
Alexander Grabner, BSc

Loss-Specific Training of Memory Efficient
Random Forests for Super-Resolution

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Telematik

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Institute for Computer Graphics and Vision

Advisors

Dipl.-Ing. Georg Poier, BSc

Dipl.-Ing. Michael Opitz, BSc

Dipl.-Ing. Dr.techn. Samuel Schulter, BSc

Institute for Computer Graphics and Vision

Graz, Austria, April 2016

Abstract

Super-Resolution (SR) addresses the problem of image upscaling by reconstructing

high-resolution (HR) images from low-resolution (LR) images. Recently Random Forest

(RF) approaches have shown state of the art accuracy in single image SR while almost

achieving real time capable speed. However, existing RF approaches for SR have a large

memory footprint, since complex models are required to achieve high performance.

This limits the practical utilization of RFs for real world SR applications. Especially

mobile devices like smartphones or tablets demand memory efficient solutions, since they

are limited in resources like RAM and flash storage.

In this work, we present three novel methods for constructing RFs with reduced model

size: Global Refinement of Alternating Decision and Regression Forests (ADRFs+GR),

Additive Global Refinement (AGR) and Intermediate Refined Random Forests (IRRFs).

These methods construct RFs with low complexity under a global training objective. Due

to global optimization, we achieve improved fitting power for RFs with low model size. In

particular, our methods combine and extend recent approaches on loss-specific training of

RFs and training of memory efficient RFs. In contrast to previous works, we train RFs

with globally optimized structure and globally optimized prediction models.

We evaluate our proposed methods for standard machine learning tasks and single

image SR. Our methods show significantly reduced model size while achieving competitive

performance compared to state of the art RF approaches. Additionally, our training

approach is significantly faster than other approaches, which reduce the model size of RFs

without compromising on accuracy.

iii

Kurzfassung

Super-Resolution (SR) behandelt das Problem der Hochskalierung von Bildern durch

Rekonstruktion von Bildern mit hoher Auflösung aus Bildern mit niedriger Auflösung. Vor

Kurzem haben Random Forest (RF) basierte Ansätze für Einzelbild SR Qualität auf dem

neuesten Stand der Technik gezeigt und beinahe echtzeitfähige Geschwindigkeit erreicht.

Allerdings weisen bestehende RF basierte Ansätze für SR einen hohen Speicherbedarf auf,

da komplexe Modelle benötigt werden, um hohe Genauigkeit zu erzielen.

Dieser Umstand schränkt den praktischen Nutzen von RFs für SR Anwendungen in

der realen Welt ein. Besonders mobile Geräte wie Smartphones oder Tablets benötigen

speichereffiziente Lösungen, da ihre Ressourcen wie RAM oder Flash Speicher beschränkt

sind.

In dieser Arbeit präsentieren wir drei neue Methoden, um RFs mit reduzierten

Speicheranforderungen zu trainieren: Global Refinement of Alternating Decision and

Regression Forests (ADRFs+GR), Additive Global Refinement (AGR) und Intermediate

Refined Random Forests (IRRFs). Diese Methoden erzeugen RFs mit geringer

Komplexität unter Berücksichtigung einer globalen Zielfunktion. Durch die globale

Optimierung erzielen wir verbesserte Ergebnisse für RFs mit geringer Modellgröße. Im

Speziellen kombinieren und erweitern unsere Methoden kürzlich vorgestellte Ansätze

für fehlerspezifisches Training von RFs und Training von speichereffizienten RFs.

Im Gegensatz zu existierenden Methoden, trainieren wir RFs mit global optimierter

Struktur und global optimierten Vorhersagemodellen.

Wir evaluieren unsere vorgestellten Methoden für Standardaufgaben im Bereich des

maschinellen Lernens und Einzelbild SR. Unsere Methoden erzeugen RFs mit signifikant

reduzierter Modellgröße, deren Genauigkeit konkurrenzfähig zu RF basierten Ansätzen

auf dem neuesten Stand der Technik ist. Zusätzlich ist unser Trainingsansatz signifikant

schneller als andere Ansätze, die RFs mit reduzierten Speicheranforderungen erzeugen

ohne Abstriche in Bezug auf die Qualität zu machen.

v

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Date Signature

vii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Machine Learning . 5

2.2 Decision Trees . 5

2.2.1 Testing . 6

2.2.2 Training . 6

2.2.2.1 Split Functions . 8

2.2.2.2 Stopping Criteria . 9

2.2.2.3 Prediction Models . 9

2.3 Random Forests . 10

2.3.1 Testing . 10

2.3.2 Training . 10

2.4 Alternating Decision and Regression Forests 11

2.4.1 Boosting . 11

2.4.2 Stage-Wise Training . 12

2.4.3 Alternating Decision Forests . 12

2.4.4 Alternating Regression Forests . 14

2.5 Global Refinement of Random Forests . 15

2.5.1 Global Refinement . 15

2.5.2 Global Pruning . 16

2.6 Related Works . 17

2.6.1 Decision Jungles . 17

2.6.2 Random Ferns . 17

2.6.3 Dynamic Random Forests . 17

2.6.4 Decision and Regression Tree Fields 18

2.6.5 Globally Optimal Fuzzy Decision Trees 18

2.6.6 Deep Neural Decision Forests . 18

ix

Contents

2.6.7 Relating Cascaded Random Forests to Deep Convolutional Neural

Networks . 18

3 Loss-Specific Training of Random Forests 19

3.1 Global Refinement of Alternating Decision and Regression Forests 19

3.2 Additive Global Refinement . 20

3.3 Intermediate Refined Random Forests . 20

3.4 Global Refinement for Linear Prediction Models 21

4 Evaluation 25

4.1 Standard Machine Learning Tasks . 25

4.1.1 Classification . 26

4.1.1.1 Overall Results . 27

4.1.2 Regression . 29

4.1.2.1 Overall Results . 30

4.1.2.2 Maximum Depth . 31

4.1.2.3 Early Stopping . 37

4.1.2.4 Number of Decision Trees 38

4.1.2.5 Randomness . 39

4.1.2.6 Split Functions . 44

4.1.2.7 Global Refinement . 45

4.1.2.8 Global Pruning . 47

4.1.2.9 Intermediate Refined Random Forests 51

4.1.2.10 Strength and Correlation 52

4.1.2.11 Model Size . 53

4.1.2.12 Runtime . 54

4.2 Super-Resolution . 57

4.2.1 Overall Results . 59

4.2.2 Qualitative Results . 60

4.2.3 State of the Art . 61

4.2.4 Maximum Depth . 63

4.2.5 Number of Decision Trees . 64

4.2.6 Model Size . 65

4.2.7 Runtime . 66

4.2.8 Global Pruning . 68

5 Conclusion 69

Bibliography 71

x

List of Figures

2.1 Model of a Decision Tree . 6

2.2 Evaluation of a Decision Tree . 7

2.3 Evaluation of a Random Forest . 11

2.4 Stage-Wise Training Scheme for Random Forests 13

2.5 Global Refinement for Constant Prediction Models 16

3.1 Comparison of Training Algorithms for Random Forests 22

3.2 Global Refinement for Linear Prediction Models 24

4.1 Evaluation of Maximum Depth for Constant Prediction Models 34

4.2 Evaluation of Maximum Depth for Linear Prediction Models 35

4.3 Comparison of Constant and Linear Prediction Models for the Data Set

elevators . 36

4.4 Comparison of Constant and Linear Prediction Models for the Data Set

delta ailerons . 36

4.5 Evaluation of Early Stopping . 37

4.6 Evaluation of Number of Decision Trees . 38

4.7 Evaluation of Bagging without Replacement 40

4.8 Evaluation of Bagging with Replacement . 40

4.9 Evaluation of Feature Subsampling . 41

4.10 Evaluation of Subsampling at Node Level 42

4.11 Evaluation of Regularization for Global Refinement 45

4.12 Evaluation of Loss Function for Global Refinement 46

4.13 Progression of Global Pruning . 47

4.14 Evaluation of Pruning Ratio for Global Pruning 48

4.15 Evaluation of Pruning Strategies for Global Pruning 49

4.16 Evaluation of Intermediate Refined Random Forests 51

4.17 Evaluation of Model Size . 53

4.18 Evaluation of Training Time . 56

xi

List of Figures

4.19 Qualitative Super-Resolution Results for butterfly 61

4.20 Qualitative Super-Resolution Results for head 62

4.21 Evaluation of Maximum Depth for Super-Resolution 63

4.22 Evaluation of Number of Decision Trees for Super-Resolution 64

4.23 Progression of Global Pruning for Super-Resolution 68

xii

List of Tables

4.1 Evaluated Methods for Classification . 26

4.2 Evaluated Data Sets for Classification . 27

4.3 Default Parameters for Classification . 27

4.4 Overall Results for Classification . 28

4.5 Evaluated Methods for Regression . 29

4.6 Evaluated Data Sets for Regression . 30

4.7 Default Parameters for Regression . 31

4.8 Overall Results for Regression, Part 1 . 32

4.9 Overall Results for Regression, Part 2 . 33

4.10 Interaction of Feature Subsampling and Subsampling at Node Level for

Random Forests . 43

4.11 Interaction of Feature Subsampling and Subsampling at Node Level for

Refined Random Forests . 43

4.12 Evaluation of Compactness Measures . 44

4.13 Pre-Pruning versus Post-Pruning for the data set elevators 50

4.14 Pre-Pruning versus Post-Pruning for the data set ailerons 50

4.15 Evaluation of Strength and Correlation . 52

4.16 Evaluation of Model Size . 54

4.17 Evaluation of Training Time . 55

4.18 Evaluation of Parallelization . 57

4.19 Default Parameters for Super-Resolution . 58

4.20 Overall Results for Super-Resolution . 60

4.21 State of the Art for Super-Resolution . 61

4.22 Evaluation of Model Size for Super-Resolution 65

4.23 Evaluation of Training Time for Super-Resolution 66

4.24 Evaluation of Parallelization for Super-Resolution 67

xiii

List of Acronyms

ADF Alternating Decision Forest

ADRF Alternating Decision and Regression Forest

ADRF+GR Global Refinement of Alternating Decision

and Regression Forest

AGR Additive Global Refinement

ARF Alternating Regression Forest

CNN Convolutional Neural Network

DT Decision Tree

FLOP Floating-Point Operation

GP Global Pruning

GR Global Refinement

HR high-resolution

IRRF Intermediate Refined Random Forest

LR low-resolution

MR Misclassification Rate

PSNR Peak Signal-to-Noise Ratio

RF Random Forest

RMSE Root Mean Squared Error

SR Super-Resolution

xv

CHAPTER 1

Introduction

Super-Resolution (SR) addresses the problem of high quality image upscaling. SR is an

active research area, since today many devices like smartphones, tablets, notebooks or

TVs feature high resolution displays. These devices often have to deal with low resolution

content which results in a degraded user experience. Popular tasks like web browsing,

image messaging or photo streaming suffer from poor image quality due to limited data

bandwidth, processing power or memory capacity. Therefore, image upscaling methods

have to be accurate, fast and memory efficient. However, existing SR approaches do not

meet all of these requirements.

Single image SR is a subdomain of image reconstruction which addresses the problem

of enhancing image resolution [30, 37, 71]. Starting from a single low-resolution (LR)

input image, a visually pleasing high-resolution (HR) output image is estimated. SR

methods perform image upscaling without losing the sharpness of the original LR image.

This upscaling is nontrivial, because one pixel in the LR input image has to account for

multiple pixels in the HR output image. Therefore, SR is an ill-posed problem for which

no unique solution exists.

Many approaches for populating the pixels of HR output images have been proposed.

The most popular class of SR algorithms are interpolation methods [24, 46, 51, 72].

Bicubic interpolation [54] is the standard approach for image upscaling in image editing

applications like Adobe Photoshop R© or GIMP R©. Interpolation methods are fast and

memory efficient, but lack accuracy.

SR methods based on machine learning [5] techniques show significantly improved

accuracy compared to interpolation methods [4, 12, 97, 98, 99, 100]. In contrast to

interpolation methods, these methods are often slow. However, recently machine learning

methods have shown state of the art results in terms of accuracy while almost achieving

real time capable speed [16, 22, 23, 45, 55, 56, 93, 94].

1

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

1. Introduction

Among these methods are Random Forest (RF) approaches [88]. RF approaches for SR

are among the fastest machine learning approaches and achieve high accuracy. However,

existing RF approaches have a large memory footprint, since they require complex models

for high performance. This limits the practical utilization of RFs for real world SR

applications.

One reason for this memory inefficiency is that RFs [8] are based on ensembles of

Decision Trees (DTs) [74]. The node count of balanced DTs grows exponentially with the

depth. One extra level of depth doubles the total node count. For RFs with 100 DTs and

a maximum depth of 25 [77], the total node count is 3.36 billion assuming balanced DTs.

This is particularly problematic, since RFs perform best with a high number of deep

DTs in most scenarios. Especially on mobile devices, large RFs easily exceed memory

limitations.

Reducing the total node count of RFs is a popular approach for increasing the memory

efficiency. Two strategies for reducing the total node count of RFs are pre-pruning [29, 35]

and post-pruning [35, 75, 76]. Other methods replace DTs with more memory efficient

structures [70, 91]. However, significant improvements in memory efficiency are prone to

result in reduced accuracy.

One approach to compensate for reduced accuracy is loss-specific optimization of

RFs. Experiments show that the accuracy of RFs for SR is improved by loss-specific

optimization which corresponds to constructing RFs under a global training objective [88].

Standard RFs do not explicitly optimize a global loss [89, 90]. Each DT of a RF is

trained independently and greedily minimizes its local training objective. However, the

final result of a RF is computed by combining the predictions of the individual DTs. The

combination of the locally optimal DT predictions is not guaranteed to result in a globally

optimal prediction. The final model structure is not considered during training. Ideally,

the loss function is evaluated on the final output of the RF [77]. In contrast, the loss

function implied by standard RFs is an average over the losses of the individual DTs. As

a result, the training of standard RFs is not directly guidable towards the optimization of

a specific loss function.

To overcome this limitation, a number of methods have been proposed which make

the individual DTs of RFs aware of each other [3, 49, 57, 79, 81]. These approaches focus

on improving the performance of RFs by sharing information between the individual DTs

and construct complementary DT ensembles [89, 90].

Global Refinement (GR) of RFs [77] is a recently proposed RF approach which

addresses both model size reduction and loss-specific optimization of RFs. GR is a

promising candidate for reducing the model size of RFs for SR. However, the presented

training algorithm is prohibitively slow for large problems like SR. Additionally, GR is

limited to constant leaf prediction models, while state of the art RF approaches for SR

use linear leaf prediction models.

2

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

To address these issues, we present three new algorithms which construct

complementary DT ensembles with reduced model size. Our methods are inspired by

Alternating Decision and Regression Forests (ADRFs) [89, 90] and GR of RFs [77].

ADRFs grow the structure of RFs under a global training objective, while GR relearns

the leaf prediction models of pre-trained RFs under a global training objective. We

combine and extend the ideas of both approaches. In contrast to previous works, we

train RFs with globally optimized structure and globally optimized prediction models.

Additionally, we present an extension to GR which supports the refinement of linear

prediction models.

We use our novel methods to construct RFs with low complexity under a global training

objective. Due to global optimization, we achieve improved fitting power for RFs with

low model size while significantly reducing the training time compared to the training

approach presented in GR of RFs [77]. We provide a systematic evaluation of our methods

on standard machine learning tasks for classification and regression. Additionally, we

compare the performance of our proposed methods to state of the art RF approaches.

Finally, we show that our methods are applicable to SR. Our methods show

significantly reduced model size while achieving competitive performance compared to

state of the art RF approaches. In contrast to previous works, we present a SR approach

which is accurate, fast and memory efficient. Additionally, our training approach is

significantly faster than other approaches, which reduce the model size of RFs without

compromising on accuracy.

The remainder of this work is structured as follows: In Chapter 2 we present

preliminaries and discuss related works. Next, we present our novel training methods in

Chapter 3. In Chapter 4 we evaluate our methods and compare them to existing RF

approaches. We perform experiments on standard machine learning tasks and single

image SR. In Chapter 5 we summarize our results and draw conclusions.

3

Reference:

 ()

Reference:

 ()

Reference:

 ()

CHAPTER 2

Preliminaries

In this chapter we present multiple tree-based approaches to supervised machine learning.

We start with an introduction to machine learning. Next, we cover Decision Trees (DTs)

and Random Forests (RFs) which are ensembles of randomized DTs. Additionally, we

present two RF extensions, Alternating Decision and Regression Forests (ADRFs) and

Global Refinement (GR) of RFs. Finally, we briefly discuss different related works. The

methods presented in this chapter build the foundation for the contribution of this work.

2.1 Machine Learning

Machine learning [5] is a discipline of computer science which explores the prediction of

future outcomes based on knowledge obtained from past observations [34]. A formal

definition is provided by Mitchell [66]: ”A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P if its

performance at tasks in T, as measured by P, improves with experience E”. However,

machine learning is not only targeted at the development of learning systems, but

also studies human learning processes and explores application independent learning

methods [65]. In this work we focus on supervised offline machine learning [33] to address

classification and regression tasks with RFs [61].

2.2 Decision Trees

Decision Trees (DTs) [74] are learners which follow a divide and conquer strategy. DTs

make predictions based on a number of hierarchical decisions. These decisions are

organized in the structure of a tree. In this work we focus on binary trees. The model

5

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2. Preliminaries

of a DT is shown in Figure 2.1. Each node in a DT has one parent node – except for

the root node – and zero or two child nodes. Nodes which have two children are split

nodes, whereas nodes which do not have any children are leaf nodes. Each split node

holds a split parameter set Θ, which is used to decide to which of the two child nodes an

arriving data sample is routed. Each leaf node holds a prediction model m, which is used

to make predictions for arriving data samples.

Figure 2.1: An illustration of a DT . Split nodes are colored blue, while leaf nodes are colored
red. Each split node holds a split parameter set Θ. Each leaf node holds a prediction model m.

2.2.1 Testing

Testing a DT corresponds to making predictions for previously unseen data. Figure 2.2

shows the evaluation of a DT given a new data sample x. The data sample is sent to the

root node of the DT , from where it is passed down the tree. Starting from the root node

each visited split node evaluates a binary split function

σ(x,Θ) ∈ {0, 1} (2.1)

based on the data sample x and a split parameter set Θ which is stored at the specific

split node. The outcome of this function determines whether the data sample is sent to

the left (0) or right (1) child node. The data sample is routed down the tree from node

to node until it ends up in a leaf node. The prediction model m stored at this leaf node

is evaluated to generate ŷt, the prediction of the DT .

2.2.2 Training

Training a DT corresponds to constructing a DT based on a training data set. This

involves growing the tree structure, finding a split parameter set for each split node and

calculating a prediction model for each leaf node. The training procedure is essentially

the same for classification and regression tasks [9], except for the optimization of split

functions and the calculation of prediction models.

6

Reference:

 ()

2.2. Decision Trees

x

ŷt
Figure 2.2: An illustration of making a prediction for a previously unseen data sample x using a
DT . The data sample x is sent to the root of the DT , from where it is passed down the tree until
it reaches a leaf node. The prediction model m stored at this leaf node is evaluated to obtain ŷt,
the prediction of the DT .

The training data set S = {(xn,yn)}Nn=1 consists of pairs composed of an input xn ∈ X
and a desired output yn ∈ Y. The input xn is also referred to as feature vector, the desired

output yn is also referred to as ground truth. The input space X and the output space

Y can be arbitrary, e.g., class labels, continuous variables, strings or graphs [20, 58]. In

this work we focus on X ⊆ RF with F ∈ N and Y ⊆ N for classification or Y ⊆ RG with

G ∈ N for regression.

Growing the tree structure is concerned with recursively splitting the training data set

S into disjoint subsets in a greedy manner. Each node splits the arriving training data

into two subsets by evaluating a binary split function (see Section 2.2.2.1) and creates

two new child nodes. One subset is sent to the left child node, the other subset is sent to

the right child node. This means that the entire training data set is distributed among

all nodes in one depth level of the DT . In depth level zero the entire training data set is

associated with the root node. In depth level one a fraction of the training data set goes

to the left child of the root node, while the rest is sent to the right child. This can be

seen as a partitioning of the input space X . The deeper a DT , the more fine-grained the

partitioning and the smaller the subsets. The partitioning is greedily continued until a

stopping criterion is met (see Section 2.2.2.2). When a stopping criterion is met, a node

is turned into a leaf node and a prediction model for this leaf node is calculated using the

arriving training data (see Section 2.2.2.3). The training ends when the recursive splitting

for all branches of the DT stopped.

7

Reference:

 ()

2. Preliminaries

2.2.2.1 Split Functions

In order to split the training data each node evaluates a binary split function σ(x,Θ)

(see Equation 2.1) for each arriving training sample. In this work we focus on simple

thresholding functions in the form of unary split functions

σ(x,Θ) =

{
0 if x[Θfeat1] < Θthresh

1 otherwise
(2.2)

and binary split functions

σ(x,Θ) =

{
0 if x[Θfeat1]− x[Θfeat2] < Θthresh

1 otherwise
, (2.3)

where one feature dimension or the difference of two feature dimensions of x is compared

against a threshold. In this case the split parameter set Θ consists of the threshold

Θthresh and the indices of the observed feature dimensions Θfeat1 and Θfeat2 with Θfeat1 6=
Θfeat2. One strategy to find a split parameter set Θ for a node is random parameter

selection [17, 44]. At each node a number of candidate split parameter sets {Θk}Kk=1 with

K ∈ N is proposed at random. Each of these candidate sets is evaluated and the split

parameter set

Θ∗ = arg min
Θk

E(S,Θk) ∀k ∈ [1,K] (2.4)

which produces the best split on the arriving training data according to an objective

function E(S,Θ) is selected [15]. The objective function E(S,Θ) measures the quality of

a split with respect to specific properties of the training data. In this work we focus on

an objective function in the form

E(S,Θ) =
∑

i∈{L,R}

|Si| ·H(Si). (2.5)

This objective function calculates the cost of a split by evaluating a compactness measure

H(S) for each of the two subsets generated by a split [27]. The two subsets SL and SR are

implicitly dependent on the split parameter set Θ (see Equation 2.2 and 2.3). The total

cost of a split is computed as the weighted sum of the two compactness results, where

|Si| identifies the size of the specific subset. For classification, we focus on the Shannon

entropy

H(S) = −
∑
c∈Y

p(c|S) log(p(c|S)), (2.6)

where p(c|S) is the probability of a label given a data set [9]. Other possible choices

for H(S) considering classification include the Gini impurity and the Towing splitting

8

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.2. Decision Trees

rule [82, 83]. For regression, we focus on the variance of the training data ground truth

H(S) =
1

|S| − 1

|S|∑
i=1

‖yi − ȳ‖22, (2.7)

where |S| is the size of the data set and ȳ is the empirical mean of the data set ground

truth [9]. Other possible choices for H(S) considering regression include the differential

entropy and the absolute deviation [9, 13]. Compactness measures may not only be defined

on the training data ground truth, but also on the features [27, 84]. For regression, it is

possible to compute H(S) as the weighted sum of the variance of the ground truth and

the variance of the features.

2.2.2.2 Stopping Criteria

The partitioning of the input space X via split nodes is greedily continued until a stopping

criterion is met [2, 63]. This is also known as early stopping or pre-pruning [29, 35].

Possible criteria for turning a node into a leaf node include: a) a maximum tree depth

is reached; b) the number of training samples arriving at a node is below a predefined

threshold; c) the split function parameter set Θ∗ does not satisfy predefined requirements,

e.g., the split would send all samples to one of the two child nodes or the split would only

add a negligible performance gain; d) the error on the training data is below a predefined

threshold; e) the training data arriving at a node is pure, e.g., all samples have the same

ground truth. Multiple stopping criteria can be employed together.

2.2.2.3 Prediction Models

The prediction model is a function that makes a prediction for samples falling into a

leaf [9]. The parameters of this function are computed from the training data arriving at

the leaf. The prediction model m may be a constant, linear or non-linear function [27, 84].

In this section we focus on constant prediction models. For constant prediction models,

the prediction for each sample falling into a specific leaf will be the same. In this case,

it is possible to precompute the prediction of a leaf from the arriving training data. For

classification, a constant prediction label can be selected as the most frequented label

among the ground truth labels of the arriving training data. A constant class distribution

vector can be calculated as the normalized histogram

m : ŷt[c] =
1

|S|

|S|∑
i=1

I[yi = c] ∀ c ∈ Y (2.8)

of the ground truth labels of the arriving training data, where I[·] is an indicator function

which is 1 when the condition is satisfied and 0 otherwise. |S| is the size of the arriving

training data set. For regression, a constant prediction can be computed as the empirical

9

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2. Preliminaries

mean of the ground truth of the arriving training data

m : ŷt =
1

|S|

|S|∑
i=1

yi. (2.9)

2.3 Random Forests

Random Forests (RFs) [8] are ensembles of randomized DTs. Each DT of the ensemble

is independent. RFs improve upon single DTs in terms of accuracy on previously unseen

data, a property called generalization [1, 18, 43, 44]. DTs are powerful learners that can

fit the training data perfectly when fully grown. However, growing deep DTs introduces

a high risk of overfitting which results in low generalization [9]. The decomposition of the

generalization error into bias, variance and noise shows that a single deep DT has low

bias and high variance [21]. An ensemble of DTs can reduce variance while maintaining

low bias [33, 69, 83].

2.3.1 Testing

Figure 2.3 shows the evaluation of a RF given a previously unseen data sample x. During

testing each DT of the RF is evaluated (see Section 2.2.1) and the predictions ŷt of

the individual DTs are combined to obtain ŷ, the prediction of the RF . One option for

computing ŷ is the arithmetic mean

ŷ =
1

T

T∑
t=1

ŷt (2.10)

of the different tree predictions ŷt [8], where T is the number of DTs in the ensemble. This

approach is suitable when ŷt is a class distribution vector or a continuous variable. If ŷt

is a class label, ŷ can be selected as the most frequented label among the labels predicted

by the various DTs.

2.3.2 Training

Training a RF corresponds to constructing T distinct DTs. Randomness is injected

into the training of each individual DT to create different trees. In addition to random

parameter selection (see Section 2.2.2), RFs employ Bagging [7]. Bagging which is short

for bootstrap aggregation is an ensemble technique [69]. Each DT is trained on a new

training data set which is created by randomly drawing samples from the original training

data set following a uniform distribution. The size of the new training data set can

be smaller than the original. The sampling can be done with or without replacement.

Another method for injecting randomness into the training of DTs is subsampling at node

level [53], e.g., subsampling the training data set arriving at a node before the evaluation

10

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.4. Alternating Decision and Regression Forests

x

ŷ
Figure 2.3: An illustration of making a prediction for a previously unseen data sample x using
a RF . The data sample x is sent to the root of each DT , from where it is passed down until it
reaches a leaf node. The prediction model m stored at this leaf node is evaluated to obtain ŷt,
the prediction of the DT . The predictions of the individual DTs are combined to obtain ŷ, the
prediction of the RF .

of the candidate split parameter sets {Θk}Kk=1 or before the calculation of the prediction

model m. Randomized training is essential for the performance of RFs. Breiman [8]

shows that the generalization error of RFs depends on the strength and correlation of

the individual DTs. A low generalization error is obtained by high strength and low

correlation. The injection of randomness into the training can decrease the correlation of

the individual DTs while maintaining strength. Breiman [8] also shows that RFs do not

overfit when more DTs are added to the ensemble, as long as the correlation between the

individual DTs is low.

2.4 Alternating Decision and Regression Forests

ADRFs [89, 90] modify the training procedure of standard RFs (see Section 2.3) by

incorporating ideas from Boosting [86]. ADRFs integrate the minimization of a global

loss function directly into the tree growing process. In contrast to Boosted Trees [31],

where DTs are added sequentially to the model, ADRFs iteratively increase the depth of

DTs, while the number of DTs remains constant.

2.4.1 Boosting

Boosting [86] is an ensemble technique. Multiple weak learners are combined to form a

strong learner. A weak learner is a predictor which only performs slightly better than

random guessing, e.g., a DT stump [31]. In contrast to RFs, boosting methods iteratively

11

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2. Preliminaries

add predictors to the model. Each new predictor is trained to compensate for the error of

the model up to this point. The prediction of the ensemble is computed as the weighted

sum of the different weak learner predictions.

Gradient Boosting [32] is a variant of Boosting that interprets Boosting as performing

gradient decent in function space. Gradient Boosting can be used to optimize any

differentiable loss function. The main idea is that each new predictor applies a step in

the steepest decent direction. The steepest decent direction is computed by the negative

gradient of a differentiable loss function given the current state of the model. Gradient

Boosting uses shrinkage to reduce the contribution of new predictors to the existing

model. Experiments show that small learning rates result in improved generalization,

but more predictors have to be trained to achieve similar accuracy [32, 42]. For ADRFs,

shrinkage is omitted, because small learning rates result in deep RFs with large memory

demands.

2.4.2 Stage-Wise Training

The main difference of ADRFs compared to standard RFs (see Section 2.3) is the

replacement of the greedy DT training procedure by a stage-wise training scheme.

Figure 2.4 shows the iterative stage-wise training scheme. The entire RF is trained in a

breadth-first manner. Instead of greedily training all DTs independent of each other,

the depth of the RF is iteratively increased stage by stage. One stage corresponds to

one level of depth of the RF . Each iteration extends the RF by one extra level of depth,

which is equivalent to splitting all leaf nodes of the current model. Increasing the depth

of the RF can be seen as adding a new predictor in the sense of Boosting.

The stage-wise training scheme produces a fully functional RF in each iteration. These

intermediate RFs are used to evaluate the performance of the current model. The results

are used to guide the training of the next stage towards a solution that makes up for the

error of the RF in its current state. Similar to Gradient Boosting [32], ADRFs rely on

the negative gradients

− gd(x) = −
[
∂L(y, F (x))

∂F (x)

]
F (x)=Fd−1(x)

(2.11)

of a differentiable loss function L(·) to influence the training of the next stage. The loss

function is evaluated on Fd−1(x), the prediction of the RF trained up to depth d−1. The

training of ADRFs alternates between updating the global training objective and growing

a new stage of the RF .

2.4.3 Alternating Decision Forests

Alternating Decision Forests (ADFs) [90] are targeted at classification tasks. Similar to

Adaboost [31], ADFs introduce an importance weight for each training sample. These

12

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.4. Alternating Decision and Regression Forests

T2T1 T3

Stage 0

T2T1 T3

T2T1 T3

T2T1 T3

Stage 1

Stage 2

Stage 3

Figure 2.4: An illustration of the stage-wise training scheme of ADRFs. Adding a new stage
corresponds to splitting all leaf nodes in the current model. This may not be possible for all nodes
due to different stopping criteria which results in unbalanced trees.

importance weights are updated after the training of each stage. The weight updates

are computed from the negative gradients −gd(x) of a differentiable loss function (see

Equation 2.11) which is defined over the classification margin

margin(x) = F (yGT |x)− max
y 6=yGT

F (y|x). (2.12)

The classification margin is the difference between the class probability of the ground truth

and the highest class probability apart from the ground truth. A classification margin

equal to 1 corresponds to a perfect prediction for a sample. The probability of the ground

truth is 1, while the probability of any other class is 0. On the other side, a margin equal

to −1 implies that the probability of the ground truth label is 0. The classification margin

is a performance indicator for the current prediction. Training samples with a margin

close to 1 receive a low importance weight. In contrast, training samples with a margin

close to −1 receive a high importance weight. The training of the next stage focuses on

13

2. Preliminaries

samples with a high importance weight. ADFs globally optimize the splits of the DTs in

a way that the combination of the different tree predictions yields less misclassification on

the training data. ADFs do not modify the prediction models. Experiments show that

the DTs of ADFs are less correlated than the DTs of standard RFs [87]. This results in

improved generalization.

2.4.4 Alternating Regression Forests

Alternating Regression Forests (ARFs) [89] are targeted at regression tasks. ARFs modify

the training data before adding a new stage. The ground truth in the original training

data set S = {(xn,yn)}Nn=1 is replaced with the negative gradients of a differentiable

loss function (see Equation 2.11). This gives the intermediate training data set Sgd
=

{(xn,−gd(xn))}Nn=1. One possible choice for the differentiable loss function is the squared

loss

L(y, F (x)) =
1

2
(y − F (x))2 (2.13)

which reduces the calculation of the negative gradients to

− gd(x) = y − Fd−1(x). (2.14)

Fd−1(x) is the prediction of the ARF trained up to depth d−1. Each new stage is trained

on these pseudo-targets or residuals instead of the ground truth. Therefore, the predictions

of the leaf nodes correct the error of the previous stages instead of making independent

predictions. This means that the predictions of all stages ŷd must be summed up to obtain

the final prediction ŷ. Since the path to each leaf in a binary tree is unique, it is possible

to precompute the summation of the different stage predictions ŷd
t within a DT during

training. This can be formalized as

ŷ =

Dmax∑
d=0

ŷd

=

Dmax∑
d=0

1

T

T∑
t=1

ŷd
t

=
1

T

T∑
t=1

Dmax∑
d=0

ŷd
t

=
1

T

T∑
t=1

ŷt.

(2.15)

T is the number of DTs and Dmax is the maximum depth of the ARF . For each leaf all

prediction models along the path from the root to the leaf are summed up. The resulting

prediction model is stored at the corresponding leaf node. Thus, the testing procedure

and the model size are the same as for standard RFs.

14

Reference:

 ()

Reference:

 ()

2.5. Global Refinement of Random Forests

2.5 Global Refinement of Random Forests

GR of RFs [77] relearns the leaf prediction models of existing RFs. Starting from a

pre-trained RF the leaf nodes of all DTs are simultaneously retrained by optimizing a

global loss function. The refinement procedure is applicable to RFs for classification and

regression using constant prediction models. Additionally, Ren et al. [77] present a pruning

method which reduces model size while maintaining high accuracy.

2.5.1 Global Refinement

In [77] the prediction process F (x) of a RF is formulated as single matrix multiplication

ŷ = F (x) = WΦ(x), (2.16)

where W is referred to as the leaf matrix and Φ(x) as the indicator vector. The structure

of W and Φ(x) is shown in Figure 2.5. Each column of the leaf matrix W corresponds

to the prediction model of one leaf node. The number of rows of W equals the output

dimensionality. The number of columns of W equals the total number of leaf nodes of

the RF . The indicator vector Φ(x) is a binary embedding which gives information about

which leaf nodes a sample falls into. The number of rows of Φ(x) equals the number of

columns of W . This means that there is a row for each leaf of the RF . Each binary entry

of Φ(x) indicates whether the sample x falls into the leaf identified by the specific row (1)

or not (0). It is possible to stack the indicator vectors of multiple samples together

Φ(X) =
[
Φ(x1) Φ(x2) · · · Φ(xN)

]
, (2.17)

where the number of columns of Φ(X) equals the number of samples N .

Given the training data set S = {xn,yn}Nn=1 the indicator matrix Φ(X) is derived from

the existing RF and the training data features. GR minimizes the objective function

min
W

1

2
‖W‖2F +

C

N

N∑
n=1

L(yn, ŷn)) (2.18)

by calculating the optimal leaf matrix W . L(·) is a convex loss function defined on the

training data ground truth y and the prediction ŷ (see Equation 2.16). The Euclidean

norm of the leaf matrix W is minimizes to reduces the risk of overfitting [92]. The

parameter C controls the tradeoff between the regularization term and the data term.

Convex optimization algorithms can be used to find the global minimum of this objective

function [6]. The refined leaf prediction models in W are used to overwrite the existing

prediction models of the RF .

15

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2. Preliminaries

T1

x1
x3

x2
x4

m: ŷ = 5

T2

x1
x2
x3
x4

{ x1, x2, x3, x4 }

W

1
0
1
0

0
1
1

1
0
1

0
1
1

0 0 05 3 4 2

Φ(X)

Leaf

Samples

L
ea

f

Prediction

L
ea

f

L
ea

f

L
ea

f

m: ŷ = 3 m: ŷ = 4 m: ŷ = 2

Leaf

Leaf

Leaf

Figure 2.5: An illustration of the structure of the leaf matrix W and the indicator matrix Φ(X).
Four data samples x1, x2, x3 and x4 are sent to the root of each DT , from where they are passed
down until they reach a leaf node. Considering T1, the samples x1 and x3 fall into the left child
node. This leaf node is associated with the first row of the indicator matrix Φ(X), therefore, the
first and third entry of this row are set to 1. The prediction models of all leaf nodes are horizontally
concatenated to form the leaf matrix W .

2.5.2 Global Pruning

Although the objective function utilizes regularization techniques, GR has a high risk

of overfitting. Therefore, [77] additionally presents Global Pruning (GP). GP iteratively

reduces the total number of nodes of a RF to avoid overfitting. Traditional post-pruning

methods [35, 75, 76] independently merge the leaf nodes of individual DTs. GP merges the

leaf nodes of a RF using a global optimization strategy. GP consists of two steps. First,

GR is applied to the RF . Second, all mergeable leaf nodes of the RF are identified and a

significance measurement for each leaf pair is calculated. The significance is the summation

of the Euclidean norms of the two prediction models. The smaller the significance the lower

the contribution of the leaves. Therefore, a fraction of the least significant leaf pairs is

16

Reference:

 ()

Reference:

 ()

2.6. Related Works

merged. Next, GR is reapplied to the pruned RF . As a result, the algorithm alternates

between refining and pruning the RF until a stopping criterion is met. GP stops when

the RF achieves the best accuracy on a validation set or a certain model size is reached.

2.6 Related Works

In this section we briefly discuss related works on tree-based machine learning approaches

which either reduce the model size or explicitly optimize a global loss function. Our work

differs from these methods, since we reduce the model size of RFs and explicitly optimize

a global loss function.

2.6.1 Decision Jungles

Decision Jungles [91] build upon generic rooted directed acyclic graphs instead of binary

trees. This opens the possibility for multiple paths ending in the same leaf node. During

training nodes with similar properties are merged. Decision Jungles uses the same

objective function to jointly split and merge nodes. Similar to RFs, each directed acyclic

graph is trained independently of each other. Decision Jungles show improved memory

efficiency and generalization compared to RFs. Experiments show that for specific tasks,

Decision Jungles achieve competitive performance compared to RFs in terms of accuracy

with a significantly reduced total node count [91].

2.6.2 Random Ferns

Random Ferns [70] simplify RFs by dropping the hierarchical split node model. The same

sequence of split functions is applied to each data sample. In contrast to RFs, Random

Ferns directly index a leaf node using the binary sequence obtained by evaluating split

functions in a predefined order. This results in improved memory efficiency and a speedup

for training and testing. For certain applications like keypoint recognition, Random Ferns

show competitive performance compared to RFs in terms of accuracy [60].

2.6.3 Dynamic Random Forests

Dynamic Random Forests [3] use a Boosting [86] approach to construct RFs. Dynamic

Random Forests sequentially add DTs to the RF . Each new DT is trained on a new

weighted training data set. This training data set is generated by Bagging. Additionally,

an importance weight is assigned to each bagged sample to guide the training of the next

DT . In contrast to Boosting, the weights for each new DT are calculated according to the

entire RF under construction. Due to the sequential training, DTs are not independent

of each other. The training of multiple DTs is not parallelizable.

17

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2. Preliminaries

2.6.4 Decision and Regression Tree Fields

Decision and Regression Tree Fields [50, 68] combine RFs and conditional random fields.

In contrast to RFs, each leaf node stores the parameters of a local quadratic energy

function. Each DT is associated with a factor type of a conditional random field. All local

energy functions are combined to obtain the overall energy function which is minimized

using a closed form solution. It is possible to jointly learn the structure of the DTs and

the leaf parameters optimizing any differentiable loss function [49].

2.6.5 Globally Optimal Fuzzy Decision Trees

Globally Optimal Fuzzy Decision Trees [79] modify DTs to minimize a specified loss

function. The binary splits of DTs are replaced with fuzzy sigmoidal splits. This means a

sample takes all possible paths within a DT instead of a single branch. A samples ends up

in each leaf node with a specific membership probability. The final prediction of a DT is

made jointly by all leaf nodes instead of one leaf node. The training algorithm transforms

a pre-trained DT into a fuzzy DT and then applies backpropagation in combination with

an optimization algorithm to refine the fuzzy split parameters according to a specified loss

function.

2.6.6 Deep Neural Decision Forests

Deep Neural Decision Forests [57] combine RFs with the representational learning of deep

Convolutional Neural Networks (CNNs). Similar to Globally Optimal Fuzzy Decision

Trees (see Section 2.6.5), Deep Neural Decision Forests employ fuzzy probabilistic splits

and use an optimization algorithm which performs backpropagation on existing DTs. In

contrast to Globally Optimal Fuzzy Decision Trees, Deep Neural Decision Forests retrain

the predictions of the leaf nodes and optimize a RF instead of a single DT . The training

algorithm uses a dropout strategy to update individual DTs and to optimize a global loss

function defined over the entire RF .

2.6.7 Relating Cascaded Random Forests to Deep Convolutional Neural

Networks

Richmond et al. [81] present a mapping from cascaded RFs to deep CNNs and an

approximate mapping back. In [81] this mapping is used to intelligently initialize a CNN

with a greedily trained cascaded RF . After the refinement of the parameters, the CNN

is mapped back to a cascaded RF . The back mapped cascaded RF shows improved

performance compared to the greedily trained cascaded RF and accelerated evaluation

compared to the Convolutional Neural Network.

18

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

CHAPTER 3

Loss-Specific Training of Random Forests

In this chapter we present three new methods for constructing Random Forests (RFs)

which optimize a global loss function over all Decision Trees (DTs). The methods combine

the ideas of Alternating Decision and Regression Forests (ADRFs) (see Section 2.4) and

Global Refinement (GR) (see Section 2.5). Additionally, we present an extension to GR

which supports the refinement of linear prediction models. This extension can be used in

combination with the three presented training algorithms.

3.1 Global Refinement of Alternating Decision and

Regression Forests

The most basic combination of GR and ADRFs is to apply a GR to an Alternating Decision

Forest (ADF) or an Alternating Regression Forest (ARF). It is possible to perform the leaf

prediction model optimization of GR on top of any RF . Therefore, we apply GR to a RF

which was grown using the alternating training procedure of ADRFs (see Section 2.4).

There are no difficulties in combining the two approaches, since they are performed

sequentially and independent of each other. We call this method Global Refinement of

Alternating Decision and Regression Forests (ADRFs+GR). Figure 3.1 shows the pseudo

code of ADRFs+GR in comparison to other approaches. RFs trained by ADRFs+GR

feature optimized splits (ADRFs) and optimized prediction models (GR). The possibility

of a naive combination of GR and ADRFs is suggested in [77].

19

Reference:

 ()

3. Loss-Specific Training of Random Forests

3.2 Additive Global Refinement

GR discards the existing prediction models of a RF and replaces them with new prediction

models. This refinement strategy shows potential for improvement, since it does not

take advantage of the existing prediction models of a RF , but simply ignores them. In

contrast to GR, we propose to use the existing prediction models as a starting point. We

perform a global leaf prediction model optimization to calculate prediction models which

compensate for the error of the existing prediction models. In this way, we improve the

existing prediction models of a RF instead of relearning them from scratch. We call this

refinement technique Additive Global Refinement (AGR).

AGR can be seen as a variant of GR which performs a Gradient Decent [6] step on

an existing RF . The leaf prediction model optimization is used to apply a step in the

steepest decent direction. The steepest decent direction is computed by the negative

gradient of a differentiable loss function given the current state of the model. Figure 3.1

shows the pseudo code of AGR in comparison to other approaches. Similar to ARFs

(see Section 2.4.4), AGR modifies the training data before new prediction models are

calculated. The ground truth in the original training data set S = {(xn,yn)}Nn=1 is

replaced with the negative gradients of a differentiable loss function (see Equation 2.11).

This gives the intermediate training data set Sgd
= {(xn,−gd(xn))}Nn=1. The gradient

decent step is implemented by optimizing

min
W

1

2
‖W‖2F +

C

N

N∑
n=1

L(−gd(xn), ŷn), (3.1)

a modified version of the objective function presented in GR (see Equation 2.18). In

contrast to Equation 2.18, the convex loss function L(·) is evaluated on the negative

gradients −gd(x) (see Equation 2.11) and the prediction ŷ (see Equation 2.16). All other

parameters remain the same. The prediction models obtained by AGR correct the error

of the existing prediction models instead of making an independent prediction. This

means that the new prediction models and the existing prediction models are summed

up to obtain the refined prediction models. Therefore, the new prediction models in W

are added to the existing prediction models of the RF , instead of replacing them (see

Equation 2.15). AGR is applicable to RFs for regression and ARFs.

3.3 Intermediate Refined Random Forests

The stage-wise training scheme of ADRFs produces a fully functional RF in each iteration.

These intermediate RFs are used to evaluate the performance of the current model and

guide the training of the next stage. We propose to refine each of these intermediate RFs.

We integrate multiple global leaf prediction model optimizations directly into the training

of ADRFs. In this way, growing the structure of DTs and refinement are interweaved.

20

Reference:

 ()

3.4. Global Refinement for Linear Prediction Models

We call this method Intermediate Refined Random Forests (IRRFs). In contrast to

single refinement approaches which relearn the leaf prediction models of pre-trained RFs,

IRRFs refine the prediction models of each stage of ADRFs during construction. The

stages are trained sequentially and each new stage corrects the error of the previous stages.

Therefore, intermediate refinements influence the training of the next stage. As a result,

the refinement of intermediate RFs optimizes the leaf prediction models as well as the

structure of the individual DTs.

The training of ADRFs alternates between updating the global training objective and

growing a new stage of the RF . In contrast to this, the training of IRRFs cycles through

four phases in each iteration. The first two phases are identical to ADRFs. First, the

global training objective is updated. Second, all leaf nodes of the current RF are split

and prediction models for the newly emerged leaf nodes are calculated locally using the

training data arriving at the node. Third, the global training objective is updated again.

Fourth, a global refinement technique is applied to the current RF .

For regression, we apply AGR to each intermediate RF during the construction of

ARFs. Figure 3.1 shows the pseudo code of IRRFs for regression in comparison to other

approaches. In this case, we choose AGR over GR for the refinement. The reason for

this is that AGR improves the existing prediction models of a RF instead of relearning

them from scratch like GR. Additionally, AGR better complements the additive local leaf

prediction models of ARFs in this context.

For classification, the interweavement of growing the structure of DTs and refinement

shows incompatibilities. While it is possible to apply GR to each intermediate RF during

the construction of ADFs, updating the global training objective is difficult in this case.

The reason for this is that refined RFs for classification predict SVM decision values [11],

but the loss functions of ADFs are designed for classification margins computed from

normalized class probabilities [90]. Although there are techniques for mapping SVM

decision values to class probability estimates, e.g., soft-max [5] or platt-scaling [73], we

observe low performance compared to standard RFs. Alternatively, the Hinge loss is

compatible with SVM decision values, but the selection of the threshold for this loss

function is unclear and experiments show that the performance of ADFs with Hinge loss

is inferior to standard RF [90]. Because of this, we focus on IRRFs for regression.

3.4 Global Refinement for Linear Prediction Models

GR for linear prediction models is an extension to GR (see Section 2.5.1) which supports

the optimization of linear leaf prediction models. In [77] GR only covers constant

prediction models. This means that the prediction for each sample falling into a specific

leaf will be the same. (see Section 2.2.2.3). Linear prediction models compute the

prediction as a function of the features of a sample [27]. In this work we focus on linear

21

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3. Loss-Specific Training of Random Forests

St
ru
ct
ur
e

R
efi
ne
m
en
t

compute -g(x)

split leaves

ARF+AGR

compute -g(x)

split leaves

compute -g(x)

split leaves

compute -g(x)

split leaves

ARF+GR

compute -g(x)

split leaves

compute -g(x)

split leaves

compute -g(x)

split leaves

ARF

compute -g(x)

split leaves

compute -g(x)

split leaves

IRRF

compute -g(x)

split leaves

compute -g(x)

refine on -g(x)

refine on y

Stage 0

Stage 1

Stage d

compute -g(x)

split leaves

compute -g(x)

refine on -g(x)

compute -g(x)

split leaves

compute -g(x)

refine on -g(x)

split leaves

RF

split leaves

split leaves

compute -g(x)

refine on -g(x)

split leaves

RF+GP

split leaves

split leaves

split leaves

RF+GR

split leaves

split leaves

refine on y refine on y

split leaves

RF+AGR

split leaves

split leaves

compute -g(x)

refine on -g(x)

prune leaves

refine on y

Stage 0

Stage 1

Stage d

St
ru
ct
ur
e

R
efi
ne
m
en
t

Figure 3.1: A comparison of different training algorithms for RFs targeted at regression. We
assume a stage-wise growing scheme which is applicable to all methods. The pseudo code highlights
the differences of the various approaches. Different algorithms for growing the structure of DTs
are combined with different refinement techniques. The code snippets associated with growing
structure of DTs are colored blue, while code snippets associated with refinement are colored
yellow. y identifies the training data ground truth. In contrast, −g(x) identifies the pseudo
targets computed from the training data features and ground truth.

22

3.4. Global Refinement for Linear Prediction Models

prediction models for regression in the form

m : ŷt(x) = wTx =

F∑
i=1

wixi, (3.2)

where w is a weight vector and x the feature vector of a sample. F is the number of

features or the dimensionality of x. GR for linear prediction models finds optimal weights

w for each leaf node by optimizing the same objective function as GR (see Equation 2.18).

However, the prediction of the RF which is a parameter of the objective function is

computed differently. We use the same notation as GR (see Equation 2.16)

ŷ(x) = F (x) = WΦLIN (x), (3.3)

but replace the indicator vector Φ(x) with the feature indicator vector ΦLIN (x). The

structure of W and ΦLIN (x) is shown in Figure 3.2. In contrast to GR, W horizontally

concatenates the weight vectors of all leaf nodes. The feature indicator matrix ΦLIN (x) is

a container for the feature vector x which also gives information about which leaf nodes a

sample falls into. Each entry of ΦLIN (x) is associated with one weight of W . This means

that each leaf node is associated with F entires of ΦLIN (x). F is the dimensionality of

x. If the sample x falls into a leaf, the associated F entries of ΦLIN (x) are set to the

corresponding features of x. Otherwise, the associated F entries are set to zero. It is

possible to stack the feature indicator vectors of multiple samples together

ΦLIN (X) =
[
ΦLIN (x1) ΦLIN (x2) · · · ΦLIN (xN)

]
, (3.4)

where the number of columns of ΦLIN (X) equals the number of samples N .

23

3. Loss-Specific Training of Random Forests

ΦLIN(X)

T1

x1 x2

m: ŷ = wT
1x

T2

x1
x2

{ x1, x2 }

m: ŷ = wT
2x

w
wA

wB
=

m: ŷ = wT
3x m: ŷ = wT

4x

x
xA

xB
=

x1A

x1B

0
0
x1A

x1B

0
0

x2A

x2B

0
0

0
0

x2A

x2B

Leaf

Samples

Weight

Leaf

Leaf

Leafw1A w1B w2A w2B w3A w3B w4A w4B

Leaf Leaf Leaf Leaf

W
Figure 3.2: An illustration of the structure of the leaf matrix W and the feature indicator matrix
ΦLIN (X). The two data samples x1 and x2 are sent to the root of each DT , from where they are
passed down until they reach a leaf node. Considering T1, the sample x1 falls into the left child
node. This leaf node is associated with the first and second row of the feature indicator matrix
ΦLIN (X), therefore, the first entry of the two rows is set the corresponding feature values x1A and
x1B . The weight vectors of all leaf nodes are horizontally concatenated to form the leaf matrix W .

24

CHAPTER 4

Evaluation

In this chapter we evaluate the methods presented in this work. We compare our proposed

methods (see Chapter 3) against existing approaches (see Chapter 2). We perform

experiments on standard machine learning tasks and single image Super-Resolution (SR).

Our experiments emphasize regression, but also present results for classification. We

evaluate different parameters and analyze specific properties of various Random Forest

(RF) approaches.

4.1 Standard Machine Learning Tasks

In this section we evaluate different RF approaches for standard machine learning

tasks. Standard machine learning tasks are publicly available data sets for different

applications [62]. These data sets can be used to benchmark different machine learning

algorithms. In this work we focus on data sets for classification and regression.

For data sets which do not provide a dedicated split into training and test samples,

we randomly split the data set into 60% training samples and 40% test samples [77, 89].

We use standard performance evaluation metrics for classification and regression [10]. We

perform 5 independent runs for each experiment [89, 90]. All Figures and Tables report

the mean and the standard deviation of the independent runs.

We combine different algorithms for growing the structure of Decision Trees (DTs)

with different refinement techniques. We report the performance of different methods

on all data sets. Additionally, we evaluate different parameters which are common to

all evaluated methods. In this case, we fix all parameters except for one and vary this

parameter within a specified range. The reason for this is that different methods perform

best with different parameters. Our experiments show that the performance of some

25

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

methods is strongly affected by specific parameters, while other methods are insensitive

to the same parameters.

For parameter evaluation, we do not present results for each data set. A detailed

parameter evaluation for all data sets goes beyond the scope of this work. Therefore, we

report results on a single data set. For each parameter, we present results on a different

data set to provide an unbiased evaluation. The reported results are representative for

the behavior across different data sets. Unless otherwise stated, the observed behavior is

reproducible on other data sets.

Our implementation is written in MATLAB R© and based upon the code of Dollár et

al. [19] and Schulter et al. [88]. For the implementation of refinement techniques we use

LIBLINEAR [26]. We use Eigen [39] to accelerate specific implementation steps.

4.1.1 Classification

The evaluated methods for classification are summarized in Table 4.1. We evaluate

two non-refinement approaches (RF and Alternating Decision Forest (ADF)) and three

refinement approaches. We employ Global Refinement (GR) for the leaf prediction model

optimization.

We do not present results for Intermediate Refined Random Forest (IRRF), because

this method shows incompatibilities for classification. Additionally, we do not present

results for ADF+GP, since Global Pruning (GP) has a number of disadvantages which we

discuss in Section 4.1.2.8. However, we evaluate RF+GP, since this method shows state of

the art performance for different machine learning tasks in terms of RF approaches [77].

In most experiments our proposed methods achieve competitive performance compared to

RF+GP.

Methods - Classification

Training

Name Structure Refinement

RF RF -
RF+GR RF GR
RF+GP RF GP

ADF ADF -
ADF+GR ADF GR

Table 4.1: Evaluated methods for classification.

We evaluate the different methods on 6 data sets for classification. The properties of

the data sets are summarized in Table 4.2. All 6 data sets represent multiclass classification

problems.

26

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.1. Standard Machine Learning Tasks

Data Sets - Classification

Data Set Train Test Features Classes

char74k 66 707 7 400 64 62
letter 16 000 4 000 16 26
mnist 60 000 10 000 784 10
pendigits 7 494 3 498 16 10
protein 14 895 6 621 357 3
usps 7 291 2 007 256 10

Table 4.2: Evaluated data sets for classification.

We evaluate the performance by computing the Misclassification Rate (MR) between

the ground truth and the prediction [10, 77, 90]. The lower the MR, the better the

performance. Unless otherwise stated, we use the parameters in Table 4.3 for all

experiments.

Default Parameters - Classification

Category Name Value

Complexity
Number of DTs 50
Threshold minCount 1
Threshold minChild 1

Randomness

Bagging Ratio 1.0
Bagging Replacement no
Subsampling at Node Level 25
Feature Subsampling F/2

Splits
Split Function Unary + Binary
Split Compactness Measure Shannon Entropy

Predictions Leaf Prediction Model constant

ADF ADF Loss Tangent Loss [90]

GR Refinement Classification Crammer and Singer [14]

GP
Pruning Iterations 300
Pruning Ratio 0.1
Pruning Strategy Least Significance

Table 4.3: Default parameters for classification. The role of the different parameters is explained
and evaluated in the individual subsections. Unless otherwise stated, these parameters are used
for all classification experiments.

4.1.1.1 Overall Results

In this experiment we compare the performance of different methods on all evaluated data

sets. We use the same parameters (see Table 4.3) for each method to obtain an unbiased

comparison. However, different methods perform best with different parameters. The most

27

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

important parameter concerning accuracy on previously unseen data is the maximum tree

depth Dmax (see Section 2.2.2.2). Therefore, we evaluate multiple Dmax for each method.

In this experiment we vary Dmax in the range [0,20] and select the best performing Dmax.

We report the MR and the corresponding Dmax for each method. Table 4.4 presents

experimental results for different methods on all evaluated data sets.

Overall Results - Classification

Methods

Data Set Property Scale RF RF+GR RF+GP ADF ADF+GR

char74k
MR ·10−1 1.63± 0.01 1.60± 0.01 1.58± 0.01 1.62± 0.01 1.59± 0.01
Dmax 20 20 20 20 20

mnist
MR ·10−2 3.37± 0.05 2.97± 0.02 2.88± 0.03 3.18± 0.07 2.74± 0.05
Dmax 20 16 20 20 16

letter
MR ·10−2 3.01± 0.30 2.75± 0.11 2.65± 0.14 2.85± 0.10 2.84± 0.12
Dmax 18 14 18 20 14

pendigits
MR ·10−2 2.91± 0.14 2.50± 0.08 2.50± 0.06 2.67± 0.06 2.52± 0.13
Dmax 14 10 16 12 12

protein
MR ·10−1 4.11± 0.01 4.03± 0.01 3.94± 0.01 4.13± 0.02 3.96± 0.02
Dmax 20 16 20 20 18

usps
MR ·10−2 5.73± 0.26 5.66± 0.08 5.43± 0.09 5.58± 0.14 5.63± 0.09
Dmax 20 8 14 20 8

Table 4.4: Overall results for classification. For each data set and each SR factor, the three best
performing methods are highlighted in shades of green.

On most data sets RF+GP shows the best performance. RF+GR and ADF+GR

achieve a similar level of performance compared to RF+GP. We observe that refinement

approaches outperform non-refinement approaches on almost all data sets for the best

performing Dmax.

Interestingly, refinement approaches perform best at lower Dmax, while non-refinement

approaches perform best at higher Dmax. RFs with lower Dmax correspond to simpler

models. Simpler models have multiple advantages including reduced model size, faster

training and faster testing.

Another interesting characteristic are the relearned leaf prediction models of refinement

approaches. For non-refinement approaches, each leaf nodes stores a class probability

distribution vector. The entries of this vector represent the probability of each class and

the sum of all class probabilities equals 1. In contrast to that, for refinement approaches,

each leaf node stores a vector of SVM decision values [11]. In this case, the prediction

of a single DT is more difficult to interpret compared to a class probability distribution

vector. As for non-refined RFs, the final prediction is made jointly by all DTs. However,

the final prediction does not represent a normalized probability either.

28

Reference:

 ()

4.1. Standard Machine Learning Tasks

4.1.2 Regression

The evaluated methods for regression are summarized in Table 4.5. We evaluate two

non-refinement approaches (RF and Alternating Regression Forest (ARF)) and six

refinement approaches. We employ GR and Additive Global Refinement (AGR) for the

leaf prediction model optimization. IRRF is a special refinement approach as growing

the structure of DTs and refinement are interweaved.

Methods - Regression

Training

Name Structure Refinement

RF RF -
RF+GR RF GR
RF+AGR RF AGR
RF+GP RF GP

ARF ARF -
ARF+GR ARF GR
ARF+AGR ARF AGR

IRRF ARF/AGR interweaved

Table 4.5: Evaluated methods for regression.

We do not present results for ARF+GP, since GP has a number of disadvantages which

we discuss in Section 4.1.2.8. However, we evaluate RF+GP, since this method shows state

of the art performance for different machine learning tasks in terms of RF approaches [77].

In most experiments our proposed methods achieve competitive performance compared to

RF+GP.

We evaluate the different methods on 22 data sets for regression. The properties of the

data sets are summarized in Table 4.6. All 22 data sets have an output dimensionality of

one which means the output is a continuous valued scalar.

We evaluate the performance by computing the Root Mean Squared Error (RMSE)

between the ground truth and the prediction [10, 77, 89]. The lower the RMSE , the better

the performance. The magnitude of the RMSE is different for each data set. Therefore,

we report the corresponding RMSE scale factor for each data set.

Unless otherwise stated, we use the parameters in Table 4.7 for all experiments. We use

the combined variance of the training data ground truth and features as a compactness

measure (see Section 2.2.2.1). However, we also present results for other compactness

measures.

In addition to constant prediction models, we evaluate linear prediction models for

regression (see Section 3.4). In this case, we perform locally linear regression at each leaf

node using the arriving training data. We use Tikhonov regularization [92] to compute

the weights for linear prediction models and employ a constant intercept term [67].

29

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

Data Sets - Regression

Data Set Train Test Features

abalone 239 159 8
ailerons 7 154 6 596 40
auto mpg 235 157 7
auto price 95 64 15
breast cancer 116 78 32
california housing 12 384 8 256 8
cart delve 24 461 16 307 10
cpu act 4 915 3 277 21
cpu small 4 915 3 277 12
delta ailerons 4 277 2 852 5
delta elevators 5 710 3 807 6
diabetes 26 17 2
elevators 8 752 7 847 18
friedman delve 24 461 16 307 10
housing 304 202 13
kinematics 4 915 3 277 8
machine 125 84 6
pol 5 000 10 000 48
pyrimidines 44 30 27
servo 100 67 4
stock airplanes 570 380 9
triazines 112 74 60

Table 4.6: Evaluated data sets for regression.

For regression, we apply min-max feature scaling to each data set [41]. The range

of each feature dimension is rescaled to [0, 1]. This prevents features with large numeric

ranges from dominating other features if the variance of the input space is included in

the evaluation of split parameter sets [85]. The preprocessing also improves the numeric

stability of linear prediction models.

4.1.2.1 Overall Results

In this experiment we compare the performance of different methods on all evaluated data

sets. We use the same parameters (see Table 4.7) for each method to obtain an unbiased

comparison. However, different methods perform best with different parameters. The most

important parameter concerning accuracy on previously unseen data is the maximum tree

depth Dmax (see Section 2.2.2.2). Therefore, we evaluate multiple Dmax for each method.

In this experiment we vary Dmax in the range [0,20] and select the best performing Dmax.

We report the RMSE and the corresponding Dmax for each method. Table 4.8 and 4.9

present experimental results for different methods on all evaluated data sets.

On most data sets non-refinement approaches (RF or ARF) show the best

performance. On some data sets refinement approaches (RF+GP, ARF+AGR or IRRF)

30

Reference:

 ()

Reference:

 ()

4.1. Standard Machine Learning Tasks

Default Parameters - Regression

Category Name Value

Complexity
Number of DTs 50
Threshold minCount 1
Threshold minChild 1

Randomness

Bagging Ratio 1.0
Bagging Replacement no
Subsampling at Node Level 25
Feature Subsampling F/2

Splits
Split Function Unary + Binary
Split Compactness Measure Variance (GT + F)

Predictions
Leaf Prediction Model constant
Tikhonov Regularization Term 0.05

ARF ARF Loss Squared Loss

GR
Refinement Regularization 0.05
Refinement Loss L2 Loss

GP
Pruning Iterations 300
Pruning Ratio 0.1
Pruning Strategy Least Significance

Table 4.7: Default parameters for regression. The role of the different parameters is explained
and evaluated in the individual subsections. Unless otherwise stated, these parameters are used
for all regression experiments.

show the best performance. More importantly, the performance of all evaluated methods

is approximately the same for most data set.

The key finding of this experiment is that non-refinement approaches and refinement

approaches show a similar level of performance, but refinement approaches achieve this

level of performance with significantly lower Dmax. Across all data sets the average Dmax

leading to best performance is 12 for non-refinement approaches and 5 for refinement

approaches. RFs with lower Dmax correspond to simpler models. Simpler models have

multiple advantages including reduced model size, faster training and faster testing. In

the following subsection we discuss this phenomenon in detail.

4.1.2.2 Maximum Depth

In the following experiments we show the effect of the maximum tree depth Dmax on

different methods. Dmax directly controls the model complexity. The model size increases

exponentially with Dmax (see Section 4.1.2.11). We present results on the data set

elevators. This data set has a medium number of training samples (8 752) and a medium

number of features (18). Previous works show that ARFs significantly improve upon

standard RFs on this data set [89].

31

Reference:

 ()

4. Evaluation
O

v
e
ra

ll
R

e
su

lt
s

-
R

e
g
re

ss
io

n
-

P
a
rt

1

M
et
h
o
d
s

D
a
ta

S
et

P
ro
p
er
ty

S
ca
le

R
F

R
F
+
G
R

R
F
+
A
G
R

R
F
+
G
P

A
R
F

A
R
F
+
G
R

A
R
F
+
A
G
R

IR
R
F

a
b
a
lo
n
e

R
M
S
E

·1
0
0

2
.3
8
±

0
.0
1

2
.5
1
±

0
.0
4

2
.5
1
±

0
.0
5

2
.4
2
±

0
.0
7

2
.3
8
±

0
.0
3

2
.5
1
±

0
.0
8

2
.4
9
±

0
.0
6

2
.4
7
±

0
.1
0

D
m

a
x

4
2

1
3

4
2

2
2

a
il
er
o
n
s

R
M
S
E

·1
0
−
4

1
.7
4
±

0
.0
1

1
.8
0
±

0
.0
1

1
.8
0
±

0
.0
1

1
.8
0
±

0
.0
1

1
.6
8
±

0
.0
1

1
.7
7
±

0
.0
1

1
.7
6
±

0
.0
1

1
.8
0
±

0
.0
1

D
m

a
x

2
0

4
4

4
1
4

4
4

3

a
u
to

m
p
g

R
M
S
E

·1
0
0

3
.1
4
±

0
.0
3

3
.1
7
±

0
.0
5

3
.1
6
±

0
.0
3

3
.1
4
±

0
.0
6

3
.1
0
±

0
.0
3

3
.2
2
±

0
.0
8

3
.1
9
±

0
.0
2

3
.2
6
±

0
.0
4

D
m

a
x

7
4

4
6

6
4

4
2

a
u
to

p
ri
ce

R
M
S
E

·1
0
3

1
.6
3
±

0
.0
9

2
.0
1
±

0
.1
1

1
.6
0
±

0
.0
8

1
.8
4
±

0
.7

1
.7
1
±

0
.0
8

1
.9
9
±

0
.1
2

1
.7
2
±

0
.1
0

1
.7
8
±

0
.1
4

D
m

a
x

7
3

6
3

6
2

4
3

b
re
a
st

ca
n
ce
r

R
M
S
E

·1
0
1

3
.2
9
±

0
.0
1

3
.5
3
±

0
.1
4

3
.5
7
±

0
.0
3

3
.3
1
±

0
.1
7

3
.2
8
±

0
.0
1

3
.4
5
±

0
.1
8

3
.4
9
±

0
.1
3

3
.5
4
±

0
.1
6

D
m

a
x

2
1

1
1

2
1

1
1

ca
li
fo
rn
ia

h
o
u
si
n
g

R
M
S
E

·1
0
4

5
.5
3
±

0
.0
1

5
.7
3
±

0
.0
2

5
.6
5
±

0
.0
2

5
.5
6
±

0
.0
2

5
.3
1
±

0
.0
1

5
.6
6
±

0
.0
3

5
.5
6
±

0
.0
2

5
.9
8
±

0
.0
4

D
m

a
x

2
0

9
9

1
2

2
0

7
9

7

ca
rt

d
el
v
e

R
M
S
E

·1
0
0

1
.0
1
±

0
.0
1

1
.0
0
±

0
.0
1

0
.9
9
±

0
.0
1

0
.9
4
±

0
.0
1

1
.0
1
±

0
.0
1

1
.0
0
±

0
.0
1

0
.9
8
±

0
.0
1

1
.0
0
±

0
.0
1

D
m

a
x

1
0

4
3

6
9

4
3

3

cp
u
a
ct

R
M
S
E

·1
0
0

2
.5
4
±

0
.0
2

2
.6
8
±

0
.0
1

2
.6
1
±

0
.0
1

2
.6
5
±

0
.0
1

2
.4
1
±

0
.0
1

2
.6
3
±

0
.0
1

2
.4
9
±

0
.0
2

2
.6
2
±

0
.0
3

D
m

a
x

2
0

5
8

8
2
0

4
8

5

cp
u
sm

a
ll

R
M
S
E

·1
0
0

2
.8
9
±

0
.0
1

3
.1
5
±

0
.0
6

3
.0
3
±

0
.0
1

3
.0
6
±

0
.0
5

2
.7
8
±

0
.0
3

3
.0
5
±

0
.0
5

2
.9
0
±

0
.0
3

3
.0
8
±

0
.0
2

D
m

a
x

1
8

6
8

8
2
0

4
8

6

d
el
ta

a
il
er
o
n
s

R
M
S
E

·1
0
−
4

1
.6
6
±

0
.0
1

1
.6
4
±

0
.0
2

1
.6
3
±

0
.0
1

1
.6
5
±

0
.0
1

1
.6
4
±

0
.0
1

1
.6
6
±

0
.0
1

1
.6
5
±

0
.0
1

1
.6
5
±

0
.0
1

D
m

a
x

1
2

3
4

5
1
0

3
3

3

d
el
ta

el
ev
a
to
rs

R
M
S
E

·1
0
−
3

1
.4
5
±

0
.0
1

1
.4
8
±

0
.0
1

1
.4
7
±

0
.0
1

1
.4
6
±

0
.0
1

1
.4
4
±

0
.0
1

1
.4
7
±

0
.0
1

1
.4
7
±

0
.0
1

1
.4
7
±

0
.0
1

D
m

a
x

1
2

2
3

4
9

2
2

2

T
a
b

le
4
.8

:
O

ve
ra

ll
re

su
lt

s
fo

r
re

gr
es

si
on

.
F

or
ea

ch
d

a
ta

se
t,

th
e

th
re

e
b

es
t

p
er

fo
rm

in
g

m
et

h
o
d
s

a
re

h
ig

h
li

g
h
te

d
in

sh
a
d

es
o
f

g
re

en
.

32

4.1. Standard Machine Learning Tasks
O

v
e
ra

ll
R

e
su

lt
s

-
R

e
g
re

ss
io

n
-

P
a
rt

2

M
et
h
o
d
s

D
a
ta

S
et

P
ro
p
er
ty

S
ca
le

R
F

R
F
+
G
R

R
F
+
A
G
R

R
F
+
G
P

A
R
F

A
R
F
+
G
R

A
R
F
+
A
G
R

IR
R
F

d
ia
b
et
es

R
M
S
E

·1
0
−
1

6
.0
2
±

0
.1
9

6
.0
7
±

0
.0
6

5
.8
6
±

0
.0
2

5
.7
4
±

0
.3
7

5
.6
7
±

0
.1
5

5
.9
5
±

0
.1
4

5
.6
6
±

0
.1
7

6
.3
1
±

0
.0
1

D
m

a
x

5
2

2
5

4
2

4
1

el
ev
a
to
rs

R
M
S
E

·1
0
−
3

3
.1
5
±

0
.0
1

2
.9
8
±

0
.0
4

2
.8
7
±

0
.0
3

2
.7
7
±

0
.0
4

2
.7
6
±

0
.0
1

2
.9
5
±

0
.0
4

2
.7
3
±

0
.0
2

2
.9
6
±

0
.0
9

D
m

a
x

1
8

6
6

1
2

2
0

6
1
2

6

fr
ie
d
m
a
n
d
el
v
e

R
M
S
E

·1
0
0

1
.5
0
±

0
.0
1

1
.3
5
±

0
.0
6

1
.3
0
±

0
.0
3

1
.3
2
±

0
.0
2

1
.1
7
±

0
.0
1

1
.2
3
±

0
.0
1

1
.2
2
±

0
.0
1

1
.3
0
±

0
.0
1

D
m

a
x

2
0

6
7

8
2
0

6
7

5

h
o
u
si
n
g

R
M
S
E

·1
0
0

3
.6
9
±

0
.0
3

4
.0
9
±

0
.2
1

3
.6
8
±

0
.2
1

4
.0
4
±

0
.1
5

3
.7
2
±

0
.0
4

3
.9
8
±

0
.1
3

3
.5
2
±

0
.1
9

3
.5
9
±

0
.1
5

D
m

a
x

1
1

4
7

4
1
1

4
6

6

k
in
em

a
ti
cs

R
M
S
E

·1
0
−
1

1
.2
6
±

0
.0
1

1
.2
2
±

0
.0
2

1
.1
6
±

0
.0
2

1
.2
1
±

0
.0
2

1
.1
0
±

0
.0
1

1
.2
1
±

0
.0
3

1
.1
1
±

0
.0
1

1
.3
8
±

0
.0
4

D
m

a
x

1
8

8
9

9
1
9

8
1
0

6

m
a
ch
in
e

R
M
S
E

·1
0
1

3
.5
3
±

0
.0
4

3
.9
1
±

0
.1
6

3
.7
1
±

0
.0
8

3
.4
4
±

0
.1
3

3
.9
4
±

0
.2
5

3
.8
9
±

0
.2
5

4
.0
5
±

0
.2
4

4
.6
6
±

0
.3
2

D
m

a
x

1
1

6
6

7
8

7
4

6

p
o
l

R
M
S
E

·1
0
0

6
.2
4
±

0
.0
7

6
.0
4
±

0
.0
5

5
.9
4
±

0
.0
7

5
.8
6
±

0
.1
1

6
.4
1
±

0
.0
5

6
.2
7
±

0
.1
3

6
.1
7
±

0
.0
8

9
.0
6
±

0
.4
7

D
m

a
x

2
0

1
0

1
0

1
4

2
0

9
1
2

8

p
y
ri
m
id
in
es

R
M
S
E

·1
0
−
2

5
.6
3
±

0
.3
1

6
.0
2
±

0
.1
4

5
.4
7
±

0
.1
7

5
.7
8
±

0
.3
1

5
.0
5
±

0
.0
8

6
.3
3
±

0
.3
0

5
.3
5
±

0
.1
3

5
.1
2
±

0
.0
8

D
m

a
x

1
0

2
5

2
1
0

2
5

3

se
rv
o

R
M
S
E

·1
0
−
1

4
.5
0
±

0
.1
7

4
.3
5
±

0
.4
2

3
.4
3
±

0
.3
5

3
.5
4
±

0
.2
3

4
.1
6
±

0
.2
0

4
.3
7
±

0
.2
9

3
.2
9
±

0
.0
6

3
.1
6
±

0
.1
9

D
m

a
x

7
4

4
5

1
0

4
5

6

st
o
ck

a
ir
p
la
n
e

R
M
S
E

·1
0
0

0
.6
9
±

0
.0
1

1
.1
8
±

0
.0
1

0
.7
0
±

0
.0
2

1
.1
5
±

0
.0
2

0
.7
3
±

0
.0
2

1
.1
8
±

0
.0
3

0
.7
2
±

0
.0
1

0
.9
0
±

0
.0
2

D
m

a
x

1
8

3
1
0

4
1
4

3
8

9

tr
ia
zi
n
es

R
M
S
E

·1
0
−
1

1
.2
5
±

0
.0
4

1
.4
0
±

0
.0
6

1
.3
2
±

0
.0
5

1
.2
3
±

0
.0
4

1
.2
4
±

0
.0
5

1
.3
6
±

0
.0
8

1
.3
2
±

0
.0
4

1
.4
4
±

0
.1
1

D
m

a
x

6
3

3
8

6
2

2
2

T
a
b

le
4
.9

:
O

ve
ra

ll
re

su
lt

s
fo

r
re

gr
es

si
on

.
F

or
ea

ch
d

a
ta

se
t,

th
e

th
re

e
b

es
t

p
er

fo
rm

in
g

m
et

h
o
d
s

a
re

h
ig

h
li

g
h
te

d
in

sh
a
d

es
o
f

g
re

en
.

33

4. Evaluation

Constant Prediction Models

Figure 4.1 presents results for different Dmax using constant prediction models. In this

experiment we vary Dmax in the range [0,20].

0 5 10 15 20

3

4

5

6

·10−3

Dmax

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

0 5 10 15 20

3

4

5

6

·10−3

Dmax

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.1: Evaluation of the maximum tree depth for Dmax for constant prediction models.

For low depths (Dmax ≤ 4), refinement approaches significantly outperform

non-refinement approaches. All refinement approaches perform similar for low depths.

For low depths, the performance of refinement techniques is independent of the

underlying DT growing scheme (RF or ARF). IRRF is on par with single refinement

approaches for low depths.

For high depths (Dmax ≥ 10), non-refinement approaches are competitive to refinement

approaches. GR shows severe overfitting for high depths. AGR shows reduced overfitting

compared to GR for high depths. However, AGR cannot improve upon the underlying DT

growing scheme (RF or ARF) for high depths. IRRF shows overfitting for high depths.

GP does not show overfitting.

Figure 4.1 shows that non-refinement approaches perform best with deep DTs. Deep

DTs correspond to complex models with large model sizes. In contrast to that, refinement

approaches perform best with shallow DTs. Refinement approaches cannot improve the

performance as Dmax increases. Instead, refinement techniques like GR show severe

overfitting for high depths. AGR and GP reduce overfitting, but fail to improve the

performance for high depths.

34

4.1. Standard Machine Learning Tasks

Linear Prediction Models

Figure 4.2 presents results for different Dmax using linear prediction models. In this

experiment we vary Dmax in the range [0,10].

0 2 4 6 8 10
2

2.5

3

3.5

4
·10−3

Dmax

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

0 2 4 6 8 10
2

2.5

3

3.5

4
·10−3

Dmax

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.2: Evaluation of the maximum tree depth for Dmax for linear prediction models.

We observe the same behavior as for constant prediction models. Refinement

approaches outperform non-refinement approaches for low Dmax, but show overfitting for

high Dmax. Due to the increased fitting power of linear prediction models the behavior is

intensified. Overfitting already occurs at medium depths (Dmax ≥ 4). For high depths

(Dmax ≥ 8), even non-refinement approaches show overfitting. Only ARF is robust to

overfitting.

ARF+AGR shows a special behavior. Overfitting starts at medium depths (Dmax ≥ 4),

but decreases again for high depths (Dmax ≥ 10). We hypothesize that one reason for this

is that ARF+AGR performs a refinement which targets residuals obtained by evaluating

an ARF . These residuals have low norm as deep ARFs almost perfectly fit the training

data. The RMSE of ARFs on the test data set saturates for high Dmax, but the RMSE

on the training data set continuously decreases. AGR overfits the residuals, but the

contribution of the refinement to the existing prediction models is negligible, due to the

low norm. The higher Dmax, the lower the norm. ARF+AGR benefits from the strong

fitting power and robustness to overfitting of deep ARFs. The described behavior is also

observable in Figure 4.3 and Figure 4.4.

35

4. Evaluation

Constant versus Linear Prediction Models

Next, we compare the performance of constant and linear prediction models. Figure 4.3

presents results for one non-refinement approach (RF) and one refinement approach

(ARF+AGR) on the data set elevators. In this experiment we vary Dmax in the range

[0,20].

0 5 10 15 20
2

3

4

5

6

·10−3

Dmax

R
M

S
E

RF constant

RF linear

0 5 10 15 20
2

3

4

5

6

·10−3

Dmax

R
M

S
E

ARF+AGR constant

ARF+AGR linear

Figure 4.3: Comparison of constant and linear prediction models on the data set elevators. The
observed data set has a feature dimensionality of 18.

0 5 10 15 20
1.5

2

2.5

3

·10−4

Dmax

R
M

S
E

RF constant

RF linear

0 5 10 15 20
1.5

2

2.5

3

·10−4

Dmax

R
M

S
E

ARF+AGR constant

ARF+AGR linear

Figure 4.4: Comparison of constant and linear prediction models on the data set delta ailerons.
The observed data set has a feature dimensionality of 5.

36

4.1. Standard Machine Learning Tasks

Linear prediction models outperform constant prediction models in this experiment.

In fact, simple linear regression at Dmax = 0 performs better than RF with constant

prediction models at Dmax = 20. Linear prediction models benefit from a high number of

features. The observed data set elevators has a feature dimensionality of 18.

The improvement achieved by linear prediction models is different for other data sets.

The performance gap vanishes if the feature dimensionality is low. Figure 4.4 presents

results on the data set delta ailerons. This data set has a feature dimensionality of 5.

The performance of constant prediction models is on par with linear prediction models for

Dmax ≥ 2 on this data set.

4.1.2.3 Early Stopping

In this experiment we show the effect of early stopping apart from explicitly restricting

Dmax on different methods. During the training of DTs the greedy partitioning of the

training data is stopped if: i) the number of training samples arriving at a node is below

a predefined threshold (minCount); ii) the size of one of the two subsets generated by a

split is below a predefined threshold (minChild).

These techniques indirectly control the model complexity. High values for minCount

and minChild result in reduced model size. In contrast, restricting Dmax gives more precise

control over the model complexity as the resulting DTs have 2Dmax+1 − 1 nodes at most.

We present results on the data set stock airplane. This data set has a medium number

of training samples (570) and a low number of features (9). Figure 4.5 presents results for

different minCount and minChild thresholds. We do not restrict Dmax in this experiment.

1/
1

5/
2

20
/5

10
0/

25

25
0/

10
0

0

2

4

6

minCount/minChild

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

1/
1

5/
2

20
/5

10
0/

25

25
0/

10
0

0

2

4

6

minCount/minChild

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.5: Evaluation of Early Stopping.

37

4. Evaluation

Non-refinement approaches perform best with fully grown DTs (minCount=1

and minChild=1) which correspond to complex models with large model sizes. The

performance of non-refinement approaches decreases as both thresholds increase.

Refinement approaches perform significantly better than non-refinement approaches

for high thresholds which correspond to less complex models with smaller model sizes.

Refinement approaches show only slightly improved performance as the model complexity

increases. For simple models, all refinement approaches perform equally.

For complex models, non-refinement approach and refinement approaches which reduce

overfitting perform equally. GR shows severe overfitting for fully grown DTs.

4.1.2.4 Number of Decision Trees

In this experiment we show the effect of the number of DTs of an ensemble on different

methods. Similar to Dmax (see Section 4.1.2.2), the number of DTs directly controls the

model complexity. We point out that the model size increases exponentially with Dmax,

but only linearly with the number of DTs (see Section 4.1.2.11).

We present results on the data set cpu small. This data set has a medium number

of training samples (4 915) and a medium number of features (12). Previous works show

that ARFs and RF+GP significantly improve upon standard RFs on this data set [77, 89].

Figure 4.6 presents results for different numbers of DTs. In this experiment we vary the

number of DTs in the range [1,500]. We use constant prediction models and set Dmax to

5. At this depth refinement techniques do not overfit. The selected Dmax is specific to the

data set cpu small.

1 5 10 25 50 10
0

25
0

50
0

2

4

6

8

Number of DTs

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

1 5 10 25 50 10
0

25
0

50
0

2

4

6

8

Number of DTs

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.6: Evaluation of the number of DTs.

38

Reference:

 ()

4.1. Standard Machine Learning Tasks

All methods show low performance when the number of DTs is small. As the number

of DTs rises, the performance increases, but the effect saturates at some point. The

experiment confirms the proposition of Breiman [8] which states that RFs do not overfit

when more DTs are added to the ensemble, as long as the correlation between the

individual DTs is low.

In contrast to that, refinement approaches show small overfitting, when the number

of DTs is too high. We hypothesize that one reason for this is that the support vector

regression performed by LIBLINEAR is more prone to overfitting if the input feature

dimensionality of the refinement problem is high, due to the curse of dimensionality [25].

The higher the number of DTs, the higher the input feature dimensionality of the

refinement problem.

Figure 4.6 shows that the standard deviation decreases as the number of DTs rises.

This experiment confirms that ensembles of DTs reduce variance compared to a single

DT (see Section 2.3).

4.1.2.5 Randomness

In the following experiments we show the effect of randomness on different methods. We

investigate multiple parameters, which control the amount of randomness injected into

the training. We use multiple techniques for injecting randomness into the training. We

employ Bagging, feature subsampling and subsampling at node level (see Section 2.3).

We present results on the data set ailerons (see Table 4.6). This data set has a medium

number of training samples (7 154) and a high number of features (40). Previous works

show that ARFs and RF+GP significantly improve upon standard RFs on this data

set [77, 89]. In the following experiments we use constant prediction models and set Dmax

to 4. At this depth refinement techniques do not overfit. The selected Dmax is specific to

the data set ailerons.

Bagging

Each DT is trained on a different data set which is generated by Bagging [7]. We

report results for Bagging with and without replacement and different Bagging ratios.

The Bagging ratio denotes the size of the bagged data set relative to the original data set.

A low Bagging ratio corresponds to more decorrelated DTs. Additionally, a low Bagging

ratio decreases the training time.

Figure 4.7 and 4.8 present results for different Bagging ratios and replacement

strategies. In this experiment we vary the Bagging ratio in the range [0.25,1].

All evaluated methods are insensitive to the selected Bagging ratio. Additionally, there

is no performance difference between Bagging with or without replacement. One reason for

this is that we employ subsampling at node level which decreases the influence of Bagging

on the performance. Subsampling at node level is analyzed later in this subsection.

39

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

0.25 0.5 0.75 1

2

2.5

3
·10−4

Bagging Ratio

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

0.25 0.5 0.75 1

2

2.5

3
·10−4

Bagging Ratio

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.7: Evaluation of Bagging without replacement.

0.25 0.5 0.75 1

2

2.5

3
·10−4

Bagging Ratio

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

0.25 0.5 0.75 1

2

2.5

3
·10−4

Bagging Ratio

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.8: Evaluation of Bagging with replacement.

Due to the low Dmax of 4, we do not obtain fully grown DTs for low Bagging ratios.

For a Bagging ratio of 0.25, the mean number of samples arriving at a leaf node is 100.

As the performance of all methods is not affected by Bagging in our configuration, we

can employ low Bagging ratios to speed up the training as long as the number of DTs is

sufficiently high.

40

4.1. Standard Machine Learning Tasks

Feature Subsampling

At each split node the feature dimensionality of the arriving training data is

subsampled. Therefore, the training of the split ignores certain features. A low number of

subsampled features corresponds to more decorrelated DTs. Additionally, a low number

of subsampled features decreases the training time, because the number of evaluated split

parameter sets is dependent of the number of analyzed features in our implementation.

Figure 4.9 presents results for different feature subsampling values. In this experiment

we vary the number of features used to train a split in the range [1,40]. The feature

dimensionality of the observed data set ailerons is 40.

1 2 6 10 20 40

2

2.5

3

·10−4

Subfeatures

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

1 2 6 10 20 40

2

2.5

3

·10−4

Subfeatures

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.9: Evaluation of feature subsampling.

Non-refinement approaches like RFs and ARFs benefit from a high number of analyzed

features. Refinement approaches are less sensitive to this parameter, but perform better

for a high number of analyzed features.

A high number of features corresponds to a less randomized selection of the thresholded

feature dimension. Analyzing a high number of features increases the training time of splits

and may increase the correlation of the individual DTs.

Subsampling at Node Level

At each split node the number of arriving training samples is subsampled if it is

above a predefined threshold. The subsampled training data is used to optimize the split

performed by the node. A low number of subsamples corresponds to more decorrelated

DTs. Additionally, a low number of subsamples decreases the training time.

41

4. Evaluation

Figure 4.10 presents results for different subsampling thresholds at node level. In this

experiment we vary the number of subsamples used to train a split in the range [5,10 000].

The number of training samples of the observed data set ailerons is 7 154.

5 10 25 50 10
0

50
0

2 50
0

10
00

0

2

2.5

3
·10−4

Subsamples

R
M

S
E

RF
RF+GR
RF+AGR
RF+GP

5 10 25 50 10
0

50
0

2 50
0

10
00

0

2

2.5

3
·10−4

Subsamples

R
M

S
E

ARF
ARF+GR
ARF+AGR
IRRF

Figure 4.10: Evaluation of subsampling at node level.

Non-refinement approaches like RFs and ARFs benefit from a high number of

subsamples. This means that the threshold selection for each split is more precise.

Refinement approaches are insensitive to this parameter.

If the subsampling threshold is too high, the performance of all methods slightly

decreases. One reason for this is that the individual DTs are more correlated if a high

number of subsamples is analyzed at each node. A low number of subsamples corresponds

to a more randomized selection of the split threshold.

We observe that the accuracy of splits increases as the number of arriving training

samples decreases. As a result, the splits in early depth levels are more randomized.

Interaction of Feature Subsampling and Subsampling at Node Level

To conclude the evaluation of randomness, we present results on the interaction of

feature subsampling and subsampling at node level. Both parameters influence the training

of splits. We present results for one non-refinement approach (RF) and one refinement

approach (ARF+AGR).

Table 4.10 and 4.11 present results for different feature subsampling and subsampling

at node level thresholds. In this experiment we vary the number of subsampled features

in the range [2,40] and the number of subsamples in the range [10,10 000].

42

4.1. Standard Machine Learning Tasks

Subsamples

10 25 100 500 2500 10000

S
u

b
fe

at
u

re
s

2 2.99± 0.02 2.94± 0.03 2.92± 0.03 2.93± 0.04 2.95± 0.04 2.95± 0.03

6 2.79± 0.06 2.66± 0.05 2.54± 0.05 2.55± 0.04 2.56± 0.05 2.57± 0.03

10 2.70± 0.05 2.51± 0.05 2.35± 0.02 2.32± 0.03 2.32± 0.06 2.34± 0.05

20 2.55± 0.03 2.36± 0.03 2.16± 0.02 2.10± 0.01 2.11± 0.01 2.12± 0.01

40 2.52± 0.04 2.25± 0.02 2.06± 0.01 2.03± 0.01 2.05± 0.01 2.08± 0.01

Table 4.10: Interaction of feature subsampling and subsampling at node level for RF . The
reported results show the RMSE on the test data set with scale ·10−4.

Subsamples

10 25 100 500 2500 10000

S
u

b
fe

at
u

re
s

2 1.89± 0.04 1.87± 0.03 1.93± 0.05 1.95± 0.03 1.99± 0.03 2.01± 0.04

6 1.81± 0.03 1.78± 0.02 1.81± 0.02 1.85± 0.02 1.85± 0.02 1.86± 0.01

10 1.79± 0.02 1.78± 0.02 1.78± 0.02 1.82± 0.02 1.83± 0.01 1.84± 0.01

20 1.77± 0.02 1.76± 0.02 1.77± 0.02 1.81± 0.01 1.82± 0.01 1.83± 0.02

40 1.77± 0.01 1.76± 0.01 1.76± 0.02 1.82± 0.01 1.85± 0.01 1.88± 0.01

Table 4.11: Interaction of feature subsampling and subsampling at node level for ARF+AGR.
The reported results show the RMSE on the test data set with scale ·10−4.

RF performs best, when the number of features and the number of subsamples is

high. ARF+AGR performs best, when the number of features is high, but the number of

subsamples is low. Both non-refinement and refinement approaches benefit from a high

number of analyzed feature dimensions.

In contrast to refinement approaches, non-refinement approaches benefit from a high

subsampling threshold at node level. We hypothesize that one reason for this is the low

Dmax of 4 in this experiment. The average number of samples arriving at each leaf is 400.

Therefore, non-refinement approaches prefer DTs with accurate splits to have samples

with as little as possible variance at each leaf.

43

4. Evaluation

For refinement approaches, the leaf model optimization focuses on specific leaves from

few DTs, while the contribution of leaves from other DTs is low. Therefore, refinement

approaches are more robust to outliers in leaf nodes.

The lowest randomness is injected if all feature dimension (40) and all arriving

subsamples (10 000) are analyzed. In this case, the individual DTs are almost identical.

However, there is little standard deviation in the results, because we additionally observe

a number of randomly selected binary features at each split node.

For standard RFs, which employ Bagging and feature subsampling, Breiman [8]

recommends to set the number of analyzed feature dimensions to
√
F , where F is the

feature dimensionality. Our experiments show that it is advisable to analyze more feature

dimension when subsampling at node level is additionally employed [33, 48]. We propose

to evaluate F/2 feature dimensions at each split node for this configuration.

4.1.2.6 Split Functions

In this experiment we show the effect of different split function compactness measures.

We evaluate three compactness measures: i) the combined variance of the training data

ground truth and features; ii) the variance of the training data ground truth; iii) random

splits for which no compactness measure is computed [36].

elevators

Compactness Measures

Method Property Variance (GT+F) Variance (GT) Random

RF
RMSE 3.15± 0.01 3.15± 0.02 5.03± 0.12
Dmax 18 20 20

RF+GR
RMSE 2.98± 0.04 2.97± 0.03 3.59± 0.08
Dmax 6 6 8

RF+AGR
RMSE 2.87± 0.03 2.89± 0.04 3.50± 0.09
Dmax 6 6 8

RF+GP
RMSE 2.77± 0.04 2.76± 0.04 3.55± 0.05
Dmax 12 11 13

ARF
RMSE 2.76± 0.01 2.73± 0.04 4.28± 0.07
Dmax 20 20 20

ARF+GR
RMSE 2.95± 0.04 2.95± 0.05 3.58± 0.08
Dmax 6 6 7

ARF+AGR
RMSE 2.73± 0.02 2.78± 0.06 3.55± 0.11
Dmax 12 10 10

IRRF
RMSE 2.96± 0.09 2.99± 0.10 3.66± 0.07
Dmax 6 6 6

.

Table 4.12: Evaluation of compactness measures. The reported results show the RMSE on the
test data set with scale ·10−3 and used Dmax

44

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.1. Standard Machine Learning Tasks

We present results on the data set elevators. Table 4.12 presents results for different

compactness measures. In this experiment we vary Dmax in the range [0,20] and select

the best performing Dmax. We report the RMSE and the corresponding Dmax for each

method.

RFs with totally randomized splits perform significantly worse than RFs with splits

optimized based on variance compactness measures. The best performing Dmax is similar

for all compactness measures.

There is no performance difference between variance compactness measures in this

experiment. However, we employ the variance of the training data ground truth and

features, since linear prediction models benefit from less feature variance between arriving

training samples.

4.1.2.7 Global Refinement

In the following experiments we analyze various characteristics of GR. We evaluate the

effect of regularization and benchmark different convex loss functions. We present results

on the data set kinematics. This data set has a medium number of training samples (4 915)

and a low number of features (8).

Regularization

In this experiment we show the effect of regularization on GR. In Equation 2.18 the

Euclidean norm of the weights is minimized to reduce the risk of overfitting [92]. The

regularization is controlled by the parameter C. High values for C correspond to low

regularization.

Figure 4.11 presents results for GR with different C compared to RF . In this

experiment we vary C in the range [0.001,1] and Dmax in the range [0,14].

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

Dmax

R
M

S
E

RF
RF+GR, C=1
RF+GR, C=0.1
RF+GR, C=0.01
RF+GR, C=0.001

Figure 4.11: Evaluation of regularization for GR.

45

Reference:

 ()

4. Evaluation

GR with low regularization (C = 1) is prone to overfitting for deep DTs. For high

Dmax the number of training samples arriving at each leaf node is low and GR overfits

the training data.

Interestingly, GR with high regularization (C = 0.001) does not reduce overfitting for

deep DTs. Instead, GR with C = 0.001 underfits the training data for Dmax ≥ 4. One

reason for this is that, the data term in Equation 2.18 is almost ignored and the refinement

only focuses on finding weights with low norm.

We conclude that the regularization techniques employed in Equation 2.18 are not

sufficient to prevent overfitting or underfitting for deep RFs. As a result, non-refined RFs

outperform GR for deep DTs independent of C.

Convex Loss Function

In [77] GR minimizes a convex L2 regularized optimization problem (see

Equation 2.18). However, the convex loss function L(·) is not specified. LIBLINEAR [26]

implements L1 loss and L2 loss support vector regression. L1 loss is more robust to

outliers, while L2 loss enforces a low error for all data samples. One reason for this is

that there is less penalization for outliers using L1 loss compared to L2 loss.

Figure 4.12 presents results for GR with L1 loss and L2 loss compared to RF . In this

experiment GR with L2 loss performs slightly better than GR with L1 loss. For data sets

with more noise or outliers, GR with L1 loss may perform better.

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

Dmax

R
M

S
E

RF

RF+GR, L1-loss

RF+GR, L2-loss

Figure 4.12: Evaluation of loss function for GR.

Additionally, there are LIBLINEAR extensions which support parallel L2 loss

minimization [59] and incremental learning for L2 loss minimization [96]. These

extensions can be used to speed up the training.

46

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.1. Standard Machine Learning Tasks

4.1.2.8 Global Pruning

In the following experiments we analyze various characteristics of GP . We observe the

progression of GP over multiple iterations, evaluate different pruning parameters and

benchmark different pruning strategies. We present results on the data set elevators.

GP needs an validation data set. Due to the limited number of available data samples

in standard machine learning tasks, we use the test data set for validation. This means

that GP is indirectly trained on the test data set and the learned predictor is biased.

Despite this statistically incorrect learning, our experiments show that the performance

of GP is not superior to other methods.

Progression of Global Pruning

Figure 4.13 shows the progression of GP over multiple iterations compared to RF . In

this experiment we set Dmax to 12 and perform 300 pruning iterations. At this depth GR

alone already shows overfitting (see Figure 4.1).

0 100 200 300

3

3.5

4

·10−3

4 150 Nodes

Iterations

R
M

S
E

RF
RF+GP
Best RF+GP

0 100 200 300
0

0.5

1

·105

4 150 Nodes

Iterations

C
ou

n
t

Nodes
Leaves

Mergeable Leaves

Figure 4.13: Progression of GP over multiple iterations.

At iteration 0 a single refinement pass is performed, but no pruning is done yet. At

this point the performance of GP is equal to GR and shows overfitting compared to

RF . In the beginning iterative GP significantly reduces overfitting, until iteration 90.

Between iteration 90 and 150 the performance is virtually constant. After 150 iterations

the performance starts to decrease and GP shows underfitting.

47

4. Evaluation

At iteration 0 the RF consists of 106 450 nodes. At iteration 300 the RF consists

of 268 nodes. The best performing RF is obtained after 122 iterations and consists of

4 150 nodes, which corresponds to an average of 83 nodes per DT . This node count is

comparable to a balanced RF with Dmax = 5 (63 nodes per DT).

Analogous to previous experiments (see Section 4.1.2.2), GR performs best with

simpler models, while RF performs best with complex models. This behavior is

reproducible for different Dmax and different data sets.

Pruning Ratio

In this experiment we show the effect of different pruning ratios. The pruning ratio

determines which percentage of all fusible leaves is merged in each iteration. High pruning

ratios corresponds to fast reduction in model complexity.

Figure 4.14 presents results for different pruning ratios. In this experiment we vary

the pruning ratio in the range [0.05,0.5]. Other than that, we use the same parameters as

in the previous experiment.

0 100 200 300

2.5

3

3.5

4

·10−3

3 110 Nodes3 478
4 116

4 438

6 040

Iterations

R
M

S
E

RF
RF+GP, ratio = 0.05
RF+GP, ratio = 0.1
RF+GP, ratio = 0.2
RF+GP, ratio = 0.3
RF+GP, ratio = 0.5

Figure 4.14: Evaluation of pruning ratio for GP .

We observe the same behavior across all pruning ratios. In each iteration the model

is simplified. In the beginning overfitting is reduced and the performances increases. At

some point the model becomes too simple and the performance starts to decrease due to

underfitting.

48

4.1. Standard Machine Learning Tasks

In [77] GP with low pruning ratios is recommended to achieve best accuracy. We

observe that different pruning ratios yield equally performing RFs, but smaller pruning

ratios generate simpler models. Due to the smaller model reduction in each iteration,

smaller pruning ratios adjust the model complexity more precisely. However, smaller

pruning ratios need more iterations which corresponds to slower training.

Pruning Strategy

In this experiment we show the effect of different pruning strategies. In [77] GP merges

the least significant leaf pairs (see Section 2.5.2). If the Euclidean norm of a prediction

model is close to zero, the impact on the final result is negligible. However, this heuristic

merging rule is not guaranteed to improve the performance of the model.

In this experiment we evaluate two other pruning strategies: i) merging randomly

selected leaf pairs; ii) merging the most significant leaf pairs. Figure 4.15 presents results

for different pruning strategies.

0 100 200 300

2.5

3

3.5

4

·10−3

3 478 Nodes
8 244 Nodes

17 008 Nodes

Iterations

R
M

S
E

RF

RF+GP: least

RF+GP: random
RF+GP: most

Figure 4.15: Evaluation of pruning strategies for GP .

We observe the same characteristic behavior for all strategies. In the beginning

overfitting is reduced and the performances increases. At some point the model becomes

too simple and the performance starts to decrease due to underfitting.

GP performs significantly better than RF for all evaluated pruning strategies . While

pruning the least significant leaf pairs performs best, our two alternative pruning strategies

show competitive results. In fact, the two alternative strategies outperform the merging

rule presented in [77] for highly complex models in the first pruning iterations. One

explanation for this phenomenon is that overfitting can be reduced by minimizing the

Euclidean norm of the prediction weights [6, 92]. This corresponds to merging the most

significant leaf pairs.

49

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

Pre-Pruning versus Post-Pruning

The results presented in Section 4.1.2.2 show that GR for low Dmax performs similar

to GP for high Dmax. In this experiment we compare pre-pruned shallow RF+GR to

post-pruned deep RF+GP.

First, we train RF+GR to a low depth, where we do not observe overfitting. Second,

we train RFs to a higher depth and apply GP until the node count of the RF equals the

node count of the shallow RF+GR. Table 4.13 and 4.14 present results for the data sets

elevators and ailerons.

elevators

Method Dmax Node Count Training Time RMSE

RF+GR 6 5 951± 21 0.63± 0.01 2.99± 0.06

RF+GP 8 5 859± 45 8.99± 0.15 2.93± 0.04
RF+GP 10 5 868± 25 20.18± 0.41 2.88± 0.03
RF+GP 12 5 900± 76 33.79± 1.17 2.89± 0.04

Table 4.13: Comparison of pre-pruned RF+GR and post-pruned RF+GP for the data set
elevators. The reported results show the RMSE on the test data set with scale ·10−3.

ailerons

Method Dmax Node Count Training Time RMSE

RF+GR 5 3 120± 14 0.88± 0.02 1.80± 0.02

RF+GP 8 3 101± 16 15.63± 0.31 1.83± 0.02
RF+GP 10 3 107± 12 31.47± 0.55 1.84± 0.01
RF+GP 12 3 100± 19 52.18± 1.37 1.84± 0.02

Table 4.14: Comparison of pre-pruned RF+GR and post-pruned RF+GP for the data set
ailerons. The reported results show the RMSE on the test data set with scale ·10−4.

For the data set elevators, post-pruned deep RF+GP performs slightly better. In

contrast to that, for the data set ailerons, pre-pruned shallow RF+GR performs slightly

better. More importantly, GR and GP show a similar level of performance on both data

sets.

For pruned RFs of Dmax = 12 we observe that each DTs has at least one leaf with

Dmax ≥ 11. This means that pruning tends to produce unbalanced DTs, which have

few deep branches. The performance of these unbalanced DTs is on par with shallow

pre-pruned DTs if refinement techniques are employed.

This experiment shows that the performance of refinement approaches is largely

insensitive to the structure of the individual DTs, but highly dependent on the total

number of nodes in a RF . Pre-pruned shallow RF+GR shows a similar level of

performance compared to post-pruned deep RF+GP, but the training of pre-pruned

50

4.1. Standard Machine Learning Tasks

shallow RF+GR is more efficient. The higher training time of RF+GP is caused by the

increased Dmax and the iterative post-pruning.

In our experiments GP shows appealing properties. During all experiments GP was

among the best performing methods. GP is robust to overfitting. GP produces simple DTs

with low model size. However, GP also has certain drawbacks. GP needs a validation data

set. GP is computationally expensive for a high number of training samples, especially if

linear prediction models are used and the output dimensionality is greater than one. GP

uses a heuristic merging rule which is not guaranteed to improve the performance of the

model. Still, GP is an effective method for constructing RFs with high accuracy and low

model size.

4.1.2.9 Intermediate Refined Random Forests

In this experiment we analyze the performance of IRRF . For low Dmax, the performance

of IRRF is similar to single refinement approaches. For high Dmax, we observe overfitting

for IRRF .

In this experiment we compare the performance of IRRF to ARF+AGR. We present

results on the data set cpu small. This time, we additionally report the RMSE on the

training data set. Figure 4.16 presents results for different Dmax.

2 4 6 8 10 12 14

2.75

3

3.25

3.5

Dmax

R
M

S
E

ARF+AGR, Test
IRRF, Test

2 4 6 8 10 12 14
0

1

2

3

Dmax

R
M

S
E

ARF+AGR, Train
IRRF, Train

Figure 4.16: Evaluation of the RMSE on the training and test data set for IRRF and ARF+AGR.

IRRF achieves the highest accuracy of all evaluated methods on the training data set.

ARF+AGR performs second best on the training data set. IRRF shows low generalization

on the test data set for high Dmax. ARF+AGR improves the performance on the test data

set as Dmax increases. One reason for this is that ARF+AGR benefits from the strong

generalization of ARF at high Dmax.

51

4. Evaluation

Additionally, the contribution of AGR is small due to the low norm of the refined

prediction models. In contrast to that, we observe that the multiple refinement passes of

IRRF generate prediction models with higher norm. As a result, IRRF is more prone to

overfitting. The predictions of each stage build on top of the predictions of the previous

stages which are not robust to overfitting.

Another reason for the low performance of IRRF is that the individual DTs have low

strength compared to other methods (see Section 4.1.2.10).

4.1.2.10 Strength and Correlation

In this experiment we analyze the strength and correlation of individual DTs for different

methods. Breiman [8] shows that the generalization error of RFs depends on the strength

and correlation of the individual DTs. For regression, the residuals of a DT indicate the

strength of a DT . The lower the residuals, the higher the strength.

In this experiment we compare the RMSE of a RF to the average RMSE of the

individual DTs and report the correlation between the individual DTs for Dmax = 5.

Table 4.15 presents results for different methods on the data set auto mpg.

auto mpg

Method RMSE (RF) RMSE (DTs) Correlation

RF 3.24± 0.02 3.92± 0.04 0.67± 0.02
RF+GR 3.37± 0.09 14.94± 0.58 0.10± 0.02
RF+AGR 3.18± 0.04 6.25± 0.16 0.25± 0.01
RF+GP 3.22± 0.05 12.91± 0.78 0.08± 0.03

ARF 3.14± 0.02 5.54± 0.08 0.33± 0.02
ARF+GR 3.36± 0.13 15.65± 0.68 0.10± 0.01
ARF+AGR 3.12± 0.07 7.06± 0.08 0.20± 0.01

IRRF 3.51± 0.12 25.90± 1.61 0.03± 0.01

Table 4.15: Evaluation of strength and correlation for different methods. The reported results
show the RMSE .

RF shows the highest strength, but also the highest correlation. On the other side,

IRRF shows the lowest correlation, but also the lowest strength. ARF shows slightly

less strength, but significantly less correlation than RF . AGR further decreases the

strength of individual DTs and further decreases the correlation. GR and GP show

low correlation, but also the low strength. In this experiment the best performance is

achieved by ARF+AGR which finds the best tradeoff between strength and correlation.

We observe that non-refinement approaches give strong, but highly correlated DTs.

In contrast, refinement approaches give weak, but decorrelated DTs. This behavior is

reproducible for different Dmax.

For non-refinement approaches, the prediction of each DT roughly has the same

magnitude. In contrast, for refinement approaches, the predictions of the individual DTs

52

Reference:

 ()

4.1. Standard Machine Learning Tasks

have significantly different magnitudes. This means that for each test sample some DTs

are more important than others. Within each DT there are some leaves which have a high

contribution to the final prediction, while others have a low contribution.

4.1.2.11 Model Size

In the following experiments we analyze the model size of RF approaches. We report the

model size with respect to specific properties of RF approaches and show that different

methods perform best at different model sizes. We present results on the data set elevators.

Growth of Model Size

In this experiment we analyze the effect of Dmax and the number of DTs on the model

size. Figure 4.17 presents results for different Dmax and different numbers of DTs. For the

evaluation of Dmax, we fix the number of DTs to 50 and vary Dmax in the range [0,20].

For the evaluation of the number of DTs, we fix the Dmax to 10 and vary the number of

DTs in the range [1,100].

0 5 10 15 20
0

1

2

3

4

5
·104

Dmax

M
o
d

el
S

iz
e

(K
B

)

RF

1 25 50 75 100
0

1

2

3

4

5
·104

Number of DTs

M
o
d

el
S

iz
e

(K
B

)

RF

Figure 4.17: Evaluation of the model size of RFs as a function of Dmax and as a function of the
number of DTs.

The model size of RFs increases linearly with the number of DTs and exponentially

with Dmax. The exponential growth slows down for Dmax ≥ 14, because the number of

training samples is limited. The training stops if the number of arriving training samples

equals 1. Training deep DTs results in large memory demands. The training of many

shallow DTs is more memory efficient than the training of few deep DTs.

53

4. Evaluation

Model Size Comparison

In this experiment we compare the model sizes of RFs obtained by different training

methods. In Figure 4.1 we present the performance for different methods dependent

on Dmax. In this experiment we select the best performing Dmax for each method and

compare the obtained model sizes. Table 4.16 presents results for different methods.

elevators

Method Dmax RMSE Model Size

RF 20 3.16± 0.03 49 325± 199
RF+GR 6 2.99± 0.06 670± 8
RF+AGR 6 2.87± 0.07 675± 9
RF+GP 12 2.89± 0.04 668± 24

ARF 20 2.76± 0.06 49 291± 205
ARF+GR 6 2.96± 0.04 671± 7
ARF+AGR 6 2.81± 0.05 673± 8

IRRF 6 2.96± 0.10 679± 10

Table 4.16: Evaluation of model size for different methods. The reported results show the RMSE
with scale ·10−3 and the model size in KB.

All methods show a similar level of performance for the best performing Dmax.

Non-refinement approaches perform best for high Dmax. This corresponds to complex

models with large model sizes. In contrast, refinement approaches perform best for low

Dmax. This corresponds to simpler models with smaller model sizes.

Due to the exponential growth of the model size with Dmax, non-refinement approaches

show large memory demands. Shallow refined RFs achieve similar performance compared

to deep non-refined RFs, but show 70 times smaller models. On average the model

size obtained by refinement approaches is only 1.37% of the model size obtained by

non-refinement approaches in this experiment.

4.1.2.12 Runtime

In the following experiments we analyze the runtime of different methods. We focus on

the evaluation of the training time, since the test time is largely independent of the used

method. We report the total training time of different methods. Additionally, we report

results with respect to specific properties of RF approaches. We present results on the

data set pol. This data set has a medium number of training samples (5 000) and a high

number of features (48).

54

4.1. Standard Machine Learning Tasks

Total Training Time

Table 4.17 presents results for total training time different methods. In this experiment

we set Dmax to 10.

pol

Method Training Time

RF 7.53± 0.11
RF+GR 7.62± 0.12
RF+AGR 7.70± 0.15
RF+GP 48.63± 0.97

ARF 7.76± 0.14
ARF+GR 7.92± 0.16
ARF+AGR 7.98± 0.17

IRRF 8.67± 0.21

Table 4.17: Evaluation of training time for different methods. The reported results show the
training time in seconds.

Standard RF is the fastest training method. This is no surprise as RF is the simplest

method and all other methods extend the standard training procedure. ARF is only

slightly slower than RF . The additional costs of ARF are due to the computation of

prediction models for each stage and updates to the global training objective. Updating

the global training objective corresponds to evaluating intermediate RFs. Both operations

have a low computational impact.

GR and AGR are fast. A single refinement pass is processed in 0.1 to 0.2 seconds.

The contribution of a single refinement pass to the total training time is negligible.

IRRF performs multiple refinement passes during training and is only slightly slower

than non-refinement and single refinement approaches.

GP is slow. While a single refinement pass is fast, GP performs 300 refinement passes

and pruning iterations. The large number of iterations has a significant impact on the

training time. In [77] GP is utilized for Kinect body part classification. There, the training

of the initial RF takes 2 days and the pruning takes almost 4 days for only 40 iterations.

Specific Training Time

In this experiment we analyze the training time for growing the structure of RFs and

refining RFs with respect to specific properties. We evaluate the effect of Dmax and the

prediction model on the training time. We perform RF+GR using different parameters.

Figure 4.18 presents results for two different Dmax with constant and linear prediction

models.

55

Reference:

 ()

4. Evaluation

0 5 10 15

Dmax = 10, linear

Dmax = 10, constant

Dmax = 5, linear

Dmax = 5, constant

Training Time (s)

RF
GR

Figure 4.18: Evaluation of training time for RF+GR. We evaluate two different Dmax with
constant and linear prediction models.

The training time of RF is strongly influenced by Dmax, but less sensitive to the

prediction model. Training the structure of a RF is fast for low Dmax. The higher

Dmax, the slower the training. Training RFs with linear prediction models is only slightly

slower than training RFs with constant prediction models. The reason for this is that the

computation of linear prediction models is more complex. However, we use closed form

Tikhonov regularization to compute the weights for linear prediction models efficiently [92].

In contrast, the training time of GR is strongly influenced by the prediction model,

but less sensitive to Dmax. GR for high Dmax is only slightly slower than GR for low

Dmax. GR is efficient for constant prediction models, but expensive for linear prediction

models. One reason for this is that the computation of GR using LIBLINEAR is strongly

influenced by the number of non-zero entries of the optimization problem, but only slightly

influenced by the dimensions of the optimization problem (see Figure 2.5 and 3.2).

The structure of a RF accounts for the dimensions of the optimization problem.

Considering constant prediction models, each column of the optimization problem has

one entry for each leaf node of the RF . However, the number of non-zero entries per

column only equals the number of DTs. Even for shallow RFs the number of leaf nodes

is significantly higher than the number of DTs. LIBLINEAR [26] efficiently exploits this

sparsity. In contrast, the optimization problem for linear prediction models has F times

more entries and F times more non-zero entries, where F is the feature dimensionality.

Parallelization

In this experiment we analyze the effect of parallelization on the training time of

different methods. For RFs, the construction of the individual DTs is fully parallelizable,

since all DTs are independent of each other. For ARFs, the training of each stage

is parallelizable. Our implementation supports parallel training for RFs and ARFs on

multiple cores.

56

Reference:

 ()

Reference:

 ()

4.2. Super-Resolution

Table 4.18 presents results for parallel training of RFs and ARFs. In this experiment

we set Dmax to 10 and use a machine with 4 cores.

pol

Method Cores Training Time

RF 1 7.53± 0.11
RF 4 2.89± 0.07

ARF 1 7.76± 0.14
ARF 4 3.07± 0.05

Table 4.18: Evaluation of parallelization for RFs and ARFs. The reported results show the
training time in seconds.

For both evaluated methods we observe a speedup by a factor of 2.5 for parallel training

on 4 cores. The speedup is slightly lower for ARFs, since the global training objective is

updated after the parallel training of each stage.

For low Dmax, the speedup is modest, because the overhead of the parallel

implementation accounts for a higher percentage of the training time. The speedup is

also dependent on the number of DTs. In this experiment we train 50 DTs.

4.2 Super-Resolution

In this section we evaluate different RF approaches for single image SR [30, 37, 71]. We use

the SR framework provided by Schulter et al. [88] which is based upon the code of Timofte

et al. [93]. The framework uses bicubic interpolation [54] to obtain the desired output

resolution followed by a sharpening using machine learning techniques. We exchange the

provided learning algorithm with our RF toolbox. Before we present results, we briefly

describe the SR pipeline of the framework.

The SR pipeline implements a mapping from low-resolution (LR) to high-resolution

(HR) images. First, images are transformed from RGB to YCbCr color space [40, 80]

which separates luminance information (Y) and color information (Cb and Cr). The

reason for this is that the human visual system is most sensitive to high frequency changes

in luminance [28]. Color information only plays a minor role in the human perception of

sharpness. Therefore, bicubic interpolation is applied to all image channels, but sharpening

is only performed on the Y channel. The framework takes a patch based approach to SR.

Overlapping patches are extracted from the luminance channel of the upscaled LR image.

A machine learning algorithm is used to estimate a high frequency patch for each upscaled

LR patch. This high frequency patch corrects for the blur in the upscaled LR patch.

Therefore, the two patches are summed up to obtain the final sharpened patch. Finally,

the sharpened patches are stitched together to obtain the sharpened output image.

We use RFs to estimate the high frequency patches based on features extracted from

the upscaled LR patches. For the features, we compute the first and second order derivates

57

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

of the upscaled LR patches and apply dimensionality reduction using PCA [38, 52]. The

dimensionality reduction preserves 99.9% of the average energy [93]. This leads to around

30 features depending on the training data.

We use the training data set provided by Yang et al. [98] which has also been used

in [22, 88, 93, 94]. This data set consists of 91 images which show natural scenes including

nature, animals and people. The resolution of the images is around 0.1 megapixel. We

sample a total of one million patches for training. We report the performance on two test

data sets, Set5 [4] and Set14 [100]. These data sets have been used for benchmarking

different SR methods in [16, 22, 23, 55, 56, 88, 93, 94]. We evaluate the performance

by computing the Peak Signal-to-Noise Ratio (PSNR) [47] between the ground truth

and the prediction. For selected experiments, we report the PSNR improvement over

bicubic interpolation which we refer to as gain in dB [22]. In contrast to the performance

metrics for standard machine learning tasks, higher PSNR or gain corresponds to better

performance. We perform 3 independent runs for each experiment [88]. All Figures and

Tables report the mean and the standard deviation of the independent runs.

Default Parameters - Super-Resolution

Category Name Value

Complexity
Number of DTs 15
Threshold minCount 128
Threshold minChild 64

Randomness

Bagging Ratio 1.0
Bagging Replacement no
Subsampling at Node Level 512
Feature Subsampling F/2

Splits
Split Function Unary + Binary
Split Compactness Measure Variance (GT + F)

Predictions
Leaf Prediction Model linear
Tikhonov Regularization Term 0.01

ARF ARF Loss Squared Loss

GR
Refinement Regularization 0.05
Refinement Loss L2 Loss

GP
Pruning Iterations 50
Pruning Ratio 0.3
Pruning Strategy Least Significance

Table 4.19: Default parameters for SR. The role of the different parameters is explained and
evaluated in the individual subsections. Unless otherwise stated, these parameters are used for all
SR experiments.

Since SR is a regression task, we can use the same RF approaches as for standard

machine learning tasks for regression (see Table 4.5). However, we focus on two

non-refinement approaches (RF and ARF) and two refinement approaches (ARF+GR

58

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.2. Super-Resolution

and ARF+AGR) due to the following reasons. First, the experiments in Section 4.1.2

show that the performance of GR and AGR is largely independent of the underlying

DT growing scheme (RF and ARF). Therefore, we do not evaluate RF+GR and

RF+AGR, since their performance is resembled by ARF+GR and ARF+AGR. Second,

the experiments in Section 4.1.2 show that the performance of RF approaches which

perform multiple refinement passes (GP and IRRF) is not superior to the performance

of single refinement approaches. However, for SR, even a single refinement pass is

computationally expensive (see Section 4.2.7). Because of this, we focus on the evaluation

of single refinement approaches, but provide results for multi refinement approaches in

dedicated experiments.

Unless otherwise stated, we use the parameters in Table 4.19 for all experiments.

In contrast to standard machine learning tasks, we use linear prediction models in all

experiments. Additionally, we use higher thresholds for early stopping, analyze more

subsamples at node level and adjust the regularization parameters, because of the

significantly increased size of the training data set (one million samples). We perform

experiments for different SR factors. The SR factor specifies the scale which is used to

resize each image dimension. Considering a SR factor of ×3, the number of pixels in the

super-resolved image is 9 times the number of pixels in the LR image. For parameter

evaluation we present results for a SR factor of ×3 on the data set Set5.

4.2.1 Overall Results

In this experiment we compare the performance of RF approaches on Set5 [4] and

Set14 [100]. We use the same parameters (see Table 4.19) for each method to obtain

an unbiased comparison. However, different methods perform best with different

parameters. The most important parameter concerning accuracy on previously unseen

data is the maximum tree depth Dmax. Therefore, we evaluate multiple Dmax for

each method. In this experiment we vary Dmax in the range [0,12] and select the best

performing Dmax. We report the PSNR and the corresponding Dmax for each method.

Table 4.20 presents experimental results for different SR factors.

Analogous to standard machine learning tasks for regression, all evaluated methods

show a similar level of performance for the best performing Dmax. However, the best

performance is achieved by deep ARF . We observe this phenomenon across different data

sets and SR factors.

Compared to ARF , the performance of refinement approaches is slightly lower, but the

best performing Dmax is significantly lower. RFs with lower Dmax correspond to simpler

models. For SR, the main advantage of simpler models is the reduction in model size.

59

Reference:

 ()

Reference:

 ()

4. Evaluation

Overall Results - Super-Resolution

Methods

Data Set SR Factor Property RF ARF ARF+GR ARF+AGR

×2
PSNR 36.48± 0.03 36.68± 0.02 36.50± 0.02 36.55± 0.02
Dmax 12 12 6 8

Set5 ×3
PSNR 32.38± 0.02 32.54± 0.01 32.46± 0.01 32.50± 0.01
Dmax 12 12 6 10

×4
PSNR 30.12± 0.01 30.22± 0.02 30.11± 0.01 30.13± 0.01
Dmax 12 12 6 8

×2
PSNR 32.23± 0.03 32.36± 0.01 32.24± 0.01 32.27± 0.02
Dmax 12 12 6 8

Set14 ×3
PSNR 28.99± 0.02 29.11± 0.02 29.05± 0.01 29.07± 0.01
Dmax 12 12 6 8

×4
PSNR 27.20± 0.01 27.31± 0.02 27.23± 0.01 27.25± 0.01
Dmax 12 12 6 8

Table 4.20: Overall results for SR. For each data set and each SR factor, the three best performing
methods are highlighted in shades of green.

4.2.2 Qualitative Results

Figure 4.19 and 4.20 present qualitative SR results for selected images from Set5 for a

SR factor of ×3. For both images, we observe that all evaluated methods show a similar

level of performance. However, the PSNR improvement is different for each image. The

performance of our SR methods is dependent on local image topology and structure.

We observe higher gain for images with sharp discontinuities between homogenous

regions, e.g., butterfly (see Figure 4.19). One reason for this is that edges and ridges

between homogenous regions are common elements of natural images. We can easily

harvest patches for these scenarios from training images and effectively learn an

appropriate mapping for them, especially since sharpening is only performed on the

luminance channel.

In contrast to this, we observe lower gain for images with a large fraction of textured

areas, e.g., head (see Figure 4.20). One reason for this is that different mechanisms

in the SR framework enforce smoothness. Among these mechanisms are Tikhonov

regularization [92] for local leaf prediction models, L2 regularized L2 loss for global leaf

prediction model optimization, averaging of DT results and averaging of overlapping

patches. Additionally, the texture of different materials is unique, e.g., the texture of

human skin is significantly different from the texture of cloth or metal. Textures are less

generic than edges between homogenous regions and, therefore, harder to learn. Given

a blurred patch, the reconstruction of irregularly shaded regions with material specific

patterns is difficult, even if prior knowledge is exploited. Many SR methods show high

performance at intensifying blurred edges and ridges, but low performance at recovering

fine grained textures [4, 16, 88, 93, 94, 97, 100].

60

Reference:

 ()

Reference:

 ()

4.2. Super-Resolution

(a) Ground Truth (b) Bicubic: 24.04 dB (c) RF: +2.80 dB

(d) ARF: +3.27 dB (e) ARF+GR: +3.12 dB (f) ARF+AGR: +3.23 dB

Figure 4.19: Qualitative SR results for butterfly from Set5. We report the PSNR for the bicubic
upscaled image and the gain for different sharpening methods.

4.2.3 State of the Art

In this experiment we compare the performance of different state of the art methods on

Set5 [4] and Set14 [100]. Table 4.21 presents experimental results for different SR factors.

State of the Art - Super-Resolution

Methods

Data Set SR Factor A+ [94] ARF [88]
SRCNN [22] SRCNN [23]

VDSR [55] DRCN [56]
(ECCV) (PAMI)

×2 36.55 36.70 36.34 36.66 37.53 37.63
Set5 ×3 32.59 32.58 32.39 32.75 33.66 33.82

×4 30.29 30.21 30.09 30.49 31.35 31.53

×2 32.28 32.37 32.18 32.45 33.03 33.04
Set14 ×3 29.13 29.13 29.00 29.30 29.77 29.76

×4 27.33 27.30 27.20 27.50 28.01 28.02

Table 4.21: Comparison of state of the art methods for SR. For each data set and each SR factor,
the three best performing methods are highlighted in shades of green.

61

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

(a) Ground Truth (b) Bicubic: 32.88 dB (c) RF: +0.83 dB

(d) ARF: +0.86 dB (e) ARF+GR: +0.85 dB (f) ARF+AGR: +0.87 dB

Figure 4.20: Qualitative SR results for head from Set5. We report the PSNR for the bicubic
upscaled image and the gain for different sharpening methods.

Dictionary [94] and RF approaches show a similar level of performance. However, both

are outperformed by recent Convolutional Neural Network (CNN) approaches [23, 55, 56].

Depending on the data set DRCN [56] performs 0.6 to 1.3 dB better than ARF . Apart

from improved performance, one advantage of CNNs is that they learn a representation

of the input at hidden layers, while dictionary and RF approaches rely on handcrafted

features. One disadvantage is that deep architectures may require a GPU implementation

for fast training and testing [55].

The number of Floating-Point Operations (FLOPs) is an implementation independent

measure for the computational workload of an algorithm. We compare the number of

FLOPs required to super-resolve a 512×512 image for RF approaches and SRCNN [22],

which achieve a similar level of performance. For RF approaches, Dmax has a negligible

impact on the test time. RF approaches require 2.75 GFLOPs, while SRCNN requires

4.77 GFLOPs. More advanced CNNs may require even more FLOPs. In comparison

to these SR methods, bicubic interpolation requires 0.012 GFLOPs to upscale a single

channel LR image to 512×512 pixel [64].

62

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.2. Super-Resolution

Alternatively, there are other ways of improving the accuracy of SR methods apart from

using a more powerful learning algorithm. Timofte et al. [95] present several adjustments

to the SR framework which boost the performance of A+ [94] by up to 1 dB. Most

of these enhancements are applicable to our SR approach, e.g., using more training

patches, training deeper DTs or training a cascade of RFs. However, these enhancements

significantly increase the training time and the model size.

4.2.4 Maximum Depth

In this experiment we show the effect of Dmax on the performance of RF approaches.

Figure 4.21 presents results for different methods. In this experiment we report the gain

in dB and vary Dmax in the range [0,12].

0 2 4 6 8 10 12

1

1.25

1.5

1.75

2

Dmax

G
a
in

RF
ARF
ARF+GR
ARF+AGR

Figure 4.21: Evaluation of the maximum tree depth for Dmax for SR.

We observe the same behavior as for standard machine learning tasks. Refinement

approaches outperform non-refinement approaches for low Dmax, but show overfitting for

high Dmax. The best performance is achieved by deep ARF .

Schulter et al. [88] train even deeper ARF (Dmax = 15), but only increase the mean

performance across different SR factors by negligible 0.02 dB compared to our ARF with

Dmax = 12.

On the other end of the range a uniform linear regression for all samples at Dmax = 0

shows a considerable gain of 1 dB compared to the bicubic baseline. In this case, RF

approaches resemble Global Regression [93].

Interestingly, we observe that the performance improvement of non-refinement

approaches between Dmax = 0 and Dmax = 2 is low for SR. In contrast to this, the initial

Dmax increments for standard machine learning tasks show the highest performance

improvement (see Section 4.1.2.2). One reason for this is the significantly larger size of

63

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4. Evaluation

the training data set compared to standard machine learning tasks. For SR, we use

one million training samples. At Dmax = 2 a balanced DT has 4 leaves and the entire

training data set is distributed among these leaves. Therefore, the average number of

samples arriving at a node is 250 000. In our experiment lowest number of arriving

samples is 25 000. At Dmax = 2 the partitioning of the training data set is too coarse to

fit local prediction models which significantly outperform ordinary linear regression.

4.2.5 Number of Decision Trees

In this experiment we show the effect of the number of DTs on the performance of RF

approaches. Figure 4.22 presents results for different methods. In this experiment we vary

the number of DTs in the range [1,25] and set Dmax to 6.

1 5 15 25

1.4

1.6

1.8

2

Number of DTs

G
a
in

RF
ARF
ARF+GR
ARF+AGR

Figure 4.22: Evaluation of the number of DTs for SR.

Analogous to standard machine learning tasks for regression, all methods show low

performance if the number of DTs is small. As the number of DTs rises, the performance

increases, but the effect saturates at some point.

Interestingly, RF only slightly benefits from a higher number of DTs in this

experiment. One reason for this is that RF performs best for higher Dmax. At Dmax = 6

the number of training samples arriving at each leaf is high, due to the large size of the

training data set. Therefore, the partitioning is too coarse to fit accurate prediction

models. As a result, the individual DTs show high bias. Ensembles of DTs can reduce

variance, but not bias.

64

4.2. Super-Resolution

4.2.6 Model Size

In this experiment we compare the model sizes obtained by RF approaches. Table 4.22

presents results using the best performing Dmax for each method.

Model Size Comparison

Method Dmax PSNR Model Size

RF 12 32.38± 0.02 447.54± 1.86

ARF 12 32.54± 0.01 446.71± 1.97

ARF+GR 6 32.46± 0.01 19.81± 0.00

ARF+AGR 6 32.48± 0.01 19.81± 0.00

Table 4.22: Evaluation of model size for different methods. The reported results show the PSNR
in dB and the model size in MB.

Similar to previous experiments, all evaluated methods show a similar level of

performance for the best performing Dmax. Non-refinement approaches perform best for

higher Dmax. This corresponds to complex models with large model sizes. Refinement

approaches perform best for lower Dmax. This corresponds to simpler models with

smaller model sizes.

Non-refinement approaches show high memory demands, due to the exponential growth

of the model size withDmax. In contrast, the model size obtained by refinement approaches

is more than 22 times smaller. This corresponds to 4.43% of the model size obtained by

non-refinement approaches.

Interestingly, the standard deviation of the model size for refinement approaches is

zero. This means that even at Dmax = 6 the training algorithm constructs fully balanced

DTs, due the large size of the training data set.

The model sizes for SR are significantly larger than for standard machine learning

tasks, although we train a lower number of DTs. One reason for this is that we use linear

prediction models for SR. For linear prediction models, the number of weights stored at

each leaf equals input dimensionality times output dimensionality. In our configuration

the input dimensionality is 31, because we use 30 PCA features and a constant intercept

term.

In contrast to standard machine learning tasks for regression, the patch based SR

approach is a multivariate regression problem which means that the output dimensionality

is greater than one [78]. In our implementation the output dimensionality is dependent

on the SR factor. The output dimensionality corresponds to the pixel count of a 3×3 LR

patch which is upscaled by the SR factor. For a SR factor of ×3, we predict 9×9 patches.

In this case, the output dimensionality is 81. Therefore, in this experiment each leaf stores

2 511 weights.

65

Reference:

 ()

4. Evaluation

4.2.7 Runtime

In the following experiments we analyze the runtime of RF approaches. We focus on the

evaluation of the training time. We report the total training time of different methods.

Additionally, we present results for parallel training.

The test time required to super-resolve one image is below one second in all

experiments, even if deep RFs are evaluated. However, the SR framework is not

optimized for speed and there is potential for accelerating of both training and testing.

Total Training Time

In this experiment we compare the training time of RF approaches. Table 4.23 presents

results using the best performing Dmax for each method.

Runtime

Method Dmax PSNR Training Time

RF 12 32.38± 0.02 248± 13

ARF 12 32.54± 0.01 519± 21

ARF+GR 6 32.46± 0.01 66 423± 931

ARF+AGR 6 32.48± 0.01 67 112± 945

Table 4.23: Evaluation of training time for different methods. The reported results show the
training time in seconds.

RF is the fastest training method. ARF is by a factor of 2 slower than RF . The

additional costs of ARF are mainly due to updates to the global training objective after

the training of each stage. Updating the global training objective corresponds to evaluating

intermediate RFs. The evaluation of a RF is fast, but in this case one million training

samples are evaluated. This increases the training time significantly.

Despite the reduced Dmax, the training time of refinement approaches is high

compared to non-refinement approaches. Although we only perform a single refinement

pass, ARF+GR and ARF+AGR are by a factor of 130 slower than ARF . The training of

ARF takes 8 to 9 minutes, while the training of ARF+AGR takes 18 to 19 hours.

Considering refinement approaches, the contribution of the DT growing algorithm to

the total training time is negligible. In contrast to that, for standard machine learning

tasks, the contribution of a single refinement pass to the total training time is negligible.

Our experiments show that the training time of a global leaf prediction model

optimization using LIBLINEAR [26] is dependent on the number of non-zero entries

of the optimization problem (see Section 4.1.2.12). This number is influenced by the

number of DTs, the leaf prediction model and the number of training samples. In this

experiment we use 15 DTs, linear leaf prediction models with 31 prediction weights per

output dimension and one million training samples which corresponds to 450 million

66

Reference:

 ()

4.2. Super-Resolution

non-zero entries. The large size of the training data set accounts for the major share and

is the main reason for the increased training time in this case.

Additionally, LIBLINEAR only supports univariate linear regression. However, for

a SR factor of ×3, the output dimensionality is 81 in our implementation. This means

we have to solve 81 univariate linear regression problems, which all have the same input

variables but different optimization targets. The optimization of a single univariate linear

regression problem takes 13 to 14 minutes.

Parallelization

In this experiment we analyze the effect of parallelization on the training time of

RF approaches. For SR, we focus on the parallelization of refinement techniques, since

the contribution of the DT growing algorithm to the total training time is negligible.

Table 4.24 presents results for parallel optimization of GR and AGR with Dmax = 6. In

this experiment we use a machine with 8 cores.

Parallel Refinement

Method Cores Training Time

ARF+GR 1 66 423± 931
ARF+GR 8 10 692± 419

ARF+AGR 1 67 112± 945
ARF+AGR 8 10 877± 438

Table 4.24: Evaluation of parallelization for GR and AGRs. The reported results show the
training time in seconds.

Our implementation uses Multi-Core LIBLINEAR [59] which is a LIBLINEAR

extensions that supports parallel L2 loss minimization of a univariate linear regression

problem. We observe a speedup by a factor of 6.2 for 8 cores. Parallel refinement using

Multi-Core LIBLINEAR reduces the training time of ARF+GR and ARF+AGR from

18.5 hours to 3 hours.

Another possible parallelization approach is solving the different univariate linear

regression problems for each output dimension in parallel. However, parallel loops in

MATLAB R© are limited to input matrices with a maximum size of 2 GB. Since LIBLINEAR

operates strictly on double precision floating point numbers and indices for each non-zero

entry must be provided, we end up with 450 million non-zero entries which correspond to

7.2 GB of data. Therefore, we do not provide results for parallel training of the independent

univariate linear regression problems.

Although we make use of parallelization, a single refinement pass is slow compared

to the time needed to construct a RF . The training of multi refinement approaches is

prohibitively slow for SR, e.g., the training of RF+GP with Dmax = 12 takes more than

1.5 weeks for 50 iterations despite parallel refinement.

67

Reference:

 ()

4. Evaluation

4.2.8 Global Pruning

In this experiment we analyze the progression of GP over multiple iterations. We perform

50 pruning iterations with a pruning ratio of 0.3. Figure 4.23 shows the performance of

RF+GP (Dmax = 10) over multiple iterations compared to RF (Dmax = 10) and RF+GR

(Dmax = 6).

0 10 20 30 40 50

1.8

1.9

2

2.1

5 195 Nodes
1 903 Nodes

Iterations

G
a
in

RF, Dmax = 10
RF+GP, Dmax = 10
RF+GR, Dmax = 6

0 10 20 30 40 50
0

1

2

·104

5 195 Nodes
1 903 Nodes

Iterations

C
ou

n
t

Nodes
Leaves

Mergeable Leaves

Figure 4.23: Progression of GP over multiple iterations for SR.

RF+GP achieves the best performance after 12 iterations, at this point the model

consists of 5 195 nodes. GP simplifies the model in each iteration. In the beginning

iterative GP reduces overfitting, but at some point the model becomes too simple and we

observe underfitting for RF+GP.

RF+GR outperforms RF+GP in this experiment. Interestingly, RF+GR achieves

better performance with less nodes compared to RF+GP. RF+GR shows maximum

performance at a node count of 1 905. In contrast, RF+GP shows maximum performance

at a node count of 5 195. If we prune RF+GP to a comparable node count of 1 903 (23

iterations) the performance gap increases.

RF+GP outperforms RF until iteration 40. At this point the model consists of 565

nodes. This is a significant reduction in model size compared to RF with Dmax = 10

(22 201 nodes).

For SR, we observe that pre-pruned shallow RF+GR outperforms post-pruned deep

RF+GP. Moreover, the training of pre-pruned shallow RF+GR is significantly faster,

because we train DTs with lower Dmax and perform a single refinement pass only.

68

CHAPTER 5

Conclusion

In this work we present three methods for constructing Random Forests (RFs) with

reduced model size under a global training objective: Global Refinement of Alternating

Decision and Regression Forests (ADRFs+GR), Additive Global Refinement (AGR) and

Intermediate Refined Random Forests (IRRFs). Our methods combine the benefits of

Alternating Decision and Regression Forests (ADRFs) [89, 90] and Global Refinement

(GR) of RFs [77]. In most experiments our methods show significantly reduced model size

while achieving competitive performance compared to state of the art RF approaches. For

standard machine learning tasks, we observe a compression of factor 70. For single image

Super-Resolution (SR), we observe a compression of factor 22.

ADRFs+GR perform GR on RFs constructed by the alternating training procedure

of ADRFs. In most experiments GR benefits from the more decorrelated Decision Trees

(DTs) of ADRFs. We observe improved performance compared to GR of standard RFs.

AGR improves the robustness of refinement approaches to overfitting. In contrast to

GR, AGR improves the existing prediction models of RFs instead of relearning them from

scratch. In this way, the contribution of the refinement to the final prediction is reduced.

As a result, refined RFs are less prone to overfitting.

IRRFs interweave the construction and refinement of RFs. For models with low

complexity, IRRFs show improved performance compared to standard RFs.

Additionally, we present a global refinement algorithm for linear leaf prediction models.

For both the refinement of constant and linear prediction models, we observe significantly

improved performance for RFs with low complexity.

We show that it is possible to replace Global Pruning (GP) [77] by directly training

RFs with low complexity followed by a single global leaf prediction model optimization,

without compromising on accuracy or model size. While GP achieves a similar level of

69

Reference:

 ()

Reference:

 ()

Reference:

 ()

5. Conclusion

performance compared to our training approach in terms of accuracy and model size,

the training is slow, because the algorithm iteratively simplifies and refines pre-trained

RFs with high complexity. Overall, our approach is significantly faster regarding both

construction and refinement of RFs, since we train more shallow DTs and only apply a

single global leaf prediction model optimization.

For single refinement approaches, the selection of the optimal model complexity is

critical, since refinement techniques show overfitting for complex models. The selection of

the optimal model complexity is less critical if AGR is employed. In contrast to GP , AGR

significantly reduces overfitting, but cannot completely avoid overfitting. However, the

training of single refinement approaches for different model complexities is computationally

less expensive than GP .

In contrast to non-refinement approaches, refinement approaches are more prone

to overfitting as the complexity of the DTs increases. For RFs with high complexity,

non-refinement approaches are more competitive to refinement approaches. For SR,

deep Alternating Regression Forests (ARFs) slightly outperform refinement approaches

in terms of accuracy. However, the modest performance improvement achieved by deep

ARFs is disproportionate to the significantly increased model size.

Our experiments show that refinement techniques are computationally expensive for

large problems. A large number of training samples, a high number of DTs or multiple

output dimensions significantly increase the training time. To overcome this limitation,

we use parallel refinement which significantly accelerates the training and achieves almost

linear speedup. Still, GP is prohibitively slow for SR. In contrast to GP , our training

approach is two orders of magnitude faster.

Finally, we conclude that refinement techniques are an effective method for boosting

the performance of RFs with low complexity. In contrast to previous works, we present

a SR approach which is accurate, fast and memory efficient. Additionally, our training

approach is significantly faster than other approaches, which reduce the model size of RFs

without compromising on accuracy.

70

Bibliography

Bibliography

[1] Yali Amit and Donald Geman. Shape Quantization and Recognition with

Randomized Trees. Neural Computation, 9(7):1545–1588, 1997. (page 10)

[2] Rodrigo Barros, André de Carvalho, and Alex Alves Freitas. Automatic Design of

Decision-Tree Induction Algorithms. Springer, 2015. (page 9)

[3] Simon Bernard, Sébastien Adam, and Laurent Heutte. Dynamic Random Forests.

Pattern Recognition Letters, 33(12):1580–1586, 2012. (page 2, 17)

[4] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Morel.

Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor

Embedding. In British Machine Vision Conference, 2012. (page 1, 58, 59, 60,

61)

[5] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

(page 1, 5, 21)

[6] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, 2004. (page 15, 20, 49)

[7] Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996. (page 10,

39)

[8] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001. (page 2, 10,

11, 39, 44, 52)

[9] Leo Breiman, Jerome Friedman, Charles Stone, and Richard Olshen. Classification

and Regression Trees. CRC Press, 1984. (page 6, 8, 9, 10)

[10] Rich Caruana and Alexandru Niculescu-Mizil. Data Mining in Metric Space: An

Empirical Analysis of Supervised Learning Performance Criteria. In ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2004. (page 25,

27, 29)

[11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector

Machines. ACM Transactions on Intelligent Systems and Technology, 2(4):1–27,

2011. (page 21, 28)

[12] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-Resolution Through Neighbor

Embedding. In IEEE Conference on Computer Vision and Pattern Recognition,

2004. (page 1)

[13] Thomas Cover and Joy Thomas. Elements of Information Theory. John Wiley &

Sons, 2012. (page 9)

71

5. Conclusion

[14] Koby Crammer and Yoram Singer. On the Algorithmic Implementation of Multiclass

Kernel-Based Vector Machines. The Journal of Machine Learning Research,

2(1):265–292, 2002. (page 27)

[15] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision Forests: A

Unified Framework for Classification, Regression, Density Estimation, Manifold

Learning and Semi-Supervised Learning. Foundations and Trends in Computer

Graphics and Vision, 7(2–3):81–227, 2012. (page 8)

[16] Dengxin Dai, Radu Timofte, and Luc Van Gool. Jointly Optimized Regressors for

Image Super-Resolution. In Computer Graphics Forum, 2015. (page 1, 58, 60)

[17] Thomas Dietterich. An Experimental Comparison of three Methods for Constructing

Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine

Learning, 40(2):139–157, 2000. (page 8)

[18] Thomas Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier

Systems, pages 1–15. Springer, 2000. (page 10)

[19] Piotr Dollár. Piotr’s Computer Vision MATLAB R© Toolbox. Website, 2014.

University of California, San Diego. http://vision.ucsd.edu/~pdollar/toolbox/

doc/index.html last visited 12th March 2016. (page 26)

[20] Piotr Dollár and C. Lawrence Zitnick. Structured Forests for Fast Edge Detection.

In IEEE International Conference on Computer Vision, 2013. (page 7)

[21] Pedro Domingos. A Unified Bias-Variance Decomposition. In International

Conference on Machine Learning, 2000. (page 10)

[22] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning A Deep

Convolutional Network for Image Super-Resolution. In European Conference on

Computer Vision, 2014. (page 1, 58, 61, 62)

[23] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image

Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 38(2):295–307, 2016. (page 1, 58, 61,

62)

[24] Claude Duchon. Lanczos Filtering in One and Two Dimensions. Journal of Applied

Meteorology, 18(8):1016–1022, 1979. (page 1)

[25] Richard Duda, Peter Hart, and David Stoark. Pattern Classification and Scene

Analysis. John Wiley & Sons, 1973. (page 39)

[26] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. LIBLINEAR: A Library for Large Linear Classification. Journal of Machine

Learning Research, 9(1):1871–1874, 2008. (page 26, 46, 56, 66)

72

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Bibliography

[27] Sean Fanello, Cem Keskin, Pushmeet Kohli, Shahram Izadi, Jamie Shotton, Antonio

Criminisi, Ugo Pattacini, and Tim Paek. Filter Forests for Learning Data-Dependent

Convolutional Kernels. In IEEE Conference on Computer Vision and Pattern

Recognition, 2014. (page 8, 9, 21)

[28] Christoph Feichtenhofer, Hannes Fassold, and Peter Schallauer. A Perceptual Image

Sharpness Metric based on Local Edge Gradient Analysis. IEEE Signal Processing

Letters, 20(4):379–382, 2013. (page 57)

[29] Eibe Frank. Pruning Decision Trees and Lists. PhD thesis, University of Waikato,

2000. (page 2, 9)

[30] William Freeman, Egon Pasztor, and Owen Carmichael. Learning Low-Level Vision.

International Journal of Computer Vision, 40(1):25–47, 2000. (page 1, 57)

[31] Yoav Freund and Robert Schapire. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1):119–139, 1997. (page 11, 12)

[32] Jerome Friedman. Greedy Function Approximation: A Gradient Boosting Machine.

Annals of Statistics, 29(5):1189–1232, 2001. (page 12)

[33] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical

Learning. Springer, 2009. (page 5, 10, 44)

[34] Jerome Friedman and Jacqueline Meulman. Multiple Additive Regression Trees

with Application in Epidemiology. Statistics in Medicine, 22(9):1365–1381, 2003.

(page 5)

[35] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations of Rule

Learning. Springer Science & Business Media, 2012. (page 2, 9, 16)

[36] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely Randomized Trees.

Machine Learning, 63(1):3–42, 2006. (page 44)

[37] Daniel Glasner, Shai Bagon, and Michal Irani. Super-Resolution from a Single Image.

In IEEE International Conference on Computer Vision, 2009. (page 1, 57)

[38] Gene Golub and Christian Reinsch. Singular Value Decomposition and Least Squares

Solutions. Numerische Mathematik, 14(5):403–420, 1970. (page 58)

[39] Gaël Guennebaud and Benôıt Jacob. Eigen v3. Website, 2010. University of

California, San Diego. http://eigen.tuxfamily.org last visited 18th March 2016.

(page 26)

[40] Eric Hamilton. JPEG File Interchange Format. C-Cube Microsystems, 1(1):1–22,

1992. (page 57)

73

http://eigen.tuxfamily.org

5. Conclusion

[41] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and

Techniques. Elsevier, 2011. (page 30)

[42] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised Learning.

Springer, 2009. (page 12)

[43] Tin Kam Ho. Random Decision Forests. In IEEE International Conference on

Document Analysis and Recognition, 1995. (page 10)

[44] Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844,

1998. (page 8, 10)

[45] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single Image

Super-Resolution from Transformed Self-Exemplars. In IEEE Conference on

Computer Vision and Pattern Recognition, 2015. (page 1)

[46] Kwok-Wai Hung and Wan-Chi Siu. Real-Time Interpolation using Bilateral Filter

for Image Zoom or Video Up-Scaling/Transcoding. In International Conference on

Consumer Electronics, 2012. (page 1)

[47] Quan Huynh-Thu and Mohammed Ghanbari. Scope of Validity of PSNR in

Image/Video Quality Assessment. Electronics Letters, 44(13):800–801, 2008.

(page 58)

[48] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An

Introduction to Statistical Learning. Springer, 2013. (page 44)

[49] Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Loss-Specific Training of

Non-Parametric Image Restoration Models: A New State of the Art. In European

Conference on Computer Vision, 2012. (page 2, 18)

[50] Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. Regression Tree Fields

- An Efficient, Non-Parametric Approach to Image Labeling Problems. In IEEE

Conference on Computer Vision and Pattern Recognition, 2012. (page 18)

[51] Liu Jing, Gan Zongliang, and Zhu Xiuchang. Directional Bicubic Interpolation - A

New Method of Image Super-Resolution. In International Congress on Image and

Signal Processing, 2013. (page 1)

[52] Ian Jolliffe. Principal Component Analysis. Wiley & Sons, 2002. (page 58)

[53] Chandrika Kamath and Erick Cantu-Paz. Creating ensembles of decision trees

through sampling. In Symposium on the Interface of Computing Science and

Statistics, 2001. (page 10)

74

Bibliography

[54] Robert Keys. Cubic Convolution Interpolation for Digital Image Processing. IEEE

Transactions on Acoustics, Speech and Signal Processing, 29(6):1153–1160, 1981.

(page 1, 57)

[55] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate Image Super-Resolution

Using Very Deep Convolutional Networks. The Computing Research Repository,

arXiv:1511(04587):1–8, 2015. (page 1, 58, 61, 62)

[56] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-Recursive Convolutional

Network for Image Super-Resolution. The Computing Research Repository,

arXiv:1511(04491):1–8, 2015. (page 1, 58, 61, 62)

[57] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo.

Deep Neural Decision Forests. In IEEE International Conference on Computer

Vision, 2015. (page 2, 18)

[58] Peter Kontschieder, Samuel Rota Bulò, Horst Bischof, and Marcello Pelillo.

Structured Class-Labels in Random Forests for Semantic Image Labelling. In IEEE

International Conference on Computer Vision, 2011. (page 7)

[59] Mu-Chu Lee, Wei-Lin Chiang, and Chih-Jen Lin. Fast Matrix-Vector Multiplications

for Large-Scale Logistic Regression on Shared-Memory Systems. In Industrial

Conference on Data Mining, 2015. (page 46, 67)

[60] Vincent Lepetit and Pascal Fua. Keypoint Recognition Using Random Forests

and Random Ferns. In Decision Forests for Computer Vision and Medical Image

Analysis, pages 111–124. Springer, 2013. (page 17)

[61] Andy Liaw and Matthew Wiener. Classification and Regression by Random Forest.

R News, 2(3):18–22, 2002. (page 5)

[62] Moshe Lichman. UCI Machine Learning Repository. Website, 2013. University of

California, Irvine, School of Information and Computer Sciences. http://archive.

ics.uci.edu/ml last visited 11th March 2016. (page 25)

[63] J. Kent Martin. An Exact Probability Metric for Decision Tree Splitting and

Stopping. Machine Learning, 28(2):257–291, 1997. (page 9)

[64] Erik Meijering and Michael Unser. A Note On Cubic Convolution Interpolation.

IEEE Transactions on Image Processing, 12(8):477–479, 2003. (page 62)

[65] Ryszard Michalski, Jaime Carbonell, and Tom Mitchell. Machine Learning: An

Artificial Intelligence Approach. Springer Science & Business Media, 2013. (page 5)

[66] Thomas Mitchell. Machine Learning. McGraw-Hill, Inc., 1997. (page 5)

75

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

5. Conclusion

[67] Douglas Montgomery, Elizabeth Peck, and Geoffrey Vining. Introduction to Linear

Regression Analysis. John Wiley & Sons, 2015. (page 29)

[68] Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, and

Pushmeet Kohli. Decision Tree Fields. In IEEE International Conference on

Computer Vision, 2011. (page 18)

[69] David Opitz and Richard Maclin. Popular Ensemble Methods: An Empirical Study.

Journal of Artificial Intelligence Research, 11(1):169–198, 1999. (page 10)

[70] Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. Fast Keypoint Recognition in ten

Lines of Code. In IEEE Conference on Computer Vision and Pattern Recognition,

2007. (page 2, 17)

[71] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-Resolution

Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine,

20(3):21–36, 2003. (page 1, 57)

[72] Anthony Parker, Robert Kenyon, and Donald Troxel. Comparison of Interpolating

Methods for Image Resampling. IEEE Transactions on Medical Imaging, 2(1):31–39,

1983. (page 1)

[73] John Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to

Regularized Likelihood Methods. Advances in Large Margin Classifiers, 10(3):61–74,

1999. (page 21)

[74] John Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,

1986. (page 2, 5)

[75] John Ross Quinlan. Simplifying Decision Trees. International Journal of

Man-Machine Studies, 27(3):221–234, 1987. (page 2, 16)

[76] Russell Reed. Pruning Algorithms - A Survey. IEEE Transactions on Neural

Networks, 4(5):740–747, 1993. (page 2, 16)

[77] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Global Refinement of

Random Forest. In IEEE Conference on Computer Vision and Pattern Recognition,

2015. (page 2, 3, 15, 16, 19, 21, 25, 26, 27, 29, 38, 39, 46, 49, 55, 69)

[78] Alvin Rencher. Methods of Multivariate Analysis. John Wiley & Sons, 2003.

(page 65)

[79] Alberto Suá Rez and James Lutsko. Globally Optimal Fuzzy Decision Trees for

Classification and Regression. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(12):1297–1311, 1999. (page 2, 18)

76

Bibliography

[80] Iain Richardson. H.264 and MPEG-4 Video Compression: Video Coding for

Next-Generation Multimedia. John Wiley & Sons, 2004. (page 57)

[81] David Richmond, Dagmar Kainmueller, Michael Ying Yang, Eugene Myers, and

Carsten Rother. Relating Cascaded Random Forests to Deep Convolutional

Neural Networks for Semantic Segmentation. The Computing Research Repository,

arXiv:1507(07583):1297–1311, 2015. (page 2, 18)

[82] Lior Rokach and Oded Maimon. Top-Down Induction of Decision Trees Classifiers

- A Survey. IEEE Transactions on Systems, Man, and Cybernetics, 35(4):476–487,

2005. (page 9)

[83] Lior Rokach and Oded Maimon. Data Mining with Decision Trees: Theory and

Applications. World Scientific, 2014. (page 9, 10)

[84] Samuel Rota Bulò and Peter Kontschieder. Neural Decision Forests for Semantic

Image Labelling. In IEEE Conference on Computer Vision and Pattern Recognition,

2014. (page 9)

[85] Warren Sarle. Neural Network FAQ, part 2 of 7: Learning. Website, 1997. SAS -

Statistical Analysis System, North Carolina State University. ftp://ftp.sas.com/

pub/neural/FAQ2.html last visited 15th March 2016. (page 30)

[86] Robert Schapire. The Strength of Weak Learnability. Machine Learning,

5(2):197–227, 1990. (page 11, 17)

[87] Samuel Schulter. Loss Minimization for Random Forests in Computer Vision. PhD

thesis, Graz University of Technology, 2015. (page 14)

[88] Samuel Schulter, Christian Leistner, and Horst Bischof. Fast and Accurate Image

Upscaling with Super-Resolution Forests. In IEEE Conference on Computer Vision

and Pattern Recognition, 2015. (page 2, 26, 57, 58, 60, 61, 63)

[89] Samuel Schulter, Christian Leistner, Paul Wohlhart, Peter Roth, and Horst Bischof.

Alternating Regression Forests for Object Detection and Pose Estimation. In IEEE

International Conference on Computer Vision, 2013. (page 2, 3, 11, 14, 25, 29, 31,

38, 39, 69)

[90] Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saffari, Peter Roth, and

Horst Bischof. Alternating Decision Forests. In IEEE Conference on Computer

Vision and Pattern Recognition, 2013. (page 2, 3, 11, 12, 21, 25, 27, 69)

[91] Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and

Antonio Criminisi. Decision Jungles: Compact and Rich Models for Classification.

In Advances in Neural Information Processing Systems, 2013. (page 2, 17)

77

ftp://ftp.sas.com/pub/neural/FAQ2.html
ftp://ftp.sas.com/pub/neural/FAQ2.html

5. Conclusion

[92] Andrey Tikhonov and Vasilii Arsenin. Solutions of Ill-Posed Problems. VH Winston,

1977. (page 15, 29, 45, 49, 56, 60)

[93] Radu Timofte, Vincent De, and Luc Van Gool. Anchored Neighborhood Regression

for Fast Example-Based Super-Resolution. In IEEE International Conference on

Computer Vision, 2013. (page 1, 57, 58, 60, 63)

[94] Radu Timofte, Vincent De Smet, and Luc Van Gool. A+: Adjusted Anchored

Neighborhood Regression for Fast Super-Resolution. In IEEE Conference on

Computer Vision and Pattern Recognition, 2014. (page 1, 58, 60, 61, 62, 63)

[95] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven Ways to Improve

Example-Based Single Image Super Resolution. In IEEE Conference on Computer

Vision and Pattern Recognition, 2016. (page 63)

[96] Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin. Incremental and Decremental

Training for Linear Classification. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2014. (page 46)

[97] Chih-Yuan Yang and Ming-Hsuan Yang. Fast Direct Super-Resolution by Simple

Functions. In IEEE International Conference on Computer Vision, 2013. (page 1,

60)

[98] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image Super-Resolution

as Sparse Representation of Raw Image Patches. In IEEE Conference on Computer

Vision and Pattern Recognition, 2008. (page 1, 58)

[99] Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image

Super-Resolution via Sparse Representation. IEEE Transactions on Image

Processing, 19(11):2861–2873, 2010. (page 1)

[100] Roman Zeyde, Michael Elad, and Matan Protter. On Single Image Scale-Up using

Sparse-Representations. In Curves and Surfaces, pages 711–730. Springer, 2012.

(page 1, 58, 59, 60, 61)

78

	Introduction
	Preliminaries
	Machine Learning
	Decision Trees
	Testing
	Training
	Split Functions
	Stopping Criteria
	Prediction Models

	Random Forests
	Testing
	Training

	Alternating Decision and Regression Forests
	Boosting
	Stage-Wise Training
	Alternating Decision Forests
	Alternating Regression Forests

	Global Refinement of Random Forests
	Global Refinement
	Global Pruning

	Related Works
	Decision Jungles
	Random Ferns
	Dynamic Random Forests
	Decision and Regression Tree Fields
	Globally Optimal Fuzzy Decision Trees
	Deep Neural Decision Forests
	Relating Cascaded Random Forests to Deep Convolutional Neural Networks

	Loss-Specific Training of Random Forests
	Global Refinement of Alternating Decision and Regression Forests
	Additive Global Refinement
	Intermediate Refined Random Forests
	Global Refinement for Linear Prediction Models

	Evaluation
	Standard Machine Learning Tasks
	Classification
	Overall Results

	Regression
	Overall Results
	Maximum Depth
	Early Stopping
	Number of Decision Trees
	Randomness
	Split Functions
	Global Refinement
	Global Pruning
	Intermediate Refined Random Forests
	Strength and Correlation
	Model Size
	Runtime

	Super-Resolution
	Overall Results
	Qualitative Results
	State of the Art
	Maximum Depth
	Number of Decision Trees
	Model Size
	Runtime
	Global Pruning

	Conclusion
	Bibliography

