
Martin Burtscher, BSc

Combined Interactive Vehicle and Duty Scheduling

in the Area of Local Public Transport

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology

Graz University of Technology

 Master of Science

Supervisor

Graz, April 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

Over the last few years, bus companies have been under increasing pressure,
created by competition due to rising privatization in the public transport
sector and reduced subsidies of public authorities. Moreover, human plan-
ners are dissatisfied with market-established scheduling solutions. For small
bus companies market-established systems are too expensive and addition-
ally cannot cover all the special constraints and rules which are present in
rural areas.

This thesis describes a new interactive approach to creating efficient com-
bined vehicle and duty schedules for rural areas that are usable in practice.
The introduced system integrates a human scheduler and all their domain
specific knowledge in the scheduling process. Special attention is paid to
the concept of combining the skills of humans and computers. The human
planner is not replaced by a system, rather the planner is supported by a
quick and comprehensive presentation of information and statistics including
schedule suggestions.

The second part of the thesis deals with implementation details of the
interactive planning system. Basic elements of the system structure are dis-
cussed and three different scheduling algorithms are introduced. The heuris-
tic scheduling algorithms are able to suggest initial feasible schedules. A
human planner then has various opportunities to intervene in the scheduling
process. The user interface allows a user to modify the generated solution and
fix parts of a suggested or existing schedule which the user is satisfied with.
Based on these modifications and selections, the system can provide further
suggestions. Planners are additionally supported in their decision-making
process by clear and meaningful statistics during the overall scheduling pro-
cess. To enable human schedulers to include known regional requirements,
various tangible configuration parameters are described. Besides built-in
rules which handle legal regulations and scheduling requirements, the system
can be extended with customized rules for the special demands of planners.

Evaluations and benchmarks have shown, that the system is usable in
practice and is able to generate acceptable schedules within a short time.
The resulting schedules are comparable with human planned solutions with
regards to costs, which have been gradually optimized over years. The system
and the concept of interactive scheduling has been well received by planners
of various bus companies.

iii

Zusammenfassung

In den letzten Jahren sind Busunternehmen, aufgrund vonWettbewerb durch
steigende Privatisierung im öffentlichen Verkehr, als auch durch gekürzte
Subventionen der öffentlichen Hand, immer stärker unter Druck geraten.
Außerdem sind Planer mit den verfügbaren, etablierten Planungslösungen
unzufrieden. Sie sind zu teuer und können darüber hinaus nicht alle beson-
deren Anforderungen erfüllen, die ländliche Regionen mit sich bringen.

Diese Arbeit beschreibt eine neue interaktive Herangehensweise um prax-
istaugliche und effiziente kombinierte Umlauf- und Dienstpläne für ländliche
Regionen zu erstellen. Das vorgestellte System integriert einen menschlichen
Planer und sein gesamtes Domänenwissen in den Planungsprozess. Beson-
dere Aufmerksamkeit wird dabei auf die Kombination der Fähigkeiten von
Menschen und Computern gelegt. Der menschliche Planer wird nicht von
einem System ersetzt, vielmehr wird der Planer von einer schnellen aber
umfassenden Darstellung von Informationen und Statistiken einschließlich
Planungsvorschlägen unterstützt.

Der zweite Teil der Arbeit beschäftigt sich mit Implementierungsdetails
des interaktiven Planungssystems. Grundlegende Elemente der Systemstruk-
tur werden erörtert, und drei unterschiedliche Planungsalgorithmen werden
vorgestellt. Die heuristischen Planungsalgorithmen sind in der Lage initiale,
aber direkt nutzbare Lösungen vorzuschlagen. Der Planer hat dann unter-
schiedliche Möglichkeiten um in den Planungsprozess einzugreifen. Die Be-
nutzeroberfläche erlaubt es, die generierte Lösung zu verändern und geeignete
Teile der vorgeschlagenen oder existierenden Umläufe zu fixieren. Das Sys-
tem kann auf Basis der durchgeführten Anpassungen und der Auswahl guter
Umlaufteile weitere Vorschläge liefern. Planer werden zusätzlich mit aus-
sagekräftigen Statistiken in ihrem Entscheidungsprozess während der gesamten
Planung unterstützt. Um regionale Anforderungen berücksichtigen zu kön-
nen, werden verschiedene, greifbare Konfigurationsparameter beschrieben.
Neben den integrierten Regeln für die Planungsanforderungen und geset-
zlichen Vorschriften kann das System durch individuelle Regeln für spezielle
Anforderungen erweitert werden.

Auswertungen und Benchmarks haben gezeigt, dass das System in der
Praxis einsetzbar und in der Lage ist akzeptable Umläufe in kurzer Zeit zu
generieren. Die Kosten der resultierenden Umläufe sind mit den manuel opti-
mierten Lösungen vergleichbar, die über Jahre sukzessive optimiert wurden.
Das System und das Konzept der interaktiven Planung wurde von Planern
verschiedener Busunternehmen gut angenommen.

iv

Acknowledgements

Thanks to all who supported me while I wrote this thesis.

I would particularly like to thank Prof. Wolfgang Slany for his help and

advice during my master’s thesis.

I would also like to thank Claudio Ganahl from the TeleMatrik PTS GmbH

for the highly interesting topic and the opportunity to realize it as a part of

my thesis.

Furthermore, my thanks go to Teresa Feuerstein, Daniel Burtscher and

Michael Burtscher for reviewing my thesis.

Last but not least I sincerely thank my parents Rosmarie and Alfred

Burtscher for their great support throughout my entire education.

v

Contents

1 Introduction 1

2 Planning in Public Transport 3
2.1 Planning Process . 3
2.2 Vehicle Scheduling . 5
2.3 Duty Scheduling . 7

2.3.1 Legal Regulations . 7
2.3.2 Duty Costs . 8

2.4 Combined Vehicle and Duty Scheduling 9

3 Solution Approaches 12
3.1 The Problem . 12
3.2 Branch and Bound . 13
3.3 Basic Heuristic Solution Approaches 16

3.3.1 Simulated Annealing 17
3.3.2 Tabu Search . 18
3.3.3 Genetic Algorithms . 19

3.4 Testing of Automated Optimizations 20

4 Interactive Knowledge-Based Systems 22
4.1 Introduction and Motivation 22
4.2 Degrees of Interaction . 23
4.3 Role of a Human Scheduler 23
4.4 Interactive Approaches Today 24
4.5 General Structure and Requirements 24

5 Interactive Vehicle and Duty Planning in Practice 27
5.1 Introduction . 27
5.2 Partner Company . 28
5.3 Test Regions . 28
5.4 Requirements . 30
5.5 Incremental Scheduling Process 31
5.6 Initial Situation in Regional Areas 32

vi

6 Implementation 34
6.1 Basic Concepts . 34

6.1.1 Internal Scheduling Model 35
6.1.2 Connection Matrix . 36
6.1.3 Solution Data Structure 39
6.1.4 Transfer Matrix . 40
6.1.5 Transfer Matrix Generation 41

6.2 Architecture and Scheduling Process 43
6.3 Scheduling Rules . 45

6.3.1 Tour Validation Rules 45
6.3.2 Other Rules . 49

6.4 Scheduling Algorithms . 51
6.4.1 Demands on Algorithms 51
6.4.2 Simple . 51
6.4.3 Simple Permutation 54
6.4.4 Tour Permutation . 56
6.4.5 Reverse Scheduling . 58

6.5 Algorithm Configuration . 58
6.5.1 Line Loyalty . 59
6.5.2 Local Search for Line Loyalty 59
6.5.3 Break Reduction . 60
6.5.4 Maximum Allowed Break Time 60
6.5.5 Break Penalty Time 61
6.5.6 Transfer Weight . 62
6.5.7 Automatic Calculation of Configuration Values 62

7 Scheduling Results 64
7.1 Results and Benchmarks . 64

7.1.1 Region A . 65
7.1.2 Region B . 66
7.1.3 Region C . 68
7.1.4 Results Conclusion . 70

7.2 Proven Scheduling Work-flow 71
7.3 Feedback from Human Schedulers 71

8 Practical Usage 74
8.1 Integration in PlanMATRIK 74
8.2 Further Development . 75
8.3 Outlook . 75

9 Conclusion 77

Bibliography 78

vii

List of Figures

2.1 The planning process in public transportation. 4
2.2 In this example, a sequential approach will not lead to a fea-

sible solution, only a combined approach of vehicle and duty
scheduling can produce valid results. Image is based on Wei-
der (2007). 10

2.3 The resulting duty schedule if a combined vehicle and duty
schedule approach is used. 11

3.1 In the image a step-by-step example of solving an integer lin-
ear programming problem is shown. 14

3.2 The example1shows that the performance of a hill climber
highly depends on the initial starting point. It stops when no
better neighbours can be found. 18

4.1 An Interactive Scheduling System. Adapted from Bechara
and Galvão (1984) . 25

5.1 Current version of PlanMATRIK’s manual scheduling approach. 29
5.2 Incremental Interactive Scheduling Process. 32

6.1 An example of a connection matrix. 36
6.2 A resulting connection matrix from a given timetable. 37
6.3 This graph represents all possible tours generated from the

connection matrix given in Figure 6.2. 38
6.4 This graph represents the solution data structure including

tour states. 39
6.5 Adding a trip at the end of a tour. 40
6.6 Adding a trip in between other trips. 40
6.7 An example of a transfer matrix, where each cell contains the

information of time in seconds and distance in meters (in the
form of time|distance), needed from one stop point to another. 40

6.8 Scheduler Service Architecture and Scheduling Process 44
6.9 Detection of overlapping trips. 46
6.10 In this example valid driving periods are shown. Figure is

based on an example in Bagdahn (2015). 47

viii

6.11 This is a valid tour based on the one-sixth rule. The total
break time is greater than one sixth of the total driving time
and additionally for each time a valid driving period can be
found. 48

6.12 In this tour the total break time is greater than one sixth of
the total driving time but there exists a driving period where
the driving time of the period is not greater or equal than the
break time of the period. 48

6.13 If a newly added trip does not have the same departure time
as the arrival time of the trip that it gets connected to, a break
trip is added to fill the gap. Additionally, if the stop points
are different, a transfer trip is added and the remaining gap
is filled with a break trip. 49

6.14 In tour 1), the ending depot ride is not added to the current
driving period and the new trip is valid. In tour 2), however,
the depot ride is added to the driving period and the tour will
be invalid. 50

6.15 This image shows an example the Simple algorithm process.
It starts with the initial connection matrix in Step 1 and in-
crementally generates the solution A→ B, C→ F and D→ E,
resulting in Step 4. 53

6.16 Transposing the connection matrix for the reverse scheduling. 58
6.17 Trips with the same line number are preferred within a defined

threshold, if the line loyalty option is enabled, although the
costs are higher. 59

6.18 With the local search option enabled, trips with the same line
number, with departures in a defined threshold, are preferred. 60

6.19 The break reduction configuration tries to prevent the genera-
tion of tours with very long breaks and ensure more balanced
tours. 61

6.20 Unfavourable break durations are penalized by the Break Penalty
Time configuration. 62

8.1 The interactive system is integrated as a Scheduler Assistant
in PlanMATRIK. The configuration parameters can be modi-
fied in the left section of the module. The interactive schedul-
ing is done in the right section, where trips can be fixed and
changes are immediately visible. 75

ix

List of Tables

5.1 Test Regions Overview . 29

7.1 Computational results for region A. 66
7.2 Computational results for region B. (Part 1) 67
7.3 Computational results for region B. (Part 2) 67
7.4 Computational results for region C (Part 1) 69
7.5 Computational results for region C (Part 2) 69

x

Chapter 1

Introduction

Over the last few years, bus companies have come under an increasing
amount of pressure. This is created by competition due to rising privati-
zation in the public transport sector and reduced subsidies of public au-
thorities. Moreover, subsidies for public transport have to be put out for
public tender instead of being given directly to local companies. Therefore,
bus companies have to reduce their costs to remain competitive. Besides
lowering wages or discontinuing unprofitable lines, costs can be reduced by
increasing the efficiency of current schedules.

This thesis introduces a new interactive approach to support human plan-
ners in creating vehicle and duty schedules that are efficient and usable in
practicality. The first part of the thesis gives an overview of the planning
involved in public transport and various solution approaches described in
literature. Chapter 2 describes the planning process in public transport and
particularly addresses vehicle and duty scheduling. Chapter 3 introduces a
model for vehicle scheduling and the combined vehicle and duty scheduling
problem. Additionally, various exact and heuristic solution approaches are
introduced and the problem of optimization algorithm testing is discussed.
Interactive knowledge-based solution approaches are covered in Chapter 4,
where the important role of a human scheduler is addressed and different
degrees of interactions are described.

The second part of the thesis covers the technical implementation of this
work in detail. Chapter 5 introduces the practical problem addressed in this
thesis, the partner company and the characteristics of regional test areas.
Chapter 6 contains detail of the implementation, including the basic concept,
the architecture and algorithms and its configuration and rules. Chapter 7
presents the results of benchmarks and feedback from human schedulers.

1

Additionally, existing problems regarding the implementation and concepts
are presented. Chapter 8 gives an overview of the current state and the
practical usage of the introduced system. Finally, further developments are
discussed and an outlook is given.

2

Chapter 2

Planning in Public Transport

In this chapter the planning process in public transport is introduced. The
areas of planning are described, whereas vehicle and duty scheduling re-
ceive particular attention and explained in detail. Important definitions of
the terminology used in public transport are given and the advantages of a
combined scheduling approach are discussed.

2.1 Planning Process

The planning process in public transport can be divided into strategic plan-
ning and operational planning (Weider, 2007). Strategic planning is con-
cerned with long term processes, such as infrastructure and timetabling.
Operational planning deals with the resources of a company, like vehicles
and duties. An overview of the planning process is illustrated in Figure 2.1.
In the following, each phase of the process is described in more detail.

1. Strategic Planning

Network and Line Design is the initial phase of the planning pro-
cess. In this phase a topology is defined which includes bus stops
and their locations. The topology is then connected to a network
by creating fixed lines. Additionally, a frequency has to be de-
termined for each line which can handle the expected passenger
volumes.
The goal of the network and line design is to reduce the dwell
times and bus changes required to get from an origin to a specific
destination to enhance the convenience for passengers. At the

3

Figure 2.1: The planning process in public transportation.

same time the costs should be minimized. The output of the
network and line design phase is a network of bus stops and lines
with information about the locations of bus stops, required times
and distances of lines as well as their required frequencies.
The process of network and line design is often historically grown
and will seldom change completely. The reason for this is that for
instance infrastructure, like parking areas or other service connec-
tions, are tailored to existing bus stops and lines. For this reason a
network and line design is often only modified or extended slightly.

Timetable Planning Based on the defined lines and their frequen-
cies, the arrival and departure times of vehicles at bus stations
have to be defined. This process is called timetabling. An in-
stance of a bus line with a defined arrival and departure time is
called a trip. The output of the timetabling phase is trips, which
cover all lines and frequencies. Additionally, if there is more than
one vehicle type available, it is also assigned to the specific trips
in this phase, based on demands such as passenger volumes or
road conditions. The goal of the timetable planning phase is to
minimize the waiting times of passengers at bus stops. This in-
cludes the coordination of different lines to make buses meet at
major hubs at the same time or within a short time span.

2. Operational Planning

Vehicle Scheduling deals with the problem of assigning trips, stem-
med from the timetable, to vehicles at minimum costs. Therefore
the number of vehicles and deadhead trips needed to serve all
trips should be as low as possible. A detailed description of ve-
hicle scheduling including definitions and properties is given in
Section 2.2.

4

Duty Scheduling is responsible for creating duties from various tasks.
In public transport, tasks are mainly trips, stemmed from a time-
table and are already planned in a vehicle schedule. Additionally,
other tasks, like sign-on or sign-off tasks, which are needed to pre-
pare a vehicle, have to be planned if needed. Duty scheduling is a
hard task due to legal regulations, certain domain specific rules or
restrictions from local authorities. Duty scheduling is discussed
in detail in Section 2.3.

Crew Rostering is concerned with the scheduling of duties, result-
ing from the duty scheduling process. Duties have to be assigned
to individual drivers for a fixed planning period. The rostering
process is restricted by various rules, like legal regulations or pref-
erences of employees.

A huge amount of research has been performed on solving each part
of the schedule process individually, either by exact or heuristic methods.
Additionally, there have been further attempts to integrate different parts of
the scheduling process to achieve better optimization results.

In this thesis the vehicle scheduling problem (Section 2.2) and the duty
scheduling problem (Section 2.3) are discussed in detail. The practical work,
following in the second part of the thesis, is based on a combined approach
of vehicle and duty scheduling which is described in Section 2.4.

2.2 Vehicle Scheduling

The vehicle scheduling problem is concerned with assigning trips, stemmed
from a timetable, to vehicles at minimum cost (Weider, 2007; Ceder, 2015,
Chapter 7, p. 164ff). Therefore the amount of vehicles and deadhead trips
needed to serve all trips should be as low as possible.

Trips, stemmed from a timetable, are called service trips and have the
task of transporting passengers. Deadhead trips, do not transport any pas-
sengers. There are different types of deadhead trips:

1. Transfer trips connect service trips which do not end and start at the
same location.

2. Pull-out trips connect a depot with the first trip of a tour.

3. Pull-in trips connect the last trip of a tour to a depot.

5

4. Deadhead trips are also used to connect two trips which meet at the
same location including waiting times.

A tour is a sequence of trips and is assigned to an individual vehicle. The
result of the vehicle scheduling is a list of tours to serve all trips stemming
from the timetable.

All service trips have a defined start-time and an end-time, a start-
location and an end-location. Additionally, the driving time and driving
distance must be known to be able to schedule service trips and calculate
the trip and tour costs. The start and end time of trips are already defined in
the timetable. The start and end locations and the locations of intermediate
stations of service trips are defined manually in the network and line design
phase. For an exact cost calculation the driving time and the distances of
service trips are needed, which are also specified in the network and line
design phase.

Due to the fact that there is a large number of deadhead trips possible and
whether the driving time or the distance of each deadhead trip is known by
human planners, deadhead trips are usually not defined manually in advance.
They can be computed either by a routing planner, which provides exact time
and length values as used in the practical implementation (Section 6.1.4).
Or the properties result from an interpolated approach by calculating the
linear distance between two coordinates. The needed time is then calculated
by multiplying the interpolated distance by an average speed.

Each vehicle has a vehicle type, such as small bus, standard bus, double
decker or articulated bus. Each vehicle type has different characteristics,
such as a number of seats, an average speed, the length or height of the bus.
This can be relevant for the planning process because trips can have different
requirements on the vehicle type, which must be fulfilled. For example, there
are trips that cannot be driven by a bus which is too long because otherwise
it cannot get a round a curve, or too high to pass a low bridge. On the other
hand there are trips where a high passenger rate is expected and therefore a
bigger bus with more seats is needed.

The final costs result from the fixed costs of the vehicle type, the fuel
consumption per km, the driving time and the costs for a driver, see Sec-
tion 2.3.2. Therefore, reducing deadhead trips and waiting times will lead
to lower costs.

6

2.3 Duty Scheduling

Duty scheduling is concerned with covering a set of tasks efficiently (Weider,
2007). Tasks in public transport stem from a timetable, or vehicle schedul-
ing respectively. Additionally, there are other tasks like administrative work
or sign-on and sign-off tasks which are needed to prepare the vehicle before
and/or after a vehicle is put into operation. A duty in the area of public
transport is a set of tasks served by one driver, taking into account legal
regulations. Furthermore, there can be other domain specific rules and re-
strictions which must be observed. In the following, basic legal regulations
and the duty cost calculation is described.

2.3.1 Legal Regulations

Austria and Germany are the countries that are of most interest to the
partner company, which will be introduced in Section 5.2. Therefore, only
Austrian and German regulations are addressed in this thesis. There are dif-
ferent legal regulations concerning duty scheduling. First, the EU regulation
(EC) No 561/20061 introduces basic definitions and says:

“ The Member States should lay down rules for vehicles used for
the carriage of passengers on regular services where the route cov-
ered does not exceed 50 km. Those rules should provide adequate
protection in terms of permitted driving times and mandatory
breaks and rest periods.”

This means that all routes that do no exceed the 50 kilometre limit are
regulated by national states, which applies to nearly all routes in local public
transport.

National legal regulations concerning duty scheduling are the working
time law (Arbeitszeitgesetz) and the driving time directive (Lenkzeitverord-
nung), for German regulations, see e.g., Bagdahn (2015). However, the
Austrian and German Rules are very similar, with the difference that the
quotient rule, explained in the following, is no longer valid in Austria and
the driving period is 4 1/2 hours in Germany and 4 hours in Austria.

In the following, definitions and the most common legal regulations are
introduced. The implementation and a detailed description of the legal reg-

1http://eur-lex.europa.eu/resource.html?uri=cellar:
5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF

7

http://eur-lex.europa.eu/resource.html?uri=cellar:5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF

ulation as rules is given in Section 6.3.1.

• The daily working time of a driver is at most 13 hours.

• The daily driving time of a driver is at most 9 hours.

• The non-interrupted driving time, which means the accumulated driv-
ing time after or before a break or rest, is at most 4 hours in Austria
and 4 1/2 hours in Germany. These non-interrupted driving blocks are
called driving periods.

• Breaks: To start a new driving period, the driving period must be
interrupted by one break of at least 30 minutes or by two breaks of at
least 20 minutes each or by three breaks of at least 15 minutes each.
These breaks must be taken before the driving period reaches 4 hours,
or 4 1/2 hours respectively.

• Quotient-rules, namely the one-sixth rule, are only valid in Germany.
The one-sixth rule additionally allows the required breaks to be divided
into blocks of at least 10 minutes each. The duty is valid if the total
break time is at least one sixth of the total driving time. The one-sixth
rule must also be valid within a driving period.

2.3.2 Duty Costs

Costs of duties mainly result from the working time of a driver. However,
in accordance to the time law, a driver must have appropriate breaks which
could be paid or unpaid. The legal regulations, concerning paid and unpaid
breaks, vary from country to country.

In Austria, a maximum 1 1/2 hour of break time within a duty can be
unpaid. Additionally, an unpaid break is only possible if the duration of a
duty is more than six hours. Finally, breaks in the first two hours and in the
last 2 hours of a duty are always paid. For a detailed explanation and special
regulations of the Austrian time law relating to paid and unpaid breaks see,
e.g., Schmeidl (2012).

Although, human and automated schedulers try to create or generate
balanced duties with adequate break length, there are often ’better’ and
’worse’ duties, which means if a driver likes a tour or not. This also depends
on the country. In some countries it is usual to have a long lunch break,
in other countries it is more common to have a short lunch break, but end
work earlier (Weider, 2007). Therefore, bus companies often have special
agreements concerning paid and unpaid breaks with bus drivers, besides the

8

legal framework, which must be fulfilled anyway. For example, breaks in
’worse’ duties are paid more often than required by law, to compensate the
resulting inconveniences. Different penalization strategies can be introduced
to prevent algorithms from generating unbalanced or ’worse’ duties. One
example is the penalization of too short or too long breaks.

Furthermore, duty costs can change abruptly even if only one additional
trip is added or removed from a duty. For example, if on the one hand
the duty duration drops below six hours, it will lead to completely paid
breaks, based on the Austrian time law described above. This may result in
significantly higher costs. On the other hand, if additional trips are added
and the tour duration then exceeds six hours, the costs may even decrease
because unpaid breaks are possible.

It is very challenging to calculate correct duty costs, while respecting all
legal regulations and it is practically impossible to calculate the exact cost
including special agreements between bus companies and drivers. Therefore,
the costs calculated by a scheduling system are always only a reference value.

2.4 Combined Vehicle and Duty Scheduling

For each phase in the planning process, described in Section 2.1, numerous
solution approaches are known, which solve each problem sequentially and
individually. In the following, combined approaches are presented, which
try to optimize different areas of the planning process in one step. This
enables more possibilities and is in some cases even needed to get an optimal
solution.

A lot of research has been done in the area of solving each step of the
public planning process individually. However, it often leads to significantly
better results if different steps of the planning process are combined and
solved in one step. Van den Heuvel, Akker, and Niekerk (2008) presented
an integrated approach to timetabling and vehicle scheduling. The results
showed that a significant reduction in the operational cost can be achieved
by slightly changing the departure and arrival times in the timetable. Of
course, it is not always possible to change the timetable, this depends on local
authorities. Sometimes the timetables are given and offered by that region.
A consumer then has to take the timetables and generate efficient vehicle
schedules from it. To take advantage of combined timetabling and vehicle
scheduling, changing the timetable must be allowed to a certain extent.

By combining vehicle and duty scheduling, on which this thesis is focused

9

on, better results can be achieved and problems can even be solved where a
sequential approach would fail. In regional public transport, trips are longer
and fewer relief points exist. It is often the case that a driver starts at a
depot and finishes his duty in the same depot again. Weider (2007) presented
an example of a rural area, where a sequential approach cannot produce any
feasible solutions without violating the working time law or the driving time
directive. It is illustrated as a network flow diagram in Figure 2.2. In these
kind of diagrams, deadheads are also used to connect trips which meet at
the same location, including waiting times between the trips if present.

Figure 2.2: In this example, a sequential approach will not lead to a feasible
solution, only a combined approach of vehicle and duty scheduling can produce
valid results. Image is based on Weider (2007).

In the example there are two service trips to schedule. Trip 1 takes four
hours to get from A to B. It is directly followed by Trip 2 which also takes
four hours to get back from B to A. Trip A starts at depot s. From depot
s to trip B, one hour is needed, which means that the trip A and B do not
take the direct route. A vehicle scheduling algorithm will schedule Trip 1
and Trip 2 in a row, for which exactly one vehicle is needed, which is the
optimal solution. For a duty scheduler, it will be impossible to generate a
feasible duty from the vehicle schedule, where Trip 1 and 2 are bound to one
vehicle. The driving time direction of 4 1/2 (based on German rules) will be
violated. The problem can be solved by using a second vehicle, which serves
Trip 2. The solution is shown in Figure 2.3.

To achieve the driving time direction, a driver on bus 1, which serves
Trip 1 has to take a break of 30 minutes, before a depot ride can be taken.
Furthermore, before Trip 2 can be served, a break of 30 minutes is needed
as well.

10

Figure 2.3: The resulting duty schedule if a combined vehicle and duty schedule
approach is used.

11

Chapter 3

Solution Approaches

Over the last few decades extensive research has taken place in all areas of the
public transport planning process, which is discussed in Section 2.1. Vehicle
scheduling and the combination of vehicle and duty scheduling are particu-
larly focused on. The main problem of vehicle scheduling is the number of
feasible solutions due to the large number of possible deadheads, especially
when taking multiple depots into account (Ceder, 2011). Due to its size, it
is not possible to solve the problem using an exhaustive approach. There-
fore, most of the literature is concerned with the computational issues of the
vehicle scheduling problem. The published solution approaches in this area
can basically be divided into exact approaches and heuristics (X. Zuo et al.,
2015). In the following, the scheduling problem and basic algorithms which
are used in exact and heuristic solution approaches are discussed.

3.1 The Problem

As already mentioned, the main problem with vehicle and duty scheduling
is the huge number of feasible solutions. Different models of the vehicle
scheduling problem are presented in the literature. However, Valouxis and
Housos (2002) modelled a combined vehicle and duty scheduling problem as
a zero-one integer programming problem (IP). In theory all existing valid
day shifts could be generated using a search tree. While creating this search
tree, all legal regulations and special requirements can be indirectly checked
during the creation process. By excluding these regulations and requirements
from the model, the following zero-one program can be defined:

12

Minimize
S∑

s=1

csxs (3.1)

Subject to
S∑

s=1

βbsxs ≤ 1, b ∈ B, (3.2)

and
S∑

s=1

τtsxs = 1, t ∈ T, (3.3)

xs = {1, 0}, j = 1, . . . , n,

where cs are the costs of a shift s and S is the number of feasible generated
shifts. B is the set of available buses and T the set of all trips. The coefficient
βbs = 1 if a bus b is covered by a shift s and βbs = 0 otherwise. The coefficient
τts = 1 if a trip t is covered by a shift s and τts = 0 otherwise. Finally, xs
indicates whether a generated shift is taken or not.

The objective function in (3.1) forces the selection of shifts with minimal
total costs. The constraint given in (3.2) ensures that each bus is assigned to
a maximum of one shift. Finally, the constraint in (3.3) guarantees that each
trip is covered by exactly one shift. To create reasonable solutions with this
model, it is necessary to generate a significant number of shifts assigned to
the available buses. This leads to a huge IP problem, which is very difficult
or even impossible to solve in reasonable time.

In the following, basic exact and heuristic solution approaches are dis-
cussed which are used in various solution approaches for the vehicle schedul-
ing problem in the literature.

3.2 Branch and Bound

In the literature, exact solution approaches of the vehicle scheduling problem
and the combination of vehicle and duty schedule are often modelled as an
Integer Linear Programming Problem (ILP) or a zero-one integer program.
The main problem of an ILP are constraints that limit some objectives to
integer values. Various solutions have been proposed which solve the ve-
hicle scheduling problem modelled as an ILP. One basic component used
by various solution approaches to solve an ILP is the Branch and Bound
algorithm, proposed by Land and Doig (1960) or variations of it. Haase, De-
saulniers, and Desrosiers (2001), for instance, presented a solution approach
for the simultaneous vehicle and duty scheduling problem using Branch and
Bound. Also Carpaneto et al. (1989) uses Branch and Bound to solve the

13

multiple depot vehicle scheduling problem. In the following the Branch and
Bound algorithm is explained (Gurobi, 2016) with an example illustrated in
Figure 3.1.

Figure 3.1: In the image a step-by-step example of solving an integer linear
programming problem is shown.

Step 1) The Branch and Bound algorithm starts with the initial ILP prob-
lem.

Step 2) Next, the problem is relaxed by removing all integer constraints
though allowing fractional solutions. The resulting problem is called
linear-programming (LP) relaxation of the original ILP and can be
solved by Mixed-Integer Programming (MIP) solvers based on the Sim-
plex algorithm.

Step 3) In the example, the result 3.1 for x and 2.55 for y is found, which

14

leads to the cost r1 of 14.4. This solution is the best value that can
theoretically be achieved and is called lower bound, in a minimization
problem. The closer a feasible solution is to the lower bound, the
better it is. If the very unlikely case happens that the result satisfies
all integer constraints, although they were not imposed, the optimal
solution of the initial ILP has been found and the algorithm can stop.

This is usually not the case and therefore the next step of the algorithm
is to calculate an initial solution called upper bound, in a minimization
problem. The initial upper bound is a first feasible solution calculated
by a heuristic. In the example, a very simple heuristic H is used, which
rounds up the fractional values of x and y to x = 4 and y = 3. Inserted
in the cost function, it leads to the upper bound of 18. All solutions
that are worse than the upper bound can be discarded.

To measure the quality of the solution, an optimality, gap Gopt, be-
tween the lower and upper bound is calculated. The optimality gap is
calculated as follows:

Gopt =
U − L
L

× 100

where U is the upper bound and L is the lower bound. This leads to
an initial optimality gap of 25%.

Step 4) The next step is called branching. Therefore, a variable is selected,
which is an integer restricted variable in the initial ILP, but has a
fractional value in the result of the MIP solver.

In the example, variable x is selected first. To create branches, ad-
ditional constraints are added, which divides the original problem,
in this case, into two sub problems. For one branch, the constraint
c11 : x ≤ 3 is added, and another branch is created by adding the
constraint c12 : x ≥ 4. These constraints exclude fractional solutions
for x between 3 and 4. For both branches, the new problem is solved
by MIP solver, with the additional constraints c11 and c12 respectively,
but still without the integer restrictions. This leads to the solution of
x = 3 and y = 2.75 with the costs r2 = 14.5 in node 2 and x = 4 and
y = 2.25 with the costs r3 = 16.5 in node 3.

If node 2 and 3 are evaluated, a new upper bound can be set, by taking
min(r2, r3), which is 14.5, because no better solution can be achieved
in this state. Based on the new upper bound, the optimality gap can
be recalculated and is now 24.1%. The best solution at this point is
still 18, because there are no sub solutions, which meets all conditions
of the initial ILP.

15

Step 5) As y is still fractional in both leaf nodes, branching has to be
continued and a node has to be chosen to go on with. In this example
a best first strategy is used and therefore node 2 is selected, because
its cost r2 is better than the costs r3 in node 3.
Therefore, like with x in step 4), additional constraints for y are added.
These are c21 : y ≤ 2 for the left branch and c22 : y ≥ 3 for the right
branch, to exclude fractional solutions between 2 and 3 for y. The left
branch of node 2 is, due to its additional constraint, infeasible and can
be discarded. The right branch leads to a solution of x = 2.88 and
x = 3 with a result of 14.6 in node 4, which is additional the new lower
bound and leads to the new optimality gap of 23.3%.

Step 6) As variable x has a fractional result again, branching has to be
continued. Node 4 is selected due to its best lower bound. Therefore,
the constraints c31 : x ≤ 2 for the left branch and c32 : x ≥ 3 for the
right branch are added. In the left branch of node 4, x = 2 and y = 3.75
with a result of 15.5 in node 5. In the right branch of node 4, x = 3 and
y = 3 with a result of 15 in node 6. Additionally, all initial constraints
of the ILP are fulfilled, including the integer constraints for x and y.
This leads to a new upper bound of 15 and an optimality gap of 2.7%.
Moreover, the lower bound in node 3 and the lower bound in node 5 are
greater than the new upper bound of 15 in node 6. Therefore, both
branches can be pruned, because no better solution will be possible
there. Due to the fact that all branches are either infeasible or pruned,
the result in node 6 is the optimal solution for the initial ILP problem.

The Branch and Bound algorithm can find exact solutions for a ILP.
However, if the size of the problem is very large, the Branch and Bound
algorithm can take a very long time. Therefore, it is possible to stop the
evaluation of new nodes by accepting a solution where the optimality gap
reaches a defined threshold. In that case, the initial exact approach of the
Branch and Bound algorithm turns into an heuristic approach.

3.3 Basic Heuristic Solution Approaches

Although, exact solution approaches are able to find optimal solutions, the
computational time is often unacceptable (X. Zuo et al., 2015). Heuristic ap-
proaches can lead to acceptable results in a shorter time. In the following, a
selection of heuristic algorithms, which are able to solve combinatorial prob-
lems and therefore are used in the area of vehicle scheduling and combined
vehicle and duty scheduling, are described. These are Simulated Annealing,
Tabu Search and Genetic Algorithms.

16

3.3.1 Simulated Annealing

Simulated Annealing(SA) is originally inspired by the process of annealing
metal work, by heating and cooling the material to change the inner struc-
ture (Bertsimas and Tsitsiklis, 1993). When the temperature of the metal
goes down, the new structure becomes fixed. In SA, a temperature variable
represents the heating process. In the beginning, the temperature variable
is high, which allows the algorithm to also accept solutions which are worse
than the current solution. This gives the algorithm the ability to leave local
optima and scan a wider range of the search space. As the temperature goes
down, the acceptance of worse solutions will be reduced to hopefully find
solutions which are close to the global optimum.

The acceptance of a new neighbour solution depends on two character-
istics. First, if the neighbour solution is better than the current solution, it
will be always accepted and replaces the current solution. If the new solu-
tion is worse than the current solution, the acceptance function decides if the
solution is accepted or not. If the goal of the optimization is minimization,
the acceptance function is defined as:

faccept = e

ccur − cnew
T

where faccept is the acceptance function, ccur are the current costs, cnew
are the new costs and T is the current temperature of the system. If the
temperature is high, as it is in the beginning, a solution is more likely to be
accepted, also if the new cost value is significantly worse than the current
cost. This ensures that the algorithm can better explore the entire search
space, before the temperature cools and therefore the algorithm will focus
on a smaller region. Summarized, the algorithm works as follows:

1. Create an initial solution and set an initial temperature.

2. Select a neighbour by making small changes to the current solution.

3. Decide whether the new solution is accepted or not (acceptance func-
tion).

4. Decrease the temperature.

5. Stop if the system has sufficiently cooled or an acceptable solution has
been found. If this is not the case, go to step 2.

The big advantage over simple hill climbing algorithms is that SA does
not have the tendency to get stuck in local optima by also accepting worse

17

solutions, especially in the beginning. As shown in Figure 3.2, the hill climb-
ing algorithm highly depends on the initial starting point and therefore often
only finds a local optima, because it stops when no better neighbour can be
found. However, the SA algorithm will explore the entire search space and
will more likely find an optimal solution.

Figure 3.2: The example1shows that the performance of a hill climber highly
depends on the initial starting point. It stops when no better neighbours can be
found.

SA was successfully used by Laurent and Hao (2007). They presented
an approach for simultaneous vehicle and driver scheduling in two steps.
First, an initial solution was created. Afterwards, the initial solution was
progressively improved by SA.

3.3.2 Tabu Search

As Simulated Annealing, Tabu Search (TS) is a local search method, which
tries to avoid getting stuck in a local optimum (Glover, 1990). With TS
hard combinatorial optimization problems were solved successfully. However,
TS can be used to guide any solution process which employs moves that
can transform a solution into another and that provides a measuring for
the attractiveness of these moves. Examples of these moves are changing
a variable, adding or deleting elements from a solution, interchanging the
positions of elements, etc.

TS is mainly based on two characteristics, namely worsening moves and
prohibitions. TS allows worse solutions, if no better solution can be found
in the next move. Additionally, TS saves previously visited states to avoid
the search coming back to already checked solutions (therefore the name

1The example image is based on http://www.theprojectspot.com/images/
post-assets/hc_1.jpg [2016/04]

18

http://www.theprojectspot.com/images/post-assets/hc_1.jpg
http://www.theprojectspot.com/images/post-assets/hc_1.jpg

tabu). Glover (1990) describes three memory structures for saving visited
states. First, he describes short-term memory structures, which saves only
the last moves which prevents future moves from undoing changes. Next,
intermediate-term memory structures are described which has the intention
to bias moves toward promising areas of the search space. And finally, longer-
term memory structures can be used to promote a general diversity in the
search process. The TS algorithm, using a short term memory structure
works as follows:

1. Create an initial solution.

2. Create a candidate list of moves from the current solution, where each
move leads to a new solution.

3. Choose the best admissible solution candidate. Therefore, all solution
candidates are evaluated and compared. Then the best candidate is
taken which is not in a list of forbidden solutions (tabu list). The
chosen solution is the next current solution. If it also improves the
previous best solution, record it as the new best solution.

4. If the stopping criteria is reached (number of iterations or elapsed
time since the last best solution is found), the best recorded solution
is returned. If the stopping criteria is not reached, go to step 2.

TS was successfully used for an interactive scheduling approach by Kopfer
and Schönberger (2002) and is part of various other solution approaches for
vehicle scheduling problems.

3.3.3 Genetic Algorithms

Chen and Xingquan Zuo (2014) use a Genetic Algorithm (GA) to solve
the vehicle scheduling problem of an urban bus line. GAs are often used for
optimization problems, because of their ability to explore a huge search space
and find a combination of parameters which will lead to the best solutions.
GAs are inspired by the evolution of natural living beings by natural selection
and work as follows (Mitchell, 2011):

1. Generate an initial set of solutions, a population.

2. Calculate the fitness for each solution in the population using a cost
function which needs to be optimized.

19

3. Select those solutions with the best fitness from the population, which
will be the parents of the next generation. In the literature different
selection operators are described. But the basic idea is to select more
likely fitter solutions.

4. Crossover the selected parents. Each pair produces new offspring for
the new population, by combining parts of the parents with a slight
random mutation. Do this as long as the new population has the same
number of solutions as the initial population. Afterwards, the new
population becomes the current population.

5. Stop, if an acceptable solution is found or a limit is reached. If this is
not the case, go to step 2.

GAs are very general algorithms, which can be used in any search space
and often are described as the second best solution for every problem. Never-
theless, Chen and Xingquan Zuo (2014) could improve the experience-based
solution by 5 percent. Furthermore, the authors stated that the problem of
existing approaches is that they may only produce one solution, whereas GAs
can produce multiple pareto solutions, which is highly desirable for decision
makers, as human schedulers, in practice.

3.4 Testing of Automated Optimizations

Testing is an important part of the software development and maintenance
process. An optimization algorithm has to fulfil different requirements like
generating good and feasible solutions. Testing optimization results on their
feasibility, can be achieved by unit tests which check if all given constraints
are fulfilled. The attribute of ’good’ results, for instance if the results are
also practically relevant, is much harder to check automatically.

One attempt for testing the performance of optimization algorithms is
to introduce benchmark test suites. With a significant number of use cases,
the performance of different configurations of optimization algorithms, or
different variants of algorithms, can be tested and compared. This enables
a human expert to tune various weights of the algorithm and check if the
modification does not lead to worse results in other use cases. The disad-
vantage of this approach is the missing measure of the quality, regarding the
practical relevance of a problem. Where a new configuration of the algorithm
can lead to better results with regards to the cost function of the problem,
it might lead to worse robustness as well, which cannot be measured for all
test cases.

20

To solve this problem, Slany (1996) introduced a consistency check, to
ensure that configuration changes are consistent with decisions made earlier
by human experts. The idea is to create a test suite which contains a set of
reference pairs. Each pair consists of two samples which are initially ranked
by human experts. Additionally, each pair is created with the explicit aim
that a specific configuration change, entails a new order of the samples.
Backed with this system, a human expert can change the configuration if
he is dissatisfied with a solution generated by the system. Afterwards, the
consistency check for all reference pairs is tested with the new configuration.
This is done by applying the new configuration to all reference pairs and
calculating an evaluation score to be able to compare the results. If the
order of each reference pair remains unchanged, the new configuration does
not violate earlier decisions made by human experts. If the order changes,
the new configuration is either wrong and has to be revoked or the reference
pair ranking is obsolete and can be removed. However, an inconsistency is
detected by the system and has to be resolved by a human expert to ensure
that all decisions, made by the system, remain rational, predictable and
understandable.

Slany (1996) suggests that several human experts should agree on a com-
mon and undisputed subset of reference pairs, indicating their general ten-
dency for decision making. Or they can agree on a set of reference ranking
pair pools distinguished by specific characteristics which corresponds to dif-
ferent configurations. These pools are named by their characteristics, such
as ’highest-quality’, ’robust’ or ’standard-mix’.

21

Chapter 4

Interactive Knowledge-Based
Systems

In this section an interactive approach to vehicle and duty scheduling is
presented. An introduction and motivation is given and the role of human
schedulers is discussed. Finally, the requirements of interactive systems and
a general implementation structure is described.

4.1 Introduction and Motivation

Interactive scheduling describes the idea of integrating the human scheduler
into the planning process, equipped by the process power of computers. The
idea of interactive scheduling is quite old and has had little attention in
recent research.

In fully automated systems, legal regulations and also domain specific
knowledge are encoded in various rules. Encoding the complete domain
knowledge is hard to achieve completely or is at least a very hard task, as
it is with the cost calculation of duties, discussed in Section 2.3.2. For this
reason, interactive systems are introduced to integrate a human scheduler
and its domain specific knowledge in the scheduling process to be able to
generate better and practically useful solutions.

22

4.2 Degrees of Interaction

In the literature different degrees of interactions are discussed. Sims (1991)
uses an interaction approach which only indirectly affects the solution gen-
eration. The solution approach is based on biological inspired algorithms,
like the genetic algorithm discussed in the previous section. In the paper,
the user replaces or supports the automated selection operators, respectively.
Other systems, like those presented by Colgan, Spence, and Rankin (1995),
allow more interactivity, by controlling optimization and search parameters
or change constraints while the optimization process evolves. An even more
interactive system is presented by Waters (1984) to solve the vehicle routing
problem. It allows a user to modify computer generated solutions. Based on
a current, maybe modified solution and new optimization parameters, the
system generates new optimized solutions.

4.3 Role of a Human Scheduler

In interactive systems a human scheduler is a fixed part of the optimiza-
tion process. In contrast to interactive approaches, fully computerized ap-
proaches try to replace human schedulers completely (Waters, 1984). This
follows on from the fact that computers can do a huge amount of calcula-
tions that cannot be undertaken manually by a human scheduler. But these
approaches ignore the contribution which experienced schedulers can make.
Furthermore, Waters (1984) stated that generalized approaches do not have
the flexibility needed for real problems and attributes human schedulers’
important characteristics:

“Although human schedulers cannot do the calculations, they
are better at recognizing patterns, finding an acceptable balance
between conflicting objectives, using past experiences of similar
problems, applying imagination to find unusual solutions, over-
riding rigid constraints and generally applying subjectivity to a
problem.”

This statement in strengthened by various case studies, for instance by
G. G. Brown and Graves (1981). They stated that human dispatchers can-
not be replaced, rather the dispatchers should be supported by a quick and
comprehensive presentation of information and statistic concerning the task
or problem to be solved. Similarly, Waters (1984) suggest combining the
skills of humans and computers. Computers should and can provide sugges-
tions, generate statistics, store results, compare new results with previous

23

results, and so on. Then, based on the provided suggestions and information,
a human can make decisions.

4.4 Interactive Approaches Today

The discussed papers of Waters (1984) and G. G. Brown and Graves (1981)
are not state of the art any more. As previous sections have shown, current
approaches and algorithms provide efficient results for a wide range of re-
quirements. This is especially true for urban areas, where a human scheduler
cannot embrace the entire region structure, vehicles, duties and relief points
due to its size and complexity. In such areas, an interactive approach will
overtax a user by the complexity, and may not lead to better results.

However, in contrast to urban regions, regional, rural areas can enor-
mously benefit from the domain knowledge of a human scheduler, even nowa-
days. There are different reasons for that. For example, there is the fact
that a specific domain knowledge is sometimes very hard to encode entirely
in rules. Additionally, like Waters (1984) stated, the ability of overriding
constraints in the case of vehicle and duty scheduling depending duty costs
and tough find unusual solutions which may be better in the end.

One practical example is timetables which are often grown historically.
A lot of small improvements are made to them over years, to be able to
create better and cheaper vehicle and duty schedules. The knowledge of
such improvements can lead to better results. Another example is a scenario
where a very efficient vehicle and duty schedule can be produced, if one or two
trips would not be present. An experienced scheduler knows, or recognizes
during planning, that these few trips can be ignored for the vehicle and
duty scheduling because, for instance, a secretary has also a bus license and
drives these trips once a day or week. For this reason, no additional driver
is needed and all other trips can be served efficiently and to the satisfaction
of the drivers, because they do not have to take long rests or ’worse’ duties.

4.5 General Structure and Requirements

To work successfully with an interactive planning system, various require-
ments have to be fulfilled. An interactive scheduling system basically con-
tains three main parts illustrated in Figure 4.1 and described in the following
(Bechara and Galvão, 1984):

24

Figure 4.1: An Interactive Scheduling System. Adapted from Bechara and Galvão
(1984)

1. A Data Manager is responsible for all data included in planning.
It provides all information about rules, trips, stop points, solutions,
results and their statistics. Additionally, the data manager allows a
user to modify properties of trips, stop points or change planning data
such as distances between stop points. Furthermore, generated or saved
solutions should be available at any time of the scheduling process for
comparison of current and existing solutions.

2. Heuristic Algorithms are responsible for generating solutions based
on trips stemmed from the timetable. The scheduling algorithms should
be able to generate initial solutions but also suggest solutions based on
existing solutions constructed or improved by a human scheduler.

3. The Interactive Planning Interface allows a user to interact with
the system to access and modify data that is saved by the data man-
ager, work with the scheduling algorithms and construct or improve
solutions suggested by the scheduling algorithms. Furthermore, the
interactive planning interface allows a human scheduler to:

(a) Enter or optimize its own solution manually.

(b) Compare an initial solution with fully generated solutions by the
planning system or a solution that is constructed with the help of
suggestions of the scheduling algorithms.

(c) Iteratively improve a solution based on suggestions provided by
the scheduling algorithms.

25

The interactive planning interface is one of the most important parts of
the system. No matter how good the underlying algorithms and the sug-
gestions are, the system will fail if the planning interface cannot present all
information and statistics clearly. The system has to enable an easy and con-
venient way to achieve modifications. Moreover, the scheduling algorithms of
interactive planning systems do not even have the goal nor aspire to guaran-
tee optimal solutions. Instead, like D. E. Brown, Marin, and Scherer (1995)
stated, “ [. . .] they attempt to employ reasoning that is easily understood
and accepted by human users to produce good schedules”.

Therefore, an interactive vehicle and duty scheduling system is focused
on human schedulers, with their domain knowledge and human solution ca-
pabilities, supported by the processing power as well as the evaluation and
analysing possibilities of computers.

26

Chapter 5

Interactive Vehicle and Duty
Planning in Practice

5.1 Introduction

In the previous chapters, different solution approaches have been described.
Especially, in Chapter 3 different solution approaches and algorithms are
discussed, which solve individual and combined problems of the planning
process. During the discussion with local bus companies, it turns out that
planners of rural areas are not satisfied with the solutions of companies
which offer optimization software for vehicle and duty scheduling. The main
problem they mentioned was that marked-established optimization software
is very expensive and produces solutions, which might be cheap, but cannot
be used in practice. One explanation as to why these optimization tools
do not work properly in rural areas is that many hidden constraints and
requirements exist that are hard or even impossible to entirely implement as
rules.

Due to regional planners being dissatisfied with market established solu-
tions, bus companies in regional areas create their schedules manually with-
out the support of scheduling tools. The purpose of this thesis is to introduce
an interactive solution, based on the concept of Bechara and Galvão (1984)
and Waters (1984). A system which does not have the intention of replacing
human schedulers, but to integrate the planners in the scheduling process, to
use their domain specific knowledge and support them as much as possible.

27

5.2 Partner Company

This thesis is written in collaboration with the company TeleMatrik PTS
GmbH 1. TeleMatrik develops solutions in the area of public transport and
offers therefore different software tools, described in the following:

• PlanMATRIK maps the planning process of public transport, intro-
duced in Section 2.1. It handles the basic data management, topology,
network and line design, timetabling and it provides modules for vehi-
cle and duty scheduling as well as crew rostering.

• BusMATRIK is the on-board computer technology in buses. It is
responsible for real time data, ticket machine, ticketing and connection
protection.

• ActionMATRIK is a software tool to monitor the bus fleet and pro-
vides a clear overview of the current operating status and historical
data.

• InfoMATRIK is a passenger information system. It provides depar-
ture information on bus stops, course information on buses and other
important information that is needed to inform passengers.

In the current version, the vehicle and duty scheduling tool allows the
manual creation of vehicle schedules. In Figure 5.1, the vehicle and duty
scheduling module is shown. Timetabled trips have to be selected from a list
(1) and must be planned in the vehicle schedule (2) individually. This needs
a lot of time and effort to produce efficient schedules. The purpose of this
thesis is to improve the vehicle and duty scheduling module of PlanMATRIK.

5.3 Test Regions

To test the combined and interactive vehicle and duty scheduling approach
three different regions in rural areas are used. The test regions differ in size
and custom requirements. An overview is given in Table 5.1.

Region A is a small and relatively simple region, with almost circular
routes and no special requirements. Region B is a medium sized region
with only one relief point and one depot. It has various special constraints,
because it connects a number of ski resorts and depends on the weather

1TeleMatrik PTS GmbH | Public Transport Solutions: http://www.telematrik.com

28

Figure 5.1: Current version of PlanMATRIK’s manual scheduling approach.

conditions and the resulting road conditions in winter. Region C is a pro-
portional big region with longer trips and several relief points and depots,
but fewer special constraints.

#Service Trips Combined Approach

Region A 276 No

Region B 313 Yes

Region C 514 Partly

Table 5.1: Test Regions Overview

All regions are manually planned by human schedulers. For region A,
only a vehicle schedule is available for comparison. Therefore, only vehicle
schedules are generated for this region in the practical part to be able to
compare the existing solution with a generate solution by the system. Region
B uses a fully combined approach. Each tour is planned in a way that one
driver is able to drive this tour in one day, regarding all legal regulations
and custom requirements. Finally, region C is more difficult for an exact
comparison. This region is almost planned as region B, where one driver
is able to drive one tour at one day. But there are some exceptions, where
a driver changes occur. Therefore, results from the system cannot be fully
compared.

29

5.4 Requirements

In initial discussions with regional bus companies and after internal observa-
tions, different basic requirements have emerged which are important for a
combined, interactive vehicle and duty scheduling system in the area of local
public transport. In the following the requirements are listed and described.
Some of the presented ideas have already been discussed in Chapter 5 and
overlap with the ideas of Bechara and Galvão (1984) and Waters (1984).

R1 – Suggest Reasonable and Feasible Solutions The system should
be able to suggest reasonable solutions from timetabled trips. In this
case, reasonable means that all legal regulations and custom rules of a
region are considered in a resulting solution. Additionally, it is impor-
tant that not only one, theoretically very good, solution is provided.
This is often the case in market established products. Conversely, mul-
tiple reasonable solutions should be generated. This enables a human
scheduler to evaluate the suggestions and afterwards select the best
suitable solutions or parts of the solution.

R2 – Handle Existing Solutions Another component of the system
should be able to handle existing solutions, or parts of existing so-
lutions. An existing solution is either a fully manual schedule, given
by a human scheduler, or a solution or solution part generated by
the system or fixed by the human scheduler. It must be possible to
compare an existing solution to suggested solutions generated by the
system. Additionally, it must be allowed to modify existing solutions
or let the system suggest further trips based on an initial tour part.

R3 – Fixing Trips After the system has generated solutions, a human
scheduler should be able to fix individual trips or parts of the solution,
of which the scheduler is satisfied with. Fixed trips are not modified
any more by the system, but the system can generate new solutions
based on fixed trips and can also connect further trips to fixed trips.

R4 – Fixing Tours Furthermore, a human scheduler can fix tours if he is
satisfied with a complete tour. A fixed tour will not be part of the
further optimization process, no modifications will be done and no
further trips will be added by the system to it.

R5 – Statistics At any time in the scheduling process, the system should
provide clear and meaningful statistics of suggested solutions to sup-
port human schedulers in their decision-making process. As an exam-
ple, statistics should include driving and break times, transfer times,
paid and unpaid breaks, theoretical costs or the minimum amount of
needed buses at any time of day.

30

R6 – Customizable Rules Each region can have very different require-
ments on their vehicle and duty schedules. To support the human
schedulers as much as possible, it is particularly important to provide
a simple, flexible and fast way to implement specially, domain specific
requirements as rules and embed them into the system.

The presented requirements have been implemented in the practical part
of the thesis. The purpose of this thesis is to verify if an interactive system
is still effective today and can lead to nearly as good results as fully com-
puterized approaches do but give a higher level of satisfaction to the human
planners in regional areas. If it turns out that the concept works and it
will be accepted by bus companies and their schedulers, the system can be
refined and extended.

5.5 Incremental Scheduling Process

The introduced requirements in the last section emerged mainly from an in-
teractive scheduling process in mind. The process is illustrated in Figure 5.2
and shows how a solution is incrementally created and improved.

The process starts with an initial solution. This solution is either gener-
ated by the system or it it is an existing human planned solution that needs
an improvement. After the system has generated solution suggestions, a hu-
man scheduler can evaluate the suggestions based on the graphical results
and statistics. Additionally, a user can compare the current solution with
previous solutions or initial human scheduled solutions. Next, a user can fix
parts of the solution, with which he is satisfied with or fix entire tours to
mark them as finished and exclude them from the scheduling process. If the
user is satisfied with the modifications, he can adjust scheduling parameters
or custom rules and let the system make further suggestions. If a user is
satisfied with an entire solution after a number of iterations, the solution can
be accepted and the scheduling process is stopped.

Although, the scheduling process is an incremental approach, a user
should always be able to work with a complete solution, where all trips
are scheduled. This has the advantage that a user always has a complete
overview and can move any trip at any time to immediately see the effect of
any modification.

31

Figure 5.2: Incremental Interactive Scheduling Process.

5.6 Initial Situation in Regional Areas

To enable a smooth interactive scheduling, the computing time of new sug-
gestions must be low. In fact, it is not possible to do a real optimization in a
fraction of a second. For this reason, the approach, described in Chapter 6,
tries to take advantage of special situations of regional areas, to provide good
and feasible solutions in less computation time.

Regional areas often have less relief points than urban areas. Addi-
tionally, there are special geographical circumstances and historically grown
timetables, which were optimized over years to get better vehicle and duty
schedules. Based on these factors, several trip connections are clear in ad-
vance and can be scheduled by only considering local costs. An example for
an obvious trip connection is for instance a bus line that starts at a main
station and ends in a valley. The only reasonable next trip will be the return
trip, from the valley back to a main station. With a very high level of prob-

32

ability, there will be no schedule, where the return trip is driven by another
bus.

The complexity of reasonable trip connections will be decreased by mak-
ing assumptions on local situations. Of course, it does not guarantee any
optimality, but it will lead to reasonable solutions, which are comprehensible
for a human planner, in a very short time.

33

Chapter 6

Implementation

In this chapter the architecture and details about the implementation of the
interactive vehicle and duty scheduling system are described. In the begin-
ning the architecture and the basic concepts are introduced. Furthermore,
the used model and the data structures used for optimization are explained
in detail. Afterwards, rules representing the legal regulations but also rules
needed for additional configuration are discussed. Finally, the implemented
algorithms are explained and various algorithm configuration parameters are
introduced.

6.1 Basic Concepts

The basic idea of all algorithms shown later in Section 6.4 and the reason
why they work and provide reasonable solutions without a comprehensive
optimization, is that timetables, which are the input of vehicle scheduling,
are not randomly generated data. The timetables are either grown and
manually optimized over years. Or they are always created with the problem
of vehicle scheduling in mind. Additionally, in local public transport the
geographical situation often limits the reasonable possibilities of scheduling
trips, described in Section 5.6.

However, good and reasonable results can be achieved by considering
local situations and therefore only local costs. Already Valouxis and Housos
(2002) take advantage of local situations to build good and reasonable initial
solutions. Furthermore, they do not generate their solutions based on real
costs, only the time differences between potential connections of trips, plus
additional penalties were taken as measure. For the purpose of an interactive

34

vehicle scheduling system, this approach leads to feasible and good enough
schedules in a very short time. Therefore, the algorithms introduced in the
following are based on the initial solution generation process of Valouxis and
Housos (2002).

6.1.1 Internal Scheduling Model

The implemented model used for the optimization is kept as simple as pos-
sible. It contains only four classes that include all information needed for
scheduling.

Stop Point is a geographical location defined by a coordinate with latitude
and longitude. Stop points are needed for transfer time and distance
calculations.

Trip is a time block with a departure time, an arrival time, a line number,
a trip type, a starting stop point and an ending stop point.

Tour is a sequence of trips. It additionally defines a tour number. In
combined vehicle and duty scheduling, a tour is equal to a shift of a
bus driver.

Trip Type is crucial for scheduling, rule checking and cost calculation.
There are seven different trip types described in the following.

Service Trip is a trip resulting from the timetable and needs to be
scheduled.

Transfer Trip is a deadhead trip. It is needed if two trips are con-
nected which do not meet at the same stop point. For instance
if trip A ends at stop point s1 and trip B begins at stop point
s2, a transfer trip is needed from s1 to s2, if trip A and B gets
connected.

Standby is a time where the bus driver is not on a trip. It is a paid
break where the bus driver can, for instance, clean the bus.

Break is also a time where the bus driver is not on a trip. A break is
an uninterrupted period of time, where a driver is not allowed to
do any work. The driver can freely dispose on his time and can
be unpaid.

Depot Ride is a deadhead trip. It was described in Section 2.2 as
pull-out and pull-in trip. Before starting a tour, a trip is needed
from the depot to the first trip of the tour, the pull-out trip. At
the end of a tour a trip is needed from the last trip of the tour

35

back to the depot, the pull-in trip. It is also possible to have depot
rides in between the tour, this happens often if a long break is
present.

Custom Trip is not resulting from the timetable. It is an additional
trip created by the scheduler, for instance for school buses. Trips
for school buses often do not stem from timetables.

Other Work is neither a driving trip nor a break. Other work is often
used for a set-up time at the beginning of a tour and a cleaning
time at the end of a tour.

6.1.2 Connection Matrix

The connection matrix (M) provides a very fast way to check if two trips
are connectable, including the local costs of the potential connection. M
is a n × n adjacency matrix, where n is the number of trips to schedule
(T). In the example, shown in Figure 6.1, M contains six trips to schedule,
T = {A,B,C,D,E, F}.

A B C D E F
A - 10 10 10 50 65
B - - - - 10 15
C - - - - - 5
D - - - - 10 25
E - - - - - -
F - - - - - -

Figure 6.1: An example of a connection matrix.

Each cellM [r, c], where r is the row and c is the column inM , represents
a connection between two trips. As an example, trip A can be connected to
trip B at the costs of 10 time units. If this connection is taken, trip B will
follow trip A in the resulting schedule. Two trips are not connectable if:

1. the arrival time of trip r is after the departure time of trip c,

2. the arrival time of trip r plus the transfer time to trip c is after the
departure time of trip c,

3. r = c because a trip cannot be connected with itself.

If one of the above criteria matches, a connection between the trips r and
c is not allowed and a negative value is saved atM [r, c]. If none of the criteria

36

matches, a connection is feasible and the local costs for the connection are
saved at M [r, c]. The local costs are calculated as follows:

costs = (gap− TT) + TT × TW

where TT is the transfer time, TW is the transfer weight and gap is the
time between the arrival time of trip r and the departure time of trip c.
Additionally, all trips in M are ordered by their departure time, therefore,
the lower left half of M will never contain any feasible connections.

There are several reasons why an independent value for the local costs
is taken instead of real costs. The real cost calculation depends on different
factors and requires a lot of information in order to be calculated. As an
example, breaks can be paid or unpaid depending on the tour progress, how
many breaks are already unpaid, or how long the tour duration is at the
moment. Additionally, it turns out that if real costs are used for weighing
a transfer trip in the generation process, it is far too cheap to minimize the
overall transfer trips.

An example of a connection matrix which is generated based on the trips
stemmed from a timetable is shown in Figure 6.2.

Timetable

A 6 00 – 6 50

B 7 00 – 7 30

C 7 00 – 7 50

D 7 00 – 7 30

E 7 40 – 8 00

F 7 55 – 8 20

Connection Matrix

A B C D E F
A - 10 10 10 50 65
B - - - - 10 15
C - - - - - 5
D - - - - 10 25
E - - - - - -
F - - - - - -

Figure 6.2: A resulting connection matrix from a given timetable.

Each matrix can be visualized as a directed graph or a tree which shows
all connections and possible tours. Figure 6.3 visualizes the timetable intro-
duced in Figure 6.2 as a tree structure. Each branch of the tree, represents
a potential tour. During the creation of the tree, the legal regulations and
other rules have to be checked, to ensure that only feasible tours are gener-
ated.

Although the connection matrix is a simple construct, it enables many
user interactions and configurations. One example for such a user interaction
is ’beaming’. ’Beaming’ means that trips are allowed to overlap or that
needed transfer times are ignored. For example, if a trip A finishes at 14:02

37

Figure 6.3: This graph represents all possible tours generated from the connection
matrix given in Figure 6.2.

and another trip B starts at 14:00 at the same stop point where trip A
finishes, no connection will be generated initially. But if a human scheduler
knows that this is a very plausible connection, the connection matrix can be
changed or overwritten to allow the connection anyway.

Therefore, a bus which serves a tour with trip A and trip B will always
begin trip B two minutes late. But it may be no problem because the bus
can regain the delay. It would be also possible to change the timetable to
eliminate the problem. However, this is may not be possible or not wanted
because of, for instance, a ’nice’ timetable which will be broken by such adap-
tions. Small interactions, like the described connection matrix change, are
hard or even impossible to automate, but can help an algorithm to generate
better results.

The connection matrix is only generated once for each scheduling request.
It is a pre-computation procedure and in relation to the overall scheduling
process very cheap. Moreover, the more connections that can be marked as
not connectable, the faster the scheduling algorithm will work, due to the
reduced number of possibilities. Therefore, different rules and configurations
are introduced to generate a more sparse connection matrix, described in
Section 6.5.

At the beginning, the connection matrix was additionally used to repre-
sent scheduled solutions. Every time a suitable trip connection was found,
the corresponding M [r, c] cell was marked with a connected flag. All other
cells in row r and column c were additionally set to an invalid state, because
trips r and c are no longer available for a connection. Therefore, no addi-

38

tional data structure was needed to save a partial or final solution. It was
enough to parse the connection matrix and build the final scheduled solution.

In terms of scheduling speed it does not have a significant influence in the
beginning. However, when starting with thousands of different permutations,
the connection matrix had to be cloned for each individual permutation. This
required a tremendous amount of memory(O(p×n2), where n is the number
of trips and p the number of permutations). In order to resolve this problem,
a tree structure was introduced to enable fast cloning of tours, with a lower
memory consumption.

6.1.3 Solution Data Structure

As already described, the connection matrix was initially used for saving
partial or final solutions, beyond their other responsibilities. Because of the
tremendous amount of memory needed for thousands of those connection
matrices, a more lightweight design was required.

Figure 6.4: This graph represents the solution data structure including tour states.

Therefore a tree structure was implemented to save different tours in a
very compact way. In those tour trees, equal tour parts are saved only once.
If a tour differs at a node, a new branch is created, which has a reference
back to its parent node, but does not need a clone of the existing tour.
The only information that must be cloned is the rule state. Each time a
connection between two trips is checked against legal regulations and user
defined rules, a new rule state is created which includes all information to
validate the current tour with an additional trip. The rule state is saved to
gain better performance. If a new trip is added, the feasibility of the tour
with the additional trip can be checked without revalidating the entire tour.
An example of a solution tree is shown in Figure 6.4. However, the validation
based on existing rule states only works for tours where a trip is added at

39

the end, shown in Figure 6.5.

Figure 6.5: Adding a trip at the end of a tour.

If a trip is added in between two other existing trips, as shown in Fig-
ure 6.6, a full recalculation of the tour is needed to check if it is valid with
the new trip. This is the case if various tour parts are fixed, or manual
modifications are done by a human scheduler.

Figure 6.6: Adding a trip in between other trips.

6.1.4 Transfer Matrix

The transfer matrix (T), contains information about the needed times and
distances for deadhead trips. It is needed to generate the connection matrix,
calculate costs and adding depot trips. T a is fully connected n× n matrix,
where n is the number of stop points, existing in the scheduling region. An
example is shown in Figure 6.7.

S1 S2 S3

S1 0 | 0 500 | 5000 450 | 4000

S2 500 | 5000 0 | 0 440 | 4400

S3 300 | 3000 440 | 4400 0 | 0

Figure 6.7: An example of a transfer matrix, where each cell contains the infor-
mation of time in seconds and distance in meters (in the form of time|distance),
needed from one stop point to another.

Each row or column in the matrix represents one stop point. Each trip
has two stop points that are relevant for the transfer matrix. This is the
starting stop point of a trip and the ending stop point of a trip. All other

40

intermediate stop points of a trip can be ignored. Additionally, the transfer
matrix includes all depot stop points, to be able to calculate the connection
costs of each trip to each depot and vice versa. The cell T [r, c] where r is
the row and c is the column in T hold the information of the transfer time
and the transfer distance between stop point r and stop point c.

T is mainly a symmetric matrix and the time and distance needed from
one stop point to another is the same as the way back, as it is for S1 and S2.
But it is absolutely possible that the needed times and distances are signifi-
cantly different, as it is for S1 and S3. This results from, for instance, traffic
restrictions such as one-way streets which can be used for one direction, but
for the way back, another way has to be taken.

6.1.5 Transfer Matrix Generation

The generation of the transfer matrix is based on the Open Source Routing
Machine1 (OSRM) project. OSRM is a high performance routing engine
written in C++ and is based on OpenStreetMap2 data. The OSRM project
provides a test server, with which the functionality can be tested easily via
a web API. However, it is also possible to install and set-up OSRM on a
self hosted server. While developing this project, the OSRM test server was
used to get the routing information. Although, the OSRM project has a
great functionality, only one API function was required for the purpose of
the project. The table service of OSRM computes a distance table for given
coordinates within one request. Listing 1 shows the table request command
described also in the API documentation3 of the OSRM project. Listing 2
shows an example request to the OSRM table API function.

1 http://{server}/table
2 ?loc={lat,lon}
3 &loc={lat,lon}
4 <&loc={lat,lon} ...>

Listing 1: The example shows the structure of the OSRM table request, where loc
defines the position as a coordinate with lat the latitude and lon the longitude of
a stop point.

The response of the OSRM table request is shown in Listing 3. It contains
a distance table, where the measure of distance is given as travel time in

1http://project-osrm.org [2016-02]
2https://www.openstreetmap.org [2016-02]
3https://github.com/Project-OSRM/osrm-backend/wiki/Server-api [2016-02]

41

1 http://router.project-osrm.org/table?
2 loc=52.554070,13.160621&
3 loc=52.431272,13.720654&
4 loc=52.554070,13.720654

Listing 2: The example shows an OSRM table request for three coordinates.

tenths of a second. The first array of the distance_table represents the
travel times from the first stop point to all other stop points including itself,
where the travel time is zero. The second array represents the travel times
from the second stop point to all other stop points, and so on.

1 {
2 "distance_table": [
3 [
4 0,
5 31089,
6 31224
7],
8 [
9 31248,

10 0,
11 13138
12],
13 [
14 31167,
15 13188,
16 0
17]
18],
19 }

Listing 3: The response from the OSRM table request

In the current version of the OSRM table service, only the travel time
between two stop points is calculated but not the distance of the transfer
route. The distance is only important for the cost calculation and not for
the scheduling of the trips itself. Therefore the distance d is calculated with
a default velocity vd and the travel time tt:

d =
vd
tt

The OSRM service does not support a vehicle type bus as mode of trans-

42

portation. Therefore, all responded travel times are multiplied with a con-
stant factor to simulate adequate travel times for buses. In the current
version there is only one constant for each bus. However, this multiplication
factor can be tied to a vehicle type, because it makes a big difference if a
small bus or a big bus serves a particular transfer trip. The multiplication
factor was calculated by requesting the distance table for different known
transfer trips and then taking the mean value of the differences between the
OSRM result and the known needed times, which results in a multiplication
factor of 1.31.

There are also other services which support the same functionality as
OSRM, including distances, like, for instance, Google Maps. But those ser-
vice often have restrictions, like a maximum number of stop points allowed
in one request, or a maximum daily limit of requests. Additionally those
services are not open source and cannot be installed on a self hosted server.

In the first version of the transfer matrix, the distance API of Google
Maps was used. This works great for small examples. However, when chang-
ing to bigger examples, the restrictions were hit quickly. Fortunately, the
transfer matrix calculation can be exchanged very easily and the OSRM
project replaces the Google service. Additionally, it is possible to change the
transfer matrix calculation to some other service, or change it to a self cal-
culated matrix. This data can be taken from known trips which are already
in an existing system. Additionally, it is possible to change the needed time
and distance between two stop points, for whatever reason.

These possibilities make the transfer matrix transparent, easy to handle
and comprehensible.

6.2 Architecture and Scheduling Process

The interactive scheduler system provides an interface which can handle
different use cases illustrated in Figure 6.8. First, the scheduler service has
to be initialized with all trips of a region that needs to be scheduled, all
depots which are defined in this region and all relevant stop points needed
by the trips.

After the initializing phase a user can start with the scheduling process
of the region. There are different scheduling approaches available. A user
can schedule the entire region at once to get an initial drivable schedule or
consider only a selected part of a region. Additionally, a user can schedule in
forward or backward mode. Then the planner has the option to fix individual

43

Figure 6.8: Scheduler Service Architecture and Scheduling Process

trips, which means that a human scheduler can predefine parts that are
not changed by the algorithm. These fixed parts are not touched by the
scheduling algorithm but it will add additional trips at the beginning, at
the end or even in the middle of fixed parts if it is possible. However, it
is also possible to fix complete tours. Fixed tours will not be touched by
the scheduler algorithm, also no additional trips will be added, but costs
and statistics are calculated anyway. To change the algorithms’ behaviour
and adapt them to regional requirements, it is possible to configure the
schedulers, which is described in detail in Section 6.5. Finally rules can
be defined which check if a tour is valid or not. Different rules like legal
regulations or custom rules are discussed in Section 6.3.

When all the needed information has been provided, a transfer matrix, a
connection matrix and a rule container are created. These data structures are
already described in Section 6.1. Afterwards, the chosen schedule algorithm
is created and the scheduling process, based on the configuration, is started.
The scheduler heavily uses the connection matrix and the transfer matrix to
check if a trip connection is possible and uses the provided rules to test if a
newly generated tour is valid and feasible.

After the scheduling process has finished, the generated solutions are
validated again by a tour validator. The code in the validator is written as

44

simply as possible and is not optimized for a fast execution, like the rules
code. The tour validator is executed once only for each scheduled solution.
The purpose of the tour validator is to double check the legal regulations
and to ensure that only feasible and legal schedules are produced. If the
implemented rules do not contain any failures, the tour validator must not
find an error either.

Finally, a solution info is created from the scheduled solutions. This
solution info contains statistics of the individual tours and solutions like
driving time, break time, needed buses and detailed costs. Additionally,
different versions of the scheduled tours, with and without filled up transfer
trips and breaks, are provided.

6.3 Scheduling Rules

The scheduling process is influenced by rules defined or selected by a user.
In the following, tour validation rules, which mainly implement the legal
regulations, introduced in Section 2.3.1, are described. Moreover, other rules
like trip insertion rules or cost rules are discussed.

6.3.1 Tour Validation Rules

Tour validation rules can mark a generated tour as valid or invalid. Most of
the tour validation rules are implementations of legal regulations, introduced
in Section 2.3.1. Two different kinds of tour validation rules exist in the
implementation. First, Stateless Tour Validation Rules do not have any
state and do not store any information. As an input, they get a generated
tour and check if it is valid. The second kind of rules belong to Stateful Tour
Validation Rules. These rules are able to save information about a tour,
to avoid an entire revalidation, and therefore be faster, when a new trip is
added.

A tour is accepted if all selected rules are valid. If only one rule is violated,
a tour is marked as invalid and will not be generated. However, there are
rules where only one of two or more rules must be valid. For such cases an
OR operator was implemented to fulfil those requirements. An example of
the OR operator is shown in Listing 4, where either the 1/6 six rule or the
driving period validation rule must be valid, the rest time validation rule
must always be valid.

In the following all rules which are used for the current implementation

45

1 ruleContainer.TourValidationRules.Add(
2 new OneSixthValidationRule() |
3 new DrivingPeriodValidationRule()
4);
5

6 ruleContainer.TourValidationRules.Add(
7 new RestTimeValidationRule()
8);

Listing 4: In this example the rest time rule must be valid. Additionally either
the 1/6 rule or the driving period rule must be valid but not both.

are described and linked to the legal regulation, if one exists:

Overlapping Rule checks if two trips overlap. If the schedule direction
is always forward or backward and no trips are fixed, this rule will always
be true because the connection matrix already makes sure that trips cannot
overlap. But if a tour contains fixed trips, an overlap between two trips can
occur. As shown in Figure 6.9 the trips with the line numbers 85, 84 and
2a are fixed trips. The algorithm tries now to add the trip with the number
82. A connection based on the connection matrix is possible to the trip 84
but it overlaps with the fixed trip 2a.

Figure 6.9: Detection of overlapping trips.

The overlapping rule is a stateless validation rule because it is executed
only if a tour gets revalidated. As already discussed, a revalidation happens
if the saved tour state cannot be used. This is the case if a trip is not placed
at the end of a tour.

Total Daily Driving Time Rule checks if the total daily driving time is
exceeded. Regulations in the EU, in Austria and in Germany define that the
total daily driving time must not exceed nine hours. The total daily driving
time rule sums up all driving trip times and checks if the nine hour limit
is exceeded. The rule is stateful and saves the driving times for each newly
added trip to the rule state. If a new trip is added the saved driving time

46

is only updated with the new driving times but no recalculation of the full
tour is required.

Total Tour Duration Rule checks if the total tour duration time is ex-
ceeded. The rule does not save any data because it is recalculated every
time a new trip is added. The tour duration d is only a subtraction of the
arrival time of the last trip, blast, of the tour and the departure time of the
first trip, efirst, of the tour and therefore very cheap to calculate.

d = efirst − blast

In accordance with the EU regulation (EC) No 561/20061, as well as
Austrian and German regulations, the total daily rest period has to be at
least 11 hours. This leads to a maximal total tour duration or daily operation
time of 13 hours.

Driving Period Rule checks the driving time in a driving period. In
Austria the maximum driving period duration is 4 hours. After four hours
of driving, a driver has to take an uninterrupted break of at least 30 minutes.
This break can be replaced by two breaks of at least 20 minutes each or three
breaks of at least 15 minutes each. Once a valid break was held, a new driving
period is started, regardless of whether the 4 hours driving time is reached
or not. An example is shown in Figure 6.10.

Figure 6.10: In this example valid driving periods are shown. Figure is based on
an example in Bagdahn (2015).

The only difference for Germany is the driving period duration. In Ger-
many a driving period of 4 1/2 hours is allowed. The break regulations are
the same as in Austria. For this reason this rule is parametrizable with the
duration of the driving period. Additionally, a buffer time can be defined
to prevent the algorithm from making full use of the driving period. This
is very important, especially in Austria, because of the digital speedometer.
Each violation of the driving period rule, even only by one minute, leads to
significant penalties. Therefore, a buffer time can be defined to make the
tours more robust to avoid penalties. A practical example of the usefulness
of the buffer time is rough road conditions after snowfall in winter.

1http://eur-lex.europa.eu/resource.html?uri=cellar:
5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF

47

http://eur-lex.europa.eu/resource.html?uri=cellar:5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF
http://eur-lex.europa.eu/resource.html?uri=cellar:5cf5ebde-d494-40eb-86a7-2131294ccbd9.0005.02/DOC_1&format=PDF

One-Sixth Rule The one-sixth rule is a quotient-rule and is no longer
valid for Austria and therefore only relevant for Germany. The one-sixth
rule allows interruptions of 10 minutes to count as breaks, if the total break
time is at least one sixth of the total driving time. This must also be valid
for each driving period. This means that at any time in a route, the one
sixth rule has to also be valid within the current driving period, as shown in
Figure 6.11.

Figure 6.11: This is a valid tour based on the one-sixth rule. The total break
time is greater than one sixth of the total driving time and additionally for each
time a valid driving period can be found.

It is not allowed to have a long break in the morning, then an uninter-
rupted or insufficient uninterrupted driving period of more than 4 1/2 hours
and then another long break in the evening, like shown in Figure 6.12. Al-
though the total break time is greater than one sixth of the total driving
time, at least one driving period is broken.

Figure 6.12: In this tour the total break time is greater than one sixth of the
total driving time but there exists a driving period where the driving time of the
period is not greater or equal than the break time of the period.

Rest Time Rule implements the working hours law (Arbeitszeitgesetz).
According to the working hours law, work has to be interrupted by at least
30 minutes for a working time of 6 to 9 hours and at least 45 minutes for a
working time greater than 9 hours. However, it is also possible to split the
break time into two or three 15 minutes blocks respectively. In this case the
first 15 minute block has to be taken in the first 6 hours of the working time
block.

This rule only needs to be checked if the one-sixth rule is applied. In
the case of the driving period rule, the working hours law is always fulfilled
because after 4 or 4 1/2 hours a break of at least 30 minutes has to be taken.

48

6.3.2 Other Rules

In addition to the tour validation rules there are other rules which extend
a generated tour by some trips or replace some trips by others. There are
also rules which handle the cost calculation or rules which produce various
statistics about generated tours.

Break and Transfer Trip Insertion Rule is a build-in rule which cannot
be modified by an external user. If a new trip is added to a tour, the resulting
gap between the connected trips is filled with a break. If the connection stop
point is not the same, additionally a transfer trip is added, like shown in
Figure 6.13.

Figure 6.13: If a newly added trip does not have the same departure time as the
arrival time of the trip that it gets connected to, a break trip is added to fill the
gap. Additionally, if the stop points are different, a transfer trip is added and the
remaining gap is filled with a break trip.

Depot Trip Insertion Rule If depots are defined for a region being sched-
uled, an option can be enabled to automatically connect the border trips,
which are the first trip in the tour and the last trip in the tour, to an avail-
able depot. The depot insertion is only temporary and is redone every time a
new trip is added. In the current implementation depot trips are not directly
included in the driving period calculation. If this would be the case, every
time an additional buffer time, which is the duration of a depot ride, would
be part of the driving period calculation. If the newly added trip is the last
trip, it would be correct, but if this is not the case and another trip is added
afterwards, it can lead to bad results because of including big buffer times
in each driving period calculation.

In the example shown in Figure 6.14, the driving period in tour 2) is not
valid with the final depot ride. The tour would only be valid if a trip is
connected that produces a break of at least 30 minutes, which will lead to a
new driving period. Or a trip is added where the duration of the trip plus
the resulting depot ride from the new trip is less than 15 minutes, within a
valid driving period duration of 4 hours. In tour 1), the depot ride is added
to a new driving period, therefore, a temporary break is inserted and the

49

Figure 6.14: In tour 1), the ending depot ride is not added to the current driving
period and the new trip is valid. In tour 2), however, the depot ride is added to
the driving period and the tour will be invalid.

tour is valid.

Sign-On and Sign-Off Task Insertion Rule is similar to the Depot Trip
Insertion Rule. Instead of a transfer trip at the beginning and at the end of
a tour, a time block is inserted for the sign-on and sign-off task of a bus. The
inserted block is of type Other Work and can be a different duration at the
beginning and at the end of a tour. Like inserted depot trips, sign-on and
sign-off blocks are not directly included in the driving period calculation.

Tour Info Rule is responsible for generating statistics of scheduled so-
lutions and their tours. If no special requirements are needed the build in
rule can be used. The build in statistics rule calculates driving times and
distances, standby and break times, transfer times and distances, depot ride
times and distances, buffer times, sign-on and sign-off times as well as the
buses needed to serve all tours.

Cost Rule is responsible for the calculation of appropriate costs of gener-
ated solutions. As an input, the entire solution, where all gaps of a tour are
filled up with transfer trips and breaks respectively, is given. Therefore each
tour can be parsed and the cost can be calculated, based on all region specific
requirements. Additionally, the tour information, created by the tour info
rule, is provided.

50

6.4 Scheduling Algorithms

In the following, the implemented algorithms, used for the interactive schedul-
ing process, are described. All algorithms extensively use the connection
matrix and the transfer matrix introduced in Section 6.1. Each time one of
the algorithms add a trip to the schedule, all provided rules are executed to
ensure that only valid tours are generated. All available build-in rules are
already discussed in Section 6.3.

6.4.1 Demands on Algorithms

All algorithms must fulfil the requirements, introduced in Section 5.4, to
enable interactive scheduling. Therefore, it must be possible to schedule
a given timetable from scratch. Additionally, there must be the ability to
generate a final solution based on partly existing solutions. This means
a user should have the ability to fix individual trips or parts of a tour.
The algorithm should then generate a solution based on these fixed trips
or intermediate tours. Furthermore, it must be possible to set a scheduled
tour to a finished state, so that the algorithm ignores that tour and only
calculates statistics of it and validates the tour respectively. Finally, it must
be possible to change the schedule direction. This means that a user can
start with any trip and then schedule trips that depart later, which is called
a forward scheduling, but also schedule trips that depart earlier, which is
called a backward scheduling.

6.4.2 Simple

The Simple algorithm does not do any optimization at all. It is a greedy
algorithm which takes only pre-calculated local costs, encoded in the connec-
tion matrix, and additional configurations made by a user, into account. The
basic idea of the Simple algorithm is to connect a new trip, to another trip
of a tour, which has already been scheduled, at minimum costs. Listing 5
shows the Simple algorithm procedure.

The Simple algorithm starts with an initial connection matrix and an
empty solution. Afterwards, all columns of the connection matrix (M), which
represent the trips to schedule, sorted by their departure time in ascending
order, are iterated. For each column, all rows, which are the potential trips
to connect with, are checked if the connection costs are greater or equal
to zero, which represents a possible connection. Additionally, the tour to
which a new trip is connected with, is validated against all rules, including

51

1 var M = GenerateConnectionMatrix();
2 var solution = new Solution();
3

4 foreach column in M
5 var possibleTrips = new List();
6 foreach row in M.OpenRows
7

8 if M[row, column] < 0
9 continue;

10

11 if AreRulesValid(M[row, column]) == false
12 continue;
13

14 possibleTrips.Add(M[row, column]);
15

16

17 if possibleTrips.Count() == 0
18 solution.AddNewTourWithStartingTrip(column);
19 else
20 var bestTrip = SelectBestTrip(possibleTrips);
21 solution.AddTripConnection(bestTrip);
22 M.MarkRowAsUsed(bestTrip.Row);
23

24 return solution;

Listing 5: A simplified pseudo code of the Simple algorithm which always generates
a valid and drivable solution.

legal regulations and custom rules. If the trip connection is possible and the
resulting tour is valid, the trip connection is added to a possible trips list.
If all trip connections (rows) of the current trip (column) are checked, two
cases are possible:

1. If the possible trips count is zero, the new trip cannot be connected to
an existing tour. Therefore, a new tour will be added to the solution.

2. Else, if there is at least one possible trip connection, the best trip
connection, based on local costs, is selected and added to the solution.
Additionally, the selected row has to be marked as blocked or used, to
exclude it from further connections.

This procedure is repeated until the last column of the connection matrix
is reached.

For a better understanding, an example of the Simple algorithm is shown
in Figure 6.15, which generates 3 valid tours from a given timetable. In the

52

following example, all rule checks are ignored, which are required in practice
to produce feasible tours.

Step 1

A B C D E F

A - 10 10 10 50 65

B - - - - 15 20

C - - - - - 5

D - - - - 10 25

E - - - - - -

F - - - - - -

Step 2

A B C D E F

A × 10 × × × ×

B - × - - 15 20

C - × - - - 5

D - × - - 10 25

E - × - - - -

F - × - - - -

Step 3

A B C D E F

A × 10 × × × ×

B - × - - × 20

C - × - - × 5

D × × × × 10 ×

E - × - - × -

F - × - - × -

Step 4

A B C D E F

A × 10 × × × ×

B - × - - × ×

C × × × × × 5

D × × × × 10 ×

E - × - - × ×

F - × - - × ×

Figure 6.15: This image shows an example the Simple algorithm process. It
starts with the initial connection matrix in Step 1 and incrementally generates the
solution A → B, C → F and D → E, resulting in Step 4.

Step 1 shows the initial timetable. First, trip A is selected as a tour
starting trip, as there are no possible connections available for it, because
column A is empty. Next, trip B is connected to trip A in Step 2. It is the
only available connection trip for trip B. If a trip connection is selected, all
other possible connections, which would allow a connection to trip A, have
to be marked as used or blocked (×). Trip C and D do not have any possible
connection trips, therefore both trips are starting trips of a new tour. In Step
3, trip E is connected to trip D, because of the lower costs of 10, compared
to the connection costs with trip B, of 15. Finally, trip F is connected to
trip C in Step 4, because a connection to trip B would be more expensive.
By parsing the resulting connection matrix in Step 4, the solution A → B,
C → F and D → E can be created.

53

In the example, the selection of the connection trip was solely based on
local costs. However, the selection of the connection trip can be influenced
by various configuration parameters described in Section 6.5.

6.4.3 Simple Permutation

The Simple Permutation algorithm is based on the same concept as the
Simple algorithm. However, it does not only select one trip of the possible
trips pool, it takes all of them and generates a new solution for each possible
trip. Listing 6 shows the procedure of generating different solutions.

1 var M = GenerateConnectionMatrix();
2 var solutions = new List<Solution>();
3 solutions.Add(new Solution(M));
4

5 foreach column in M
6 foreach solution in solutions
7 var possibleTrips = GetPossibleTrips(solution, column);
8

9 if possibleTrips.Count() == 0
10 solution.AddNewTourWithStartingTrip(column);
11

12 else if possibleTrips.Count() == 1
13 solution.AddTripConnection(possibleTrips.First());
14

15 else
16 solutions.Remove(solution);
17

18 foreach trip in possibleTrips
19 var newSolution = solution.Clone();
20 newSolution.AddTripConnection(trip);
21 solutions.Add(newSolution);
22

23 if solutions.Count() > LIMIT
24 solutions = SelectSubSet(solutions);
25

26 return solutions;

Listing 6: A simplified pseudo code of the Simple Permutation algorithm which is
able to generate a huge number of cheap solutions which are as different as possible,
valid and drivable.

First, a column, which represents a trip to schedule, is selected (line 5)
and all possible connection trips are calculated (line 7). In contrast to the
Simple algorithm, this step has to be executed for each solution (line 6),
because each solution provides different connection trips, which may be part

54

of different tours. When the possible connection trips for a solution and a
new trip (column) are calculated, three different cases are possible:

1. If no possible trips are available (line 9), no additional solution is
needed and a new tour, starting with the current trip (column) is
added to the solution.

2. If exactly one possible trip is available (line 12), there is also no ad-
ditional solution needed and the trip can be connected to the current
tour because it is the only trip that is possible.

3. If more than one possible trip connection is available (line 15), all
possible trip connections are generated. Therefore, for each possible
trip (row), the current solution is cloned. The trip to schedule (column)
is then connected in the cloned solution with the possible trip (row).

In this configuration the algorithm will generate all possible permutations
that exist. In fact, the generation of all possible solutions in a reasonable
time is not possible. For this reason a selection operator is needed to select
a subset of the solutions, generated by the procedure, when a defined limit
is reached. However, the selection of intermediate solutions based on local
cost only, will not lead to better results than the Simple algorithm already
provided. For this reason, the SelectSubSet function in line 24 is based on
three different characteristics to select intermediate solutions:

Cheap For each newly added trip, three different evaluation criteria are
calculated. First, the local costs which are the costs for a newly added
connection, that is the waiting time plus the transfer time between two
trips. Next, the local area costs, which are the accumulated local costs
of a small number of previously added trips. And finally, the inter-
mediate global costs resulting from the cost rule, which are unreliable,
especially in the beginning, where a tour only contains a few trips.

Suitable To decide if an intermediate or final solution is suitable, an ex-
perienced planner with a comprehensive domain knowledge is needed.
Although, a human would be the best choice for this task in theory,
a human scheduler will not be able to select the best solutions out of
millions. Therefore, this task must be undertaken by computers and
is currently based on user defined rules.

Different Tests have shown that if the selection is only based on local and
global cost, only a few solutions, which are very similar, dominate the
solution space. This follows from the fact, that in the beginning, some

55

intermediate solutions have already become very cheap and effective,
which leads to a thorough pruning of other more expensive intermediate
solutions. However, as already mentioned, costs can abruptly change
and initially expensive solutions can become cheaper in the end and
vice versa.

The goal of the selection operator is to choose cheap and effective solu-
tions on the one hand, but also as different as possible solutions on the other
hand, to increase the likelihood of entire cheap solutions in the end.

The calculation of local, local area and global costs are already described.
The similarity or difference operator is implemented based on the Leven-
shtein Distance (Levenshtein, 1966). The Levenshtein Distance is a metric
to measure the difference between two sequences, for instance strings. The
metric is based on the number of insertions, deletions and substitutions re-
quired to change one sequence into the other. The higher the number of
edits, the bigger the difference between two sequences are. As an example,
the Levenshtein distance to change the word "schedule" into "school" is
four, whereas two substitutions ("e" for "o", "d" for "o") and two deletions
("u" and "e") are needed. To change the word "schedule" into "scheduler"
only one insertion ("r") at the end is needed, which results in a Levenshtein
distance of one.

In the case of a vehicle and duty schedule, each tour is a sequence of
trips which is identified by a unique number. Based on the generated tours
and the identifiers of the trips, the Levenshtein distance is calculated. The
higher the Levenshtein distance is, the more diverse two tours are.

6.4.4 Tour Permutation

The Tour Permutation algorithm is not directly based on the Simple algo-
rithm concept. It does not schedule a complete solution, it only generates
permutations of tours. The algorithm tries to generate tours with a high
density, which means a tour with a high rate of service trips and less breaks,
rests and transfer trips. The reason why a cost independent measure is used,
has already been discussed in Section 2.3.2 and 6.1.2.

However, the costs of an intermediate tour are not representative, because
they can change abruptly with one additional trip. Therefore to use the
global cost calculation to compare intermediate tours or solutions could lead
to bad results.

Listing 7 shows the procedure of how the Tour Permutation algorithm

56

generates dense permutations of tours.

1 var M = GenerateConnectionMatrix();
2 var tree = new SolutionTree(startingTrip);
3

4 foreach leaf in tree.GetNextLeaf()
5 var possibleTrips = new List();
6 foreach column in M.OpenColumns
7

8 if M[leaf.Index, column] < 0
9 continue;

10

11 if AreRulesValid(M[leaf.Index, column]) == false
12 continue;
13

14 possibleTrips.Add(M[leaf.Index, column]);
15

16 if possibleTrips.Count() == 0
17 tree.FinalizeLeaf(leaf);
18 else
19 tree.ReplaceLeaf(leaf, possibleTrips);
20

21 if tree.IsLevelCompleted(leaf) && tree.LeafCount > LIMIT
22 tree.Trim();
23

24 return tree.CreateBestTours();

Listing 7: A simplified non optimized pseudo code of the Tour Permutation algo-
rithm, which is able to calculate a huge number of dense tours.

In case of the Tour Permutation algorithm, a new trip is not tested
against an existing tour and then added to it, as the Simple based algorithms
does it. In this case, for an existing trip of a tour, all possible connection
trips are calculated and added to a tour solution tree afterwards.

First, a solution tree is initialized with a starting trip. The starting trip
is the root node in the tree, or the first leaf in the tree. Afterwards, for
each leaf in the tree, all possible connection trips are selected by checking
the connection matrix and validating the resulting tours against the defined
rules. When all possible trips are calculated, two cases are possible:

1. If a leaf does not have any further possible connection trips, the leaf
gets finalized and removed from the next leaf list, to ensure that it is
not tested again.

2. Else, if there are trip connections possible, they get connected with
the current leaf. All newly connected trips become new leafs and the

57

current leaf is removed from the leaf list, because it is not a leaf any
more.

If a number of leaves are recalculated completely and the leaf count is
greater than a defined limit, the tree is trimmed to ensure results are gained
in a reasonable time. The trim procedure trims all leaves and its representing
tours from the solution tree whose density is low. The algorithm continues
until all leaves are finalized.

6.4.5 Reverse Scheduling

One demand to the algorithms was the ability to do a reverse scheduling.
To achieve this requirement it is only required to transpose the transfer
matrix and start with the last trip of the connection matrix and decrement
the index instead of increment it. This has the advantage that a lot of the
algorithmic code can be reused. Otherwise, all row and column indices need
to be changed. An example of a transposed connection matrix is shown in
Figure 6.16.

Connection Matrix

A B C D E F
A - 10 10 10 50 65
B - - - - 10 15
C - - - - - 5
D - - - - 10 25
E - - - - - -
F - - - - - -

Transposed Connection
Matrix

A B C D E F
A - - - - - -
B 10 - - - - -
C 10 - - - - -
D 10 - - - - -
E 50 10 - 10 - -
F 65 15 5 25 - -

Figure 6.16: Transposing the connection matrix for the reverse scheduling.

6.5 Algorithm Configuration

It has already been noted that the algorithms can be influenced by different
configurations and weights. All configuration possibilities, discussed in the
following, have the advantage that they are tangible for human schedulers
and are not seemingly random weight values which can be changed. The
configuration parameters are introduced to support the customers’ special

58

needs and are used to additionally improve the scheduling results for different
kinds of regions with varied requirements.

6.5.1 Line Loyalty

It is often the case that a time table is designed in a way that trips with the
same line number are meant to be driven in a row and therefore it might
be preferable to schedule them in one tour. For that reason, the line loyalty
is introduced to prefer trip connections, where the trips have the same line
number. In order to get reasonable results, a time threshold needs to be
defined, within which trips should be preferred to other trips. Figure 6.17
shows an example of the line loyalty.

Figure 6.17: Trips with the same line number are preferred within a defined
threshold, if the line loyalty option is enabled, although the costs are higher.

Trip A, with the line number 84 has two possibilities to be connected
with. Although, the connection costs, resulting from the waiting time of
the connection, of trip A to tour 1) are lower, it gets connected to tour 2),
because the connection trip has the same line number.

6.5.2 Local Search for Line Loyalty

The local search configuration also takes trips into account that will be sched-
uled within a defined time threshold after the current trip’s departure time.
It is therefore only useful if the line loyalty option is enabled and no connec-
tion trip with the same line number for the current trip is found. If there
exists a trip within the threshold that can be connected to a trip with the
same line number of the existing solution, to which also the current trip could
be connected with, this connection possibility is blocked for the current trip
being scheduled. Figure 6.18 shows an example of the local search process.

Although, the trip connection costs of trip A to tour 2) are lower, trip
A is connected to tour 1) because tour 2) is blocked by local search. It is

59

Figure 6.18: With the local search option enabled, trips with the same line num-
ber, with departures in a defined threshold, are preferred.

blocked because trip B has the same line number as the connection trip in
tour 2. Local search simply forces the line loyalty to a wider range of trips.

6.5.3 Break Reduction

Always using the cheapest trips often leads to big gaps in other tours. This
results on the one hand in tours with many long breaks that have to be paid,
and on the other hand in tours with only the minimum needed breaks. The
resulting unbalanced solutions lead to higher total costs in the end. For this
reason the break reduction configuration property was introduced.

The break reduction configuration reduces long breaks and ensures more
balanced tours. If the gap between an existing trip and a new trip to sched-
ule gets bigger than a defined threshold, the costs for this connection are
reduced and the connection is preferred over a initially cheaper connection.
In Figure 6.19, the trip connection costs of trip A to tour 1) is by far less
than the connection to tour 2). But with an enabled break reduction, the
costs for the connection to tour 2) are reduced, because the gap is greater
than the defined threshold. Therefore, trip A is scheduled in tour 2).

The break reduction is implemented as a generation rule for the connec-
tion matrix. Therefore, it is a pre-computation and does not influence the
scheduling performance. Additionally, the break reduction can be used to
generate very different tours, by varying the break reduction threshold.

6.5.4 Maximum Allowed Break Time

The break reduction is a soft constraint which tries to reduce long breaks.
If there is no other trip connection possible, long breaks can still occur.
The maximum allowed break time configuration does not allow gaps that

60

Figure 6.19: The break reduction configuration tries to prevent the generation of
tours with very long breaks and ensure more balanced tours.

are greater than a defined threshold and a new tour will be started if no
acceptable connection is found. As well as the break reduction, the maxi-
mum allowed break time is a pre-computation and modifies the connection
matrix. If a gap is longer than a defined threshold, the connection will not
be generated in the connection matrix.

The value of the maximum allowed break time can strongly influence
the number of total tours. If the maximum allowed break time is set to a
small value, the probability of a higher tour count increases, because there are
simply less possibilities of connection trips. An advantage of less possibilities
is that the time needed for the scheduling decreases.

Setting the break reduction threshold to a higher value than the max-
imum allowed break time makes no sense, because the connection is not
possible anyway.

6.5.5 Break Penalty Time

Depending on the cost calculation, some break durations are very unfavour-
able. For instance, looking at the Austrian regulation of driving periods,
breaks only count, if their duration is greater than 15 minutes. This means
a break of 14 minutes is the worst case that can happen, because the 14
minutes are fully paid and the break does not count as a break regarding
to the driving period. So it is much better, if breaks are greater than 15
minutes, rather than breaks with a duration of just below 15 minutes.

For this reason, breaks which are less than 15 minutes are penalized,

61

shown in Figure 6.20. Additionally, the penalization does not start at zero
minutes because it will lead to many breaks. It starts at five minutes and
increases the closer the value is to 15. This configuration is also a pre-
computation and changes the connection matrix in a way that the trip
connection costs, for trips which have breaks greater than 15 minutes, are
cheaper than breaks that are less than 15 minutes.

Figure 6.20: Unfavourable break durations are penalized by the Break Penalty
Time configuration.

Break penalties can also be defined depending on the time of day. In
parts of a day, where the trip distribution is very dense, the break penalty
time can be disabled to keep the number of tours as low as possible.

6.5.6 Transfer Weight

The transfer weight is the only configuration parameter which is not as tan-
gible as other configuration possibilities are. The transfer weight defines the
multiplication factor of transfer times. This means, if the transfer weight
is set to a value of two, the transfer time is twice as expensive as an equal
break time. The higher transfer weights are, the rarer transfer trips will be
inserted.

6.5.7 Automatic Calculation of Configuration Values

Some configuration parameters have a high impact on the resulting solutions.
Therefore single parameters can be automatically calculated by generating
a solution with each configuration value. As a result, it is not only the
best value which is provided that leads to the lowest costs. Additionally, all

62

generated solutions can be reviewed and ordered by either the solution costs
or the needed tours and costs. This enables a human scheduler to decide on
which solution the further work should be based on.

63

Chapter 7

Scheduling Results

In this chapter the results and benchmarks of different test regions of the
introduced scheduling system are presented and discussed. Next, a proven
scheduling work-flow, which results during testing, is shown. Finally, the
feedback from human schedulers and bus companies is discussed.

7.1 Results and Benchmarks

The initial requirements, introduced in Section 5.4, have been fulfilled in the
practical implementation. All introduced algorithms can produce reasonable
and feasible solutions (R1) from which a scheduler can choose from. It is
also possible to work on existing solutions (R2) and improve them with the
help of the scheduling system. The system allows a user to fix trips (R3) and
fix tours (R4) with a graphical interface. Furthermore, with all suggestions,
various statistics (R5) are included and presented in a clear way, next to the
solutions. Finally, new rules and configurations (R6) can be added to the
system to improve or change the scheduling behaviour.

In the following, the computational results for the three test regions,
described in Section 5.3, are presented. All provided results are generated
by the Simple algorithm with a maximum wait time of four hours and a
varying break reduction threshold from zero to four hours in the interval
of one minute. This results in 240 solutions generated in each test run,
of which the best is taken, based on the tour count and the total costs
of the solution. Furthermore, each test run was executed with different
algorithm configurations. Finally, the best solution of each region, generated
by the Simple algorithm, was improved by an interactive scheduling process,

64

performed by the author of this thesis, with limited domain knowledge of
the regional test regions.

All times in the following tables are in hours:minutes:seconds. Addition-
ally, various short cuts are used to be able to present the computational
results in a clear way, explained in the following:

Cost Diff The Cost difference to the existing solution in percent.
A positive value means higher costs.

#Tours The number of needed tours
#Buses The number of needed buses

BRT Break Reduction Threshold that leads to the best solution
Sched.Time The time needed by the algorithm to generate the solution

or the time needed by a human scheduler
DT Total Driving Time

DDT Total Deadhead Driving Time
IT Total Idle Time, Break Time

Paid IT Paid Idle Time, of the total IT
Unpaid IT Unpaid Idle Time, of the total IT

Existing The existing human scheduled solution
S Simple algorithm

SR Simple algorithm in backward scheduling mode
BP Break Penalty option is enabled
LL Line Loyalty option is enabled
LS Local Search option is enabled

S LL LS BP The simple algorithm is used, with the configuration
options LL, SS and BP enabled

Interactive The scheduling process by a human scheduler
supported by all capabilities of the system

7.1.1 Region A

Region A is a vehicle schedule only. The results of region A, presented in
Table 7.1, show that even the Simple algorithm, with no additional config-
urations, can generate a solution which has exactly the same values as the
human planned schedule. A is a region, where all trip connections are obvi-
ous, if only the local area is examined. It therefore follows that region A is
very simple in terms of scheduling. This is being strengthened by the fact

65

that different combinations of the configuration parameters do not lead to
different solutions. Therefore the results, shown in Table 7.1, only show the
statistics of the existing solution and one generated solution, because they
are all the same.

Cost Diff #Tour #Buses Schedule Time

Existing - 7 7 -

S 0.00% 7 7 130ms

DT DDT IT Paid IT Unpaid IT

Existing 84:02:00 00:00:00 11:56:00 11:56:00 00:00:00

S 84:02:00 00:00:00 11:56:00 11:56:00 00:00:00

Table 7.1: Computational results for region A.

7.1.2 Region B

Region B is a more interesting region, where the existing solution is a com-
bined vehicle and duty schedule. The results in Table 7.2 and 7.3 show that
the system cannot produce a solution with lower costs than the existing
human planned solution.

The best solution can be generated if the options line loyalty and break
penalty are enabled and the Simple algorithm has been executed in back-
ward mode. Although, the Simple algorithm only takes care of local factors,
it can produce a solution which is only 1.75% more expensive than a solution
schedule from a human scheduler. The generated schedule satisfies all legal
regulations and is drivable. Of course, the results do not provide any mean-
ingful information about the quality of the solution, nor how satisfied the
bus company is about it. The reason for the high scheduling times, needed
to produce 240 solutions, in the backward scheduling mode, in contrast to
the forward scheduling mode, is that in backward mode no tour state is
saved, which means that entire tours are revalidated very often. These big
time differences, regarding the scheduling time, show the great advantage of
saving the tour state to avoid the revalidation of a tour each time a trip is
added.

By using the interactive tools, provided by the scheduling system, the
generated solution can be improved by a further 1.9% in 10 minutes by the

66

Cost Diff #Tours #Buses BRT Sched.Time

Existing - 16 15 - -

S 3.00% 16 15 00:25:00 00:00:09
S BP 2.90% 16 15 00:25:00 00:00:09
S LL 3.83% 16 15 03:31:00 00:00:09
S LL BP 4.80% 16 15 00:36:00 00:00:09
S LL LS 2.16% 16 15 00:05:00 00:00:18
S LL LS BP 2,08% 16 15 00:26:00 00:00:18

SR 2.92% 17 15 02:31:00 00:01:12
SR BP 2.95% 17 15 00:50:00 00:01:12
SR LL 2.14% 16 15 00:50:00 00:01:08
SR LL BP 1.75% 16 15 01:00:00 00:01:09
SR LL LS 4.43% 18 15 01:14:00 00:04:54
SR LL LS BP 3.88% 18 15 01:29:00 00:04:59

Interactive -0,15% 16 15 - 00:10:00

Table 7.2: Computational results for region B. (Part 1)

DT DDT IT Paid IT Unpaid IT

Existing 117:54:07 04:09:07 51:26:06 31:37:48 19:48:18

S 119:07:58 05:22:58 58:33:01 37:38:08 20:54:53
S BP 119:09:57 05:24:57 58:11:02 37:16:09 20:54:53
S LL 120:20:12 06:35:12 57:28:39 37:17:13 20:11:26
S LL BP 119:05:56 05:20:56 65:20:28 42:54:10 22:26:18
S LL LS 118:30:40 04:45:40 58:49:30 37:21:27 21:28:03
S LL LS BP 117:53:47 04:08:47 59:28:23 38:24:57 21:03:26

SR 121:28:28 07:43:28 50:26:48 31:50:46 18:36:02
SR BP 120:33:11 06:48:11 52:56:59 33:09:41 19:47:18
SR LL 119:16:12 05:31:12 53:37:33 33:59:56 19:37:37
SR LL BP 118:44:31 04:59:31 54:34:41 34:51:05 19:43:36
SR LL LS 121:42:34 07:57:34 53:07:21 34:33:26 18:33:55
SR LL LS BP 121:31:48 07:46:48 51:57:00 33:24:21 18:32:39

Interactive 117:24:53 03:39:53 55:15:59 34:32:33 20:43:26

Table 7.3: Computational results for region B. (Part 2)

67

author, who is not an expert in planning. Therefore, the improved solution
is even better than the existing solution by 0.15% using the same number of
needed tours and buses. But what is even more important and interesting,
a comparable schedule can be generated and improved by the author of this
thesis in minutes, in contrast to the days or even weeks an experienced human
planner would need with the original approach.

7.1.3 Region C

Region C is not a fully combined vehicle and duty schedule. The existing,
human planned schedule contains tours, which do not satisfy all legal regula-
tions regarding the driving time directive and working time law. Therefore,
driver changes are necessary to be able to serve the generated tours. As a
result, the existing solution cannot be compared directly to the generated
solutions according to the number of tours.

The results of region C, shown in Table 7.4 and 7.5, show that the human
planned solution can be beaten regarding costs, in backward scheduling mode
with the break penalty option enabled, by 0.43%. But the needed tours, to
serve all trips, are 51, which is very high in contrast to 38 tours needed
in the human schedule solution. Therefore, the best result, regarding the
needed tours and costs, is generated in forward scheduling mode with the
options line loyalty, local search and break penalty enabled. The resulting
solution is only 1.34% more expensive but still needs seven tours more, than
the existing solution.

In contrast to region A and B, the simple algorithm is not able to produce
as good solutions as the existing schedule regarding the needed tours. As
already mentioned, the number of needed tours cannot be compared directly.
Additionally, region C has more trips to schedule and even more importantly
it has a different structure with more relevant major hubs where many lines
meet. Conversely, Region A and B only have one central hub, where all lines
meet sooner or later. All of these factors strongly affect the decision-making
process, based only on local circumstances, of the Simple algorithm and lead
to visibly worse results.

By using the interactive tool set of the system, the solution can be im-
proved to be 2.47 % better than the existing solution regarding costs. It
was not possible for the author to reduce the number of needed tours of 45.
But, the number of buses has been reduced to 34 in contrast to 36 needed
by the existing solution. However, the size of region C is already an upper
bound for an interactive scheduling approach. It was hard for the author
to maintain the overview of all trips and tours and perform the introduced

68

Cost Diff #Tours #Buses BRT Sched.Time

Existing - 38 36 - -

S 2.35% 45 36 00:20:00 00:00:27
S BP 2.10% 45 36 02:30:00 00:00:30
S LL 2.99% 45 35 00:29:00 00:00:29
S LL BP 4.04% 45 36 01:35:00 00:00:30
S LL LS 2.21% 45 36 02:14:00 00:01:03
S LL LS BP 1.34% 45 35 03:00:00 00:01:05

SR 0.64% 51 36 01:30:00 00:03:37
SR BP -0.43% 51 35 02:01:00 00:03:41
SR LL 0.30% 51 35 01:33:00 00:03:29
SR LL BP 1.28% 50 36 01:21:00 00:03:33
SR LL LS 0.29% 51 36 01:41:00 00:16:49
SR LL LS BP 0.50% 51 36 02:15:00 00:16:55

Interactive -2.47% 45 34 - 00:10:00

Table 7.4: Computational results for region C (Part 1)

DT DDT IT Paid IT Unpaid IT

Existing 289:33:00 21:23:00 173:25:50 121:26:39 51:59:11

S 295:12:54 27:02:54 182:04:37 130:45:06 51:19:31
S BP 298:34:18 30:24:18 171:54:02 120:35:39 51:18:23
S LL 298:08:21 29:58:21 179:33:04 127:49:13 51:43:51
S LL BP 302:57:47 34:47:47 181:23:33 127:32:33 53:51:00
S LL LS 297:58:58 29:48:58 176:36:54 124:17:33 52:19:21
S LL LS BP 299:48:40 31:38:40 162:01:16 112:01:39 49:59:37

SR 299:51:57 31:41:57 154:56:23 103:24:16 51:32:07
SR BP 300:11:16 32:01:16 143:22:22 92:49:28 50:32:54
SR LL 300:43:21 32:33:21 149:46:06 98:06:11 51:39:55
SR LL BP 300:19:25 32:09:25 159:53:06 107:38:50 52:14:16
SR LL LS 299:34:24 31:24:24 152:13:52 100:16:38 51:57:14
SR LL LS BP 299:39:10 31:29:10 152:31:26 101:44:49 50:46:37

Interactive 303:23:48 35:13:48 135:39:37 90:05:03 45:34:34

Table 7.5: Computational results for region C (Part 2)

69

iterative and interactive scheduling process. But nevertheless, an acceptable
and feasible initial solution can be created in a very short time. An expe-
rienced human planner will need several weeks to schedule a region of this
size and complexity.

7.1.4 Results Conclusion

The Simple algorithm provides, in all cases, reasonable and feasible initial
solutions. It turns out that the outcome of the Simple algorithm cannot beat
the existing solutions, but it can be further improved with the interaction
of a human scheduler, although the author of this thesis does not have a
comprehensive knowledge of the regions.

One early idea was, to generate optimal solutions by planning one tour
after another with the support of the Tour Permutation algorithm. The
Tour Permutation algorithm suggests best possible solutions for one tour. It
turns out that if too many tours are planned as well as possible, the overall
result will be worse. This follows from the fact, that other possible tours
which have to be generated from the remaining trips, need long paid breaks
or transfer trips which are more expensive than the savings resulting from
the optimal planned tours. The Tour Permutation Algorithm is a helpful
tool to show a scheduler different solution approaches for a tour and plan
parts of a schedule as well as possible. However, a scheduler always has to
keep the entire solution in mind to get good solutions in the end.

The Simple Permutation algorithm was introduced to generate better so-
lutions using a wider search process and taking into account more solution
possibilities than the Simple algorithm. The performance of the Simple Per-
mutation algorithm is not shown in the region results, because it could not
generate better solutions than the Simple algorithm with varying configura-
tions. There are two main problems with the Simple Permutation algorithm.
First, the selection operators do not work as expected for intermediate so-
lutions or solution parts. Good branches are pruned too early, because they
have bad properties in an intermediate state. It is, especially for Austrian
regulations, very hard or even impossible to automatically decide if a partial
solution is efficient or not. This follows from the fact, that if only one trip is
added or removed from a partial solution, it can lead to an abrupt change of
costs. Although the difficulties in selection of solutions are known, it was not
possible yet to select solution branches, which lead to entire efficient sched-
ules in the end. Second, the solution data structure memory consumption
is too high. Only one million intermediate solutions can be maintained in
parallel. These leads to pruning of solution branches in an early state and
in the end to a similar performance as the Simple algorithm with a higher

70

scheduling duration.

The results have shown that different configuration options and param-
eters lead to very different results. Although, the results for region B and
C can significantly be improved by using the configuration options line loy-
alty, local search and break penalization, the used break reduction threshold
which leads to the best result is very different. This confirms that each region
has several varying local factors for which different configuration parameters
are needed to be able to generate efficient schedules.

7.2 Proven Scheduling Work-flow

During the testing phase of the interactive vehicle and duty scheduling, a
scheduling work-flow has emerged that has proved to be effective. First, an
initial schedule is generated and reviewed. It has been proven that if there
are only a few night courses, it is best to start the planning process with
the last trip. From this starting point, a reverse tour permutation is started,
which takes about five seconds for a set of tour suggestions from which the
planner can choose from. The advantage of border trips, like night trips, is
that they can often be scheduled without impacting other tours because they
are detached from other trips. After selecting an efficient tour suggestion, it
may be slightly modified and fixed.

After planning the border trips and tours, a new schedule is generated
with the Simple algorithm by setting the region specific configuration param-
eters and start an automatic calculation of the break threshold parameter.
Next, efficient parts of the intermediate schedule are fixed and further tour
permutations are started and promising tour parts are fixed by the human
expert. Finally, the entire solution is incrementally improved by moving,
exchanging and fixing trips.

The described proven scheduling work-flow which emerged from a wide
range of test runs, overlaps largely with the planned incremental scheduling
work-flow introduced in Section 5.5.

7.3 Feedback from Human Schedulers

The presented results in previous sections show the performance of the in-
troduced algorithms, which do not have the intention of generating optimal
solutions. The resulting costs are close to the human scheduled solutions, but

71

they do not provide any meaningful information about the quality. There-
fore, feedback was collected from bus companies and planners to examine
the acceptance and practical usability of the introduced interactive and com-
bined vehicle and duty scheduling concept. The feedback is based on an early
version of the presented system which is integrated in PlanMATRIK. The
integration process is still in progress. The current version does not support
all planning features and needs further user interface improvements.

The idea of an interactive scheduling concept with an iterative scheduling
process has been well received. Fixing parts of intermediate solutions and
letting the system suggest further possibilities have met with good response.
Additionally, it is very helpful for planners to have an initial, fast but drivable
version of a region to get an upper bound of buses and drivers required, as
well as costs. Every customer has very different requirements, but with the
rule system, additional requirements can be implemented very fast, without
touching the scheduling algorithms themselves.

Surprisingly, the customers were particularly interested in the statistics
module of the system, which was not expected to this extent. The customers
liked the live statistics of a region, which immediately change when a trip is
moved, added or removed. Additionally, they want to make use of the live
statistics of an automatically generated vehicle and duty schedule, resulting
from timetable modifications, to optimize their timetables and schedules.

It is not technically an issue to execute the Simple algorithm on the
modified timetable and present the results. But the problem at this point is
that customers on the one hand explained that a fully automated vehicle and
duty scheduling is not possible in their regions, because no practically usable
solutions can be generated automatically. On the other hand, regarding the
timetable and schedule example, exactly this behaviour was expected by the
customers. It has to be pointed out again, that the Simple algorithm can
produce feasible and comparable solutions regarding costs in a very short
time. But it cannot guarantee optimality at all, especially regarding the
quality of the automatically generated schedules. Therefore it should be used
carefully, if for instance timetable decision are made based on the statistics
of a region, which the Simple algorithm provides, without reviewing the
generated solution.

The statistic tool is also very helpful for local authorities or transport
associations, which offers public tenderings for their bus regions. They can
easily evaluate the received offers on their feasibility and quality. One ex-
ample of an infeasible offer, of which authorities or transport associations
are often concerned with, is that schedules are submitted which need less
buses than are needed at a minimum for a region. This offer can therefore

72

be cheaper than a feasible offer of a competitor. The lower bound of needed
buses of a region can simply be calculated by counting the trips which overlap
and must be driven in parallel. Based on these statistics the local authorities
or transport associations can reject infeasible offers early.

The overall feedback is positive, but it also turns out that there is still a
lot of work to do, to achieve all requirements of the customers and to release
a final version.

73

Chapter 8

Practical Usage

In this chapter, the practical usage of the implemented system is described.
Additionally, missing or not yet completed features are discussed which will
be addressed in further developments. Finally, an outlook of the usefulness
and practicability of the introduced interactive and combined vehicle and
duty scheduling system in practice is given.

8.1 Integration in PlanMATRIK

The interactive scheduling system was developed as a separate and indepen-
dent solution, outside of PlanMATRIK. It was planned to integrate the new
scheduler, if it turns out that the interactive concept works.

At the time this thesis is written, the integration process into Plan-
MATRIK has already started. The back-end with its algorithms, rule and
schedule configuration system have been integrated in PlanMATRIK with-
out any modifications. Changes are only planned for the user interface. The
complexity of the configuration parameters will be reduced. Additionally,
the process of fixing trips and tours will be simplified. In the first integra-
tion step, the interactive scheduler module must be enabled manually and
is called Scheduler Assistant. All data and solutions can simply be adopted
from one module to the other. This enables a user to test the Scheduler
Assistant, without losing the familiar planning module or the manually cre-
ated schedules which are used. Figure 8.1 shows an extract of the Scheduler
Assistant module in an early integration state.

74

Figure 8.1: The interactive system is integrated as a Scheduler Assistant in Plan-
MATRIK. The configuration parameters can be modified in the left section of the
module. The interactive scheduling is done in the right section, where trips can be
fixed and changes are immediately visible.

8.2 Further Development

As mentioned in Chapter 7, various parts of the implementation do not work
properly yet. As an example, the memory-intensive data structure, which
maps the generated solutions must be more efficient without loosing the
property of fast cloning. Next, the algorithms can be simplified reducing
them to their essentials, without losing functionality. Moreover, scheduling
configurations should be introduced to force a wider range of local search
to improve the suggestions. Furthermore, the concept of the Simple Permu-
tation algorithm should be reconsidered. To optimize a schedule, an entire
solution should be taken into account, instead of trying to generate solutions
from scratch and prune early, non promising, intermediate tours.

8.3 Outlook

In addition to the short term further developments, the overall solution qual-
ity and interactive scheduling work-flow has to be improved. This improving
process has to be done in close collaboration with various bus companies
and their schedulers, to ensure a high acceptance of the software. Moreover,

75

during the improving process more custom practices and knowledge of the
schedulers and bus companies can be learned and embedded into the software
to produce more reasonable solutions and provide an intuitive and familiar
scheduling process.

Furthermore, beside the interactive solution suggestions, an over-night
optimization, based on an initial solution, is planned. This optimization
is not limited in time. Therefore more combinations can be tested, and
better initial solutions can be expected. Finally, a combined version with
the timetabling phase should be introduced. This combination has emerged
from discussions with schedulers, and will allow them to immediately see the
effect of modifications on timetables in the vehicle and duty schedules.

76

Chapter 9

Conclusion

In this thesis an interactive, combined vehicle and duty scheduling approach
especially for rural areas was introduced. In the beginning, the planning
process in public transport was described and exact as well as heuristic so-
lution approaches for the vehicle and duty scheduling problem were dis-
cussed. Moreover, various interactive scheduling approaches from the litera-
ture which are based on a profound domain knowledge of human schedulers
were described, including different degrees of interaction of a planner and
the role of the human planner in the scheduling process.

In the practical part of the thesis, a new interactive scheduling concept
was introduced and a detailed description of the implementation was given.
Evaluations and benchmarks have shown that the system is usable in prac-
tice and it has been well received by planners of various bus companies. The
system can generate feasible solutions in a very short time and offers a user
interface which enables a human planner to interactively participate in the
scheduling process. Beside the interactive possibilities of fixing tours and
trips, the system allows a user to adjust various tangible configuration pa-
rameters for their custom needs. Moreover, the system provides clear and
meaningful statistics to support human planners in their decision-making
process. Additionally, the statistics module was helpful for local authorities
or transport associations to pre-evaluate offers for local tenderings on its fea-
sibility. But the results have also shown that the interactive concept reaches
its limits if a region exceeds a certain size, because it is hard to maintain the
overview for a human planner.

Further tests and discussions with bus companies and planners will show
the strengths and weaknesses of the concept and the current implementation.
The feedback will be used to further improve the introduced system.

77

Bibliography

Bagdahn, Peter (2015). Arbeitszeiten im Linienverkehr - Alle Vorschriften
für Busfahrten bis 50 km. 1st edition. huss, 2015.

Bechara, João José B. and Roberto D. Galvão (1984). Recent Advances in
System Modelling and Optimization: Proceedings of the IFIP-WG 7/1
Working Conference Santiago, Chile. Springer Berlin Heidelberg, 1984.
Chapter The use of interactive computing for vehicle routeing, pages 22–
32. doi: 10.1007/BFb0006776.

Bertsimas, Dimitris and John Tsitsiklis (1993). „Simulated Annealing“. In:
Statistical Science 8.1 (Feb. 1993), pages 10–15. doi: 10 . 1214 / ss /
1177011077.

Brown, Donald E., John A. Marin, and William T. Scherer (1995). Intelligent
Scheduling Systems. Springer US, 1995. Chapter A Survey of Intelligent
Scheduling Systems, pages 1–40. doi: 10.1007/978-1-4615-2263-8_1.

Brown, Gerald G. and Glenn W. Graves (1981). „Real-Time Dispatch of
Petroleum Tank Trucks“. In:Management Science 27.1 (Jan. 1981), pages 19–
32.

Carpaneto, G. et al. (1989). „A branch and bound algorithm for the multiple
depot vehicle scheduling problem“. In: Networks 19.5 (1989), pages 531–
548. doi: 10.1002/net.3230190505.

Ceder, Avishai (2011). „Public-transport vehicle scheduling with multi ve-
hicle type“. In: Transportation Research Part C: Emerging Technologies
19.3 (2011), pages 485–497. doi: 10.1016/j.trc.2010.07.007.

Ceder, Avishai (2015). Public Transit Planning and Operation: Modeling,
Practice and Behavior, Second Edition. 2nd edition. CRC Press, 2015.

Chen, Cheng and Xingquan Zuo (2014). „A multi-objective genetic algo-
rithm based bus vehicle scheduling approach“. In: Control and Decision
Conference (2014 CCDC), The 26th Chinese. (Changsha, China). IEEE,
May 2014, pages 2675–2679. doi: 10.1109/CCDC.2014.6852625.

Colgan, Lynne, Robert Spence, and Paul Rankin (1995). „The Cockpit Metaphor“.
In: Behaviour & Information Technology 14.4 (1995). doi: 10.1080/
01449299508914638.

78

http://dx.doi.org/10.1007/BFb0006776
http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1007/978-1-4615-2263-8_1
http://dx.doi.org/10.1002/net.3230190505
http://dx.doi.org/10.1016/j.trc.2010.07.007
http://dx.doi.org/10.1109/CCDC.2014.6852625
http://dx.doi.org/10.1080/01449299508914638
http://dx.doi.org/10.1080/01449299508914638

Glover, Fred (1990). „Tabu Search: A Tutorial“. In: Interfaces 20.4 (1990),
pages 74–94. doi: 10.1287/inte.20.4.74.

Gurobi (2016). Mixed-Integer Programming (MIP) - A Primer on the Basics.
2016. url: http://www.gurobi.com/resources/getting-started/
mip-basics.

Haase, Knut, Guy Desaulniers, and Jacques Desrosiers (2001). „Simultane-
ous Vehicle and Crew Scheduling in Urban Mass Transit Systems“. In:
Transportation Science 35.3 (2001), pages 286–303. doi: 10.1287/trsc.
35.3.286.10153.

Kopfer, Herbert and Jörn Schönberger (2002). „Interactive Solving of Vehicle
Routing and Scheduling Problems: Basic Concepts and Qualification of
Tabu Search Approaches“. In: System Sciences, 2002. HICSS. Proceed-
ings of the 35th Annual Hawaii International Conference. (Hawaii, USA).
IEEE, Jan. 2002, pages 1425–1434. doi: 10.1109/HICSS.2002.994009.

Land, A. H. and A. G. Doig (1960). „An Automatic Method of Solving Dis-
crete Programming Problems“. In: Econometrica 28.3 (1960), pages 497–
520.

Laurent, Benoît and Jin-Kao Hao (2007). „Simultaneous vehicle and driver
scheduling: A case study in a limousine rental company“. In: Computers
& Industrial Engineering 53.3 (2007), pages 542–558. doi: 10.1016/j.
cie.2007.05.011.

Levenshtein, Vladimir (1966). „Binary codes capable of correcting deletions,
insertions, and reversals“. In: Soviet Physics Doklady 10.8 (Feb. 1966),
pages 707–710.

Mitchell, Melanie (2011). Complexity - A Guided Tour. 1st edition. Oxford
University Press, 2011.

Schmeidl, Christian (2012). Handbuch Lenk- und Ruhezeiten Sozialvorschriften
(WKO). 2012. url: https://www.wko.at/Content.Node/branchen/
oe/TransportVerkehr/Handbuch_Lenk-_und_Ruhezeiten.pdf.

Sims, Karl (1991). „Artificial Evolution for Computer Graphics“. In: SIG-
GRAPH Comput. Graph. 25.4 (July 1991), pages 319–328. doi: 10.1145/
127719.122752.

Slany, Wolfgang (1996). „A knowledge-base revision tool for the fuzzy constraints-
based *FLIP++ scheduling library“. In: volume 1. New Orleans, LA:
IEEE, Sept. 1996, pages 306–312. doi: 10.1109/FUZZY.1996.551759.

Valouxis, Christos and Efthymios Housos (2002). „Combined bus and driver
scheduling“. In: Computers & Operations Research 29.3 (Jan. 2002), pages 243–
259. doi: 10.1016/S0305-0548(00)00067-8.

Van den Heuvel, .P.R., J. M. Van Den Akker, and M. E. Van Kooten Niekerk
(2008). Integrating timetabling and vehicle scheduling in public bus trans-
portation. Technical report. Department of Information and Computing
Sciences Utrecht University, Utrecht, The Netherlands, Feb. 2008.

Waters, C. D. J. (1984). „Interactive Vehicle Routeing“. In: J Oper Res Soc
35.9 (1984), pages 821–826. doi: 10.1057/jors.1984.164.

79

http://dx.doi.org/10.1287/inte.20.4.74
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://dx.doi.org/10.1287/trsc.35.3.286.10153
http://dx.doi.org/10.1287/trsc.35.3.286.10153
http://dx.doi.org/10.1109/HICSS.2002.994009
http://dx.doi.org/10.1016/j.cie.2007.05.011
http://dx.doi.org/10.1016/j.cie.2007.05.011
https://www.wko.at/Content.Node/branchen/oe/TransportVerkehr/Handbuch_Lenk-_und_Ruhezeiten.pdf
https://www.wko.at/Content.Node/branchen/oe/TransportVerkehr/Handbuch_Lenk-_und_Ruhezeiten.pdf
http://dx.doi.org/10.1145/127719.122752
http://dx.doi.org/10.1145/127719.122752
http://dx.doi.org/10.1109/FUZZY.1996.551759
http://dx.doi.org/10.1016/S0305-0548(00)00067-8
http://dx.doi.org/10.1057/jors.1984.164

Weider, Steffen (2007). Integration of Vehicle and Duty Scheduling in Public
Transport. 1st edition. Cuvillier, 2007.

Zuo, X. et al. (2015). „Vehicle Scheduling of an Urban Bus Line via an
Improved Multiobjective Genetic Algorithm“. In: Transactions on Intel-
ligent Transportation Systems 16.2 (Apr. 2015), pages 1030–1041. doi:
10.1109/TITS.2014.2352599.

80

http://dx.doi.org/10.1109/TITS.2014.2352599

	Introduction
	Planning in Public Transport
	Planning Process
	Vehicle Scheduling
	Duty Scheduling
	Legal Regulations
	Duty Costs

	Combined Vehicle and Duty Scheduling

	Solution Approaches
	The Problem
	Branch and Bound
	Basic Heuristic Solution Approaches
	Simulated Annealing
	Tabu Search
	Genetic Algorithms

	Testing of Automated Optimizations

	Interactive Knowledge-Based Systems
	Introduction and Motivation
	Degrees of Interaction
	Role of a Human Scheduler
	Interactive Approaches Today
	General Structure and Requirements

	Interactive Vehicle and Duty Planning in Practice
	Introduction
	Partner Company
	Test Regions
	Requirements
	Incremental Scheduling Process
	Initial Situation in Regional Areas

	Implementation
	Basic Concepts
	Internal Scheduling Model
	Connection Matrix
	Solution Data Structure
	Transfer Matrix
	Transfer Matrix Generation

	Architecture and Scheduling Process
	Scheduling Rules
	Tour Validation Rules
	Other Rules

	Scheduling Algorithms
	Demands on Algorithms
	Simple
	Simple Permutation
	Tour Permutation
	Reverse Scheduling

	Algorithm Configuration
	Line Loyalty
	Local Search for Line Loyalty
	Break Reduction
	Maximum Allowed Break Time
	Break Penalty Time
	Transfer Weight
	Automatic Calculation of Configuration Values

	Scheduling Results
	Results and Benchmarks
	Region A
	Region B
	Region C
	Results Conclusion

	Proven Scheduling Work-flow
	Feedback from Human Schedulers

	Practical Usage
	Integration in PlanMATRIK
	Further Development
	Outlook

	Conclusion
	Bibliography

