
Thomas Fischer BSc

Design and Implementation of a Secure Personal
Assistant Device with BLE and NFC

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger
Institute for Technical Informatics

Advisor

Dipl.-Ing. Mihai Tudosie
Infineon Technologies AG

Graz, April 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present diploma thesis.

.............................. ...
Date Signature

1

Abstract

This thesis describes the design and implementation of a secure personal assistant device
which is capable of communicating with an Android smartphone using the Bluetooth Low
Energy (BLE) and Near Field Communication (NFC) interfaces. The device can be used
as mobile temperature sensor station, allowing an user to view sensor values, transmitted
over a mid-range distance via the BLE interface to the smartphone. Quick and user
friendly device paring is supported using the NFC interface.

The document starts with an introduction to the wireless interfaces BLE and NFC.
An overview of the state of the art technologies used in security controllers is provided.
The next chapter is dedicated to the design of the hardware and software. Software com-
ponents include a Bluetooth Low Energy software stack and a client for the Transport
Layer Security (TLS) protocol to allow secure communication with the device. An An-
droid App is designed to demonstrate communication with the personal assistant device.
The implementation chapter starts with an overview of the development flow, describes
important aspects of the implementation and concludes with the testing of the hardware
and software. Finally a conclusion is drawn, summarizing the most important results.

2

Kurzfassung

Diese Masterarbeit beschreibt den Entwurf und Implementierung eines persönlichen As-
sistenzgeräts, welches in der Lage ist, mit einem Android Smartphone über ein Near Field
Communication (NFC) und Bluetooth Low Energy (BLE) Interface zu kommunizieren.
Das Gerät kann als mobile Sensorstation benutzt werden, welche dem Benutzer erlaubt,
Sensorwerte, welche über eine mittlere Distanz über das BLE Interface übertragen wer-
den, auf einer Smartphone App anzuzeigen. Einfache benutzerfreundliche Kopplung der
Geräte wird über das NFC Interface unterstützt.

Das Dokument beginnt mit einer Einführung in die Interfaces BLE und NFC. Es
folgt ein Überblick über den aktuellen Stand der Technik in Security Controllern. Das
nächste Kapitel widmet sich der sich dem Design der Hardware und Software. Zu den
Software Komponenten gehört ein Bluetooth Low Energy Software Stack und ein Client
für das Transport Layer Security (TLS) Protokoll, welcher sichere Kommunikation mit
dem Gerät erlaubt. Es wird eine Android App entworfen, welche Kommunikation mit
dem Gerät demonstriert. Das Implementierungskapitel beginnt mit einer Beschreibung des
Entwicklungsflusses, gefolgt von wichtigen Aspekten der Implementierung und schließt mit
dem Testen der Hardware und Software ab. Am Ende wird eine Schlussfolgerung gezogen,
welche die wichtigsten Resultate zusammenfasst.

3

Contents

List of Figures 7

List of Tables 9

1 Introduction 10
1.1 Motivation . 10
1.2 Overview . 11

2 State of the art 12
2.1 Bluetooth Low Energy . 12

2.1.1 Applications of BLE . 13
2.1.1.1 Mobile sensor stations . 13
2.1.1.2 BLE beacons . 14
2.1.1.3 IPv6 over BLE . 15

2.1.2 Bluetooth Low Energy (BLE) Solutions 16
2.1.2.1 Modules with complete host and controller part 17
2.1.2.2 Modules with controller part only 17
2.1.2.3 Targeted solution . 18

2.2 Near Field Communication (NFC) . 18
2.2.1 Applications of NFC . 18

2.2.1.1 NFC used for Bluetooth device pairing 18
2.3 Security controllers . 18

2.3.1 Manipulative attacks . 19
2.3.2 Observing attacks . 19
2.3.3 Semi-Invasive attacks . 20
2.3.4 Countermeasures . 20

3 Design 21
3.1 Use cases . 21

3.1.1 Mobile temperature sensor station 21
3.1.2 Door watchdog . 22

3.2 Requirements . 22
3.3 System overview . 23
3.4 System components . 23

3.4.1 Bluetooth Low Energy Transceiver 23
3.4.2 Temperature sensor . 24
3.4.3 Reed sensor . 24
3.4.4 Power Management . 24
3.4.5 Application Controller . 24

4

3.4.5.1 Application modules . 25
3.4.5.1.1 Sensor Data Handler 25
3.4.5.1.2 Bluetooth Handler 26
3.4.5.1.3 NFC Handler . 26

3.4.5.2 Protocol stacks . 26
3.4.5.2.1 BLE stack . 26
3.4.5.2.2 NFC stack . 29

3.4.5.3 Interface drivers . 29
3.4.5.3.1 I2C driver . 29
3.4.5.3.2 GPIO driver . 29
3.4.5.3.3 UART driver . 29
3.4.5.3.4 RFI driver . 29

3.4.6 Android App . 29
3.5 System interaction . 31

3.5.1 Device activation via NFC . 31

4 Implementation 32
4.1 Development Flow . 32

4.1.1 Application Controller Software . 32
4.1.1.1 IDE and Tools . 32
4.1.1.2 Bluetooth Stack development 33

4.1.2 Android App Tools . 35
4.2 Software Implementation . 35

4.2.1 Bluetooth Low Energy Stack . 35
4.2.1.1 L2CAP Layer Implementation 35

4.2.1.1.1 Command and event handling 36
4.2.1.1.2 Channel multiplexing 36
4.2.1.1.3 LE Signaling Channel 37

4.2.1.2 GAP Implementation . 42
4.2.1.2.1 Security features 42
4.2.1.2.2 Paring using the Security Manager protocol 43

4.2.1.3 GATT Server Implementation 44
4.2.1.3.1 Data structure . 44
4.2.1.3.2 Interface to GATT clients 49
4.2.1.3.3 Interface to application 51

4.2.2 I2C Interface driver . 52
4.2.3 UART Interface driver . 52
4.2.4 NFC Stack . 53

4.2.4.1 Tag Type 4 . 53
4.2.4.2 File management commands 54
4.2.4.3 Authentication and secure session 55

4.2.4.3.1 User management 56
4.2.4.3.2 Authentication process 56
4.2.4.3.3 Secure communication 56

4.2.5 Transport Layer Security (TLS) Protocol 57
4.2.5.1 RFC standards . 57
4.2.5.2 General description . 58
4.2.5.3 Authentication . 58
4.2.5.4 Key exchange . 58

5

4.2.5.5 Application data transmission 59
4.2.5.5.1 Message Authentication Code (MAC) 59
4.2.5.5.2 Symmetric Cryptography 59

4.2.5.6 Handshake phase overview 59
4.2.5.7 Implementation Security Aspects 61

4.2.5.7.1 Lucky thirteen attack 62
4.2.5.7.2 Connection downgrade attack 62
4.2.5.7.3 Predictable IV in CBC mode 62
4.2.5.7.4 Compression as side channel 62

4.2.5.8 TLS combined with BLE 63
4.2.5.8.1 GATT server interface 63
4.2.5.8.2 L2CAP LE Credit Based Channel 63
4.2.5.8.3 IPv6 over BLE . 63

4.3 Hardware Implementation . 65
4.3.1 Bluetooth controller connection (UART) 66
4.3.2 Temperature sensor connection (I2C) 67
4.3.3 Reed sensor connection (GPIO) . 67
4.3.4 Power management (Battery) . 67

4.4 Android App Implementation . 68
4.4.1 Device Control Activity . 68
4.4.2 BLE Fragment . 72
4.4.3 BLE Service . 72
4.4.4 NFC Fragment . 76

4.5 Testing . 77
4.5.1 Bluetooth Low Energy Stack Testing 77
4.5.2 TLS Implementation Testing . 77
4.5.3 Prototype . 79

5 Conclusion 80
5.1 Outlook . 80

A Acronyms 81

Bibliography 82

6

List of Figures

2.1 Bluetooth Low Energy Stack . 13
2.2 BLE Beacon in Public Transportation (taken from [17]) 14
2.3 BLE Beacons in an Apple Store (taken from [16]) 15
2.4 IPv6 over Bluetooth Low Energy . 16
2.5 Bluetooth module types . 17
2.6 Attack tree (taken from [14]) . 19

3.1 Use case mobile temperature sensor station 21
3.2 Use case 2: door watchdog . 22
3.3 System overview . 23
3.4 Development View - SLE70 application controller software 25
3.5 BLE Advertising data . 28
3.6 Logical View - Android App UML class diagram 30
3.7 Process View - Device activation via NFC 31

4.1 SLE70 toolchain . 33
4.2 BLE stack development overview . 34
4.3 L2CAP Overview . 35
4.4 L2CAP Basic Frame . 37
4.5 L2CAP LE Frame . 37
4.6 L2CAP LE Credit Based Connection Request 38
4.7 L2CAP LE Credit Based Connection Response 39
4.8 L2CAP LE Flow Control Credit . 40
4.9 L2CAP Disconnect Request . 40
4.10 L2CAP Disconnect Response . 40
4.11 L2CAP Command Reject . 41
4.12 L2CAP Connection Parameter Update Request 41
4.13 L2CAP Connection Parameter Update Response 42
4.14 BLE Security mode 2 data signing . 43
4.15 BLE pairing overview . 44
4.16 BLE GATT Profile . 45
4.17 BLE GATT Service . 46
4.18 BLE GATT Include . 47
4.19 BLE GATT Characteristic . 47
4.20 ATT Read By Group Type Command . 50
4.21 Find By Type Value Command . 50
4.22 Read Command . 51
4.23 Read By Type Command . 51
4.24 I2C frame . 52

7

4.25 NFC Tag Type 4 structure . 53
4.26 NFC Capability Container structure . 54
4.27 NFC Tag Type 4 command overview . 55
4.28 NFC user management . 56
4.29 NFC interface authentication . 57
4.30 NFC Encrypted communication with Checksum 57
4.31 TLS handshake overview . 64
4.32 Hardware schematic . 65
4.33 UART HCI Connection . 66
4.34 Reed sensor connection . 67
4.35 Android App Tabs . 77
4.36 BLE Test Suite . 78
4.37 TLS Test Suite . 79
4.38 Personal Assistant Device Prototype . 79

8

List of Tables

3.1 Atmel AT30TS74 Registers . 24

4.1 L2CAP Channel IDs for LE . 36
4.2 L2CAP Signaling Command Codes . 38
4.3 L2CAP Signaling Command Codes . 39
4.4 GATT Characteristic Properties . 48
4.5 GATT Characteristic Extended Properties 48
4.6 GATT Client Characteristic Configuration Descriptor 48
4.7 GATT Server Characteristic Configuration Descriptor 49

9

Chapter 1

Introduction

1.1 Motivation

The most commonly used wirelss technologies include Bluetooth and NFC. Most smart-
phones contain a module for Bluetooth and many support NFC. The Bluetooth Low
Energy (BLE) standard is interesting because it allows devices to be operated with a
small coint cell battery for many years. Providing a larger transmission range than NFC
it allows to support many interesting use cases as described in the following chapter. For
a student of computer science it is interesting to understand how the software contained
in a BLE device is designed and implemented. By studying the standard many questions
about the design are answered but only after implementing the software in person a full-
blown understanding is acquired. The ideal goal would be to implement the hardware and
software of a whole device by oneself but this seems impossible considering the complexity
of such a system. So the focus will be on the software which is related to the wireless
standards Bluetooth and NFC.

Since all data transfered is send over the air it is important to provide means to
protect the data from eavesdropping, beeing altered or faked by others. The key to
solve this problem is called cryptography which describes how to provide confidentiality,
authentication and integrity. The most important standard used is called the Transport
Layer Security (TLS) protocol which is used in the world wide web. Every internet banking
application uses TLS to secure the communication between the web browser and the
server. By not just implementing this standard but also focusing on impementation specific
security aspects much knowledge can be aquired.

Combining the topics wireless technologies and information security leads to an inter-
esting project an master thesis which should be worthwhile reading.

10

1.2 Overview

Infineon Technologies AG is a provider of secure microcontrollers which are suitable for
cryptographic functions and storing confident information. These controllers provide cer-
tain protection mechanisms against logical and physical attacks to prevent extraction of
the stored information. During this thesis options to integrate a secure element into an
application which requires the capabilities of a security controller and the BLE interface
are evaluated.

This thesis will guide through the necessary steps to design and implement a personal
assistant device to demonstrate the capabilities of an Infineon security controller to act as
application controller in a device which provides security related services combined with
wireless interfaces (BLE and Near Field Communication (NFC)) for communication. One
aspect of this thesis is the implementation of a BLE software stack to control a BLE
transceiver as well as implementing other interface drivers like Inter-Integrated Circuit
(I2C) to access external sensors and NFC to allow configuration of the device.

The designed device will be capable to serve in two different usage scenarios. In the first
use case the device will be used as external sensor station. The device can be configured via
an App on an Android smartphone over the NFC interface. Once the device is activated,
the user can view sensor values on the App which are continuously transfered via a BLE
link. Security is provided in the sense that the link is authenticated and encrypted which
implies that no external listener should be able to intercept and decrypt the sensors values.
The second use case is about using the device as a door watchdog which periodically sends
authenticated and encrypted messages to the smartphone which triggers an alarm if the
door is opened or the signal is lost. There are countless other possible use cases which can
easily be served by slightly modifying the device. The focus will be on the implementation
of the interface drivers (I2C, NFC, and BLE) and the cryptographic services which provide
authentication, confidentiality and integrity of the data transfered over the air.

In the end the constructed device shall be evaluated and possible optimizations shall
be discussed.

11

Chapter 2

State of the art

This chapter will give an introduction to the Bluetooth and NFC standards and their
applications. The available technologies used in security controllers will be summarized
and possible attacks and countermeasures discussed.

2.1 Bluetooth Low Energy

There are two good books which can help to acquire an understanding of the Bluetooth
technology, the first [18] gives a general overview of the Bluetooth stack and the second
[19] is a guide intended for system engineers who are implementing the standard. More
detailed information is available in the Bluetooth standard [3].

Figure 2.1 gives an overview of the BLE stack. The stack is divided into two main
parts. The host and the controller part. This separation is important because it affects
possible system architectures.

Bluetooth Low Energy is a completely new standard which is working different than
classic Bluetooth. The physical transport uses the 2.4 Ghz frequency spectrum for is
intended for industrial, scientific and medical applications (ISM band). The used spectrum
is divided in 40 channels, where three of them are used as so called advertising channels.
When a device wants to broadcast information it uses these three channels.

The link layer is placed on top of this physical transport. It has the purpose to
create logical connections between devices and provide these channels to higher layers.
Three basic modes of operation are supported by the link layer. The first mode is the
advertising mode. In this mode the device broadcasts advertising packets on one of the
three advertising channels. This allows unidirectional communication with other devices.
The second mode of operation is the scanning mode. In this mode the device listens
for broadcast packets on the advertising channels. Besides from receiving the data in
the advertising packets this also has the purpose to find devices which are suitable for
a bidirectional connection. This leads to the third mode of operation, the connection
mode. If a device sends special advertising packets indicating it supports a connection it
is possible to create a link layer connection with this device.

Once the link layer connection is established between two devices the Link Control
and Adaption layer (L2CAP) is providing service multiplexing on top of this link. This
means that data of multiple protocols can be send over one link layer connection and the
L2CAP takes care of differentiating them.

On top of L2CAP there are usually at least to protocols and layers supported. One layer
above is the Generic Access Profile (GAP) which responsible to provide a user interface to
allow handling connections between devices. It uses the Security Manager Protocol (SMP)

12

to perform secure pairing between devices. The second layer above is the Generic Attribute
Profile (GATT) which is basically a structured database containing the information the
device want to provide to other devices. This stored information can be accessed using
the Attribute Protocol (ATT).

BLE Stack – Host Part

BLE Stack – Controller Part

Link Control and Adaption Protocol
(L2CAP)

Link Layer (LL)

Physical Layer (PHY)

Security Manager
Protocol (SMP)

Attribute Protocol
(ATT)

Generic Attribute
Protocol (GATT)

Generic Access
Profile (GAP)

Host Controller Interface (HCI)

Figure 2.1: Bluetooth Low Energy Stack

2.1.1 Applications of BLE

2.1.1.1 Mobile sensor stations

Bluetooth is integrated in many health care devices. In [21] many example applications
in that area are described like a heart rate sensor or a finger pulse oximeter. A system
architecture based on the products from Nordic Semiconductor and Texas Instruments is
proposed. Both companies provide Micro Controller Unit (MCU) packages containing a
whole Bluetooth solution.

It is very common to user smartphones based on Android and iOS (Apple) to extract
data from the devices as seen in [24]. This paper contains the system architecture of a
blood pressure monitor which is read out using an iPhone app.

All these examples demonstrate the capability to operate a Bluetooth Low Energy
device using small batteries over a long period of time. This low energy consumption is

13

a big advantage compared to WiFi/WLAN. The disadvantage is obviously the lower data
transmission rate.

The system architecture of these devices is similar to the personal assistant device.
Both act as mobile sensor station (e.g. heart rate sensor) and contain a micro controller
with a Bluetooth subsystem to transmit the data to a smartphone. The difference lies
mainly in the provided security level. The personal assistant device in implemented in a
high security controller with protection against active and passive attacks.

2.1.1.2 BLE beacons

One common type of application is using a BLE device as a beacon. This means only
a transmitter is required and no receiver which reduces the costs of production. These
beacons can broadcast arbitrary data which are application depended. Besides from that
it is possible to approximate the distance between a beacon and a receiving device by ana-
lyzing the Received Signal Strength Indicator (RSSI). These two capabilities are combined
to use BLE in public transportation applications [17].

Figure 2.2: BLE Beacon in Public Transportation (taken from [17])

Figure 2.2 demonstrates the setup when using a BLE beacon for ticket management
in public transportation. A BLE beacon is placed in a train which periodically emits
advertising packets containing an identification number of the used transport. The user
possesses a smartphone with BLE capabilities and has an app installed which connects
to the service provider. The user does not need to manually select which route is taken
because the id number from the beacon is available as well as the RSSI. Using the RSSI
the app can determine when the user leaves the train. The service provider can combine
this acquired information on company servers with the time schedule and GPS position of
the train to calculate a route. The user just has to install and setup the app once. After
that the beacon signal can be used to wake up the app whenever needed. This leads to a
very user-friendly approach where no interaction is required in daily use.

As stated in [17] the BLE interface is capable of providing sufficient reaction times
which for this application if the BLE connection parameters (timing intervals) are chosen
properly.

14

Another interesting application for BLE beacons is demonstrated in [20] where a stu-
dent registration system at an university is implemented. Each student possess a student
id card which is scanned by a NFC capable smartphone using an app. This scanned data
together with a magic number received from a BLE token in class room is used to perform
a registration. Since the magic number is only broadcasted in the class room only present
students can register.

Apple’s iBeacon is a well known example for BLE beacon devices [16]. Figure 2.3
shows how the proximity information can be used to provide the customers information
about new products, track his location and enable user friendly payment when leaving
through an exit way.

Figure 2.3: BLE Beacons in an Apple Store (taken from [16])

The personal assistant device to be created in this project can also be used as beacon
which implies supporting many use cases where a beacons are used. The capabilities of the
device to be designed exceed those of a simple beacon because a transceiver (on not just
a transmitter) is integrated and the implemented BLE stack provides much more features
like bidirectional connections.

2.1.1.3 IPv6 over BLE

Allowing BLE to carry Internet Protocol (IP) packets leads to interesting applications.
Devices can be integrated in the Internet of Things (IoT) and top of this network encryp-
tion protocols like the Transport Layer Security (TLS) can be implemented. Figure 2.4
shows this can be build upon the basic layers of the Bluetooth stack. The Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) protocols are provided for
the application and are using the Internet Prococol (IP) as transport. The IP protocol
has a very large Maximum Transmission Unit (MTU) and therefore an adaption layer is
necessary whose main purpose is data compression. A first implementation was done in
[7]. This paper describes how the shown extension is implemented on top of the Linux
Bluetooth stack BlueZ.

15

Extensions

6LoWPAN adapted to BLE

IPv6

TCP UDP

Application

BLE Stack – Host Part

BLE Stack – Controller Part

Link Control and Adaption Protocol (L2CAP)

Link Layer (LL)

Physical Layer (PHY)

Host Controller Interface (HCI)

Figure 2.4: IPv6 over Bluetooth Low Energy

The advantage of implementing this standard is being compatible with the existing
infrastructure. On the other hand the IP stack introduces a huge overhead regarding the
size of the transmitted packets because additional large headers are required. The work
of [6] suggest skipping the IP stack and replacing it with a lightweight more optimized
protocol for this type of applications.

An application worthwhile to mention for IPv6 over BLE is audio data streaming as
described in [11]. This use cases is also an interesting test case to monitor and mea-
sure the performance and energy consumption of a Bluetooth device because of the high
transmission load.

2.1.2 Bluetooth Low Energy (BLE) Solutions

Multiple companies around the world provide BLE solutions which can be adapted for
applications. The Bluetooth stack can be divided into two main parts. The host part
which consists of the higher layers of the stack and the controller which contains the lower
layers (physical and link layer). This leads to the possibility to split a Bluetooth solution
into two physical separate parts. There are many different Bluetooth solutions on the
market but all can be assigned to one of the two following categories.

16

BLE Stack – Host Part

BLE Stack – Controller Part

L2CAP

Link Layer (LL)

Physical Layer (PHY)

SMP ATT

GATTGAP

Host Controller Interface (HCI)

Vendor specific interface

Application

Module with
complete

stack

Module with
controller
part only

Figure 2.5: Bluetooth module types

2.1.2.1 Modules with complete host and controller part

There are modules which contain the host and controller part of the Bluetooth stack. In
this case typically a BLE stack is provided in form of a software library and the user can
write application code which makes use of this library. The advantage of this solution is
that the vendor supplies the whole Bluetooth stack and no extra implementation is nec-
essary. Software is considered to be intellectual property of the corresponding company
and is usually provided only in binary form to the customer. This makes adaptations and
optimizations very hard and leads to an inflexible approach. For example if optimization
regarding power consumption is required and the source code of the software is not avail-
able then only certain parameters can be adapted. For many applications this flexibility
may be enough but from an academic point of view it is desirable to get more insight and
understand the used technologies.

2.1.2.2 Modules with controller part only

The second option is the use of a module which contains a BLE controller (transceiver) and
provides an interface for an external application controller. For instance the transceiver
could be connected via Universal Asynchronous Receiver Transmitter (UART) or Serial
Peripheral Interface (SPI) interface to an application controller. In this case the transceiver
runs only the lower (time-critical) layers of the BLE stack (which consist of the physical
transport and the link layer). The functionality of the BLE Link Layer is logically exposed
to the application controller as the standardized Host Controller Interface (HCI). The
upper layers (often referred as host part) of the BLE stack must be implemented on the

17

application controller.

2.1.2.3 Targeted solution

Currently there exists no Infineon micro-controller with a BLE interface so an external
BLE module is required. For this project a module with only the controller part is chosen.
A custom implementation of the host part of the BLE stack allows optimizations regarding
the required processing power and memory consumption which also implies lower energy
consumption. These higher layers do not have critical timing requirements which allows
the execution of other software simultaneously on the chip.

2.2 Near Field Communication (NFC)

The Near Field Communication (NFC) standard is based on the Radio Frequency Interface
(RFI) which is used to provide short range communication links. There are two functional
types of devices, readers and cards. Readers are the active component, generating a
electromagnetic field while the card is mostly passive. The typical range is around ten
centimeters however this highly depends on the used hardware, antenna and transmission
power. One big advantage compared to BLE is the capability to power a device over the
electromagnetic field of the reader. The reader is sending data by modulating the field.
Since the card draws power from the field it can modulate the power consumption and
therefore also send data.

Infineon provides multiple chips containing an RFI module which can be used as NFC
card. One example is the Infineon SLE70 chip which is used during this project as appli-
cation controller.

According to [8] about 30 percent of the smartphones sold in 2015 contain a NFC chip.
This is certainly below the distribution of BLE but this number is still growing.

2.2.1 Applications of NFC

Applications often intersect with BLE, for example in public transportations [8]. An
NFC tag can be used as ticket to check-in at gateways. Similar use cases exist related
to the hotel industry. Tags can be used to access buildings and for payment. One of the
most prominent use cases is the integration of NFC in credit cards and banking cards.
MasterCard and Visa are providing fast and user-friendly payments via NFC.

2.2.1.1 NFC used for Bluetooth device pairing

The Bluetooth standard supports device paring by using an out-of-band channel like NFC.
Using this alternate channel it is possible to transmit high entropy data which can be
used to authenticate devices. In this project we will use the NFC interface for device
pairing considering the fact that NFC is a low range communication and that man-in-
the-middle attacks are likely to be detected by the user. However additional security
protocols are implemented on top of NFC to prevent eavesdropping and authentication
will be supported.

2.3 Security controllers

The security of NFC capable systems is a popular research topic. The simplest form of
attacks to a system are logical attacks. Weaknesses in the communication protocol and

18

interface are used to extract information. An example of a logical attack would be the
use of an interface in way it is not indented to use. The input of invalid data could cause
unhanded errors which could eventually reveal secret information. This is probably the
easiest way because this can be done remotely. Therefore it is mandatory to design secure
interface drivers and protocols.

Figure 2.6: Attack tree (taken from [14])

2.3.1 Manipulative attacks

In [14] an overview of the most important types of attacks is presented. Manipulative
attacks include all operations where the physical structure of the chip is altered. This can
be done by performing micro-surgery using an focused-ion-beam (FIB) workstation. Also
fine needles can be placed on signal lines to extract information. This category of attacks
is the most complex to perform but it turns out cheaper attacks are often also sufficient
to extract information from the chip.

2.3.2 Observing attacks

Observing attacks are passive attacks where the chip itself is not altered and only inputs
and outputs are measured. Typically side-channel information like the power consumption
or the execution time of a command are used to extract secret information from the device.
For example the a straight-forward implementation of the RSA encryption algorithm using
the square and multiply method would yield side channel timing information because the
execution time of this algorithm depends on the key bits used. An example for an attack

19

where the power side-channel is used it where a processor is used that shows different power
consumption levels for different instructions. This allows mapping a measured power trace
to the instructions executed. More advanced attacks in this category include differential
power analysis (DPA) and electromagnetic analysis (EMA).

2.3.3 Semi-Invasive attacks

Semi-Invasive attacks are attacks where the functionality of a chip is disturbed by exter-
nal influences like power spikes or light emissions. For example a PIN check of a NFC
smartcard could be disturbed by a power spike on the supply voltage. Implementing
counter-measures against one of these attacks is possible but might not protect against
similar attacks. For example integrating a light sensor might detect against light emis-
sions but not other emissions like radiation with alpha particles. An other example is the
monitoring of the supply voltage of the chip to detect spikes. If the spike would be ap-
plied only locally to one module the detection might also fail. Electromagnetic induction
attacks are an other example for attacks that can be applied locally to a certain module
of the chip. Thermal attacks use the properties of components like memory to operate
only in a certain temperature range. If these ranges are exceeded malfunctions happen
and data is corrupted. If some memory modules are exposed to very low temperatures
the memory starts to ”freeze-in” even of the power supply is off. One advanced type of
attack utilizes so called thermally induced voltage alteration (TIVA) devices which cause
local irritation trough the backside of the chip with using a infrared laser. This type of
light is not detected by light sensors which means more advanced protection is required.

2.3.4 Countermeasures

Facing all these types of possible attacks, security countermeasures must be implemented
to protect the chip and its data. Common methods to protect the memory are parity bits,
error correction codes (ECC) and mathematical error detection codes (EDC). The simplest
form of parity bits only tells if the bit sum of a value is even or odd and will protect only in
fifty percent of multi-bit errors against manipulations. The more advanced EDC method
is standard in todays security controllers. The memory and bus must be protected against
being read out by attackers after disassembling the chip. This problem can be solved
by encrypting the contents of the memory and the data on the bus. It is also state of
the art to work with encrypted data in the CPU, this is also often referred as full data
path encryption. Detecting faults induced by an attacker can be done by implementing
a dual-core CPU where both cores check each others results and compare them, resulting
in the security reset if the results are different. At last it should be mentioned that if
co-processors and other peripherals are used the data path protection must be extended
to cover also these elements.

20

Chapter 3

Design

This chapter describes the use cases, requirements and the system architecture of the
device to be constructed.

3.1 Use cases

There are many possible use cases for an embedded device with NFC and BLE capabilities.
For demonstration purposes two applications are chosen.

3.1.1 Mobile temperature sensor station

The device should include a temperature sensor which does a measurement in a periodic
time interval. The user should be able to view this data on smartphone using an App as
shown in figure 3.1.

26 ° CPersonal Assistent
Device

BLE Link

Figure 3.1: Use case mobile temperature sensor station

The usage procedure is as follows.

1. Place the device in a position of interest

2. Move a smartphone (with NFC interface) in close proximity of the device to activate
it and perform pairing

3. Review the measurement values on the smartphone app

4. Stop the application on the phone

21

3.1.2 Door watchdog

By including a reed sensor in the device it is possible to place to device on a door frame
and detect when the door is opened (see figure 3.2). The system sends encrypted, signed
messages periodically to the smartphone as long as the door remains closed. Once the door
opens or the device will stop sending these messages and the smartphone will activate an
alarm. Should the device be deactivated for any reason the alarm will also be triggered.

The usage procedure is as follows.

1. Place the device on the door frame, mount a magnet on the door, the reed sensor
must be in closed state

2. Use the phone with the NFC interface to activate the device

3. If the door is opened, an alarm will occur on the phone

4. Else stop the application on the phone

PAS

BLE Link

Figure 3.2: Use case 2: door watchdog

3.2 Requirements

The use cases lead to the following requirements.

• The device must provide an BLE interface to provide the acquired data.

• A temperature sensor must be integrated to perform measurements.

• A reed sensor must be integrated detect state changes of a door (or similar structure).

• Activation and pairing between the device and a smartphone should be possible
using the NFC interface.

22

• The system should only be used by authorized users.

• Data transfered over the wireless interfaces should be protected. This implies data
must be encrypted to provide confidentiality and message authentication codes must
be used to ensure authenticity and integrity.

3.3 System overview

The personal assistant device to be constructed is an embedded system with no display
or keyboard. These missing I/O capabilities are delegated to a smartphone based on
Android which is used to display application data generated by the system. To achieve
this two wireless interfaces are implemented, Bluetooth Low Energy (BLE) and Near Field
Communication (NFC). The BLE interface is intended to carry application data over a
medium range distances to be visualized by a smartphone app. The NFC interface is
used perform pairing between the embedded system and the smartphone which includes
configuring it and setting up the BLE connection.

Figure 3.3 presents the physical view of the system components including the interac-
tion with a BLE and NFC capable smartphone.

Smartphone

Bluetooth LE
Transceiver

TI CC2564

Application Controller

Infineon SLE70

Temperature
Sensor

Reed
Sensor

Power Management
(Battery)

U
A

R
T

G
P

IO

Figure 3.3: System overview

3.4 System components

3.4.1 Bluetooth Low Energy Transceiver

The BLE transceiver module is connected to the application via a 4-wire UART interface
supporting hardware and software flow control. In this project the Texas Instruments
CC2564 module has been chosen. It provides the standardized Host Controller Interface
(HCI) as defined in the BLE specification.

23

3.4.2 Temperature sensor

A temperature sensor is connected via I2C interface to the application controller. The
Atmel AT30TS74 device supports measurements in range from -55 up to +125 degrees
with high accuracy. It offers a simple interface with five special function registers (see
table 3.1) which can be accessed using a simple communication protocol.

Register Address Read/Write

Pointer Register n/a W
Temperature Register 0x00 R
Configuration Register 0x01 R/W
TLOW Limit Register 0x02 R/W
THIGH Limit Register 0x03 R/W

Table 3.1: Atmel AT30TS74 Registers

The pointer register is used to select the current active register which can be written
or read in the next command. The temperature register allows reading the last measured
temperature value of the sensor. The configuration register allows to alter the resolution
of the sensor values in bits and other properties. The two limit registers can be used the
setup an interrupt on an alert line connected to the application controller. This feature
can be enabled and disabled in the configuration register. Using this feature is is possible
to detect temperature changes without actively polling data from the sensor. This can be
used save energy and resources on the application controller because it can stay idle if no
changes occur.

3.4.3 Reed sensor

A reed sensor is connected to a General Purpose Input Output (GPIO) pin of the applica-
tion controller. This sensor is similar to a switch. By placing a magnet close to the sensor
the state can be altered. The application controller is detecting voltage edge transitions on
the corresponding GPIO pin. By setting up an interrupt service routine the state changes
are propagated to the application.

3.4.4 Power Management

A battery allows powering the device in absence of an external power supply. Alternatively
the device can be powered over an Universal Serial Bus (USB) cable or the NFC interface.
The SLE70 chip is capable of operating in a dynamic voltage range. If the USB interface
is used for flashing the software then a 5V supply is needed. Otherwise lower voltage levels
like a 3V battery are sufficient. The TI CC2564 chip requires a voltage level around 3V.
The 5V supply from the USB connector exceeds the maximum voltage ratings stated in
the data sheet. This implies a voltage regulator is required if the device is powered with
5V from USB.

3.4.5 Application Controller

An Infineon SLE70 secure microcontroller is used as application controller. It runs a
multi-tasking operating system capable of dealing with data from multiple interfaces con-
currently. The NFC interface can serve for communication and as power source. Initially
the device is deactivated and draws no energy from the battery. The user has to acti-
vate the NFC interface on the phone (card reader mode) and move the phone near the

24

device. The electromagnetic field (from the phone) will then power the application con-
troller within the device over the NFC antenna. Once the user is authenticated the device
can be activated and the application started. This means the BLE module is powered on
and transmission of application data begins. The power is then supplied by an battery in
the device.

Figure 3.4 shows the development view consisting of the software modules in the SLE70
controller. The green modules are responsible of acquiring data from the sensors. The
blue modules are related to Bluetooth and the orange to NFC. The application modules
are described in the following paragraphs.

Drivers

I2C Interface
Driver

UART Interface
Driver

GPIO
Driver

Bluetooth Stack

RFI Interface
Driver

NFC Stack

Application

L2CAP

SMP ATT

GAP GATT

Sensor Data Handler Bluetooth Handler NFC Handler

NFC Tag Type 4 Protocol

NFC Encryption and MAC

Figure 3.4: Development View - SLE70 application controller software

3.4.5.1 Application modules

The application modules are the represent the highest layer in figure 3.4. Each of them
represents a task in the operating system of the application controller.

3.4.5.1.1 Sensor Data Handler

The Sensor Data Handler is a task which periodically acquires sensor readings and stores
the values in memory. Whenever the sensor values changes the new values are propagated

25

to the Bluetooth Handler. Values from the temperature sensor are acquired by using the
I2C driver and the state of the reed sensor is checked using the GPIO driver.

3.4.5.1.2 Bluetooth Handler

The Bluetooth Handler has the purpose to initialize the Bluetooth stack and process events
received from the it. In addition it provides an interface for the Sensor Data Handler and
NFC Handler.

3.4.5.1.3 NFC Handler

The NFC Handler task has the purpose to process commands coming from the NFC
interface. It contains a command interpreter which checks the format of each command
and executes it afterwards. The supported commands include the following actions.

• Enable/Disable the BLE interface

• Activate the BLE advertising

• Retrieve a randomly generated key for BLE pairing

3.4.5.2 Protocol stacks

The protocol stacks represent the middle layer in figure 3.4. The design includes a stack
for BLE and NFC.

3.4.5.2.1 BLE stack

The BLE stack contains all layers mandatory by the Bluetooth standards which includes
the Link Control and Adaption Protocol (L2CAP), Security Manager Protocol (SMP),
Generic Access Profile (GAP), Attribute Protocol (ATT) and Generic Attribute Pro-
file (GATT). The functionality and interfaces of the stack is well defined in the standard
with one exception. Designing the interface to the application or user is left to the im-
plementating engineer. The following paragraphs will summarize the interface functions
required.

3.4.5.2.1.1 L2CAP interface

The L2CAP layer is the lowest layer of the host part of the stack and little interaction
with the user is required except the creation of the L2CAP LE Credit Based Channels.
The following functions are needed.

• Create/Close a L2CAP LE Credit Based Channel (channel id as parameter)

• Transmit an L2CAP packet (connection handle and packet data pointer as parame-
ter)

3.4.5.2.1.2 GAP interface to set controller properties

An interface (see the next code listening) is provided to allow the user or the application
to read and change device specific properties. In addition functions are provided to reset
the controller, configure the received events (by setting event masks) and alter vendor
specific properties like the transmission power.

26

UINT16 gap addre s s g e t (UINT8∗ b lue too th addre s s) ;
UINT16 g a p a d d r e s s s e t (UINT8∗ b lue too th addre s s) ;
UINT16 gap dev ice name get (UINT8∗ device name ,

UINT16 max length) ;
UINT16 gap dev i ce name set (UINT8∗ device name) ;
UINT16 gap pas skey get (UINT8∗ passkey , UINT16 max length) ;
UINT16 gap pas skey s e t (UINT8∗ passkey , UINT16 length) ;

Bluetooth Device Address

A 6 byte value identifying a Bluetooth device. This value should be unique. The functions
gap address get and gap address set are used to manage this property.

Bluetooth Device Name

A character string intended to give the device a user friendly name which is displayed
in the user interface when discovering devices. The length of this value is limited to
248 bytes. If Unicode characters are used which are encoded using more then one byte
then the maximum string length might be less. The functions gap device name get and
gap device name set are used to manage this property.

Bluetooth Passkey (PIN)

An alpha numerical value which can be used to derive keys used in the Security Manager.
This value might be pre-shared, entered by the user or exchange over an out-of-band
interface like NFC. The functions gap passkey get and gap passkey set are used to manage
this property.

3.4.5.2.1.3 Interface to manage connections

A device can assume the following roles in BLE:

• Observer

• Broadcaster

• Peripheral

• Central

An Observer listens for undirected advertising packets which are emitted by a broad-
caster. A Central is a device which can create connections to one or more Peripheral
devices. The roles are supported by a special packet format, the advertising packet for-
mat.

Advertising packet format

An advertising packet consists of a set of Advertising Data (AD) structures. Each AD
structure consists of one byte length, indicating the size of the data (payload) and the
data part. The data part consists an AD type and an arbitrary number of AD data. See
figure 3.5 for a graphical representation. The Bluetooth Core Specification Supplement
(CSS) specifies a set of AD types which are needed for basic GAP functionality.

The most important of the specified AD types is the Flags type which is consist of one

27

AD Structure 1 AD Structure 2 AD Structure n... 000...000b

Length
(1 octet)

Data
(Length octets)

AD Type
(n octets)

AD Data
(Length – n octets)

Significant part Non-significant part

AD Structure

AD Substructure

Figure 3.5: BLE Advertising data

byte payload to carry the following flags.

• Limited Discoverable Mode

• General Discoverable Mode

• BR/EDR Not Supported

• Simultaneous LE and BR/EDR to Same Device capable (Controller)

• Simultaneous LE and BR/EDR to Same Device capable (Host)

If Bluetooth Low Energy is used only then the last three flags related to BR/EDR can
always be set to zero and ignored on reception. The usage of the first two flags related to
discover ability will be discussed in the following sections. The Bluetooth standard defines
multiple operational modes and procedures.

Broadcast mode and observation procedure

A device which assumes the role of an broadcaster configures its controller to send undi-
rected advertising packets. The Limited/General Discoverable Mode flags have to be set
to zero in this mode.

The observation procedure means that a device does active or passive scanning for
advertising packets. Passive scanning means just list listen and receive the packets without
sending anything. Active scanning means analyzing the packets the send scan request
where possible and then process the scan response. With this technique the payload
size of advertising packets can be doubled. Data that often changes should be put in
the advertising packets and data that changes less often should be placed in the scan
response packets. Bluetooth controllers offer an option to filter duplicate advertising
packets from the same origin. If dynamic is placed in advertising data then this feature
must be deactivated.

The following interface is provided to support the Broadcaster and Observer role.
The Broadcaster role can be entered by calling the gap scan enable function. The data

28

of the advertising packets can be set using the gap advertising set data function. The
gap scan enable and gap scan disable can be used to enter and leave the Observer role.

void g a p a d v e r t i s i n g s t a r t () ;
void g a p a d v e r t i s i n g s t o p () ;
void g a p a d v e r t i s i n g s e t d a t a (UINT8∗ data) ;
void gap scan enab l e () ;
void g a p s c a n d i s a b l e () ;

3.4.5.2.2 NFC stack

The NFC protocol stack supports the Tag Type 4 standard which is described in [1], a
document from the NFC Forum. This standard defines a data structure and an interface
to access it. In addition a custom security layer with encryption and message checksums
is integrated.

3.4.5.3 Interface drivers

Several interface drivers are required to interact with other hardware components. Drivers
are platform-specific while the remaining modules are portable to other systems.

3.4.5.3.1 I2C driver

Since the temperature sensor is connection via an I2C bus to the application controller an
I2C driver is required. The driver must provide functions to initialize the driver, send and
receive a data frame.

3.4.5.3.2 GPIO driver

This driver is required to retrieve the status of the reed sensor. The driver must provide
an interface to check the voltage level of a GPIO pin which can be high or low.

3.4.5.3.3 UART driver

In order to communicate with the Bluetooth transceiver a UART driver is needed. The
interface of this driver must provide functions to initialize the connection, send and receive
a data frame.

3.4.5.3.4 RFI driver

The Radio Frequency Interface (RFI) driver is the base for the NFC protocol. This is the
most complex of all integrated drivers and is provided by Infineon as application note.
This reference driver will be used in the project.

3.4.6 Android App

The Android app allows the user to communicate with the Personal Assistant Device via
the BLE and NFC interfaces. Two tabs are provided, one for each interface. The NFC tab
provides control elements to activate the device, retrieve its Bluetooth address (pairing)
and allows creating a Bluetooth Low Energy connection with it. The BLE tab shows the
connection status and the sensor values from the device.

29

Device Control Activity

ServiceConnection ble_service

onCreate()

onResume()

BLE Fragment

setConnectionStatus(String

status)

setTemperature(String status)

NFC Fragment

setTag(Tag tag)

BLE Service

initialize()

connect(String address)

disconnect()

readCharacteristic(Characteristic c)

setCharacteristicNotification

(Characteristic c)

getSupportedGattServices()

BroadcastReceiver ble_receiver

onPause()

onDestroy()

BluetoothAdapter ble_adapter

FragmentPagerAdapter tabs

Figure 3.6: Logical View - Android App UML class diagram

As seen in figure 3.6 the App consists of a main activity called ”Device Control Ac-
tivity”. This activity contains a FragmentPagerAdapter containing to tabs, the BLE
fragment and the NFC fragment. In addition there exists a BLE Service which is man-
aging the Bluetooth Adapter of the system. The activity is bonded to that service, has
the ability to call functions using the service interface and is able to receive notifications
from the service. For this purpose the activity has the ServiceConnection member which
allows creating a bond with the service and the BroadcastReceiver which allows receiving
events from the service. The functions onCreate, onResume, onPause and onDestroy are
called by the Android system to manage the life-cycle of the app. The onCreate method is
called when the activity is created by the system because the user started it or moved the
phone to the personal assistant device which triggered the detection of the NFC interface
connection. The onPause function is called whenever the activity looses focus and some
other app is on top of this app. onResume is the inverse event when the activity regains
the focus. At last the onDestroy method is called when the user or system ends the app.
It is used to clean up used resources like the service connection.

The BLE fragment contains to public methods which allows the activity to set the
current information values in the user interface once updates from the service arrive. The
NFC fragment contains only a method setTag which is called by the activity when it is
started by a NFC intend which means the phone is near the device. Then a reference to
the tag is passed to the fragment, allowing it to communicate with it.

There are a set of functions in the BLE service class with allow to access the GATT
server of the personal assistant device. The initialize method enables the Bluetooth
adapter and stores a reference in the member ble adapter. The connect method allows
to create a connection with a device with given Bluetooth device address. The discon-
nect method ends an open connection. The getSupportedGattServices function allows

30

retrieving a list of all available services on a connected device. After using this func-
tion the readCharacteristic method can be used to retrieve data from a service like the
temperature values from the sensor in this project.

3.5 System interaction

This section shows the systems interaction when using the device as indicated in the use
cases. A process view diagram should assist in understanding how the components interact
with each other.

3.5.1 Device activation via NFC

Figure 3.7 visualizes the device activation process. The Android smartphone sends a
command via the NFC interface to the SLE70 application controller. This command is
processed by the NFC Handler task. If the command is valid the BLE Handler interface is
used to trigger the corresponding functionality in the Generic Access Profile (GAP) layer.
First the function ”init controller” in the GAP is called which results in an Host Controller
Interface (HCI) command which is send over the UART driver to the BLE controller. Then
the ”enableAdvertising” command is send. Once both commands are executed by the BLE
controller the device is ready for a BLE connection which is initialized by the smartphone.

SLE70 application controller

NFC Handler

BLE Handler

Generic Acces Profile (GAP)

void init_controller();
void enableAdvertising();

UART Driver

BLE Controller

HCI

Android
Phone

Figure 3.7: Process View - Device activation via NFC

31

Chapter 4

Implementation

This chapter describes the implementation of the software of the application controller as
well as the implementation of the hardware and the development of the Android App.

4.1 Development Flow

This section introduces the tools used to create the software necessary to operate the
personal assistant device.

4.1.1 Application Controller Software

The software is based on the Infineon Dual Sim application note. This framework pro-
vides a cooperative multi-tasking operating system with drivers for the UART and RFI
communication. Multiple tasks can be in running state at the same time and a scheduler
is responsible for choosing the next task to be executed in the processor.

There are two fundamental different ways to define at which time the scheduler is
triggered to choose the next task. This operating system is a cooperative multitasking
system. The scheduler switches to to next task after a task is finished and yields which
means passing over the control to the scheduler. In contrary in a preemptive system an
timer interrupt is used to stop a running task to trigger the scheduling of the next task.
The advantage of a cooperative system is that shared resources do not have to be protected
by synchronization methods like a mutex or semaphore.

Each task in the operating system requires a stack for local variables. In addition the
stack is used to backup the processors registers before a task switch is done and to restore
them when the task is scheduled again.

The Keil standard libraries provides a heap memory implementation. A static mem-
ory area of sufficient size will be used as heap memory. A wrapper module around this
functionality is required in order to link heap segments to tasks. This is required because
tasks can be stopped at any time when the corresponding interface is disconnected and
then heap segments have to be freed to prevent memory leaks.

4.1.1.1 IDE and Tools

Figure 4.1 illustrates the flow. The Keil Integrated Development Environment (IDE) is
used to develop the software for the SLE70 application controller. In the IDE the C
header and source files are created using an integrated text editor. Once the toolchain is
started the preprocessor includes all referenced header files and processes all preprocessor

32

macros. Then the compiler creates an object file for each source file. Finally all object
files are put together by the linker. The postlocator takes care of the platform specific
memory mapping and the final result is a HEX file, a text file containing the the code
bytes formated as hexadecimal values. This HEX file can be downloaded (flashed) on
a SLE70 controller using the tool Infineon SmartcardManager. Alternatively the HEX
file can be used in the SLE70 simulator to run tests. This testing is limited because the
behavior of the hardware modules is simplified and the timings are different than on the
real hardware. However is is possible to test at least some software functions with prepared
input arguments (function parameters).

Compiler

Linker/Postlocator

output.hex

Preprocessor

source.cKeil IDE

SmartCardManager

SLE70 controllerSLE70 simulator

header.h

SLE70
toolchain

Figure 4.1: SLE70 toolchain

4.1.1.2 Bluetooth Stack development

The stack is designed to run on multiple platforms. During writing this thesis the Infineon
SLE70 platform and Microsoft Windows are supported. The support of Windows makes
developing and debugging much easier. At first the stack was developed and tested on
Windows which allowed debugging using the functionality of Microsoft Visual Studio.
After verifying the functionality the software was ported to an Infineon security controller
where less debugging options are available.

Multi-platform capability is accomplished by using preprocessor macros to have dif-
ferent implementations for platform specific functions (like HCI communication or thread
synchronization). When compiling the sources files the target platform is detected by
using compiler defined preprocessor macros. For example the macro ’ WIN32’ is defined
when using the Visual Studio compiler on Windows.

One challenge when developing for multiple platforms is to take care the endianess of
the processor. Intel processors running Windows are using litte-endian word storage while

33

Infineon SLE70 controllers are using big-endian storage. Whenever multi-byte values are
accessed it is important to take this difference into account.

Figure 4.2 shows how the stack was developed and functionally tested. First the stack
was development as part of a Win32 C Application on Microsoft Windows. A Win32
window form is used show a transmission log to the testing user and provide control
elements for the BLE stack functions. Since the PC has just USB connectors a USB to
UART converter is needed. A FTDI FT230X dongle is used for that purpose. That way
the PC can be connected to the TI CC25664 BLE controller. After the code has been
proven to work, the stack was ported to the SLE70 controller. A task is now replacing the
Windows GUI.

PC - Win32 C Application

UART Driver

BLE Stack

GAP GATT

SMP ATT

L2CAP

Application

Win32 GUI

Control

Log

SLE70 – Dual Sim Appnote

UART Driver

BLE Stack

GAP GATT

SMP ATT

L2CAP

Application

Tasks

BLE Task

...

FTDI FT230X
USB <-> UART

TI CC2564
BLE Controller

Link Layer

Physical Layer

U
A

RT

TI CC2564
BLE Controller

Link Layer

Physical Layer

Android Phone

Figure 4.2: BLE stack development overview

34

4.1.2 Android App Tools

The Android Studio IDE was used to develop the Android App. For testing a LG (Google)
Nexus 5 phone was used. Using this IDE is the standard aproach recommended by Google
and plenty of documentation is available on the Google Android Developer Website.

4.2 Software Implementation

4.2.1 Bluetooth Low Energy Stack

This chapter describes the architecture of the BLE stack implemented on the personal
assistant device. All layers in the host part of the stack will be explained in detail.

4.2.1.1 L2CAP Layer Implementation

The L2CAP layer is the lowest layer in the host part of the BLE stack. It accesses the
functionality of the Link Layer by using the Host Controller Interface (HCI). The host
and the controller are either in the same device or they are located in separate devices
and connected via a interface like UART or USB. In this project two separate chips are
used and they are connected via UART interface.

Higher Layers

Host Controller Interface (HCI) Driver

Link Control and Adaption Protocol (L2CAP)

GATT GAP Application

Segmentation

Fragmentation

Protocol Multiplexing

ATT SMP Protocol

Figure 4.3: L2CAP Overview

Figure 4.3 shows how the L2CAP layer interfaces with other layers. Higher layers
submit packets to be transmitted over a L2CAP channel and receive notifications once
incoming packets on a selected channel are available. An interface is provided to create
additional L2CAP channels.

35

4.2.1.1.1 Command and event handling

The L2CAP layer is designed to send HCI commands to the BLE controller and handle
events received from the controller. Higher layers like the GAP layer can use the L2CAP
layers interface to alter the state of the controller. For example the GAP layer can use
the L2CAP interface to send a command which puts the controller in advertising mode.
When the command is complete or an error has occurred the controller will send back an
event to the host over the HCI which will be processed by the L2CAP layer and forwarded
to higher layers if appropriate.

4.2.1.1.2 Channel multiplexing

Once a connection between two Bluetooth controllers has been established using the Link
Layer raw data in form of packets can be exchanged. In practice multiple protocols are
relayed over such a link. For BLE it is common to support at least the ATT and SMP.
The L2CAP layer takes care of multiplexing protocols over a single logical link. For this
purpose the concept of L2CAP channels is introduced. A L2CAP channel is a virtual
channel of an logical link to an remote device established by the Link Layer. There can be
an arbitrary number of L2CAP channels during the lifetime of a logical link. Each L2CAP
channel has an assigned Channel Identification Number (CID). The BLE standard defines
that three L2CAP channels always exists on each physical link, namely the ATT channel,
the L2CAP signaling channel and the SMP channel. If needed the application controlling
the BLE stack can create more channels.

The following table gives an overview over all possible channel identifiers according to
the Bluetooth standard.

CID Description Remarks

0x0000 Null identifier not allowed
0x0001-0x0003 Reserved used only by BR/EDR controllers
0x0004 Attribute Protocol used by the GATT layer
0x0005 LE Signaling Channel used to send L2CAP commands
0x0006 Security Manager Protocol used by GAP to perform pairing
0x0007-0x001F Reserved
0x0020-0x003E Assigned numbers IANA assigned protocols
0x003F Reserved
0x0040-0x007F Dynamically allocated LE credit based channels
0x0080-0xFFFF Reserved

Table 4.1: L2CAP Channel IDs for LE

Each channel has a defined mode of operation. The standard defines two modes of
operation which are used in BLE. The Basic L2CAP Mode and the LE Credit Based Flow
Control Mode.

4.2.1.1.2.1 Basic L2CAP Mode

This mode is the default mode of operation for all channels. The three always available
channels are using this mode. Figure 4.4 shows how a data frame in this mode is defined.
The first field ”Length” refers to the length of the information payload of the packet. It
is followed by the Channel ID (CID) and at last the payload follows.

36

Length
(2 octets)

Channel ID (CID)
(2 octets)

Information Payload
(variable length)

Basic L2CAP Header

Figure 4.4: L2CAP Basic Frame

4.2.1.1.2.2 LE Credit Based Flow Control Mode

A channel using this mode can be established by using the L2CAP Signaling Protocol.
This mode offers flow control to prevent the receive buffer of a device being overflowed.
Whenever there space is has become free in the receive buffer of an endpoint, an L2CAP
Signaling Protocol packet can be sent to allow the reception of new packets.

Figure 4.5 shows visualizes a frame in this mode of operation. The difference to the
Basic L2CAP mode is that the first frame of a message from a higher layer contains the
”SDU Length” field which tells the receiving side how long the message will be overall.
This allows a message to be distributed over multiple packets if it exceeds the size of a
single frame.

Length
(2 octets)

Channel ID (CID)
(2 octets)

Information Payload
(variable length)

Basic L2CAP Header

L2CAP SDU Length
(2 octets)

Figure 4.5: L2CAP LE Frame

4.2.1.1.3 LE Signaling Channel

The LE Signaling Channel is always exists for each link layer connection. It is intended to
exchange L2CAP management commands. For BLE there are two main use cases for this
channel. The first case is the ”Connection Parameter Update” procedure and the second,
more important use case is the creation, termination and flow control of LE Credit Based
channels. Table 4.2 summarizes all possible commands relevant to BLE. The following
paragraphs will discuss packet structures and procedures in more detail.

4.2.1.1.3.1 Managing LE Credit Based channels

The commands necessary to create, manage and close LE Credit Based channels will be
described in the following lines. All commands consist of ”Code” octet which identifies
the command, an ”Identifier” field which must be an unique number for each request and
a ”Length” field defining how much data follows.

37

Code Description

0x01 Command Reject
0x06 Attribute Protocol
0x07 LE Signaling Channel
0x12 Connection Parameter Update request
0x13 Connection Parameter Update response
0x14 LE Credit Based Connection request
0x15 LE Credit Based Connection response
0x16 LE Flow Control Credit

Table 4.2: L2CAP Signaling Command Codes

Code
0x14

Identifier Length

LE_PSM Source CID

MTU MPS

Initial Credits

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.6: L2CAP LE Credit Based Connection Request

LE Credit Based Connection Request

The LE Credit Based Connection Request is send to request the creation of a new LE
Credit Based L2CAP channel which can be used by a higher layer or application to transfer
data with flow control. The packet is visualized in figure 4.6. The parameter Low Energy
Protocol Service Multiplexer (LE PSM) defines for which service the channel will be used.
The Source CID parameter indicates will channel id in the L2CAP layer will be assigned to
this channel. The Maximum Transmission Unit (MTU) parameter can limit the maximum
size of each transmitted packet over the channel. A minimum MTU of 23 octets shall be
supported on BLE links. The Protocol Data Unit (PDU) field limits the maximum length
of a frame received from a higher layer. A minimum PDU of 23 octets shall be supported. If
the L2CAP implementation supports segmentation of packets than higher values up to the
size of an 2 octet value (65533) are possible. At last the ”Initial Credit” value determines
how much packets can be stored in the L2CAP reception buffer for this channel.

LE Credit Based Connection Response

The LE Credit Based Connection Response is send as answer to a connection request
packet. The Destination CID field indicates the channel ID of the L2CAP channel in the
remote device. The MTU, PDU and Initial Credit fields have the same meaning as in the
connection request packet but are corresponding to the remote side. Finally the ”Result”
field defines if the request was accepted or not. Table 4.3 lists possible success and error

38

cases.

Code Description

0x0000 Connection successful
0x0001 Reserved
0x0002 Connection refused – LE PSM not supported
0x0003 Reserved
0x0004 Connection refused – no resources available
0x0005 Connection refused – insufficient authentication
0x0006 Connection refused – insufficient authorization
0x0007 Connection refused – insufficient encryption key size
0x0008 Connection refused – insufficient encryption
0x0009 Connection refused - invalid Source CID
0x000A Connection refused - source CID already allocated
0x000B-0x0FFFF Reserved

Table 4.3: L2CAP Signaling Command Codes

Code
0x15

Identifier Length

Destination CID MTU

MPS Initial Credits

Result

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.7: L2CAP LE Credit Based Connection Response

LE Flow Control Credit

This packet is send to grant the remote side more credits to continue sending new packages.
Usually this is send whenever the free space in the L2CAP reception buffer of this channel
has increased. The parameter CID refers to the corresponding channel id and the Credit
parameter defines the number of packages which could be received additionally since the
last credit grant.

Disconnection Request

The Disconnect Request packet is send to request the termination of a chosen L2CAP
channel. Not every channel can be closed. There are some channels like the L2CAP
Signaling Channel that are always available. Figure 4.9 shows the structure of this frame.

39

Code
0x16

Identifier Length

CID Credits

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.8: L2CAP LE Flow Control Credit

Code
0x06

Identifier Length

Destination CID Source CID

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.9: L2CAP Disconnect Request

Disconnection Response

The Disconnect Response packet is send to acknowledge the termination of a channel. If
the disconnect request fails an other error message, the Command Reject packet is send.
Figure 4.10 shows the structure of this frame.

Code
0x07

Identifier Length

Destination CID Source CID

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.10: L2CAP Disconnect Response

Command Reject

This packet is send whenever an received command can not be processed or acknowledged.
Figure 4.11 shows the structure of this frame.

4.2.1.1.3.2 Connection Parameter Update procedure

This procedure is used as fall-back method to adapt the link layer parameters for a con-
nection if the primary link layer procedure is not supported by one or both controllers.

40

Code
0x01

Identifier Length

Reason Data (optional)

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.11: L2CAP Command Reject

L2CAP Connection Parameter Update Request

This packet as seen in figure 4.12 is send to request an update of the link layer connection
parameters of an established connection. The ”Inverval Min” and ”Interval Max” fields re-
fer to the minimal and maximal supported connection interval of a device. The connection
interval defines a periodic timer interval at which the peripheral device in the link layer
connection wakes up and listens for packets coming from the central device. The ”Slave
latency” is the number of connection intervals the peripheral device can stay sleeping to
save energy before the central will disconnect the link. The ”Timeout Multiplier” defines
the supervision timeout which tells how long the connection can stay idle without sending
any packet after connecting.

Code
0x12

Identifier Length

Interval Min Interval Max

Slave Latency Timeout Multiplier

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.12: L2CAP Connection Parameter Update Request

Connection Parameter Update Response

The response packet as seen in figure 4.13 contains a ”Result” field with a binary value to
determine if the request has been accepted.

41

Code
0x13

Identifier Length

Result

Octet 0 Octet 1 Octet 3 Octet 4

Figure 4.13: L2CAP Connection Parameter Update Response

4.2.1.2 GAP Implementation

The GAP layer acts as interface for the user or application to control the functions of the
the Bluetooth device. The interface provides functions to get and set controller specific
parameters like the Bluetooth device address and other properties. Most important, func-
tionality is provided to connect to devices and activate security features like encryption
by using the Security Manager Protocol (SMP).

4.2.1.2.1 Security features

In BLE there are two supported security modes. LE Security mode 1 offers encryption
and LE Security mode 2 offers data signing (Message Authentication Codes). Only one
mode can be used at a time. This leads to a much weaker security compared to other
protocols like TLS where encryption and MAC are used combined.

Each security mode can be used in different levels. The levels define if and how
authentication is done. Authentication is necessary to provide protection against man-
in-the-middle attacks and unauthorized access to devices. Bluetooth is often used in
medical devices which may attached to the patients body. These devices are often vital
and no unauthorized user should be able to access the device or alter its functionality.
Considering such use cases there are high security requirements. LE Security mode 1
provides the following levels according to the standard:

1. No security (No authentication and no encryption)

2. Unauthenticated paring with encryption

3. Authenticated paring with encryption

4. Authenticated LE Secure Connections pairing with encryption

Authentication is done by using a out-of-band (OOB) channel to transfer a key. If
devices have a display it is common to ask the user to manually enter a paraphrase or key
shown at one device into the other. Alternatively NFC can be used to transfer a key over
a short distance. All methods assume that the second channel is secure.

In LE security mode 1 level 4 the Elliptic Curve Diffie-Hellman (ECDH) protocol is
used for key exchange using the NIST P256 curve. This protocol provides forward-security
which means even if the OOB information is leaked the encryption key remains secure if
the paring was successful and there was no man-in-the-middle attack. LE Security Mode
2 provides the following levels of security according to the standard:

1. Unauthenticated paring with data signing

42

2. Authenticated paring with data signing

If data signing is enabled, each packet is appended with a signature consisting of a
counter and Message Authentication Code (MAC) as illustrated in figure 4.14. The MAC
requires a key which is referred as Connection Signature Resolving Key (CSRK). The
count is also part of the MAC input to ensure that sending multiple times the same
message will not result in the same signature.

Data PDU
(variable length)

Signature
(12 octets)

Signature Counter
(4 octets)

Message Authentication Code (MAC)
(8 octets)

Figure 4.14: BLE Security mode 2 data signing

Before any security mode can be enabled a pairing or bonding process has to be
completed. The term pairing refers to a temporal binding between to devices while bonding
means a permanent binding. A permanent bond means that the security features can be
re-enabled after reconnecting the devices. This also implies that a persistent memory is
required the store the security keys for a long time period.

4.2.1.2.2 Paring using the Security Manager protocol

Figure 4.15 gives an overview of the paring procedure. Once a link layer connection be-
tween two devices has been established the L2CAP layer provides a automatically created
channel for the SMP. By sending message over this channel the paring procedure is
performed.

In phase 1 the capabilities of the devices are exchanges. This includes weather a device
I/O capabilities like a keyboard or a display and if OOB information (for example from
NFC) is available.

Phase 2 has the purpose to generate the Long Term Key (LTK) for LE Secure Con-
nections.

After phase 2 has been completed the new key can be used to enable encryption on
the link layer. This is done using the HCI to configure the controller to use the key from
now on.

Phase 3 is optional to exchange additional keys like Identity Resolving Key (IRK).

43

Establish Link Layer Connection

Security Request (optional)
Pairing Request

Pairing Response

Pairing over Security Manager Protocol
(LE Legacy pairing or LE Secure Connection pairing)

Establishment of encrypted connection with key from phase 2

Key Distribution
(IRK, CSRK)

Phase 1

Phase 2

Phase 3

Figure 4.15: BLE pairing overview

4.2.1.3 GATT Server Implementation

The Generic Attribute Profile (GATT) Server consists of a database conforming to a cer-
tain structure. By complying to the standard it is possible to make devices interpolatable
usable. The GATT database contains a so called profile, consisting of one or more services,
each of them containing characteristics. Each characteristic contains data in a certain for-
mat, for example an integer or a string. The GATT server provides an external interface
for GATT clients to access the data stored in these data structures. The protocol to
perform queries on the server is called Attribute Protocol (ATT). In addition there is an
local interface to extend and modify the content inside the server which can be used by
the user or application to setup and maintain the GATT servers database.

4.2.1.3.1 Data structure

The GATT servers data structure is based on the ATT data structures. Each attribute
contains the fields handle, type, value and permission. The handle is an unique number
that can be used to reference an attribute. Typically the handle numbers are assigned in
increasing order to attributes. The type contains an Universally Unique Identifier (UUID)
number, which can be used to filter a list of attributes when performing a search. The
value field field can have arbitrary length depending on the attribute type. This must
be taken into account when implementing attribute structures in the C programming
language. The permission field defines if an attribute is readable, writable or both.

Figure 4.16 shows how data is logically organized inside a GATT server. A GATT
server has at least one active profile, consisting of multiple services, which again consist
of service includes and characteristics. Each characteristic contains at least a value and
some property flags. Optionally multiple descriptors can be part of a characteristics. The
following section will describe the meaning and usage of these data structures in more
detail.

44

Profile

Service

...

Include

Include

...

Characteristic

Properties

Value

Descriptor...

Descriptor

Characteristic

Properties

Value

Descriptor...

Descriptor

...

Service

Include

Include

...

Characteristic

Properties

Value

Descriptor...

Descriptor

Characteristic

Properties

Value

Descriptor...

Descriptor

...

Figure 4.16: BLE GATT Profile

45

4.2.1.3.1.1 Profile

The profile is the highest element in the GATT servers hierarchy. In theory a GATT server
could allow the switching between multiple profiles, however in practice it is common that
devices only support one profile. A profile is a container for one or more services. This
grouping element is assumed to exist always and no concrete data structure is implemented.

4.2.1.3.1.2 Service

A service is a container element which can contain ”service includes” and arbitrary many
characteristics. There is a distinction between primary and secondary services. A primary
service can be discovered using the GATT server interface by doing a ”Service Discovery”
procedure. A secondary service is usually included by other services to extend the func-
tionality of an existing service. From a technical point of view both types of services have
the same data structure and differ only in the attribute UUID and logical usage context.

Attribute Handle Attribute Type Attribute Value Attribute Permission

0xNNNN

0x2800
UUID Primary Service

OR
0x2001

UUID Secondary Service

16-bit UUID
Read Only,

No Authentication,
No Authorization

Figure 4.17: BLE GATT Service

The definition of the GATT service can be directly translated in a C struct. All
structs are added to a linked list to allow iterating over them. Additional members as the
end handle and size are required to optimize the process of iterating through all available
service structures.

typede f s t r u c t {
UINT16 handle ;
UINT16 type ;
UINT16 value ;
UINT8 permis s ion ;

UINT16 end handle ;
UINT16 s i z e ;

} GATT SERVICE;

4.2.1.3.1.3 Service Includes

Each service can include a list of other services in its definitions that may be useful in the
same context. This feature is optional.

46

Attribute Handle Attribute Type Attribute Value Attribute Permission

0xNNNN
0x2802

UUID Include

Included
Service

Attribute
Handle

Read Only,
No Authentication,
No Authorization

End Group
Handle

Service UUID

Figure 4.18: BLE GATT Include

4.2.1.3.1.4 Characteristics

A characteristic contains an UUID number to specify its type, a value, properties and
optionally an arbitrary number of descriptors.

Attribute Handle Attribute Type Attribute Value Attribute Permission

0xNNNN
0x2803

UUID Characteristic
Characteristic

Properties

Read Only,
No Authentication,
No Authorization

Characteristic
Value

Attribute
Handle

Characteristic
UUID

Figure 4.19: BLE GATT Characteristic

Table 4.4 gives an overview of all possible defined descriptor property values. Broadcast
means that a characteristics value can be included in advertising packets (see the GAP
layer). By using the read and write properties it is possible to define data sources and data
sinks which can be used as command interpreter (data sink) and command response point
(data source). The command response characteristic may also have the Notify or Indicate
property set. If the Notify property is set, a message may be send to the GATT client each
time the characteristic value changes (if activated in the corresponding client characteristic
configuration descriptor). The Indicate property is similar but the GATT client has to
acknowledge each indication (and the next indication is delayed until the current has
been acknowledged). The Indicate and Notify properties can be set independently by
each GATT client. This increases the memory consumption and implementation effort
because for each GATT client the state of each characteristic properties must be stored.
If device bonding via the Security Manager is supported then this information must be
stored even after a client disconnects the physical link or the device restarts which implies
a persistent memory must be used. The Authenticated Signed Write property indicates
that data signing defined in LE Security Mode 2 can be used to write the characteristics
value. The ”Extended Properties” flag means that an ”Extended Properties Characteristic
Descriptor” exists within the characteristic and contains additional information.

Each characteristic can contain an arbitrary number of descriptors which provide ad-
ditional information about the characteristic value. The standard defines a set of descrip-

47

Properties Value

Broadcast 0x01
Read 0x02
Write Without Response 0x04
Write 0x08
Notify 0x10
Indicate 0x20
Authenticated Signed Write 0x40
Extended Properties 0x80

Table 4.4: GATT Characteristic Properties

tors which can be used by any application. It is possible for the user to define custom
application specific descriptors. The next section describes the descriptors defined in the
Bluetooth standard.

Extended Properties Characteristic Descriptor

This descriptor is used the extend the characteristic property bit-field with additional
properties as seen in table 4.5. One property is the Reliable Write ability which enables
support for a procedure where written data is echoed back to the client and the client
must acknowledge it before it becomes valid. If the Writable Auxiliaries field is set active
then the a Characteristic User Description descriptor exists and is writable.

Properties Value

Reliable Write 0x0001
Writable Auxiliaries 0x0002
Reserved 0xFFFC

Table 4.5: GATT Characteristic Extended Properties

Characteristic User Description Descriptor

This descriptor contains an UTF-8 encoded string which can be shown on the GATT
clients display to describe the meaning of a characteristic.

Client Characteristic Configuration Descriptor

This descriptor is special because each GATT client client has its own instance of the
descriptor. The bit-field can be used to enable Notification or Indication for the corre-
sponding characteristic value. The setting of each client lasts as long as the device bonding
(via the Security Manger).

Properties Value

Notification 0x0001
Indication 0x0002
Reserved 0xFFF4

Table 4.6: GATT Client Characteristic Configuration Descriptor

48

Server Characteristic Configuration Descriptor

This descriptor exists only once and has the same instance for all GATT clients. It can
be used to enable or disable the broadcast of the corresponding characteristics value in
advertising packets as defined in table 4.7.

Properties Value

Broadcast 0x0001
Reserved 0xFFF2

Table 4.7: GATT Server Characteristic Configuration Descriptor

Characteristic Representation Format Descriptor

The purpose of this optional descriptor is to tell the GATT client how to interpret the
characteristics value. For example the value could be interpreted as signed 16-bit integer
or as 32-bit floating point number. It is also possible to define an exponent for integer
type values which will be multiplied to the value by the GATT clients.

Characteristic Aggregate Format Descriptor

If an characteristics value is a aggregation of multiple values then multiple characteristic
representation format descriptors might exists. This descriptor contains an ordered list
to tell the clients in which orders the format descriptors are connected to the aggregated
value parts. This is also useful because it allows to reuse format descriptors from other
characteristics (which saves memory space).

Translation to a C struct

The characteristics definition can be translated to the following C struct. Because each
characteristic has exactly one value handle, this can be integrated in the same struct.

typede f s t r u c t {
UINT16 handle ;
UINT16 hand le va lue ;
UINT16 h a n d l e d e s c r i p t i o n ;
UINT8 p r o p e r t i e s ;
UINT16 c h a r a c t e r i s t i c u u i d ;
UINT8∗ value ;
UINT16 v a l u e s i z e ;
UINT8∗ u s e r d e s c r i p t i o n ;
UINT16 u s e r d e s c r i p t i o n s i z e ;

} GATT CHARACTERISTIC;

4.2.1.3.2 Interface to GATT clients

GATT clients can access the GATT servers database using the Attribute Protocol (ATT).
This protocol consists of a set of commands described in this section.

49

4.2.1.3.2.1 Read By Group Type Command

This command it mainly used for the discovery of services of a GATT server. Figure 4.20
shows the structure of the command. The request consists of the Opcode (0x10 for the
request and 0x11 for the response), the starting attribute handle from which the search
in the GATT database should start, the end handle (which can be set to 0xFFFF if the
search should be exhausting) and the group type UUID (set to the UUID for primary
service for service discovery).

...

Opcode Starting Handle Ending Handle Group Type UUID

Opcode Attribute Data List[1]Length Attribute Data List[n]

Read by Group Type Request

Read by Group Type Response

Figure 4.20: ATT Read By Group Type Command

4.2.1.3.2.2 Find By Type Value Command

This command is used to check if a specific service with known UUID is part of a GATT
servers database. The corresponding procedure is called ”Primary Service Discovery by
UUID”. Figure 4.21 visualizes the request from the client and the response from the
server. The Opcode (0x06 for the request and 0x07 for the response). The attribute type
can be set to the primary service UUID and the attribute value to the UUID of the service
which should be found. The response contains a list of tuples where each tuple consists
of a attribute handle and the group end handle. When doing a search for services the
end handle defines the last attribute handle corresponding to the found service. This is
important because after the client knows the attribute handle range of a service, it can
discover all includes or characteristics of that service in this range.

...

Opcode Starting Handle Ending Handle Attribute Type

Opcode List[1].Handle List[1].GroupEndHandle

Find By Type Value Request

Find By Type Value Response

Attribute Value

List[n].Handle List[n].GroupEndHandle

Figure 4.21: Find By Type Value Command

50

4.2.1.3.2.3 Read Command

Figure 4.22 shows the very simple structure of the read command. The request contains
the attribute handle of the attribute to read and the response contains the value. This
command can be used to read the value of a characteristic.

Opcode Attribute Handle

Opcode Attribute Value

Read Request

Read Response

Figure 4.22: Read Command

4.2.1.3.2.4 Read By Type Command

Figure 4.23 shows the structure of the read by type command used to read all attributes
in the specified range with a given type (UUID). The response consists of a list of values
where the Length field specifies of how many octets each list element consists.

...

Opcode Starting Handle Ending Handle Attribute Type

Opcode Value List[1]

Read By Type Request

Read By Type Response

Value List[n]Length

Figure 4.23: Read By Type Command

4.2.1.3.3 Interface to application

The interface exposed to the local user or application allows filling the GATT servers
database with new elements like services and characteristics. This interface is vendor and
implementation specific. It should at least allow the following procedures.

• Add a service to the profile

51

• Add an service include to a service

• Add a characteristic to a service

• Add descriptors to a characteristic

4.2.2 I2C Interface driver

The I2C interface is used to connect a temperature sensor to the SLE70 application con-
troller. The SLE70 controller used contains no hardware module to act as I2C master so
an implementation in software using the GPIO pins is necessary. Two pins are required
for data and clock. See [23] for a general introduction to the standard.

1 0 1

Start

...

...

1

8 data bits and ACK

ACK

Stop

DATA

CLOCK

Figure 4.24: I2C frame

Figure 4.24 shows a frame. All used pins must be configured as pull-up since high is
the default state of all lines. To begin data transmission a so called start transition must
be generated. This condition is defined as pulling the data line down while the clock is
high. Now a data byte can be transmitted. A byte consists of eight bits and each bit is
transmitted by bringing the data line in the corresponding state and then pulling the clock
high. The first data byte to be transmitted is special because it contains the address of
the device on the I2C bus to which the data should be transmitted. The address consists
of seven bits and the eight bit of the byte is used as indicator bit to tell if a read or
write operation will be performed. After each transmitted byte the addressed slave device
must send an acknowledge bit which means the data was received. This is done by the
addressed device by pulling the data line low for a clock cycle. At last after all bytes have
been transmitted a stop condition is transmitted. This is implemented by pulling the data
line to high while the clock is already high.

During the transmission the data line pin must be reconfigured as input pin to read
the acknowledge bits. Since the clock is generated also by this software is possible to meet
all timing requirements with no problems.

4.2.3 UART Interface driver

Since the SLE70 controller supports only one-wire UART (which is half-duplex) extensions
are needed. A two-wire UART connection plus hardware flow control with additional two
wires RTS and CTS is needed. The existing driver is extended to support hardware flow
control using two additional lines. These two lines are implemented by using two GPIO
pins. By default the RTS line is asserted, allowing the other side to send frames. Whenever

52

the a frame is to be send out, the RTS is cleared to prevent the other side from sending
and once the line is clear data is send. After that RTS is asserted again to allow reception
again.

4.2.4 NFC Stack

The NFC interface uses the Radio Frequency Interface (RFI) as transport channel. The
NFC Tag Type 4 standard defines how data is logically structured inside an NFC tag and
a set of commands to read and manipulate this data.

4.2.4.1 Tag Type 4

Data is stored in a simple two layered structure. The first layer is the application list.
Each tag can have one or more applications. Every application contains a list of one or
more files.

Capability container

NDEF

MIME type Public key

binary

Challenge

Session key

R/W

-/W

NDEF

Volatile f ile – 128B

NDEF

Persistent f ile – 32KB
R/W

R/W
binary
Configuration file

R/-

R/-

Figure 4.25: NFC Tag Type 4 structure

The first file in an application is the so called ”Capability Container”. This file exists
only once per application and must have a certain file number which is defined in the
standard. It contains a set of tag specific properties and a list of all other files in the same
application.

53

...

Capability container

Capablility container length Mapping Version

Maximum read length Maximum write length

File type File length File ID

Maximum file size File Access rights

File type File length File ID

Maximum file size File Access rights

Figure 4.26: NFC Capability Container structure

Figure 4.26 visualizes the content of the capability container. Each row in the picture
represents four data bytes. The first element in the file is the overall file length. This
is required because a client who reads out the file has to know how much data has to
be requested. The second element (one byte) is the mapping version which is a constant
defined in the NFC standard. Finally the file header is concluded by the maximum length
when reading or writing to a file. Embedded systems have limited buffer sizes when
handling data from communication interfaces. After the header there follows a section for
each file in the application. Such a section contains the file type and length, the file id
which is used to select and access the corresponding file, the physical file size which the
file can maximal consume in memory and access rights.

4.2.4.2 File management commands

A module is required to parse and execute the commands which arrive from the NFC in-
terface. It contains an array of command structs where each contains a command number,
a bit mask of interfaces allowed to use this command, the minimum and maximum length
of the received command frame and a function pointer to the corresponding routine to
process the data.

There is a defined set of file management commands which have to be implemented
on every NFC Tag Type 4 card.

The ”Select” command has the purpose the select an application or file. When con-
necting to a tag the first action of the reader is to select the application of interest. Then
the capability file is selected.

With the ”Read” command the contents of the capability file are retrieved. The first
word (2 bytes) of a file contain by definition the current file length. The reader usually

54

reads out the word the get the file size and retrieves then the rest of the file by reading
of a certain size (where the maximum frame size is defined in the header of the capability
file).

At last the ”Update” command can be used to update the contents of a file. The read
and write commands both require the file offset position as parameter.

NFC Tag Type 4 C-ADPUs

NFC Tag Type 4 R-ADPUs

Name Class Instruction
Parameter

1
Parameter

2
Length
Count

Payload

Select 0x00 0xA4
0x04 n bytes application ID

Read 0x00 0xB0
Offset

High Byte
Offset

Low Byte
n

Update 0x00 0xD6 n n bytes content
Offset

High Byte
Offset

Low Byte

0x00

0x00

0xC0

n

0x02 2 bytes file ID

Length
expected

Name Payload

Select

Read

Update

Status Word

0x9000

0x6A82

n bytes content 0x9000

Comment

Success

Application or file not found

Payload empty if reading not possible

0x9000

0x6900

Success

Write failed

Figure 4.27: NFC Tag Type 4 command overview

Figure 4.27 gives an overview of the implemented commands. The first table lists the
command ADPUs and the second table the response ADPUs. Each command frame starts
with a class byte which is 0x00 for NFC. The second byte is the instruction number. Then
there are parameters which meanings depends in the specific command. The length count
is used to indicate how many bytes follow in the commands payload.

Whenever the reader sends a command frame to the tag it answers with a response
frame. The response frame consists of an optional payload with the length specified in the
length expected field of the command frame and a status word.

4.2.4.3 Authentication and secure session

Each time a user connects with a reader to the device a authentication is required to
perform certain operations on the tag. After the authentication is complete an secured
session is established which provides confidentiality and data integrity.

55

4.2.4.3.1 User management

ID Root – always present

ID

User table
slot Passwd (hash)

0

1

2

ID = 0 => slot free

ID > 0 => slot allocated

 ID = 1 – root user

Figure 4.28: NFC user management

The application contains a table of users (see figure 4.28) in the non-volatile memory.
Each user entry consist of a user id and a password hash. The user id is an two byte
unsigned number and the password hash an 32 byte array which contains the SHA256
hash of the users password.

Every file in the NFC tag has its own access rights and depending on the application
some or all files can be accessed only after authentication took place.

4.2.4.3.2 Authentication process

Figure 4.29 illustrates the authentication process. The key exchange mechanism to estab-
lish a new secure session is very similar to the TLS Pre-Shared-Key authentication. Both
parties share a common key which is the combination of user id and password hash.

The password based key derivation function (PBKDF) is used to create new common
pseudo random session key. The main inputs to this functions are the common shared key
and a random number.

The random number is generated on the security controller when the peer reads out
the NFC challenge file. Each read generates a new random number and invalidates the
session. Whenever the system looses power or restarts the session is also invalidated.

After the peer has read the random number both parties have all the necessary pa-
rameters to use the PBKDF in order to generate a new session key.

At last the peer writes the hash of the new session key back into the challenge file to
finalize the new session. This last write is additionally encrypted using the RSA public
key of the device which is stored in the NFC public key file.

4.2.4.3.3 Secure communication

Upon completion of the authentication all files in the tag can be accessed. The payload
of all read an write commands on files are encrypted from this point onwards.

The Advanced Encryption Standard (AES) encryption standard in Cipher Block Chain-
ing (CBC) mode is used. Since this is a block cipher the length of the of encrypted fields
must be a multiple of the ciphers block size which is 16 bytes. For this reason padding is
needed. The CBC mode requires an Initialization Vector (IV).

56

Android device PAS

Get capability & pub key

Get challenge

Generate new challenge;
Update session key

session key = PBKDF(passwd, challenge)

Send RSA2048(user, SHA2(session key))

Check received session key (its hash)
vs local session key (hash)

OK/Err

Encrypted comm w/ session key
AES CBC, IV = 16 byte random
padding PKCS#7

IV | AES(msg + CRC16 + padding)

Figure 4.29: NFC interface authentication

AES CBC
Initialization Vector (IV)

SHA256 Checksum of ContentContent

AES CBC encrypted fields

NFC Tag Type 4
Command Header

Padding

Plain fields

NFC Tag Type 4 Payload

Figure 4.30: NFC Encrypted communication with Checksum

Figure 4.30 visualizes the structure of an encrypted frame. The frame begins with the
plain NFC Tag Type 4 command header (e.g. a read or update command). The payload
of the command contains the AES initialization vector, the real content, its SHA256
checksum and a padding.

4.2.5 Transport Layer Security (TLS) Protocol

The Transport Layer Security (TLS) Protocol is widely used in the Internet to secure
communications around the world. Approved by the Internet Engineering Task Force
(IETF) it is the most commonly used standard. The properties of the protocol are written
down in so called Request for Comments (RFC) documents which are released by the IETF.

The application controller has the functionality of a TLS client which allows the system
to create a secure connection and exchange encrypted and authenticated data.

4.2.5.1 RFC standards

Transport Layer Security (TLS) is described in RFC 5246 [10] which will be implemented
in its current version 1.2. The Elliptic Curve cipher suites are described in RFC 4492 [9]

57

and the X.509 public key infrastructure in RFC 5280.

4.2.5.2 General description

TLS is a stateful protocol which consists of two major phases. The first phase is the
so called handshake phase where two peers (a server and a client) negotiate connection
parameters in order to establish a secure link. In this phase the peers can authenticate
each other by the use of asymmetric public key cryptography. Also a key exchange takes
place to create a common shared secret which can be used in the second phase as key
for symmetric cryptography. After the handshake is complete application data can be
transfered over the secure channel.

In the second phase the protocol provides confidentiality by encrypting application
data by using symmetric cryptography. Integrity and authenticity is provided by MAC.

The protocol supports many different cipher key exchange protocols, symmetric ciphers
and MAC functions. When a TLS handshake takes place two peers try to agree on a
common set of parameters (called cipher suites). A typical TLS implementation only
supports a small subset of all possible defined cipher suites. In general it is a good idea to
focus on a small number of cryptographically strong cipher suites which provide the level
of security needed by the application.

4.2.5.3 Authentication

During the handshake two peers can authenticate themselves to each other. This can be
done via multiple different methods. The most commonly used method in the Internet is
authentication via RSA certificates. This means a peer possess a public RSA certificate
and a corresponding private key. The certificate must be signed by a certificate authority
which the other peer thrusts. The peer presenting the public certificate signs a random
message with the private in order to prove that the private key is the devices possession
and the other peer verifies this signature. In the future RSA certificates might be replaces
with ECC certificates. An alternative way of authentication would for example be the use
of a pre-shared key.

4.2.5.4 Key exchange

The protocol standard defines multiple ways to conduct a key exchange. A simple and
computationally efficient method would be to generate a random key and include in the
RSA signed (encrypted) message which proves to possession of the private key. This is
called the RSA key exchange method. The disadvantage of this method is that it provides
no Perfect Forward Security (PFS). It is obvious that the key is compromised should the
RSA encryption be broken.

A better solution is the Diffie-Hellman key exchange method which can be conducted
on a prime field or an elliptic curve. This protocol ensures that two parties end up the a
shared key but listening parties can only compute the shared key if they solve the discrete
logarithm problem which is believed to be very computationally expensive and practically
impossible if the key length is chosen large enough.

The Diffie-Hellman protocol can be implemented on top of prime fields as well on
elliptic curves. Using elliptic curves provides very good performance in terms of execution
time an energy consumption as shown in [13].

58

4.2.5.5 Application data transmission

After the handshake is complete both peers can transmit application data over a secure
channel. All sent packets (records) are appended with a Message Authentication Code
(MAC) and encrypted using symmetric cryptography.

4.2.5.5.1 Message Authentication Code (MAC)

The the integrity and authenticity of a message is ensured by a MAC. There are many
ways to construct a MAC function, in TLS the most commonly used method is to use a
hash function.

A hash function is a function which takes a message as input and produces a pseudo-
random message digest (hash). The standardized SHA256 hash function is an example for
a capable function to be used to create a MAC.

It is important to choose a cryptographically strong hash function with collision re-
sistance, otherwise an attacker might be able to forge messages. This means that there
should not exist two inputs for the hash function that produce the same output (hash).

4.2.5.5.2 Symmetric Cryptography

There are two basic types of symmetric ciphers. Block ciphers and stream ciphers.
Block ciphers take a block of a fixed length and transform it into its encrypted rep-

resentation and back. An example for a block cipher is the AES with a block size of 16
bytes.

Stream ciphers take a bunch of data of arbitrary length and transform it. This is done
by generating a pseudo-random key-stream with a device or module which initiated with a
secret key which is shared by the communicating parties. This type of cipher is generally
considered to be easy to be implemented in hardware. The encryption used in the mobile
phone Global System for Mobile Communications (GSM) standard is a typical example
for the use of stream ciphers.

4.2.5.6 Handshake phase overview

The number and format of sent messages depends on the chosen cipher suite, more specifi-
cally on the authentication and key exchange method. Figure 4.31 (from RFC 5246) gives
an overview of the TLS handshake phase. The following sections describe the involved
messages. Messages marked with * are optional depending on the cipher suite.

4.2.5.6.0.1 ClientHello message

The ClientHello message is send by the client to the server as first message to indicate to
the server which cipher suites and compression methods are supported. The cipher suite
list is sorted by the clients preferences (stronger ciphers suites in the beginning). A random
number is included in this message which has the main purpose to prevent replay attacks
and can be used as challenge for the signature verification process for some cipher suites.
Finally the message can contain a list of extensions depending on the proposed cipher suites
and the clients capabilities. For example the so called ”Maximum Fragment Length”
extension limits the size of future sent TLS records to a chosen maximum. An other
example would be the ”Signature Algorithm” extension which contains all client supported
signature algorithm pairs like RSA-SHA1 (default in TLS version 1.2) or ECDSA-SHA256.

59

4.2.5.6.0.2 ServerHello message

The ServerHello message is sent by the server to the client as direct answer to the Clien-
tHello message. It contains the chosen cipher suite which is chosen by selecting the first
cipher suite from the clients list which is common between server and client. The same
selection method is used for the compression methods. In general compression methods
should not be used in TLS because it offers a side channel to attackers and there exist
practical documented attacks exploiting this weakness. Like the ClientHello message this
one also contains a random number for the same purposes. A session id field is part of the
message which contains a unique identification number for each client connection of the
server. Sessions can be resumed in TLS in order so save resources (computation power
on embedded systems). At last there can be a arbitrary number of extensions included in
this message.

4.2.5.6.0.3 Certificate (Server) message

If the server wants to authenticate to the client via RSA or ECC certificates this message is
sent directly after the ServerHello message. This message contains a list of certificates (also
referred as certificate chain) which can be used to verify that the server is a trusted party.
This process is called certificate path validation. The first certificate in the chain must
be the servers certificate. After that there can follow an arbitrary number of intermediate
certificates. Each of them must have been used to sign the previous one. The client
verifies the chain until it reaches a certificate which is signed by a trusted root certificate
which is contained in the clients certificate storage. If the end of the chain is reached and
the last certificate can not be verified then the TLS handshake is aborted with an fatal
error. There are many other reasons the path validation process can fail. For example the
parsing of a certificate can fail or the validity time frame could be exceeded.

4.2.5.6.0.4 ServerKeyExchange message

This message is sent when using a cipher suite which has the PFS property. This means
the key exchange method is for example Diffie-Hellman Ephemeral Key Exchange (DHE)
or Elliptic Curve Diffie-Hellman Ephemeral Key Exchange (ECDHE). The PFS property
ensures that in the asymmetric encryption is broken and its content is revealed to an
attacker then all previous handshakes or sessions are not affected. However once the
asymmetric encryption is broken, man in the middle attacks are possible or significantly
easier.

If for instance the ECDHE key exchange protocol is used then this message will contain
the specification of an elliptic curve and a ephemeral public point (public key) on it.

In addition this message contains a digital signature if server authentication is per-
formed in this handshake. By validating this signature the client makes sure that the
server is in possession of the private key corresponding to the sent public certificate.

4.2.5.6.0.5 CertificateRequest message

If this message is sent then the server expects the client to authenticate by sending a valid
Certificate message later in the handshake. This message is optional.

4.2.5.6.0.6 ServerHelloDone message

This message concludes the message chain from the server and indicates that there are
no more messages. This is needed because depending on the cipher suite the Certificate,

60

ClientKeyExchange and CertificateRequest messages are optional.

4.2.5.6.0.7 Certificate (Client) message

If the server has sent a CertificateRequest message then the client sends this message
directly after the ServerHelloDone message. This message has the same structure as the
servers Certificate message and is processed the same way.

4.2.5.6.0.8 ClientKeyExchange message

If a cipher suite with PFS is used then this message is send to transport the public
key of the client in the key exchange protocol to the server. When using the ECDHE
protocol this message contains the clients public point (key) on the curve defined in the
ServerKeyChange message.

4.2.5.6.0.9 CertificateVerify message

If the client sends a Certificate message then this message contains a digitally signed data
fragment proving that the client is in possession of the private key corresponding to the
send public certificate. If no client authentication is done then is message is skipped.

4.2.5.6.0.10 ChangeCipherSpec (Client) message

This message is formally not a handshake message but it is send as part of the handshake
to indicate that from now on all TLS records are encrypted with the negotiated cipher
suite.

4.2.5.6.0.11 Finished (Client) message

This is the last handshake message sent by the client. The client calculates the digital
checksum (hash or message digest) over all previous handshake messages and uses the
calulated value is input for the TLS Pseudo Random Function (PRF). The produced
value is included in the Finished message. When the server receives this message the same
hash and PRF values must be calculated if the handshake was correct and untampered.
Trough this process all handshake messages are linked together and man-in-the-middle
attacks are significantly harder but theoretically still possible especially if the used hash
function is weak or not collision resistant.

4.2.5.6.0.12 ChangeCipherSpec (Server) message

This message has the same format and purpose as the ChangeCipherSpec message sent
by the client.

4.2.5.6.0.13 Finished (Server) message

The message has the same format and purpose as the Finished message sent by the client.
After this message is verified by client the handshake is complete.

4.2.5.7 Implementation Security Aspects

During implementation of the TLS protocol there are many pitfalls to be considered. Each
simple bug can can lead to an attack which can compromise the system. Certain security
measures have to be taken and this chapters describes some of them.

61

4.2.5.7.1 Lucky thirteen attack

When providing a cipher suite with MAC-then-Encrypt and CBC mode the implementa-
tion must be protected against the ”lucky thirteen attack”. This attack exploits a time
side channel which is available in careless implementations.

After the decryption of the message, the padding is checked and removed. If the
padding is wrong then an error occurred and the connection must be terminated. If the
padding was correct the MAC is checked and if the checksum is wrong then the connection
is terminated. In theory an attacker should not be able to distinguish these two error cases
and the execution time of the software should always be the same no matter which error
occurred. The proposed solution in [15] to this problem is that even if the padding is
wrong, there must be a MAC check done with some dummy data. This should eliminate
the timing side channel.

The following code demonstrates that the padding check consumes always the same
execution time.

// Check padding

padding = TLS_RX_Buffer[TLS_RECORD_HEADER_LEN + record_len - 1];

if (padding >= AES_BLOCKSIZE)

success = TLS_ALERT_UNEXPECTED_MESSAGE;

if (AES_BLOCKSIZE + padding + 1 + HASHSIZE > record_len)

success = TLS_ALERT_UNEXPECTED_MESSAGE;

for (i = 1; i <= AES_BLOCKSIZE; i++)

{

real_count &= (i <= (padding+1));

pad_count += real_count *

(TLS_RX_Buffer[TLS_RECORD_HEADER_LEN+record_len - i] == padding);

}

if (pad_count != (padding + 1))

success = TLS_ALERT_UNEXPECTED_MESSAGE;

4.2.5.7.2 Connection downgrade attack

Many attacks on TLS rely on the possibility in the handshake phase to negotiate a version
of the protocol and a cipher suite available on both endpoints. Man-in-the-middle attacks
often have the goal to downgrade to a weaker cipher suite or a lower protocol version
which is vulnerable to attacks as seen in [5]. A good solution is to allow only the newest
protocol version and cipher suites which are deemed to be secure.

4.2.5.7.3 Predictable IV in CBC mode

When using the CBC mode of operation it is mandatory to use an unpredictable, random
initialization vector for encryption. If not there is the possibility to perform chosen-
plaintext-attacks to reveal unknown parts of a message. The attack is described in [2] and
the solution is to use a true random number generator to create an initialization vector.
The SLE70 controller contains a hardware true random number generator which is used
in this implementation.

4.2.5.7.4 Compression as side channel

The TLS standard supports data compression in the protocol to reduce to used bandwidth.
It turns out that this opens a new side channel which can be used to reveal information

62

of an encrypted message. Examples for attacks exploiting this are CRIME and TIME as
explained in [22]. The solution is to remove compression support from TLS.

4.2.5.8 TLS combined with BLE

There are multiple ways to use the TLS implementation in combination with BLE.

4.2.5.8.1 GATT server interface

The GATT server can contain a characteristics which is used as data source and sink for
TLS data. TLS data can be transfered in this way over a BLE link. This method is not
efficient because the Attribute Protocol (ATT) imposes an overhead which can be avoided.

4.2.5.8.2 L2CAP LE Credit Based Channel

A dedicated L2CAP LE Credit Based Channel can be opened using the L2CAP Signaling
Protocol. This channel can then be used as tunnel for TLS data. This is the most resource
efficient method.

4.2.5.8.3 IPv6 over BLE

The last alternative is a sub-case of the previous one. It proposes using TLS/DTLS on
top of TCP/UDP on an IPv6 link. For this method the 6LoWPAN adaption layer is
needed between L2CAP and and IPv6 as indicated in figure 2.4 in earlier chapters. This
method introduces large overhead which is rewarded with compatibility with existing
infrastructure.

63

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Application Data Application Data

TLS Client TLS Server

TLS Protocols

Handshake Protocol

Change Cipher Spec Protocol

Application Protocol

Alert Protocol

Legend

Plain
Communication

Encrypted
Communication

Figure 4.31: TLS handshake overview

64

4.3 Hardware Implementation

This chapter describes how the components of the personal assistant device are connection
to each other. Figure 4.32 shows the schematic of the device.

P
e
rs

o
n
a
l
A
ss

is
ta

n
t

D
e
vi

ce

T
h
o
m

a
s

F
is

ch
e
r

B
S
c

G
N

D

V
C
C

M
7
8
9
3
_
U

S
B
_
V
Q

FN
3
2
_
B
1
1

3
.6

8
6
4
M

H
z

G
N

D

C
C
2
5
6
4
M

O
D

N

G
N

D

G
N

D

G
N

D

B
A
T
5
4

3
2
.7

6
8
K
H

Z

GND

1
0
0
n
F

G
N

D

N
C
7
S
Z
3
2

G
N

D

G
N

D

1
u
F

G
N

D

1
u
F

G
N

D

G
N

D

T
LV

7
1
3

1
0
0
n
F

10k

2
k2

100pF

A
T
3
0
T
S
7
4

1
0
0
n
F

1
0
0
n
F

G
N

D

G
N

D

1
0
0
n
F

G
N

D

1
0
0
n
F

1
0
0
n
F

G
N

D

G
N

D

BAT_CR2032

G
N

D

G
N

D
10k

M
3
1
0
2
1
0
-1

K

D
+

1
4

D
-

1
5

G
P
IO

0
.0

7

G
P
IO

0
.1

6

G
P
IO

0
.2

5

G
P
IO

0
.3

4

G
P
IO

0
.4

3

G
P
IO

0
.5

2

G
P
IO

0
.6

3
1

G
P
IO

0
.7

3
0

G
P
IO

1
.0

2
9

G
P
IO

1
.1

2
8

G
P
IO

1
.2

2
7

G
P
IO

1
.3

2
6

IS
O

_
C
LK

8

IS
O

_
IO

1
8

IS
O

_
R

S
T

9

LA
1
2

LA
D

1
2
3

LA
D

2
2
2

LA
D

3
1
9

LB
1
3

U
S
B
C
A
P

1
6

U
$
1
G

$
1

V
D

D
P

1
1

VDDPGPIO
1

VDDPISO
10

V
S
S
P

2
5

V
S
S
P

3
2

V
S
S
P

2
0

V
S
S
P

1
7

V
S
S
P

E
X
P

O
S
C
_
U

A
R

T

V
D

D

G
N

D

O
U

T

T
R

I
2 4

31

G
N

D
P
A
D

HCI_CTS
HCI_TX
HCI_RX
HCI_RTS

S
LO

W
_
C
LK

_
IN

GND

V
B
A
T

BT_ANT

NSHUTD

VDD_IO

A
U

D
_
IN

A
U

D
_
O

U
T

A
U

D
_
C
LK

A
U

D
_
F
S
Y
N

C

T
X
_
D

B
G

B
LE

D
1

T
R

I_
S
T
A
T
E

1
G

N
D

2

V
D

D
4

O
U

T
P
U

T
3

O
S
C
_
T
I

C
5

A
1

B
2

Y
4

O
R

_
G

A
T
E

C
1
0

C
1
1

IN
1

GND
2

E
N

3
N

C
4

O
U

T
5

R
E
G

_
5
V
-1

.8
V

C
3

R2

R
1

C2

S
D

A
1

S
C
L

2

A
LE

R
T

3

G
N

D
4

A
2

5
A
1

6
A
0

7
V
C
C

8

T
E
M

P
_
S
E
N

S
O

R

C
6

C
1
2

C
1
3

C
1
5

C
1
6

U$3

PLUS1*2 GND

R5

L1
SMALL_ANTENNA_MAIN_COILS-PICC_6_7X_QUALI

F
E
E
D

1

B
T
_
A
N

T

S
LE

7
0
_
U

A
R
T
_
C
T
S

SLE70_UART_CTS

S
LE

7
0
_
U

A
R
T
_
R
T
S

SLE70_UART_RTS

S
LE

7
0
_
U

A
R
T
_
N

S

SLE70_UART_NS

S
LE

7
0
_
G

P
IO

_
R
E
E
D

S
LE

7
0
_
U

A
R
T
_
D

R
X

S
LE

7
0
_
U

A
R
T
_
D

R
X

S
LE

7
0
_
U

A
R
T
_
IO

S
LE

7
0
_
U

A
R
T
_
IO

V
D

D
_
1
.8

V

V
D

D
_
1
.8

V

V
D

D
_
1
.8

V

VDD_1.8V

VDD_1.8V

V
D

D
_
1
.8

V

VDD_1.8V

VDD_1.8V

V
D

D
_
1
.8

V

S
LE

7
0
_
T
S
_
S
C
L

S
LE

7
0
_
T
S
_
S
C
L

S
LE

7
0
_
T
S
_
S
D

A

S
LE

7
0
_
T
S
_
S
D

A

V
D

D
_
3
V

VDD_3V

VDD_3V

VDD_3V

S
LE

7
0
_
U

A
R

T
_
E
N

_
C
LK

S
LE

7
0
_
T
S
_
A
LE

R
T

S
LE

7
0
_
T
S
_
A
LE

R
T

p
a
s

1
9
.0

4
.2

0
1
6
 1

6
:0

1

1
/1

S
h
e
e
t:

A B C D E

1
2

3
4

5
6

7
8

A B C D E

1
2

3
4

5
6

7
8

LA

LB

Figure 4.32: Hardware schematic

65

4.3.1 Bluetooth controller connection (UART)

The Bluetooth host (SLE70) and controller (TI CC2564) are connected via an Universal
Asynchronous Receiver Transmitter (UART) interface. On top of this physical transport
the Host Controller Interface (HCI) is available. The Infineon SLE70 chip provides a single
wire UART module where transmission and reception is done over one wire. The Texas
Instruments CC2564 Bluetooth controller on the other hand provides a 4-wire UART
module where transmission and reception is done over two separate wires. In order to
connect both modules properly some additional components are required as shown in
figure 4.33.

M7893_USB_VQFN32_B11

KYOCERA_CRYSTAL

2k2

D+
14

D-
15

GPIO0.0
7

GPIO0.1
6

GPIO0.2
5

GPIO0.3
4

GPIO0.4
3

GPIO0.5
2

GPIO0.6
31

GPIO0.7
30

GPIO1.0
29

GPIO1.1
28

GPIO1.2
27

GPIO1.3
26

ISO_CLK
8

ISO_IO
18

ISO_RST
9

LA
12

LAD1
23

LAD2
22

LAD3
19

LB
13

USBCAP
16

U$1G$1

V
D
D
P

1
1

V
D
D
P
G
P
IO

1

V
D
D
P
IS
O

1
0

V
S
S
P

2
5

V
D
D
P
LP
C
1

2
4

V
D
D
P
LP
C
2

2
1

V
S
S
P

3
2

V
S
S
P

2
0

V
S
S
P

1
7

V
S
S
P

E
X
P

U$2

VDD

GND

OUT

TRI
2

4

3

1

A C
D1R1

IC1A
2

3
4

SLE70_UART_IO

TI_UART_TXVDD_IO

SLE70_DRX

TI_UART_RX

SLE70_CTS
SLE70_RTS

SLE70_NS

TI_UART_CTS

TI_UART_RTSSLE70_GPIO_RTS

SLE70_GPIO_CTS

SLE70_UART_IO

SLE70_GPIO_DRX

Figure 4.33: UART HCI Connection

Two GPIO pins are used to provide the RTS/CTS hardware flow control functionality.
The RTS pin is configured as output pin and the CTS as input pin with pull-up resistor.

The SLE70 IO line is split in two lines, the RX and TX line of the TI chip. A Schottky
diode is used to achieve proper behavior of the circuit. When the SLE70 listens on the IO
line there are two cases two consider. Either a high or low bit is send. When the TI chip
sends a low byte the circuit left of the diode is not affected and the hole voltage drops on
the resistor. If a high is send then an infinitesimal current is flowing backwards through
the diode and the voltage drop over the diode is very low. This results in a high an the
SLE70 IO line. When the SLE70 chip wants two send something the IO line is directly
feeded in the TI RX line (ignoring the OR gate for now). Because of the diode the TI TX
line is never affected by sending someting.

The OR gate has the purpose to prevent the TI chip from receiving the same data it
sends. Whenever the TI chip wants to send something, the ”Disable RX” (DRX) pin is
set to high. This means the TI UART RX line will be high during this time period due
the functionality of the OR gate.

66

4.3.2 Temperature sensor connection (I2C)

The temperature sensor is connected via I2C interface to the SLE70 controller. A clock
and data line are required for this connection.

4.3.3 Reed sensor connection (GPIO)

The reed sensor is connected to the Infineon SLE70 controller via a GPIO pin. A resistor
and capacity are used to stabilize the switching currents.

The formula τ = RC is used to find proper values for the resistor and capacitor. It is
assumed that time interval of 20 ms is sufficient. This implies that the values 200 kΩ for
the resistor and 100 nF for the capacity are suitable.

M7893_USB_VQFN32_B11

KYOCERA_CRYSTAL

2k2

REED-SWITCH-MK6-5-B

GND

2
0
0
k

100n

GND

V
C
C

D+
14

D-
15

GPIO0.0
7

GPIO0.1
6

GPIO0.2
5

GPIO0.3
4

GPIO0.4
3

GPIO0.5
2

GPIO0.6
31

GPIO0.7
30

GPIO1.0
29

GPIO1.1
28

GPIO1.2
27

GPIO1.3
26

ISO_CLK
8

ISO_IO
18

ISO_RST
9

LA
12

LAD1
23

LAD2
22

LAD3
19

LB
13

USBCAP
16

U$1G$1

V
D
D
P

1
1

V
D
D
P
G
P
IO

1

V
D
D
P
IS
O

1
0

V
S
S
P

2
5

V
D
D
P
LP
C
1

2
4

V
D
D
P
LP
C
2

2
1

V
S
S
P

3
2

V
S
S
P

2
0

V
S
S
P

1
7

V
S
S
P

E
X
P

U$2

VDD

GND

OUT

TRI
2

4

3

1

A C
D1R1

IC1A
2

3
4

S1

R
2

C1

SLE70_UART_IO

TI_UART_TXVDD_IO

SLE70_DRX

TI_UART_RX

SLE70_CTS
SLE70_RTS

SLE70_NS

TI_UART_CTS

TI_UART_RTS

SLE70_GPIO_REED

N

S

SLE70_GPIO_RTS

SLE70_GPIO_CTS

SLE70_UART_IO

SLE70_GPIO_DRX

Figure 4.34: Reed sensor connection

4.3.4 Power management (Battery)

The SLE70 chip operates with a voltage of 5V, while the TI chip requires a voltage around
3.3V. The interface IO lines are operating with a voltage of 1.8V. The first prototype of the
personal assistant device has an USB connector onboard which allows supplying the board
with an external power source (like a USB battery). The USB connector provides a 5V
supply with a maximum current of 100 mA (see [12]) to the board, so voltage regulators
are required to bring the voltage down to 3.3V and 1.8V.

67

4.4 Android App Implementation

This application is based on the examples provided from Google in the Android SDK.
Code parts are taken from the ”Bluetooth LE Gatt” and ”Card Reader” samples, as well
as from the API guides and reference documentation at the Android SDK website. The
created app is a composition of these mentioned parts with adaptations for the Personal
Assistant Device and is merely for demonstration purposes.

4.4.1 Device Control Activity

The Device Control Activity contains an user interface with tabs. The SectionsPager-
Adapter object is a container for the tabs. Two integers are used to define positions for
the tabs needed in this Activity. Two members contain a reference to the BLE service and
the temperature value characteristic which is shown to the user. The remaining methods
are extracted to extra code listings which follow for simplicity.

public class MainActivity extends AppCompatActivity {

SectionsPagerAdapter mSectionsPagerAdapter;

final int PAGER_POSITION_NFC = 0;

final int PAGER_POSITION_BLE = 1;

private BluetoothLeService mBluetoothLeService;

BluetoothGattCharacteristic mCharateristicTemperature;

// class methods ...

}

The onCreate method is called when the system creates a new instance of the Activity.
All member variables that should persist through the livetime of the Activity are initialized
there. The setContentView method initializes the user interface to the layout specified
in the function parameter. A basic toolbar which shows the app name is set up using
the setSupportActionBar function. The SectionsPagerAdapter is a class which extends
FragmentPagerAdapter and is the heart of the tabbed Activity. It is the container object
for all the fragments which are used as tabs. Once the SectionsPagerAdapter is created
it is put in the user interface with setAdapter method of the corresponding ViewPager
container which hosts that object. Finally the TabLayout object is initialized with a
reference to the ViewPager in order to know which tabs exist and which tab is currently
selected so it can offer a tab selection interface to the user. Finally the registerReceiver
function is used to register notifications from a service. This mechanism is explained later
in more detail.

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

mSectionsPagerAdapter = new

SectionsPagerAdapter(getSupportFragmentManager());

68

ViewPager ViewPager = (ViewPager) findViewById(R.id.container);

ViewPager.setAdapter(mSectionsPagerAdapter);

TabLayout tabLayout = (TabLayout) findViewById(R.id.tabs);

tabLayout.setupWithViewPager(ViewPager);

Intent gattServiceIntent = new Intent(this, BluetoothLeService.class);

bindService(gattServiceIntent, mServiceConnection, BIND_AUTO_CREATE);

registerReceiver(mGattUpdateReceiver, makeGattUpdateIntentFilter());

}

The onResume method is called whenever the Activity is shown to the user and has
focus. Some dialog window could overlap the Activity or the user could switch to a different
app. Whenever the Activity regains focus this method is called. In this implementation
the registerReceiver function is used to register for service messages.

@Override

protected void onResume() {

super.onResume();

registerReceiver(mGattUpdateReceiver, makeGattUpdateIntentFilter());

}

The onPause method is called by the system when the Activity looses focus of the
user. When this happens there is no need to update the values in the user interface. The
unregisterReceiver function is used to stop receiving service notifications.

@Override

protected void onPause() {

super.onPause();

unregisterReceiver(mGattUpdateReceiver);

}

The Android system might kill Activities in order to regain free memory. When this
happens the onDestroy method is called to allow the Activity to clean up. There is no
garantuee that this method is really called. In emergency situations where the system runs
out of memory the Activity might be killed instantly without calling this method. The
Implementation of this method terminates the bind to the service and set the reference to
the service to null to prevent further use.

@Override

protected void onDestroy() {

super.onDestroy();

unbindService(mServiceConnection);

mBluetoothLeService = null;

}

To setup a proper connection to a service a ServiceConnection member object is cre-
ated. After the service connection is established the onServiceConnected method is called
which sets up a reference to the service which allows calling public methods of the service
object.

private final ServiceConnection mServiceConnection = new ServiceConnection() {

@Override

69

public void onServiceConnected(ComponentName componentName, IBinder service)

{

mBluetoothLeService = ((BluetoothLeService.LocalBinder)

service).getService();

if (!mBluetoothLeService.initialize()) {

Toast.makeText(getBaseContext(), "Unable to initialize Bluetooth",

Toast.LENGTH_LONG).show();

}

}

@Override

public void onServiceDisconnected(ComponentName componentName) {

mBluetoothLeService = null;

}

};

When registering a service broadcast receiver it is required to specify the events of
interest. This specifiction is implemented in the makeGattUpdateIntentFilter method.
The method creates an IntentFilter which is a container for defined service actions that can
occur during the lifetime of this service. For example the the BLE service could broadcast
the event ACTION GATT CONNECTED after a connection to a remote GATT server
has been established.

private static IntentFilter makeGattUpdateIntentFilter() {

final IntentFilter intentFilter = new IntentFilter();

intentFilter.addAction(BluetoothLeService.ACTION_GATT_CONNECTED);

intentFilter.addAction(BluetoothLeService.ACTION_GATT_DISCONNECTED);

intentFilter.addAction(BluetoothLeService.ACTION_GATT_SERVICES_DISCOVERED);

intentFilter.addAction(BluetoothLeService.ACTION_DATA_AVAILABLE);

return intentFilter;

}

The BroadcastReceiver object is a member of the Activity and must implement the
method onReceive which is called whenever an action event from the service is received.
All relevant events from the service for the Activity must be handled here. In case of this
implementation the user inteface is updated with new values from the service.

private final BroadcastReceiver mGattUpdateReceiver = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

final String action = intent.getAction();

BleFragment bleFragment =

(BleFragment)mSectionsPagerAdapter.getItem(PAGER_POSITION_BLE);

if (BluetoothLeService.ACTION_GATT_CONNECTED.equals(action)) {

bleFragment.setConnectionStatus("Connected");

} else if (BluetoothLeService.ACTION_GATT_DISCONNECTED.equals(action)) {

bleFragment.setConnectionStatus("Disconnected");

} else if

(BluetoothLeService.ACTION_GATT_SERVICES_DISCOVERED.equals(action)) {

displayGattServices(mBluetoothLeService.getSupportedGattServices());

} else if (BluetoothLeService.ACTION_DATA_AVAILABLE.equals(action)) {

String data = intent.getStringExtra(BluetoothLeService.EXTRA_DATA);

bleFragment.setTemperature(data);

}

70

}

};

The displayGattServices is used to search in a remote GATT server for a characteristic
of interest, the temperature characteristic of the personal assistant device. It iterates over
all GATT services until it finds a service matching the UUID of the sensor station service
of the personal assistant device. Then it iterates all available characteristics of this service
until it finds the temperature value characteristic. A reference to this characteristic is
then kept in the Activity.

private void displayGattServices(List<BluetoothGattService> gattServices) {

if (gattServices == null) return;

for (BluetoothGattService gattService : gattServices) {

String uuid = gattService.getUuid().toString();

if (uuid.equals(SampleGattAttributes.UUID_SERVICE_SENSOR_STATION))

{

List<BluetoothGattCharacteristic> gattCharacteristics =

gattService.getCharacteristics();

for (BluetoothGattCharacteristic gattCharacteristic :

gattCharacteristics) {

String uuid_c = gattCharacteristic.getUuid().toString();

if (uuid_c.equals(SampleGattAttributes.UUID_CHAR_TEMP_SENSOR))

mCharateristicTemperature = gattCharacteristic;

}

}

}

}

The SectionsPagerAdapter extends the FragmentPagerAdapter by implementing meth-
ods to specify which tabs are shown.

public class SectionsPagerAdapter extends FragmentPagerAdapter {

public SectionsPagerAdapter(FragmentManager fm) {

super(fm);

}

@Override

public Fragment getItem(int position) {

if (position == PAGER_POSITION_NFC)

return new BleFragment();

if (position == PAGER_POSITION_BLE)

return new BleFragment();

return null;

}

@Override

public int getCount() {

return 2;

}

71

@Override

public CharSequence getPageTitle(int position) {

switch (position) {

case PAGER_POSITION_NFC:

return "NFC";

case PAGER_POSITION_BLE:

return "BLE";

}

return null;

}

}

4.4.2 BLE Fragment

The BLE fragment is used to display the connection status and current temperature value
to the user. Since the Activity is bound to the BLE Service it receives all the service
broadcast. This includes the information to be displayed in this fragment. The Activity
uses the fragments interface to make values available to the user.

public static class BleFragment extends Fragment {

public BleFragment() {

}

public void setTemperature(String temp) {

TextView textViewTemp =

(TextView)getView().findViewById(R.id.textViewTemp);

textViewTemp.setText(temp, TextView.BufferType.EDITABLE);

}

public void setConnectionStatus(String status) {

TextView textViewStatus =

(TextView)getView().findViewById(R.id.textViewStatus);

textViewStatus.setText(status, TextView.BufferType.EDITABLE);

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

View rootView = inflater.inflate(R.layout.fragment_ble_control,

container, false);

return rootView;

}

}

4.4.3 BLE Service

Based on the BLE example from the Google SDK this service interacts with the Android
system and the Bluetooth stack contained in it. The service allows components like an
Activiy to bind itself to the servive. A bound service lives as long there are components
bound to it and is then shutdown by the system.

The BluetoothLeService class extends the Android Service class and implementes the
method onBind which returns an IBinder interface object. The broadcastUpdate method
is used to send notifications to all components bound to the service with an registered

72

BroadcastReceiver. The initialize function is usally called by the bound component after
the service bound has been created and makes sure that a Bluetooth adapter is available
on this device. The connect method creates a connection to the Bluetooth GATT server
on a remote devices and the disconnect method terminates that link. When a bound
component is finished doing its work or terminated by system the onUnbind method is
called to inform the service of the lost bound. When that happens the implementation
in this class calls the close method to ensure that all system resources are properly freed
before finishing this service.

It is important to note that GATT functions like getSupportedGattServices and read-
Characteristic are non-blocking methods. These methods place a command in the queue
of the Android Bluetooth system and return afterwards. Once the system has fulfilled the
request a callback method is called. This service has a BluetoothGattCallback member
which handles these callbacks properly by using the broadcastUpdate method to send
notifications.

public class BluetoothLeService extends Service {

private BluetoothManager mBluetoothManager;

private BluetoothAdapter mBluetoothAdapter;

private String mBluetoothDeviceAddress;

private BluetoothGatt mBluetoothGatt;

private int mConnectionState = STATE_DISCONNECTED;

private static final int STATE_DISCONNECTED = 0;

private static final int STATE_CONNECTING = 1;

private static final int STATE_CONNECTED = 2;

public final static UUID UUID_PAS_CHARACTERISTIC_TEMPERATURE =

UUID.fromString(SampleGattAttributes.UUID_PAS_CHARACTERISTIC_TEMP_SENSOR);

private final BluetoothGattCallback mGattCallback = new

BluetoothGattCallback() {

@Override

public void onConnectionStateChange(BluetoothGatt gatt, int status, int

newState) {

String intentAction;

if (newState == BluetoothProfile.STATE_CONNECTED) {

intentAction = ACTION_GATT_CONNECTED;

mConnectionState = STATE_CONNECTED;

broadcastUpdate(intentAction);

} else if (newState == BluetoothProfile.STATE_DISCONNECTED) {

intentAction = ACTION_GATT_DISCONNECTED;

mConnectionState = STATE_DISCONNECTED;

broadcastUpdate(intentAction);

}

}

@Override

public void onServicesDiscovered(BluetoothGatt gatt, int status) {

if (status == BluetoothGatt.GATT_SUCCESS) {

broadcastUpdate(ACTION_GATT_SERVICES_DISCOVERED);

}

}

@Override

73

public void onCharacteristicRead(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic, int status) {

if (status == BluetoothGatt.GATT_SUCCESS) {

broadcastUpdate(ACTION_DATA_AVAILABLE, characteristic);

}

}

@Override

public void onCharacteristicChanged(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic) {

broadcastUpdate(ACTION_DATA_AVAILABLE, characteristic);

}

};

private void broadcastUpdate(final String action) {

final Intent intent = new Intent(action);

sendBroadcast(intent);

}

private void broadcastUpdate(final String action, final

BluetoothGattCharacteristic characteristic) {

final Intent intent = new Intent(action);

if (UUID_PAS_CHARACTERISTIC_TEMPERATURE.equals(characteristic.getUuid()))

{

final int heartRate =

characteristic.getIntValue(BluetoothGattCharacteristic.FORMAT_UINT8,

0);

intent.putExtra(EXTRA_DATA, String.valueOf(heartRate));

sendBroadcast(intent);

}

}

public class LocalBinder extends Binder {

BluetoothLeService getService() {

return BluetoothLeService.this;

}

}

@Override

public IBinder onBind(Intent intent) {

return mBinder;

}

@Override

public boolean onUnbind(Intent intent) {

close();

return super.onUnbind(intent);

}

private final IBinder mBinder = new LocalBinder();

public boolean initialize() {

if (mBluetoothManager == null) {

mBluetoothManager = (BluetoothManager)

getSystemService(Context.BLUETOOTH_SERVICE);

if (mBluetoothManager == null) {

74

return false;

}

}

mBluetoothAdapter = mBluetoothManager.getAdapter();

if (mBluetoothAdapter == null) {

return false;

}

return true;

}

public boolean connect(final String address) {

if (mBluetoothAdapter == null || address == null) {

return false;

}

if (mBluetoothDeviceAddress != null &&

address.equals(mBluetoothDeviceAddress) && mBluetoothGatt != null) {

if (mBluetoothGatt.connect()) {

mConnectionState = STATE_CONNECTING;

return true;

} else {

return false;

}

}

final BluetoothDevice device = mBluetoothAdapter.getRemoteDevice(address);

if (device == null) {

return false;

}

mBluetoothGatt = device.connectGatt(this, false, mGattCallback);

refreshDeviceCache(mBluetoothGatt);

mBluetoothDeviceAddress = address;

mConnectionState = STATE_CONNECTING;

return true;

}

public void disconnect() {

if (mBluetoothAdapter == null || mBluetoothGatt == null) {

return;

}

mBluetoothGatt.disconnect();

}

public void close() {

if (mBluetoothGatt == null) {

return;

}

mBluetoothGatt.close();

mBluetoothGatt = null;

}

public void readCharacteristic(BluetoothGattCharacteristic characteristic) {

if (mBluetoothAdapter == null || mBluetoothGatt == null) {

return;

75

}

mBluetoothGatt.readCharacteristic(characteristic);

}

public List<BluetoothGattService> getSupportedGattServices() {

if (mBluetoothGatt == null) return null;

return mBluetoothGatt.getServices();

}

}

4.4.4 NFC Fragment

The NFC fragement is a user interface to interact with the personal assistant device over
NFC. Its main purpose is do support pairing the phone with the device in order to create
a BLE connection.

When to phone is moved in close proximity the Device Control Activity should be
automatically started. To achieve this the App is registering for NFC intends. The
following code is added to the activities onCreate function. It checks if the app was
automatically started by moving the phone to the device and keeps a reference to the
NFC tag if this happened.

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {

tag = (Tag)getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

mNfcFragment.setTag(tag);

}

The following code is used to send a frame of data to the device over NFC and receive
the answer which is in this case the Bluetooth address of the device.

if (mIsoDep == null)

mIsoDep = IsoDep.get(mTag);

if (!mIsoDep.isConnected()) {

mIsoDep.connect();

}

byte[] ans = mIsoDep.transceive(enable_cmd);

if (ans.length == SW_LEN + BDADDR_LEN && ans[0] == 0x90 && ans[1] == 0x00)

{

byte[] bd_addr = Arrays.copyOfRange(ans, SW_LEN, SW_LEN + BDADDR_LEN);

String bd_addr_str = byteArrayToString(bd_addr);

EditText editText = (EditText)rootView.findViewById(R.id.editTextBleAddr);

editText.setText(bd_addr_str, TextView.BufferType.EDITABLE);

Toast.makeText(rootView.getContext(), "BLE activated.",

Toast.LENGTH_LONG).show();

}

76

Figure 4.35: Android App Tabs

4.5 Testing

This section will briefly describe how important components of this project have been
tested.

4.5.1 Bluetooth Low Energy Stack Testing

The BLE stack has been developed with multi-platform compatibility with allows running
the code on Microsoft Windows. A simple graphical user interface has been created to
manually test the functionality.

4.5.2 TLS Implementation Testing

Creating a standard compliant implementation of the TLS protocol also includes testing
against other known TLS implementations. This implementation has been tested against
OpenSSL and embedTLS (former PolarSSL).

Figure 4.37 shows the test setup which allows testing the implementation against
mbedTLS. The data shown in the figure belongs to a TLS handshake.

77

F
ig

u
re

4.
36

:
B

L
E

T
es

t
S

u
it

e

78

Figure 4.37: TLS Test Suite

4.5.3 Prototype

A first prototype of the personal assistant device was constructed as seen in figure 4.38.
The top board hosts the application controller. The middle board contains the sensors and
the circuit necessary to connect the UART. Finally the bottom board hosts the Bluetooth
controller.

Figure 4.38: Personal Assistant Device Prototype

79

Chapter 5

Conclusion

Bluetooth Low Energy is supported by many smartphones today and will play an impor-
tant role in the Internet of Things (IoT). Understanding the capabilities of this interface
and its properties is an important precondition for many other projects.

The personal assistant device provides a Bluetooth stack with all mandatory fea-
tures which allows supporting many possible use cases. This includes using the device
as transceiver, beacon and observer. Two use cases where the device is used as mobile
temperature sensor station and as door watchdog have been demonstrated by building a
prototype of the system. The NFC interface can be used for user-friendly pairing with the
device. An other aspect is the growing importance of security required in devices. The
implemented TLS client uses the crypto hardware modules of the SLE70 chip and provides
excellent performance for the designated use cases. This part of the software might also
be reused on other IoT related projects.

5.1 Outlook

Future work could include performing tests to analyze the performance and energy con-
sumption in more detail. By possessing the whole source code of the application controller
it is possible to perform code optimizations to extend the lifetime of the device. The Blue-
tooth stack might be used in many other BLE related projects. There are many optional
features described in the Bluetooth standard which are not yet implemented. Some of
them might be considered as useful will be added in the future.

The TLS implementation can be extended with more cipher suites depending on the
applications needs. One interesting encryption algorithm is ASCON [4], which was de-
veloped by the institute IAIK at TU Graz which can be used as alternative to the AES
algorithm. In general the project was a success overall and more projects in this are will
follow.

80

Appendix A

Acronyms

MCU Micro Controller Unit
IDE Integrated Development Environment
GPIO General Purpose Input Output
TCP Transmission Control Protocol
UDP User Datagram Protocol
BLE Bluetooth Low Energy
HCI Host Controller Interface
L2CAP Link Control and Adaption Protocol
CID Channel Identification Number
MTU Maximum Transmission Unit
PDU Protocol Data Unit
LE PSM Low Energy Protocol Service Multiplexer
ATT Attribute Protocol
SMP Security Manager Protocol
LTK Long Term Key
CSRK Connection Signature Resolving Key
IRK Identity Resolving Key
ECDH Elliptic Curve Diffie-Hellman
GATT Generic Attribute Profile
UUID Universally Unique Identifier
GAP Generic Access Profile
NFC Near Field Communication
I2C Inter-Integrated Circuit
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
AES Advanced Encryption Standard
IoT Internet of Things
RFI Radio Frequency Interface
USB Universal Serial Bus
GSM Global System for Mobile Communications
IETF Internet Engineering Task Force
RFC Request for Comments
MAC Message Authentication Code
TLS Transport Layer Security
PFS Perfect Forward Security

81

PRF Pseudo Random Function
CBC Cipher Block Chaining
IV Initialization Vector
DHE Diffie-Hellman Ephemeral Key Exchange
ECDHE Elliptic Curve Diffie-Hellman Ephemeral Key Exchange

82

Bibliography

[1] NFC Forum Type 4 Tag Operation Specification 2.0. nfc-forum.org, 2010.

[2] Gregory V. Bard. Vulnerability of SSL to Chosen-Plaintext Attack. pages 1–10, 2004.

[3] Bluetooth SIG. Bluetooth Specification Version 4.2. 2014.

[4] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schlaeffer. Ascon
v1.1 - Submission to the CAESAR Competition. ascon.iaik.tugraz.at, 2015.

[5] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. pages 1–12.

[6] G. M. Shrestha and J. Imtiaz and J. Jasperneite. An optimized OPC UA transport
profile to bringing Bluetooth Low Energy Device into IP networks. In Emerging
Technologies Factory Automation (ETFA), 2013 IEEE 18th Conference on, pages
1–5, Sept 2013.

[7] Haolin Wang and Minjun Xi and Jia Liu and Canfeng Chen. Transmitting IPv6
packets over Bluetooth low energy based on BlueZ. In Advanced Communication
Technology (ICACT), 2013 15th International Conference on, pages 72–77, Jan 2013.

[8] Hongwei Du. NFC Technology: Today and Tomorrow. International Journal of Future
Computer and Communication, Vol. 2, No. 4, August 2013, 2013.

[9] IETF. RFC4492 - Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS). tools.ietf.org, 2006.

[10] IETF. RFC5246 - The Transport Layer Security (TLS) Protocol Version 2.1.
tools.ietf.org, 2008.

[11] J. Yim and S. Kim and N. K. Kim and Y. B. Ko. IPv6 based real-time acoustic data
streaming service over Bluetooth Low Energy. In Communications, Computers and
Signal Processing (PACRIM), 2015 IEEE Pacific Rim Conference on, pages 269–273,
Aug 2015.

[12] Jan, Axelson. USB Complete - Everything You Need To Develop Custom USB Pe-
ripherals. lakeview research llc, 3. aufl. edition, 2005.

[13] M. Koschuch and M. Hudler and M. Krüger. Performance evaluation of the TLS
handshake in the context of embedded devices. In Data Communication Networking
(DCNET), Proceedings of the 2010 International Conference on, pages 1–10, July
2010.

[14] Marcus Janke, Dr. Peter Laakmann. Attacks on Embedded Devices. Embedded
World Conference Nurenberg, 2016.

83

[15] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
526–540, May 2013.

[16] P. Burzacca and M. Mircoli and S. Mitolo and A. Polzonetti. iBeacon technology
that will make possible Internet of Things. In Software Intelligence Technologies
and Applications International Conference on Frontiers of Internet of Things 2014,
International Conference on, pages 159–165, Dec 2014.

[17] R. Couto and J. Leal and P. M. Costa and T. Galvão. Exploring Ticketing Approaches
Using Mobile Technologies: QR Codes, NFC and BLE. In Intelligent Transportation
Systems (ITSC), 2015 IEEE 18th International Conference on, pages 7–12, Sept 2015.

[18] Robert Davidson, Akiba, Carles Cufi, Kevin Townsend. Getting Started with Blue-
tooth Low Energy: Tools and Techniques for Low-Power Networking. O’Reilly Media,
Inc., 2014.

[19] Robin Heydon. Bluetooth Low Energy: The Developer’s Handbook. Prentice Hall,
2012.

[20] S. Noguchi and M. Niibori and E. Zhou and M. Kamada. Student Attendance Manage-
ment System with Bluetooth Low Energy Beacon and Android Devices. In Network-
Based Information Systems (NBiS), 2015 18th International Conference on, pages
710–713, Sept 2015.

[21] T. Zhang and J. Lu and F. Hu and Q. Hao. Bluetooth low energy for wearable sensor-
based healthcare systems. In Healthcare Innovation Conference (HIC), 2014 IEEE,
pages 251–254, Oct 2014.

[22] Tal Be’ery and Amichai Shulman. (TLS attacks) A Perfect CRIME? Only TIME
Will Tell. pages 1–33, 2013.

[23] Vincent Himpe. Mastering the I2C Bus. Publit Elektor, 2011.

[24] Z. M. Lin and C. H. Chang and N. K. Chou and Y. H. Lin. Bluetooth Low Energy
(BLE) based blood pressure monitoring system. In Intelligent Green Building and
Smart Grid (IGBSG), 2014 International Conference on, pages 1–4, April 2014.

84

	List of Figures
	List of Tables
	Introduction
	Motivation
	Overview

	State of the art
	Bluetooth Low Energy
	Applications of BLE
	Mobile sensor stations
	BLE beacons
	IPv6 over BLE

	Bluetooth Low Energy (BLE) Solutions
	Modules with complete host and controller part
	Modules with controller part only
	Targeted solution

	Near Field Communication (NFC)
	Applications of NFC
	NFC used for Bluetooth device pairing

	Security controllers
	Manipulative attacks
	Observing attacks
	Semi-Invasive attacks
	Countermeasures

	Design
	Use cases
	Mobile temperature sensor station
	Door watchdog

	Requirements
	System overview
	System components
	Bluetooth Low Energy Transceiver
	Temperature sensor
	Reed sensor
	Power Management
	Application Controller
	Application modules
	Sensor Data Handler
	Bluetooth Handler
	NFC Handler

	Protocol stacks
	BLE stack

	Bluetooth Device Address
	Bluetooth Device Name
	Bluetooth Passkey (PIN)
	Advertising packet format
	Broadcast mode and observation procedure
	NFC stack
	Interface drivers
	I2C driver
	GPIO driver
	UART driver
	RFI driver

	Android App

	System interaction
	Device activation via NFC

	Implementation
	Development Flow
	Application Controller Software
	IDE and Tools
	Bluetooth Stack development

	Android App Tools

	Software Implementation
	Bluetooth Low Energy Stack
	L2CAP Layer Implementation
	Command and event handling
	Channel multiplexing
	LE Signaling Channel

	LE Credit Based Connection Request
	LE Credit Based Connection Response
	LE Flow Control Credit
	Disconnection Request
	Disconnection Response
	Command Reject
	L2CAP Connection Parameter Update Request
	Connection Parameter Update Response
	GAP Implementation
	Security features
	Paring using the Security Manager protocol
	GATT Server Implementation
	Data structure

	Extended Properties Characteristic Descriptor
	Characteristic User Description Descriptor
	Client Characteristic Configuration Descriptor
	Server Characteristic Configuration Descriptor
	Characteristic Representation Format Descriptor
	Characteristic Aggregate Format Descriptor
	Translation to a C struct
	Interface to GATT clients
	Interface to application
	I2C Interface driver
	UART Interface driver
	NFC Stack
	Tag Type 4
	File management commands
	Authentication and secure session
	User management
	Authentication process
	Secure communication

	Transport Layer Security (TLS) Protocol
	RFC standards
	General description
	Authentication
	Key exchange
	Application data transmission
	Message Authentication Code (MAC)
	Symmetric Cryptography

	Handshake phase overview
	Implementation Security Aspects
	Lucky thirteen attack
	Connection downgrade attack
	Predictable IV in CBC mode
	Compression as side channel

	TLS combined with BLE
	GATT server interface
	L2CAP LE Credit Based Channel
	IPv6 over BLE

	Hardware Implementation
	Bluetooth controller connection (UART)
	Temperature sensor connection (I2C)
	Reed sensor connection (GPIO)
	Power management (Battery)

	Android App Implementation
	Device Control Activity
	BLE Fragment
	BLE Service
	NFC Fragment

	Testing
	Bluetooth Low Energy Stack Testing
	TLS Implementation Testing
	Prototype

	Conclusion
	Outlook

	Acronyms
	Bibliography

