
Graz University of Technology

DESIGN AND EVALUATION OF AN INTRODUCTORY

ARTIFICIAL INTELLIGENCE CLASS IN HIGHSCHOOLS

A diploma thesis by

HARALD BURGSTEINER

supervised by

Ass.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer

and submitted to the

Graz University of Technology

to achieve the university degree of

Magister rerum naturalium (Mag.rer.net. / MSc)

June 2016

To you, Anna and Noah, in the hope that you will

one day learn about cool things like these in school.

Acknowledgements

First I’d like to thank the people at the RoboLab of the Institute for Software Technology

for the possibility to work on an interesting topic and the offer to use their equipment

during the making of this course, especially Gerald Steinbauer and Martin Kandlhofer,

who gave me many valuable suggestions and support.

Furthermore I’d like to thank the colleagues from the BRG Kepler for their support

during the course. And dear students, I also would like thank you for your participa-

tion, your collaboration and your feedback. We had some very valuable discussions for

me during the course and I rarely see students with that much motivation and skill in

schools!

Thank you too Gabi, for cheering me up (sometimes!) when I became nervous before

exams and also of course for proof reading this thesis and discussing it with me. Very big

hugs go to Noah and Anna who had to sacrifice some time with their dad because of his

studies. I promise, I’ll make it up to you again!

iii

Abstract

Profound knowledge about at least the fundamentals of Artificial Intelligence (AI) will be-

come increasingly important for careers in science and engineering. Therefore we present

an innovative educational project teaching fundamental concepts of artificial intelligence

at a high school level. Currently, computer science education in school does not include

teaching these fundamental AI topics in an adequate manner. In order to overcome this

shortcoming we developed a high school AI-course (called ’iRobot ’) dealing with major

topics of AI and computer science (automatons, agent systems, data structures, search al-

gorithms, graphs, problem solving by searching, planning, machine learning) according to

suggestions in the current literature. The main difficulties were selecting suitable topics,

abstracting them for highschool students and offering social forms to explore the contents

accordingly.

The course was divided into seven weekly teaching units of two hours each, comprising

both theoretical and hands-on components. We conducted and empirically evaluated a

pilot project in a representative Austrian high school which integrates robotics in its

regular curriculum. The results of the evaluation show that the participating students

have become familiar with the concepts included in the course and the various topics

addressed. Results and lessons learned from this project form the basis for further projects

in different schools which intend to integrate artificial intelligence in future secondary

science education.

iv

Zusammenfassung

Gute Kenntnisse von zumindest den Grundlagen der Künstlichen Intelligenz (KI) werden

zunehmend wichtiger für Karrieren in der Wissenschaft und der Technik. Darum präsen-

tieren wir ein innovatives Lernprojekt, das die fundamentalen Konzepte der künstlichen

Intelligenz auf Gymnasialniveau lehrt. Momentan beinhaltet die Informatikausbildung

in Schulen diese grundlegenden KI-Themen in einem nicht ausreichenden Maß. Um

diesem Mangel entgegenzuwirken, entwickelten wir einen Kurs namens iRobot aus dem

Bereich der KI, der wichtige Themen der KI und der Informatik, wie Automaten, Agen-

ten, Datenstrukturen, Suchalgorithmen, Graphen, Problemlösen durch Suchen, Planen

und maschinelles Lernen beinhaltet. Die Themen wurden anhand von Vorschlägen in der

aktuellen Literatur ausgewählt. Die größten Herausforderungen waren, sinnvolle Themen

auszuwählen, diese für die Schüler innen zu abstrahieren und passende Sozialformen für

das Erforschen der Inhalte anzubieten.

Der Kurs wurde aufgeteilt in sieben wöchentliche Unterrichtseinheiten zu je zwei Stun-

den. Die Einheiten enthielten sowohl theoretische als auch praktische Komponenten.

Wir hielten den Kurs in einem repräsentativen, österreichischen Gymnasium ab, das

Robotikunterricht im regulären Stundenplan beinhaltet. Der Kurs wurde danach em-

pirisch evaluiert und ausgewertet. Die Ergebnisse der Evaluierung zeigen, dass die teil-

nehmenden Schülerinnen und Schüler mit den verschiedenen inkludierten Konzepten und

behandelten Themen im Kurs vertraut wurden. Die Ergebnisse und Erkenntnisse aus

diesem Projekt formen die Basis für weitere Projekte an anderen Gymnasien, die künstli-

che Intelligenz in ihr zukünftiges Curriculum im Bereich der Naturwissenschaften aufneh-

men wollen.

v

Contents

Acknowledgements iii

Abstract iv

Zusammenfassung v

List of figures viii

List of tables ix

List of listings x

1 Introduction 1

1.1 Motivation . 2

1.2 Goals of this diploma thesis . 2

1.3 Methods used . 3

1.4 Structure of the remaining chapters . 4

2 Background and related work 5

2.1 Competencies . 7

2.2 Formulating goals and competencies for our course 9

2.3 Participating school and its students . 10

2.4 Learning theory and legal requirements . 12

2.4.1 Self-directed learning and Constructionism 12

2.5 Evaluation of learning processes . 13

3 Design of the classes 16

3.1 General Outline . 16

3.2 First class: Introduction and Automata . 18

3.3 Second class: Intelligent Agents . 21

3.4 Third class: Problems and Graphs . 26

vi

3.5 Fourth and fifth class: Problem Solving by Searching in Trees 30

3.6 Sixth class: Classic Planning . 34

3.7 Seventh class: Machine Learning and Outlook 42

4 Realization and Evaluation 47

4.1 General restrictions and participating school 47

4.2 Qualitative monitoring during the classes 48

4.2.1 Homework assignments . 55

4.3 Results of the empirical evaluations . 56

4.3.1 Self and foreign evaluation . 56

4.4 Evaluation of the course . 60

5 Discussion and Outlook 65

5.1 Conclusions . 66

5.2 Future Work . 66

Bibliography 68

Internet sources 73

A Exercises 74

A.1 Exercises for Searching . 74

A.2 Exercise sheets for Planning . 81

B Questions during the evaluation 84

B.1 Anonymous questionnaire for the self evaluation and the course evaluation 84

Affidavit 89

List of Figures

3.1 The contents of and the golden thread through our course 18

3.2 A graphical illustration of a simple finite state machine 20

3.3 A simple reflex agent . 21

3.4 A model based reflex agent . 22

3.5 A goal based agent . 23

3.6 A utility based agent . 24

3.7 A learning agent . 25

3.8 Examples of simple Braitenberg vehicles 25

3.9 Illustration of the “Vacuum Cleaner World” 27

3.10 A simplified version of the Romanian street map 28

3.11 From a labyrinth to a graph . 29

3.12 The graph that is used as the basis for all three search algorithms 32

3.13 An example from [Russel and Norvig, 2012] to describe how properties and

relations can be defined with first-order logic 36

3.14 The Sussman anomaly in the block world scenario 38

3.15 An example of a decision tree . 45

3.16 Schematics of a feed-forward and a recurrent neural network 46

4.1 Presentation of a finite state machine by some students 50

4.2 Group work setting during the A? search algorithm assignment 52

viii

List of Tables

4.1 The matrix used to assess the students by themselves 58

4.2 The analysis of the self-evaluations filled out by the students 59

4.3 The matrix used by the students to evaluate the course 61

4.4 The results of the course evaluation . 62

ix

Listings

3.1 Example of the breadth first search algorithm written in pseudo code as it

was used in one of the learning stations. 32

3.2 The formal description of the classic bananas problem where a monkey has

to come up with a simple plan to grab some bananas suspending from the

ceiling. 38

3.3 The formal description of the classic bananas problem where a monkey has

to come up with a simple plan to grab some bananas suspending from the

ceiling. 39

3.4 The forward search algorithm for problem solving in pseudo code where D

is the set of all actions, I is the initial state and G is the goal state. 40

3.5 The forward search algorithm for problem solving in pseudo code where D

is the set of all actions, I is the initial state and G is the goal state. 41

x

Chapter 1

Introduction

Nowadays nearly every day an article is published in a newspaper in which a new gadget

or a machine is being described. Many of those innovations are labelled with tags like

“adaptive”, “learning”, “smart” or “intelligent”. To some of us, stories like these are

exciting and fascinating. Others are frightened of machines that might be able to learn,

outsmart mankind one day and terminate biological life on earth (like in many science

fiction movies).

Therefore, it will be important for our civilisation to be able to differentiate between just

smart gadgets that contain e.g. an adaptable algorithm to better sort their shopping list

and real artificial intelligence (AI) that indeed might eventually become smarter than

humans like many renowned scientists like Steven Hawkins and others argue [Future of

Life Institute, 2015].

Smart tools and machines are currently flooding the market. Examples start e.g. with

a simple smart watch like in [Deutsch and Burgsteiner, 2016] that is able to adapt itself

to the everyday life of an elderly person and alert relatives when unusual inactivity or a

fall was detected. Other examples include intelligent household appliances, smart-phones,

Apple’s Siri, AI in computer games and self driving cars like the Google car [Google Inc.,

2016] etc.

Many of us know about the existence of services and devices based on AI, but hardly

anybody knows about the technology behind them. An important competence will be

to use such smart tools in every day life. When programming a video recorder was a

competence with which one could become famous in the whole neighbourhood in the

1980s, a skilled handling or even the “teaching” of intelligent tools might be its equivalent

in the 2020s.

1

Chapter 1 Introduction

1.1 Motivation

Therefore it is of great importance to already familiarize young people in school with

the technical background and the underlying concepts including algorithms, data struc-

tures and programming/coding. Like classic literacy which includes writing, reading and

mathematics, literacy in AI/computer science will become a major issue in future. Fur-

thermore, with AI literacy pupils also receive a solid preparation for subsequent studies

at university level and their future career.

The remaining question is: where can one learn about basics or foundations of artificial

intelligence – at least to a level of everyday use of intelligent or smart tools? E.g. in Austria

currently even basic education about AI is mainly restricted to university programs. When

looking at lower level education like high schools, one does not even find a single side

remark about artificial intelligence in the official curricula of computer science classes.

See [Bundesministerium für Bildung und Frauen, 2016] for details. The computer science

education itself is officially compulsory only during the ninth grade for two hours every

week. What several schools offer are optional classes that students can choose outside

the official curricula or as a part of a module in an area of specialisation. Currently, only

such optional classes would fit perfectly to host several lessons about artificial intelligence

without having to adapt the official curricula. Hence, one future goal has to be to include

AI topics in the general curriculum of computer science education.

1.2 Goals of this diploma thesis

We asked ourselves, if schools become more interested in education about artificial intel-

ligence during the next years . . .

• . . . what contents are important enough to be fit into e.g. a class of one hour each

week?

• . . . how could such classes be structured?

• . . . which suggestions already exist in the literature?

• . . . what prior knowledge would be required to understand some foundations of ar-

tificial intelligence?

• . . . what methods or tools could be used during such a class?

2

Chapter 1 Introduction

The goal of this diploma thesis is to work out answers to the questions above. But more

than that, a prototype of such a class should be taught in one of our partner schools. The

lessons will be evaluated to acquire valuable feedback of the first students that participate

in this class. Building on this feedback a possible structure and the contents of such a

class will be suggested and discussed.

1.3 Methods used

The work in this thesis comprises several different methods. First two literature researches

will be done. On the one hand we have to find out about the current situation of computer

science education in Austrian high schools. Therefore the legal framework on which we

can set up a course upon will be evaluated. Then we want to find out which courses about

artificial intelligence already exist. We have to distinguish between courses on high school

level and e.g. university courses.

To be able to choose among the various topics an introductory course about AI could

offer we also searched for literature. [Wollowski et al., 2016] did a survey in which they

asked educators what topics of AI they are currently teaching, what practitioners are

demanding and what topics both groups would suggest to teach. This forms the basis for

the selection of our contents.

Based on the findings during the literature research we can start to plan a prototypic

course about AI for an Austrian high school. We would like to focus the course on AI.

Hence, we will restrict ourselves to high schools where at least some extended computer

science education like a participation in the RoboCup [The RoboCup Federation, 2016] is

offered and we can assume a certain level of programming skills. This prototypic course

is conducted in one of our partner schools.

After the course, the lessons will be evaluated by the participating students. This feedback

will then incorporated in the planning of the next version of this AI course. This concludes

the first loop of a standard quality management cycle like the famous Deming cycle

[Deming, 1986] of Plan – Do – Check/Study – Act.

Hence, this thesis makes several contributions to the area of AI education. We design a

concept for an AI course in highschools, do a proof of concept implementation of it and

also evaluate it afterwards. Some of the results of this project have already been published

in the conference paper [Burgsteiner et al., 2016].

3

Chapter 1 Introduction

1.4 Structure of the remaining chapters

In the next chapter we will present the results of the literature researches. Based on

this we can outline a possible extent of an AI class in high schools and its determin-

ing factors. We will discuss various didactic methods and how they can fit into our

course.

Chapter 3 represents the main part of this thesis. It contains the results of the first

planning sessions and the detailed outline of the complete course. In that chapter the

golden thread that is woven throughout the course will be explained. Each class will be

described in detail with a brief discussion of each topic and why it was chosen. For each

class we will also describe a possible homework that can be given.

In the fourth chapter our experiences and lessons learnt during and after the the con-

duction of the classes will be described. That chapter also contains the elaboration of

the questions for the evaluation of the classes and summarizes the feedback of the stu-

dents.

The last chapter discusses the whole work and makes implications and outlines for possible

future classes about artificial intelligence in high schools.

4

Chapter 2

Background and related work

Looking at the contents of curricula of typical Austrian high schools in [Bundesminis-

terium für Bildung und Frauen, 2016] that are not specialising on a specific technical edu-

cation, one does not even find a single side remark about artificial intelligence in the official

curricula of computer science classes. Even worse, the computer science education itself

is officially compulsory only during the ninth grade for two hours a week. The curriculum

states that the essential purpose of the computer science education is “to teach funda-

mental knowledge of computer science and information technology to enable students to

use this knowledge with confidence [. . .] to solve given problems.”1

Additionally, the contentwise requirements in this curriculum demands students to be

able to (shortened and translated from [Bundesministerium für Bildung und Frauen,

2016]:

• manage information and organise the individual learning and self-improvement with

qualified software in practical life, thereby exploit existing information sources and

different information visualisations based on the previous knowledge

• systematise and structure contents, summarize results and present them with mul-

timedia technology

• establish and use a linked up information systems for the individual work

1Translated and shortened from the German original: “Es ist eine wesentliche Aufgabe des Informatikun-
terrichts, Schülerinnen und Schülern informatische und informationstechnische Grundkenntnisse zu
vermitteln, um sie zu befähigen, diese zur Lösung einer Problemstellung sicher und kritisch einzuset-
zen.”

5

Chapter 2 Background and related work

• reach a confident handling with standard software for written correspondence, for

documentation, for the publication of written documents, for multimedia presenta-

tions and for communication

• construct calculation models and asses and interpret the results; use a simple

database

• gain insights in essential vocabulary and methods of computer science, its typical

thinking and methods of operation, its historical development and get to know basic

principles of automatons, algorithms und programs

• get to know essential methods and legal foundations of data protection, data security

and copyright law and comprehend the impact of the use of technology on individuals

and the society

• get to know possible applications of computer science in different occupational areas

and thereby support an orientation towards possible later professions

One question that results from these demands immediately is: how can such a high

goal be achieved with only two hours a week in only one year during the education

of a student? What several schools offer therefore are optional classes that students

can choose to visit outside the official curricula. Some schools also offer modules in

several areas of specialisation that the students can select (so called “elective compulsory

subjects”). Depending on the general orientation of the school these modules or special

courses also sometimes include topics like general computer science, programming, and

robotics.

Also when looking at international literature, teaching the fundamental concepts and

techniques of AI independent of any platform or programming language at school level

is quite rare. Many approaches focus on undergraduate/graduate students at university

level. [Wollowski, 2014] describes a research oriented course for undergraduate students in

which the IBM Watson was used to teach AI fundamentals. [Torrey, 2012] suggests ways to

structure lessons and assignments for undergraduates to teach them basic problem solving

strategies and skill with an additional focus on pedagogical methods. In [McGovern et al.,

2011] a course that has been running for six years is presented, where students have to use

Java to program suitable agents for certain games. This course is again for undergraduate

and graduate students. Combinations of programming AI and using LEGO robots can be

found in [Selkowitz and Burhans, 2014] where undergraduate students are encouraged to

build an autonomous chess agent with a robot that moves real chess figures. [Kumar and

6

Chapter 2 Background and related work

Meeden, 1998] report about the design of a robot lab to be used in introductory AI classes.

They argue that students can learn many central issues of computer science including the

interaction between hardware and software better with the use robots. Some universities

also offer training courses for future teachers about how AI can be taught in school, like

in [Dilger, 2005], who also discusses topics like problem solving, planning, robotics and

learning system.

Common approaches at school level typically deal with more general areas of AI like its

history, the Turing test [Turing, 1948] or chat bots. [Heinze et al., 2010] report about a

course in Australia that introduces pupils to AI by doing experiments with real robots

or discussing philosophical question concerning AI on several levels for kids of different

grades. A highly sophisticated single event project at high school level is reported by [Fok

and Ong, 1996] where two students use an industrial robot arm to train a feed-forward

neural network to play Tic-Tac-Toe. This course did focus on the promotion of young tal-

ents with a small selection of technology and did not have the aim to teach AI in general.

[Featherston et al., 2014] use a developed special educational platform called Dorothy to

teach robotics and core computing skills to students without prior programming experi-

ence. The tool offers a drag and drop interface to create graphical routines for robots

in virtual worlds and also a possibility to generate code for real-world robots. It is not

outlined how this platform can or should be used for AI classes.

2.1 Competencies

A modern approach to education is the use of so called “competencies” the students

should acquire during their times of study instead of traditional facts that they should

“know” and be able to reproduce during a test. A competence is defined as the ability of

an individual to do a job properly. This is in fact more important than just e.g. to be able

enumerate several facts that have no meaning to an individual. Typically, competencies

can be described with sentences beginning with “I can . . . ”, like “I can evaluate the

efficiency of algorithms.”

Current educational reforms in many countries try to develop curricula and exam regula-

tions that try to emphasize the necessary competencies that the students must acquire.

This is being done for most fields of studies (sometimes even with inter-disciplinary com-

petencies). There also exists a competencies based draft of the contents of computer

science education in Austria [Bundesministerium für Bildung und Frauen, 2013]. This

7

Chapter 2 Background and related work

draft defines competencies that have to be achieved when a students selects computer

science as an elective compulsory subject with an extent of at least additional 6 hours

during the last 3 years in high school.

The law concerning the regulations of oral exams during the final high school exams defines

in [RPVO, 2012, §29] that every competencies based task must contain the following

aspects:

• aspects of reproduction

• aspects of knowledge transfer

• aspects of reflection and problem solving

The contents of the subject are defined via the curriculum. These contain the areas of

“Computer Science, Human and Society”, “Information Systems”, “Applied Computer

Science” and “Practical Computer Science”. The latter area contains also a sub-area

called “Intelligent Systems”. To be able to define concrete competencies a working group

defined relevant dimensions of actions. The dimensions of actions can be divided in the

areas “knowing and understanding” (aspect of reproduction), “use and design/create”

(aspect of knowledge transfer and problem solving) and “reflect and evaluate” (aspect of

reflection).

In the intersection of these dimensions of action and the contents of the area “Intelligent

Systems” one can find the competencies that the working group defined:

• Knowing and Understanding:

– I can describe areas of application in which computer systems behave intelli-

gent.

– I can explain the difference between human and artificial intelligence.

• Use and Design/Create:

– I can use intelligent information technology.

• Reflect and Evaluate:

– I can compare and assess aspects of human and artificial intelligence.

8

Chapter 2 Background and related work

To us, these are quite fuzzy descriptions and definitions that do not yield precise contents

of possible courses. To design lessons in which some foundations of artificial intelligence

are taught one has to select concrete subjects. Especially the number of competencies

has to be expanded to allow for more detailed definitions that correspond e.g. with more

concrete goals of the course.

It doesn’t get any better in terms of clarity when one takes a look at descriptions for

the competencies in the area of algorithms, data structures (sub-areas that play an im-

portant role in AI) or programming. The competencies defined are merely (again from

[Bundesministerium für Bildung und Frauen, 2013]):

• I can explain the term “algorithm”.

• I can describe tasks and problems algorithmically and formally using suitable data

structures.

• I can explain essential aspects of the procedural, functional and object-oriented

programming with the help of examples thereof.

• I can model tasks through the use of computer science.

• I can develop algorithms and visualise, implement and test them.

• I can assess the efficiency of algorithms.

• I can efficiently search for and correct errors in computer programs.

We will try to define more concrete competencies for the areas of artificial intelligence

and data structures that suite our planned course and reflect the previous knowledge of

the students in the next section.

2.2 Formulating goals and competencies for our course

Based on the possible contents found in [Wollowski et al., 2016] and our intentions of

teaching foundation of artificial intelligence we can begin to formulate goals and com-

petencies that should be reached during our course. Due to the fact that robotics can

play a important role in motivating students to engage in computer science [Altin and

Pedaste, 2013], it is obvious to work mainly with methods and examples originating from

9

Chapter 2 Background and related work

this area of application. Important for us are not only competencies in artificial intelli-

gence, but also to show the connection to important topics of classic computer science

like data structures, to be able to explain and possibly program algorithms (e.g. search-

ing).

Resulting from these considerations are the following goals and competencies for our

course from the areas of “artificial intelligence in robotics” and the important foundations

in “data structures”:

• I can explain reactive agents and its difference to intelligent systems.

• I can design simple reactive and model-based robot controllers.

• I can apply fundamental data structures like stack, queue, graph and tree and

explain some typical areas of applications.

• I can apply different search algorithms in trees and graphs (e.g. breadth first and

depth first, greedy, A?) and explain their advantages and disadvantages.

• I can explain classic planning mechanisms of AI agents like forward and backward

search and apply them with paper and pencil.

2.3 Participating school and its students

We found a school that is very interested in offering some of its students a class in the area

of artificial intelligence. The [BRG Kepler, 2015] is an Austrian high school located in

the city of Graz that has a focus in natural and computer sciences. Together we offered a

totally voluntary, additional class on Friday afternoons. The group of nine students that

subscribed to this special course comes from different age groups from the 9th, 10th and

11th year of school attendance (i.e. approximately between 15 and 18 years old, average

age 16.5 years). Hence, they also had a very varying previous knowledge in the area of

computer science (none of them in AI). But additionally all of them are participating for

several years in robotics electives, especially in various leagues in the [The RoboCup Fed-

eration, 2016]. Amongst them are also winners of the Austrian RoboCup championships

and participants of the world championships. According to this we are assuming a high

motivation and knowledge beyond the traditional contents of school education in computer

science. There were 1 female and 8 male students attending.

10

Chapter 2 Background and related work

Preliminary talks with some students and teachers showed, that the programming skills

can’t be described as very proficient or structured. They describe their code themselves

as “spaghetti code”. What’s missing is e.g. an abstract description of the controllers of

their robots and accurate strategies for the control.

This first analysis gives us several inputs how our course could be conducted especially in

this participating school. For a stronger motivation the own robot that has been used dur-

ing the robotcis contests will be used. Considering the previous knowledge of the students

and the very limited time the following topics might be suitable:

1. Clarify how the self-built existing robot is working at the moment. Which mech-

anisms and sensors are used? How are the sensor values evaluated. How are the

decision processes designed based on which data?

2. What is a state in the sense of an automaton? What are state transitions? What is

a finite state machine and how can it be modelled graphically? How can a robot’s

decision be modelled with such states? How do state transitions relate to behaviour?

3. What is intelligence and on which properties of a living being can it be observed?

Are the own robots intelligent according to theses measures? What are they possibly

missing to be called intelligent?

4. Possible intelligent agents: reactive controllers (e.g. [Braitenberg, 1984]), reflex

agents, model-based reflex agents, goal-based agents, teleo-reactive systems [Nilsson,

1994], subsumption architecture [Brooks, 1986]. Each including examples of usage,

differences and limits of the specific approach.

5. The data structure of a graph including directed and undirected graphs. Example

how to represent a labyrinth as a graph.

6. Modelling the search of a route in a labyrinth. Introduce trees as a data structure.

7. Problem solving through searching in graphs or trees, introducing queues and stacks.

Breadth first search and depth first search, greedy search, A?-search. Comparison

of the search algorithms and discussing optimality.

8. Planning of actions, classic planning.

11

Chapter 2 Background and related work

2.4 Learning theory and legal requirements

Computer science is basically a formal science. During its education it is therefore im-

portant to organize the contents in a way that it has a direct connection to the prior

knowledge and experiences of the students. Ideally, the topics and areas of application

meet the interests and hobbies of the students.

[Bundesministerium für Bildung und Frauen, 2016] also gives many suggestion how to

organize a computer science course. It recommends varying types of work like solitary

work, group work or team work to enable students to research new contents and apply

them in different communicative settings. The importance of joint problem solving has to

be considered especially in computer science education. The students should also get the

opportunity to ensure their learning progress through connections and knowledge transfer

to areas of life. The authors also suggest to use several methods for a higher motivation

of the students and a better benefit of the classes. This includes possibilities to present

their knowledge or work and thereby to confront themselves with critique and learn to

argue their work. The design of a pleasant and successful climate for learning is based

on trust, the promotion of individual strengths and the creative potential. Additionally

[Bundesministerium für Bildung und Frauen, 2016] demand to react to possibly different

requirements of girls and boys.

2.4.1 Self-directed learning and Constructionism

Seymour Papert plays a crucial role in both AI and computer science education. In his

book [Papert, 1993] he describes the idea behind the earlier programming language called

LOGO and how young students can use it to explore fundamental ideas in computer sci-

ence [Schwill, 1997], like recursion or the principle of divide-and-conquer. The children

start with very simple but yet exciting problem like drawing triangles or squares with a vir-

tual turtle. During the construction of more complicated geometrical drawings they learn

e.g. how to reuse and combine simpler methods to achieve their goal.

Papert and others are also advocates of the learning method they called “construction-

ism”, in which they oppose the classic frontal, teacher based learning concepts, where

teachers give their knowledge, their wisdom to the children. Moreover should the learn-

ers be enabled to explore the knowledge themselves and thereby construct new knowledge

12

Chapter 2 Background and related work

built upon their past experience. This concept has also been studies in [Alimisis and Kyni-

gos, 2009] where the concept of constructionism was combined with robotics.

According to [Spohrer, 2009] learning is more sustainable when the students get eager or

curious to know something. Therefore authentic problems must be presented which lead to

gaps in the current knowledge. These gaps then require the construction of new knowledge.

For example students involved in RoboCup can see that it is difficult to make a plan to

let their robot escape from an arbitrary labyrinth. Showing them connections between

graphs, searching and labyrinths, the motivated student will probably start to research

how such an algorithm works and how it can be implemented.

In such active learning scenarios, the learners should be able to recognise and maybe also

to reflect their own thinking and learning processes. The goal of this process and goal

based approach is to promote self directed learning and hence not only to learn certain

facts but to directly experience possible life-long learning strategies.

Following these concepts one premise of our course is to actively involve the students

in the learning process. Activities can include e.g. paper-and-pencil or programming

exercises, robot construction, discussions, group works etc. depending on given tasks

or problems. Therefore the contents have to be adapted and set in context with the

pupils’ prior knowledge in robotics and programming. A course in a school that actively

participates e.g. in junior robotics competitions can include assignments on the basis of

the existing robots and code and let the students see possible shortcomings or possibilities

for enhancements of their current approach. This way we try to point to ways how AI could

eventually increase the performance of their robots in the contests.

2.5 Evaluation of learning processes

Current methods to control learning processes and to evaluate what students should

have learnt include so called learning objective controls. These are being used in sev-

eral schools in Austria and are sometimes also used instead of classic school certificates

based on grades. In doing so goals and sub-goals that can be achieved are verbalised

in advance. The degree of achievement can also be nuanced. This yields e.g. a three

valued grade system for each goal or sub-goal like “achieved”, “not achieved” or “partly

achieved”.

13

Chapter 2 Background and related work

The first step – after defining the content of the lessons — is a precise definition of the

learning goals and/or sub-goals. According to [Stangl, 2016] there do not exist suitable

proceedings to measure the success of actual learning – when success is being defined

as reaching a certain learning goal. Therefore one has to construct suitable examples or

problems that can be solved with the knowledge gained from the lessons for measurement

purposes. The success or failure in solving such an example must not simply be assigned

with points or transformed to a grade. Instead the concrete actions of a student should

be observed to be able to assess which contents or competencies were not, partly or fully

achieved.

The schedule of a learning goal assessment can consist of the following steps:

1. Define the learning goals (including the sub-goals and possibly the steps leading to

them).

2. Formulate the expected competencies that have to be achieved when reaching the

learning goals.

3. Create examples or problems for assessment of the individual learning steps.

4. Interpret the results (by asking and/or observing).

5. Adapt or redesign the teaching concept if necessary.

As also [Stangl, 2016] writes, the actual learning processes remain hidden and the learning

results of individual students are different. But because the current learning results influ-

ence the future starting point of new learning scenarios, it is important for the teachers

to know something about these previous learning results. The problem is that these are

not directly accessible. We can only get hints by observing the ability of students to solve

some real and new examples. It is nevertheless difficult to get a feedback for the design

of the lessons from this. Even if a student is able to solve the given problem, we do not

know when, how or where he or she acquired the competency. But also if one is unable to

solve a problem does this not immediately imply a lack of learning.

Concluding one can say that it is possible to test the ability to solve a problem, but

an assessment of a learning does not reliable prove a learning success. In most cases

we only assess an ability and interpret it in terms of competency and learning. In our

case and in our design of the course we will restrict the assessment to a self-evaluation

of the students and an accompanying observation of the teachers to get feedback about

14

Chapter 2 Background and related work

the learning processes. Additionally the course itself will be evaluated by the students.

Details about these evaluations can be found in Chapter 4.

15

Chapter 3

Design of the classes

This chapter will describe the preconditions we had in planning the course about artificial

intelligence and the considerations that led to the concrete structure and contents. After

that, the individual classes will be described in detail, including the detailed planning of

the classes as well as the accompanying experiments and assignments.

3.1 General Outline

[Wollowski et al., 2016] did a survey of current practice and teaching of AI. This survey

asked educators what they are currently teaching in various AI courses and practitioners

what techniques they use in practice. According to the educators the primary goal of cur-

rent AI courses is to teach the basics or main ideas of AI. The views of the practitioners do

not differ here. The recommended topics of the educators list “Search” and “Knowledge

Representation and Reasoning” (KR&R) in the first places, followed by “Machine Learn-

ing”. Also the practitioners do say that KR&R is the most wanted topics in AI, followed

by “Machine Learning”. These topics will form the basic outline of our course, although

machine learning will certainly only be coverable as a sort of overview or outlook, because

the variety of different approaches and the necessary mathematical skills demand much

more time and background knowledge.

Due to these expected limitations in the students prior knowledge for this course, we

can only cover introductory topics of artificial intelligence. We have to include some

necessary general topics like data structures (e.g. trees) or fundamental algorithms (like

searching) as well. We limited the general foundations to those that are really necessary

to understand basic topics of classic artificial intelligence and some applications thereof

16

Chapter 3 Design of the classes

in the area of robotics and e.g. especially in RoboCup, which is a very popular topic in

Austrian highschools. We recommend that schools applying this course outline in their

curriculum should already have some experiences in RoboCup since to students this is a

very interesting, motivating and fun platform to work with.

The extent of topics is further limited due to the time restrictions and the planned methods

of teaching. We plan not to use a classic ex-cathedra teaching but an approach consisting

of a lot of self-conducted experiments, exercises and research by the students for at least

some of the topics. A constructionistic approach like outlined in Section 2.4.1 demands a

lot of time. Even more time would be needed to implement a self-directed learning scheme.

This could only be suggested to the students in form of experiments and assignments where

they can use the opportunity to deepen their knowledge within one or more of the topics

considered during the lessons.

Finally, we also tried to find a single book that possibly comprises all of the topics we came

up with. This book should also be comprehensive enough to serve the interested reader

as a source for continued reading and deeper understanding of the topics. Additionally it

should be usable as a study book, including e.g. exercises and scientific references. We

found that the classic text book from [Russel and Norvig, 2012] fulfils all these require-

ments (it is also available in a translated german version which helps german speaking

students to understand its contents). Hence, we used this book as the fundamental text

book accompanying our course.

A typical voluntary class consists of one hour of teaching each week during a semester.

Due to public holidays this typically results in about 14 lessons per semester. Since 50

minutes of teaching are very short, we grouped these 14 lessons in double units, resulting

in a seven weeks course. The planned final structure and the detailed contents of the

seven classes can be found in the next seven sections. Additionally, the golden thread and

the concrete contents of our course are illustrated in Figure 3.1.

Each subsection first contains a general description and definition. The interested reader

can also find more theoretical backgrounds on each of the topics, some examples and

applications in [Russel and Norvig, 2012]. We then structure the content for each class

and describe methods and examples how the topics can be presented to and motivated

for the students. We also suggest social forms how we think the topics can be explored

by the students and possible practical assignments for further studying and self-directed

learning of the students. Many more social forms that can be helpful for teaching can be

found in [Meyer, 1987a] and [Meyer, 1987b].

17

Chapter 3 Design of the classes

Intelligent	agents	
•  good	context	to	pupils'	

prior	robo2cs	
experiences	

•  building	Braitenberg	
vehicles	

Graphs	and	data	
structures	

•  stack,	queue,	tree	
•  program	a	robot	to	

explore	a	small	
labyrinth	(incl.	graph)	Problem	solving	by	

search	
•  main	emphasis	on	this	

basic	AI	technique	
•  analyzing	and	

implemen;ng	
breadth-,	depth-first-	
and	A*-search	

Classic	planning	
•  predicate-logic	
•  state-space	planning	
•  solving	a	planning	

problem	as	paper-and-
pencil	exercise	

Machine	learning	
•  i.e.	logic-based	

learning,	decision	
trees,	neural	networks	

•  presen;ng/discussing	
different	approaches	
to	learning	agents	

Automata	
•  illustra2ng	decision	

making	process	
•  represen;ng	

controllers	pupils	know	
as	DFA	

Figure 3.1: An illustration from [Burgsteiner et al., 2016] of the various AI topics covered
in our introductory course. The topics were spread among the seven classes
we held. The assignments are written in italics.

3.2 First class: Introduction and Automata

The idea for the first class is to get to know each other, to outline the course, the reasons of

being here and the way we will work together for the next weeks. After this, the first basic

terms of “intelligence” and foundations thereof will be discussed.

This is followed by a more philosophical discussion about the term “intelligence” incited

by the question “What distinguishes a fly from a toaster?”. To which properties of an

18

Chapter 3 Design of the classes

object or creature can intelligence be pinned to? Aimed to construct an individual answer

what intelligence is to the students. This should help the students to answer the question

whether their own robots can already be regarded as intelligent. What should they maybe

additionally be able to do to be intelligent? What are they still missing? Also a different

approach to intelligence in form of the test proposed by Alan Turing [Turing, 1948] will

be discussed.

Answers to the questions above might include the identification of a sort of memory

that is necessary to produce a perceivable intelligent behaviour. This leads to different

forms of memory. The simplest form of memory that is available in computer science

are the different states of finite state machines. We will first explore the theoretical

components of automata like: what is a state in the sense of automata theory? How

does an automata transfer from one state to another? What is a deterministic finite

automata (DFA, sometimes also called deterministic finite state machine)? How can

one graphically model a DFA? The DFA will not be introduced in the meaning of an

automata that accepts or refuses words of a certain language as in theoretical computer

science. It will be presented in a (simplified) way in the sense of constructivism, so the

students might understand it better: depending on their concrete past experiences e.g.

as a controller that is able to operate a machine or a robot, like they know from the

RoboCup.

Automata like deterministic and non-deterministic finite automata, timed automata and

input/output automata play a crucial role in current research too. They additionally

form the basis for various applications in automated testing, verification and diagnosis of

models. See e.g. [Baier and Katoen, 2008], [Utting and Legeard, 2006], [Sampath et al.,

1995] or [Cassandras and , 2008] for more details on the importance of automata in

various applications.

As a first example we construct a simple DFA step by step together. As an example we

look at a possible control of a vending machine like in Figure 3.2. This example can be

modified to e.g. accept a wider range of coinage or different sorts of beverages. After

this joint construction and discussion, the students have to think about a similar simple

control for themselves. In a pairwise work or in a group of three they should try to design

such a simple control and thereby answer the following questions:

• What different states are necessary to implement a working control?

• In which state will the DFA start when it is switched on?

19

Chapter 3 Design of the classes

Figure 3.2: A simple finite state machine that shows a possible control of a vending ma-
chine as the starting example of automata theory. After insertion of a coin
(state q1) it is possible to still exit the buying process or continue to dispense
e.g. a bottle. While the collection tray is still blocked (state q2) no further
bottle can be bought. After the withdrawal of the bottle the vending machine
is ready for another purchase (state q0).

• What sensors or buttons (inputs) does it have? Which actuators (outputs) are

available?

• Which state transitions are possible and allowed? In each state, what effects (state

transitions and/or outputs) will all possible sensor readings have?

• After which sequence(s) will the controller be in its starting state again?

The students should have enough time to construct such a DFA. Possible questions or oc-

curring problems from the students are discussed and answered. Afterwards, each student

presents their work on the whiteboard and explains their thoughts during construction to

the others. We discuss the DFA together and talk about possible extensions or improve-

ments.

At the end of the first class an assignment is presented. The task is similar to the example

we do during the class but refers to the robot the students should have been working with

e.g. during the RoboCup. Here comes the constructionistic approach into play: the

students should create something real on the basis of what the have heard so far and

compare it to their knowledge and experience hitherto. Again the student shall work

together in groups, preferable the same groups they formed during the RoboCup. The

questions to solve are:

• What decisions did you make during the programming of your robot?

20

Chapter 3 Design of the classes

Agent

Environment

Sensors

What action Ishould do nowCondition-action rules

Actuators

What the world
is like now

Figure 3.3: A simple reflex agent that has no internal memory of recent events. Reacts
directly to external stimuli (from [Russel and Norvig, 2012]).

• How could possible states of your robot be characterised? Can appropriate names

be found for each state?

• What sensors are being used? What do they actually sense?

• Which events, sensor readings etc. can occur?

• Due to what circumstances does the state of your robot change?

• Which state lead to which other states?

• Draw a possibly complete state diagram of the controller of your robot!

The students are asked to design and create a poster until next class. We will review and

discuss their results at the begin of the next class. According to our schedule they have

two weeks time.

3.3 Second class: Intelligent Agents

The second class starts with the presentation of the previous assignment. Each group

presents their robot controller one by one. The presented solutions and possible difficulties

are discussed. This is also a good possibility to review the lessons learned from the

previous class that we need for this one.

21

Chapter 3 Design of the classes

Agent

Environment

Sensors
State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 3.4: The model based reflex agent include an internal memory. It knows about the
outside world and can react to stimuli based on their knowledge of the world
(from [Russel and Norvig, 2012]).

To be not too theoretic we also take a look at some practical considerations. First, we

discuss how such DFAs could actually be programmed in C++ or Java to find out what

ideas the students already have and – since we do not know the students that good –

what they have learned in other computer science lessons so far. Questions include e.g.:

How can a (complete) DFA be programmed easily? What data structures do we need for

that? What basic code structures would be recommendable?

Simple methods like two dimensional arrays with the size of the number of different states

times the number of different sensor events would be possible solutions. With this method

one can simply use such an array as a look-up-table to decide from which current state

the DFA changes with which sensor events.

This also leads to the discussion about possible drawbacks and limitations of this ap-

proach. First, one has to model every theoretically state change not only those that could

occur in practice. And second, this two dimensional arrays can get huge easily, when

different sensor events can also occur concurrently (e.g. a distance and a light sensor of a

mobile robot could detect objects simultaneously). When these combinations also play a

crucial role during the decision to which state to change, the number of sensor event com-

binations and hence the size of the look-up-table grows exponentially. Other approaches

to programming simple DFAs like the usage of enumerated sets of states in combination

with switch-statements should be discussed and compared as well.

22

Chapter 3 Design of the classes

Agent

Environment

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 3.5: An illustration of a goal based agent. These agents can decide what action to
take based on simple reasoning about the outside world. They typically select
actions that bring them nearer to a defined goal (from [Russel and Norvig,
2012]).

With this background knowledge about states and state transitions we can advance to

some basic structures of agents that are also described in [Russel and Norvig, 2012].

These basic agents display methods of internal organisations of intelligent agents that are

still subject to research in AI. There still doesn’t exist any kind of “golden model” that

researchers agree on being superior over all others. Structures give possible answers to

the important question how intelligent behaviour could be organised or internally repre-

sented.

These basic agent structures include with increasing complexity:

1. Simple reflex agents: conditions resulting from sensor readings trigger actions di-

rectly without any internal memory of past actions or events. See Figure 3.3

2. Model based reflex agents: these agents include a simple model of the outside world

and “know” what their actions trigger. See Figure 3.4. The DFAs we heard of are

examples of such agents.

3. Goal based agent: Agents of this type not only have a memory of recent events and

action but also can reason about the outside world. They can infer what happens

when they select a specific action. This way they can decide whether an action

brings them nearer to a defined goal or not. See Figure 3.5. Details of these agents

will be discussed in the next lessons when we talk about searching and planning.

23

Chapter 3 Design of the classes

Agent

Environment

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 3.6: A utility based agent is an advanced version of a goal based agent that also
incorporates a utility function (from [Russel and Norvig, 2012]).

4. Utility-based agent: A utility based agent is an advanced version of a goal based

agent that also incorporates a utility function. Typically, a goal can be reached in

several ways. The utility function additionally gives a feedback about how “happy”

an agent is when it takes a certain action. This way the agent can maximize its

happiness on its way to reach a goal. See Figure 3.6.

5. Learning agent: The agent in Figure 3.7 shows a common structure of a learning

agent including the typical blocks “critic”, “learning element” and “problem gener-

ator” that are necessary regardless of the actual machine learning algorithms used

in the background.

Other approaches of the organisation of intelligent behaviour outside of these classic agent

models are e.g. Brooks subsumption architecture [Brooks, 1986] or cognitive architectures

like in [Laird et al., 1987]. A special case of simple reflex agents is well suited for a practical

experiment during the lesson: Braitenberg vehicles [Braitenberg, 1984]. These vehicles

have direct connections from sensors to actuators like in Figure 3.8. Typically light or

distance sensors are used in experiments. The actual wiring decides about the behaviour

of the robot. Braitenberg vehicles can show a broad range of quite complex behaviours

despite their simple architecture when one varies the wiring, the connections strengths,

combines multiple sensors and/or incorporates non-linear coupling between sensors and

actuators. After a short introduction the students are motivated to take one of the LEGO

Mindstorms robot at hand in the computer lab to quickly program a Braitenberg vehicle

24

Chapter 3 Design of the classes

Performance standard

Agent

Environment

Sensors

Performance
element

changes

knowledge
learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 3.7: A learning agent is able to optimize its behaviour itself. It utilizes a critic
that gives feedback about the current behaviour to adapt the actions taken in
various situations (from [Russel and Norvig, 2012]).

Figure 3.8: Braitenberg vehicles are examples of simple reflex agent that have no memory
of recent events. They typically react directly to external stimuli like light or
sound. The way in which the sensors are connected to the actuators decides
about the behaviour. It can be seen that a simple crossing-out of the cables
turns a light follower into a light avoider (from [Braitenberg, 1984]).

of their choice and to experiment with different settings. The different behaviours are

then briefly presented by the students, compared and discussed.

25

Chapter 3 Design of the classes

The class concludes with the assignment for the next or next but one lesson. This time

the students are asked to try to program a model based agent of their like with the LEGO

NXT or EV3 robots available in school. They are free to choose any behaviour or task

they feel comfortable with or that they are interested in, like e.g. from the junior robot

leagues.

3.4 Third class: Problems and Graphs

At the beginning of the third class the students have the possibility to present their model

based agent of the previous assignment that they might have programmed.

In this class we have to deal with some theoretic foundations that we need for the rest of

the class. These include the definition of a “problem” in artificial intelligence and some

more advanced data structures that the students might not have learned of in school until

now, like graphs and trees.

In theoretical computer science many real world problems can be reduced to graphs.

These include famous problem like the travelling salesman problem or Euler’s bridge

problem from Königsberg or the Hamiltonian path problem. Solutions to these prob-

lems can often be found be searching within those graphs starting from a certain ver-

tex. In general, solutions to such problems can be very hard to find and are sometimes

even NP-complete problems. This means that solutions can only be calculated with

non-polynomial time consumption although a given solution can be tested in polynomial

time.

Finding solutions for problems defined as graphs have also relations to general problems

whose solutions have to satisfy a number of constraints or limitations. These are known as

CSP (“constraint satisfaction problems”) or SAT (“boolean satisfiability problem”) that

are being used today again for diagnosis or verification of models or for planning purposes.

See e.g. [Biere et al., 2009] or [Dechter, 2003] for more details.

We start with the definition of a problem like in [Russel and Norvig, 2012, 101] consisting

of

• a set of states: what different states can occur?

• a starting state: in which state does the robot start with?

26

Chapter 3 Design of the classes

Figure 3.9: Illustration of a very simple example of a problem from [Russel and Norvig,
2012]. The world consists of only two rooms that can either be dirty or tidy.
The robot can only move between those two rooms and suck the dirt. The
starting state could be any of the possible states. The goal state is a totally
clean world.

• a set of actions: what actions are basically available to the robot? The subset of

possible actions then depends on the current state.

• a transition model: descriptions what each action in a certain state causes.

• a goal test: gives feedback about whether the agent has reached a certain goal yet.

• cost function: a way to define the effort of a certain action. With such a function

an agent could optimize its plans how to reach a certain goal.

A simple example that can be used to introduce these ideas are e.g. the vacuum world

from [Russel and Norvig, 2012] as seen in Figure 3.9. Here, the world of the vacuum

robot consists of only two rooms that can either be sensed as tidy or dirty and the robot

has only three actions (left, right, clean). The states are thus defined as all possible

combinations of dirty/tidy rooms and the position of the robot. It is good to illustrate

the steps necessary to solve a given problem. We can start in any of the given states. The

goal is to clean every room. The actions the robot has to do to reach its goal is simply

to apply appropriate actions to get from the starting state to the goal state. Hence, the

solution to a problem can be seen as a walk in this state diagram.

27

Chapter 3 Design of the classes

Figure 3.10: A simplified version of the street map of Romania is the starting point for
several problem definitions. Problems are typically assignments to get from
a specific town to another one. Costs of actions are introduced as the travel
distance between connected towns. Hence, some of the solutions, i.e. differ-
ent paths taken, can be better than others in term of total travel distance
(illustration from [Russel and Norvig, 2012]).

Another classic problem that will be introduced here because it is used in some of the

following classes as well is the problem of travelling in Romania that can be seen in Figure

3.10. Here, a problem might be defined as getting from one of the towns to another.

Additionally, we introduce the term of the “cost of an action” that can be figuratively

seen as the travel distance between two connected towns. So different solution to the same

problem, like different ways taken, can have a different total cost. Hence, some solutions

are better than others in terms of the total travel distance.

Again this real world problem definition can well be transferred to the computer science

language (to the terms of a DFA and/or the data structure called graph that will be

introduced shortly):

• Each town corresponds to a state or a vertex.

• Each connection between two towns is like a state transition or an edge.

28

Chapter 3 Design of the classes

Figure 3.11: A labyrinth can also be seen as a graph. A labyrinth on the left side and its
abstract representation on the right (illustration from [Futschek, 2012]).

• Each town could be used as a starting point for the trip like a starting state in a

DFA.

• The end point of our trip corresponds to the goal state the DFA tries to reach.

• Connections (edges) can be directed (“one ways”) or undirected.

• Connections can have different lengths (in kilometers) or weights.

With the help of this example also the data structure “graph” is introduced. During

this class it is not necessary to get into more details about the data structure itself.

Many implementations in the students preferred computer language can be found in the

internet. Concrete implementations are depending on the programming language (i.e.

classes and/or pointers) and are thus discussed in the next class. But it is good to

describe how such a data structure can be used to describe real world problem in an

abstract way.

A different use of a graph can be explored in a context the students already know very

well: a labyrinth in the RoboCup. It can easily be seen by the students that an arbitrary

labyrinth can be mapped to a graph: each crossing section corresponds to a vertex, each

way from one crossing to another to an edge. See Figure 3.11 for an example. A huge

difference between a problem defined in the map of Romania in comparison to a labyrinth

seen by a robot during the RoboCup is also obvious: the map of Romania is given while

29

Chapter 3 Design of the classes

the robot when he starts his tasks of e.g. finding a certain spot in the labyrinth has no

map available.

With this background knowledge we discuss how a robot can build up a map with the

help of a graph by adding vertices and edges as it travels through a labyrinth like in

Figure 3.11. Also difficulties that occur for a real robot are mentioned. Is has to deal

e.g. with the orientation of the robot and how to detect whether a place has already been

visited.

As usual the class closes with a voluntary assignment. This time the students are asked

to think about how an algorithm looks like that builds up a graph from a real labyrinth.

The students are also motivated to either take their own RoboCup robot or one of the

LEGO robots available in the computer lab and program it to solve the given task. At

the end the algorithm should print out the graph in a suitable way. This assignment

is definitely more complex than the others but the next class will take place in two

weeks.

3.5 Fourth and fifth class: Problem Solving by Searching

in Trees

The next important topic is too extensive to fit into a single class. So this is spread among

the next two classes.

During the previous lessons we discussed how real world problems could be fit into a formal

description for the computer science. These descriptions can be stored or illustrated as

graphs. We also showed that solving a problem then is equivalent to searching for a way

in this graph from an arbitrary starting point to a designated target or goal state. A way

in this context is simply an instruction from which vertex to go to which one next. How

to find a way or the “best” way in a graph is discussed in this class.

Searching for solutions in graphs is a general approach that works for many given real

world problems, also e.g. for CSP and SAT that have already been described in the

previous section. Many of these problems are NP-complete or NP-hard. Thus current

research includes different heuristic approaches to find possible solutions. A good overview

can be found in [Edelkamp and Schroedl, 2011].

30

Chapter 3 Design of the classes

Without considering any constraints, basically, we start by taking our starting vertex and

expand it by adding all edges that lead from it to any other vertex and the connected

vertices themselves, too. Then, for each added vertex again we expand it by adding all

edges and their vertices. This process continues until we reach the goal. The problem

that occurs is, that the developing structure contains many irrelevant vertices as well.

Also many vertices will be added twice or many times more. In the real world this would

mean, that e.g. the robot reaches a state in which it has already been before. This is a

queue of redundant or circular actions and has to be avoided. So the algorithm has also

keep track of whether a certain vertex has already been visited or not and only add new

vertices and the edges leading to it.

The resulting structure then is a subset of the original graph called a tree. At this point it

is important to pin down some important differences between graphs and trees and hence

introduce the data structure tree briefly, i.e. a graph without cycles.

After that we can start to develop searching as a mean to solve problems. Additionally

we have to point out that classic searching can come in two flavours. The so called

uninformed and the informed search. In the subtask of uninformed search the searcher

has no outside or top view of the problem. No additional information like costs or distances

are given. Just the vertices and edges are known. Informed search adds the possibility to

get additional data about the edges of the graph and hence enables algorithms to optimize

the results.

At this point to be able to talk about search algorithms we have to describe the data

structures stack and queue briefly. It will be sufficient to – at least visually – describe the

methods stacks (“push” and “pop”) and queues (“add” and “remove”) offer and discuss

possible other applications than searching.

With the help of this knowledge we can now introduce some of the classic search algo-

rithms: breadth first search (BFS) and depth first search (DFS) for algorithms of the

uninformed search tasks and as a representative of informed search the A? search algo-

rithm.

Instead of explaining these classic search algorithms we develop a classroom learning

station scenario. The students will split up in three groups. Each group works together

at each of the three stations. At each station the groups find a description of an unknown

algorithm plus an illustration of a graph. A working sheet is available for each individual

student. The graph is the same for all of the three algorithms and can be seen in Figure

31

Chapter 3 Design of the classes

A

B C

D
E F G

H J K

Figure 3.12: The graph that is used as the basis for all three search algorithms. Breadth-
First-Search (BFS) and Depth-First-Search (DFS) can work directly with
this graph. The weights of the edges that are needed to calculate the optimal
solution with the A? algorithm can e.g. simply be derived by measuring the
distances between the vertices.

3.12. The task is to mimic a computer and exactly follow the instructions of the algorithm.

The result and output of each algorithm is a specific tree. The three complete work sheets

of the learning stations for the algorithms can found in Appendix A.1 starting on page

74.

The algorithms themselves are not written in any particular programming language. We

use so called pseudo-code for the description of the algorithms. The example of the

breadth first search can be seen in Listing 3.1.

1 Breadth -First -Search (G, s)

2 // G ... graph , s ... starting vertex (here: vertex A)

3

4 Create new , empty Queue Q

5 Mark s as visited

6 Q.add(s)

7 While Q is not empty {

8 k = Q.remove ()

9 Print k

10 For each neighbours j of k in G do {

32

Chapter 3 Design of the classes

11 Mark j as visited

12 Q.add(j)

13 }

14 }

Listing 3.1: Example of the breadth first search algorithm written in pseudo code as it

was used in one of the learning stations.

After enough time to work at each of the learning stations, we briefly discuss the results

and possible problems together. Especially the A? algorithm might pose some difficulties

to the students. Each of the algorithms will be discussed with another example of a

graph or a tree. It is important also to highlight the advantages and weaknesses of each

of the algorithms: Under which conditions can a specific algorithm be used? When to

switch to a different one? Are there differences in memory used? What about computing

time? Which of the solutions are optimal results? Which algorithm might be used in

the RoboCup to find a way through the labyrinth once we would have a map of it? It is

important to note that searching in graphs can give good results but one does not have a

guarantee to find optimal solutions or even any solution at all.

We plan to end the fourth class after a short discussion about the results of the learn-

ing stations. The summary and comparison of the three algorithms is a good start-

ing point for the fifth class. Thereby we also have a short summary of the last les-

son.

Since searching for an (optimal) solution is a central element in AI we elaborate a bit

more on this topic. We plan to have some time available at the beginning of the fifth class

for a more extensive example using the A? algorithm for optimal route planning. The rest

of the class is used for a practical exercise. The students have already been introduced

to object oriented programming in the language C]. For this reason we use a free IDE

called “]develop” (“SharpDevelop”)2 and available implementations of the graph, stack

and queue data structures.

To make connections with the surroundings and current interests of the students we choose

a task that is of importance to them. The assignment for the rest of the fifth lessons that

can also be completed until the next time is:

• Visualize your training labyrinth from the RoboCup rescue league:

2The homepage of this IDE and possibilities to download can be found at http://www.icsharpcode.

net/opensource/sd/

33

http://www.icsharpcode.net/opensource/sd/
http://www.icsharpcode.net/opensource/sd/

Chapter 3 Design of the classes

– Draw the labyrinth as graph on paper

– Use one vertex per square area

– Draw an edge when a way between two adjacent areas exists

• Implement a search algorithm in]Develop:

– Form teams of 2 or 3 students each

– Create an empty instance of a graph

– Statically add vertices and edges of your graph

– Implement one search algorithm of your choice

– Printout and illustrate the resulting tree

3.6 Sixth class: Classic Planning

The main topic of the second to last class is “classic planning”. A good starting point is to

recall what we have learnt so far to solve problems in computer science: we can formulate

a problem with states and transitions and visualize and store it as a graph. Then we

define a starting state and one or more goal states. Finally we can start to search – with

a reasonable search strategy – for a way from the starting state to one of the goals. The

result is a tree that shows a plan how to solve the given problem.

Searching to solve a problem is a reasonable strategy when one already is in possession of

a graph of the given problem. In many real world situations only coarse descriptions of

states and their properties are available. Additionally one knows possible effects of actions

that can also be different in various situations. The question dominating this class will

be: how to build a problem solver under these circumstances?

Planning is a very vast topic that usually consumes a whole lecture of its own. It forms

a basis that can be used in various applications like robotics, agents, testing etc. A good

introduction to planning is [Nau and Ghallab, 2004]. A classic planning algorithm is

STRIPS (Stanford Research Institute Problem Solver) by Richard Fikes and Nils Nilsson

[Fikes and Nilsson, 1971].

General, a problem is formulated different than before:

34

Chapter 3 Design of the classes

• Where (in which state) do we start?

• What can we do, i.e. what actions are available in each state?

• What happens when we apply an action? What is the result of each action?

• Are we done yet? Do we already have reached the goal?

In these scenarios states are defined or described with logical statements. This can either

be propositional logic in the simplest case or e.g. first-order logic for more advanced

scenarios. A simple example for a state description is

TrafficLightRed ∧ CarStopped ∧ PedestrianCrossing

where each of the propositions can either be true or false. And hence a state can be

defined as a concatenation of different propositions with some of the classic logical con-

nectives.

At this point it will be important to recapitulate logic briefly. Since the students have some

experiences in programming they will already know a little bit about logic from premises

in if-statements. But we have to be sure that at least the standard logic operators (NOT,

AND, OR) are known and e.g. truth tables can be fill out correctly.

First-order logic (FOL) will definitely be a new topic for the students. We do not have

to introduce it extensively but at least to a degree where it will be understandable how

first-order logic can be used to describe the world more accurate and simpler than with

propositional logic. In this case it suffices to explain how objects themselves (constants),

functions, properties of and relations between real world objects can be defined with FOL.

FOL is very important to AI because it forms the basis of most approaches to knowledge

representation and reasoning.

A simple but good example can be seen in Figure 3.13. After defining objects like “John”,

“Richard” and “Kingscrown”, some properties of the world can be modelled with them,

like:

Crown(Kingscrown), IsHappy(Richard), HasMoney(John),

OnTheHead(John,Kingscrown), Brother(Richard, John), . . .

35

Chapter 3 Design of the classes

R J
$

left leg

on headbrother

brother
person person

king

crown

left leg

Figure 3.13: A nice example from [Russel and Norvig, 2012] to describe how properties
and relations between real world objects – here Richard, John and a crown
– can be defined in first-order logic.

We can then form more complex statements about the world to describe possible states,

like e.g.

King(John) ∧ ¬King(Richard) ∧HasMoney(John) ∧HasSword(Richard)

Additionally, quantifiers could be at least mentioned briefly and how they enable us to

make statements for all of the objects that fulfil certain criteria with the universal quan-

tifier (e.g. all things that bark: ∀xBark(x)) or for at least one object with the existential

quantifier (e.g. there exists at least one thing that bites: ∃xBite(x)).

Each of these properties and statements can again either be true or false. Now, states

including starting and goal states can be defined like in the following example from [Russel

36

Chapter 3 Design of the classes

and Norvig, 2012]. The students should now be able to infer what is being described with

the next two statements:

Init(Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)∧

Airport(JFK) ∧ Airport(SFO)∧

At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK))

Goal(At(C1, JFK) ∧ At(C2, SFO))

We can now introduce actions based on so-called pre- and post-conditions. Each action has

a unique name and a description (“pre-condition”) when it can be taken. Also a possible

result or effect (“post-condition”) has to be given for each action, like:

Action(EatCake,

Precond : CakeExists

Effect : ¬CakeExists

Action(Fly(p, from, to),

P recond : Plane(p) ∧ Airport(from) ∧ Airport(to) ∧ At(p, from)

Effect : ¬At(p, from) ∧ At(p, to)

Finally, we can now describe the classic planning approach in computer science. We

restrict ourselves to the so-called state-space planning, where

• we search among all possible state combinations

• states are connected via actions

• we have to find a state in which all goal conditions are fulfilled

• the solution is the chain of action from starting to goal state

This can best be described with an example like the famous “block world” from the

Sussman anomaly as seen in Figure 3.14. This can be done just as a visual model of a

problem definition and a basis for a discussion or, if time allows it this can also be used

to describe the Sussman anomaly in more detail, i.e. why planning is non-trivial and how

37

Chapter 3 Design of the classes

Start State Goal State

B A
C

A
B
C

Figure 3.14: A simple problem that can be used to think about strategies how to get from
the starting state to a goal state.

naive algorithms can fail here. The students should now try to find out how planning can

be done under these circumstances. This will best be done in a group work in which the

students have to solve the problem puzzle themselves first, then reflect their doings and

answer the following questions afterwards:

• Which strategy did you choose?

• How did you choose the sequence of actions?

• What has to be remembered in each step?

• Can you pack your strategy of searching for a sequence of actions in an algorithm?

One of the examples to be used in this group work is the classic planning problem of

the monkey that desperately wants to have some bananas that are suspending from the

ceiling of a room and that he just can’t reach. It can be described like in Listing 3.2.

Here the monkey has to set up a simple plan, like move the box beneath the suspending

bananas, climb the box and finally grab the bananas. This and the second simple classic

planning problem to be used can be found in Appendix A.2.

1 Initial state: At(A) ∧ Level(low) ∧ BoxAt(C) ∧ BananasAt(B)

2 Goal state: Have(Bananas)

3

4 _Move(X, Y)_

5 Precond: At(X) ∧ Level(low)

6 Effect: ¬At(X) ∧ At(Y)

7

38

Chapter 3 Design of the classes

8 _ClimbUp(Location)_

9 Precond: At(Location) ∧ BoxAt(Location) ∧ Level(low)

10 Effect: Level(high) ∧ ¬Level(low)
11

12 _ClimbDown(Location)_

13 Precond: At(Location) ∧ BoxAt(Location) ∧ Level(high)

14 Effect: Level(low) ∧ ¬Level(high)
15

16 _MoveBox(X, Y)_

17 Precond: At(X) ∧ BoxAt(X) ∧ Level(low)

18 Effect: BoxAt(Y) ∧ ¬BoxAt(X) ∧ At(Y) ∧ ¬At(X)
19

20 _TakeBananas(Location)_

21 Precond: At(Location) ∧ BananasAt(Location) ∧ Level(high)

22 Effect: Have(bananas)

Listing 3.2: The formal description of the classic bananas problem where a monkey has

to come up with a simple plan to grab some bananas suspending from the

ceiling.

In this form the problem will easily be solved by any student just by reading the names

of the possible actions “Move”, “MoveBox”, “ClimbUp”, “ClimbDown”, “TakeBananas”.

So a possible strategy will probably not be constructed only by using the actions but by

using the context of the actions names and hence, using the experience of the students

themselves. To help the students to think “algorithmically” and not to use their own

human planning strategies we harden the planning problem by stripping it from its real-

life context and thereby removing the semantic connection. This can achieved be e.g. just

renaming all actions and objects. Compare the context-free problem in Listing 3.3 with

the original in Listing 3.2.

1 Initial state: Ta(A) ∧ Veell(Oool) ∧ Xotab(C) ∧ Naassabta(B)

2 Goal state: Eahv(Nnaaabs)

3

4 Action (Brrrk(X, Y)

5 Precond: Ta(X) ∧ Veell(Oool)

6 Effect: ¬Ta(X) ∧ Ta(Y))

7

8 Action (Vrrzch(Bzzzktkt)

39

Chapter 3 Design of the classes

9 Precond: Ta(Bzzzktkt) ∧ Xotab(Bzzzktkt) ∧ Veell(Oool)

10 Effect: Veell(HHgi) ∧ ¬Veell(Oool))

11

12 Action (Knoimff(Bzzzktkt)

13 Precond: Ta(Bzzzktkt) ∧ Xotab(Bzzzktkt) ∧ Veell(HHgi)

14 Effect: Veell(Oool) ∧ ¬Veell(HHgi))

15

16 Action (Arrrgh(X, Y)

17 Precond: Ta(X) ∧ Xotab(X) ∧ Veell(Oool)

18 Effect: Xotab(Y) ∧ ¬Xotab(X) ∧ Ta(Y) ∧ ¬Ta(X))

19

20 Action (Ckckch(Bzzzktkt)

21 Precond: Ta(Bzzzktkt) ∧ Naassabta(Bzzzktkt) ∧ Veell(HHgi)

22 Effect: Eahv(Nnaaabs))

Listing 3.3: The formal description of the classic bananas problem where a monkey has

to come up with a simple plan to grab some bananas suspending from the

ceiling.

The idea is to force students to think algorithmically. How do I get from the start to

the goal? Which action should I choose first? Next? Where do I start? Start from the

beginning and try some actions to see where I can get? Or do I look a the goal and try to

see how I got there? We tell the students to explicitly reflect about their strategies they

might evolve and write them down.

If the students come up with an algorithm or at least are able to describe their strategy,

we can analyse and summarize it. Probably it will be similar to one of the two classic

problem solving approaches: forward and backward search. Anyway, we will describe the

two algorithms briefly in pseudo code like in Listings 3.4 and 3.5.

1 ForwardSearch (D, I, G)

2 s = I // we start in the initial state

3 A = empty // and haven ’t planned anything yet

4 loop

5 if (s fulfils G) return A // goals already reached

6 usable = List (a in D where precond(a) in s is fulfilled)

7 if (usable == empty) return ERROR // no action found!

8 randomly choose an action a from usable

40

Chapter 3 Design of the classes

9 s = execute (s, a) // execute action in current state

10 A = A + a // concatenate action to our plan

Listing 3.4: The forward search algorithm for problem solving in pseudo code where D is

the set of all actions, I is the initial state and G is the goal state.

It is important to discuss the differences between the two approaches. While forward

search is the simplest and most intuitive strategy, one of its difficulties is the random

choice of an action. This can e.g. lead to infinite loops of actions. One will find a solution

randomly indeed. Since one has to consider all suitable actions in each state this can

lead to a huge graph in the end and hence, consume much memory. The optimal solution

could be found by doing a breadth first search.

1 BackwardSearch (D, I, G)

2 A = empty // nothing planned yet

3 Loop

4 if (s fulfils G) return A

5 relevant = List (a in D that are relevant for G)

6 if (relevant == empty) return ERROR

7 randomly choose an action a from relevant

8 A = A + a // concatenate action to our plan

9 G = execute_backwards (G, a)

Listing 3.5: The forward search algorithm for problem solving in pseudo code where D is

the set of all actions, I is the initial state and G is the goal state.

Backward search is more goal oriented. It starts at the goal state and tries to find out

which actions could have led to the goal. Only these relevant actions are considered

in each recursion. Hence, less memory is needed in this algorithm compared with the

forward search. The crucial step here is find out the relevant actions that led to the

goal and to execute an action backwards. This information will not be available for all

problems.

An assignment at the end of the class could come again from the RoboCup league. The

students can take a league of their choice and try to formulate the underlying problem

in propositional or first-order logic. Is especially one league or which leagues are better

suited for this approach? Write down difficulties that occur during formulation! What

exactly does it make difficult? The answers will be discussed at the beginning of the next

class.

41

Chapter 3 Design of the classes

3.7 Seventh class: Machine Learning and Outlook

This last class is used for several topics. First, together we briefly repeat what we have

learnt so far. The topics included

• Deterministic finite automata (finite state machines)

• Reactive controllers (reflex controllers, Braitenberg vehicles . . .)

• Model-based reflex agents

• Goal oriented agents

• Utility based agents

• Basic data structures like graph, tree, stack and queue

• Problem solving with searching

• Planning of a sequence of actions

Looking back, we compare some of these approaches. Which ones are easy, which ones are

hard to understand. Which parts of these ideas can be directly used by the students in

their daily life? Coming back to the constructionistic approach, which can be incorporated

in their struggles in the RoboCup leagues? What algorithms can be used? Are all leagues

suited to incorporate AI algorithms? Why or why not?

Concluding we can say, that we have mostly talked about readily programmed robots so

far. These don’t generate new knowledge in terms of behaviour. They use absolutely no

knowledge that the programmer hasn’t thought about himself or herself. All algorithms

and strategies are programmed into the robots memory. In that sense, also e.g. searching

for solutions in generated trees only adapts a pre-programmed behaviour to a possibly

new surrounding.

Referring back to Figure 3.7 on page 25 we explain the differences to general learning

agents. Based on these differences we formulate some of the principles of machine learning

like e.g.

• there is no static knowledge base, only some previous knowledge might be available

• there have to be mechanisms to expand the knowledge base, called learning strategies

42

Chapter 3 Design of the classes

• there has to be some sort of critic and feedback coming from within or from outside

the agent – supervised versus unsupervised learning

The idea for the rest of the class is to show and briefly explain some of the vast ex-

amples and different approaches that can be found in the literature. We select suit-

able machine learning algorithms based on the following two questions. Which can be

most useful in robotics or especially in the RoboCup leagues? And which represent very

unique approaches in their basic idea about how learning can be done. Hence, we fo-

cus in this class on the presentation of “Reinforcement Learning” (RL), “Logic based

inference” (classic AI), “Decision trees” and the connectionistic approach of “Neural Net-

works”.

Reinforcement Learning According to [Sutton and Barto, 1998] reinforcement learning

uses the idea of rewards that an agent receives at the end of a possibly long sequence of

actions. In this case the agent does not get any information about which of its individual

actions was good or bad. It merely receives information about success or failure of the

total actions sequence.

This can be illustrated e.g. with chess playing where at the end of the game it is a defeat

or a victory (or a remis). But the result itself can in most cases not be pinned down to a

single action. A similar example is that of a mouse that has to find a piece a cheese in a

labyrinth. The mouse receives a positive feedback by finding the cheese. When it does so

it will probably not be aware of which of its actions was the best one nor does it receive

a tiny bit of cheese at each corner. But it will have to remember the sequence of actions

somehow. Reinforcement learning deals with the problem of distributing a positive (or

negative) reward amongst a sequence of actions according to various algorithms. We

also briefly mention the problem of exploration of new knowledge versus exploitation of

existing knowledge in this context.

In robotics or especially in RoboCup this could be used e.g. with a sort of module based

reinforcement learning like in [Kalmar et al., 1998] where sequences of readily programmed

basic actions are being learnt. Several short scientific videos can help to visualize the

learning process of robots. Suitable videos come from the domain of RoboCup and show

how a robot learns e.g. to follow a line3, a forward movement4 or to shoot a penalty

[Hester et al., 2010]5.

3https://www.youtube.com/watch?v=jaTOSLd56hI
4https://www.youtube.com/watch?v=2iNrJx6IDEo
5https://www.youtube.com/watch?v=mRpX9DFCdwI

43

https://www.youtube.com/watch?v=jaTOSLd56hI
https://www.youtube.com/watch?v=2iNrJx6IDEo
https://www.youtube.com/watch?v=mRpX9DFCdwI

Chapter 3 Design of the classes

Logic based inference The idea of logic based inference will have to be kept briefly

since the students lack a deeper understanding of logic at this grade in school. We have

introduced propositional logic and first-order logic during the sixth class on June 26th.

So we can at least show with simple example how basic mechanisms like deduction or

inference work with logic. Starting with an example like

∀xDog(x) ∧Bark(x)⇒ ¬Bite(x)

we can briefly show operations like the “Modus Ponens”, “Modus Tollens”, the ∧-introduction

or the ∧-elimination when certain facts are given. These simple inference rules give ex-

amples of inference and reasoning in general and hence demonstrate, how new facts can

be inferred in such knowledge databases. A more detailed description of inference and

reasoning can be found in [Brachman and Levesque, 2004].

Decision Trees Decision trees are a first good example of how we can implement learning

based on a set of examples. Because the trees resulting from the learning procedure can

also be viewed as if-then-rules that the students already know. See Figure 3.15 for an

example of a decision tree. It would be too detailed to discuss topics of learning theory

like overfitting, training and test sets, cross validation etc. A good software tool for

experimenting with decision trees and other machine learning algorithms is WEKA [Hall

et al., 2009].

We can let the students experience the difficulty of generating rules from data by giving

them a short table of data and ask them to create correct and possibly short rules that

reflect the data correctly by hand. It is then easy to imagine for the students that creating

rules becomes even more difficult when the number of attributes and/or the number of

examples increases.

It suffices in this class to show an example of some complex data and a resulting de-

cision tree afterwards to give a picture of what decision tree algorithms are capable

of.

Neural Networks As a representative for connectionistic learning methods neural net-

works conclude this presentation of learning agents. Some facts about the human brain

like 100 billion (1011) neurons, the average of 10000 connections between each of these

neurons, the resulting 1015 synapses and its about 4 km of neural “cabling” per cubic

44

Chapter 3 Design of the classes

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Figure 3.15: A example of a simple decision tree from [Mitchell, 1997] to decide whether
one should play tennis (“Yes”) or not (“No”). Each leaf represents a decision.
Decisions are depending on certain attributes like “Outlook”, “Humidity”
and “Wind”. A complete rule can be read starting at the root of the tree
down to a specific leaf.

millimeter of brain can motivate the question about how does this thing work [Herculano-

Houzel, 2009].

At least the basic idea of how the mechanisms of a biological neuron are mimicked by a

mathematical function can be shown. Referring to the perceptron, the simplest neural

model, the strength of a synapse receiving input from the ith neuron is represented by

a more or less static weight factor wi, the amount of input to a neuron corresponds to

a variable xi, the integration of post synaptic potentials in the soma can be modelled

by the summation of the weighted inputs and the role of the axon hilloc to generate the

output oj of the jth neuron is reduced to a non-linear limiting function ϕ. In the end each

biological neuron is modelled by an equation like

oj = ϕ

(
n∑

i=1

wi · xi + w0

)

where w0 represents a resting potential or bias. There are several limiting functions in

use like the Heaviside function (or step function) or the differentiable sigmoid function

sig(t) := 1
1+e−t .

45

Chapter 3 Design of the classes

...

...

....

Neurons
Input

Neurons
Hidden

Neurons
Output

Figure 3.16: Two simple drawings from [Burgsteiner, 2006] of neural network to illustrate
the structure of artificial neural networks. A pure feed-forward network is
shown on the left hand side where connections strictly emerge from the input
in the direction towards the output layer. The recurrent network on the right
hand side allows arbitrary connections within the network.

Based on Figure 3.16 the problem of learning with neural networks can be shown. Here,

learning is the adaptation of all the weights within the neural network until the output of

the network exhibits the same behaviour for each input as e.g. a given table of examples

demands. Again, concrete learning algorithms like back propagation would be too detailed

for this class. The basic ideas of such algorithms like minimizing an error function suffices

in our opinion.

The rest of the class must be used for the evaluation of the complete course. We distribute

questionnaires and ask the students to fill them out honestly. This part of the evaluation

is completely anonymous. It is important to stress out that not the students are being

evaluated but the course itself and the teachers. Furthermore we need the feedback to

develop the course for possible future implementations. After collecting the filled out

questionnaires we can thank the students for their participation and collaboration during

the whole course and wish them pleasant holidays with the final remark that they can

contact us any time if they have further questions.

46

Chapter 4

Realization and Evaluation

4.1 General restrictions and participating school

The general subject area of the planned course as it was agreed with the participating

school BRG Kepler [BRG Kepler, 2015] was “Artificial Intelligence”. The teachers and

students also wanted to have a strong connection with a voluntary class “RoboCup”[The

RoboCup Federation, 2016] they had during the last years. All of the students were

participants in one or more RoboCup world cup championships. So they have expe-

rience in programming a robot for one of the RoboCup leagues. Furthermore some

students also wanted some connections with the individual topics chosen for their fi-

nal year thesis. Especially the last wish is hard to fulfil for all of the students, because

the topics had a very broad range, e.g. “Development of software to solve the game

Tic-Tac-Toe with a humanoid robot”, “Analysis of the possibilities to construct and read

QR-codes” or “Localisation of a noise source with the robot Nao”[Aldebaran Robotics,

2016].

The computer science lessons in Austrian general high-schools don’t include topics like

artificial intelligence, nor are software engineering or even algorithms contained [Bun-

desministerium für Bildung und Frauen, 2016]. Hence, our course could currently only

take place as a voluntary class. Hopefully, this will change in the future. But this also

provided the opportunity (and challenge) that students of different age and knowledge

could attend our course. We had students from the 5th to the 7th grade (i.e. 9th to

11th year of school attendance) subscribed. But these students do already have a bit of

knowledge of object oriented programming in the language C].

47

Chapter 4 Realization and Evaluation

One drawback is that the assignments during the classes can not be made mandatory.

This class is voluntary and no grades are given at the end. So on the one hand, there is

no need to collect gradable work done by students. On the other hand, in our approach

of teaching we don’t like to force the students to do something. We want to motivate

the students to do these assignments voluntarily. It has to be considered that at this

time of the school year the students have also a lot of studying to do for all the other

school subjects. Hence, additionally we should limit the amount of work to do until next

classes and don’t expect that all of them do the assignment. It should be considered that

these appointments can also be just pointers to interesting topics and further readings –

instructions for possible later projects on their own.

With our school partner BRG Kepler [BRG Kepler, 2015] we agreed on timeslots where

the students (coming from different classes) would all have time. To be able to teach our

seven planned units, we used time slots on friday afternoons from 13:20 to 15:20 from

May to July 2015. This was a very limiting factor since we now only had 7 · 2 = 14

hours for an introduction to artificial intelligence. The public holidays created pauses of 2

weeks between some of the lectures. These could be used for more extensive experiments,

research assignments or software development. The next step was to create a golden thread

through all of the topics outlined above and to portion them accordingly. Furthermore

it was necessary to create appealing and interesting exercises and project work to fill the

time between the lessons.

4.2 Qualitative monitoring during the classes

This chapter briefly reviews the designs of our seven units in comparison with the ac-

tual realisations. This is the next step in our course development cycle of planning

– doing – studying – acting. We took some pictures and field notes during or di-

rectly after the individual units. These serve as the foundations for the next para-

graphs.

Unit 1: Introduction and automata The first class was scheduled for May 8th 2015.

We started with a short address of welcome and introduced ourselves, since we were new

to the students. They never had classes with one of us before. The recent victories of some

of the students during the Austrian Open of the RoboCup 2015 (where they qualified for

48

Chapter 4 Realization and Evaluation

the world cup finals) gave an opportunity to introduce themselves to us and also let them

present the robot they constructed for the RoboCup.

The unit worked out liked it had been planned before. The students started to join

in from the very beginning. We would describe it as a relaxed atmosphere. Although

some students seemed a bit more participating than some others all of them joined the

discussions and attended the class very concentrated.

We expected that a formal representation of a FSM would be difficult for the students to

understand. To our surprise, the concept of finite state machines was obviously not hard

to understand at all. Explaining the foundations with some examples and showing the

principles on the basis of a robot controller helped to comprehend the concept. The stu-

dents were able to construct their own FSMs during this first unit.

With the presentations of the results on the whiteboard we gave the students the op-

portunity to discuss their ideas with the plenum. See Figure 4.1 for an example of one

such presentation. Partially they did quote humoristic performances which reflected the

relaxed atmosphere. Thereby we received immediate feedback about the first unit too.

By watching the presentations and seeing how the students explained their solutions we

concluded that the students achieved the competency of constructing a simple FSM. The

first unit ended with the first homework assignment:

• Is it possible to illustrate your own robot from the RoboCup as a FSM?

• Reflect in your existing RoboCup teams what you were thinking during the pro-

gramming of your robot!

– Can you characterise the states? Can you find names for them?

– Which events are possible?

– Due to which events do the states change?

– Which state transitions are possible?

• Design a poster or a PDF with your FSM until the next class!

49

Chapter 4 Realization and Evaluation

Figure 4.1: Two students present the result of their group work during the first class.
They constructed a controller for a toaster that is able to toast the bread in
two different crisp settings including a panic button that leads to an explosion.

Unit 2: Intelligent agents The presentation of homework at the beginning of this

second unit on May 22nd 2015 showed some problems. Of all students only one had

answered all questions and designed a complete FSM. The others had some fragments of

their controllers. What we could see indicated that the previous lesson was successful.

Some said it was impossible to determine states out of their unstructured code. Some

simply had tests in school and needed time to learn.

During the unit we wanted to get the students to program with a real robot. But the

planned brief overview about different basic agent models (i.e. reflex agent, model-based

reflex agent, goal oriented agent, utility based agent and learning agent) turned into a

lengthy discussion. We wanted to just give an overview which type of agent has which

advantages and disadvantages and use it as a possibility to point to coming units in

which these models would be discussed in more details. But the interest of the stu-

dents turned out to be higher than expected. We didn’t want to let some questions be

50

Chapter 4 Realization and Evaluation

unanswered and so we decided to leave out some topics for the next unit (model based,

utility based and learning agent) to have some more time for practical work during the

unit.

The second half of the unit was used to implement some different Braitenberg controllers

on Lego Mindstorms NXT robots that were available in the schools robot lab. Working

groups of 2 students were formed to implement a Braitenberg controller of their choice.

Some of the teams were not able to finish their software till the end of the class. So we left

out the intended assignment of developing a model-based agent and defined the completion

of the Braitenberg vehicle as the assignment for this unit.

Unit 3: Problems and graphs The third unit on May 29th 2015 started with the

presentation of the self-programmed Braitenberg vehicles. According to the students the

task wasn’t hard but only some of them did find enough time to complete this assignment.

The agents showed the expected behaviour. Watching robots turning away from sound or

seeking a light turned out to introduce some fun in the classroom. It is definitely worth

letting students implement the simple but powerful Braitenberg vehicles to show how tiny

modifications dramatically can change the behaviour of a robot. But from this time on

we decided to change the assignments to just “pointers to additional voluntary work that

can be done sometime in the future.”

Although the rest of the unit was planned to be quite theoretic, the students showed high

interest in it and participated very actively during the unit. This might be due to the

possible relation of graphs and the RoboCup junior. Here for the first time the students

saw practical alternative solutions to the labyrinth task from the RoboCup (the rescue

league) and how a certain data structure and some algorithms might help them achieving

better results in the future. Especially the possibility to build a map of a labyrinth in

form of a graph was anticipated very well.

The optional assignment in this unit was thus:

• Form teams

• Use the RoboCup labyrinths available in the robotics lab

• Each square represents a vertex

• The sensors give hints which directions are available

• This gives possible paths and edges

51

Chapter 4 Realization and Evaluation

Figure 4.2: Students work together in a group of three to research the A? search algorithm.
They should understand the algorithm by analysing the source code on the
basis of a given graph.

• Store these information and optionally visualise it

• Bonus question: how can one be sure to have explored all possible paths?

Unit 4: Problem solving by searching in trees This unit took place on June 12th

2015. We didn’t expect that a student had really solved the optional assignment from

the last unit. Nevertheless did one student indeed program her robot to build a map

52

Chapter 4 Realization and Evaluation

from the RoboCup labyrinth and store the information in a self designed array construct.

At the end she printed out an overview of connections within the labyrinth in a ma-

trix.

We spent much time in recapitulating and discussing how a problem can be mapped to a

graph. But this essential foundation made it a lot easier then to build up an understanding

how searching in a tree can lead to a solution. And how and why the solution is a data

structure called Tree.

The short input about what a Stack and a Queue is sufficed to initiate successful classroom

stations. At each of the three stations one of the three groups had to find out how a certain

algorithm works by themselves. At each station they had about 15 minutes time. See

Figure 4.2 for an impression. Depth first search and breadth first search showed to be no

problem. Only the A? algorithm was a bit harder to analyse and to understand. Students

and teacher discussed all of the algorithms together afterwards. We did not offer an

explicit assignment at the end of the unit, instead we suggested to work an any unsolved

assignments of interest from the previous units. This was also because we planned to do

a more practical session in the next unit.

Unit 5: Problem solving by searching in trees – continued The unit on June 19th

2015 started with a repetition of the A? algorithm because this one turned out to be really

hard to understand. We discussed and calculated the example with the Romanian street

map from [Russel and Norvig, 2012].

The rest of the unit consisted of an in class programming assignment which could also be

completed until the next class if the time during the unit was not sufficient:

• Draw (just on a piece of paper!) the RoboCup labyrinth as a graph

– One vertex per squared field

– Add an edge when there is path to an adjacent square

• With your SharpDevelop IDE (in teams of two or three students each):

– Generate a Graph object

– Just statically add vertices and edges

– Program one of the search introduced search algorithms

53

Chapter 4 Realization and Evaluation

– Output the resulting tree on the screen (in a suitable way)

This task turned out to be no problem for the students. The students helped each other

when questions about the labyrinth representation arose. The teacher had to help some-

times with syntax problems in the programming language. But in the end each group

was able print out (textual) information about the labyrinth on the screen. None of

the groups chose the A? algorithm, only breadth first and depth first algorithms were

implemented.

Unit 6: Classic planning The second to last class took place on June 26th 2015. Plan-

ning this sixth unit was difficult. The students should learn about very new and very

formal content – propositional and first order logic. Additionally they should immedi-

ately be able to apply their knowledge to given problems. We restricted ourselves to a

basic introduction to logic, just to be able to discuss planning algorithms in general and

let the students get a feeling about the difficulties and strategies.

The exercise turned out to be quite exciting to the students. We wanted to completely

blank out any knowledge of the context and thereby focus the attention on the algorithmic

problem solving strategies of the students (see Appendix A.2 on page 81 for the original

scrambled assignments). It was felt by them more like a puzzle or a game than an exercise.

See Section 3.6 for a more detailed description of the exercises. The exercise during the

unit was:

• Think about how to solve the given problem (in groups)!

• Reflect on what strategy you follow!

• According to what criteria do you choose which of the given action?

• What has to be remembered or noted from action to action?

• Try to formulate your strategy in an algorithm!

The algorithms that the students developed for themselves formed the basis for the com-

parison of the classic forward and backward search algorithms. The students formulated

algorithms that had a similar strategy as the forward algorithm. With that kind of exer-

cise the formal content was anticipated quite well.

54

Chapter 4 Realization and Evaluation

Unit 7: Machine learning and outlook The beginning of the last unit on July 3rd 2015

served as a possibility to reflect a bit about what we had discussed during the course.

Some open questions could be answered.

The second part was dedicated to a brief overview of some machine learning algorithms

and give some ideas what AI is capable of today. This was mainly done by just giving the

basic ideas of it and discuss differences to other approaches. Additionally examples with

YouTube in which mainly robots tried to learn something were shown. Some of the videos

had a direct connections with the RoboCup. These examples gained much interest from

the students and immediately discussions started which approach could be incorporated

in the next years robots. So the students definitely understood the basic idea of learning

in robotics.

We then explained the reasons and the intentions of the upcoming evaluation and empha-

sized the anonymity. The last 15 minutes the students had time to fill out the question-

naire and then we finished the course by thanking them for the cooperation and wishing

them pleasant holidays.

4.2.1 Homework assignments

The assignments that were meant to offer a platform for self-directed learning showed

some problems that had not been considered by us so far. The end of the semester is

coming nearer and the students have lots of tests to learn for. So a time consuming

assignment in a voluntary class does not have the highest priority when it comes to time

dispersion.

The number of students who regularly did the assignments became less from unit to unit.

Only one attending student did nearly all of the assignments including the very lengthy

one from unit three. This might be due to the fact that the assignment suited her final

paper topic very well and also the RoboCup rescue league was her favourite league. She

programmed an impressive robot controller that really steered a robot to build a map

from an unknown labyrinth. All nodes and vertices were stored in a self designed data

format.

Additionally, knowing a group of students for some time help a lot when planning tasks for

a unit or for an assignment. The regular teachers tried to inform us about the strengths

and weaknesses of the students. But too many details about the previous knowledge

55

Chapter 4 Realization and Evaluation

came to light only during the units. So some tasks that were described by the teachers

as being very easy for the students turned out to be very time consuming. For example

programming a Mindstorms NXT robot was something that the students did the last time

years ago. It took some time to get into it again. Previous knowledge in mathematics

or programming turned out to be immediately available. These are competencies the

students still need in school nearly every week.

4.3 Results of the empirical evaluations

The empirical project evaluation was done using reliable qualitative and quantitative

empirical research methods [Diekmann, 2007]. In terms of quantitative evaluation we ap-

plied a paper-and-pencil post-questionnaire (Likert-scale, open-ended questions) compris-

ing a self-assessment of acquired skills as well as feedback on the structure and teaching

method of the weekly teaching units. Further qualitative data was collected by using

techniques of participant observation (field notes, discussions, taking pictures) during the

weekly teaching units [Jorgensen, 1989]. All collected data were treated confidentially

and anonymously.

4.3.1 Self and foreign evaluation

Since this course is not a part of the regular or compulsory curriculum for computer

science education in high schools in Austria, it does not make sense to stick with the

current widely used notion of grades6. Due to the voluntary participation of the students

in this course we are assuming a hight self-motivation anyway. A possible pressure coming

from grading is rather counter productive. To be able to somehow evaluate a learning

success, we apply current methods of learning goal assessments, especially self evaluation

and foreign evaluation.

According to [Mabe and West, 1982] a self evaluation can be accurate and consistent with

classic grading mechanisms when several conditions are met. These conditions include e.g.

whether one assesses an ability or a past or future performance, the confidentiality and

the expectations of the self-evaluations. The self evaluation can be done with a matrix

where one can e.g. vertically list all competencies of the course and horizontally a scale

6In Austria common grades range from “Very Good”, “Good”, “Satisfying”, “Sufficient” to “Not Suffi-
cient” or have the numerical values from 1 to 5 respectively

56

Chapter 4 Realization and Evaluation

with “I feel confident when doing this”, “I feel a bit unconfident” to “I definitely need

help!”. Within this matrix every student has to rate himself or herself how good one

thinks he or she has succeeded in achieving every competency. Such competence matrices

can be found in numerous fields of studies. An example of such a matrix from the subject

of mathematics can e.g. be found in [Prediger, 2008].

For our course we finally defined 17 core learning goals or competencies (see Table 4.1).

The contents of the course were defined to enable the students to achieve each and every of

those competencies. After the course the students were asked to fill out the self-evaluation

anonymously. For an additional learning effect the self-evaluation could also be filled out

with the names of students to be able to discuss the differences between self and foreign

perception of the students. But this was not intended in our course. Table 4.1 shows the

matrix that the students used to evaluate themselves. Note that the competencies matrix

was of course written in German for the use during the course. The original evaluation

consisting of the self evaluation and the course evaluation can be found in Appendix

B.

Note that normally such self-evaluations can or should be used during a course and not

retrospectively. This can give valuable feedback to the teacher and enables him or her to

e.g. add additional examples or material to the course especially for these areas where

students say they still do not feel confident. In our case this was not possible due to the

rigid time constraints. So this self-evaluation can give us only clues what to change or

add in next courses.

Table 4.2 shows the accumulated answers of the students about their self-evaluation.

From the nine participating students seven filled out and returned the questionnaire. The

results show that the students have a good feeling about their own competencies. Nearly

all ticks in the column “Help me!” resulted from only one student. We assume that this

student might have been the one who missed three out of the seven classes. This seems

obvious because those competencies are all coming from those classes that were missed.

Since there was no time for repetitions it is clear that he or she would need some help

when confronted with problems coming from those areas. The numbers also gives us

feedback about which topics were perceived harder than others by the students. These

are especially the parts containing propositional and first order logic and the one about

the different architectures of agents. One can also argue that the latter one is not very

essential for the practical use of AI. Overall we are satisfied with the results. The feedback

tells us that it is possible to teach foundations of artificial intelligence understandably –

57

Chapter 4 Realization and Evaluation

Competency: I can . . . Confident Unsure Help me!

. . . explain and apply basic data structures like stack and
queue on the basis of examples

© © ©

. . . explain and apply basic data structures like graph and
tree on the basis of examples

© © ©

. . . construct and explain finite automatons to be used as
simple controllers

© © ©

. . . explain basic properties of artificial intelligence © © ©

. . . distinguish between some basic agent structures on which
the most intelligent systems are built upon

© © ©

. . . explain the differences between and the advantages/dis-
advantages of reflex based vs. model based agents

© © ©

. . . explain the differences between static and learning agents © © ©

. . . explain how to visualise a labyrinth in form of a graph
and how to build it

© © ©

. . . formulate a simple problem as a graph © © ©

. . . explain the differences between graphs and trees © © ©

. . . how to find a solution to a problem which is given as a
graph

© © ©

. . . explain the difference between the so called informed and
uninformed search strategies

© © ©

. . . explain the differences between the breadth first and the
depth first search and know about their dis-/advantages

© © ©

. . . explain the principles behind the A? search algorithm © © ©

. . . explain the ideas of classic logic based planning on the
basis of simple examples

© © ©

. . . list some differences between propositional logic and first
order logic

© © ©

. . . recite some strategies of machine learning algorithms © © ©

Table 4.1: The matrix used to assess the students by themselves. For each competency
(row) the students can tick one of the possible self-evaluations (columns) rang-
ing from “I feel confident in doing this”, “I can do it but i feel a bit insecure”
to “I definitely need help!”. This questionnaire can be filled out anonymously.

even in high school settings without the proper backgrounds in mathematics and computer

science at an university level.

The foreign evaluation done by the teacher is basically the same but instead of the axis

on which students rate themselves, the teacher has a list with the name of the students.

In each corresponding field of the matrix the teacher now can takes notes which student

has already achieved which competency and to which degree (e.g. “Not achieved” –

“Achieved” – “Over-achieved”). The foreign evaluation by the teacher can be done during

course. Thereby the teacher always keeps an overview about the progress of all the

58

Chapter 4 Realization and Evaluation

Competency: I can . . . Confident Unsure Help me!

. . . explain and apply basic data structures like stack and
queue on the basis of examples

7

. . . explain and apply basic data structures like graph and
tree on the basis of examples

7

. . . construct and explain finite automatons to be used as
simple controllers

7

. . . explain basic properties of artificial intelligence 5 2

. . . distinguish between some basic agent structures on which
the most intelligent systems are built upon

4 2 1

. . . explain the differences between and the advantages/dis-
advantages of reflex based vs. model based agents

3 3 1

. . . explain the differences between static and learning agents 4 2 1

. . . explain how to visualise a labyrinth in form of a graph
and how to build it

6 1

. . . formulate a simple problem as a graph 7

. . . explain the differences between graphs and trees 6 1

. . . how to find a solution to a problem which is given as a
graph

6 1

. . . explain the difference between the so called informed and
uninformed search strategies

4 2 1

. . . explain the differences between the breadth first and the
depth first search and know about their dis-/advantages

7

. . . explain the principles behind the A? search algorithm 7

. . . explain the ideas of classic logic based planning on the
basis of simple examples

3 3 1

. . . list some differences between propositional logic and first
order logic

1 5 1

. . . recite some strategies of machine learning algorithms 2 4 1

Table 4.2: The analysis of the self-evaluations filled out by the students. Of the nine
participating students seven returned the questionnaire. The arithmetic mean
values and corresponding standard deviations of the columns are 4.55/1.64,
2.1/1.1, 1/0 and 1/0 respectively.

students and is able to steer the individual learning processes of the students. In case

that the course has to be graded e.g. due to some legal requirements this could still be

done afterwards. This can be done by a simple mapping scheme that has to be adapted

from course to course. Like e.g.

• When a student achieves all competencies the grade is positive.

• Define a threshold of a number of over-achieved competencies above which a student

gets the best possible grade, e.g. 50 per cent.

59

Chapter 4 Realization and Evaluation

• Introduce a linear function that maps any number of over-achieved competencies

between 0 and the threshold defined above to an adequate grade in between.

Such foreign evaluations can be used as a feedback tool too. In this case as a feedback from

teachers to their students. When used during a course where students have opportunities

so show their competencies it gives the students an overview what topics they should

still work on. A student has successfully finished a course, when he or she has mastered

all defined competencies. In our case we did not do such a structured foreign evaluation

because we had no necessity to grade the students afterwards.

4.4 Evaluation of the course

The course itself and the teacher were evaluated too. We selected questions that should

give us feedback on several measures that can be grouped as (i) the contents, (ii) the

presentation and (iii) the dealing with the students. The translated questions and the

scale can be seen in Table 4.3. The original questionnaire can again be found in Appendix

B on page 85.

That results of the evaluation of the course are given in Table 4.4. One can see that

most of the students fully agree or nearly fully agree with most of the statements. Very

positive aspects regarding the design of the course are, that the students agree to a

high degree to the statements that they have learnt something new, that they could

actively participate and that they are motivated to deepen their knowledge in the area of

AI.

On the downside is, that one student felt that his or her previous knowledge has not been

taken into account very well. This was probably the case because the students came from

three different age groups (and grades). In future courses we could avoid this either by

only admitting students coming from the same grade or by offering supportive material for

those who are lacking certain foundations. One student said that he or she would rather

not agree to have learnt things of practical use. This is definitive a shortcoming in this

course. More time could have been given especially to the applied exercises. On the other

hand the overview about the field of AI would have been much narrower. After this course

it seems clear that such an extensive introduction including more practical exercises and

application can only be done with much more time slots.

60

Chapter 4 Realization and Evaluation

Statement 1 2 3 4 5 6

I have learnt something new during the iRobot course © © © © © ©
I have the feeling that the learnt is also of practical use to me © © © © © ©
The teacher has considered my previous knowledge and designed
the course based on that

© © © © © ©

The contents were presented comprehensible © © © © © ©
I think the teacher has explained the topics comprehensible and
replicable

© © © © © ©

I could actively participate in the lessons © © © © © ©
The teacher responded to my questions and answered them well © © © © © ©
I feel motivated to further dive into the topics © © © © © ©
The teacher treated the students correct and respectfully © © © © © ©
The teaching material supported the comprehension of the con-
tents

© © © © © ©

I would like to participate in a sequel of this course © © © © © ©
What should be retained in future courses?

What should be changed or enhanced in future courses?

Table 4.3: The matrix used to evaluate the course itself by the students. For each question
(row) the students could tick one of the check boxes ranging from “I fully
agree” to “I totally disagree” corresponding to the numerical numbers from 1
to 6 respectively. Additionally a remark could be given for each statement on
each row. The last two question left room for open answers. This questionnaire
could be filled out anonymously.

The only student who stated he or she would rather not participate in a sequel of this

course gave a very positive feedback to the rest of the items. Since we did not have the

possibility to ask why he or she gave this answer, it could also just be a personal reason.

Generally we have the feeling that some of the students had different expectations of this

course (immediate and simple solution to robotics problem in the RoboCup and more

direct input for their final papers).

The realisation has been perceived quite well. The presentation of the contents, the

material for the course (including the exercises) and especially the explanations have

reached very high approval rates. Finally, a very nice personal feedback for a teacher

61

Chapter 4 Realization and Evaluation

Statement 1 2 3 4 5 6

I have learnt something new during the iRobot course 6 1

I have the feeling that the learnt is also of practical use to me 3 2 1 1

The teacher has considered my previous knowledge and designed the
course based on that

2 4 1

The contents were presented comprehensible 5 2

I think the teacher has explained the topics comprehensible and repli-
cable

6 1

I could actively participate in the lessons 6 1

The teacher responded to my questions and answered them well 5 2

I feel motivated to further dive into the topics 4 2 1

The teacher treated the students correct and respectfully 7

The teaching material supported the comprehension of the contents 3 4

I would like to participate in a sequel of this course 3 2 1 1

Table 4.4: The results of the evaluation of the course. Remarks given by the students and
the answers to the open questions can be found in the text.

is the one from question nine, where all students fully agreed with the statement “The

teacher treated the students correct and respectfully”.

The answers to the open questions augmented the impressions we already suspected.

When asked what should be changed or enhanced in further such courses the students

replied:

• More units!

• Better enthuse the weaker students.

• More applied exercises would be reasonable for these topics.

• More content per class should be done!

• Homework.

• The assignment took too much time.

The latter two items probably mean the same, i.e. that the assignments we gave to them

were quite challenging and also would have been very time consuming partially. Knowing

this in advance we did not make the assignments compulsory but rather presented them

as suggestions how one could apply the theory with robots. The answers also show

the different previous knowledge of the students. While some say the course and the

assignment were too challenging, other would want even more content in shorter time.

62

Chapter 4 Realization and Evaluation

This dilemma could be tackled with in future courses e.g. by offering optional additional

material or assignments for the higher motivated students.

The second open question about what should be retained in similar future courses provided

us with the following answers:

• Friendliness, responsiveness

• Openness, answering questions

• Responsive to questions

• Open for talks, insightful

• Slides very good, structured and aggregated

• Method how knowledge is presented (e.g. figures . . .)

As one can see on the original evaluation sheets that can be found in Appendix Appendix

B, the students also had to possibility to give additional textual feedback to each question

of the course evaluation. These open answers emphasise the scaled answers above. Two

positive answers regard the presentation of some contents and the material. Interestingly,

most of these answers are directly related to the teacher as a person and do not relate to

the contents of the course. This is a rare and valuable feedback because evaluations of

teachers are typically not done systematically at Austrian high schools. An incidentally

but very pleasant result.

Finally, the evaluation also asked to give some general feedback to the course itself. Here,

three comments came from the students (without any special order):

• Offer more such courses but better during the autumn semester because there is

more time.

• Our (i.e. other) teachers promised more direct connections to the topics of our final

papers.

• The classes were very exciting and educational, sometimes a bit unchallenging.

The first two items regard the organisation of the course itself. We had no possibility to

influence these points during the design phase of our course, nor were they considered for

this prototypic course. For future courses it will definitely be important to think about

the organisational requirements as well. Especially when we want to enable self-directed

63

Chapter 4 Realization and Evaluation

learning. This learning model requires some amount of time that has to be given to the

attending students. The last item reflects the high level of knowledge and motivation

of some of the students in this class. While the theory in this course was admittedly

taught on a very high level we never had the feeling that the students could not follow it.

More than that at least one student had the feeling to be unchallenged. [Meyer, 1987b]

also discusses methods to better deal with such highly motivated students. This would

probably not be the case in other classes or some other schools. Looking back, we had a

quite unique class attending this course.

64

Chapter 5

Discussion and Outlook

Like classic literacy which includes writing, reading and mathematics, literacy in AI/-

computer science will become a major issue in future. Furthermore, with AI literacy

pupils also receive a solid preparation for subsequent studies at university level and their

future career. Therefore, we presented an educational project teaching fundamental con-

cepts of artificial intelligence and computer science at high school level (grades 9-11). It

was explained in detail what the general parameters were and argued a design for an

AI course with 7 units of two hours each. We conducted and empirically evaluated a

pilot project in a representative Austrian high school with nine voluntarily participating

students in spring 2015. Weekly courses held by university researchers covered major AI

topics. These included a basic discussion about artificial intelligence, the introduction of

some fundamental data structures like stack, queue, graph and tree, some methods that

are commonly applied by intelligent agents like searching or planning and an outlook to

real self-learning systems that could be dealt with in future courses.

The contents were chosen according to current AI education literature and adapted and

structured with respect to the students’ prior knowledge and educational background.

The units focused on the students’ experiences and built the new knowledge on the basis

of these. Together with a mixture of theory, various work settings (i.e. solitary work,

group work, open discussions, learning stations etc.) and hands-on projects we employed

a constructionistic learning model as good as it was possible.

The course was finally evaluated in two ways. First, the students had to self-evaluate their

acquired competencies and second the course itself was evaluated in terms of content,

presentation, methods and dealing with the students.

65

Chapter 5 Discussion and Outlook

5.1 Conclusions

The results indicate that the participating students are confident about the various topics

addressed during the teaching units and that they acquired the necessary competencies.

The first pilot project was successful, nevertheless there were some drawbacks and short-

comings to be dealt with in future realisations of such a course.

First, for a well founded scientific evaluation of the course the sample of the participat-

ing students was quite small with only nine attending. Additionally, they had a quite

different previous knowledge because they were coming from three different grades. So

they formed a very inhomogenous group in terms of prior knowledge. What connected

them was their interest in the RoboCup leagues. This built a common basis to work

with.

Second, they had different expectations that were raised prior to the course by other

teachers. Some expected a focused RoboCup tutorial with an artificial intelligence input,

some thought the classes would be the background information they need for the final pa-

pers. Clearly, we could not meet all these expectations in this short course. Sadly, this led

to some disappointments that had little to do with the course itself.

Summarizing the results of the evaluations, the project succeeded in teaching high school

pupils the foundations of artificial intelligence. The participating students got a well

founded understanding of at least the concepts we presented and discussed and the grow-

ing importance of artificial intelligence in every day life. They are now familiar with

various topics addressed during the weekly teaching units and will benefit from the ac-

quired content in their future, e.g. when participating in robotics competitions or starting

engineering or science studies at universities.

5.2 Future Work

The results of the evaluations and the lessons learned from the pilot implementation of

the project form the basis to adapt and improve the present AI course. We are planning

to conduct the project in other high schools in the next few years, pursuing our long-term

goal of integrating artificial intelligence topics into the regular science education in high

schools and to foster ’AI literacy’.

66

Chapter 5 Discussion and Outlook

What we clearly underestimated during this course was the amount of work they had

to do for other courses of their normal curriculum. Since the end of the semester came

nearer a lot of tests and homework had to be done for the compulsory courses. This left

not much time to do the (“more interesting” like some said) assignments from this course.

Thus we left out the home work and converted them to optional assignments and pointers

to practical solutions of the theoretical inputs.

What also should be changed in future courses is the time structure of the course which

was not very beneficial. We had too few classes to talk about and discuss all the different

foundations of AI that we intended to include. Additionally, the course was quite compact

placed at the end of the semester. It would have been better to at least have the seven units

spread over the whole semester. This way the students would have had more time between

the courses for their studies and some practical implementations of the algorithms and

agents. This way to the students it felt like too much theory in comparison to practical

work. This compact course setting also left too little time for our intended self directed

learning scenario.

Overall we are satisfied with the results. The feedback tells us that it is possible to teach

foundations of artificial intelligence understandably even in high school settings.

67

Bibliography

Alimisis, D. and Kynigos, C. (2009). Constructionism and robotics in education. Teacher

Education on Robotic-Enhanced Constructivist Pedagogical Methods, pages 11–26.

Altin, H. and Pedaste, M. (2013). Learning approaches to applying robotics in science

education. Journal of Baltic Science Education, 12(3):365–377.

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. MIT Press.

Biere, A., Heule, M., Maaren, H. V., and Walsh, T., editors (2009). Handbook of Satisfi-

ability. Frontiers in Artificial Intelligence and Applications. IOS Press.

Brachman, R. J. and Levesque, H. J. (2004). Knowledge Representation and Reasoning.

Artificial Intelligence. Morgan Kaufmann.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. MIT Press, Cam-

bridge.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14–23.

Bundesministerium für Bildung und Frauen (2013). Die kompetenzorientierte

Reifeprüfung Informatik – Richtlinien und Beispiele für Themenpool und Prüfungsauf-

gaben. Bundesministerium für Bildung und Frauen.

Burgsteiner, H. (2006). Imitation learning for real-time robot control. International

Journal of Engineering Applications of Artificial Intelligence, 19:741–752.

Burgsteiner, H., Kandlhofer, M., and Steinbauer, G. (2016). iRobot: Teaching the basics

of artificial intelligence in high schools. In Proceedings of the 6th AAAI Symposium

on Educational Advances in Artificial Intelligence, pages 4126–4127, Phoenix, USA.

Association for the Advancement of Artificial Intelligence, AAAI Press.

Cassandras, C. G. and , S. L. (2008). Introduction to Discrete Event Systems. Springer.

68

Bibliography

Dechter, R. (2003). Constraint Processing. Artificial Intelligence. Morgan Kaufmann.

Deming, W. E. (1986). Out of the Crisis. Massachusetts Institute of Technology.

Deutsch, M. and Burgsteiner, H. (2016). Imitation learning for real-time robot control.

Studies in Health Technologies and Informatics, page to be published.

Diekmann, A. (2007). Empirische Sozialforschung. Rowohlt.

Dilger, W. (2005). Künstliche Intelligenz in der Schule. Technische Universität Chemnitz.

Edelkamp, S. and Schroedl, S. (2011). Heuristic Search: Theory and Applications. Morgan

Kaufmann.

Featherston, E., Sridharan, M., Urban, S., and Urban, J. (2014). Dorothy: Enhancing

bidirectional communication between a 3d programming interface and mobile robots.

In 5th Symposium on Educational Advances in Artificial Intelligence. Association for

the Advancement of Artificial Intelligence, AAAI Press.

Fikes, R. and Nilsson, N. (1971). Strips: a new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2:189–208.

Fok, S. and Ong, E. (1996). A high school project on artificial intelligence in robotics.

Artificial Intelligence in Engineering, 10(1):61–70.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).

The weka data mining software: An update. SIGKDD Explorations, 11(1).

Heinze, C., Haase, J., and Higgins, H. (2010). An action research report from a multi–year

approach to teaching artificial intelligence at the k–6 level. In 1st Symposium on Edu-

cational Advances in Artificial Intelligence.

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate

brain. Frontiers in Human Neuroscience.

Hester, T., Quinlan, M., and Stone, P. (2010). Generalized model learning for reinforce-

ment learning on a humanoid robot. In IEEE International Conference on Robotics

and Automation (ICRA).

Jorgensen, D. L. (1989). Participant Observation: A Methodology for Human Studies.

Sage.

69

Bibliography

Kalmar, Z., Szepesvari, C., and Lorincz, A. (1998). Module-based reinforcement learning:

Experiments with a real robot. Machine Learning, 31:55—-85.

Kumar, D. and Meeden, L. (1998). A robot laboratory for teaching artificial intelligence.

In Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’98, pages 341–344, New York, NY, USA. ACM.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: an architecture for general

intelligence. Artificial Intelligence, 33(1):1–64.

Mabe, P. A. and West, S. G. (1982). Validity of self-evaluation of ability: A review and

meta-analysis. Journal of Applied Psychology, 67(3):280–296.

McGovern, A., Tidwell, Z., and Rushing, D. (2011). Teaching introductory artificial

intelligence through java-based games. In 2nd Symposium on Educational Advances in

Artificial Intelligence. Association for the Advancement of Artificial Intelligence, AAAI

Press.

Meyer, H. (1987a). Praxisbuch Meyer: Unterrichtsmethoden I, Theorieband. Cornelsen.

Meyer, H. (1987b). Praxisbuch Meyer: Unterrichtsmethoden II, Praxisband. Cornelsen.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Nau, D. and Ghallab, M. (2004). Automated Planning: Theory and Practice. Artificial

Intelligence. Morgan Kaufmann.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control. Journal of Artificial

Intelligence Research, 1(1):139–158.

Papert, S. (1993). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,

2nd edition.

Prediger, S. (2008). Mit der Vielfalt rechnen – Aufgaben, Methoden und Strukturen für

den Umgang mit Heterogenität im Mathematikunterricht. In Hußmann, Liegmann,

Nyssen, Racherbäumer, and Walzebug, editors, Indive – Individualisieren, Differen-

zieren, Vernetzen. Franzbecker, Hildesheim.

RPVO (2012). Verordnung der Bundesministerin für Unterricht, Kunst und Kultur über

die Reifeprüfung in den allgemein bildenden höheren Schulen (Prüfungsordnung AHS)

StF: BGBl. II Nr. 174/2012 mit den Änderungen BGBl. II Nr. 264/2012 und BGBl.

70

Bibliography

II Nr. 47/2014. URL: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=

Bundesnormen&Gesetzesnummer=20007845.

Russel, S. and Norvig, P. (2012). Artificial Intelligence – a modern approach. Pearson,

3rd edition.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., and Teneketzis, D. (1995).

Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control,

40(9):1555–1575.

Schwill, A. (1997). Computer science education based on fundamental ideas. In Passey, D.

and Samways, B., editors, Proceedings of Information Technology – Supporting change

through teacher education, pages 285 –– 291. Chapman Hall.

Selkowitz, R. I. and Burhans, D. T. (2014). Shallow blue: Lego-based embodied ai as

a platform for cross-curricular project based learning. In 5th Symposium on Educa-

tional Advances in Artificial Intelligence. Association for the Advancement of Artificial

Intelligence, AAAI Press.

Spohrer, M. (2009). Konzeption und Analyse neuer Maßnahmen in der Fort- und Weit-

erbildung von Informatiklehrkräften. PhD thesis, Technical University Munich.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press.

Torrey, L. (2012). Teaching problem-solving in algorithms and ai. In 3rd Symposium

on Educational Advances in Artificial Intelligence. Association for the Advancement of

Artificial Intelligence, AAAI Press.

Turing, A. M. (1948). Intelligent machinery, a heretical theory. The Turing Test: Verbal

Behavior as the Hallmark of Intelligence, page 105.

Utting, M. and Legeard, B. (2006). Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann, 1 edition.

Wollowski, M. (2014). Teaching with watson. In 5th Symposium on Educational Advances

in Artificial Intelligence. Association for the Advancement of Artificial Intelligence,

AAAI Press.

71

https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007845
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007845

Bibliography

Wollowski, M., Selkowitz, R., Brown, L. E., Goel, A., Luger, G., Marshall, J., Neel, A.,

Neller, T., and Norvig, P. (2016). A survey of current practice and teaching of ai. In

Proceedings of the 6th AAAI Symposium on Educational Advances in Artificial Intelli-

gence, pages 4119–4124, Phoenix, USA. Association for the Advancement of Artificial

Intelligence, AAAI Press.

72

Internet sources

Aldebaran Robotics (2016). Discover Nao, the little humanoid robot from Aldebaran.

URL: https://www.aldebaran.com/en/cool-robots/nao. Last accessed 2016-01-26.

BRG Kepler (2015). Bundesrealgynasium Keplerstrasse Graz. URL: http://www.

brgkepler.at/www/. Last accessed 2016-01-26.

Bundesministerium für Bildung und Frauen (2016). AHS-Lehpläne Oberstufe Neu -

Informatik. URL: https://www.bmbf.gv.at/schulen/unterricht/lp/lp_neu_ahs_

14_11866.pdf. Last accessed 2016-01-26.

Futschek, G. (2012). Prolog der Informatik - Algorithmen Teil 1. URL:

http://www.informatik.tuwien.ac.at/studium/studierende/prolog/

algorithmen-teil1.pdf. Last accessed 2016-02-08.

Future of Life Institute (2015). Research priorities for robust and beneficial artificial

intelligence - an open letter. URL: http://futureoflife.org/ai-open-letter/. Last

accessed 2016-04-04.

Google Inc. (2016). Google self-driving car project. URL: https://www.google.com/

selfdrivingcar/. Last accessed 2016-04-04.

Stangl, W. (2016). Lernziele – Taxonomien von Lernzielen. URL: http://

arbeitsblaetter.stangl-taller.at/LERNZIELE/. Last accessed 2016-04-11.

The RoboCup Federation (2016). RoboCup. URL: http://www.robocup.org/. Last

accessed 2016-01-26.

73

https://www.aldebaran.com/en/cool-robots/nao
http://www.brgkepler.at/www/
http://www.brgkepler.at/www/
https://www.bmbf.gv.at/schulen/unterricht/lp/lp_neu_ahs_14_11866.pdf
https://www.bmbf.gv.at/schulen/unterricht/lp/lp_neu_ahs_14_11866.pdf
http://www.informatik.tuwien.ac.at/studium/studierende/prolog/algorithmen-teil1.pdf
http://www.informatik.tuwien.ac.at/studium/studierende/prolog/algorithmen-teil1.pdf
http://futureoflife.org/ai-open-letter/
https://www.google.com/selfdrivingcar/
https://www.google.com/selfdrivingcar/
http://arbeitsblaetter.stangl-taller.at/LERNZIELE/
http://arbeitsblaetter.stangl-taller.at/LERNZIELE/
http://www.robocup.org/

Appendix A

Exercises

This Appendix contains the original PDFs for the interested reader. These had been

distributed in printed form amongst the students during the lessons. The exercises were

realised in form of group works of the students in which they had to find experimentally

find solutions to the problems and discuss them together.

A.1 Exercises for Searching

The examples in this section were used for the exercises about problem solving by searching

in trees. The students had to work in groups as it is described in Section 3.5 on page

30. Each student got his or her own sheet of paper on which they could write down their

solutions. The following pages show the original (German) PDFs that had been given to

the students.

74

Appendix A Exercises

Breitensuche
Lieber alle Möglichkeiten gleichzeitig probieren …  

IROBOT - HARALD BURGSTEINER �1

A

B C

D
E F G

H J K

75

Appendix A Exercises

Algorithmus

Breitensuche (G, s)

// G … Graph, s … Startknoten (hier: Knoten A)  

Lege neue, leere Schlange Q an

Markiere s als besucht

Q.add(s)

Solange Q nicht leer ist {

 k = Q.remove()

 Gib k aus

 Mit allen Nachbarn j von k in G {

 Markiere j als besucht

 Q.add(j)

 }

}

Queue:

Ausgabe:

IROBOT - HARALD BURGSTEINER �2

76

Appendix A Exercises

Tiefensuche
Besser mal einen Weg bis zum Ende probieren …  

IROBOT - HARALD BURGSTEINER �1

A

B C

D
E F G

H J K

77

Appendix A Exercises

Algorithmus

Tiefensuche (G, s)

// G … Graph, s … Startknoten (hier: Knoten A)  

Lege neuen, leeren Stapel S an

Markiere s als besucht

S.push(s)

Solange S nicht leer ist {

 k = S.pop()

 Gib k aus

 Mit allen Nachbarn j von k in G {

 Markiere j als besucht

 S.push(j)

 }

}

Stack:

 

 
 

Ausgabe:

IROBOT - HARALD BURGSTEINER �2

78

Appendix A Exercises

A*-Bestensuche
Erst mal genau überlegen, welchen Weg ich nehme …  

IROBOT - HARALD BURGSTEINER �1

A

B C

D
E F G

H J K

79

Appendix A Exercises

Algorithmus
Vorinformation: Der Algorithmus versucht immer einen optimalen Weg zu finden. Dazu

vergleicht er die Kosten „f“ für verschiedene mögliche nächste Knoten. Diese Kosten

bestehen aus
• den Kosten um vom Start zum einem Knoten zu kommen („g“) und

• den (geschätzten) Kosten um vom nächsten Knoten zum Ziel zu kommen („h“)

In unserem Beispiel werden beide Kosten zB als gemessene Strecke in [cm] angenommen.

A*-Suche (G, s, z)
// G … Graph, s … Startknoten (hier: Knoten A),
 z … Zielknoten (hier: Knoten J)
Lege neue, leere Felder „Offen“ und „Gesehen“ an
f = 0 + Luftlinie(s,z)
s.notiereF(f); s.notiereG(0)
Offen.add(s)
Wiederhole {
 besteWahl = Offen.EntferneKnotenMitKleinstemFWert()
 Wenn (besteWahl == z) dann
 gib zurück: „Weg gefunden“ (und beende)
 Gesehen.add(besteWahl)
 Mit allen Nachbarn j von besteWahl in G {
 Wenn Gesehen.enthältNicht(j) {
 g_tmp = g(besteWahl) + Luftlinie(j,besteWahl)
 Wenn Offen.enthältNicht(j) oder g_tmp < j.gWert() {
 j.notiereG(g_tmp)
 j.notiereRückweg(besteWahl)
 // f Wert in der offenen Liste aktualisieren
 f := g_tmp + Luftlinie(j,z)
 j.notiere(f)
 Offen.EinfügenOderErsetzen(j)
 }
 }
 }
}
bis Offen leer ist
Gib zurück: „Keinen Weg gefunden“

IROBOT - HARALD BURGSTEINER �2

80

Appendix A Exercises

A.2 Exercise sheets for Planning

For the exercises about planning we used the following two examples. Both are scrambled

versions of known planning problems as it is described in Section 3.6 on page 34. The

sheet of paper on which the examples were printed had been cut into stripes to allow the

students to arrange the individual actions in the correct sequence.

Example one represents the Monkey-Banana-Dilemma, example two is the spare tire

problem from [Russel and Norvig, 2012]. The following two pages show the original

(German) PDFs that had been given to the students.

81

Appendix A Exercises

Planungsproblem 1

Initial state: (Ta(A) Veell(Oool) Xotab(C) Naassabta(B))∧ ∧ ∧
Goal state: (Eahv(Nnaaabs))

Action (Brrrk(X, Y)
Preconditions: Ta(X) Veell(Oool)∧
Effect: ¬Ta(X) Ta(Y))∧

Action (Vrrzch(Bzzzktkt)
Preconditions: Ta(Bzzzktkt) Xotab(Bzzzktkt) Veell(Oool)∧ ∧
Effect: Veell(HHgi) ∧ ¬Veell(Oool))

Action (Knoimff(Bzzzktkt)
Preconditions: Ta(Bzzzktkt) Xotab(Bzzzktkt) Veell(HHgi)∧ ∧
Effect: Veell(Oool) ∧ ¬Veell(HHgi)

Action (Arrrgh(X, Y)
Preconditions: Ta(X) Xotab(X) Veell(Oool)∧ ∧
Effect: Xotab(Y) ∧ ¬Xotab(X) Ta(Y) ∧ ∧ ¬Ta(X))

Action (Ckckch(Bzzzktkt)
Preconditions: Ta(Bzzzktkt) Naassabta(Bzzzktkt) Veell(HHgi)∧ ∧
Effect: Eahv(Nnaaabs))

82

Appendix A Exercises

Planungsproblem 2

Initial state: (Ommm(Pppuink, Lxea) Ommm(Sssrape, Ktrnu))∧
Goal state: (Ommm(Sssrape, Lxea))

Action (Krrtnass(Sssrape, Ktrnu),
Precondition: Ommm(Sssrape, Ktrnu)
Efect: ¬Ommm(Sssrape, Ktrnu) Ommm(Sssrape, Drrognu))∧

Action (Krrtnass(Pppuink, Lxea),
Precondition: Ommm(Pppuink, Lxea)
Efect: ¬Ommm(Pppuink, Lxea) Ommm(Pppuink, Drrognu))∧

Action (Uoptn(Sssrape, Lxea),
Precondition: Ommm(Sssrape, Drrognu) ¬Ommm(Pppuink, Lxea)∧
Efect: ¬Ommm(Sssrape, Drrognu) Ommm(Sssrape, Lxea))∧

Action (Ssslaneesh,
Precondition:
Efect: ¬Ommm(Sssrape, Drrognu) ¬Ommm(Sssrape, Lxea) ¬Ommm(Sssrape, Ktrnu)∧ ∧
 ¬Ommm(Pppuink, Drrognu) ¬Ommm(Pppuink, Lxea))∧ ∧

83

Appendix B

Questions during the evaluation

B.1 Anonymous questionnaire for the self evaluation and

the course evaluation

The following pages contain the original PDFs from the evaluations used after the last class

lecture. Both, the self evaluation and the course evaluation had been done with one docu-

ment. In Chapter 4 the translated version of this questionnaire can be found.

84

Appendix B Questions during the evaluation

Evaluierung und

Selbstevaluierung

Bi�e bewerte die folgenden Aussagen, je nachdem wie stark sie für dich persönlich zutre�en, auf

einer Skala von 1 … „tri$ vollkommen zu“ bis 6 … „tri$ überhaupt nicht zu“. Darunter kannst du

bi�e bei jeder Aussage eventuelle Anmerkungen dazuschreiben.

1 … 2 … 3 … 4 … 5 … 6

1. Ich habe im Rahmen von „iRobot“ Neues gelernt.

Anmerkungen:

O O O O O O

2. Ich habe das Gefühl, dass das Gelernte für mich von

prak3schem Nutzen ist.

Anmerkungen:

O O O O O O

3. Der Lehrer hat sich mit meinem Wissensstand

auseinandergesetzt und darauf au6auend die LV gestaltet.

Anmerkungen:

O O O O O O

4. Die Inhalte wurden verständlich dargestellt.

Anmerkungen:

O O O O O O

5. Ich 9nde der Lehrer hat verständlich und nachvollziehbar

erklärt.

Anmerkungen:

O O O O O O

6. Ich konnte mich ak3v in den Unterricht einbringen.

Anmerkungen:

O O O O O O

©2015 Harald Burgsteiner iRobot Seite 1/4

85

Appendix B Questions during the evaluation

7. Der Lehrer ist auf meine Fragen eingegangen und hat sich gut

beantwortet.

Anmerkungen:

O O O O O O

8. Ich fühle mich mo3viert, mich mit den Themen ak3v

auseinanderzusetzen

Anmerkungen:

O O O O O O

9. Der Lehrer verhält sich im Umgang mit den Schüler_innen

korrekt bzw. respektvoll

Anmerkungen:

O O O O O O

10. Die eingesetzten Lehrmi�el unterstützen die Erarbeitung des

Sto�es sinnvoll

Anmerkungen:

O O O O O O

11. Ich würde gerne an einer Fortsetzung dieses Kurses im

nächsten Semester teilnehmen.

Anmerkungen:

O O O O O O

12. Was sollte unbedingt beibehalten werden?

13. Was sollte verbessert bzw. geändert werden?

©2015 Harald Burgsteiner iRobot Seite 2/4

86

Appendix B Questions during the evaluation

Nun geht es noch um eine Einschätzung deiner erworbenen Kompetenzen. Bi�e beantworte die

folgenden Fragen so ehrlich wie möglich. Es geht nicht um deine Beurteilung, sondern um die des

Kursau6aus und -inhaltes bzw. dessen Gestaltung. Kreuze bi�e an: „Da fühle ich mir rela3v sicher,

das hat schon gut funk3oniert.“ (Links), „Da bin ich mir noch etwas unsicher, das muss ich noch

weiter üben.“ (Mi�e) oder „Das kann ich gar nicht, da brauche ich Hilfe.“ (Rechts)

Sicher / Unsicher / Hilfe!

14. Ich kann grundlegende Datenstrukturen wie Stack und Queue

anhand von Beispielen erklären und anwenden.

O O O

15. Ich kann grundlegende Datenstrukturen wie Graphen und

Bäume anhand von Beispielen erklären und anwenden.

O O O

16. Ich kann „endliche Automaten“ für einfache Steuerungen

erklären und konstruieren.

O O O

17. Ich kann prinzipielle EigenschaNen von künstlicher Intelligenz

erklären.

O O O

18. Ich kann einige grundlegende Agentenstrukturen auf die die

meisten intelligenten Systeme au6auen unterscheiden.

O O O

19. Ich kann die Unterschiede zwischen bzw. Vor- und Nachteile

von rePexbasierten und modellbasierten Agenten erklären.

O O O

20. Ich kann Unterschiede zwischen sta3schen und lernenden

Agenten erklären.

O O O

21. Ich kann erklären, wie man ein Labyrinth als Graph darstellen

und au6auen kann.

O O O

22. Ich kann ein einfaches Problem als Graph formulieren. O O O

23. Ich kann die Unterschiede zwischen Graphen und Bäumen

erklären.

O O O

24. Ich kann erklären, wie man ein Problem, das als Graph vorliegt,

durch Suchen zu einer Lösung kommt.

O O O

25. Ich kann den Unterschied zwischen der sogenannten

„informierten“ und „uninformierten“ Suche erklären.

O O O

26. Ich kann die Unterschiede zwischen Breiten- und Tiefensuche

erklären und weiß von den jeweiligen Vor- und Nachteilen.

O O O

27. Ich kann die prinzipielle Vorgehensweise des A*-Suchalgo-

rithmus verstehen und erklären.

O O O

28. Ich kann die Ideen der klassischen, logikbasierten Planung

anhand von einfachen Beispielen erklären.

O O O

29. Ich kann einige Unterschiede und Gemeinsamkeiten zwischen

Aussagen- und Prädikatenlogik aufzählen.

O O O

30. Ich kann einige maschinelle Lernstrategien aufzählen. O O O

©2015 Harald Burgsteiner iRobot Seite 3/4

87

Appendix B Questions during the evaluation

Gibt es etwas, das du uns noch mi�eilen möchtest? Eventuell ein allgemeines Feedback?

Danke für deine Mitarbeit in diesem Kurs

und für deine Antworten! ☺

Schöne und erholsame Ferien!

©2015 Harald Burgsteiner iRobot Seite 4/4

88

Affidavit

concerning this thesis titled

DESIGN AND EVALUATION OF AN INTRODUCTORY AR-

TIFICIAL INTELLIGENCE CLASS IN HIGHSCHOOLS

“I declare that I have authored this thesis independently, that

I have not used other than the declared sources/resources, and

that I have explicitly indicated all material which has been quoted

either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present

diploma thesis.”

Graz, May 3, 2016

(HARALD BURGSTEINER)

	Acknowledgements
	Abstract
	Zusammenfassung
	List of figures
	List of tables
	List of listings
	Introduction
	Motivation
	Goals of this diploma thesis
	Methods used
	Structure of the remaining chapters

	Background and related work
	Competencies
	Formulating goals and competencies for our course
	Participating school and its students
	Learning theory and legal requirements
	Self-directed learning and Constructionism

	Evaluation of learning processes

	Design of the classes
	General Outline
	First class: Introduction and Automata
	Second class: Intelligent Agents
	Third class: Problems and Graphs
	Fourth and fifth class: Problem Solving by Searching in Trees
	Sixth class: Classic Planning
	Seventh class: Machine Learning and Outlook

	Realization and Evaluation
	General restrictions and participating school
	Qualitative monitoring during the classes
	Homework assignments

	Results of the empirical evaluations
	Self and foreign evaluation

	Evaluation of the course

	Discussion and Outlook
	Conclusions
	Future Work

	Bibliography
	Internet sources
	Exercises
	Exercises for Searching
	Exercise sheets for Planning

	Questions during the evaluation
	Anonymous questionnaire for the self evaluation and the course evaluation

	Affidavit

