterations during the life
cycle of a spreadsheet may introduce references to empty cells into a formula or
delete values from cells that are referenced by existing formulas.

Consequences. Formulas within spreadsheets are mainly utilized to conduct some
form of calculation or statistical analysis based on provided input values. References
to empty cells within a formula usually are not evaluated as errors. Instead, ref-
erences to empty cells are interpreted as the numeric value 0, or an empty string,
based on the related operator within the formula. However, formulas require mean-

98

ingful input data at the location of their references to fulfil their intended function.
Thus, a formula containing a reference to an empty cell may be syntactically valid,
but will usually yield an erroneous result.

Alleviation. Removal of the Reference to Empty Cell smell requires analysis of
the indicated formula as well as analysis of its references. In a first step, we suggest
to check each reference as to whether it leads to an empty cell. If so, verify the
correctness of the reference. If the reference is faulty, determine which cell should
be pointed to instead and update the reference accordingly. If the reference itself
is correct, examine the target cell in question. Determine which value or formula
is missing and update the cell’s content accordingly. Suggestions as to how the
reference could be corrected may be automatically derived from the surrounding
context and presented to the user.

5.1.6 Quasi-Functional Dependencies

Origin & Intent. The spreadsheet smell Quasi-Functional Dependencies (QFD)
was originally proposed by Cunha et al. [2012b]. The idea for and the detection
mechanism of this smell is based on the notion of Quasi-Functional Dependencies as
described by Abraham and Erwig [2006]. In general, a quasi-functional dependency
is established by values of multiple rows or columns that are functionally related to
each other. Functional dependency occurs between two columns A and B, if multiple
occurrences of the same value in column A always correspond to a specific other value
in column B. The Quasi-Functional Dependencies smell indicates violations of such
relations.

Target. QFD relies on the detection and cataloguing of functional dependencies
between column or row values. Subsequently, only cells that contain values are
relevant for this smell. Empty cells and cells that contain errors are not taken into
consideration. Formula cells are ignored as well, as they do not contain constant
cell values to form quasi-functional dependencies with.

Detection. Detection of the Quasi-Functional Dependencies smell requires the
recognition of functional dependencies between at least two columns of a worksheet.
Cunha et al. based their approach on previous work by Chiang and Miller [2008].
In this paper a more general version of the Functional Dependencies principle is

99

presented and utilized to discern non-matching values. Smell detection involves
collecting and matching the entirety of all occurring spreadsheet values. Based
on the results of the matching step, quasi-functional dependencies are synthesized.
Lastly, existing quasi-functional dependencies are evaluated, and cell values that
deviate from expected results are indicated as smelly.

Example. An occurrence of QFD can be found in cell F12 of the Sales worksheet,
depicted in Figure 5.1a. Values within the columns A, B, C, and F follow a Quasi-
Functional Dependency. The value of one cell within those columns can be inferred
from specific other values within the other columns. For example, in rows 10, 11,
and 13 the columns always contain the respective values 7, 1005237614, Product
Three, and $19.99. However, cell F12 does not follow this established relation. It
contains the numeral value $18.99, while the values of the other columns infer the
expected value of $19.99. This is suggestive of a typing error.

Cause. Cells that contain QFD usually indicate some form of inconsistency
within the spreadsheet. A typing error or carelessness during data entry may be the
cause of such faults. In addition, wrong or incomplete copy & paste may also lead
to the introduction of values that smell of Quasi-Functional Dependencies.

Consequences. The Quasi-Functional Dependencies smell indicates an inconsis-
tency within a row or column that contains input data of a spreadsheet. Such cells
are usually referenced by formula cells either directly or by use of area operations.
As a result, inconsistencies indicated by QFD usually lead to erroneous interim and
final calculation results.

Alleviation. Removal of the Quasi-Functional Dependencies smell requires vali-
dation of the value contained in the indicated cell. If the value is faulty, determine
which value should have been contained and replace the faulty content. As only
one specific value that alleviates the smell can be inferred, this refactoring may be
provided as automated process.

5.1.7 Multiple Operations

Origin & Intent. Multiple Operations is a spreadsheet smell which was introduced
by Hermans et al. [2012b]. The smell is based on one of the most well-known
code smells: the Long Method. Fowler [1999] proposed this code smell as a way

100

to indicate methods that feature an excessive number of statements. Such methods
usually do not fulfil a single, specific purpose, but rather combine multiple tasks.
However, the combination of tasks within a single method renders the method in
question less comprehensible and should therefore be avoided. Similarly, formulas
within a spreadsheet environment should feature a limited number of operations in
order to facilitate their accountability. Therefore, Hermans et al. introduced the
Multiple Operations smell to indicate formulas that feature an excessive number of
operations.

Target. The spreadsheet smell Multiple Operations intends to find formula cells
that contain an excessive number of operations. As such, only cells that contain
formulas are relevant for detecting this smell. Other cell types are not taken into
consideration.

Detection. For the detection of the Multiple Operations smell, Hermans et al.
suggest to count the number of operations each formula contains. Based on an
evaluation of the EUSES spreadsheet corpus [Fisher and Rothermel, 2005], cells
should be indicated as smelly if a formula contains more than 4 operations.

Example. An occurrence of the Multiple Operations smell can be seen within cell
D22 of the Employees worksheet, depicted in Figure 5.1b. The formula contained
in this cell consists of 8 distinct operations. This number exceeds the suggested
threshold for the detection of the Multiple Operations smell. Consequently, cell
D22 is indicated as smelly.

Cause. Examination results of Hermans et al. suggest that the introduction of
cells containing the Multiple Operations smell is an evolutionary process. Initially,
formula cells do not contain excessive numbers of operations. However, spreadsheets
are often target of recurring adaptations. These adaptations lead to additional
operations to formulas as the need arises. Especially when working under time
constraints, readability of a spreadsheet is often sacrificed in order to achieve a
working solution.

Consequences. Cells that are flagged by the Multiple Operations smell contain
a large number of operations. As the number of operations increases, the meaning
of a formula becomes harder to understand. This circumstance is intensified by the

101

fact that long formulas often are displayed cut-off, as they require more screen space
than available.

Alleviation. In order to alleviate the Multiple Operations smell of a formula,
we suggest refactoring: Split up the necessary calculations within the formula, dis-
tribute them over multiple cells and link them using references. As no additional
knowledge or user input is required, this refactoring may be provided as automated
process. In some cases, multiple used operations can be replaced by a single area-
supporting operation like sum.

5.1.8 Multiple References

Origin & Intent. The spreadsheet smell Multiple References was first proposed
in [Hermans et al., 2012b]. Hermans et al. adapted the notion from a similar
code smell: Multiple References. This code smell was presented by Fowler [1999].
It indicates method definitions that feature an excessive number of parameters.
Comprehensibility of a method definition declines as the number of parameters it
requires increases. Likewise, the clarity of a formula declines as the number of
references it features increases. Therefore, Hermans et al. suggested to utilize the
Multiple References smell to indicate formula cells that require an excessive number
of references.

Target. Multiple References points out formula cells that rely on a large number
of different references. As a result, formula cells are exclusively relevant for the
detection of this smell. Other cell types are not taken into consideration.

Detection. For detecting the Multiple References smell, Hermans et al. suggest
to count the number of references to areas and other cells within a specific formula.
Based on an evaluation of the EUSES spreadsheet corpus [Fisher and Rothermel,
2005], cells should be indicated as smelly if they contain more than 3 references.

Example. Figure 5.1b depicts the Employees worksheet of our example. Cell D22
of this worksheet contains a formula referencing 6 unique areas and different cells.
Consequently, it exceeds the suggested threshold for the detection of the Multiple
References smell and is highlighted as smelly. Note that the Multiple Operations
smell is detected for this cell as well.

102

Cause. The introduction of Multiple References usually follows the same evo-
lutionary process that leads to the introduction of the Multiple Operations smell.
Formula cells normally start out requiring a limited number of references. How-
ever, during the life cycle of the spreadsheet, adaptations are made to expand the
functionality of those formulas which often require additional references.

Consequences. When contemplating spreadsheet formulas, the more single refer-
ences to other cells they contain, the harder to comprehend they become. Similar to
the Multiple Operations smell, this circumstance is intensified due to the fact that
long formulas are usually not displayed completely, since they require more screen
space than available.

Alleviation. In order to remove the Multiple References smell, we suggest to
distribute the formula contained within the cell over multiple different cells, each
containing a subset of the required operations and references. As no additional
knowledge or user input is required, this refactoring may be provided as automated
process. In some cases, multiple used operations may be replaced by a single area-
supporting operation like sum. In such cases, the corresponding references can
be united using area references where appropriate. Additional references may be
removed by relocating them next to and merging with an already referenced area.

5.1.9 Conditional Complexity

Origin & Intent. Conditional Complexity was introduced by Hermans et al. [2012b].
The spreadsheet smell is based on a notion by Fowler regarding conditional oper-
ations in object-oriented code. According to Fowler, readability of code declines
in instances where multiple nested conditional operators occur. Similarly, multiple
nested conditional operators within a spreadsheet formula are difficult to compre-
hend. Therefore, Hermans et al. proposed the Conditional Complexity smell to
indicate formulas featuring an excessive number of nested conditional operators.

Target. The smell Conditional Complexity detects formula cells that contain an
excessive number of nested conditional operators. Consequently, the detection of
this smell relies solely on cells that contain formulas. Other cell types are not taken
into consideration.

103

Detection. For detecting the Conditional Complexity smell, Hermans et al. sug-
gest to count the number of nested conditional operators contained in a specific
formula. Based on an evaluation of the EUSES spreadsheet corpus [Fisher and
Rothermel, 2005], cells should be indicated as smelly if they contain at least 3
nested conditional operators.

Example. Occurrences of the Conditional Complexity smell are contained within
cells D2, D9, and D15 of the Employees worksheet, illustrated in Figure 5.1b. Each
of those formulas contains 3 nested conditional operations. Thus, each cell exceeds
the suggested threshold for the detection of Conditional Complexity and is therefore
marked to contain the smell.

Cause. According to the evaluation by Hermans et al., this smell rarely occurs.
Spreadsheet users obviously have some notion that conditional operators are com-
plex. Subsequently, formulas containing conditional operators are usually handled
with care. However, especially when working under pressure, users are less reserved.
In such circumstances, users are more likely to rely on nested conditionals.

Consequences. Conditional Complexity marks formula cells within spreadsheets
that contain multiple conditional operators. However, even a single conditional op-
erator within a spreadsheet formula can be hard to comprehend for end users. One
relevant issue is that formulas are only afforded a limited amount of screen space
to be displayed. This space usually does not suffice to show the entire conditional
operator. Moreover, the syntax of conditional operators within spreadsheet envi-
ronments does not emphasize the semantic function of each of its operands. This
renders them hard to comprehend. Multiple consecutive conditional operators con-
tained within a formula only worsen this effect.

Alleviation. One way to combat the Conditional Complexity smell is to divide
the conditional operations over multiple cells. As no additional knowledge or user
input is required, this refactoring may be provided as automated process. Alterna-
tively, the sumif and countif operators can be used to aggregate single conditional
operators. If applicable, the lookup operator can be used instead. This operator
allows to specify a search key as well as a cell range containing condition-value-pairs.
If the key matches one of the conditions within the cell range, the corresponding
value is displayed.

104

5.1.10 Long Calculation Chain

Origin & Intent. The spreadsheet smell Long Calculation Chain was first proposed
in [Hermans et al., 2012b]. It can be seen as the antithesis to the Multiple Oper-
ations smell. In the usual workflow of a spreadsheet, formula cells rely on results
of other formulas for their calculations. As a result, chains of dependent calcula-
tions are formed. However, in order to verify the correctness of such a chain, a
spreadsheet user needs to trace along multiple references to find the origin of the
input values. The longer such a chain grows, the harder it becomes to comprehend.
Therefore, Hermans et al. introduced this smell to indicate formula cells that rely
on exceedingly long calculation chains.

Target. The spreadsheet smell Long Calculation Chain indicates formula cells
that rely on a large number of successive dependent calculations. Consequently,
only cells that contain formulas are relevant for the detection of this smell. Other
cell types are not taken into consideration.

Detection. For detecting the Long Calculation Chain smell, Hermans et al. sug-
gest to calculate the length of the longest path of successively referenced cells that
need to be traced when evaluating a formula’s value. Based on an evaluation of the
EUSES spreadsheet corpus [Fisher and Rothermel, 2005], cells should be indicated
as smelly if the regarding metric is greater than 4.

Example. Cell C13 in the Totals worksheet, depicted in Figure 5.1c, is reliant on
a vast number of cells. One of the longest calculation chains which can be formed
is: Totals!C13→ Totals!C10→ Sales!H15→ Sales!G15→ Sales!G2→ Sales!E2. To
calculate this chain, 5 dependencies need to be dereferenced. This number exceeds
the threshold suggested by Hermans et al.. Thus, cell C13 of the worksheet Totals
is indicated as smelly.

Cause. Formulas that rely on the interim results of other formulas for their
calculations are a common practise within the spreadsheet domain. Consequently,
the formation of calculation chains is a common occurrence. When expanding the
functionality of a spreadsheet, users simply add new formulas that refer to existing
calculation results. The overall structure of the utilized calculation chains is usually
neglected during this process. Restructuring and regrouping of existing functional-

105

ities is not a common practice. Thus, long calculation chains are likely to occur, as
the functionality of a spreadsheet expands.

Consequences. To understand the meaning and verify the correctness of a specific
formula within a spreadsheet, a user needs to trace each reference within a given
calculation chain. The longer a calculation chain grows, the higher the number of
references and interim results it contains. Consequently, cells with long calculation
chains are hard to comprehend and maintain.

Alleviation. In order to alleviate this smell while maintaining the functionality of
the required calculations, we suggest to merge multiple steps along the calculation
chain into a single formula which aggregates all the necessary operations. As no
additional knowledge or user input is required, this refactoring may be provided as
automated process. However, note that this approach leads to a trade-off between
the intensity of this smell and the intensities of the Multiple Operations and Multiple
References smells. In addition, if any cell within the calculation chain is referenced
by another formula as well, this case has to be handled accordingly.

5.1.11 Duplicated Formulas

Origin & Intent. The Duplicated Formulas spreadsheet smell was introduced by
Hermans et al. [2012b]. This spreadsheet smell is based on the Duplicated Code
smell presented by Fowler [1999]. The related code smell indicates classes that con-
tain multiple occurrences of similar code snippets. Likewise, different formula cells
within a spreadsheet can contain equal sub-expressions. The code smell Duplicated
Formulas indicates such cells within a worksheet.

Target. Duplicated Formulas points out different formula cells that feature equal
sub-expressions within their formulas. Consequently, the detection of Duplicated
Formulas is reliant on formula cells only. Other cell types are not taken into consid-
eration.

Detection. For detecting the Duplicated Formula smell, Hermans et al. suggest to
utilize the relative R1C1 notation. References depicted in this notation express their
references to other cells relative to the cell that contains the formula. For example,
the formula max(A1:A3) in cell A4 would be written as max(R[-3]C[0]:R[-1]C[0])
in this notation. Hermans et al. suggest to measure the number of cells within a

106

worksheet that feature sub-expressions being either equal or share the same relative
R1C1 notation. Based on an evaluation of the EUSES spreadsheet corpus [Fisher
and Rothermel, 2005], cells should be indicated as smelly if they share the same
sub-expression with at least 6 other cells. Nevertheless, in other work [2012b] they
present an example whereby the Duplicated Formula smell is indicated for a cell that
shares its sub-formula with merely a single other cell, casting a doubt on the provided
threshold. Lastly, formulas that are entirely equal in relative R1C1 notation are not
marked as containing the smell, as this is common practice among spreadsheet users.
Abreu et al. [2014a] proposed an adapted approach for the detection of this smell.
Instead of relying on the relative R1C1 notation, they directly compare occurring
formulas. As an example, two cells containing the formulas sum(A1:A3) * 1.1 and
sum(A1:A3) * 1.2 would have the first part duplicated and therefore be indicated
as smelly.

Example. An occurrence of the Duplicated Formulas smell is demonstrated by
cell H13 within the Sales worksheet, depicted by Figure 5.1a. The part of the formula
referencing the cell values to the left of the formula is shared with other formulas
within column H. However, the constant multiplication factor 0.9 of the formula
within H13 differs from the remaining column. Thus, the cell is indicated as smelly.
Another example is cell H14 of the same worksheet. The formula of this cell shares
the sumif part with its neighbour, but expands it by an additional multiplication.
Consequently, it is pointed out as containing the Duplicated Formulas smell.

Cause. Duplication and adaptation of formulas is common practice during the
creation of a worksheet. It is not surprising that multiple occurrences of similar
or equal sub-expressions are contained in various formula cells within the same
worksheet. During their evaluation, Hermans et al. found that a substantial amount
of spreadsheet users understand that formula duplication can lead to problems.
However, they also observed that comprehension of the issue by users does not lead
to fewer occurring duplications within the spreadsheets of those users. Moreover,
some users do not see any harm at all in duplicating formulas.

Consequences. Duplication of formula parts may lead to a number of problems.
If a large part of a given formula is duplicated from another one, it is hard to
distinguish them within the program interface. Moreover, if a formula containing
duplicated parts needs to be adapted, this adaptation has to be applied to each of the

107

duplicated formulas. This poses a threat to the maintainability of the spreadsheet,
as it is easy to overlook one of the duplicated formulas by mistake.

Alleviation. To remove the Duplicated Formulas smell, we suggest to extract the
duplicated section from each related formula and move it into a single, designated
formula cell. The base cells need to be updated with the reference to the new formula
cell accordingly. This procedure usually increases readability and maintainability of
a worksheet. As no additional knowledge or user input is required, this refactoring
may be provided as automated process.

5.1.12 Inappropriate Intimacy

Origin & Intent. Inappropriate Intimacy is an inter-worksheet smell which was
proposed by Hermans et al. [2012a]. According to their definition, the smell is
primed to detect worksheets that are relying too heavily on the content of other
worksheets. The smell is based on the identically named code smell presented by
Fowler [1999].

Target. Inappropriate Intimacy intents to detect worksheets that feature an
excessive number of references to different worksheets. Such references are only
contained within formula cells of a spreadsheet. As a result, the detection of the
Inappropriate Intimacy smell is solely reliant on analysis of formula cells. Other cell
types are not taken into consideration.

Detection. In order to detect an inappropriately intimate worksheet, Hermans
et al. introduced the so-called Intimacy metric. Intimacy between two spreadsheets
is measured by the number of connections between them. The function, defined by
this metric has the type W×W→ int and is defined by the formula

Intimacy(w0, w1) = |{(c1, c0) ∈ KS : c0 ∈ w0 ∧ c1 ∈ w1 ∧ w0 6= w1}|.

Intimacy counts the number of pairs (c1, c0) inKS, the set containing all connections
of the spreadsheet, for which holds true that c0 is contained in worksheet w0, c1 is
contained in worksheet w1, and the two worksheets are different. Thus, it counts the
number of references the worksheet w0 contains that point to cells in the worksheet
w1. According to this definition, multiple references from one worksheet to a specific

108

cell of another worksheet are counted repeatedly. The overall intimacy of a worksheet
is calculated as

II(w0) = max{Intimacy(w0, w1) : w0, w1 ∈ S}.

This metric indicates the maximum intimacy the worksheet w0 has with any other
worksheet. Hermans et al. suggest to utilize this metric to detect the Inappropriate
Intimacy smell. Based on an evaluation of the EUSES spreadsheet corpus [Fisher
and Rothermel, 2005], the threshold for the detection of this smell is 8. Thus,
a worksheet should be highlighted as smelly if it contains at least 8 references to
another worksheet.

Example. The detection of the Inappropriate Intimacy smell is based on the
maximal number of references to a different spreadsheet. Figure 5.1c depicts the
Totals worksheet of our example, which contains this smell. By analysing formulas
occurring in this worksheet, we see that it contains 6 references to the worksheet
Employees and 9 references to the worksheet Sales. Therefore, the maximal number
of references to a different worksheet for the Totals worksheet is 9. The value exceeds
the suggested threshold for this metric. As a result, the Totals worksheet is indicated
as smelly.

Cause. According to the evaluation by Hermans et al. [2012a], the Inappropriate
Intimacy smell is quite common among typical spreadsheets. They observed that
spreadsheet creators are usually not trained as programmers. Therefore, structuring
spreadsheets in a logical way poses a difficult task. As a consequence, spreadsheet
users rely excessively on cross-worksheet references within their formulas. This leads
to the accumulation of the Inappropriate Intimacy smell in some cases. In partic-
ular, Hermans et al. identified two cases which repeatedly cause the Inappropriate
Intimacy smell. One depicts the use of a so-called auxiliary worksheet in combina-
tion with a second one: The auxiliary worksheet contains data on which the other
worksheet relies. The second case depicts two worksheets which repeatedly reference
each other without any clear distinction of purpose between them.

Consequences. A worksheet containing the Inappropriate Intimacy smell indi-
cates the existence of a strong semantic connection to at least one other worksheet.
Such semantic connections are usually formed when logic to fulfil a coherent task is

109

separated over multiple worksheets. However, such a split of functionality between
multiple worksheets may weaken understandability of the spreadsheet as a whole.
Moreover, when changes are made within the referenced worksheet, the reliant work-
sheet needs to be checked for correctness as well. This requires a spreadsheet user
to continuously switch between the two worksheets.

Alleviation. Removal of the Inappropriate Intimacy smell of a worksheet re-
quires to reduce its number of references to at least one specific other worksheet.
However, this reduction usually requires a well thought-out restructuring process,
as the functionality of the spreadsheet as a whole needs to remain unaltered. The
correct refactoring strategy to apply depends on the individual situation. Wherever
possible, neighbouring references to other worksheets should be merged using area
references. In some cases, importing more extensive parts of functionality from the
referenced worksheet may be required. In other cases, the best course of action is
to merge two worksheets.

5.1.13 Feature Envy

Origin & Intent. Feature Envy is an inter-worksheet smell proposed in [Hermans
et al., 2012a]. Hermans et al. derived it from a corresponding smell for object-
oriented code. Fowler [1999] introduced this code smell to indicate that a specific
method is more reliant on the fields of another class than on fields of the class that
contains the method. The same principle can be applied to spreadsheet formulas.
The spreadsheet smell Feature Envy indicates formulas which are excessively reliant
on foreign worksheets.

Target. Feature Envy detects and indicates formula cells that feature an exces-
sive number of references to foreign worksheets. Therefore, only formula cells are
analysed during the detection process of this smell. Other cell types are not taken
into consideration.

Detection. In order to detect feature envious formula cells, Hermans et al. intro-
duced the so-called Enviousness metric. Enviousness indicates how many references

110

to cells of other worksheets a formula contains. The metric defines a function of the
type C→ int and is defined by the formula:

FE(c0) ≡ |{(c1, c0) ∈ KS | ∃w : c0 ∈ w ∧ c1 /∈ w}|

This metric counts the number of pairs (c1, c0) in KS for which holds true that c0 is
contained in the worksheet but the cell c1 is not. Hermans et al. suggest to utilize
this metric to detect the Feature Envy smell. Based on an evaluation of the EUSES
spreadsheet corpus [Fisher and Rothermel, 2005], a formula cell should be indicated
as smelly if it contains at least 3 relations to other worksheets.

Example. An example of the Feature Envy smell can be found in cell C14 of the
Totals worksheet, depicted in Figure 5.1c. The formula in cell C14 contains 4 distinct
references to other worksheets. This value exceeds the threshold that is suggested
for the detection of the Feature Envy smell. Thus, cell C14 of the worksheet Totals
is indicated as smelly.

Cause. The introduction of this smell is based on the same principles that apply
to the Inappropriate Intimacy smell. Hermans et al. [2012a] state that Feature Envy
occurs quite often among spreadsheets. They reason that spreadsheet creators are
usually not trained as programmers. Structuring spreadsheets in a logical way is not
a trivial problem. As a result, such users rely heavily on cross-worksheet references
within their formulas, resulting in the accumulation of the smell. Hermans et al.
pointed out two distinct cases that repeatedly lead to the introduction of Feature
Envy: One depicts the use of so-called auxiliary worksheets which contain data in
combination with other worksheets that rely on the provided data. The second
case depicts two worksheets that repeatedly reference each other without any clear
distinction from each other.

Consequences. Feature Envy implies that a specific cell is excessively interested
in cells from another worksheet, rendering it harder to understand. One likely
reason for this is fact that spreadsheet users heavily rely on the highlighting feature
for formula references. This feature draws borders around the cells and areas of
referred cells of a selected formula. However, in most common spreadsheet programs
this feature does not work across worksheets.

111

Alleviation. To alleviate the Feature Envy smell, we suggest to move the formula
in question to the corresponding worksheet and link the result of the computation
back to the initial worksheet. By carrying out this procedure, the formula in question
is moved closer to the cell it is referring to. As a result, the comprehensibility of the
worksheets should be improved.

5.1.14 Middle Man

Origin & Intent. Middle Man was introduced as an inter-worksheet smell in [Her-
mans et al., 2012a]. Hermans et al. defined a middle man in the context of spread-
sheets as a formula that only contains a single reference to another cell. Such formu-
las are used frequently as sources of information to be used in further calculations
within a local worksheet. However, worksheets that contain an excessive number of
such middle man cells are deemed smelly. The notion of a middle man was derived
from an identically named code smell introduced by Fowler [1999].

Target. The Middle Man smell indicates worksheets that contain an excessive
number of middle man cells. The detection of this smell is solely reliant on the
analysis of formula cells within a specific worksheet. Other cell types are not taken
into consideration.

Detection. In order to detect a worksheet that smells of the Middle Man smell,
Hermans et al. introduced a special type of formula: the middle man formula. A
middle man formula fulfils the sole purpose of fetching a value from another cell.
Cells that contain such a formula are detected by the function MMF(cell c). This
function has the formC→ bool. However, Hermans et al. require that for the Middle
Man smell to be detected for a worksheet, a calculation chain of two consecutive
passing formulas needs to occur. To that end, they suggest the following metric:

MM(w) ≡ |{(c1, c0) ∈ KS : c1 ∈ w ∧MMF(c0) ∧MMF(c1)}|

This metric counts the numbers of middle man formulas in a worksheet that are
themselves used as reference by another middle man formula. Based on an evaluation
of the EUSES spreadsheet corpus [Fisher and Rothermel, 2005], Hermans et al.

112

suggest that a worksheet should be indicated as smelly if it contains at least 7
chained middle man formulas.

Example. An example related to the Middle Man smell can be found in cell B21
of the worksheet Employees (see Figure 5.1b). Analysis of the formula in cell C14
indicates that this cell is a middle man cell. Its sole purpose is to fetch the value
contained in cell C1 of the Totals worksheet. However, the cell B21 itself is target
of a middle man cell as well: cell B15 within the worksheet Sales. Thus, a chain of
multiple middle man cells is established. This, in turn, increases the suspiciousness
of the Employees worksheet towards the Middle Man smell. However, the suggested
value of at least 7 linked middle man cells is not reached. Therefore, the worksheet
does not contain the Middle Man smell.

Cause. Middle man cells are commonly introduced to pass along values and cal-
culation results throughout different worksheets. The resulting values are often used
for further calculations. However, middle man cells may also be used to keep an eye
on specific values in different parts throughout a spreadsheet. In some cases, values
are even passed along within the same spreadsheet for that effect. In either case, the
method of value passing can follow one of two different approaches. Using the first
approach, values are passed from the source to each middle man individually. Using
the second approach, values are passed along by formation of a chain. However, this
approach may introduce a number of problems.

Consequences. Middle man cells are commonly used to state results of calcula-
tions within other worksheets. However, a problem arises when a worksheet contains
an excessive number of such middle man cells. Such occurrences impair general read-
ability of a spreadsheet and are linked to bad spreadsheet design.

Alleviation. Which strategies should be applied to alleviate the Middle Man
smell depends on the circumstances in which the middle man cells are applied. In
cases where values are passed along a chain of multiple middle man cells, we suggest
to adapt the corresponding formulas of each step along the chain to directly reference
the source cell instead. As no additional knowledge or user-input is required, this
refactoring may be provided as automated process. In cases where middle man cells
relay values for further processing to different worksheets it might be favourable to
simply relocate the spreadsheet logic in question to the vicinity of the data source,
thus removing the requirement for value passing altogether.

113

5.1.15 Shotgun Surgery

Origin & Intent. Shotgun surgery is an inter-worksheet smell presented by Hermans
et al. [2012a]. This smell is based on the corresponding code smell that indicates
that a change within one class needs to be followed up by numerous little changes
in several dependent classes. This code smell was presented by Fowler [1999]. The
same principle can be applied to spreadsheets. Thus, the Shotgun Surgery smell
is detected when cells of a specific worksheet are referenced by multiple formulas
within other worksheets.

Target. The Shotgun Surgery smell indicates worksheets that are referenced by
a large number of formulas that are contained in different worksheets. Therefore,
only formula cells are required for the detection of this smell. Other cell types are
not taken into consideration.

Detection. In order to detect worksheets that contain the Shotgun Surgery smell,
Hermans et al. introduce two metrics, both of the type W→ int:

ChangingFormulas(w) ≡ |{(c1, c0) ∈ KS : c1 ∈ w ∧ c0 /∈ w}|

The metric Changing Formulas counts the number of formulas outside of worksheet
w. that refer to a cell in worksheet w. Based on an evaluation of the EUSES
spreadsheet corpus [Fisher and Rothermel, 2005], a worksheet should be deemed
smelly if it is referenced by at least 9 changing formulas.

ChangingWorksheets(w0) ≡ |{w1 ∈ S | ∃(c1, c0) ∈ KS : c0 ∈ w1 ∧ c1 ∈ w0}|

The metric Changing Worksheets counts the number of worksheets that contain
references to any cell in the worksheet w0. Based on the evaluation of the EUSES
spreadsheet corpus, a worksheet should be indicated as smelly if it is referenced by
at least 2 other worksheets.

Example. The Employees worksheet exhibits the Shotgun Surgery smell. As
can be seen in Figures 5.1a and 5.1c, cells within this worksheet are referenced by
both the Sales and the Totals worksheet. Therefore, the threshold to indicate the
Shotgun Surgery smell for this worksheet is breached.

114

Cause. The Shotgun Surgery smell within a spreadsheet can usually be accounted
to a lack of foresight during set-up of a spreadsheet. When working with extensive
spreadsheets, references to cells of foreign worksheets are often used. Limiting the
amount of such references requires a well-considered spreadsheet structure. However,
the introduction of clean and comprehensible structures is typically of little concern
to novice users. Consequently, instances of Shotgun Surgery naturally accumulate
as the functionality of spreadsheets expands.

Consequences. The inter-worksheet smell Shotgun Surgery indicates that cells of
a specific worksheet are referred to by many formulas of other worksheets. Naturally,
if a highly-referred target cell changes, many of the formulas that refer to it need
to be adapted as well. Thus, Shotgun Surgery is linked to maintainability of a
spreadsheet. In addition, affected spreadsheets are more error-prone. Introduction
of faults is more likely, as changes of individual cells may require adaptations in
multiple other parts of the spreadsheet.

Alleviation. In order to cope with the Shotgun Surgery smell, we suggest to
minimize the references to cells within the worksheet in question. Another approach
to alleviate this smell is to move the reliant formulas to the worksheet in question.

5.2 Overview and Comparison

Spreadsheet smells can be arranged into groups based on which properties of spread-
sheets they are related to. As an example, multiple smells are concerned with the
complexity and accountability of formula cells. Thus, Long Calculation Chain, Mul-
tiple Operations, and Multiple References are connected to one another. When Long
Calculation Chain is lowered, others are increased and the other way around. These
trade-offs exist in source code smells too.

Empty Cell detection is a subset of the methodology to detect the Pattern Finder
smell. However, Empty Cell detection usually allows for more general thresholds as
to which part of the local neighbourhood is analysed.

Multiple occurrences of Feature Envy in relation to a specific worksheet imply
Inappropriate Intimacy, but not the other way around. Middle Man may be seen
as extreme form of Inappropriate Intimacy, referring to a single worksheet. Middle

115

Man is also an extreme case of Feature Envy, as corresponding formulas only refer
to external cells. Shotgun Surgery may be caused by feature-envious or middle man
cells, but is not required to be so. Shotgun Surgery can also be seen as counter to
the Inappropriate Intimacy smell. Whereas Inappropriate Intimacy indicates that
a given worksheet relies too heavily on a number of different worksheets, Shotgun
Surgery indicates that other worksheets are too reliant on a specific cell within a
single worksheet.

Every proposed inter-worksheet smell can be removed by simply placing all re-
quired spreadsheet logic into a single worksheet. However, a more structured design
approach usually improves readability and maintainability of spreadsheets. Migra-
tion of spreadsheet logic into a single worksheet is only advisable up to a certain
size. This behaviour is characteristic for an optimization process. Nevertheless,
none of the proposed smells is adequate to be used as a counterbalance for such
an optimization. This indicates a vacancy within the current spreadsheet smell
catalogue.

In general, smells that indicate similar problems or have similar detection meth-
ods tend to influence one another. In order to highlight fundamental similarities and
differences, Table 5.1 provides an overview of the spreadsheet smells summarized in
this chapter. The table features the following properties:

Target Spreadsheet parts that can contain the smell.
Oo-pendant Code Smell this smell is based on, if any.
Cause Stage of the spreadsheet life cycle at which the smell is usually

introduced.
Consequences Aspects of spreadsheet quality that are affected by the smell.
Alleviation Options for smell removal.

116

Name
Target

Oo-pendant
Cause Consequences Alleviation

Em
pty

cells
N
um

eric
cells

String
cells

Form
ula

cells
W
orksheets

C
reation

D
ata

entry

Expansion

Erroneous
result

Im
peded

quality

M
anual

A
ssisted

A
utom

ated

Std. Deviation • - • • •
Empty Cell • - • • • •
Pattern Finder • • • • - • • • •
String Distance • - • • •
Ref. to Empty Cells • - • • • •
QFD • • - • • •
Multiple Operations • Long Method • • •
Multiple References • Many Parameters • • •
Cond. Complexity • - • • • •
Long Calc. Chain • - • • • •
Duplicated Formulas • Duplication • • •
Inappr. Intimacy • Inappr. Intimacy • • • •
Feature Envy • Feature Envy • • • •
Middle Man • Middle Man • • • •
Shotgun Surgery • Shotgun Surgery • • • •

Table 5.1: Comparison of Spreadsheet Smells

5.3 Utilization of Spreadsheet Smells

In the previous section, we summarized which spreadsheet smells have been proposed
by the community and how those smells can be detected. In order to benefit from
smell detection we need to apply the knowledge about detected smells in some form.
Throughout the various examinations of the topic within the scientific community,
a number of different approaches have been devised to that end. We organize these
approaches into the following 3 categories:

• Smell Indication approaches directly provide feedback about detected smells
to the user. Feedback may be provided either in-place or in form of additional
documents. Users may then manually adapt their spreadsheets based on the
additional information.

• Smell Removal approaches go a step further and attempt to infer procedures to
remove perceived smells from a spreadsheet. Removal of smells usually requires
some form of refactoring of the spreadsheet structure. Inferred changes that
lead to the removal of smells may either be applied automatically or presented
to the user in form of change suggestions.

• Other Approaches consult information about perceived smells and conduct
further processing of the data to attain a specific goal. However, this goal is
not directly related to the indication or removal of perceived smells.

In the following subsections, we describe each category in more detail and state
exemplary existing approaches for each of them.

5.3.1 Smell Indication

The straightforward approach to apply the results of smell detection is to accumu-
late and provide feedback about perceived smells within the spreadsheet. Feedback
may be provided either in-place via visual cues or in form of additional documents,
diagrams, and charts. Most initial approaches towards the study of spreadsheet
smells used such feedback mechanisms. The focus of those early works has been
to establish and refine valid smells and detection processes. Smell utilization has

118

been a minor concern at that stage. However, users may still benefit from those ap-
proaches. If applied, users may inspect, re-evaluate, and update their spreadsheets
based on the additional feedback.

Hermans et al. [2012a] were among the first to venture into the scientific field
of spreadsheet smells. Their work revolves around detecting and visualizing inter-
worksheet smells within spreadsheets. In a previous work [Hermans et al., 2011],
they already established a process to extract data flow diagrams from spreadsheets
as a suitable option to visualize the inherent structures of spreadsheets. Such dia-
grams usually provide visual aid to comprehend data dependencies and relationships
between processes in information systems. Hermans et al. extended their computed
diagrams to also indicate detected inter-worksheet smells. Following their estab-
lished paradigm, boxes that represent worksheets are highlighted using colour if
they contain a smell. The hue of the colour indicates the intensity of the detected
smell. In addition, tool-tips explain which smell was detected and the concrete
location of smell-inducing cells within the respective worksheet.

Another approach by Hermans et al. [2012b] focuses on the application of ex-
isting code smell principles to formula cells within spreadsheet environments. In
contrast to their previous work [2012a], inter-worksheet dependencies are not con-
sidered. As a consequence, the authors chose a different visualization method for
detected smells. Taking cues from related work [Abraham and Erwig, 2007], they
adapted the notion of risk maps to indicate smells in specific formula cells. A 3-
tiered, colour-coded overlay over the spreadsheet is used to highlight affected cells.
The more intense the colour, the more likely a cell contains a smell. In addition,
comments are added to each coloured cell, providing an explanation about the sus-
pected smell.

Cunha et al. proposed another example that features the informative approach
to smell utilization. They introduced the tool SmellSheet Detective [2012b] [2012a].
The purpose of this tool is to detect and indicate a predefined set of smells within
provided spreadsheets. Both spreadsheets stored within the Google Docs platform
as well as locally stored spreadsheets can be analysed by SmellSheet Detective. The
tool itself is based on a modular and extensible Java library, which allows for easy
incorporation of new smells into the detection process. The result of this process
may be exported in the form of either csv, Excel, or LATEX tables.

119

Lastly, Hermans et al. [2013] presented another approach in the field of smell
detection. In this work, they attempt to automatically detect and highlight data
clones in a provided spreadsheet. Data clones are the result of copy-paste operations
within a spreadsheet. Not only single cells, but also groups of cells that are likely
to be copied are indicated by their approach. Visualization is conducted based on a
combination of the techniques, applied in the authors’ previous approaches [2012a]
[2012b]. A data flow diagram is created, which indicates data clone dependencies
between worksheets via directed arrows. In addition, comments are added to affected
cells and areas that explain either where specific values were copied to or where the
source of specific values can be found within the spreadsheet.

5.3.2 Smell Removal

Although perceived smells do not always indicate errors, they at least point out
some flaw that usually can be improved in some form. However, many spreadsheet
smells are based on structural properties. Hence, removal of such smells requires
changes to the structure of the spreadsheet. Such changes require substantial effort
and may lead to the introduction of new issues during the process. Consequently,
spreadsheet users often shy away from manually fixing those flaws. Approaches
that fall into the removal category of smell utilization attempt to support users
in these circumstances by automatically inferring the changes required to remove
a specific smell. However, in some instances more than one course of action can
be established to remove a perceived smell while none of the possibilities can be
procedurally determined as preferred fix for the circumstance. In such cases, a list
of possible fixes and/or additional information is generated and proposed to the
user. The user may then choose which action to take.

Badame and Dig [2012] proposed an approach to automated smell removal. Their
tool, dubbed REFBOOK, provides spreadsheet users with access to a suite of au-
tomatic refactorings, each removing one commonly encountered spreadsheet smell.
The tool is available in form of a plug-in for Microsoft Excel. However, due to the
multi-tiered architecture of their tool, it can be easily adapted for other spreadsheet
environments as well. Refactoring options are provided to the user via a custom
entry in the context menu. After selecting the target cell range of the operation

120

and activating the context menu, a user simply has to choose the desired refactoring
from the provided list. The plug-in handles communication of the selected command
to the back-end of the tool as well as the application of the necessary changes to the
spreadsheet. The back-end process is based on a system of generic spreadsheet enti-
ties. This allows the authors of the tool to expand it to other spreadsheet programs
by simply supplying a matching add-on for the desired platform while the back-end
does not need to be altered. The authors’ evaluation of the tool indicates that users
in general prefer the refactored output over the initial spreadsheet. They concluded
that usage of the REFBOOK plug-in resulted in average time savings of more than
50% in comparison to manual refactoring based on the same conditions. Moreover,
Badame and Dig argue that manual refactoring frequently introduces new faults
into the spreadsheet, whereas refactorings based on REFBOOK does not.

After their extensive work on smell detection, Hermans et al. [2014] proposed
an approach that incorporates removal of detected smells as well. This approach
is based on their previous work regarding smells affecting spreadsheet formulas,
presented in previous work [2012b]. Rather than just visualizing detected smells,
Hermans et al. also attempt to infer refactoring processes to remove those smells
from the spreadsheet. Concrete refactoring suggestions are consequently added to
the comments of each affected cell. Evaluation of their approach suggested that
some detected smells can be reliably removed using the inferred refactoring sugges-
tions. However, spreadsheet users might struggle to implement those refactorings
themselves.

5.3.3 Other Approaches

The last category regards approaches that introduce other ideas to utilize the re-
sults of smell detection. Smell detection itself is not the focus of such approaches.
Rather, information about detected smells is used as an interim result to base further
processing on. For example, smell information may be combined with other static
analysis techniques to improve accuracy or coverage ratings of existing spreadsheet
fault location processes. Such approaches were of no significant interest to the re-
search community as of yet. However, we suspect that more advances will make use
of hybrid approaches involving spreadsheet smells in the future.

121

Abreu et al. [2014a] proposed an approach that revolves around further process-
ing of smell detection results. They presume that even if only one cell is indicated
as smelly, a number of other cells are likely to contribute to the suspicious circum-
stance as well. Following this notion, a subset of cells that was identified as smelly
beforehand is provided as input for a fault localization algorithm. This algorithm
determines a set of cells that are not necessarily smelly themselves, but are likely
to cause the smells contained in the spreadsheet. Abreu et al. implemented this
algorithm in a tool dubbed FaultySheet Detective [2014b]. It represents an extension
of the SmellSheet Detective tool [Cunha et al., 2012a]. In addition to the expanded
detection process, FaultySheet Detective supports a larger set of spreadsheet smells
as a basis of analysis. The tool supports analysis of spreadsheets stored within the
Google Docs platform as well as locally stored spreadsheets. Suspicious cells within
the spreadsheet that are provided as result by the tool are indicated via background
colour. The intensity of the colour hue correlates with the number of faults which
were found within the respective cell. In addition, a note is added to each coloured
cell explaining which smells are detected for the cell as well as stating the result of
the fault localization algorithm for the cell. Evaluation based on a faulty spread-
sheet catalogue indicates that FaultySheet Detective is capable of identifying more
than 70% of faults within the tested spreadsheets.

5.4 Issues

While spreadsheet smells provide a convenient way to detect and highlight quality
issues within spreadsheets, the current status of spreadsheet smells suffers from a
number of drawbacks.
First, smells tend to interact with other smells that are based on similar quality
metrics. This allows for optimization of various groups of smells against each other.
However, as mentioned in Section 5.2, inter-worksheet smells are missing such a
counterbalance for optimization. In particular, we require one or more smells which
indicate at which point a worksheet should be split into multiple worksheets.
Additionally, spreadsheet smells are often specialized to indicate a specific quality
issue. In order to do so, smells greatly narrow their focus of detected quality mea-
sures. Established smell ideas could be re-used with a wider focus, allowing for

122

detection of a wider range of quality issues. For example, the pattern-finder idea
could be adapted and expanded to detect pattern mismatches within formula cells.
Spreadsheet smells indicate potential quality impairments rather than specific er-
rors. However, numeric thresholds for metric values at which cells are indicated as
smelly are statically defined and ignore the current context of the spreadsheet in
question. It would be favourable to establish a more dynamic and context-aware
method to determine thresholds at which a spreadsheet part is considered smelly.
Various research teams have conducted a variety of in-depth studies related to com-
mon errors and quality issues within spreadsheets. However, only a small part of
those identified issues are covered by the currently established spreadsheet smells.
For example, no smell currently detects duplicated data blocks resulting from unal-
tered copy & paste operations. Likewise, a variety of useful common code smells and
anti-patterns exist which could also be utilized to expand the current spreadsheet
smell catalogue. Removal of spreadsheet smells frequently requires a considerable
amount of restructuring within the spreadsheet. Manual refactoring therefore is of-
ten unattractive for end-users, or even introduces new errors into the spreadsheet.
Moreover, the topic of smell removal for spreadsheets has mostly been neglected
by the scientific community as of yet. In general, while research related to smell
detection is numerous, only a few approaches have been made which allow end-users
to directly benefit from detected smells.

123

6. Structure-Based Spreadsheet Smells

In previous chapters, we introduced the notion of spreadsheet smells, and presented
a novel analysis process to infer structural information from a spreadsheet. In this
chapter, we combine these established topics to create structure-based spreadsheet
smells. While structural information may be applied to enhance various spreadsheet
QA techniques, we focus on enhancing spreadsheet smell detection methods following
two different approaches: First, we update existing smells by means of structural
information. Second, we introduce new smells based on the results of our structural
analysis process.

6.1 Updating Existing Smells

In this section, we present enhancements to established spreadsheet smells that can
be applied to either groups of related smells, or specific individual smells. We provide
examples, illustrating the enhanced detection methods in a specific case. Lastly, we
discuss possible limitations of the proposed enhancements.

6.1.1 Sliding Window Smells.

Standard Deviation, Empty Cell, and Pattern Finder smells attempt to find abnor-
malities in areas within worksheets. The related detection processes utilize sliding
windows to detect these abnormalities. For each position of the sliding window, smell
detection attempts to establish a pattern. For windows where pattern recognition
is successful, smell detection detects cells within the window whose values deviate
from the established pattern. If any deviating cell is detected, this cell is reported as
smelly. However, dimensions of the employed detection windows are not related to

124

the characteristics of the analysed spreadsheet. Depending on each case, this may
either lead to low positive detection rates or a high degree of false positive detec-
tions of these smells. To overcome this limitation, we propose to employ the same
abnormality-detection processes to the groups established by structural analysis,
instead. In particular, cells within partitioned formula groups and reference-based
groups share a common functionality in regard to worksheet calculations. Thus,
detected abnormalities within these groups are likely to be more meaningful than
abnormalities within arbitrary-dimensioned sliding windows.

Figure 6.1 provides an example based on the car-sales worksheet. Cell C4 was
altered and now contains an inflated value. Reference-based groups in vertical ori-
entation are highlighted by hatched borders. Application of the Standard Deviation
smell on the reference-based group in area C3:C5 detects the smell. Depending
on the utilized checking-window, the conventional Standard Deviation detection
method may not be able to detect the issue. The column header C2 is also a nu-
meric value which could influence the statistic model used to check for deviating cell
values. Likewise, conventional Standard Deviation detection might indicate header
cells in the area B2:E2 as smelly, as these do not fit the statistical models established
by underlying value cells. If cell A4 was altered to a Boolean value instead, appli-
cation of the Pattern Finder detection method to the reference-based group in area
C3:C5 would detect the issue. If cell A4 was altered to an empty cell, application of
the Empty Cell detection method to the reference-based group in area C3:C5 would
detect the issue.

Figure 6.1: Example for enhanced sliding-window smells. The cell C4 con-
tains an inflated value. Reference-based groups in vertical orien-
tation for the worksheet are indicated by hatched borders. The
Standard Deviation smell detection applied on the reference-based
group in area C2:C5 detects the issue.

The structural analysis approach proposed in our work relies on formula relations
within worksheets. Consequently, group-information for non-empty cells that are not

125

part of such relations is not currently available. Ideas to infer structural information
for neighbouring non-related value cells are presented in Section 8.

6.1.2 Similarity-Based Smells.

The Quasi-Functional dependencies and String Distance smells rely on dependencies
between value cells located within various parts of a worksheet. QFD focusses on
dependencies between columns of a worksheet. String Distance compares each pair
of strings within a worksheet. However, different areas of a worksheet may be
utilized for different purposes by spreadsheet users. Consequently, pattern matching
for entire columns of a worksheet is not feasible in all circumstances. Similarly,
comparison of strings located in structurally different parts of a worksheet is likely
inconclusive.

To enhance the performance of these dependency-based smells, we propose to
apply the specific analysis approaches with regard to groups established by structural
analysis. This could potentially reduce the amount of false positive smell detections,
as well as reduce analysis effort.

Figure 6.2 provides an example for the detection of the occurring String Dis-
tance smell. The worksheet illustrates a catalogue of car models. For each car, the
manufacturer, model, fuel type, and price is listed. For cars using diesel fuel, a
surcharge of 10% is added to the total price of the car. Cell C6 contains an error,
stating the string “diesl” instead of “diesel”. This leads to the calculation of a wrong
surcharge in Cell E6, and consequently a wrong total price in Cell F6. The faulty
cell contains a string that is minimally diverging from the correct “diesel” strings
in cells C4 and C5. Classical String Distance detection also detects this instance.
However, classical detection requires to match strings of for each column and row of
the worksheet. Thus, string detection would also analyse headers in row 1, as well
as model and manufacturer names in columns A and B. Application of group-based
String Distance detection also detects the issue, while only matching strings within
the reference-based group C2:C6.

Figure 6.3 provides an example based on the sales worksheet. Cell C9 con-
tains a minimally diverging string. Cell F12 contains a value which deviates from
quasi-functional dependencies between columns F, B and C. Reference-based groups

126

Figure 6.2: Example for enhanced String Distance smell. The worksheet il-
lustrates a car catalogue. Surcharges are added based on the fuel
type. Reference-based groups of the worksheet are indicated with
hatched borders. Cell C6 is faulty, containing a wrong string. The
cell is inferred as smelly by applying String Distance detection on
the group in area C2:C6.

detected by our structural analysis process are indicated by a hatched border. Both
deviating cells are detectable by established smell detection methods. However,
QFD detection also includes header-strings in row 1 as well as footer strings and
values in rows 14 and 15 into their matching process. Structural information allows
to apply the matching processes on established structures instead. However, the
structural analysis approach proposed within our work relies on formula relations
within worksheets. Group-information for non-empty cells which are not part of
such relations is not currently available. Consequently, the detection process to in-
fer the smell in cell C9 cannot be enhanced by available structure information. This
points out a shortcoming of the structural analysis process. An approach to correct
this shortcoming is outlined in Section 8.

Figure 6.3: Example for enhanced similarity-based smells. The cell C9 is
affected by the String Distance smell. The cell F12 is affected by
the QFD smell. Reference-based groups in vertical orientation for
the worksheet are indicated by hatched borders. Application of
the related detection methods to grouped cell areas could provide
higher detection accuracy while limiting processing demands.

127

6.1.3 Formula-Based Smells.

Multiple Operations, Multiple References, Conditional Complexity, and Feature
Envy smells detect issues regarding formula cells of a worksheet. Consequently,
the smell detection methods of these smells are applied to every formula cell within
a worksheet. However, the applied smell detection methods are independent of the
specific position of the formula, as well as independent of the specific position and
the content of referred cells.

Spreadsheet users often utilize the same formula for each cell of a column or row
within a worksheet. Consequently, the same calculation is applied to different input
values. Our analysis process detects such calculation groups in form of formula
groups. Hence, we propose to apply the same detection methods to the formulas of
formula groups, instead. Following this approach, relevant smell detection methods
need to be applied only once for the entire formula group. Analysing each individual
cell is not required. Depending on the structure of the worksheet, this could provide
significant benefits in regard to processing effort. Moreover, removal of formula-
based smells either requires transformation of the related formula, or restructuring of
the worksheet. In case of a required formula transformation, the suitable refactoring
operation can be processed once and applied to each formula cell within the group.
In case of a required worksheet restructuring, the suitable refactoring operation
can be processed for the entire formula group, keeping the overall structure- and
group-dependencies in mind.

Figure 6.4 provides an example based on the car-sales worksheet. The formulas
in cells F3, F4, and F5 were altered such that they refer to each value in the same
row individually. Each of these cells features more than three references to other
cells. Consequently, the Multiple References smell is detected for these cells. The
formula group in area F3:F5 is based on the same formula. Hence, the group is
also featuring three group references. Group-based smell detection marks the entire
group as smelly, but does not require checking each individual cell.

128

Figure 6.4: Example for enhanced formula-based smells. The cells F3, F4,
and F5 are affected by the Multiple References Smell. Formula
groups of the worksheet are indicated by a matching background-
colour. Group-based detection would detect the smell for the
formula group in area F3:F5.

6.1.4 Long Calculation Chain.

The Long Calculation Chain smell detects formula cells which refer to a long chain
of previous calculations. To detect this smell, reference chains are calculated and
checked for each individual cell in the worksheet. Our structural analysis approach
discerns formula groups and relations between formula groups of a worksheet. This
allows us to establish calculation chains for formula groups of a spreadsheet.

Consequently, we propose to base detection of the Long Calculation Chain smell
on formula group references. Cell-based detection of long calculation chains requires
processing of all references of each formula cell. Likewise, group-based detection of
the smell requires processing of all references of each formula group. However,
the number of formula groups tends to be significantly lower than the number of
formula cells. Moreover, processing of an area-reference of a formula cell establishes
a reference from the formula cell to each individual cell within the target area.
In contrast, processing of an area-reference of a formula group only establishes a
group reference from the formula group to each of the groups inferred for the target
area. However, the number of inferred groups for an area reference tends to be
significantly lower than the number of individual cells within the area. Hence,
depending on the structure of the spreadsheet, employing formula group analysis
may lead to a significant reduction of the required processing effort. In the worst
case scenario, each formula cell in the spreadsheet is part of an individual formula
group, and group-based analysis of area-references infers a group for each cell within
the referred area. In this scenario, group-based detection of the Long Calculation
Chain smell is equivalent to the established cell-based detection process.

129

Removal of long calculation chain smells from a spreadsheet usually requires
transformation of spreadsheet structures. Structural transformations, even regard-
ing a single formula cell, require special attention to the surrounding groups. As
an additional benefit of group-based detection, this structural context is already
present for the smelly group.

Figure 6.5 provides an example based on the Fibonacci-calculation worksheet.
The worksheet calculates numbers of the Fibonacci-series based on different start-
ing values. Formula groups of the worksheet are indicated by matching background
colour. Evaluation of the cells G3, G4, G5, and G6 requires checking of more than
four individual cells. Consequently, the Long Calculation Chain smell is detected
for these cells. Likewise, the formula group encompassing area G3:G6 requires pro-
cessing of a chain of more than four individual group references. Consequently, the
Long Calculation Chain smell is detected for the cells within the group. Based on
this method, the same smelly cells can be deduced. However, cell-based smell detec-
tion requires reference processing for each individual formula cell of the worksheet.
This amounts to a total number of 40 cell-references that need to be processed in
this example. In contrast, group-based smell detection requires reference processing
for each formula group of the worksheet. This amounts to a total number of 10
group-references that need to be processed in this example.

Figure 6.5: Example for enhanced Long Calculation Chain smell. The cells
G3, G4, G5, and G6 are affected by the Long Calculation Chain
smell. Formula groups of the worksheet are indicated by a match-
ing coloured background. Reference-based groups of the work-
sheet are indicated by a hatched border. Group-based detection
would detect the smell for the formula group in area G3:G6.

Processing of group-based references relies on the results of reference group
matching. However, spreadsheet references do not always allow for neat match-
ing of groups. For example, a group-reference may only partially match the area
of another formula group. Such cases need to be handled accordingly. To high-

130

light unresolved or inconsistent matching-results, we propose the novel Inconsistent
Formula group References smell in Section 6.2

6.1.5 Inter-Worksheet Smells.

Inappropriate Intimacy, Middle Man and Shotgun Surgery smells rely on metrics
which take inter-worksheet references of individual formulas into consideration. De-
tection of these smells is based on the number of cells that contain such references
in a specific worksheet.

We propose to utilize inter-worksheet formula group relations as basis for smell
detection instead. Hence, counting individual cells which refer to another worksheet
is exchanged by counting the number of individual formula groups which refer to
another worksheet. This would, however, alter the focus of the related smells. Cell-
based analysis quantifies the raw number of inter-worksheet connections. In contrast,
group-based analysis quantifies how many different purposes for connections exist
between two worksheets. Each group-reference indicates a specific purpose in the
calculation narrative of the worksheet.

Group-based analysis could also support consideration of the amount of individ-
ual connections. To that end, formula group reference analysis may be extended to
also account for multiplicity of the base group and target groups of each reference.
We outline our ideas for multiplicity quantification of formula group references in
Section 8.

Figure 6.6 provides an example based on the car-sales worksheet. The worksheet
summarizes car sales for the year 2015 for different continents. The sales numbers for
2015 of each continent are imported from individual worksheets for each continent.
The cells in rows three to ten in columns B to G refer to matching columns con-
taining the sales numbers for a specific continent. Each individual column features
more than seven references to one other worksheet. Consequently, each individual
column leads to the detection of the Inappropriate Intimacy smell for the worksheet.
However, each cell of each individual column is part of a single formula group of
this column. Group-based analysis would reveal that only one connection purpose
exists between two individual worksheets. Consequently, the worksheet may not
necessarily be indicated as smelly.

131

Figure 6.6: Example for update of Inter-Worksheet smells. Formulas in rows
three to ten in columns B to G refer to values in columns of various
other worksheets. Formula groups of inter-worksheet formulas are
indicated by a coloured background. Each column features more
than seven relations to a specific other worksheet. Consequently,
each individual row causes the Inappropriate Intimacy smell for
the worksheet. Group-based analysis would reveal that only one
purpose for references exists between each individual worksheet.

6.2 Introducing Novel Spreadsheet Smells

The established catalogue of spreadsheet smells was introduced without the possi-
bilities of structural information in mind. Nevertheless, this additional information
source provides a number of starting points to formulate new smells. In this sec-
tion, we present various approaches to introduce new spreadsheet smells based on
the results of structural analysis. Smell proposals follow the form established in
Section 5.1, discussing the attributes Origin & Intent, Target, Detection, Example,
Cause, Consequences, and Alleviation.

6.2.1 Duplicated Formula Groups

Origin & Intent. The Duplicated Formula Groups smell is based on the principle
of the Duplicated Formulas smell. The Duplicated Formulas smell detects multi-
ple occurrences of the same formula within the worksheet. Different interpretations
of this smell have been established by various contributors. We agree on the ba-
sic principle of the idea shared by all of these. One specific interpretation regards
the R1C1-representation of formulas as basis for smell detection. This interpreta-
tion states that formulas should be indicated as smelly if they share an identical
R1C1-representation. Formula cells which share the same R1C1-representation ap-

132

ply identical calculations based on different input data. Neighbouring cells fulfilling
identical calculations are a common occurrence in calculation-based spreadsheets.
Therefore, we argue that this behaviour is intended when applying to neighbouring
cells and should not be regarded as smelly. However, non-neighbouring cells fulfill-
ing identical calculations may indicate bad spreadsheet structuring. Such formula
cells are situated in different formula groups of a worksheet. Hence, we propose the
Duplicated Formula Groups smell, which detects multiple formula groups within the
same worksheet whose formulas share the same R1C1-representation.

Target. Duplicated Formula Groups detects quality issues based on the formula
groups of a worksheet. Consequently, the detection process for this smell can only
be applied to formula groups of a worksheet.

Detection. Detection of the Duplicated Formula Groups smell requires compari-
son of formula groups of a worksheet. Each formula group of a worksheet is compared
with all other formula groups of the same worksheet. If two formula groups feature
the same formula in R1C1-representation, both groups are indicated as smelly.

Example. An occurrence of the Duplicated Formula Groups smell can be seen
in Figure 6.7. The worksheet is an adaptation of the previous car-sales worksheet.
Cells belonging to a formula group are indicated by matching background colour.
The cell D6 was overwritten by its cell value. Two separate formula groups are
detected in row 6: one formula group in area B6:C6, and one formula group in area
E6:F6. Both groups share the same formula in R1C1-representation. Consequently,
Duplicated Formula Groups detection indicates both groups as smelly.

Figure 6.7: Example for Duplicated Formula Groups smell. Formulas shar-
ing the same representation in R1C1-notation share the same
background-colour. Formula groups of areas B6:C6 and E6:F6
share the same formula in R1C1-representation and are therefore
indicated as duplicate.

Cause. The occurrence of multiple groups using the same formula implies that
multiple areas within the worksheet fulfil the same basic function. Such groups

133

may occur following two different rationales: First, the two matching groups were
initially part of the same group but were split because of a separating cell. Such
cells may occur by users editing or deleting the content of one of the cells within
the group, or by users introducing a new cell in the middle of the group. Second,
the worksheet features separate areas which apply the same calculations on different
sets of data. This may be intended by the creator of the worksheet. However, this
could also indicate an error. The spreadsheet user may have intended to copy and
edit the related formula group, but did not apply the edit operation after copying
the cells.

Consequences. The smell points out instances of multiple formula groups that
apply the same calculation. Possible consequences of such instances depend on the
circumstances of their occurrence. Cases where matching groups were introduced
unintentionally indicate faults in the worksheet. Cases where matching groups are
the result of intentional editing may reduce comprehensibility and maintainability
of a worksheet.

Alleviation. Correction of the Duplicated Formula Groups smell is possible fol-
lowing one of three approaches:

• Merge both formula groups. This approach is only applicable for matching
groups created by separation of a cohesive group. In such occurrences, the
operation which separated the base formula group can be reversed, resulting
in a single, cohesive formula group. The smell in the previous example can be
removed by this approach, fixing the fault in cell D6.

• Edit one group. Editing the group-formula of one of the matching groups
removes the smell from both groups. This is applicable in cases where one
of the matching formula groups was introduced by mistake, copying the base
group but forgetting to edit the copied group.

• Relocate one group to another worksheet. Relocating one of the matching
groups to another worksheet removes the smell for both groups. This is appli-
cable in cases where both groups intentionally apply the same calculation.

134

6.2.2 Formula Group Distance

Origin & Intent. The Formula Group Distance smell is based on the principle of
the String Distance smell. The String Distance smell detects string cells which are
similar to other string cells within the same worksheet. Smell detection is based on
the premise that the spreadsheet creator initially wanted to enter the exact same
string, but made an error. Formula Group Distance applies the same idea to detect
neighbouring similar formula groups within a worksheet. Such occurrences imply
that the spreadsheet creator wanted to enter the exact same formula, but made an
error. Thus, the Formula Group Distance smell detects neighbouring formula groups
whose R1C1-representation is very similar.

Target. Formula Group Distance detects quality issues based on the formula
groups of a worksheet. Consequently, the detection process for this smell can only
be applied to formula groups of a worksheet.

Detection. Detection of the Formula Group Distance smell requires comparison of
formula groups. Each formula group of a worksheet is compared with other formula
groups of the same worksheet. If two formula groups are neighbours and feature
similar formulas in R1C1-representation, both groups are indicated as smelly.

Example. An occurrence of the Formula Group Distance smell can be seen
in Figure 6.8. The example is based on the car-sales worksheet. Cell B6 of the
worksheet was altered to only refer to rows three and four of the same column.
This cell creates a formula group of its own, encompassing the area B6:B6. Cells of
the neighbouring area C6:F6 share the same formula in R1C1-notation. Thus, they
create a formula group encompassing this area. The formula group in area B6:B6
is neighbour to the formula group in area C6:F6. The formulas of both groups
only differ by a single coordinate-reference, implying similarity of the formulas. The
groups are neighbouring and similar and therefore indicated to be affected by the
Formula Group Distance smell.

Cause. The occurrence of neighbouring formula groups sharing similar formulas
may occur following two different rationales: First, a spreadsheet user expands an
existing formula group, but enters a different formula. The different formula may
either be chosen intentionally or by mistake. Consequently, a new, neighbouring
formula group is introduced which features a similar formula. Second, a spreadsheet

135

Figure 6.8: Example for Formula group Distance smell. Cells within the same
formula group share the same background-colour. The formula
group in area B6:B6 is neighbour of the formula group in area
C6:F6. The formulas of both groups are similar. Consequently,
both formula groups are indicated as smelly of Formula Group
Distance.

user edits the formula of a cell belonging to an existing formula group, introducing
a minor change. Consequently, the edited cell establishes a new formula group of
its own, featuring a similar cell formula. The new formula group is always located
next to the remains of the initial formula group.

Consequences. Formula Group Distance points out instances of neighbouring
formula groups which feature similar group formulas. Possible consequences of such
occurrences depend on the circumstances of their introduction. Cases where similar
neighbouring groups were introduced unintentionally indicate faults in the work-
sheet. Cases where such groups are the result of intentional editing or expansion
may reduce comprehensibility and maintainability of a worksheet.

Alleviation. Correction of the Formula Group Distance smell is possible following
one of three approaches:

• Merge both formula groups. Following this approach, the formula of one of the
neighbouring groups is edited to match the formula of the other group. This
action unifies both groups into a cohesive formula group. Instances where the
smell was introduced by mistake can be alleviated by this approach.

• Edit one group. Following this approach, the group formula of one of the
neighbouring groups is edited so that it is no longer similar to the formula of
the neighbouring group. Instances where the smell was introduced by mistake
can be alleviated by this approach. However, depending on the dimensions and
locations of the groups, this may introduce the Unrelated Neighbours smell,
which is presented in Subsection 6.2.3.

136

• Relocate one group. Following this approach, one of the groups is relocated ei-
ther to another position within the worksheet, or to another worksheet. As the
groups are no longer neighbouring, this removes the smell from both groups.
This approach is applicable in cases where the smell was introduced by inten-
tional changes to the worksheet.

6.2.3 Unrelated Neighbours

Origin & Intent. The Unrelated Neighbours smell points out areas within a work-
sheet which are hard to comprehend. It is based on the results of our structural
analysis process. During this process, we detect areas within a worksheet which fulfil
specific purposes. Cells within areas encompassed by formula groups apply the same
calculations. Cells within the areas encompassed by reference-based groups serve as
input to specific formula groups. It is common convention that cells within visually
distinct areas (e.g. within the same column of a calculation block) fulfil the same
purpose within the worksheet. Placement of multiple areas with different purposes
right next to each other without clear distinction violates this convention, impairing
comprehensibility of the worksheet. However, detection of neighbouring but diverg-
ing areas within a worksheet is no easy task for spreadsheet users, as areas are only
represented by the evaluated values of each cell. Thus, the Unrelated Neighbours
smell detects pairs of formula groups or reference-based groups which share the same
orientation and appear next to each other in this orientation. Neighbouring groups
perpendicular to their orientation are common in worksheets and should therefore
not be indicated as smelly (e.g. successive columns featuring different calculations).
Likewise, single-cell formula groups next to other formula groups or reference-based
groups are common in footer areas of worksheets and should also not be indicated
as smelly.

Target. Unrelated Neighbours detects quality issues based on formula groups
and reference-based groups of a worksheet. Consequently, the detection process for
this smell is applied to formula-groups and reference-based groups of a worksheet.

Detection. Detection of the Unrelated Neighbours smell requires comparison of
the detected groups of a worksheet. Each group of the worksheet is compared with
each other group of the same worksheet. If two groups share the same orientation,

137

and appear as neighbours in this orientation, and neither of them is a single-cell
formula group, both groups are indicated as smelly.

Example. Figure 6.9 provides an example for the Unrelated Neighbours smell.
The worksheet lists car sales of different car models in different continents over
various years. In a separate area, the worksheet calculates the total of sold cars by
car model for the year 2015. The calculation of totals in area D11:D13 refers to the
values for each continent in areas B1:B13 and C11:C13. These values are provided
by formulas referring to areas within the initial data set. The formula group in
area B11:B13 refers to the area E2:E4, establishing a reference-based group for this
area. The formula group in area C11:C13 refers to the area B5:B7, establishing a
reference-based group for this area. Thus, the worksheet contains two reference-
based groups at areas E2:E4 and E5:E7 which share the same vertical orientation
and are neighbours in this orientation. Detection of the Unrelated Neighbours smell
indicates both groups as smelly. The formula groups in areas B11:B13 and C11:C13
also share the same vertical orientation. However, they are not neighbours in vertical
orientation. Therefore, the Unrelated Neighbours smell does not apply to these
groups.

Figure 6.9: Example for Unrelated Neighbours smell. Cells of relevant for-
mula groups are indicated via matching background-colour. Rel-
evant reference-based groups are indicated by a hatched bor-
der. The formula groups in areas B11:B13 and C11:C13 point
to the reference-based groups in areas E2:E4 and E5:E7. These
reference-based groups share the same orientation (vertical) and
are neighbours in this orientation. Consequently, detection of the
Unrelated Neighbours smell indicates both reference-based groups
as smelly.

138

Cause. The main contributing factor for the occurrence of Unrelated Neighbours
between reference-based groups is poor spreadsheet design. During creation of the
spreadsheet, specific areas of a worksheet are planned to handle specific types of
data. Unrelated Neighbours occur if any individual area is concerned with too many
different types of data. Consequently, formulas that work on the data within these
areas are required to refer to specific neighbouring sub-areas, instead of referring
to the area as a whole. Occurrence of Unrelated Neighbours involving any formula
group indicates another type of poor spreadsheet design. A formula group placed
next to a reference-based group translates to multiple formula cells which apply the
same calculation being placed next to multiple value cells within the same column
or row. A formula group occurring next to another formula group translates to
multiple formula cells which apply the same calculation being placed next to a set
of other formula cells which apply another calculation.

Consequences. Unrelated Neighbours points out instances of neighbouring groups
which are not related to each other. Such instances usually imply the existence of
multiple sub-areas within the same column or row which fulfil different purposes.
However, when working with spreadsheets, no indication of such groups is usually
available. Groups are merely represented by the values of their individual cells.
Hence, different sub-areas within the same column or row of a table are hard to dis-
tinguish. As a consequence, users are more likely to introduce faults when editing
or expanding affected areas of a worksheet.

Alleviation. Correction of the Unrelated Neighbours smell depends on the cir-
cumstance which caused the smell. In cases where formula groups are located next
to other groups, the relevant groups may be merged or one of the groups relocated.
In cases where multiple reference-based groups are located next to each other, re-
moval of the smell is usually not trivial. Such instances point out calculation blocks
which fulfil too many purposes. Hence, removal of the smell requires separation of
the calculation block into multiple different blocks, each handling a subset of the
initial purposes. The example in Figure 6.9 illustrates such an instance. Removal
of the smell requires the separation of the calculation block in area A2:E7 into two
different calculation blocks, each relating to cars of either Europe or Asia.

139

6.2.4 Inconsistent Reference Dimensions

Origin & Intent. The Inconsistent Reference Dimensions smell points out inconsis-
tent referenced areas within a worksheet. It is based on the results of our structural
analysis process. During this process, we detect reference-based groups within a
worksheet. The areas encompassed by these groups serve as input to specific formula
groups. Multiple formula groups referring to overlapping areas within the worksheet
introduce overlapping reference-based groups. Areas of two reference-based groups
sharing the same orientation, overlapping each other, but not exactly matching one
another, imply that individual cells of these areas fulfil diverging purposes. This
can negatively effect the maintainability of the related worksheet.

Target. Inconsistent Reference Dimensions detects quality issues based on reference-
based groups of a worksheet. Consequently, the detection process for this smell is
applied to reference-based groups of a worksheet.

Detection. Detection of the Inconsistent Reference Dimensions smell requires
comparison of the detected reference-based groups of a worksheet. Each group of the
worksheet is compared with all other reference-based groups of the same worksheet.
If two groups share the same orientation and have at least one cell in common, but
do not encompass the same area, both groups are indicated as smelly.

Example. Figure 6.10 provides an example for the Inconsistent Reference Di-
mensions smell. The example is an adaptation of the car-sales worksheet. Column
G calculates the average sales numbers for each car model over the entire timespan.
However, cell G6 also calculates the average of the total sales numbers over the
timespan. This is inconsistent with the present layout of the table. The formula
group in area F3:F5 established a reference-based group encompassing rows three
to five in columns B to E. The newly introduced formula group in column G intro-
duces an additional reference-based group for each of these columns, encompassing
rows three to six instead. Consequently, columns B to E each feature two reference-
based groups, sharing the same orientation, overlapping in rows three to five, but
not matching in row six. Hence, detection of the Inconsistent Reference Dimensions
smell indicates each pair of reference-based groups in columns B to E as smelly.

Cause. Inconsistent Reference Dimensions may be introduced following one of
two different narratives:

140

Figure 6.10: Example for Inconsistent Reference Dimensions smell. Cells of
relevant formula groups are indicated via matching background-
colour. Relevant reference-based groups are indicated by a
hatched border. Formula groups in areas F3:F5 and G3:G6 in-
troduce two reference-based groups in each of the columns B, C,
D, and E: One, encompassing rows 3 to 5, and one encompass-
ing rows 3 to 6. Reference-based groups of each column share
the same orientation, and encompass areas that overlap but do
not match. Hence, detection of the Inconsistent Reference Di-
mensions smell indicates each pair of reference-based groups as
smelly.

• Inconsistent table layout. During creation of the spreadsheet, specific areas of a
worksheet are planned to handle specific types of data. Inconsistent Reference
Dimensions occur if overlapping areas are concerned with diverging types of
data. Consequently, formulas that work on the data within these areas are
required to refer to overlapping sub-areas, instead of referring to the area as a
whole.

• Inconsistent formula use. Even in cases where specific areas of the worksheet
fulfil only a specific purpose, spreadsheet users may elect to refer to specific
sections of these areas. This may lead to overlapping but non-matching areas,
introducing the Inconsistent Reference Dimensions smell.

Consequences. The Inconsistent Reference Dimensions smell points out instances
of overlapping reference-based groups. Such instances usually imply that the af-
fected area attempts to fulfil diverging purposes. However, when working with
spreadsheets, no indication of such groups is usually available. Groups are merely
represented by the values of their individual cells. Hence, diverging sub-areas within
the same column or row of a table are hard to distinguish. As a consequence, users
are more likely to introduce faults when editing or expanding affected areas of a
worksheet.

Alleviation. Correction of the Inconsistent Reference Dimensions smell depends
on the circumstance which caused the smell. In cases where the smell is a result of

141

inconsistent table layout, major restructuring is required to balance the purposes of
the affected area. Such instances may requires separation of the related calculation
block into multiple different blocks. In cases where the smell is a result of inconsistent
formula use, adaptation of the referring formulas removes the smell. The example
in Figure 6.10 illustrates such an instance. The formula group in area F3:F5 is
inconsistent with the new formula group in area G3:G6. Changing the formula of
cell F6 to “=SUM(B6:E6)” removes the smell in all instances while maintaining the
calculation results of the worksheet.

6.2.5 Inconsistent Formula Group Reference

Origin & Intent. The Inconsistent Formula Group Reference smell points out in-
consistent references between formula groups within a worksheet. It is based on the
results of our structural analysis process. During this process, we detect formula
groups within a worksheet. Each reference of a formula group refers to an area
within the spreadsheet. If any other formula group encompasses this referred area,
we establish a reference between these formula groups. However, inconsistencies
may occur, whereby the area of the target group does not exactly match the size of
the referred area. Hence, the base formula group either does not refer to all results
of the target group, or the base formula group expects a greater number of result
cells than the target group can provide. Either case may lead to wrong calculation
results. Matching a reference area with a formula group that does not share the
same orientation (e.g. a formula group as footer of a block summing up the results
of formula groups in the columns of the block) will always result in a maximum of
one overlapping cell. Consequently, this case is excluded from the smell detection
process.

Target. Inconsistent Formula Group Reference detects quality issues based on
formula groups of a worksheet. Consequently, the detection process for this smell is
applied to formula groups of a worksheet.

Detection. Detection of this smell within a worksheet requires comparison of
referred areas of each formula group with other detected formula groups of a work-
sheet. For each formula group of the spreadsheet, the referred areas of the group
are processed. Each area is compared with each formula group of the worksheet.

142

If the referred area and the area encompassed by another formula group share the
same orientation and overlap, but are not identical, this case is reported as smelly.

Example. Figure 6.11 provides an example for the Inconsistent Formula Group
Reference smell. The example is an adaptation of the car-sales worksheet. The
formula group in area B6:F6 contains a fault, only calculating the sum of the values
in rows three and four. Matching of referred areas with formula groups attempts to
match area F3:F4 with the formula group encompassing area F3:F5. The compared
areas share the same vertical orientation, overlap, but do not match exactly. Hence,
this instance is indicated as smelly.

Figure 6.11: Example for Inconsistent Formula group Reference smell. Cells
of formula groups are indicated via matching background-colour.
Reference areas of the formula group in area B6:F6 are indicated
by a hatched border. The detection process matches the referred
area F3:F4 with the formula group F3:F5. The areas share the
same orientation (vertical), overlap, but do not match. Hence,
this matching is indicated as smelly.

Cause. Inconsistent Formula Group Reference detects instances where a referring
formula group either does not refer to all results of a referred formula group, or a
referring formula group expects a greater number of result cells than the referred
formula group can provide. We argue that this may occur following one of three
scenarios:

• Faulty formula initialization. During creation of the spreadsheet, an error
occurred at the initialization of the referring formula group.

• Inconsistent edit (target). A spreadsheet user alters the size of the referred
group after the relation has already been established, but does not update the
referring group to match the new size.

• Inconsistent edit (source). A spreadsheet user alters the reference of the refer-
ring group group after the relation has already been established, but does not
update the referred group to match the new size.

143

Consequences. Inconsistent Formula Group Reference points out instances of
formula groups inconsistently referring to another formula group. The base group
either does not refer to every cell of the target group, or expects a greater number
of result cells than is provided by the target group. In both cases, this is likely to
lead to an erroneous calculation result within the source group.

Alleviation. In cases where the smell was introduced by inconsistent edit of the
target group, reversal of this edit or adaptation of the source group to match the
new dimensions removes the smell. In cases where the smell was introduced by
inconsistent edit of the source group, reversal of this edit or adaptation of the target
group to match the new referred area removes the smell. The example in Figure 6.11
illustrates such an instance. The formula group in area B6:F6 was altered and is
now inconsistent with the referred group in area F3:F6. Either reversal of the edit
by changing the formula of formula group B6:F6 to encompass row five or updating
the target group by deleting cell F5 removes the smell.

6.2.6 Missing Header

Origin & Intent. The Missing Header smell points out vacant headers for columns
or rows of blocks within a worksheet. It is based on the results of our structural
analysis process. During this process, we detect blocks within a worksheet. Blocks
are concise areas within a worksheet which contain neighbouring groups of cells.
Moreover, the analysis process attempts to infer headers for rows and columns of
each detected block. If any row or column of a block is not related to a header,
but headers for neighbouring columns or rows are available, the spreadsheet creator
missed an opportunity to supply contextual information for the worksheet. This
lowers comprehensibility of the related part of the worksheet.

Target. Missing Header detects quality issues based on blocks and block headers.
Consequently, the detection process for this smell is applied to blocks and block
headers of a worksheet.

Detection. Detection of the Missing Header smell requires analysis of the es-
tablished header relations for each block of a worksheet. For each column and row
of each block of the worksheet, we check whether any header relation is available
for this column or row. If this is not the case, but a header relation for at least

144

one other column or row of the same block is available, this instance is indicated
as smelly. Missing headers are indicated at the lowest available header layer of the
related block which features at least one other header for the block.

Example. Figure 6.12 provides an example for the Missing Header smell. The
example is an adaptation of the car-sales worksheet. The header in cell E2 was
removed. One calculation block encompassing area B3:F6 was discerned for the
worksheet. The missing header cell E2 is part of the lowest layer of column-headers
of the block. Other headers are available within the same layer. Hence, cell E2 is
indicated as smelly.

Figure 6.12: Example for Missing Header smell. The discerned block of the
worksheet is indicated by yellow background colour. Lowest level
header layers of the block are indicated by dark blue, higher level
headers by light blue. The header in cell E2 is missing. Other
headers are present within the same header layer. Hence, the
Missing Header smell is detected for cell E2.

Cause. Missing Header detects columns or rows of inferred calculation blocks
which are not related to any header. We argue that missing headers may occur
following one of three scenarios:

• Incomplete initialization. During creation of the worksheet, no header is pro-
vided by the spreadsheet creator.

• Inconsistent edit (block). A spreadsheet user expands the size of a block, but
does not provide header information for the new introduced row or column.

• Inconsistent delete (header). A spreadsheet user deletes a header of a block,
but does not delete the underlying column or row of the related block.

• Unintentional related header. No headers should be available for the columns
or rows of a header. However, a potential header cell is unintentionally po-

145

sitioned in a way which can be interpreted as header. Consequently, Missing
Header is detected for the remaining columns or rows of the block.

Consequences. Missing Header points out instances where either a column or
row of an inferred block is missing a related header. This may indicate an error,
whereby a user intended to delete the header as well as the underlying column or
row of a block, but did not remove the related part of the block. Otherwise, such
instances may be introduced by a spreadsheet creator or editor who did not provide
contextual information for a part of the worksheet. Hence, future spreadsheet users
may lack this information to correctly perform further updates of the spreadsheet.

Alleviation. Removal of the Missing Header smell may occur by one of three
operations:

• Supply missing header. Insertion of the missing header information for the
related part of the block removes the smell.

• Remove underlying part of block. This resolution is applicable in cases where
a block was expanded by mistake, or missing header indicates an unsuccessful
removal of a part of block.

• Remove neighbouring headers. This resolution is applicable in cases where a
header relation was unintentionally established for columns or rows of a block.

6.2.7 Overburdened Worksheet

Origin & Intent. The Overburdened Worksheet smell points out worksheets that
are faced with too much responsibility. Calculation-based worksheets are comprised
of two main types of components: components which apply calculations and com-
ponents which provide data for those calculations. In the basic interpretation, com-
ponents which apply calculations are formula cells, and components which provide
data for those calculations are referred cells. The results of our structural analysis
approach allow for an additional interpretation: components which apply calcula-
tions are formula groups, and components which provide data for those calculations
are relation-based groups. Moreover, the Blocking process combines neighbouring
formula groups and reference-based groups, providing a combination of both com-
ponents. Independent of the interpretation, if any individual worksheet contains too

146

many of either component, the worksheet becomes hard to comprehend and hard to
maintain.

Target. Overburdened Worksheet detects quality issues based on the number
of calculation components of a worksheet. Depending on the interpretation, the
components may either be formula cells and referenced cells or formula groups and
relation-based groups, or blocks of a worksheet.

Detection. Detection of the Overburdened Worksheet smell requires enumeration
of the components which are applied for smell detection. In case of formula cells and
referenced cells, the number of such cells contained in the worksheet is calculated.
In case of formula groups and relation-based groups, the number of such groups
contained in the worksheet is calculated. In case of blocks, the number of blocks in
the worksheet is calculated. If any of these applied metrics exceeds a given threshold,
the worksheet is indicated as smelly.

Example. Figure 6.13 provides an example for the Overburdened Worksheet
smell. The example is an adaptation of the car-sales worksheet. The worksheet
contains an additional calculation block, summarizing sales data for Asia. Depend-
ing on the employed detection strategy and threshold values, existence of a second
calculation block of the same size could already indicate the worksheet as smelly.

Figure 6.13: Example for Overburdened Worksheet smell. Cells of the two
discerned calculation blocks of the worksheet are illustrated by
blue and red background colour. The worksheet features multi-
ple blocks. Based on the employed detection method, this may
be indicated as smelly.

Cause. Overburdened Worksheet detects worksheets which contain too many
calculation components. We argue that Overburdened Worksheet instances may
occur following one of three scenarios:

147

• Too much content. The worksheet is simple in structure and does not fea-
ture many different groups. However, each group contains a vast number of
individual items.

• Too many calculation groups. The worksheet features a high number of differ-
ent groups, either in one concise or multiple blocks.

• Too many calculation areas. The worksheet features a high number of indi-
vidual calculation areas (blocks).

Consequences. Overburdened Worksheet detects various circumstances which
indicate worksheets that are faced with too much responsibility. Independent from
the individual cause, worksheets which feature too many calculation components
are hard to comprehend. Update operations applied to such worksheets take longer
to implement and are more likely to introduce faults.

Alleviation. The Overburdened Worksheet smell may be removed by one of two
operations:

• Restructure worksheet. In cases where the smell was detected as a result of a
high number of individual groups or blocks, the worksheet may be restructured
in a way which merges individual groups or blocks, thus lowering the related
metric below its detection threshold.

• Divide worksheet. Individual parts of the worksheet are relocated to one or
multiple other worksheets. Connectivity between divided worksheets is estab-
lished via inter-worksheet-references. Blocking and Grouping results may be
applied to infer parts to be relocated.

6.2.8 Overview

As we demonstrated for established smells, smells can be arranged into groups based
on certain properties. In order to highlight fundamental similarities and differences,
Table 6.1 provides an overview of the new spreadsheet smells proposed in this section.
The table features the following properties:

148

Target Spreadsheet parts that can contain the smell.
Cause Stage of the spreadsheet life cycle at which the smell is usually

introduced.
Consequences Aspects of spreadsheet quality that are affected by the smell.
Alleviation Options for smell removal.

Name Target Cause Cons. Alleviation

Fo
rm

ul
a
G
ro
up

s

R
ef
.-b

as
ed

G
ro
up

s

Bl
oc
ks

H
ea
de
rs

C
re
at
io
n

D
at
a
en
tr
y

Ex
pa

ns
io
n

Er
ro
ne
ou

s
re
su
lt

Im
pe

de
d
qu

al
ity

M
an

ua
l

A
ss
ist

ed

A
ut
om

at
ed

Duplicated Formula Groups • • • • •
Formula Group Distance • • • • •
Unrelated Neighbours • • • • • •
Incons. Ref. Dimensions • • • • •
Incons. Formula Group Ref. • • • • • •
Missing Header • • • • • •
Overburdened Worksheet • • • • • • • •

Table 6.1: Comparison of novel Spreadsheet Smells

6.3 Discussion

In the previous sections, we proposed various approaches to apply the results of
our structural analysis process in the form of spreadsheet smells. We showed that
the application of structural information may provide a number of benefits. When
applied to existing smells, structural information allows to limit the scope of the
employed detection process. This results in lower processing requirements, and a
lower number of false positives. When used to create new smells, structural infor-
mation enables us to detect issues based on quality aspects which were inaccessible
to established spreadsheet smells (e.g. inconsistent area dimensions).

However, smell detection based on structural information also suffers from a
number of drawbacks. The initial analysis process requires a significant amount
of processing. While the application of structural information benefits processing

149

requirements of smell detection processes, these performance gains may not always
outweigh the initial investment of processing time. Hence, structure-enhanced smell
detection may take longer than the established detection methods. Another dis-
advantage is posed by the principle of our analysis process to infer groups based
on formula relations. As a consequence of this principle, analysis is limited to the
detection of groups of formula cells, groups of cells which are referenced by formulas,
and headers for these detected groups. However, some smells also include other cell
types in their detection criteria. For example, the QFD smell also includes columns
and rows of non-referenced string cells in its detection process. To support such
smells in their entirety, grouping of calculation-neutral cells is required. An ap-
proach to expand the current analysis process to infer groups for neighbouring cells
is presented in Chapter 8. Lastly, applicability of the results of structural analysis
to benefit smell detection requires that present issues, indicated by smells, do not
prevent successful structural analysis to begin with. The structural analysis process
proposed in this thesis is based on groups of neighbouring formula cells that share
the same formula in R1C1-representation. Thus, smells which are not attributed
to formula cells also do not affect our analysis process. However, issues regarding
formula cells that are detected as smells might influence the results of our structural
analysis process. Two types of such issues are prone to influence structural analysis,
based on how the issue affects the formula group of the related formula cell:

• The dimension of the group changes. In this scenario, the cause of the smell
either removes or adds a valid group cell at the edge of the group. This has a
number of possible consequences. The dimensions of related reference-based
groups may change. Formula Group Matching may establish new, faulty con-
nections to other formula groups or might not be able to establish previously
inferred connections. Reference Group Merging may condense previously un-
related reference-based groups, or result in a higher number of smaller, frag-
mented groups. This, in turn, may influence the result of the Blocking step.
Lastly, diverging header-relations may be inferred as a result of different block
dimensions.

• A non-border cell is removed from the group. This case occurs, if the cause
of the smell either removes or edits a valid group cell within the group. As

150

a consequence, the initial formula group is split into two separate groups.
Related reference-based groups are split between the two resulting formula
groups. Formula Group Matching remains mostly unaltered. Reference Group
Merging may lead to a higher number of smaller, fragmented groups. Blocking
may lead to the detection of smaller blocks, or even to the merging of previously
separated blocks. Lastly, different header-relations may be inferred for new,
incorrect blocks.

As we explained, issues which lead to smells might negatively affect the reliability
of the analysis process. However, the process may still be applied and the resulting
structural information utilized for smell detection. Based on these results, a number
of different smells may identify the existing issues:

• Duplicated Formula Groups detects cases where a cell was removed or altered
within a formula group. This leads to the separation of the formula group into
two individual formula groups which share the same R1C1-formula.

• Formula Group Distance detects cases where a cell within or at the edge of
a group was minimally edited. This introduces a separate formula group fea-
turing a similar formula as neighbour of the remainder of the initial formula
group.

• Unrelated Neighbours detects cases where two or more neighbouring cells were
altered in the same way within a group. This introduces a new, unrelated
formula group as neighbour of the remainder of the initial formula group. The
smell may also detect cases of group expansion, if the resulting group is located
next to another group.

• Inconsistent Reference Dimensions may detect any alteration which affects
the areas inferred for the references of a formula group. The position of these
areas depends on the related reference of the formula group. In case of a
static reference, the dimensions of the area are constant. In case of a dynamic
reference, the dimensions of the area are depending on the dimensions of the
formula group. Hence, any alteration which affects a reference of a group
affects the related reference-area. Any alteration which changes the size of the
formula group affects the related reference-areas of dynamic references of the

151

group. If any of these affected areas is shared by another formula group, this
is indicated as smelly.

• Inconsistent Formula Group Reference may detect any modification which af-
fects the size of the group if the initial group was referenced by any other
formula group, or if the initial group referred to any other formula group via
a non-static reference.

• Missing Header detects an alteration that leads to a block expansion. In cases
where no header is available for the new column or row of the block, this is
indicated as smelly.

If one of these smells identifies the initial issue, then refactoring may restore the
intended state of the worksheet. Consequently, the static analysis process can be
applied to the corrected worksheet, resulting in structural information which is not
impaired by any smell-causing issues. Hence, in most cases, structural analysis is
either unconditionally applicable to smelly spreadsheets, or is able to indicate the
issue which negatively affects the analysis results.

152

7. Related Work

In this chapter, we provide a summary of existing scientific approaches which are
related to our work. In specific, we state approaches which contributed to the current
status of the scientific spreadsheet smell catalogue, as well as major approaches to
utilize spreadsheet smells in a way to benefit spreadsheet users. We also mention
UCheck, which served as inspiration for our structural analysis process.

Cunha et al. [2012b] were the first to introduce the idea of a spreadsheet smell-
catalogue. They also contributed a set of spreadsheet smells of their own. However,
rather than base spreadsheet smells on existing code smells, they established a set
of general guidelines to define smells for spreadsheets. Based on those guidelines,
they defined a set of intuitively meaningful spreadsheet smells, generating an ini-
tial smell catalogue. Consequently, they evaluated this catalogue utilizing a large
spreadsheet-repository. Based on this evaluation, they refined the initial catalogue,
mainly improving its robustness. Cunha et al. also developed a tool to perform au-
tomated smell detection of spreadsheets: Smellsheet Detective. Cunha et al. [2012a]

describe the Smellsheet Detective tool in greater detail and provide evaluation re-
sults of their implementation based on the EUSES corpus.

Hermans et al. [2012a] were among the main contributors to the current spread-
sheet smell catalogue. Their first of two major contributions focussed on inter-
worksheet smells for spreadsheets. In this work, Hermans et al. analysed the set of
existing code smells presented by Fowler [1999] that are related to the interdepen-
dency of object-oriented classes. Based on this analysis, they adapted the working
principles of these smells to the spreadsheet environment, substituting classes with
worksheets. To facilitate automatic smell detection, Hermans et al. then defined
metrics for each of the newly introduced spreadsheet-smells. For each of these

153

metrics, they also provided a threshold, identifying a spreadsheet to be smelly if
exceeded.

Hermans et al. proposed another contribution regarding smells based on spread-
sheet formulas [2012b]. As with their previous work [2012a], they analysed existing
code smells presented by Fowler [1999] in order to apply the basic idea of those
smells to the spreadsheet paradigm. However, in this approach, Hermans et al. fo-
cussed on smells which affect spreadsheet formulas in particular. For each of the
resulting smells, they, again, defined metrics and threshold values for each metric
in order to facilitate automatic smell detection. Hermans et al. [2014] expanded on
this approach. Besides a more detailed analysis and discussion, the main contribu-
tion of this extension is a catalogue of refactorings, which aim to resolve each of the
presented formula smells. Hermans et al. also provide information regarding the
implementation of their refactoring system as well as an exploratory study regarding
the impact of spreadsheet refactorings.

Hermans et al. presented another approach towards automatic analysis of qual-
ity issues within spreadsheets [2013]. In particular, they proposed a method to
automatically detect data clones within spreadsheets. Following their definition, a
data clone occurs when the result of a formula-calculation is copied and pasted into
another cell. Those copied formula-results may then be used as basis for further
calculations. However, update of the initial calculation is not automatically applied
to the copied value. Thus, data clones represent a risk in regard to spreadsheet
maintainability and correctness. Data clones cannot strictly be categorized as static
spreadsheet analysis method, as the approach requires evaluation of formulas within
the analysed spreadsheet.

Badame and Dig recognized the trend to quality awareness regarding spread-
sheets. In specific, they recognized that classic programming environments offer au-
tomatic refactoring options to improve code quality. However, despite being faced
with similar quality issues, users of spreadsheet environments are not provided with
similar options. Consequently, Badame and Dig asked different spreadsheet-user-
groups about which automated spreadsheet refactorings would provide the greatest
benefit. Based on this feedback, they created the REFBOOK tool [2012] as exten-
sion for Microsoft Excel, which allows users to automatically perform a specific set
of refactorings.

154

Abreu et al. [2014a] attempted to introduce a new debugging system for spread-
sheets by merging the spreadsheet smell metaphor with common fault localization
techniques. They developed a system which automatically identifies cells that are
likely to contribute to faults, based on detected spreadsheet smells. To that end, they
first analysed the set of existing spreadsheet smells and categorized these smells into
either of two categories: fault-inducing and non fault-inducing, or perceived smells.
Each spreadsheet in question is then analysed in order to detect occurrences of fault-
inducing smells. The cells which were inferred to contain one of the fault-inducing
smells consequently act as input for a fault localization algorithm. The result of
this algorithm is a set of cells which are likely to contribute to existing faults within
the spreadsheet. Abreu et al. also developed an implementation of their debugging
approach, resulting in the FaultySheet Detective tool [2014b].

Abraham and Erwig [2004] proposed an approach for automated header infer-
ence in spreadsheets. Throughout their work, they present a collection of algorithms
to infer header information from a spreadsheet. Each of these algorithms analyses a
different structural aspect, commonly found in spreadsheets. In addition, Abraham
and Erwig provide a header inference framework which allows to employ a combi-
nation of the presented algorithms. By means of this framework, they evaluate and
optimize different weighted combinations of header detection algorithms. In later
work [2007], Abraham and Erwig applied their optimized header inference process
by combining it with previous work into unit systems for spreadsheets [Erwig and
Burnett, 2002]. The resulting system was implemented into a tool dubbed UCheck.
The tool is provided as add-in for Excel which communicates with a header/unit
inference engine implemented in Haskell. Once the system is put into action, it auto-
matically infers headers and assigns and infers units. The tool indicates cells which
contain detected unit errors via a red background color. Evaluation by Abraham and
Erwig indicates that the header inference process rarely produces incorrect header
assignments. Moreover, even in cases where incorrect header inference occurs, the
follow-up unit inference does not report any illegal errors.

In this summary, we highlighted approaches that are closely related to our own
work. However, the field of spreadsheet QA encompasses a wide variety of different
techniques. For the interested reader, Jannach et al. [2014] provide a comprehensive
overview of noteworthy approaches to improve spreadsheet quality.

155

8. Conclusions and Future Work

The main contribution of this thesis was to establish a novel structural analysis
process for spreadsheets. Our analysis approach identifies groups of cells based on
their role in calculations of a spreadsheet. We also detect areas that are encompassed
by multiple neighbouring cell groups, indicating distinct calculation areas within
a spreadsheet, dubbed blocks. Moreover, our analysis approach identifies header
cells and relates them to groups and calculation areas of a worksheet. Due to the
formula-based detection approach in combination with the generality of the detected
structures, to the best of our knowledge, this process is the first of its kind.

We evaluated our analysis process based on spreadsheets of the EUSES and EN-
RON corpora. To that end, we applied our analysis approach on previously inspected
spreadsheets and compared the results. The key finding of our evaluation is that
an average of 99% of expected blocks were found by our approach. Moreover, more
than 80% of detected blocks could be inferred in their entirety. Headers could be
discerned in 76% to 96% of cases, based on the header type and the applied evalua-
tion data. Most of detected headers could be inferred in their entirety. A drawback
of our analysis approach could be identified regarding the dimensions of the detected
structures. The correct size of overall detected structures could be inferred in 55%
to 77% of cases. We identified a number of reoccurring circumstances which primar-
ily cause these inference issues. Nevertheless, the evaluation results demonstrated
the feasibility of using inferred spreadsheet structures to enhance spreadsheet QA
techniques.

Structural information inferred by our analysis process may benefit various spread-
sheet QA techniques. We demonstrated one such application by enhancing spread-
sheet smells by means of structural information. We identified five issues in entries
of the established smell catalogue, and demonstrated how these issues can be alle-

156

viated by applying structural information in the detection routines of the related
smells. We also introduced seven new spreadsheet smells based on different aspects
of structural information. The proposed enhancements reduce the runtime of smell
detection processes, lower the number of false positive smell detections, and allow
for the detection of further issues in form of new smells.

Application of structural information is not limited to spreadsheet smells alone.
Our analysis approach provides a framework for future studies to incorporate struc-
tural information in all categories of spreadsheet QA techniques. As was demon-
strated for spreadsheet smells, application of structural information likely provides
similar benefits to other techniques as well. We would like to point out some inter-
esting opportunities:

• Unit Inference. Our structural analysis approach was inspired by the analysis
process employed by UCheck. However, the main focus of UCheck, along with
a number of other approaches, is unit inference. Unit inference describes the
process to infer unit information for cells within a worksheet. Unit information
is based on the headers which affect each cell. Future work could apply such
unit inference processes based on the header-relations detected by our analysis
process. Moreover, existing unit-inference processes could be adapted to utilize
additional structural information like blocks and formula-group relations.

• Group-Editing Operations. Future work could establish editing operations
based on groups and blocks identified for a worksheet. Two types of opera-
tions would be required: First, operations affecting entire groups, supporting
creation, deletion, and relocation of blocks and groups. Second, operations
affecting individual elements of groups, supporting expansion of a group by
an element, and deletion of an element from a group. Such operations could
assist refactoring tools by allowing for structure-sensitive modification of work-
sheets. Moreover, those operations could be offered to spreadsheet-users in a
context-sensitive way. This would establish an additional way to interact with
spreadsheets.

• Conceptual Knowledge. Knowledge-databases are established platforms which
provide knowledge-based analysis of terms. Provided with a term in string-
representation, such systems generate a list of concepts to which this term is

157

related to. Moreover, concepts are connected with other concepts, forming
a concept network. By utilizing a knowledge-database, future work could
introduce the notion of concepts for our analysis approach. This allows to
assign concepts to string cells within a worksheet. This could provide a number
of benefits:

– Concepts could enhance header-assignation performance. Concepts at
both ends of a header-relation could be checked for conformity, rejecting
or flagging suspicious relations.

– Concepts of header cells can be propagated to blocks, groups, and in-
dividual cells. This allows for context-based unit-checking, but also for
sanity-checking of formula and formula group relations based on context
information. For example, if a formula cell attempts to add two cells
which do not share a unifiable context (e.g. fruit and hours) this could
be detected as suspicious.

– Concepts could be used as metrics for smell detection. For example, a
Too many Concepts smell could indicate blocks or worksheets as smelly
if they concern themselves with too many different contexts.

– Contexts could aid in the determination of automatic refactoring opera-
tions. In many cases, a specific refactoring operations can be achieved in
multiple different restructuring approaches within the worksheet. Con-
text information could be applied to rank the impact of eligible restruc-
turing operations, offering the least-impact operation to the user.

Our study can also serve as starting point for further approaches towards struc-
tural analysis of spreadsheets. In particular, future work could focus on improv-
ing the overall detection performance of structural analysis. Moreover, the detec-
tion process could be expanded to include further structures (e.g. structures for
calculation-neutral value cells). We suggest the following approaches to adapt and
expand the current analysis process:

• Adapt to the circumstances. During evaluation of our analysis process, we
identified a number of reoccurring issues that caused failing or incomplete
inference of structures. While some of these issues are based on questionable

158

practices (e.g. the use of formula cells as headers), we need to acknowledge
that those practices are applied in real-world spreadsheets. Consequently,
the detection rule-set of the current analysis process should be expanded to
account for these questionable but occurring circumstances.

• Group Variety. Our analysis approach employed the Follow the Formula prin-
ciple. Consequently, wherever possible, grouping and blocking-operations re-
lied on information provided by formula relations, to infer group areas. How-
ever, other criteria could also be applied to discern meaningful areas within a
worksheet. Future work could employ such alternative focal points for group
inference. For example, groups could be established for numerical values which
establish and abide by a common statistical model. Likewise, groups could be
established for string cells, featuring common occurrence of individual strings
or minimal string-distance metrics. Position-based metrics like neighbourhood
to other cells and the location of cells within the worksheet could also be re-
assessed.

• Agree to 2D. Our analysis approach employs the 1D is Key principle. Following
this principle, 0D-areas are collated into 1D-areas and 2D-areas are partitioned
into sets of aligning 1D-areas. Further analysis processes are applied to these
1D-areas. Future work could assess the viability to utilize 2D-areas instead.
In specific, blocking requires re-collation of previously partitioned sets of 1D-
areas. The initial existing 2D-areas could be employed instead, potentially
enhancing the results of blocking.

• Diverse Group-Dependencies. The current analysis approach constructs a hi-
erarchy of formula groups based on group relations. However, relations within
this hierarchy do not yet take types and multiplicity of source- and target
groups of each reference into consideration. Future work could categorize for-
mula group references based on these metrics. Consequently, follow-up analysis
could employ these categories as precursors for relation-strength. For example,
a relation between a 10-cell formula group and another 10-cell formula group
has more impact on the overall structure of the worksheet than a relation
between a 1-cell formula and a single value cell.

159

• Block Variety. Our analysis approach identifies blocks within a worksheet
based on expansion of existing groups. Expansion takes place as long as any
eligible group is in immediate range of the block, and inclusion of the new group
does not lead to any invalid cells being part of the group. Future work could
assess the viability of more restricted blocking processes. For example, block-
building could introduce some form of sub-blocks, where sub-blocks within a
block contain groups which share a common characteristic. Sub-blocks could
be introduced to collate groups of the same orientation. Further, sub-blocks
could be calculation-sensitive, only collating neighbouring blocks which are
connected by a formula-relation.

• Structure Propagation. Our analysis process focusses on areas within spread-
sheets which take part in any form of calculation. However, spreadsheets do
not exclusively contain formula-related data. Nevertheless, in cases where un-
related data is located next to formula-related data, our analysis approach
may still be applied. The resulting structural information may then be prop-
agated to neighbouring areas of non-formula-related values. This propagation
process may detect groups of independent value cells matching the predeter-
mined structure. For example, a worksheet may contain a catalogue of items,
organized in rows. Each column is dedicated to a specific item-related value.
Most of these values are not part of any formula-relation. However, the cat-
alogue also features the stock and price of each item, as well as formulas for
value and price calculation. These formula-relations could provide structural
shapes which can be applied to the neighbouring data. Thus, identified blocks
and header-relations may be extended to non-calculation-relevant value cells.

In summary, while structural analysis poses a difficult problem and our proposed
approach is not without its limitations, the benefits anticipated for our exemplary
spreadsheet smell enhancements and our outlined perspectives for further areas of
application demonstrate that examination of this problem proved to be a worthwhile
effort in itself and also laid a possible foundation for future studies into this topic.

160

List of Figures

3.1 Workflow of UCheck Header Inference process. 26

3.2 Example of UCheck Cell Classification process. 28

3.3 Example of UCheck Header Assignment process. 31

3.4 Example of expected worksheet structures. 33

3.5 Workflow of novel Structural Analysis process. 36

3.6 Workflow of novel Grouping process. 37

3.7 Example of Type-based Grouping process. 39

3.8 Example of Formula Group Partitioning process. 41

3.9 Concept of Referenced-based Grouping for cell-references. 43

3.10 Concept of Reference-based Grouping for 1D area-references in match-
ing orientation. 44

3.11 Example of Reference-based Grouping for 1D area-references in non-
matching orientation. 45

3.12 Example of Reference-based Grouping process. 49

3.13 Workflow of extended novel Grouping process. 50

3.14 Example of Formula Group Matching process. 52

3.15 Workflow of novel Block Expansion process. 55

3.16 Concept of detection-areas for eligible neighbours of a block. 56

3.17 Concept of Block Expansion in different neighbourhood scenarios. . . 57

3.18 Example of novel Blocking process. 58

3.19 Workflow of Header Assignment process 60

3.20 Concept of detection-areas for header-layers of a block. 61

161

3.21 Example of Layer Detection process. 62

3.22 Concept of Header Propagation process. 64

3.23 Example of Header Propagation process. 65

3.24 Example of Layer-Header Detection process. 66

4.1 Multi-step filtering mechanism for spreadsheet corpora. 69

4.2 Example of applied evaluation method. 82

4.3 Results of structure-based evaluation. 86

5.1 Warehouse example spreadsheet. 92

6.1 Example for enhanced sliding-window smells. 127

6.2 Example for enhanced String Distance smell. 129

6.3 Example for enhanced similarity-based smells. 129

6.4 Example for enhanced formula-based smells. 131

6.5 Example for enhanced Long Calculation Chain smell. 132

6.6 Example for update of Inter-Worksheet smells. 134

6.7 Example for Duplicated Formula Groups smell. 135

6.8 Example for Formula group Distance smell. 138

6.9 Example for Unrelated Neighbours smell. 140

6.10 Example for Inconsistent Reference Dimensions smell. 143

6.11 Example for Inconsistent Formula group Reference smell. 145

6.12 Example for Missing Header smell. 147

6.13 Example for Overburdened Worksheet smell. 149

162

List of Tables

4.1 Result of filtering-process applied to EUSES and ENRON corpora. . . 69

4.2 Spreadsheet-based evaluation of filtered EUSES and ENRON corpora. 71

4.3 Worksheet-based cell count evaluation of filtered EUSES and ENRON
corpora. 72

4.4 Worksheet-based reference count evaluation of filtered EUSES and
ENRON corpora. 73

4.5 Worksheet-based relation status evaluation of filtered EUSES and
ENRON corpora. 75

4.6 Worksheet-based unique value evaluation of filtered EUSES and EN-
RON corpora. 76

4.7 Area references in formulas per worksheet of filtered EUSES and EN-
RON corpora. 78

4.8 Worksheet-based evaluation results. Metrics indicate success-rates
to identify occurring high-level structures within a worksheet of the
related corpus. 85

5.1 Comparison of Spreadsheet Smells . 118

6.1 Comparison of novel Spreadsheet Smells 151

163

References

[Abraham and Erwig, 2004] Robin Abraham and Martin Erwig. Header and Unit
Inference for Spreadsheets Through Spatial Analyses. In 2004 IEEE Symposium
on Visual Languages and Human Centric Computing (VLHCC’04), pages 165–
172, 2004.

[Abraham and Erwig, 2006] Robin Abraham and Martin Erwig. Inferring Tem-
plates from Spreadsheets. In Proceedings of the 28th International Conference
on Software Engineering (ICSE’06), pages 182–191, 2006.

[Abraham and Erwig, 2007] Robin Abraham and Martin Erwig. UCheck: A spread-
sheet type checker for end users. Journal of Visual Languages & Computing,
18(1):71–95, 2007.

[Abreu et al., 2014a] Rui Abreu, Jácome Cunha, Joao Paulo Fernandes, Pedro Mar-
tins, Alexandre Perez, and Joao Saraiva. Smelling faults in spreadsheets. In Pro-
ceedings of the 30th IEEE International Conference on Software Maintenance and
Evolution (ICSME’14), pages 111–120, 2014.

[Abreu et al., 2014b] Rui Abreu, Jácome Cunha, Joao Paulo Fernandes, Pedro Mar-
tins, Alexandre Perez, and Joao Saraiva. FaultySheet Detective: When Smells
Meet Fault Localization. In 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME’14), pages 625–628, 2014.

[Apache Software Foundation, 2015] Apache Software Foundation. Apache POI.
http://poi.apache.org/, 2015. [Online; accessed 2015-08-31].

[Badame and Dig, 2012] Sandro Badame and Danny Dig. Refactoring meets spread-
sheet formulas. In 28th IEEE International Conference on Software Maintenance
(ICSM’12), pages 399–409, 2012.

164

http://poi.apache.org/

[Chiang and Miller, 2008] Fei Chiang and Renée J. Miller. Discovering Data Quality
Rules. Proceedings of the VLDB Endowment, 1(1):1166–1177, 2008.

[Cunha et al., 2012a] Jácome Cunha, Joao Paulo Fernandes, Pedro Martins, Jorge
Mendes, and Joao Saraiva. SmellSheet detective: A tool for detecting bad smells
in spreadsheets. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’12), pages 243–244, 2012.

[Cunha et al., 2012b] Jácome Cunha, João P. Fernandes, Hugo Ribeiro, and João
Saraiva. Towards a Catalog of Spreadsheet Smells. In Computational Science and
Its Applications (ICCSA’12), number 7336 in Lecture Notes in Computer Science,
pages 202–216. Springer Berlin Heidelberg, 2012.

[Dou et al., 2016] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun
Wei, and Tao Huang. VEnron: A Versioned Spreadsheet Corpus and Related Evo-
lution Analysis. In Proceedings of the 38th International Conference on Software
Engineering (ICSE SEIP’16), 2016.

[Erwig and Burnett, 2002] Martin Erwig and Margaret Burnett. Adding Apples and
Oranges. In Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Aspects of Declarative Languages, number 2257 in Lecture Notes in Computer
Science, pages 173–191. Springer Berlin Heidelberg, 2002.

[EuSpRIG, 2013] The European Spreadsheet Risks Interest Group EuSpRIG. Eu-
SpRIG horror stories. http://www.eusprig.org/horror-stories.htm, 2013.
[Online; accessed 2016-03-21].

[Fisher and Rothermel, 2005] Marc Fisher and Gregg Rothermel. The EUSES
Spreadsheet Corpus: A Shared Resource for Supporting Experimentation with
Spreadsheet Dependability Mechanisms. In Proceedings of the First Workshop on
End-user Software Engineering (WEUS’05), pages 1–5, 2005.

[Fowler, 1999] Martin Fowler. Refactoring: improving the design of existing code.
Pearson Education India, 1999.

[Hermans and Murphy-Hill, 2015] Felienne Hermans and Emerson Murphy-Hill.
Enron’s spreadsheets and related emails: A dataset and analysis. In Proceed-

165

http://www.eusprig.org/horror-stories.htm

ings of the 37th International Conference on Software Engineering (ICSE’15),
pages 7–16, 2015.

[Hermans et al., 2011] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Supporting Professional Spreadsheet Users by Generating Leveled Dataflow Di-
agrams. In Proceedings of the 33rd International Conference on Software Engi-
neering (ICSE’11), pages 451–460, 2011.

[Hermans et al., 2012a] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Detecting and Visualizing Inter-worksheet Smells in Spreadsheets. In Proceedings
of the 34th International Conference on Software Engineering (ICSE’12), pages
441–451, 2012.

[Hermans et al., 2012b] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Detecting code smells in spreadsheet formulas. In 28th IEEE International Con-
ference on Software Maintenance (ICSM’12), pages 409–418, 2012.

[Hermans et al., 2013] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van
Deursen. Data Clone Detection and Visualization in Spreadsheets. In Proceedings
of the 2013 International Conference on Software Engineering (ICSE ’13), pages
292–301, 2013.

[Hermans et al., 2014] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Detecting and refactoring code smells in spreadsheet formulas. Empirical Software
Engineering (ESE’14, pages 1–27, 2014.

[Jannach et al., 2014] Dietmar Jannach, Thomas Schmitz, Birgit Hofer, and Franz
Wotawa. Avoiding, finding and fixing spreadsheet errors – A survey of automated
approaches for spreadsheet QA. Journal of Systems and Software, 94:129–150,
2014.

[Jansen, 2015] Bas Jansen. Enron versus euses: a comparison of two spreadsheet
corpora. arXiv preprint arXiv:1503.04055, 2015.

[Koch, 2015] Patrick Koch. Smells and Units: An Overview of Selected Static Anal-
ysis Methods for Spreadsheets. http://spreadsheets.ist.tugraz.at/index.

php/papers/studentswork/, 2015. [Online; accessed 2016-02-16].

166

http://spreadsheets.ist.tugraz.at/index.php/papers/studentswork/
http://spreadsheets.ist.tugraz.at/index.php/papers/studentswork/

[Levenshtein, 1966] VI Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. In Soviet Physics Doklady, volume 10, page 707, 1966.

[Panko and Port, 2012] Raymond R Panko and Daniel N Port. End user computing:
the dark matter (and dark energy) of corporate IT. In 45th Hawaii International
Conference on System Science (HICSS’12), pages 4603–4612, 2012.

[Taylor, 2007] Kevin Taylor. An Alaysis of Computer Use across 95 Organisations
in Europe, North America and Australasia. 2007.

167

	Introduction
	Preliminary Definitions
	Structural Analysis
	Ucheck Analysis
	Cell Classification
	Header Assignment

	Analysis Targets
	Novel Analysis Approach
	Grouping
	Blocking
	Header Assignment

	Evaluation
	Evaluation Corpora
	Filtering of Spreadsheet Corpora
	Corpora Comparison

	Evaluation Approach
	Evaluation Goal
	Evaluation Method
	Evaluation Data

	Evaluation Results
	Discussion

	Spreadsheet Smells: State of the Art
	Known Spreadsheet Smells
	Standard Deviation
	Empty Cell
	Pattern Finder
	String Distance
	Reference to Empty Cells
	Quasi-Functional Dependencies
	Multiple Operations
	Multiple References
	Conditional Complexity
	Long Calculation Chain
	Duplicated Formulas
	Inappropriate Intimacy
	Feature Envy
	Middle Man
	Shotgun Surgery

	Overview and Comparison
	Utilization of Spreadsheet Smells
	Smell Indication
	Smell Removal
	Other Approaches

	Issues

	Structure-Based Spreadsheet Smells
	Updating Existing Smells
	Sliding Window Smells.
	Similarity-Based Smells.
	Formula-Based Smells.
	Long Calculation Chain.
	Inter-Worksheet Smells.

	Introducing Novel Spreadsheet Smells
	Duplicated Formula Groups
	Formula Group Distance
	Unrelated Neighbours
	Inconsistent Reference Dimensions
	Inconsistent Formula Group Reference
	Missing Header
	Overburdened Worksheet
	Overview

	Discussion

	Related Work
	Conclusions and Future Work
	List of Figures
	List of Tables
	References

