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Abstract

The bound pool fraction (BPF) is a quantitative magnetization transfer (MT) parameter

that has drawn interest in clinical research as a biomarker for the myelin content. Hence,

it allows to quantify changes within the nervous system of the brain for example in a

neurodegnerative disease like Multiple Sclerosis (MS). The estimation of high resolution

BPF images in clinical acceptable scan times is still a challenging task. One approach

that seems to overcome this issue is the fast BPF estimation from a single off-resonance

measurement, which is based on constraints and assumptions of the pulsed MT-model.

In the present Master’s thesis this method was implemented and validated in three stages

with the pulsed MT-model and numerical simulations.

In the first stage of the thesis, simulations with the pulsed MT-model and the coupled

Bloch equations were carried out to validate the approximations of the pulsed MT-model.

Furthermore a new numerical error model was developed to estimate the bias and error

due noise of the fast BPF estimation for a specific sets of constraints.

In the second stage the constraints were estimated by fitting the parameters of the pulsed

MT-model from bovine serum albumin (BSA) phantom measurements and post mortem

measurements. With the derived constraints the fast BPF estimation was carried out and

the estimated error was compared with the predicted error from the numerical simula-

tions.

Finally, in the last stage, the model parameters of the pulsed-MT have been estimated

in vivo. With the estimated parameters numerical error simulations were performed to

find the best off-resonance saturation frequency and amplitude for the acquisition of high-

resolution fast BPF maps.

The results of the BSA-phantom and the post mortem measurements point out that the

fast BPF is possible within a certain error-tolerance. For predicting the error of the fast

BPF estimation it has been shown that the numerical error simulations are better suited

than the proposed error model. However, the results of the in vivo measurements indicate

an overestimation of the parameters compared to the reported values in the literature.

A likely explanation for the difference is that in our measurements the Magnetization

Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence was used instead

of the variable flip angle (VFA) method for the T1-mapping. The VFA could bias the

solution of the BPF estimation due to the short repetition rate of the sequence, which

may result in a bias of the relaxation time T1,obs. Therefore further research is necessary

to study the influence of different T1-mapping techniques on the fast BPF estimation.

Keywords: Magnetization Transfer, quantitative MRI, two-pool model, Multiple sclerosis,

Myelin



Kurzfassung

Der Anteil an gebunden Protonen ist ein quantitativer Magnetisierunstransfer- (MT) Pa-

rameter, der klinisch als Biomarker für die Myelindichte relevant ist. Daher lassen sich mit

diesem Parameter Änderungen der Myelindichte quantifizieren, welche typischerweise bei

neurodegenerativen Erkrankungen wie bei der Multiplen Sklerose (MS) auftreten. Alle der

bisher vorgestellten Methoden haben den Nachteil einer im klinischen Betrieb unzumut-

baren Scanzeit für hochaufgelöste Bilder. Ein Ansatz, der dieses Problem zu lösen scheint,

basiert auf der Reduktion der Parameter des gepulsten-MT Models, welcher die schnelle

Bestimmung des gebunden Protonenpools mittels einer off-resonance Messung ermöglicht.

In der vorliegenden Diplomarbeit wurde diese Methode implementiert und mit den Ergeb-

nissen des gepulsten MT-Modells und numerischen Simulationen verglichen.

Der erste Teil der Arbeit bestand darin das gepulste MT-Modell mit den gekoppelten

Bloch-Gleichungen zu vergleichen. Des Weiteren wurde ein neues numerisches Fehler-

modell für die schnelle Messung des gebundenen Protonenpools entwickelt, welches den

Bias und den durch das Rauschen verursachten Fehler abschätzt.

Im zweiten Teil der Arbeit wurden für verschiedene Konzentration von Rinderalbumin

(BSA) und eines post mortem Gehirns die besten Parameterwerte für die schnelle Bestim-

mung des gebunden Protonenpools bestimmt. Danach wurde der gebunden Protonpool

mit Hilfe der schnellen Methode bestimmt.

Im letzten Schritt wurden die Modellparameter des gepulsten MT-Modells in vivo bes-

timmt, welche dann verwendet wurden um den besten Abtastpunkt für die schnelle Bes-

timmung des gebunden Protonenpool zu ermitteln. Im Anschluss wurden hochaufgelöste

Maps des gebundenen Protonenpools aufgenommen und berechnet.

Die Resultate der BSA und post mortem Messungen zeigen, dass die schnelle Bestim-

mung des gebunden Protonenpools mit gewissen Fehlerschranken möglich ist. Es wurde

nachgewiesen, dass das numerische Fehlermodell besser geeignet ist den Fehler der schnellen

Bestimmung zu ermitteln als das existierende Fehlermodell. Im Vergleich zur Literatur

ist auffällig, dass die ermittelten in vivo Werte erhöht sind.

Eine mögliche Erklärung ist, dass in dieser Arbeit anstelle der Variable Flip Angle (VFA)

Methode die Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE)

Sequenz zur Bestimmung der T1-map verwendet wurde. Die VFA könnte das Ergebnis des

gebunden Protonenpools verfälschen, da es aufgrund der kurzen Repetitionszeit zu einem

Fehler in der Bestimmung von T1,obs kommen kann. Folglich scheint es notwendig den

Einfluss von unterschiedlichen T1-mapping Methoden auf die Bestimmung des gebunden

Protonenpools in zukünftigen Arbeiten zu ermitteln.

Schlüsselwörter: Magnetisierungstransfer, quantitatives MRT, Austauschmodell, Multiple

Sklerose, Myelin
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Außerdem möchte ich Herrn Assoz. Prof. DI Dr. Ropele danken, der mich auf das span-

nende Themengebiet des Magnetisierungstransfers aufmerksam machte, und mich bei
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1
Introduction

Magnetization transfer (MT) imaging is an essential magnetic resonance imaging (MRI)

contrast that can enhance T1-weighted imaging. With MT imaging it is possible to get

information about protons that are bound to macromolecules, which are otherwise invis-

ible in conventional MRI due to their short T2 relaxation times [1]. A commonly used

semi-quantitative parameter in MT imaging is the magnetization transfer ratio (MTR),

which is the relative change between an image acquired without and with a MT-saturation

pulse. due to the off-resonance saturation of the bound protons magnetization is trans-

ferred from the free to the bound protons resulting in a signal decrease of the free protons.

It has been shown that the magnetization transfer ratio (MTR) decreases in experimental

induced inflammation [2], as well as the MTR is affected by the myelin content in multiple

sclerosis (MS) [3, 4], which makes the MTR a common marker by accepted neurological

MRI studies. Besides MS, MT imaging can give an insight into the understanding of

different neurodegnerative diseases, in particular Alzheimer’s disease and Parkinson’s dis-

ease [5]. Recently it has been shown that MT-imaging helps in the differentiation of brain

tumors, and furthermore that it provides additional information of the tumors compared

with conventional MRI techniques [6].

The MTR, however, has the limitation that it is a semi-quantitative parameter that de-

pends on the MRI pulse sequence parameters and imaging hardware [7].

To address these problems various quantitative MT (qMT) techniques have been develop

that are based on a two-pool model introduced by Henkelmann [8]. Similar to a chemi-

cal exchange model, the basic model consists of two pools, one pool for the tissue water

protons and one for the bound protons. The first qMT-experiments were performed with

continous wave (CW) radio frequency (RF) saturation of the bound protons [8]. For in

vivo applications this MT-imaging approach is not suited because of its high power depo-

sition [9]. To overcome this problem pulsed MT models [10–12] have been developed that

replace the CW-irradiation by short RF-pulses and estimate the qMT parameters from the

change in the steady-state magnetization. In this work two approaches are investigated

in detail – the pulsed MT-model by Yarnykh and Yuan [13] and the fast bound pool frac-
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1 Introduction

tion estimation from a single off-resonance saturation frequency measurement [14]. Since

for the parameter estimation of the pulsed MT-model long scan times are unavoidable,

Yarnykh [14] constrained the parameters of the model resulting in one parameter instead

of four.

This strong reduction of model parameters rises the question about the accuracy of this

approach. So far only a little number of publications were found that have implemented

this approach. Underhill et. al [15] validated the approach with in vivo rat brains in the

presence of tumor with the result that the bound pool fraction from a single off-resonance

saturation frequncy measurement is an indicator for the myelin density in white matter

(WM) and grey matter (GM). It has also been reported that the fast bound pool fraction

estimation is possible within the spinal cord [16] and recently the approrach was adapted

for the human liver for the quantitative assessment of hepatic fibrosis with the finding

that macromolecular proton fraction is in increased in hepatic fibrosis [17].

The main focus on this thesis was a detailed validation of the fast bound pool fraction es-

timation from a single off-resonance saturation frequncy measurement [14] by estimating

the four two-pool model parameters of the pulsed MT-model [13]. Investigations that have

been reported in the literature are based on in vivo data that have the obvious drawback

of limited scan time. Here the approach was validated from BSA-phantom measurements

with reference values of the two-pool model that were estimated as accurate as possible

with gold-standard methods by fitting all four parameter of the two-pool model. Further-

more in this work qMT parameters of a unfixed fresh post mortem brain, which has not

been reported elsewhere, were estimated. Then MRI-protocols were developed that allow

the measurement of the qMT parameters and the fast bound pool fraction estimation

from a single off-resonance measurement in vivo.

– 2 –
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2
Background

This chapter provides a detailed overview of the theoretical background that was necessary

to accomplish this thesis. In the first section the fundamentals of MT in the context of

MRI are given, following a literature review of quantitative MT methods with special

focus on off-resonance methods that are based on the two-pool model. Then the pulsed

MT-model by Yarnykh and Yuan [13] is explained in detailed because it is the basis for

the estimation of the bound pool fraction from a single off-resonance measurement [14].

Further, for this method several assumptions and constrain has been proposed by Yarnykh

[14], which are explained in a separate section. In the last section MRI field correction

sequences are summarized that are necessary for the fast bound pool fraction estimation.

2.1 Basics of MT

In clinical MRI techniques water protons are used for imaging since the human body

consists mainly of water. Therefore protons are excited within an external magnetic field

at their Lamor frequency. After excitation the induced, measured, signal depends on the

transversal relaxation time (T2), and the longitudinal relaxation times (T1) of the tissue.

These protons are considered as free, or mobile, reflected by their relative long T2 (i.e.

greater than 10 ms) which allows to image them.

However, in the human body there are not only mobile protons – there are also immobile

protons that are bound to macromolecules. These motional restricted protons have a

very short T2 (i.e. less than 1 ms), which makes them invisible in conventional MRI. But

theses bound protons are coupled with the free protons due MT, and thus it is possible to

achieve information about the bound protons by measuring the signal of the free protons.

In Figure 2.1 the absorption line-shapes of the free and bound protons are illustrated.

Because of the high mobility of the free protons, the absorption lines-shape has a narrow

peak at their resonance frequency, ω0. In contrast, the line-shape of the bound protons is

much broader since the bound protons are less mobile.

– 3 –



2 Background

When applying an off-resonant saturation pulse the bound protons are getting saturated.

Through the saturation pulse the exchange rate of magnetization is not in equilibrium

any more, resulting in a decrease of the signal of the free protons due MT. Hence, the

signal of the free protons – which is measured on-resonant – provides indirect information

about the bound protons.

free pro

otons MT

free pro

otons MT
RF

Figure 2.1: Schematic absorption line-shapes of the bound protons and the free protons. The free
protons have their central peak at the Lamor frequency of protons ω0, whereas the ab-
sorption shape of the bound protons extends over a wider range of frequencies. Through
off-resonant RF irradiation the measured signal of the free protons decreases due MT.

2.1.1 Molecular Mechanism of MT

The molecular mechanism of MT are based on the nuclear Overhauser effect (NOE) and

chemical exchange. In Figure 2.2 two models are illustrated that describe the transfer of

magnetization from the macromolecule to the free bulk water [18]. It can be seen that

the difference between these model is the pathway of the magnetization transfer from the

bound protons of the macromolecule to the bulk water.

In the first model (a), the magnetization is transferred from the nonexchangeable proton

to the hydration layer by NOE. Then, in the next step, the proton of the hydration layer

exchanges rapidly with a proton of the bulk water.

By contrast, in model (b), the magnetization transfer has hydroxyl (OH), or amine groups

(NH), involved that are bound to the macromolecule. In this model the magnetization

is transferred to these groups by the NOE, and then, in next step the proton exchanges,

again, rapidly with the free bulk water.

There is strong evidence that the exchangeable protons of the OH and NH groups are

the main source for the contrast for MT weighted images in the brain. Investigations of
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the proton exchange rates of OH and NH groups under physiological conditions showed

that exchange rates are sufficient slow for the NOE with the nonexchangeable proton, and

on the other hand, that the exchange rates are fast enough for the overall magnetization

transfer [18]. This is in agreement with the experimental findings that the MT between

lipid membrane models and water depends on the presence of sites with exchangeable

hydroxyl and amino protons [19]. Furthermore, in white matter the cholesterol content,

and the content of other lipid molecules with OH and NH groups, is higher then in gray

matter, which results in faster T1 relaxation rates of water in white matter than in gray

matter [20].

Figure 2.2: Two models for the exchange of magnetization between bound protons and free protons.
In (a) the magnetization is transferred from the bound proton to the first hydration layer
via NOE. Afterwards the proton of the hydration layer exchanges fast with the free bulk
water. In model (b) magnetization is transferred from the nonexchangeable protons to
exchangeable protons (X = O, N) due NOE. Then these protons exchange with the free
bulk water. Adapted from [18].

2.1.2 Magnetization Transfer Ratio (MTR)

In classical MT-experiments so called Z-spectra are measured where the longitudinal mag-

netization is as a function of the off-resonance saturation frequency. An example of such

a Z-spetrum is illustrated in Figure 2.3. The figure shows three curves where the solid

line represents the actual measured relative longitudinal magnetization M with MT as a

function of the off-resonance saturation frequency ∆. The dashed and dotted line are two

theoretical curves that represent the relative longitudinal magnetization of the free/liquid

pool and bound/macromolecular pool that would be achieved when the bound pool, or
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Figure 2.3: Example Z-spectrum which shows the longitudinal magnetization (solid line) and the the-
oretical longitudinal magnetization of the free pool (dashed line) and bound pool (dotted
line) as a function of the off-resonance saturation frequency. (Adapted from [21])

the free pool, respectively, would be zero. Hence, these two curves show the spectra of

the pools without MT.

Because the absorption line-shape of the free pool has a narrow peak around the Lamor-

frequncy of protons, the magnetization is close to zero for small resonance offsets and

increases with higher off-resonance frequencies. The effect of saturating the free pool due

the off-resonance RF irradiation is called direct saturation. The dotted line shows the

relative longitudinal magnetization of the bound pool that would be measured theoreti-

cally if the free pool would zero. Because of the broad absorption line-shape of the bound

pool, the magnetization is saturated in a wide range.

The effect of the MT is indicated in the shaded area between the theoretical magnetiza-

tion of the free pool and the measured magnetization. This area shows the decrease of

the measured magnetization due MT.

One approach to describe the effect of MT semi-quantitatively is the magnetization trans-

fer ratio (MTR):

MTR =
M0 −Msat

M0
= 1−

(

Mdir

M0
+

MMT

M0

)

(2.1)

The MTR is the normalized difference between the unsaturated signal M0 and the satu-

rated magnetization Msat due to the off-resonance RF irradiation. In Figure 2.1 and Eqn.

(2.1) can be seen that the saturated magnetization depends on both, the direct saturation

of the free pool Mdir, and the actual MMT . Hence, the image contrast in a MTR image
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depends not only on the MT.

The advantage of the MTR is that it can be derived with little effort by measuring a

reference image and a image with off-resonance saturation. The drawback of this method

is that the ratio depends on the used pulse sequence and imaging hardware, which makes

the application of this parameter only limited [7].

2.2 Quantitative MT

This section provides an overview of various quantitative MT methods that have been

developed in the past 2 decades starting with the two-pool model for CW irradiation

as an introduction, followed by pulsed MT-models, and in the last section on-resonance

methods are described.

2.2.1 Two-Pool Model with CW Irradiation

This section gives an overview of the two-pool model that was introduced by Henkelman et

al., in 1993, for the measurements of MT in agar gel [8]. Sincethen, several investigators

have improved and simplified the two-pool model, but the key idea remains the same.

Thus, this section aims to introduce the fundamental concept of the two-pool model and

its limitations.

As illustrated in Figure 2.4 the model consists of a liquid pool A and a semi-solid pool

B, which are also denoted in the literature as free and bound pool, respectively. The

unshaded areas of each pool represent the available longitudinal magnetization Ma
z and

M b
z , and the shaded areas represents the magnetization that is not aligned longitudinally

[8]. The rate of saturation due to RF-irradiation is given by Rrfa and Rrfb for each

pool. The counterparts for the saturation rates are the relaxation rates Ra and Rb. The

fully relaxed magnetizations is denoted with Ma
0 and M b

0 , where Ma
0 of the liquid pool is

normalized to 1.

The exchange rate from one pool to the other is described by one constant, R. To calculate

the exchange from pool A to B, and vice versa, R is multiplied by the magnetization of each

pool. Hence, the exchange from A to B is RM b
0 , and for B to A it is RMa

0 , respectively.

– 7 –



2 Background

Figure 2.4: Two-pool model for the magnetization transfer. Pool A represents the liquid/free pool
and pool B the semi-solid/bound pool with the available magnetization Ma

z 0 and M b
z for

each pool. The saturated magnetization due RF-irradiation is represented as shaded area
with the saturation rates Rrfa and Rrfb. The relaxation rates are Ra,b, and the fully

relaxed magnetizations are Ma,b
0 . The exchange of magnetization between the pools is

RM b
0 and RMa

0 . (Adapted from [8])

Mathematically the two-pool model is described with the coupled Bloch-equations Eqn.

(2.2) that describe the evolving of the magnetization over time in the rotating frame of

reference.

dMa
z

dt
= Ra(M

a
0 −Ma

z ) + ω1M
a
y−RM b

0M
a
z+RMa

0M
b
z

dM b
z

dt
= Rb(M

b
0 −M b

z ) + ω1M
b
y−RMa

0M
b
z+RM b

0M
a
z

dMa,b
x

dt
= −Ma,b

x

T2a,b

− 2π∆Ma,b
y

dMa,b
y

dt
= −

Ma,b
y

T2a,b

+ 2π∆Ma,b
x − ω1M

a,b
z

(2.2)

In Eqn. (2.2), the evolving of the transverse magnetization is described by Ma,b
x and

Ma,b
y for each pool. The frequency offset of the RF-irradiation is ∆, and its induced angu-

lar frequency is ω1. The angular frequency is proportional to the amplitude of the pulse

envelope of the RF-field since ω1 is the gyromagnetic ratio γ, times the strength of the

RF-field |B1(t)|.
The exchange of longitudinal magnetization due MT is highlighted in red and blue. Be-

cause of the short T2 of the semi-solid pool, the effect of transverse cross relaxation on

MT is neglected. This was confirmed in simulations which included transverse cross re-
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laxation [22].

In the experiments of Henkelman et. al [8] a CW saturation pulse was applied to saturate

the semi-solid pool. The duration of the saturation pulse was sufficient long chosen, to

guarantee, that the steady state of the agar sample was reached. Therefore the coupled

Bloch-equations can be solved analytically by setting all six differential equations to zero.

Doing so, one can solve the equations for the longitudinal magnetization of the liquid

pool:

Ma
z =

RbRM b
0 +RrfbRa +RbRa +RaR

(Ra +Rrfa +RM b
0)(Rb +Rrfb +R)−RM b

0

(2.3)

with absorption rates for each pool:

Rrfa =
ω2
1T2a

1 + (2π∆T2a)2

Rrfb =
ω2
1T2b

1 + (2π∆T2b)2

(2.4)

Eqn. (2.3) has 6 model parameters (Ra, T2a, Rb, T2b, R and M b
0) that can not be fitted

to experimental data [8, 23]. But Eqn. (2.4) can be approximated since (2π∆T2a)
2 ≫ 1:

Rrfa =
ω2
1T2a

1 + (2π∆T2a)2
≈ ω2

1T2a

(2π∆T2a)2
=

ω2
1

(2π∆)2T2a

(2.5)

Then, by diving Eqn. (2.3) by Ra, and substituting the approximation for the absorption

rate Rrfa, the equation can be simplified to 5 five parameters:

Ma
z =

Rb
RMb

0

Ra
+Rrfb +Rb +RMa

0

RMb
0

Ra
(Rb +Rrfb) +

(

1 +
[

ω1

2π∆

]2
[

1
RaTa

2

])

(Rrfb +Rb +RMa
0 )

(2.6)

With Eqn.(2.6) it is possible to fit the unknown five parameters (Rb, T2b, R, RM b
0/Ra

and 1/(RaT2a)) to the measured Z-sepctrum. However, the physical parameters can not be

determined without information about the longitudinal relaxation rate of the free pool Ra

[8]. To overcome these limitations an independent measurement of the observed relaxation

rate Robs is necessary. The observed relaxation rate is defined as the slow eigenvalue λ2
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of the solution of the coupled Bloch equations under free relaxation time intervals:

dMa
z

dt
= Ra(M

a
0 −Ma

z )−RM b
0M

a
z +RMa

0M
b
z

dM b
z

dt
= Rb(M

b
0 −M b

z )− RMa
0M

b
z +RM b

0M
a
z

(2.7)

where the solution for the longitudinal relaxation is biexponential with the two eigen-

values λ1 and λ2:

Ma
z (t) = C1e

−λ1t + C2e
−λ2t +Ma

0

λ1,2 =
1

2

(

[RM b
0 ] + Ra +R +Rb ±

√

(

[RM b
0 ] +Ra − R−Rb

)2
+ 4R[RM b

0 ]

)

Robs = λ2

(2.8)

Solving for Ra yields to:

Ra =
Robs

a

1 +
[RMb

0
]

Ra
(Rb−Robs

a )

(Rb−Robs
a )+R

≈ Robs
a

1 +
Mb

0

Ra
(Rb − Robs

a )
R ≫ (Rb −Robs

a )

(2.9)

In the agar-gel experiments of Henkelman et al.[8] it was shown that the Lorentzian

line-shape Rrfb of the semi-solid pool does not fit the data well. Alternatively a Gaussian

line-shape instead of a Lorentzian was used. For tissues it was found that a super-

Lorentzian [24], or a ”flexible” line-shape [25], provides the best results.

The usage of CW-irradiation in MT is limited since most of the MRI-scanners are not de-

signed for CW-irradiation, and also the specific absorption rate (SAR) for CW-experiments

exceeds current limits [26].
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2.2.2 Steady-State Pulsed MT-Models

To overcome the limitations of CW-irradiation pulsed MT-models were developed. In-

stead of CW-irradiation, short RF saturation pulses are applied with a certain pulse

repetition rate until a pulsed steady state is reached. The advantage of this approach is

that in the time interval between two pulses the imaging of the tissue can be accomplished

(i.e. spoiling gradient, excitation pulse and readout gradient). A model by Graham and

Henkelman [27] that describes the behaviour of the magnetization with pulsed saturation

pulses is shown in Figure 2.5.

Figure 2.5: Modified two-pool model for the pulsed-MT. Pool A represents the liquid/free pool and
pool B the semi-solid/bound pool with the available magnetization Ma

z and M b
z for each

pool. The saturated magnetization due RF-irradiation is represented as shaded area with
the saturation rates F{B1(t)} and Rrfb{2πδ, t}. The relaxation rates are Ra,b, and the

fully relaxed magnetizations are Ma,b
0 . The exchange of magnetization between the pools

is RM b
0 and RMa

0 . (Adapted from [27])

Basically the modified model that is presented in Fig 2.5 is quiet similar to model for

CW-irradiation in Figure 2.4. However, there are two differences to the model for CW-

irradiation. First, the induced angular frequency ω1 is not constant over time anymore

since the the pulse envelope of the RF-pulse varies over time (|B1(t)| 6= const.). For the

pulsed MT, for example, a Gaussian pulse envelope can be used as pulse envelope and

hence, the angular frequency is a function over time. Whereas in a CW-experiment the

pulse envelope is a rectangular and therefore |B1(t)| = const.. Second, the saturation

rate Rrfb has to be adapted because the Bloch-equations are only valid for a narrow-

spectrum [27] and not a broad spectrum like the spectrum of the semi-solid pool. Thus,

the absorption rate of the semi-solid pool is described by a time dependent saturation

rate Rrfb(2π∆, t).
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In Eqn. (2.10) the modified coupled Bloch-equations for the pulsed-MT are shown, where

the differences to the CW-saturation model are highlighted in blue.

dMa
z

dt
= Ra(M

a
0 −Ma

z ) + ω1(t)M
a
y − RM b

0M
a
z +RMa

0M
b
z

dM b
z

dt
= Rb(M

b
0 −M b

z )− (Rrfb(2π∆, t) +RMa
0 )M

b
z +RM b

0M
a
z

dMa
x

dt
= −Ma

x

T2a
− 2π∆Ma

y

dMa
y

dt
= −

Ma
y

T2a
+ 2π∆Ma

x − ω1(t)M
b
z

(2.10)

For these equations no analytic solution exists, and therefore they must be solved

numerically [27]. However, there have been various numerical approximation derived

[10–12] that are all based on the here presented two-pool model.

The approach of Ramani et al. [12] replaces the time dependent amplitude of the RF-pulse

ω1(t), with a ”continuous wave power equivalent”, ω1CWPE. Therefore the amplitude of

the RF-pulse is replaced by its root man square
√
PSAT , averaged over time T ′

R:

ωCWPE = γ
√

PSAT = γB1CWPE (2.11)

For 2D multislice sequences T ′

R is equal to the repetition time TR divided by the number

of slices acquired withing one TR and for single slice and 3D sequence T ′

R = TR. With

ωCWPE the signal equation derived by Henkelman et al. [8] for a CW-saturation pulse

can be rewritten by replacing ω1 with ωCWPE:

S = gMa
Z

= gMa
0





Rb
RMb

0

Ra
+Rrfb +Rb +RMa

0

RMb
0

Ra
(Rb +Rrfb) +

(

1 +
[

ωCWPE

2π∆

]2
[

1
RaTa

2

])

(Rrfb +Rb +RMa
0 )





(2.12)

where g is scaling factor, and compared to Henkelman et al. [8] the magnetization of the

free pool Ma
0 is not set to 1.

Instead of deriving an approximation for the whole pulse-sequence, Sled and Pike [10]

split up the pulse sequence in three different parts that have a closed solution. In their

approach the off-resonance pulse is approximated with a CW-irradiation for the restricted

pool. Since the off-resonance pulse does not only influence the restricted pool, the effect of
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saturating the free pool is modelled with an instantaneous saturation. In the remaining

time the approximation for the two pools is free precession. In Figure 2.6 the pulsed

MT-sequence with its approximations in the different time intervals is shown.

Figure 2.6: Approximation for the pulsed MT-model by Sled and Pike [10].The off-resonance pulse
is modelled with CW-irradiation for the restricted pool and instantaneous saturation of
the liquid pool. In the remaining time each pool is described by free precession.

The approximation of Yarnkyh [13] divides also the pulse sequence in different time

intervals, in which for each one, a closed solution exists. This approach is discussed in

detail in Section 2.3 since it is the method that is implemented and evaluated in this

thesis.

2.2.3 Transient Pulsed MT-Models

In 2003, Ropele et al. [28] proposed a new approach for estimating the bound pool fraction

in tissues. The method is based on the biexponential decay of the longitudinal magneti-

zation of the free pool that is derived from the coupled Bloch-equations. The eigenvalues

for the biexponential deay are identical to the derived results of Henkelman [8] for the

estimation of the longitudinal relaxation rate for the free pool RF
1 from Eqn. (2.8).

The idea is to label the spins of the free-pool, and due MT the labelled spins are exchanged

with the bound pool resulting in a steady sate concentration of the labelled spins between

the two pools. The labelling is performed with a stimulated echo sequence, where between

the first and second excitation pulse a modulation gradient is turned on. Between the

second and third excitation pulse is a mixing time, where the labelled spins exchange and

T1 relaxation occurs. After the third pulse, the spins are demodulated with the same

gradient, and only the spins that have been initial modulated will contribute to the signal
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of the stimulated echo.

Ropele et al. [28] presented two approaches for fitting the signal to the equation. The first

one is based on several measurement with different mixing times, where signal equation

for the biexponetial decay is fitted to the data. The second one is a fast two-point method

that neglects the fast eigenvalue due the fast decay. Then the bound pool fraction is esti-

mated from two-mixing times, where the second mixing time has an 180◦ inversion pulse

included.

The method by Ropele et al. [28] has the restriction that it is implemented for single-slice

acquisition, and further that it is sensitive to B1 inhomogeneities. In 2011, Soellinger et

al. [29] extended the method of Ropele et al. by an interleaved, multislice, single-shot echo

planar readout (sshEPI). The advantage of this method is that it is possible to acquire

whole brain bound pool fraction map, and an apparent T1 map, within 10-15 min.

The advantage of the STEAM approaches are the low SAR values since there is no off-

resonance pulse needed. Furthermore, there is no additional information necessary com-

pared with the previous described methods with off-resonance saturation because all these

methods need at least a measurement for the observed relaxation rate to estimate param-

eters of the two-pool model.

Besides the STEAM approach there are different approaches that are using the biexpo-

nential relaxation [30–33]. In 2003, a method modified IR sequence by Gochberg [32] with

EPI has been presented. Therefore several inversion recovery measurements with a 1.5ms,

180◦, rectangular inversion pulse at different inversion times are acquired to estimate the

parameters by fitting the equation for the biexponential relaxation. The first clinical

implementation has been desriebd in 2011 with a selective IR (SIR) pulse sequence with

an fast spin echo (FSE) readout and reduced TR [33]. Similar to the above introduced

STEAM approaches, the IR approaches have the advantage that no B0-, B1- and T1-map

is needed compared to the pulsed MT-models and that the SAR is lower. However, one

limimations is that scan time is high with 4 min for one slice [33].

The are also two others methods for the parameter estimation of the two-pool model that

are based on balanced steady state free precession (bSSFP), and nonbalanced SSFP.

The standard signal equations for the balanced, and unbalanced, SSFP do not include

MT. However, in 2008, Gloor et al. [34] derived a signal equation for the bSSFP that

incorporates the coupled Bloch-equations for MT, into the deviation of the bSSFP signal

equation. With this method it is possible to estimate the relaxation rates of the free pool

(T F
1 and T F

2 ), the fractional pool size (
MB

0

MF
0
), and the forward exchange rate (k), by fitting

the data of several bSSFP measurements with different repetition rate TR.

In 2010, Gloor et al. [35] extended the principal of the bSSFP for the nonbalanced SSFP,
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and derived a signal equation for the SSFP-FID including the two-pool model. In contrast

to the bSSFP, the nonbalanced has the advantage that it is not prone to susceptibility,

but on the other hand it is sensitive to motion artefacts.

2.3 Pulsed MT-Model by Yarnykh and Yuan

In this Section a detailed description of the approximation for the pulsed-MT two pool

model by Yarnykh and Yuan [13] is given. In the beginning the pulsed MT-model is

explained, following a deviation of the signal equation. Furthermore, the approach for

measuring the bound pool fraction from a signal off-resonance measurement is discussed

[14].

2.3.1 Overview of the Model

The proposed model of Yarnykh and Yuan [13] for the pulsed-MT is shown in Figure 2.7.

It can be seen that the notations compared to Henkelman and Graham [27] are slightly

different. Yarnkyh [11] introduced two new parameters, the molar fraction f of the bound

spins, and the effective cross-relaxation rate k, which are derived from the parameters of

Graham and Henkelman [27]. Another difference is that Yarnykh describes the saturation

rate of the free pool with W F , and for the bound pool with WB.

In Table 2.1 the notations of Yarnykh [11] are compared with the one of Graham and

Henkelman [27].

Table 2.1: Overview of the notations of Graham and Henkelman [27] and Yarnyk [11] for the pulsed-
MT two-pool model.

Description Henkelman Yarnykh

Abbreviation free pool A F
Abbreviation bound pool B B

Molar fraction of bound spins
MB

0

MA
0 +MB

0
f

Molar fraction of free spins
MA

0

MA
0 +MB

0
1 - f

Exchange rate R MB
0 /k

Exchange rate from free to bound pool RMB
0 k

Exchange rate from bound to free pool RMA
0 k(1-f)/f

Saturation rate free pool Rrfa W F

Saturation rate bound pool Rrfb WB
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Figure 2.7: Two-pool model of Yarnykh and Yuan [13] for the pulsed-MT with direct saturation. The
free pool is on the left hand side (denoted with F) and the bound pool on the right hand
side (denoted with B) where f is the fraction of bound spins. The available longitudinal
magnetization is MF

z and MB
z , and the relaxation rates of the pools are RF

1 and RF
1 .

The influence of RF-saturation is modelled with the saturation rates WF and WB. The
exchange from the free to the bound pool is k and in the opposite direction it is k(1-f)/f.

2.3.2 MRI-Sequence

The pulse sequence that is used by Yarnykh [14] for the MT-imaging is shown in Figure

2.8. It consists basically of two parts, the off-resonance saturation pulse, and a 3D SPGRE

(spoiled gradient echo) imaging sequence. For the off-resonance saturation pulse a single-

lobe sinc with gaussian apodization was applied in the experiments of Yarnykh [14].

Gradient echo sequences are fast imaging sequences that use low-flip angles, and instead of

forming a spin echo with a 180◦ refocusing pulse, a gradient echo is used. The first gradient

echo sequences was published by Haase et al. [36] and its abbreviation is FLASH (fast

low-angle shot). Because of the low-flip angle it is possible to decrease the repetition rate

since the majority of the longitudinal magnetization stays unaffected by the excitation

pulse [36]. Therefore it is possible to start the next excitation immediately after the

readout gradient. The spoiled GRE, or spoiled FLASH, has a spoiling gradient included,

which destroys the transverse magnetization, and due to that, the contrast in spoiled

GRE is mainly T1-weighted.

The difference between a 2D and 3D sequence is that the slice selective excitation pulse

is replace by an nonselective excitation pulse where the whole volume is excited, and

after the excitation pulse, an additional encoding gradient in z-direction is placed for the

slice selection. 3D sequences have the advantage that due the additional encoding in
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z-direction the resolution is isotropic.

Figure 2.8: 3D FLASH sequence with MT off-resonance saturation pulse. RF: pulse timing, Gx,y,z:
encoding gradients, VS: Volume selection, VS-reph: Rephasing gradient of volume selec-
tion, Nslice: N times slice encoding, Nphase: N times phase encoding, PRE: Prephasing
before readout gradient, RO: Readout gradient, SP: Spoiling gradient.
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2.3.3 Deviation of the Signal Equation

The signal equation for the pulsed MT by Yarnykh and Yuan is based on an earlier model

by Yarnyk [11], in 2002, which does not include effect of direct saturation since it assumes

high off-resonance frequencies [11]. Whereas the later model by Yarnykh and Yuan [13]

includes the direct saturation in the deviation of the steady state magnetization.

For the model in Figure 2.7 the modified coupled Bloch-equations, in the rotating frame

of reference, are:

dMF
x

dt
= −MF

x

T F
2

− 2π∆MF
y

dMF
y

dt
= 2π∆MF

x −
MF

y

T F
2

− γB1(t)M
F
z

dMF
z

dt
= γB1(t)M

F
y − (RF

1 + k)MF
z +

k(1− f)

f
MB

z +RF
1 (1− f)

dMB
z

dt
= −RB

1 M
B
z − k(1− f)

f
MB

z −WBMB
z + kMF

z +RB
1 f

(2.13)

In Figure 2.9 the time intervals for the RF-pulses of the spoiled gradient echo pulse

sequence (GRE) are shown. The concept for solving the coupled Bloch equations (2.13)

is similar to the one proposed by Sled and Pike [9], where an approximated solution for

different time intervals within the pulsed steady state is derived.

Yarnyk [11] divides the pulse sequence into the following four intervals: off-resonance

pulse with duration tm, delay ts for the excitation pulse α, the excitation pulse itself, and

delay for signal readout tr.

t

Figure 2.9: Timing of the RF-pulse for the pulse sequence of Yarnykh [13]. It is divided in four
different time intervals. Saturation pulse with time tm, delay ts for excitation pulse α,
excitation pulse, and delay for the signal readout and relaxation tr.
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For the approximation of the modified coupled Bloch equations (2.13) the analysis is

restricted to the evolving of the longitudinal magnetization. Therefore, the longitudinal

magnetization of the free pool MF
zi , and the bound pool MB

zi , is described by a 2x1 vector

at the end of each time interval:

Mi =

[

MF
zi

MB
zi

]

with i = m, s, p, r (2.14)

where the indices m,s, and r denote the time intervals in Figure 2.9 and p denotes the

excitation pulse.

Approximation of the saturation pulse: To find an approximated solution for the

modified coupled Bloch equations Yarnykh [11] proposed to replace the time varying RF

amplitude, B1(t), by its root-mean-square value:

B1rms =

(

1

tm

∫ tm

0

B2
1(t) dt

)1/2

(2.15)

Since the RF amplitude is now constant over time the saturation rates for the free and

bound pool are also constant:

W F,B = π γ B1rms g
F,B(∆, T F,B

2 )

= π ω1rms g
F,B(∆, T F,B

2 )
(2.16)

The absorption line shape of the free pool gF is a Lorentzian that is described in Eqn.

(2.5), and the absorption line shape of the bound pool gB is a super-Lorentzian function:

gB(2π∆, TB
2 ) =

∫ π
2

0

sin(θ)
2

π

TB
2

|3 cos(θ)2 − 1| exp
(

−2

[

2π∆TB
2

|3 cos(θ)2 − 1|

]2
)

dθ (2.17)

If the pulse duration tm ≫ 1
∆

the transverse components of the free pool contain fast-

evolving terms, and therefore they can be set zero [13]. Incorporating the saturation rate

of the free pool into the modified-Bloch equations (2.13), and neglecting the transverse

components of the free pool, one can describe evolving of the longitudinal magnetization
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as followed:

dMF
z

dt
= −W FMF

y − (RF
1 + k)MF

z +
k(1− f)

f
MB

z +RF
1 (1− f)

dMB
z

dt
= −RB

1 M
B
z − k(1− f)

f
MB

z −WBMB
z + kMF

z +RB
1 f

(2.18)

Or rewritten in matrix form:

dMz

dt
= (R+W)Mz +

[

RF
1

RB
1

]

Meq (2.19)

where R is the relaxation matrix, W the saturation matrix, and Meq the equilibrium

magnetization:

R =

[

−RF
1 − k k(1−f)

f

k −RB
1 − k(1−f)

f

]

(2.20)

W =

[

−W F 0

0 −WB

]

(2.21)

Meq =

[

1− f

f

]

(2.22)

The differential equations (2.19) have the same form as:

dM

dt
= AM+BM0 (2.23)

When a steady state solution of Eqn. (2.23) exists, these equations have an analytic

solution:

M(t) = eAtM(0) + [I− eAt]Mss (2.24)
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where eAt is the matrix exponential, M(0) the initial value, and Mss the steady state

value. Substituting the matrix coefficient of Eqn. (2.19) into the solution of Eqn. (2.24)

yields to:

Mm(t) = e(R+W)tMr + [I− e(R+W)t]Mss (2.25)

To characterize the magnetization Mm(t) fully, the steady state magnetization Mss has

to be determined. The steady state magnetization is the magnetization that would be

obtained when applying a RF-pulse with theoretically infinite duration. Therefore, all the

derivatives in Eqn. (2.18) have to be zero to estimate the steady state magnetization:

0 = (R+W)Mss +

[

RF
1 (1− f)

RB
1 f

]

Mss = −(R+W)−1

[

RF
1 (1− f)

RB
1 f

]

(2.26)

For a 2x2 matrix the inverse is:

(R+W)−1 =
1

det (R+W)
adj(R+W) (2.27)
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For the determinant and adjoint of the matrix follows:

det (R+W) = det

[

−RF
1 − k −W F k(1−f)

f

k −RB
1 − k(1−f)

f
−WB

]

= RF
1 R

B
1 +RF

1

k(1− f)

f
+RF

1 W
B + kRB

1 +
k2(1− f)

f

+ kWB +W FRB
1 +W F k(1− f)

f
+W FWB − k2(1− f)

f

= A+ (RF
1 + k)WB + (RB

1 +
k(1− f)

f
)W F +W FWB

= D

(2.28)

where A is the determinant of the relaxation matrix:

A = det(R) = RF
1 R

B
1 +RF

1

k(1− f)

f
+RB

1 k (2.29)
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Finally, for the steady state magnetization follows:

Mss = −(R+W)−1

[

RF
1 (1− f)

RB
1 f

]

= − 1

D

[

−RB
1 − k(1−f)

f
−WB −k(1−f)

f

−k −RF
1 − k −W F

][

RF
1 (1− f)

RB
1 f

]

=
1

D

[

(RB
1 + k(1−f)

f
+WB)RF

1 (1− f) + kRB
1 (1− f)

kRF
1 (1− f) + (RF

1 + k +W F )RB
1 f

]

=
1

D

[

(1− f)(A+RF
1 W

B)

f(A+RB
1 W

F )

]

(2.30)

Solution for non-irradiated time intervals: In the time-intervals without RF-

irradiation the modified Bloch equations are easy to solve. There are two time-intervals

without RF-irradiation of the spoiled GRE sequence. The first one is between the off-

resonance saturation pulse and the readout pulse (ts), and the second one is after the

readout pulse and before the next saturation pulse (tr). For these time intervals the

modified Bloch-equations for the longitudinal magnetization simplify to:

dMF
z

dt
= −(RF

1 + k)MF
z +

k(1− f)

f
MB

z +RF
1 (1− f)

dMB
z

dt
= −RB

1 M
B
z − k(1− f)

f
MB

z + kMF
z +RB

1 f

(2.31)

With the same approach as for the saturation pulse, for the solution of the non-

irradiated time intervals follows:

Ms,r = eRts,rMm,p + [I− eRts,r ]Meq (2.32)

Readout pulse: For the readout pulse it is assumed that it does not affect the bound
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pool, and for the free pool it is described by the flip angle α:

Mp =

[

cosα 0

0 1

]

Ms

= CMs

(2.33)

Pulsed steady state solution: With Equations (2.25), (2.32), and (2.33) every time-

point of the spoiled GRE pulse sequence is defined. Furthermore, if the magnetization is

in the pulsed steady state, Equation (2.34) must be satisfied:

M(t) = M(t+ TR) (2.34)

where TR is the repetition time of the pulse sequence. This condition is schemati-

cally illustrated in Figure 2.10 where the evolving of the approximated solution for the

longitudinal magnetization of the liquid pool is shown.

Figure 2.10: Schematic evolving of the liquid pool longitudinal magnetization with the approximation
of Yarnykh and Yuan [13] in the pulsed steady state (blue line). The arrows indicate
the end of the four time intervals defined in Figure 2.9.

With the condition that the pulsed steady state is reached it is possible to solve the

equations for the magnetization Ms immediately before the readout pulse. To use the

same formalism as Yarnykh and Yuan [13], the matrix exponentials are rewritten to:

Em = exp((R+W)tm), Es = exp(Rts), and Er = exp(Rtr).

The initial value of the relaxation in the time interval ts is the magnetization Mm, at end
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of the saturation pulse, and thus can be plugged into (2.32):

Ms = EsMm + (I− Es)

= Es[EmMr + (I − Em)Mss] + (I−Es)Meq

(2.35)

Plugging in the magnetization Mr after the delay tr:

Ms = Es[Em[ErMp + (I− Erf)Meq] + (I − Em)Mss] + (I− Es)Meq (2.36)

Incorporating the rotation due the flip angle α yields to:

Ms = Es[Em[ErCMs + (I− Erf)Meq] + (I− Em)Mss] + (I−Es)Meq (2.37)

Solving Eqn. (2.39) for Ms:

Ms = EsEmErCMs + EsEm(I− Er)Meq + Es(I− Em)Mss + (I− Es)Meq

(I− EsEmErC)Ms = EsEm(I− Er)Meq + Es(I−Em)Mss + (I− Es)Meq

Ms = (I− EsEmErC)−1 (EsEm(I− Er)Meq + Es(I− Em)Mss + (I− Es)Meq)

(2.38)

The final induced signal SMT in the spoiled GRE is proportional to the longitudinal

magnetization MF
zs of Eqn. (2.38):

SMT = M0M
F
zsexp(−TE/T ∗

2 ) sinα (2.39)

where M0 is the equilibrium magnetization, TE the echo time, α the flip angle, and the

T ∗

2 decay.

To eliminate the influence of the unknown equilibrium magnetization and T ∗

2 a reference
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scan is performed without RF-saturation:

mz =
SMT

Sref
=

M0M
F
zs(W

F (∆, FAMT ),W
B(∆, FAMT )exp(−TE/T ∗

2 ) sinα

M0MF
zs(W

F (∆ = 0, FAMT = 0),WB(∆ = 0, FAMT = 0))exp(−TE/T ∗

2 ) sinα

=
MF

zs(W
F (∆, FAMT ),W

B(∆, FAMT ))

MF
zs(W

F (∆ = 0, FAMT = 0),WB(∆ = 0, FAMT = 0))

(2.40)

2.4 Bound Pool Estimation from a Single Off-Resonance

Measurement

In this work, so far, the pulsed-MT two-pool model by Yarnykh and Yuan [13] including

the approximation for the signal equation has been described. With this approach it is

possible to obtain the parameters of the two-pool model by fitting the data from several

off-resonance measurements, and amplitudes of the RF-pulse, to Eqn. (2.39). However,

in clinical practice this is not acceptable because of the too long scanning times.

In 2002, Yarnkyh proposed a first order approximation of Eqn. (2.39) with neglecting the

direct saturation of the free pool reducing the unknown parameters to three [11]. Later, in

2012, Yarnykh [14] presented a method for estimating the bound pool fraction within an

acquisition time of 10 min. For decreasing the scanning time that much, several assump-

tion and constraints has been proposed, to estimate the bound pool fraction from a single

off-resonance measurement and one reference scan without an off-resonance saturation

pulse.

2.4.1 Assumptions and Constraints

Relaxation rates RF
1 and RB

1 : Without any information about the relaxation rates

RF
1 and RB

1 it is not possible to separate the cross-relaxation parameters f and k [14].

Therefore it is necessary to measure the observed relaxation rates R1 in an independent

measurement [8]. There are basically two approaches for estimating RF
1 and RB

1 . In the

first one, the relaxation rates of the bound pool is set constant, RB
1 = 1s−1 [8, 24], and

in the second one all relaxation rates are set equal, R1 = RB
1 = RF

1 [13, 31]. The last

assumption is used by Yarnykh for estimating the molar fraction f because it excludes the
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question about the magnetic field dependency of RB
1 [14].

Transverse relaxation TB
2 : In the literature only small variations of TB

2 for white

matter, grey matter, and multiple sclerosis lesions, have been reported [13]. Therefore

Yarnykh [14] assumed that TB
2 is constant for all brain tissues.

Transverse relaxation TF
2 : Although the parameter T F

2 and RF
1 vary, the product

is similar for different brain tissue [13], resulting in a constant product T F
2 RF

1 as an ap-

proximation for T F
2 .

Forward rate constant k: By fixing the value of the reverse rate constant, from the

bound to the free pool, it is possible to constrain k [15]:

R = k
1− f

f
(2.41)

2.4.2 Sensitivity Analysis

Yarnkyh [14] also analysed the influence of the different parameters as a function of the off-

resonance saturation frequency and the effective flip angle, to find the best sampling point,

with the above explained assumptions and constraints. For that purpose a sensitivity

analysis was carried out, where the influence of the parameters f, R, TB
2 , and T F

2 was

examined from Z-spectra of white matter (WM), grey matter (GM) and MS-lesions. The

relative sensitivity s for the normalized longitudinal magnetization mz for each parameter

is calculated as followed:

s =
δmz

δp

p

mz

, where p ≡ f, R, T F
2 , TB

2 (2.42)

The sensitivity analysis examines how a change of the input parameter affects the

output of model. If s is small, the influence of the input parameter may be neglected

since it does hardly affect the output, whereas a high s means, that the input parameter

has a strong effect on the output.

As an example the sensitivity analyses of Yarnykh [14] for WM are shown in Figure 2.11.

The fitted Z-spectra for different effective flip angle FAMT are plotted in (a), and the

results of the sensitivity analysis for the off-resonance saturation frequency ∆ and FAMT

are shown in (b) and (c). Here only WM is shown because the tendency for the curves
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for GM and MS is quiet similar.

Figure 2.11: Sensitivity analysis of the pulsed Z-spectra at different effective flip angel FAMT . (a)
shows the pulsed Z-spectra for WM. The sensitivity analysis as function of the off-
resonance saturation frequency ∆ is plotted in (b), and of FAMT in (c). Taken from
[14].

.

As can be seen from Figure 2.11, the bound pool fraction has the largest sensitivity of

all four parameters, whereas the reverse exchange rate R has a very small influence in a

wide range of off-resonance frequencies. The sensitivity of T F
2 decreases exponential and

is zero at off-resonance frequencies greater than 2kHz. TB
2 has one negative peak at about

600 Hz and a positive one at about 12kHz. Between these two points the zero-crossing is

at around 5-6 kHz.

An important point resulting from the sensitivity analysis is that the above formulated

constraints have only little influence on the result for off-resonance frequencies between 3

kHz to 6 kHz, and effective flip angle smaller than 1000◦.

The sensitivity analysis can be used to formulate an optimization problem where the

sensitivity of the bound pool fraction f is maximized, and the influence of the other

parameters are minimized. Therefore Yarnykh [14] proposed an error model, which is

briefly explained in the next section.
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2.4.3 Error Model

The error model of Yarnykh [14] estimates the total error of f for the whole images. The

standard deviation of the bound pool fraction σf is calculated in the model as follows:

σf =

N
∑

i=1

N
∑

j=1

N
∑

k=1

hi,j,kσh(f, Ri, T
F
2,j, T

B
2,k)

=

N
∑

i=1

N
∑

j=1

N
∑

k=1

hi,j,k(σ
2
i,j,k + β2

i,j,k)
1/2

(2.43)

In this model there are two sources for the error in f; namely the errors due noise, which

are described with σi,j,k, and a bias βi,j,k due constraining the remaining parameters, k,

T2,b and T2,f , of the two pool model. The indices denote the different combinations of pa-

rameters wit a total number N that are either measured, for example with a four point fit

of several Z-spectra, or statisticaly description by parameter distributions. The weighting

for each combination of parameters is accomplished by a multiplication of the two error

terms with the joint distribution hi,j,k. One way to estimate the joint distribution of

the parameters is to multiply the estimated parameter histograms for each parameter.

Therefore the error of different parameter combinations has not the same influence on the

total error.

The bias due the constrained parameters is be estimated with an first order error approx-

imation. Changes of the magnetization mz due an error β of the bound pool fraction are

described as:

mz(f + β) ≈ mz(f) +
∂mz

∂f
β

mz(f + β)−mz(f) ≈
∂mz

∂f
β

∆mz ≈
∂mz

∂f
β

β ≈
(

∂mz

∂f

)

−1

∆mz

(2.44)

Now the deviation of the magnetization ∆mz is estimated with an first order approxi-
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mation:

βi,j,k =

(

∂mz

∂f

)

−1

(
∂mz(f, Ri, T

F
2,j , T

B
2,k)

∂Ri
∆Ri +

∂mz(f, Ri, T
F
2,j, T

B
2,k)

∂T F
2,j

∆T F
2,j+

∂mz(f, Ri, T
F
2,j, T

B
2,k)

∂TB
2,k

∆TB
2,k)

(2.45)

where ∆Ri, ∆T F
2,j , ∆TB

2,k described the deviation from the constrained parameters.

Since the noise affects the normalized signal mz, the deviation ∆mz in Eqn. (2.44) has

to be estimated. Assuming that the covariance of the noise in the reference image (Sref)

and in the MT weighted images (SMT ) is and that the standard deviation of the noise

(σN ) is equal in both images then, the deviation of the normalized magnetization can be

described in terms of SNRref and mz:

∆mz = mz

(

(

σN

SMT

)2

+

(

σN

Sref

)2
)1/2

=

(

(

mzσN

SMT

)2

+

(

mzσN

Sref

)2
)1/2

=

(

(

mzσN

SMT

Sref

Sref

)2

+

(

mz

SNRref

)2
)1/2

=

(

(

1

mz

)2

+

(

mz

SNRref

)2
)1/2

=

(

1 +m2
z

SNRref

)1/2

(2.46)

Now the final error due noise can be estimated by plugging in the results of Eqn. (2.46)

in Eqn. (2.45):

σi,j,k =

(

∂mz(f, Ri, T
F
2,j, T

B
2,k)

∂f

)

−1
(1 +mz(f, Ri, T

F
2,j, T

B
2,k)

2)1/2

SNRref

(2.47)

2.4.4 T1-Mapping

As mentioned in Section 2.2 it is not possible to determine the two-pool parameters with-

out an independent measurement of the observed relaxation time T1.

The gold standard for estimating T1 is based on an inversion recovery (IR). The sequence

starts with an 180◦ RF-pulse that inverts the longitudinal magnetization. Then the mag-
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netization recovers with the T1-relaxation time and after the inversion time a 90◦ RF-pulse

flips the magnetization into the transverse plane. By forming a spin echo with a 180◦ RF-

pulse at TE/2 the signal is measured [37].

If the repetition rate is sufficient long (TR ≥ 5T1), T1 can be fitted by the following signal

equation:

M(TI) = M0(1− βe−TI/T1) (2.48)

where M0 is the equilibrium magnetization, β the inversion factor, which is 2 for a perfect

180◦ inversion pulse, and TI the inversion time.

However, this method has the drawback that it is slow since fully recovery of the longi-

tudinal magnetization (TR ≫ 5T1) is necessary for the validity of the signal equation.

Instead of acquiring one sample with one inversion pulse, the Look-Locker sequence [38]

uses one inversion pulse followed by train of RF-pulses with low-flip angle.

Another approach is the Magnetization Prepared 2 Rapid Acquisition Gradient Echoes

(MP2RAGE) sequence [39]. The MP2RAGE can be split up into two MPRAGE [40]

blocks, where each block consists of a GRE block with two different flip angles, α1 and

α2. Before the first GE block a 180◦ inversion pulse is used to invert the magnetization.

The inversion times, TI1 and TI2, are defined from the inversion pulse until the center of

the k-space is acquired. TA is the delay until the start of the first gradient echo block, TB

the delay until the second gradient echo block, and TC the time until the next repetition.

Figure 2.12: Sequence diagram of the MP2RAGE [39] sequence.

With two images, GRETI1 and GRETI2, acquired at different inversion times the

– 31 –



2 Background

MP2RAGE is calculate:

MP2RAGE =
GRETI1GRETI1

GRE2
TI1 +GRE2

TI2

(2.49)

which is ranging from -0.5 to 0.5. By using the signal equation of the MP2RAGE, which

includes also the sequence parameters, a look-up table is generated that assigns a T1-

value to the MP2RAGE value [39]. The advantage of this method is that it eliminates

the influence of the proton density M0, T
∗

2 , and the receive B−

1 fields [39].

In the experiments of Yarnykh [14] the variable flip angle (VFA) method by Fame et al.

[41] was implemented for estimating the T1-Map.

The VFA method is based on a gradient echo sequence with variable flip angle α where

T1 is estimated by fitting the signal of different flip angles I(α) to Eqn. (2.50).

I(α)

sin(α)
= e−TR/T1

I(α)

tan(α)
+N(H)(1− e−TR/T1)−TE/T2∗ (2.50)

Since the additive term on the right hand side of Eqn. (2.50), with the factor N(H)

that incorporates the relative proton density, the amplification factor and coil sensitivity,

is constant for all measurement it is possible to estimate T1 from several measurements

with different flip angle.
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2.5 Field Corrections for the Pulsed MT-Model

2.5.1 B0-Mapping

A simple approach for the estimation of the B0 field map is the dual phase difference

method where two phase images with different echo times are acquired [42].

The phase shift φ for the two echoes, TE,1 and TE,2, is given by:

φ1 = φ0 + ωTE,1

φ2 = φ0 + ωTE,2

(2.51)

where φ0 is the initial phase shift. With the phase difference, ∆φ = φ2 − φ1, of the

acquired phase images one can solve Eqn. (2.51) for the angular frequency ω:

ω =
∆φ

TE,2 − TE,1
(2.52)

If the time difference between the two echos is small enough, such that both phases are

< 2π, the phase difference can be calculated with the two complex images I1 and I2:

∆φ = tan−1

(

Im{I1I∗2}
Re{I1I∗2}

)

(2.53)

2.5.2 B1-Mapping

For a preciser estimation of the bound pool fraction from the pulsed MT-model knowledge

of the actual flip angle is needed for the correction of the flip-angle in Eqn. (2.38), the

correction of the saturation pulse amplitude, and for the correction of the VFA method

for estimating T1.

There have been several techniques proposed in the literature for B1-mapping [43–46].

All these methods have in common that they acquire two images with different settings

from which the B1-map is estimated. The Double Angle Method (DAM) [43] for example

uses two different excitations angles with a repetition, which is much more longer than

the T1-relaxation (TR ≥ 5T1), to guarantee that longest T1 relaxation within the object is

fully relaxed. With the constrain that α2(x) = 2α1(x), the flip angle α1(x) can be derived
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from the ratio of the two signal intensities. Doing so, one gets a solution for α1(x):

α1(x) = arccos
I2(x)

2I1(x)
(2.54)

The advantage of the DAM is that it excludes the influence of the coil sensitivity, spin

density, and the T2 relaxation time, on the active B1+-map [43].

In 2007, Yarnykh presented the actual flip angle imaging (AFI) pulse sequence that is

based on two identical RF-pulses with different repetition rates TR1 and TR2 [45], which

he is also using for the fast bound pool fraction estimation from a single off-resonance

measurement [14]. The schematically timing of the RF-pulses, and the two signals S1

and S2, is illustrated in Figure 2.13. The signals S1 and S2 are measured with a gradient

echo readout. After the repetition rates the transverse magnetization is destroyed with

spoiling gradients after both repetition rates.

Figure 2.13: Timing of the two identical RF-pulses with flip angle α and repetition rates TR1 and
TR2 for the AFI method. S1 and S2 are the measured signal with gradient echo readout.
Adapted from [45].

The actual flip-angle is derived from the pulsed-steady state signal and therefore the

repetition rates have to be smaller than the T1 relaxation rate (TR1 < TR2 < T1) to

achieve a pulsed steady state signal. Then an approximation for the actual flip-angle can

be derived from the ratio of the signal intensities (r = S2/S1) and the ratio of the ratio

of the repetition rates (n = TR1/TR2):

α ≈ arccos
rn− 1

n− r
(2.55)

An excellent comparison between the most prominent techniques can be found in [47].
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3
Methods

This chapter is divided into five Sections that describe the simulations and measurements

that were performed in this thesis. The first section describes the general implementation

of the pulsed-MT model and the simulations that were carried out to validate the model.

Further it describes how the parameter estimation of the pulsed-MT model was performed.

The next section deals with the errors that arise with fast bound pool fraction estimation

from one single off-resonance measurement [14]. Therefore a numerical error model is

introduced, and compared with the error-model proposed by Yarnyh [14].

The last three sections explain the steps for the practical implementation of Yarnykh’s

approach [14] on the MRI scanner and its validation. First, the methods for the BSA

phantom measurements are described, then the post mortem measurements, and in the

last section the methods for the in vivo measurements are described.

3.1 General Implementations and Simulations

3.1.1 Coupled Bloch Equations and the Pulsed MT-Model

Coupled Bloch Equations

For the validation of the approximation of the pulsed-MT model by Yarnykh and Yuan

[14], the coupled Bloch equations (2.13) were solved iteratively with Matlab (Mathworks

Inc., Natick, USA) until the pulsed-steady was reached for the FLASH sequence with MT

saturation. As solver, the ODE45 function of Matlab for nonstiff differential equations

was chosen.

Similar to the deviation of the approximated equation for the pulsed-MT model the pulse

sequence is divided into four parts, where for each part the solution of the coupled Bloch

equations is estimated numerical. In Figure 3.1 a flow-chart of the implementation is

illustrated.

The simulation starts with the equilibrium magnetization Meq as initial value. During the
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RF-saturation pulse, for each iteration of the solver, the values of the RF-pulse envelope

B1(t) in Eqn. (2.13) has to be updated. Therefore, a separate function was implemented

that returns the amplitude for that specific pulse envelope (i.e. a gaussian envelope).

Furthermore, for estimating the absorption rate WB of the bound pool the value of the

super-Lorentzian function g(∆, T b
2 ) is determined by a separate function that solves the

integral in Eqn. (2.17) numerical with the trapezoidal method, trapz(), in Matlab.

In the time interval ts, before rotating the magnetization with the excitation RF pulse

α, the coupled Bloch equations are simplified since B1(t) = 0 (free precession). Hence,

only cross-relaxation occurs according to the analytic solution of Eqn. (2.32). After the

excitation RF pulse the same function is again used.

The effect of the excitation RF pulse is modelled by rotating the longitudinal magneti-

zation of the free pool with the flip angle α. For the bound pool it is assumed that the

excitation RF pulse does not affect the magnetization. Therefore, the readout pulse for

the longitudinal magnetization is described by the matrix C in Eqn. (2.33).

The spoiling of the transverse magnetization is implemented by setting it to zero, be-

fore each saturation pulse and the readout pulse. To guarantee that the pulsed-steady is

reached the simulations were carried out until the deviation of the current magnetization

before the readout Ms, i, and before the last readout Ms, i−1, was smaller than 10−4.

Approximated pulsed MT-Model

The approximations for the pulsed MT-model by Yarnykh and Yuan [13] were imple-

mented in two different ways.

First, the approximated signal equation (2.38) was used to calculated the longitudinal

magnetization immediately before the readout pulse in the pulsed steady state.

Second, similar to the numerical implementation of the coupled Bloch equations, also the

approximated solution for the different time intervals was calculated in a function until

the pulsed steady-state was reached. The second approach was used to verify the solution

of Eqn. (2.38), and furthermore, to compare the agreement with the solution of the nu-

merical implementation of the coupled Bloch equations at any point in time of the pulse

sequence.

Validation of the pulsed MT-model

To validate the approximations of the pulsed MT-model by Yarnykh and Yuan [13] several

simulations with different parameters of the two-pool model, and parameters of the pulse
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Initialization

i:=1

Saturation

Pulse

Free

Precession

Free

Precession

Rotation

Flip Angle ✁   

Mr,i

Mm,i

Ms,i

Mp,i

|Mr,i - Mr,i-1|

< 10-4
Stop

Simulation

Yes
No

i=i+1

B1(t), WB(✂, T2
B), WF(✂, T2

F)

Mr,i

Mr,1
F,B = Meq 

Mr,x,y
 F,B = 0 (spoiling)

Ms,x,y
 F,B = 0 (spoiling)

tm

Figure 3.1: Flow chart of the numerical implementation of the coupled Bloch equations for one off-
resonance saturation frequency. The pulse sequence of the pulsed MT-model is split
up into four different time intervals, where for each time interval the coupled Bloch
equations are solved numerically. The longitudinal magnetization of the free pool before
the off-resonance saturation pulse is denoted with MF

r,i, and immediately after the pulse

with MF
m,i. The magnetization before and after flip angle α is MF

s,i and MF
p,i. Then,

the input for the next iteration is the magnetization MF
r,i at the end of the sequence

repetition time. The simulation stops when the deviation from the last iteration is less
than 10−4, otherwise the counter i is increased by 1 and the simulation is continued.

sequence, were carried out with the coupled Bloch equations and their approximation by

Eqn. (2.38).

In Table 3.1 the results fro the four-parameter fit of Yarnykh [14] for WM are listed.

With these parameters, and the sequence parameters of Yarnykh [14] in Table 3.2, several

simulations has been performed.

Steady state solution: The derived steady-state solution Mss in Eqn. (2.30) was

compared with the numerical simulations of the coupled Bloch equations over a wide

range of off-resonance saturation frequencies. For estimating the numerical solution of

the steady-sate magnetization a CW experiment, with a 5s rectangular RF-pulse and an

amplitude of ω1rms = 634.6rad/s, was simulated. The parameters for the two-pool were

set as listed in Table 3.1.
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Pulsed Steady State: The evolution of the longitudinal magnetization over time was

simulated for different off-resonance saturation frequencies until the pulsed-steady was

reached.

Z-spectra: To show the influence of the parameters from the two-pool model, Z-spectra

were estimated by varying each parameter in Table 3.1 in a physical reasonable range –

whilst keeping the other parameters of Table 3.1 constant. To compare the results with

the coupled Bloch equations the average deviation, denoted as σ1kHz, of the approximated

model and the coupled Bloch equation were calculated for values above an off-resonance

saturation frequency of 1kHz.

Table 3.1: Two-pool parameter set for WM that was derived by Yarnykh [14] from a four-parameter
fit of the Z-spectrum assuming that RF

1 = RF
1 .

RF
1 RB

1 T F
2 TB

2 k f

1.17s−1 1.17s−1 21ms 9.7µs 3.5s−1 14.8%

Table 3.2: Sequence parameter for the simulations.

ω1rms tm ts tr α

634.6rad/s 20ms 3ms 25.2ms 10◦

3.1.2 Parameter Estimation of the Pulsed MT-Model

The problem for estimating the four parameters (p = [f, k, T F
2 , TB

2 ]) of the two-pool model

can be considered as a non-linear least squares problem where the difference between the

expected, or measured value mz,exp, and the estimated value of the model mz,model(p) is

minimized in the L2-norm:

min
∆

‖mz,exp(∆)−mz,model(∆,p)‖2 = min
∆

N
∑

i=1

(mz,exp(∆i)−mz,model(∆i,p))
2 (3.1)

where ∆i are the different off-resonance saturation frequencies with a total number N.

The minimization problem was solved with the lsqnonlin function of MATLAB which

has two different algorithm implemented for estimating the parameters. The default

algorithm of the lsqnonlin function is the Trust-region-reflective, and the second one is

the Levenberg-Marquardt algorithm.
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Quality of Fit

To asses the quality of the estimated parameters different methods were used. First,

the residuals ri for each measured off-resonance saturation frequency were calculated

defined as the difference of estimated magnetization mz(p,∆i) mz,exp and the measured

magnetization mz,exp(∆i):

ri = mz(p,∆i)−mz,exp(∆i) i = 1, 2, ..., N (3.2)

then the residual norm is defined as followed:

rnorm =

√

√

√

√

N
∑

i=1

r2i (3.3)

The function lsqnonlin provides also the Jacobi matrix J as an additional output param-

eter from the last iteration of the solver. Assuming that the errors of the measured data

points mz,exp are statistically uncorrelated, it is possible to approximate the covariance

matrix of the parameters with the Jacobi matrix J:

Cov(p) ≈ σ2(J(p)TJ(p))−1 (3.4)

where σ2 is the variance of the noise of the measured data.

Further, with the covariance matrix an approximation of the confidence intervals can

be made. The approximated confidence intervals are estimated as follows:

pα = p± t1−α
2
(ν)
√

diag(Cov(p)) (3.5)

where t1−α
2
(ν) is the student’s t-distribution with a significance α and ν degrees of

freedom.
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3.2 Error Model of Yarnykh Compared with Numerical

Error Simulations

For the error estimation of the single-point approach Yarnykh proposed an error model

[14], which is also briefly described in Section 2.4.3. This model has been implemented in

this work to estimate the mean absolute percentage error of the approach, and addition-

ally numerical error simulation were carried out to validate the error-model of Yarnykh

[14].

Numerical Errror Simulations

For the numerical error simulations the same formalism is used as in the error model of

Yarnkyh [14], but instead of a first order approximation of the errors, the error due noise

σi,j,k, and the bias βi,j,k, are estimated numerical. In Figure 3.2 a sketch is shown that

illustrates the numerical error-model for the single-point approach with the bias in the

upper path and the error due noise in the lower path.

Figure 3.2: Numerical error simulations of the single-point approach with a synthetic data set. The
upper path estimates the bias βi,j,k, due constraining the parameters (R, RF

1 T
F
2 and TB

2 )
from their actual value (Ri, T

F
2,jandT

B
2,k) for a specific f and RF

1 . The bias is estimated as
the deviation from the true bound pool fraction f, and the estimated bound pool fraction
f1p. The error due noise σi,j,k is estimated similar, except that noise is added after the
estimation of the Z-spectrum, and that the constraints of the single-point approach are
the input parameters of the pulsed MT-model. The final error is the root mean square
error weighted with hi,j,k.

To estimate the bias and the errors due noise of the single-point approach predefined

parameter sets of the two-pool model are used as a reference. This simple approach has

the advantage that the true values of the parameters are known.

In the first step for the current parameter set, Ri, T
F
2,j and TB

2,k, the Z-spectrum is calculate
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with Eqn.(2.40) of the pulsed MT-model. Then with single-point approach the bound

pool fraction f1p is estimated by fitting the value of the magnetization mz at a certain

off-resonance saturation frequency and amplitude. After that, the bias is calculated as

the deviation from the true value of the bound pool fraction f from the estimated one f1p.

For estimating the error due noise the numerical approach is similar, except that the

constraints of the single-point model are the input parameters resulting in zero bias and

that noise with a standard deviation σnoise(mz) is added before estimating f1p:

σnoise(mz) =

√

1 +m2
z

SNRref
(3.6)

assuming that the covariance of the noise in the reference image and the off-resonance

images is zero.

After adding noise the bound pool fraction is estimated with the single-point approach,

and then, the difference between the constrained value is calculated to estimate the error

due noise.

To calculate deviation σf,i,j,k of f for the given parameter set the resulting term of the

root mean squared value of the bias and error due noise is multiplied with weighting

factor a hi,j,k. For the numerical simulations hi,j,k was derived from the multivariate

normal probability density function of the parameter combinations. The multivariate

normal probability density was estimated with the mvnpdf() function and then the result

was normalized with its sum to achieve that the sum of all coefficient is 1. The input

parameters of the function were the mean and standard deviation of the parameters.

Furthermore it was assumed that the covariances of the parameters are zero.

Finally, the mean absolute deviation σf for the complete parameter set was estimated by

summing up the individual error hi,j,kσh.

Simulations

In the simulations the error model of Yarnykh [14] was compared with the numerical error

simulations to evaluate the strength and weaknesses of each method. For that purpose

a synthetic data set was generated with a total number of 500 parameter combinations.

This synthetic data set consisted of different parameter combinations of the two-pool

model, which serve as reference value for the error estimation. Similar to simulations of

Yarnykh [14] the relative error of the single-point approach was simulated with an aver-

age brain. For the simulations it was assumed that the three parameters R, TB
2 , T F

2 of

the two-pool model are normally distributed, and that the parameters are independent

from each other. Note that the reverse rate R is constrained by R = k(1 − f)/f , and
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that f is fixed approximately on the average brain value, f = 9%, which was found by

Yarnykh [14]. Furthermore it is assumed that the observed longitudinal relaxation rate

R1 = 0.9s−1 is constant for all data points. The constraints for the single-point approach

were set to the values that were estimated by Yarnykh [14] for an average brain.

Table 3.3 summarizes the mean and the standard deviation of the parameters that were

used to generate the synthetic data. Note that the standard deviations were approximated

from the parameter histograms since their were no explicit value stated in [14].

Table 3.3: Mean and standard deviation of the parameters that were used to generated the synthetic
data set to compare the error model of Yarnykh [14] and the numerical error simulations.

R TB
2 T F

2

19s−1 ± 8s−1 9.7µs± 2µs 244ms± 5ms

For the error model of Yarnykh [14] two functions were implemented in MATLAB,

which estimate the error term σi,j,k due noise and the bias βi,j,k for a set of parameters

(Ri, T
F
2,j, T

B
2,k). The derivations in the error model were solved numerically with finite

differences. To compare the results of the error-model with the numerical simulations the

mean absolute percentage error δf was calculated by dividing the standard deviation of

the estimated bound pool fraction by the average brain value (9%):

δf =
σf

f
100% (3.7)

To illustrate the influence of noise, several simulations with different SNRref were

performed with the generated parameter set. Furthermore simulations with different

effective flip angles were carried out.
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3.3 BSA Phantom Measurements

In order to validate the pulsed MT-model by Yarnykh and Yuan[13], and furthermore

the single-point approach by Yarnykh [14], measurements with cross-linked bovine serum

albumin (BSA) were carried out. Therefore images were acquired with a 3T MRI scanner

(MAGNETOM Prisma fit, Siemens Healthcare, Siemens, Erlangen, Germany) with a

water phantom that contained 28 cuvettes with four different BSA concentrations ([BSA]

= 14, 18, 22, and 26%), where each sample was doped with seven different ferritin (from

equine spleen) concentrations ([Fe] = 0, 25, 50, 75, 100, 150, 175 and 200mg/kg). The

different BSA concentrations were used to simulate the bound pool of the two-pool model.

The purpose of the different ferritin concentrations for the same BSA concentration was

to change the observed relaxation time T1,obs while keeping the bound pool fraction the

same. A schematic sketch of the cross-section of the BSA-phantom is illustrated in Figure

3.3.

[F
e
] 

[BSA]
14%18%22%26%

0mg/kg

25mg/kg

50mg/kg

75mg/kg

150mg/kg

175mg/kg

200mg/kg

distilled water

Figure 3.3: Schematic sketch of the cross-section of the BSA phantom. From right to left the BSA
concentration increases and from top to bottom the iron concentration increases. The
bottom-left cuvette is a sample which contains distilled water as a reference value a bound
pool fraction of zero.

3.3.1 MRI Protocol and Image Preprocessing

MT-weighted images

MT-weighted images were acquired with FLASH sequence and a gaussian saturation pulse

at fifteen resonance offsets (∆ =0.6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20 and 96 kHz) with

three different effective saturation saturation flip angles (FAMT = 600◦, 800◦, and 1000◦).

Every image was acquired four times so that the SNR could be increases by averaging.

In Figure 3.4 a screenshot of the sequence for one repetition rate is shown and in Table
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3.4 the detailed sequence parameters are summarized.

Figure 3.4: Screenshot of the FLASH sequence with MT saturation pulse for one repetition rate. A
brief description of the sequence can be found in Section 2.3.2.

The acquired MT-weighted were normalized with the image acquired at 96kHz off-

resonance saturation frequency, assuming that the pulse has no saturation effect, and

therefore that the MT-pulse has no influence on the measured signal.

Table 3.4: Sequence parameter of the FLASH sequence with gaussian saturation pulse for the BSA
phantom measurements.

FAMT tm ts tr α

600◦/800◦/1000◦ 19ms 4 ms 27ms 18◦

For the three image series with different effective saturation flip-angles the same pro-

cessing steps were carried out. First, the normalized magnetization mz(∆) was calculated

by dividing the off-resonance images with the reference image that was acquired at 96

kHz. After the normalization voxel values that were greater than 1 were set to 1, and

values that were not defined were set to 0.
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T1-map

For the reconstruction of the T1-map a spin echo inversion recovery sequence was used.

In this experiments six inversion images (TI = 100, 200, 400, 800, 1600 and 3200ms)

were acquired with a repetition rate TR of 12s. The T1 times were estimated by fitting a

single exponential relaxation function for each voxel of the images with the LM-Fletcher

algorithm.

B1-map

For the estimation of the active field B1+-map the Double Angle Method (DAM) [43] with

EPI readout was used. The two double angle images (α1 = 40◦, α2 = 80◦) for the B1+-

map were acquired with the same FLASH sequence that was used for the MT-weighted

images, but without MT-saturation pulse and with a TR of 12s. After the calculation of

α1(x) the resulting image was normalized with 40◦ and filtered with a gaussian filter with

a kernel size of 41 pixels and a standard deviation of 21.

B0-map

For the estimation of the B0 field map the phase difference method was used. Therefore

two GRE images (α = 30◦, TR = 50ms) with TE,1 = 4.1ms and TE,2 = 6.1ms were

acquired to calculate the B0-map from the phase shifts between both echos.

3.3.2 Estimation of the Reference Bound Pool Fractions

The purpose of the phantom measurements was to examine four major points that have in-

fluence on the results of the fast bound pool fraction estimation from a single off-resonance

measurement: the selected off-resonance saturation frequency with different amplitudes,

the noise and the bias due to constraining the parameters. Therefore a reference value

was estimated with a four parameter fit of the pulsed MT-model [13] that was as accurate

as possible the true value of the bound pool fraction for each BSA concentration.

For each saturation pulse amplitude all four image series of each off-resonance frequencies

were averaged, and then further, the voxels in each ROI were averaged to get the best

signal to noise ratio for each ROI. Finally, the signal values for each BSA concentration

and off-resonance saturation frequency were normalized with the averaged value at the

off-resonance saturation frequency of 96kHz. Then final results of the averaging were
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three Z-spectra for each BSA concentration with the three different effective saturation

flip angles FAMT .

With the Z-spectra the two-pool parameters of the BSA concentrations were estimated

with two different fitting approaches. In the first approach the Z-spectra for the three

saturation pulse amplitudes were fitted separate for each BSA concentration resulting in

three parameter sets. Whereas in the second approach a global fit was performed by

minimizing the cost-function of the three spectra for one BSA concentration resulting in

one parameter set.

Before fitting the Z-spectra the flip angle of excitation RF pulse α and the effective

saturation flip angle were corrected by multiplying it with the normalized B1+-map. Fur-

thermore the off-resonance saturation frequency of the saturation pulse was corrected by

calculating the frequency shift ∆f with the B0-map (∆f = γ∆B0

2π
).

To compare the results of the fits, and to choose the most reasonable fit, the confidence

intervals for α = 0.05, defined in Eqn. (3.5), were calculated. Then linear regressions with

the estimated bound pool fractions as function of the BSA concentrations were carried

out to asses the quality of the different fits.

For the evaluation it was assumed that in each curvette the BSA concentration is homo-

geneous, and that signal deviation within the cuvette are only due to field bias.

3.3.3 Evaluation of the Single-Point Approach

For the estimation of the bound pool fraction from a single off-resonance measurement [14]

the three constraints of the the remaining parameters (R, T F
2 RF

1 , T
B
2 ) had to be defined

of the pulsed MT-moded. These constraints were estimated by calculating the weighted

mean of the previous estimated reference values. The number of voxels within a ROI were

chosen as weights to account for the different number of voxels within the ROIs. In order

to get different SNR, the four acquired image series, for each off-resonance saturation

frequency and saturation pulse amplitude, were averaged from one to four resulting in

four image series with different SNR. Then with each image the bound pool fraction was

estimated in the first four BSA ROIs (without iron) with the single-point approach. Like

for the estimation of the reference values, the flip angle and the effective flip angle were

corrected with the normalized B1+-map and the off-resonance saturation frequency was

corrected with the B0-map.

To compare the estimated bound pool fraction f1p,vx,ROIx from a single off-resonance

measurement the mean absolute error δfROIx
was estimated with the previous estimated
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reference value fref,ROIx for each ROI:

δfvx,ROIx
=

1

Nvx

Nvx
∑

vx=1

|f1p,vx,ROIx − fref,ROIx

fref,ROIx

| (3.8)

where the vx stands for voxel with a total number Nvx, and x in ROIx denotes ROI 1

to 4. Then, the mean absolute percentage error was calculated for the total number NROI

of the ROIs:

δf = 100%
1

NROI

NROI
∑

x=1

δfvx,ROIx
(3.9)

Furthermore, the estimated mean absolute percentage errors were compared with the

predicted error from numerical error simulations.

A synthetic image was generated where each voxel within the ROIs has the same two-pool

parameters and RF
1 as the estimated reference values of the four parameter. With this

data set numerical error simulations of the single-point approach were carried out with

the same sequence parameters described in Section 3.3.1. The numerical error simulations

are similar to the once carried out in Section 3.2 with the only difference that RF
1 and f

were input parameters for each voxel. Therefore the Z-spectrum was calculated with five

parameters (f, k, T F
2 , TB

2 and RF
1 ) rather than with average values for f and RF

1 . The

weighting hi,j,k was set to 1 since the complete parameter distribution was simulated.

3.3.4 Influence of T1,obs

To evaluate the influence a varying observed relaxation time T1,obs on the pulsed MT-

model, while the bound pool fraction is constant, the remaining BSA samples with iron

were analysed. Therefore the first six rows, which had the same iron concentration, were

examined separate with the same methods described before in section 3.3.2, expect that

only a global fit was performed. Plots were created with the estimated bound pool fraction

as a function of the BSA concentration for each iron concentration to asses the influences

of different T1,obs.
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3.4 Post Mortem Measurements

With a slice of a fresh post mortem brain, embedded in Galden (proton free solution), the

four-parameters of the two-pool model and the bound fraction from a single off-resonance

measurement were carried.

For estimating the four two-pool parameter MT-weighted images with three different

effective saturation flip angles (FAMT = 600◦, 800◦, and 1000◦) at fifteen off-resonance

saturation frequency (∆ =0.6, 1, 1.5, 2, 2.5,3, 4, 5, 6, 7, 8, 10, 12, 16, 32 and 96 kHz) and

6 signal averages were acquired, resulting in 45 data points for each voxel. The images

were normalized with the image acquired at 96 kHz off-resonance saturation frequency.

The B1-, B0-, and T1-map were estimated with the same methods as for the BSA-phantom

measurements described in Section 3.3.1. All images were acquired with a resolution of

1x1x1mm3.

Then, with the Z-spectra a global fit was performed for each voxel where the flip angle

and effective saturation flip angle were corrected with normalized B1+-map and the off-

resonance saturation frequency was corrected with the B0-map. To asses the quality of

the estimated parameters the confidence intervals estimated were estimated with Eqn.

(3.5) (α = 0.05). The standard deviation of the noise was approximated by the mean

value of Eqn.(2.46) for the measured data points.

The estimated parameters for WM, GM and the whole brain (WM + GM) were analysed.

Therefore a WM and GM mask was generated by windowing the T1-map: WMT1 =

[0.8, 1.1]s−1 and GMT1 =]1.1, 8]s−1.
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3.5 In Vivo Measurements

In the last step of the thesis the fast bound pool fraction estimation from a single mea-

surements [14] was performed with in vivo measurements. Similar to the BSA-phantom

and post mortem measurements the method was compared with the four-point fit results

of the pulsed MT-model. Therefore a separated MRI-protocol was designed which allows

to estimate the four two-pool model parameters within tolerable in vivo scan times.

Then the MRI-protocol was changed to a high resolution MRI-protocol, which allows to

calculate high resolution f-maps with the single-point approach.

3.5.1 Parameter Estimation Pulsed MT-Model

In order to find the best constraints for the fast bound pool fraction estimation, the

two-pool model parameters were estimated by fitting the pulsed MT model to seven

off-resonance saturation frequencies (∆ =0.6, 1, 2, 4, 8, 12, and 96 kHz) and two ampli-

tudes (FAMT = 600◦, 1000◦) with an excitation flip angle α = 18◦ and a repetition rate

TR = 50ms. All images were normalized with the image acquired at 96 kHz off-resonance

saturation frequency.

Analogous to the BSA phantom and the post-mortem measurements the Double Angle

Method [43] and the phase difference method was used for the estimation of the B1+-map

and B0-map, respectively. To decrease the scan time for the Double Angle Method the

B1+-map was estimated with a 2D EPI read out with flip angles α(x) = 60/120◦ and a

repetition rate of TR = 12s. For the B0-map the echo times of the 3D GRE were set to

TE,1 = 4.1ms and TE,2 = 5.1ms. For the T1-mapping a MP2RAGE [39], wich is illustrated

in Figure was selected.

All images were acquired with the same in-plane resolution of 1.5x1.5mm2 and a slice

thickness of 5mm.

The scan time was about 2min 25s for each MT-weighted image, 2min 30s for images

of the B0 calculation, 2min 20s for images for the B1+-map, and 4min 30s for the

MP2RAGE image, resulting in total scan time for the entire protocol of 45min.

Before starting the image processing the MT-weighted images and the T1-map were reg-

istered with the eddy current correction implemented in FSL 1 [48]. The brain, WM and

GM were extracted from the T1-map using SIENAX2 [49, 50] with the following parame-

ters: sienax T1map.nii.gz -d -B ”-f 0.35 -R -S -B” -r -d.

With the normalized Z-spectra images the four two-pool model were estimated by a voxel

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA
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based fit of the pulsed MT-model. The quality of the parameters for each voxel was

evaluated by calculating the confidence intervals with Eqn. (3.5) with α = 0.05. For each

voxel the standard deviation of the noise was approximated by measuring the SNR of the

reference image SNRref and taking the mean of the standard deviations estimated with

Eqn. (2.46) for all the data points of the voxel.

With the estimated maps parameter histograms were generated and the median of the

parameter histograms was used to define the constraints of the single-point approach.

Furthermore with the numerical error-model, described in Section 3.2, simulations were

carried out to find the best sampling point for estimation the bound pool fraction from a

single off-resonance measurement.

3.5.2 Single-Point Approach

With the results from the four parameter fit the constraints were estimated for the esti-

mation of high resolution f-maps with the single-point approach. Therefore MT-weighted

images with a resolution of 1x1x2.5mm3 were acquired with three different off-resonance

frequencies (∆ =4, 6, 96 kHz) at one saturation pulse amplitude (FAMT = 600◦). The two

images at 4kHz and 6kHz were normalized with the one acquired at 96kHz off-resonance

saturation frequency. The T1-map was acquired with MP2RAGE, which was acquired

at the same resolution as the MT-weighted images and, the field correction images were

acquired with a lower resolution of 2x2x5mm3.

After interpolation of the B0-map and B1+-map to the size of the MT-weighted images

the f-maps were calculated with the single-point approach as described in Section 3.3.3.
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4
Results

4.1 General Implementations and Simulations

4.1.1 Coupled Bloch Equations and the Pulsed MT-Model

Steady State Solution

In Figure 4.1 the simulation results with the two-pool parameters of Table 3.1 for the

steady state solution Mss for different off-resonance saturation frequencies ∆ is shown.

The solid line represents the solution of the numerical simulation of the coupled Bloch

equations (2.13), and the dashed line the analytic solution of Eqn. (2.30). It can be seen

that the numerical and the analytical solution are identical.
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Figure 4.1: Comparision of the numerical simulation of the steady state solution Mss (solid line)
with the analytic solution (dashed line). Numerical solution were estimated with a 5s
rectangular CW with an amplitude of ω1rms = 634.6rad/s. The parameters of the two-
pool model are listed in Table 3.1.
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Pulsed Steady State

Simulations of the evolving magnetization for the free pool MF are shown in Figure 4.2

with an off-resonance saturation frequency of 100 Hz (a) and 4kHz (b). The solid lines

represent the numerical solution of the coupled Bloch equations, and the dashed lines are

the approximation of the pulse sequence with Eqn. (2.25), (2.32) and (2.33).

The simulation results show that with lower off-resonance saturation frequency the mag-

netization of the free-pool is faster in the pulsed steady state and that the amplitude

goes nearly to zero. The agreement between the coupled Bloch equations and their ap-

proximation is excellent for the simulation for 4kHz, whereas for 100Hz the results differ,

especially during the off-resonance saturation pulses.
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Figure 4.2: Evolving of the magnetization Mf of the free pool with two different off-resonance sat-
uration frequencies ∆ until pulsed steady state is reached. The solid lines in (a) and
(b) are the results of the numerical simulation of the coupled Bloch equations, and the
dashed lines the approximated solutions for the different time intervals.

Z-Spectra with different Parameters

In Figure 4.3 simulated Z-spectra with the coupled Bloch equations (2.13) and the signal

equation (2.40) are shown. In each plot three simulations were carried out where one

parameter was changed, and the others were fixed as listed in Table 3.1.

The results in Figure 4.3 show that mean average deviation σ1kHz is for all simulations

smaller than 0.4%. The lowest deviation has the simulations for RF
1 = 5s−1 with a

deviation of 0.12%.
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Figure 4.3: Numerical simulations of Z-spectra with the coupled Bloch equations (2.13) (solid lines)
and its approximation (dashed line) by Eqn. (2.38). In each plot one parameter of the
two-pool model is changed three times, and the other five parameters were kept constant.
The constant parameters and sequence parameters are listed in Table 3.1 and Table 3.2,
respectively.
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4.2 Error Model of Yarnykh Compared with Numerical

Error Estimation

In Figure 4.4 (a)-(c) the parameter histograms of the synthetic data set are illustrated

with the resulting Z-spectra in Figure 4.4 (d).
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Figure 4.4: Parameter histograms (a)-(c) of the synthetic data set that was used for the comparison
of the numerical error estimation and the error model of Yarnykh [14] with the resulting
Z-spectra in (d). Parameters are normal distributed with mean and standard deviation
as listed in Table 3.3.

In Figure 4.5 (a) the bias of the single-point approach due constraining the parameters

R, T F
2 , and TB

2 is shown. The influence of the noise for different signal to noise ratios of

the reference image SNRref , without the bias (βi,j,k = 0), is presented in Figure 4.5 (b).

In Figure 4.5 (a) and Figure 4.5 (b) can be seen that the numerical simulation (dashed

lines) differ from the results of the error model (solid lines). For both cases the error

model overestimates the error compared to the numerical simulations.

– 54 –



4 Results

10
3

10
4

2

4

6

8

10

12

14

16

Bias error−model (−) vs. numerical simluations (−−)(σ
i,j,k

 =0), SNR
ref

  = 150

∆ in Hz

δ
f i

n
 %

 

 

numerical
error−model

(a)

10
3

10
4

0

5

10

15

20

25

30

∆ in Hz

δ
f i

n
 %

Error−model (−) vs. numerical simulation (−−) only noise (β
i,j,k

 =0)

 

 

 50 SNR
ref

150 SNR
ref

300 SNR
ref

(b)

Figure 4.5: Comparison of the numerical error simulation and the error model with the synthetic
data set for different off-resonance saturation frequencies ∆ with SNRref = 150. In (a)
and (b) the influence of the bias and the influence of the noise, respectively, is shown
on the total relative error δf . The dashed line represents the numerical estimated error
and solid lines the results with the error model.

To illustrate the influence of the bias and the error due to noise on the mean absolute

percentage error δf both errors were potted in Figure 4.6. It can be seen that the bias

(dotted line) has a minimum at around 5kHz, whereas the error due to noise (dash-dot

line) is monotonically increasing with higher off-resonance saturation frequency. The re-

sulting mean absolute percentage error (dashed line) has a minimum at 4kHz.

The influence of different SNRref on the mean absolute percentage error is illustrated

in Figure 4.6 (b), estimated with the numerical simulations (dashed line) and the error

model (solid line). The simulations show that the numerical error simulations (dashed

line) and the error-model (solid line) differ and that with increasing SNRref the error

decreases.

In Figure 4.7 (a) the influence of effective saturation flip angle FAMT on the bias was

simulated with the error model (solid lines) and the numerical error simulations (dashed

lines) is presented. The minimum of the mean absolute percentage error increases with

the effective flip and is shifted towards the right sight of the spectrum. Again, the results

of numerical error simulations show smaller errors compared to the error model.

The influence of FAMT on the error due to noise is illustrated in Figure 4.7 (b). The results

of the numerical simulations (solid lines) as well as the error model (dashed) indicate that

the error approaches a limit with increasing FAMT .
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Figure 4.6: Total relative error simulations with the synthetic data set. In (a) the total relative
error (solid line) was estimated numerically for SNRref = 150 and FAMT = 600◦.
Furthermore the bias (dash-dot line), and the error due to noise (dotted line), are plotted
separately. The total relative error of the numerical error simulation (dashed lines) and
the error model (solid lines) were plotted in (d) for different SNRref

The mean absolute percentage error of the bias term and the noise term combined is

plotted in Figure 4.8. It shows that the mean absolute percentage error gets smaller with

increasing effective saturation flip angle. Furthermore both approaches indicate that the

error converges a fix limit for effective saturation flip angles great than 1000◦.
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Figure 4.7: Comparison of the bias estimated with the error model (solid lines) and the numerical
error estimations (dashed lines) for different effective saturation flip angles FAMT . In
(b) a detailed view of the minimum is shown.
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Figure 4.8: Mean absolute percentage error of the synthetic data estimated with the error model
(solid lines) and numerical simulations (dashed lines) for different effective saturation
flip angles FAMT .

For the validation of the error model of Yarnykh [14] first-order approximation were

calculated for the means of the synthetic data set. In Figure 4.9 the results for an off-

resonance frequency of 4kHz are illustrated. One can see that the approximation for f, T F
2

and TB
2 are close to the true value over a wide range of the specific parameter, whereas

the approximation for R is only valid for small changes of R.
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Figure 4.9: Plots of the first-order approximation for an off-resonance frequency ∆ = 4kHz with
four parameters (f, R, TF

2 and TB
2 ) developed at the means of the synthetic data set.
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4.3 BSA Phantom

4.3.1 MT-Images, Correctio-Images, and T1-map

In Figure 4.10 examples of the acquired BSA phantom images with the FLASH sequence

with MT saturation pulse are shown. Each row represents effective flip angle FAMT with

increasing off-resonance saturation frequency from left to right. In the top row FAMT is

600◦, then in the middle row it is 800◦, and in the last one the amplitude is 1000◦. The

off-resonance saturation frequencies ∆ are 600Hz, 2kHz, 4kHz, 8kHz, 8kHz and 96kHz

from left to right.

For all investigations the acquired images were normalized with the reference image at

96kHz off-resonance frequency. An example of a normalized image is given in the left

image of Figure 4.11 for an off-resonance saturation frequency of 4kHz with an effective

saturation flip angle of 600◦ the saturation pulse . The ROIs, which were used in the

analyses, are shown in an overlay in the right image of Figure 4.11 starting with ROI 1 in

the top right corner of the image. In the normalized image it can be seen that the BSA

cuvettes in top row have less signal intensity (∼ 0.7) than the remaining cuvettes (∼ 0.9),

which have iron added, and also that the intensity in water is nearly identical over the

whole volume.

The B1+-map that was used for correction of the excitation angle and the effective satu-

ration flip angle is shown in Figure 4.13 (a), which was dervied from the images with an

angle of 40◦ (b) and 80◦ (c), respectively. It can be seen that the normalized B1+ magni-

tude increases circular to the middle of the phantom starting with about 0.9 outside and

1.2 in the middle of the phantom.

The ∆ω-map, and the two phase images with different echo times, are shown in Figure

4.12. In the map one can see two residuals on the left and right side of the phantom.

Furthermore it can be observed that in the cuvettes in the top row nearly no frequency

shift, whereas with increasing iron concentration the frequency shift increases.

The estimated T1-map is presented in Figure 4.14 and the estimated mean values within

the ROIs are summarized in Table 4.1. The results indicate that water has the highest

T1-times at around 3s followed by the T1-times of BSA without iron (top row). Then

there is a strong decrease of the T1-times of the BSA cuvettes containing iron starting at

around 300ms.
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Figure 4.10: Examples of the acquired BSA phantom images. From left to right the off-resonance
saturation frequency ∆ increases (0.6kHz, 2kHz, 4kHz, 8kHz, 16kHz and 96kHz), and
from top to bottom the effective saturation flip angle FAMT increases (600◦, 800◦ and
1000◦).

ROI 1

ROI 5

ROI 9

ROI 13

ROI 17

ROI 21

ROI 25

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 4.11: The left image shows an example of a normalized image (∆ = 4kHz, FAMT = 600◦)
of the BSA phantom and the right image an overlay of ROIs, which were used for all
investigations starting with ROI 1 in the top right cuvette.

– 60 –



4 Results

 

 

∆
 ω

 i
n
 r

a
d
/s

−100

−50

0

50

100

(a)

 

 

φ
1
 i
n

 r
a

d

−3

−2

−1

0

1

2

3

(b)

 

 

φ
2
 i
n

 r
a

d

−3

−2

−1

0

1

2

3

(c)

Figure 4.12: Estimated ∆ω-map (a) of the BSA phantom. In (b) the phase image with TE = 4.1ms
and in (c) the phase image with TE = 6.1ms is shown.
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Figure 4.13: Resulting normalized B1+-map (a) derived from the images with an flip angle of 40◦

(b) and 80◦ (c) from BSA-phantom.
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Figure 4.14: Estimated T1-map of the BSA phantom.

Table 4.1: List of the estimated mean T1 times within the ROIs of the BSA-phantom.

ROI [BSA](%) [Fe](mg/kg) T1 (ms) ROI [BSA](%) [Fe](mg/kg) T1 (ms)

1 14 0 1529 13 14 75 190
2 18 0 1283 14 18 75 168
3 22 0 1152 15 22 75 144
4 26 0 1020 16 26 75 117

5 14 25 302 17 14 100 175
6 18 25 256 18 18 100 152
7 22 25 251 19 22 100 125
8 26 25 187 20 26 100 101

9 14 50 226 21 14 150 158
10 18 50 195 22 18 150 131
11 22 50 160 23 22 150 109
12 26 50 128 24 26 150 101

– 62 –



4 Results

4.3.2 Estimation of the Reference Parameters

In this Section the results of the parameter estimation of the pulsed MT-model by fitting

the Z-spectra for each off-resonance saturation pulse amplitude and all three off-resonance

saturation pulse amplitudes in one global fit are compared.

The results of the four parameter estimations for the BSA cuvettes without iron are listed

in Table 4.2 where the parameter are presented as estimated parameter ± the estimated

standard deviation of the parameter calculated with Eqn.(3.5). In the last column the

residual norm, which is defined in Eqn.(3.3), of the estimated and measured magnetiza-

tion is listed for each fit.

The results of Table 4.2 indicate that there are major differences between the four ap-

proaches for estimating the parameters of the pulsed MT-model. For all BSA concentra-

tions the estimated bound pool fraction is always smaller in the single spectrum fits than

with the global fit. When comparing the results for T F
2 one can see that for each of the

four approaches the relaxation times decreases with the BSA concentration. However,

for each concentration the estimated relaxation times have strong variation depending on

the spectrum that was fitted. It can be seen that the T F
2 relaxation times increase with

the effective saturation flip angle and that the global fit results are similar to the one

with 600◦. One thing that have the four fitting approaches in common is that the TB
2

relaxation time is stable for all BSA concentrations ranging from 6.3µs to 7.1µs.

The most significant difference in the estimated parameters can be seen for the exchange

rate k. In the parameter fits with one spectrum the estimated parameter has a range from

about 7s−1 to 2 · 105s−1 with a standard deviation of the parameters in a similar range.

By contrast, with the global fit, k is ranging from 3.1s−1 to 5.2s−1 and it can be observed

that it increases with the BSA concentration. However, the estimated standard deviation

for all four exchange rates is ranging form about 60% to 100% of its fitted value.

With the estimated parameters in Table 4.2 the Z-spectra were calculated for all BSA

concentration and effective saturation flip angels. In Figure 4.15 the Z-spectra on the left

side were calculated with the estimated parameters from the single spectrum fit, whereas

the Z-spectra on the right side were calculated from the global fit results. The circles in

the plots indicate the measured data points.

When comparing the Z-spectra of the left side with the right Z-spectra only little differ-

ences are noticeable. From the calculated spectra one can see that with increasing FAMT

the normalized magnetization mz decreases. Furthermore that the estimated spectra for

14% BSA have the greatest amplitude over the whole off-resonance frequency range. The

lowest amplitudes have the 22% BSA spectra and the spectra of 18% BSA 26% have sim-

ilar amplitudes, which lie between the amplitudes of the spectra of 14% and 22% BSA.
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For the assessment of the quality of the estimated bound pool fraction a linear regression

was performed. In Figure 4.16 the linear regression of f for different FAMT is shown in

(a)-(c), and in (d) the result of the global fit are illustrated. For all four regressions the

resulting line equation of the regression is given in the box of the plots in Figure 4.16. The

greatest difference was found to be the slope of the line equation. For the single spectrum

fit the slope is between 0.43 and 0.52, which is smaller than the slope of the global fit

with 0.58. The offset for all linear regression is similar, ranging from ∼ 3% to ∼ 4%.

Table 4.2: Results of the parameter estimation for the BSA cuvettes without iron. Parameters were
estimated from the spectrum of effective saturation flip angle FAMT and from a global
fit of all three spectra. The last column indicates the residual norm rnorm between the
estimated and measured normalized magnetization.

BSA(%) Fitted Spectrum/a f(%) k(s−1) TF

2
(ms) TB

2
(µs) rnorm(-)

14

FAMT = 600◦ 9.7 ± 6.2·10−2 2.1·102 + 7.3·102 40.4 ± 7.0·10−1 6.5 ± 6.6·10−2 1.3·10−4

FAMT = 800◦ 9.5 ± 4.9·10−2 5.4·101 ± 2.4·101 53.6 ± 9.8·10−1 6.3 ± 4.3·10−2 2.7·10−5

FAMT = 1000◦ 9.6 ± 5.0·10−2 7.2 ± 6.3·10−1 59.2 ± 9.4·10−1 6.5 ± 3.7·10−2 2.3·10−5

Global Fit 10.6 ± 1.5·10−2 3.1 ± 3.1 42.3 ± 0.2 7.2 ± 1.4·10−2 8.7·10−4

18

FAMT = 600◦ 12.7 ± 3.0·10−2 5.7·103 ± 4.0·104 31.3 ± 2.5·10−1 6.4 ± 1.9·10−2 9.3·10−5

FAMT = 800◦ 12.0 ± 3.9·10−2 1.1·103 ± 4.3·103 44.2 ± 6.2·10−1 6.2 ± 2.8·10−2 5.4·10−5

FAMT = 1000◦ 12.2 ± 4.7·10−2 1.1·101 ± 7.0·10−1 45.9 ± 5.5·10−1 6.5 ± 2.6·10−2 4.8·10−5

Global Fit 13.9 ± 1.4·10−2 3.7 ± 2.3 31.1 ± 0.1 7.3 ± 9.5·10−3 1.2·10−3

22

FAMT = 600◦ 14.6 ± 1.9·10−2 1.5·104 ± 1.1·105 25.5 ± 2.0·10−1 6.5 ± 2.4·10−2 5.0·10−5

FAMT = 800◦ 13.8 ± 1.4·10−2 7.8·103 ± 4.1·104 36.5 ± 3.2·10−1 6.3 ± 2.0·10−2 3.2·10−5

FAMT = 1000◦ 14.1 ± 5.8·10−2 1.2·101 ± 7.3·10−1 36.0 ± 4.3·10−1 6.6 ± 2.6·10−2 4.1·10−5

Global Fit 16.0 ± 1.8·10−2 4.3 ± 2.9 25.4 ± 0.1 7.3 ± 9.8·10−3 1.1·10−3

26

FAMT = 600◦ 16.0 ± 4.0·10−2 3.7·104 ± 9.6·104 19.5 ± 1.4·10−1 6.7 ± 2.6·10−2 9.3·10−5

FAMT = 800◦ 15.5 ± 3.9·10−2 1.5·104 ± 2.3·105 25.0 ± 1.8·10−1 6.4 ± 3.4·10−2 2.7·10−5

FAMT = 1000◦ 14.7 ± 5.0·10−2 1.5·103 ± 5.9·103 32.5 ± 4.3·10−1 6.2 ± 2.7·10−2 7.1·10−5

Global Fit 17.5 ± 2.0·10−2 5.2 ± 4.6 20.2 ± 0.1 7.2 ± 9.7·10−3 1.0·10−3
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Figure 4.15: Comparison of the fitted spectra for four different BSA-concentrations (14%, 18%, 22%
and 26%) with the parameters estimated from measured data points (circles). The plots
on the left side (a),(c) and (e) were fitted by a single spectrum fit and on the right side
(b), (d) and (f) the global fit results are shown. From the top to bottom the effective
saturation flip angle FAMT increases (600◦, 800◦ and 1000◦)
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Figure 4.16: Linear regression of the estimated bound pool fraction f from the Z-spectra as a function
of the BSA concentration. In (a)-(c) the parameters were estimated by fitting the spec-
tra of each effective saturation flip angle FAMT and in (d) a global fit was performed
with the three spectra acquired at the three saturation pulse amplitudes.

4.3.3 Evaluation Single-Point Approach

With the results from the previous Section it was possible to estimate the bound pool

fraction from a single off-resonance measurement [14]. In the first step the constrains

of the pulsed MT-model were set to the weighted average of the estimated parameters

from the global fit listed in Table 4.2, resulting in the follwing values: R = 23.8s−1,

T F
2 RF

1 = 0.0236 and TB
2 = 7.3µs. Then the bound pool fraction was estimated for all

off-resonance saturation frequencies with the single-point approach.

In Figure 4.17 results of the single-point approach for the first four ROIs without iron and

different BSA concentration are shown. The influence of the effective saturation flip angle

is shown in (a) where from top to bottom the estimated images for the three saturation

pulses, FAMT = 600◦/800◦/1000◦, are illustrated and from left to right the results for

the different off-resonance saturation frequencies of the MT pulse from ∆ = 0.6kHz to
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∆ = 20kHz are shown. All these images were estimated with four averages.

In contrast to the saturation pulse amplitude, in Figure 4.17 (b) the influence of the

averages on the parameter estimation is shown for FAMT = 600◦. From left to right the

images at different off-resonance saturation frequencies are shown and from top to bottom

the influence of averaging on the estimated bound pool fraction is illustrated starting with

N = 1 to N = 4 averages.

For all estimated images the mean absolute percentage errors were calculated for all BSA

concentrations and number of averages as function of the off-resonance frequency and

number of averages N. These results are plotted in the left plots of Figure 4.18. On the

right side of Figure 4.18 the results of the numerical error simulations are illustrated. The

numerical error simulations indicate similar trends compared with estimated error of the

single-point approach. However, it seems that estimated error is a little bit higher than

the error predicted by the numerical error simulations.

In Figure 4.17 (a) one can see that the noise level in the lower and higher frequency range

is higher than in the middle, especially for 26% BSA. This effect can also be seen in

the plots of the mean absolute percentage error in Figure 4.18. Furthermore the results

indicate that the error decreases with the number of averages, which can be seen in the

images as well as in the error plots.

The minimum of the mean absolute percentage error and the corresponding off-resonance

frequency is summarized in Table 4.3 for each measurement. The best result could be

achieved with 4 averages and a saturation pulse amplitude of 1000◦ at a frequency of

3kHz.

Table 4.3: Minimum of the mean total relative error δf for the different number of averages N and
saturation pulse amplitudes from the BSA-phantom measurements.

N FAMT δf (%) ∆min (kHz) FAMT δf (%) ∆min (kHz) FAMT δf (%) ∆min (kHz)

1

600◦

6.2 2

800◦

5.4 3

1000◦

4.4 3
2 4.6 2 4.12 3 3.7 3
3 4 3 3.7 3 3.3 3
4 3.7 3 3.3 3 3 3
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Figure 4.17: Estimated bound pool fraction from the BSA cuvettes (concentrations: 14%, 18%, 22%
and 26%) from a single off-resonance measurement. In (a) the influence of the satu-
ration pulse amplitude, FAMT (from top to bottom) and the off-resonance frequency,
∆, (left to right) is shown. The influence of the averages N is shown in (b) from top
to bottom for a saturation pulse amplitude of 600◦.
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Figure 4.18: Comparison of the estimated (images (a), (c), (e)) and predicted (images (b), (d)
and (f)) mean absolute percentage error δf of the bound pool fraction estimation from
a single off-resonance measurement as a function of the off-resonance frequency ∆.
The error was estimated for all three saturation pulse amplitudes FAMT and different
number of averaging N.
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4.3.4 Influence of the Field Correction Images

In Figure 4.19 the influence of the B1- and B0-correction is illustrated. In (a) the reference

is shown where both corrections were performed. The other images (b)-(d) show the

estimation without B1-correction, B0-correction, each and without both.

The greatest influence on the result has the B1-correction, whereas the B0-correction has

little influence.
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Figure 4.19: Influence of the B1, and B0-correction on the estimated bound pool fraction f with the
four parameter fit as a function of the BSA concentration. In (a) the f values with
B1-, and B0-correction are shown for comparison. In (b)-(c) the results without B1-
correction and B0-correction are illustrated and in (d) the result without B1-correction
and B0-correction is presented.
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4.3.5 Influence of T1,obs

The results from the BSA-cuvettes that contain iron are shown in this Section. In Figure

4.20 the estimated bound pool fraction as a function of the BSA concentration is illustrated

for six different iron concentrations starting with the cuvettes without iron in the top left

corner. From the slope of the functions one can see that there is a trend that the estimated

bound pool fraction is lower than in the cuvettes without iron. In the cuvette without

iron the slope is 0.54, whereas in the cuvette with the highest iron concentration (shortest

T1,obs) the slope is 0.37.
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Figure 4.20: Results from the four parameter fit of BSA-cuvettes that contain iron. Each plot rep-
resents the estimated bound pool fraction as function of the BSA concentration for one
iron concentration.
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4.4 Post Mortem Measurements

In Figure 4.21 (a) and (b) field correction images with the estimated normalized B1+-map

and the ∆ω-map are shown. The T1-map is illustrated in (c), and in (d) one example of

a normalized MT images at FAMT = 600◦ and ∆ = 4kHz is presented.

The parameter maps estimated with the four parameter fit of the acquired post mortem

brain images are illustrated in Figure 4.23 and the relative confidence intervals of the

estimated parameters are presented in Figure 4.25. Despite for the exchange rate k, where

the relative confidence interval is ± 10% of the estimate value in WM, the confidence

intervals indicate a good quality of fit.

In Table 4.4 the median values of the parameters and the estimated T1-times of the brain,

in WM, and in GM are summarized. Values were evaluate with a WM and GM mask

shown in Figure 4.22. One can see that the f-map has a good WM to GM contrast, which

is also represented in the median values of the bound pool fraction where WM has a higher

bound pool fraction f (18.1%) than GM (11.7%). With the k-map it is also possible to

distinguish WM and GM, but the contrast is not as good as with the f-map since the

median values are closer together. Little contrast between WM and GM can be seen in

the T F
2 -map. The highest values were found to be in the gyri of the fresh PM brain. From

WM to GM T F
2 decreases from about 26ms to 21ms.

The TB
2 -map shows only little variation in the brain regions, which are hardly visible in

the image. The median values in Table 4.4 indicate that the TB
2 in WM (9.7µs) is slightly

higher than in GM (8.4µs).

A comparison of the estimated f-map and an image of the PM sample is illustrated in

Figure 4.24. It shows that the f-maps has a better contrast compared with the image of

the PM sample.

Table 4.4: Estimated parameters and T1-times of the fresh post mortem brain slice in the brain
(defined as mask from WM + GM), WM and GM. Values are presented as: MEDIAN
(1st quartile, 2nd quartile)

f (% ) k (s−1) TF
2 (ms) TB

2 (µs) T1 (ms)

Brain 13.5 (10.5, 17.7) 2.1 (1.5, 2.9) 22.4 (19, 27.9) 8.8 (7.6, 9.6) 1253 (973, 1467)

WM 18.1 (15.8, 19.5) 3.1 (2.6, 3.5) 20.5 (18.6, 22.1) 9.7 (9.2, 10.2) 918 (876,1000)

GM 11.7 (9.7, 14.1) 1.8 (1.2, 2.2) 25.9 (20.5, 30.8) 8.4 (7, 9) 1391 (1260,1533)
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Figure 4.21: Calculated normalized B1+-map in (a) and ∆ω-map in (b) for the field corrections
within the post mortem brain. T1-map is shown in (c), and an example of a normalized
image at FAMT = 600◦ and δ = 4kHz is illustrated in (d).
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Figure 4.22: Overlay of the WM-mask (a) and GM (b) with the T1-map that were used for the
analyses.
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Figure 4.23: Estimated parameter maps of the fresh post mortem brain.
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Figure 4.24: Estimated f-map (a) from the four parameter fit compared with a picture of the fresh
PM sample (b).
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Figure 4.25: Relative confidence intervals for the estimated parameter maps.
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4.4.1 Single-Point Approach

Before performing the fast bound pool fraction estimation the constrains were set to the

results of the four parameter fit of the fresh post mortem brain listed in Table 4.4.

The mean absolute percentage error and the results of the numerical error simulations

for the different effective saturation flip angles, off-resonance saturation frequencies and

number of averages are illustrated in Figure 4.26. In each row the calculated error in the

left plot is compared with the numerical error simulations in the right plot for the same

effective saturation flip angle. It can be seen that the minimum of the simulated error

function is at higher off-resonance saturation frequencies and furthermore that the error

is slightly higher than the minimum of the estimated error. Moreover that for the esti-

mated error, as well as the simulated error, decreases with the number of measurements.

A detailed listing of the estimated error at the minimum is given Table 4.5.

It indicates that the greatest error is 4.25% and the smallest is 3.11% at an off-resonance

saturation frequency of 4kHz and an effective flip angle of 600◦ with 4 averages. Further-

more the results indicate that the error increases slightly with higher effective saturation

flip angle.

In Figure 4.27 difference images, with the reference f-map from four parameter fit, for

several off-resonance saturation frequencies are shown. They indicate that until an off-

resonance saturation frequencies of 3kHz brain structures are visible, which is in accor-

dance with the high mean absolute percentage error in the error plots. In the images

between 4kHz to 6kHz visual there is no difference noticeable and then the error increases

with higher off-resonance saturation frequencies.

The influence of the different number of averages is illustrated in Figure 4.28 where the

estimated f-map with the four-point approach (d) is compared with the images esti-

mated with the single-point approach with 1, 2 and 4 averages (a)-(c) for ∆ = 4kHz and

FAMT = 600◦. Between the f-map with 4 averages and the reference map (d) is visual no

difference recognizable, whereas the images with 1 averages and 2 averages are somewhat

noisier than the others.
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Figure 4.26: Comparison of the estimated error δf form the bound pool fraction estimation from a
single off-resonance measurement (left images) with the numerical simulations (right
images). Each row represents the results for one saturation pulse amplitude FA with
four different number of averages N. SNRref at N=1 was approximately 240.
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0.6kHz 1kHz 1.5kHz 2kHz 2.5kHz 3kHz

4kHz 5kHz 6kHz 8kHz 10kHz 12kHz

Figure 4.27: Difference maps of the single-point maps (FAMT = 600◦, 4 averages) and the refer-
ence map estimated with the four parameter fit for different off-resonance saturation
frequencies (indicated in the top-left of every image).

(a) N = 1 (b) N = 2

(c) N = 4 (d) Reference

Figure 4.28: Comparison of f-maps estimated with the single-point approach for 1,2 and 4 averages
(a)-(c) and the reference map (d) from the four parameter fit.
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Table 4.5: Minimum of mean absolute percentage error δf for the different number of averages N
and effective saturation flip angles of post mortem brain measurements for the fast bound
pool fraction estimation.

N FAMT δf (%) ∆min (kHz) FAMT δf (%) ∆min (kHz) FAMT δf (%) ∆min (kHz)

1

600◦

6.6 5

800◦

6.3 5

1000◦

6.5 5
2 5,8 6 5.8 5 6.2 5
3 5.3 6 5.6 5 6.1 5
4 5.1 6 5.5 5 6 5
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4.5 In Vivo Measurements

4.5.1 Parameter Estimation of the Pulsed MT-Model

In Figure 4.29 one slice of the normalized B1+-map (a), the ∆ω-map (b), the T1-map (c)

and of one normalized MT-weighted image (d) is shown. One can see that most values

of normalized B1+-map lie between 0.9 and 1.1 and that ∆ω has only small fluctuations

from the static magnetic field from about -50 rad/s frontal and about 20 rad/s occipital.

With these maps and the remaining normalized off-resonance saturation images the pa-

rameter maps of the pulsed MT-model were estimated. An example of the parameter

maps is illustrated in Figure 4.30. It can been seen in the Figure that the best WM to

GM contrast is given in the f-map. Then the k-map provides only little contrast between

WM and GM. Similar to the k-map only little contrast is given in the T F
2 , expect within

the gyri and the CSF where the values for T F
2 are greater than 60ms. In the TB

2 map only

small differences can be observed between WM and GM.

The normalized confidence intervals of the estimated parameters maps are shown in Fig-

ure 4.31. Only small variations of the relative confidence intervals were found for the

estimated k-map and in the remaining maps no significant variations in the estimated

parameters were observed.

In Table 4.6 the median of the estimated parameter and the T1-times for WM, GM and

the brain are listed. Examples of the masks that were used for the calculations are illus-

trated in Figure ?? . The results indicate that f is higher in WM (15.5%)than in GM

(10.3%) and furthermore that k decreases from WM to GM and that T F
2 increases from

28ms to 35.4ms. No real difference was observed for TB
2 .

Table 4.6: Estimated parameters and T1-times of the volunteer’s brain, WM and GM. Values are
presented as: MEDIAN (1st quartile, 2nd quartile)

f (%) k (s−1) TF
2 (ms) TB

2 (µs) T1 (s)

WM 15.5 (13.9, 17.5) 2.5 (2.1, 2.9) 27.8 (23.3, 31.7) 11.9 (11.1 12.5) 0.8 (0.8, 0.9)

GM 10.3 (8.1, 12.8) 1.4 (1.0, 1.9) 35.4 (28.6, 46.3) 11.0 (10.1 12.0) 1.4 (1.2, 1.6)

Brain 12.5 (9.2, 15.5) 1.9 (1.2, 2.5) 31.5 (26.1, 39.7) 11.4 (10.4 12.3) 1.2 (0.9, 1.5)
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Figure 4.29: Calculated normalized B1+-map in (a) and ∆ω-map in (b) for the field corrections
within the brain. T1-map is shown in (c), and an example for a normalized MT-
weighted image is illustrated in (d) with FAMT = 600◦ and δ = 4kHz.
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Figure 4.30: Example of the estimated parameter maps from of the volunteer’s brain.
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Figure 4.31: Relative confidence intervals of the parameter fits.

Figure 4.32: Overlay of the WM-mask (top) and GM (bottom) for selected slices (2,4,6,8,10 and 12)
with the MPRAGE image that were used for the analyses.
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Optimal Sampling Point Single-Point Approach

With the results of the four-point fit from the previous section numerical error simulations

were carried out to find the optimal off-resonance saturation frequency and amplitude.

For the simulations a complete slice of the estimated parameter maps was used with

following constraints: R = 14s−1, T F
2 R1 = 0.0223 and TB

2 = 11µs.

The results of the error simulations for different SNRref and effective saturation flip

angles FAMT are shown in Figure 4.33. The influence of FAMT on the bias and on the

error due to noise are plotted in Figure 4.34. It can be seen that the bias increase with

FAMT and the errors due to noise decrease with FAMT .

The simulations indicate that the minimum of the mean absolute percentage is at 600◦

for all different noise levels and furthermore that the minimum of the mean absolute

percentage error increases slightly with higher FAMT .

At 600◦ the smallest error was found at an off-resonance saturation frequency of 4kHz

with a SNRref of 200.
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Figure 4.33: Numerical error simulation results for the single-point approach resulting from one slice
of the four parameter fit. In (a) only the simulation results for the bias were plotted
(noise is zero) and in (b) only the error due to noise is plotted (bias is zero).
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Figure 4.34: Numerical error simulations with different SNRref and effective saturation flip angle
FAMT to find the best sampling point for the single-point method. Simulations were
carried out with the parameters estimated in one slice of the four parameter fit result.

4.5.2 Single-Point Approach

With the constraints that were estimated with the four parameter fit in the previous

section and the constraints that were found by Yarnykh [14] the single-point approach

was used to reconstruct bound pool fraction maps.

In Figure 4.35 f-maps are presented that were reconstructed with the constraints found in

this work from the images acquired with ∆ = 4kHz and FAMT = 600◦. Another example

is shown in Figure 4.37 where the same slices of the f-map estimated at 4kHz and 6kHz

are compared.

In Table 4.7 the f values of the brain, WM and GM reconstructed with the different

constraints are compared. It can be seen that there are small differences in the estimated

bound pool fractions. First, the results with the constraints of Yarnykh [14] are smaller

for WM, GM and the whole brain compared to the values estimated with the constraints
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of the four parameter fit. Second, there are small differences between the off-resonance

saturation frequencies. It seems that the estimated f-values are lower at 6kHz with the

constraints of Yarnykh [14], whereas with the constraints of this work no common trend

could be observed between the two off-resonance saturation frequencies.

(a) f-map

Figure 4.35: Example of a reconstructed f-map with the single-point approach (∆ = 4kHz, FAMT =
600◦). constraints of the reconstruction were set to the results the four parameter fit
of the previous Section.

(a) 4 kHz

Figure 4.36: Overlay of the WM-mask (top) and GM (bottom) with the MPRAGE image for selected
slices (12,16,20,24,28 and 32) that were used for the analyses.
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Figure 4.37: Example of f-maps (∆ = 4kHz, FAMT = 600◦) estimated with the constraints of the
four parameter fit of the previous Section.

Table 4.7: Estimated f-values of the volunteer’s brain with the constraints estimated from the four
parameter fit and the once recommended by Yarnykh [14]. MT-weighted images were ac-
quired with Delta = 4kHz, 6kHz and FAMT = 600◦. Values are presented as: MEDIAN
(1st quartile, 2nd quartile)

constraints ∆ (kHz) f (%) ∆ (kHz) f (%) T1 (s)

4 parameter fit
WM

4
19.1 (17.2, 21.3)

6
19.0 (16.8, 21.6) 0.8 (0.8, 0.9)

GM 12.0 (9.7, 14.6) 12.4 (9.7, 15.3) 1.2 (1.1, 1.3)

Brain 15.8 (11.7, 19.3) 16.0 (11.8, 19.4) 1.0 (0.8, 1.2)

Yarnykh
WM

4
18.8 (16.9, 21.0)

6
18.2 (16.0, 20.8) 0.8 (0.8, 0.9)

GM 11.9 (9.6, 14.4) 11.8 (9.3, 14.7) 1.2 (1.1, 1.3)

Brain 15.6 (11.5, 19.0) 15.3 (11.3, 18.6) 1.0 (0.8, 1.2)
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5
Discussion

5.1 Coupled Bloch Equations and the Pulsed MT-Model

In the first part of the thesis MT simulations were carried out with the pulsed MT-model

proposed by Yarnykh and Yuan [13], which were compared with the results of the cou-

pled Bloch equations, in order to validate the simplifications of the pulsed MT-model.

In general the results of this work indicate a good agreement between the coupled Bloch

equations and the pulsed MT-model for off-resonance frequencies greater than 1kHz for

all physiological reasonable parameter combinations (see Figure 4.3).

However, it seems that there are a small systematic errors since the average deviation

between the simulations for off-resonance saturation frequencies greater than 1kHz are in

a similar range for all parameter combinations (∼ 0.1% to ∼ 0.4%). The reasons for this

small deviation could not be identified, but it is very like that it is due to the modeling

of the off-resonance saturation pulse. In Figure 4.2 it can be seen that there is a constant

offset of the numerical simulations and the pulsed MT-model during the evolving of the

magnetization to the pulsed steady state for each saturation pulse. Furthermore time

intervals with free precession, and the solution of the steady state magnetization Mss, can

be excluded since analytic solutions of the coupled Bloch equations for both exist.

In literature, no simulations with the pulsed MT-model by Yarnykh and Yuan [13] were

found. In 2007, Portnoy and Stanisz [51], performed similar simulations with several

different pulsed MT-model including the model of Yarnykh [11]. The earlier model of

Yarnykh [11] does not include the direct saturation of the water compared with the model

of Yarnykh and Yuan [13]. When comparing the results of Portnoy and Stanisz the small-

est average residual deviation for above 1kHz was found to be 0.67%, whereas in this work

all average residual deviations are smaller than 0.39%. The slight improvement could be

due the additional term for the direct saturation in the model of Yarnykh and Yuan [13].

The influence of the direct saturation is obvious when looking at the Z-sepctra in Fig-

ure 4.3 (c) where simulations for three different T F
2 were carried out. Here one can see

that the normalized magnetization of the approximations is higher than the result of the
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numerical simulations between off-resonance saturation frequencies of 100Hz and 1kHz,

which is due neglecting the rotation of the magnetization at low off-resonance saturation

frequencies [13]. Therefore the model does not reflect the proper approximation for the

coupled Bloch equations for off-resonance saturation frequencies < 1kHz.

One critical assumption of the model is the complete spoiling of the transverse magne-

tization before and after the saturation pulse. Care must be taken if this assumption is

valid for the given MRI squence – especially at high repetition rates.

The simulations provided a useful tool to study the complex relations of the two-pool

model parameters. In the simulation results for different RF
1 in Figure 4.3 (a) one can see

that the normalized magnetization increases with higher RF
1 . This is due to the faster

recovery of the longitudinal magnetization within one repetition rate resulting in a greater

signal in the pulsed steady state.

Another important aspect for the parameter estimation of the two-pool model indicate

the result for the simulations of RB
1 in Figure 4.3 (a). It shows that there is only little

difference in the simulations for different RB
1 which supports the approach to set RB

1 = RF
1

for the parameter estimation of the other four two-pool parameters since it is not possible

to determine RB
1 from the Z-spectrum [8]. Similar effects can be observed for TB

2 , which

supports the constrain for setting TB
2 constant for the fast bound pool fraction estimation

from a single off-resonance frequency [14].

When looking at the parameter k and f it is noticeable that with increasing f or k similar

trends were observed in Z-spectra, which may results in potential identification problems

when estimating the parameters from measured Z-spectra.
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5.2 Error Model of Yarnykh Compared with Numerical

Error Simulations

A comparision between the error model of Yarnykh [14] and numerical error-estimation

reveals some differences between these two methods, although similar trends in both mod-

els were observed.

Figure 4.5 (a) illustrates that the estimated bias of the numerical simulations is smaller

for all off-resonance saturation frequencies than the predicted error from the error model.

In the numerical error simulation the true values (synthetic data) are known, which means

that the bias of the numerical error-simulations is correctly estimated, whereas the bias

predicted by error model of Yarnykh [14] has small deviations due to the first-order error

propagation. To illustrate this issue the first order approximations of the four parameters

are shown in Figure 4.9. For the reverse exchange rate R the first-order approximation is

only valid for small changes resulting in an error due to the approximation that propa-

gates into the error model. The practical meaning of the approximation error is that the

actual bias is smaller than the predicted value of the error model and that the minimum

shifts to the right when looking at Figure 4.5 (a).

The simulations results for the influence of noise in Figure 4.5 (b) show that the error

model of Yarnykh [14] and the numerical error simulations are different, but the trends

of the two curves are similar for different SNRref . The reason for this deviation remains

unclear. One possibility is that the deviation is also due to the first-order approximation.

In the simulations also the influence of the effective saturation flip angle FAMT was

investigated. Despite the deviations between the error model and the numerical error

simulations similar behavior was observed. As one can see in Figure 4.7 the bias increases

with the effective flip angle. This is due to the scaled sensitivity of the parameters, which

increases for all four parameters of the model with the effective flip angle (see Figure

2.11) [14]. Therefore a deviation from the actual parameters and the constraints is higher

weighted with increasing FAMT .

The purpose of the error model and the numerical error simulations is to choose the

best off-resonance saturation frequency and effective flip angle that minimizes the error

for the estimation of the bound pool fraction from a single off-resonance measurement.

The findings in this work suggest that the numerical error simulation shifts the minimum

to the right, mainly due to the bias from deviation of the actual parameters from the

constraints, and therefore it could be that f-maps calculated at the optimal off-resonance

frequency estimated with the error model of Yarnykh [14] have a greater mean absolute
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percentage error, than f-maps estimated at the off-resonance frequency with the numerical

simulations.

One limiation of the error model of Yarnykh [14] is that it uses predefined values of f

and R1 for the error estimation, which does does not reflect the biological variability of

these parameters. This issue could be easily overcome by extending the numerical error

simulations for R1 and f as well.

Another important aspect for both approaches is that variations in the B1+-field and

B0-field were neglected. A possible extension for both models would be to included this

effects with an additional variance in the error estimation.

5.3 BSA Phantom Measurements

The BSA-phantom measurements provided a perfect possibility for the validation of the

pulsed MT-model [13] as well as for the estimation of the bound pool fraction from a

single off-resonance measurement [14] since acquistion time did not play a crucial role.

Compared to the results that were presented by Yarnykh [14] in this work the results

provide more information since the validation was performed with more data points and

the influence of different SNR was studied more in detail.

5.3.1 Estimation of the Reference Values

In the first step of the evaluation with the BSA-phantom reference values of the bound

pool fractions were estimated for the cuvettes. due to the averaging of each ROI and the

four images series, it was guaranteed that the best signal to noise ratio was given for the

estimation of the reference values, which was used for the validation of the single-point

approach.

For the correct estimation of the four parameters of the pulsed MT-model some issues had

to be overcome. In the first approach the estimation of the parameters was performed by

fitting one Z-spectrum out of the three acquired spectra (one for each effective saturation

flip angle) resulting in three parameter set for the same BSA-concentration listed in Table

4.2. At first glance the estimated bound pool fractions for the BSA concentration seemed

to be reasonable since they are scaled with increasing BSA concentrations. However,

the estimated exchange rates were not reasonable and furthermore the estimated values

are not comparable with estimated values for BSA found in the literature [52]. The im-

mense standard deviations of the exchange rates indicate an ill-conditioned problem with

the consequence that it is not possible to identify the parameter by fitting just a single
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spectrum. The problem could be finally solved by performing a global fit with the three

spectra resulting in one parameter set for one BSA-concentration.

Another aspect why it took a while to overcome this issues is illustrated in Figure 4.15

where the fitting results with estimated parameters are plotted. When comparing the

Z-spectra of the global fit with the other spectra, derived with the parameters fitted with

one spectrum, it is not possible to determine the true parameters for the four BSA concen-

trations. The only way to determine the most likely solution is to compare the estimated

confidence intervals of the fitted parameters. Although the estimated confidence interval

with the global fit for the exchange rate are still nearly 100% of the estimated values, but

the results are at least stable and reasonable with values smaller than 10s−1.

The final estimated reference values with the global fit for the four BSA-concentration

indicate a good fit. The linear regression of Figure 4.16 (d) shows that the estimated

bound pool fraction has a linear dependency, which is to be expected since the fraction of

macromolecules increases with BSA concentration. A similar argumentation can be given

for the exchange rate, which also increases with the BSA concentration. The decrease of

the T F
2 relaxation times is also in agreement with the theory that the mobility of the free

proton decreases with the BSA concentration. Compared to the other parameters TB
2 is

nearly constant for all concentrations. The only issue is that the linear regression should

be zero for pure water. This result might indicate a bias in the pulsed MT-model.

The reference values of the BSA cuvettes from the global fit have similar trends as re-

ported by Mossahebi [52]. Anyway, direct quantitative comparison makes little sense since

the BSA concentrations that were used in this experiments are nearly 5 years old.

In these results one interesting linkage between the MTR and the quantitative MT ap-

proach can be found. When taking a closer look at the Z-spectra in Figure 4.15 one can

see that the curve for 26% BSA has a greater amplitude than the one with 22% BSA,

which would result in lower MTR for this sample. This contradicts with the theory that

with higher BSA concentration also the MT effect increases. However, the calculated

B1+-map, illustrated in Figure 4.13, indicates that the field in the inner (ROI 3) and

outer sample (ROI 4) is different. With the correction for the B1+-field within the pulsed

MT-model the estimated f value for 26% BSA, is as expected, higher than the value for

22%.

To show the importance of the B1+- and B0-correction, in Figure 4.19 the corrected re-

sults and uncorrected results were compared. The plots point out that the slope of the

linear regression changes and also the quality of the linear-regression decreases without

B1-correction. This indicates the importance of a correct B1-map. The correction of

the off-resonance saturation frequency with the B0-map has little to no influence on the
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estimated f-values, which is not surprising since the the B0-field is nearly homogeneous

in the area of BSA-cuvettes without ferritin.

5.3.2 Single-Point Approach

Results of the bound pool fraction estimation from single off-resonance measurement are

in agreement with the trends of mean absolute percentage error that have been previously

reported by Yarnkyh [14] for brain tissues. In Table 4.3 one can see that the mean abso-

lute percentage error decrease due to the improvement of the SNR.

For all three saturation pulses the error-plots on the left side of Figure 4.18 have a broad

minimum over a wide range of off-resonance saturation frequencies and only small differ-

ences in the mean absolute percentage error. On the right side of Figure 4.18 the results

of the error simulations indicate a good agreement with estimated errors. The simulations

predict also a broad minimum of the mean absolute percentage error for a wide range of

off-resonance saturation frequencies and amplitudes. The absolute values of the simula-

tions slightly differ form the estimate error, which may result from inaccurate estimation

of the SNR of the reference image. The SNR was estimated by diving the mean of a

ROI and the standard deviation of the noise in the background. Maybe more accurate

methods [53] for the SNR estimation would improve the agreement.

When looking at the error plots in detail of Figure 4.18 (e) for FAMT = 1000◦ it should

be noted that the values at 1kHz off-resonance frequency were excluded from our analyses

since this point was recorded with a off-resonance saturation frequency 0.6kHz. This does

not affect the results since the mean absolute percentage error has no minimum at 1 kHz.

In Figure 4.18 (a) there is a point of discontinuity at 8kHz that could not be explained,

but this point is also far away from the minimum.

5.3.3 Influence of T1,obs

The findings in Figure 4.20 indicate that the estimated bound pool fraction of the same

BSA concentration decreases slightly with decreasing T1,obs. However, the two-pool model

should compensate the influence of a changing T1,obs as a result from the ferritin.

One explanation might be that due to the high ferritin content the estimation of the

T1-times is not accurate any more. It is know that with higher ferritin concentration T1

decreases [54], which is in agreement with our results in Table 4.1. One explanation could

be that not enough sampling points were acquired in the time interval between excitation

of the magnetization and complete relaxation (≈ 5T1) due to the shortening of the T1.

Another aspect is that the short component of the bi-exponential relaxation is measured
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rather than the observed relaxation rate T1,obs, which also might bias the estimation of

the bound pool fraction.

In summary it is very likely that the deviation of the slope of the bound pool fraction as a

function of the BSA concentration was induced by measurement errors. Further research

has to be done, for example with lower lower ferritin concentrations, to asses the error

exactly.

5.4 Post Mortem Measurements

With measurements of the fresh post mortem brain slice it was possible to fit high quality

parameter maps of the pulsed MT-model that never have been reported elsewhere.

The analyses of the maps in WM, GM and the whole brain in Table 4.4 shows in general

increased two-pool model parameters compared with in vivo data [13, 14]. There are

several potential explanations for these results. The imaging of the fresh PM sample was

performed with ambient temperature and therefore the relaxation properties of the brain

are different compared in vivo measurements [55]. However, it is expected that the T1-

times of WM and GM are smaller compared with body temperature, which is not the case

in our results. The reason for the higher relaxation times stays unclear, especially since a

IR sequence for T1-mapping was used with a sufficient long repetition time (TR = 12s).

Besides the temperature, and measurement conditions, autolysis of the brain could also

have changed the MRI properties.

The fresh PMmeasurements provided also a good possibility for the validation of the single

point approach. Therefore numerical error simulations were performed and compared with

the results of the single-point approach shown. The numerical error simulations are not

identical with the estimated error but the same trends could be observed.

The most important aspect of the results of the numerical error simulations is that the

minimum of the simulated error and the estimated error is in the same frequency range of

≈ 6kHz and also that the predicted error and the measured error have similar magnitude

(≈ 6%). Therefore the numerical error simulations are well suited to predict the optimal

sampling point for the estimation of the bound pool fraction from a single off-resonance

measurement.
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5.5 In Vivo Measurements

In the last step of the thesis MRI protocols for the the parameters estimation of the

pulsed MT-model and the fast bound pool fraction estimation from a single off-resonance

measurement were implemented.

The greatest issue that had to be overcome for the estimation of the pulsed MT-model

parameters in vivo was to generate a MRI protocol that allows to estimate the parame-

ters sufficiently good within a moderate scan time. It was found that with seven different

off-resonance saturation frequencies (∆ =0.6, 1, 2, 4, 8, 12, and 96 kHz) at two effec-

tive saturation flip angles (FAMT = 600◦, 1000◦) the parameters could be reasonable

identified. In the beginning the same sequence parameters as in the work of Yarnykh

[14] were chosen, which had a third effective flip saturation flip angle with 800◦ and the

same off-resonance saturation frequencies. However, this led to a protocol with a total

scan time greater than 1h. Therefore it was decided to adapt the protocol to just two

effective saturation flip angles. One important thing about the choice of the FAMT is

that their magnitudes are not close together, otherwise the identification of f and k from

the data is not not reliable. Yarnkyh [14] reported shorter scan times for the entire MRI

protocol with three effective saturation flip angles with the drawback that the SNR is

worse compared to our protocol. Therefore it is believed that in total our results have

the same quality as the parameter maps reported by Yarnkyh [14]. Also the results of

the relative confidence interval maps from the estimated parameters indicate that the

quality of the fit is sufficient good. Despite of the relative confidence intervals for k, all

the other maps show no noticeable variations. The variations for k can be exampled due

to an identification problem of f and k. The confidence intervals of k are still small and

therefore these scan parameters can be recommended for the estimation of the two-pool

parameters in vivo since the total scan time was about 45min for the entire protocol.

The two-pool parameters that were found in this work indicate considerable differences

to values found by Yarnkyh [14]. It seems that in our work the values for the bound pool

fraction are higher. For example in WM we report a median of 15.7%, whereas Yarnykh

[14] estimated a mean value of 14.2% and even more significant is the difference for GM,

where we report 10.4% and Yarnykh [14] estimated 7.6%. Furthermore the exchange rate

k is also not in accordance with the literature. In the work of the Yarnykh and Yuan

[13] an exchange rate of 3.3s−1 and 1.6s−1 was reported for WM and GM, whereas in our

work the values are 2.5s−1 and 1.4s−1. Also the T F
2 values seem to be a little lower for

WM and GM compared with the results of Underhill [56]. The only parameter that is in

the same order as in the literature is TB
2 [11, 57].
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One possible explanation could be that differences in the T1 estimation propagated into

the parameter maps. Yanykh [14] reports a T1 relaxation time of 0.9s for WM, whereas

we estimated 0.8s. On the other hand in GM the estimated T1 relaxation times are ap-

proximately equal (1.4s).

The purpose of the two-pool parameter estimation was to validate the constraints and the

optimal sampling for the bound pool fraction estimation from a single off-resonance mea-

surement. As mentioned above the parameter distribution is different in this work, which

results also in different constraints compared with the findings of Yarnykh [14]. Anyway,

although the parameter distributions are different, the numerical error simulations led to

similar results as recommended by Yarnykh [14] for the single-point approach. The opti-

mal FAMT was found in this work at ≈ 600◦ with the minimum error, depending on the

SNR of the reference image, between 3kHz to 7kHz off-resonance saturation frequency.

Therefore two MT-weighted images with an off-resonance saturation frequency of 4kHz

and 6kHz at an effective saturation flip angle of were acquired.

Although the estimate f-maps in Figure 4.37 have good WM versus GM contrast, the

quantitative values of the f-maps are not satisfying. For example, the estimated bound

pool fractions are much higher than the ones reported by Yarnkyh [14] with 19.1% in

WM and 12% in GM. These values exceed also the values estimated with the four pa-

rameter fit in this work. These deviations are somewhat surprising since the same MRI

sequences were used for the four parameter fit with the only difference that the resolution

was better. Furthermore the results from the BSA-phantom and fresh PM measurements

show that the single-point approach works. One thing that can be excluded are wrong

constraints because the f-maps were also reconstructed with the constraints of Yarnykh

[14]. In Table 4.7 one can see that the f values are slightly different due to the constraints.

However, also with the constraints of Yarnykh [14] the f-values are much higher than in

the literature. Therefore the deviation can not be explained by the constraints.
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6
Conclusion

The present work investigated in detail the pulsed-Model [13] and further on the fast

bound pool fraction estimation from a single off-resonance measurement [14].

The validation of both methods was performed with three different types of measurements

(BSA-phantom, fresh pm sample and in vivo measurement) that led to the same results.

The bound pool fraction estimation from a single off-resonance measurement is possible,

within acceptable error tolerances, if the following points have been carefully considered.

The single-point approach uses constraints that are derived form the parameters of the

pulsed MT-model. Therefore inaccurate estimation of the parameters propagates into the

error of the fast bound pool fraction estimation due to bad constraints. Once the param-

eters of a specific tissue have been wrongly identified, it is not possible to determine the

correct error of the single-point approach. Therefore the two-pool model parameter has to

be measured as accurate as possible. To find the best off-resonance saturation frequency

and effective saturation flip angle the numerical error simulations, which were presented

in this work, provide a reliable and simple approach to predict the minimal error of the

single-point approach.

One crucial finding of the thesis is that the estimated f-maps from a single off-resonance

differ from literature [14]. It is very likely that this is due to the different T1-mapping

approach that was used in this work. Therefore the choice of a proper T1 mapping tech-

nique is essential for an accurate estimation of the bound pool fraction.

Compared with the MTR the fast bound pool fraction from a single off-resonance mea-

surement has a longer scan time, which is mainly due to the T1-mapping. The advantage

of the single-point approach is that it is more reliable than the MTR due to the indepen-

dence of T1. Therefore for a short extension of scan time one get a better quantitative

marker for the myelin density.

In conclusion the fast bound pool fraction estimation from a single off-resonance measure-

ment is a method that allows to acquire high resolution f-map within clinical acceptable

scan times. Special care must be taken when comparing the absolute values of f-maps

when different T1-mapping approaches are used.
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