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Abstract

With the improvements in power densities of electric motors and their capability of an al-
most instantaneous torque generation, dynamics of the mechanical drive-trains becomes
more critical in the servo drive systems employing these motors. And the dynamics
of these drive-trains depend on the (often) under-damped shafts and elastic couplings
that are typically employed. Impulsive torques from the motors may excite mechanical
resonances in these drive-trains which lead to torsional oscillations, ultimately degrading
the performance of motion control systems.
The work presented in this thesis deals with the performance improvement of the mo-
tion controller for an oscillatory servo drive system. First a classification is made for
the problems involving mechanical resonance based on how the speed control loop is
influenced by the mechanical resonance. Then, for the case of low-frequency resonance
the acceleration feedback approach is applied and an extension is proposed for the con-
sidered problem. It is also apparent that dead times within the considered mechatronic
system have a negative influence on the achievable closed loop performance. A method
for modelling the plant with dead time as a non-minimum phase system is exploited for
designing a model based tracking controller based on the so-called stable system center
approach. The developed techniques are evaluated on experimental testbenches.
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Kurzfassung

Die ständige Verbesserung von Elektromotoren, z.B. hinsichtlich ihrer Leistungsdichte,
ermöglicht die Erzeugung hoher Drehmomentspitzen innerhalb kürzester Zeiten. Dies
führt dazu, dass innerhalb des von diesen Motoren aktuierten mechanischen Systems
– beispielsweise ein Antriebsstrang – unerwünschte Schwingungen angeregt werden
können. Die Dynamik dieser mechanischen Systeme ist häufig durch schwach gedämpfte
Wellen und elastische Kupplungen geprägt. In einem Antriebsstrang können Momenten-
spitzen des elektrischen Antriebes daher zu unerwünschten Torsionsschwingungen
führen.
Diese Arbeit beschäftigt sich mit der Verbesserung der Antriebsregelung eines elek-
trischen Motors als Teil eines mechatronischen, schwingungsfähigen Systems. Zunächst
wird eine Klassifikation der Problemstellung erläutert. Für den Fall “niedriger” Reso-
nanzfrequenzen wird das “acceleration feedback”-Verfahren verwendet, das in dieser
Arbeit für die betrachtete Problemstellung entsprechend erweitert wird. Es zeigt sich,
dass auch bei den zugrunde liegenden mechatronischen Systemen Totzeiten einen neg-
ativen Einfluss auf die erreichbare Qualität des geschlossenen Regelkreises haben. Es
wird eine Methode zur Modellierung der Totzeit verwendet, die zu einem nicht phasen-
minimalen Modell der Regelstrecke führt. Darauf aufbauend wird mit der Methode der
“stable system center” eine modellbasierte Regelung entworfen. Die Praxistauglichkeit
der erarbeiteten Regelungsmethoden wird an Prüfständen demonstriert.
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Nomenclature

Only frequently used symbols are given here.

Physical quantities

Symbol Definition Units

JM Moment of inertia of the motor kg.m2

JL Moment of inertia of the load kg.m2

d Torsional damping coefficient of the shaft N.m.s/rad
k Torsional stiffness of the shaft N.m/rad
ωr Angular resonance frequency rad/s
ωar Angular anti-resonance frequency rad/s
fr = ωr/2π, Resonance frequency Hz
far = ωar/2π, Anti-resonance frequency Hz
r = JM/(JM + JL), inertial ratio -
T Torque N.m
ϕM Angular position of the motor rad
ϕL Angular position of the load rad
R Resistance ohms (Ω)
L Inductance H
v Gear ratio -
f rc Coulomb friction N.m
f rv Viscous friction N.m.s./rad
kt Torque constant of the motor N.m/A
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State variables and other signals

Symbol Definition Units

∆ϕ = ϕM − ϕL, difference in angular positions rad
ωM Angular velocity of the motor rad/s
ωL Angular velocity of the load rad/s
iq Quadrature component of the motor current A
id Direct component of the motor current A
U Voltage V
iM Current passing through the DC motor A

General symbols describing a system

A System matrix
b, B Input vector, -matrix
c Output vector
e Control error
G Transfer function
L Open-loop transfer function
P Polynomial in frequency domain
γ relative degree
s complex angular frequency
u, u Input signal or control input, -vector
ωn Natural angular frequency of a spring-mass-damper system
y Output signal or controlled variable

Note: Bold symbols describe either vectors or matrices unless otherwise stated.
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Subscripts

ar anti-resonance
BW Band width
C Compliant shaft
c command/reference profile
CF Carrier frame
CL closed loop
D Denominator
d disturbance
e electric
EAF Extended acceleration feedback
eq equivalent
est estimated
f ilt filtered signal
L load
M motor
m measured signal
max maximum
N Numerator
NF Notch filter
OL Open loop
R Rigid shaft
r resonance
re f Reference input
s shaft
T Total inertia

Note: A comma in the subscript, for example iq,r, represents the reference quadrature
current signal and similarly ωM,m represents the measured angular velocity of the
motor.

xiii



Mathematical symbols

adj(A) Adjugate or adjoint of a matrix A
C The set of Complex numbers
C− open left-half Complex plane
I Identity matrix
L {.} Laplacian-operator
R The set of Real numbers
R+ = {x ∈ R : x > 0} The set of Real numbers larger than zero
s Laplacian variable, s ∈ C

sgn(.) sign of the variable
y(i)(t) ith-derivative of y(t)
Z The set of Integers
∀ for all
∵ because / since
!
= the validity of this equality is to be shown
≡ Identically equal to
≈ Approximately equal to
:= Defined by
AT Transpose of matrix A
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Abbreviations

AF Acceleration feedback
DIO, dio Dual inertia oscillator
DTC Dead-time compensator
EAF Extended acceleration feedback
GM Gain margin
ID Internal dynamics
LTI Linear time-invariant system
NMP Non-minimum phase
PM Phase margin
RED Robust exact differentiator
RFJ Rotary flexible joint
SISO Single input single output
SMC Sliding mode control
SSC Stable system center
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1. Introduction

1.1. Introduction

The electrical drive technology is constantly spreading with applications in various fields
of engineering. A basic electrical drive, as shown in Figure 1.1, consists mainly of an
electric motor, the mechanical load and a controller. The electric motor drives the load
via a mechanical coupling (usually a stiff shaft), and sensors are mounted for measuring
the position and/or velocity from the motor and/or load. These measured variables are
fed into the controller which includes both control laws, responsible for regulating the
measured quantities, and a power converter which provides power to the motor.

Power
converter

Electric
motor

Mechanical
load

Control
laws

Grid Mechanical
coupling

•

•

•

•
Measurements

Controller

Command

Figure 1.1.: Elements of an electrical drive system

With the improvements in power densities of electric motors, torque generation in these
machines effectively became instantaneous. And with the improvements in digital
electronics the control equipment has become much faster and reliable which lead to
the shift in focus onto the dynamics of mechanical drivetrains which mainly depend
on the shafts and couplings that are employed within these drivetrains. In many cases
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1. Introduction

r
Controller Plant

ue ym
•−

Figure 1.2.: Unity-feedback loop structure for the speed controller

these shafts are assumed to be stiff, yet in many applications, this assumption can
lead to damaging oscillations due to the elasticity of the employed components. These
elasticities within the drivetrain make it an oscillatory multi-mass system. Oscillations
can be introduced into the drivetrain either by the motor in the form of instantaneous
torque variations, for example due to a step change in the reference signal or by an
external disturbance. If the damping coefficient is small enough, the amplitude of these
oscillations becomes very large when their frequency closely matches with the natural
frequency of the drivetrain. This phenomenon is the well-known mechanical resonance.
The magnitude of these amplitude peaks, also known as resonance peaks, depend on the
damping coefficient which depends on various physical factors like the material of the
drive shaft, the friction at the bearings, etc.

The problem of position and/or velocity control for such an oscillatory multi-mass sys-
tem suffering from mechanical resonance is very interesting and has been an intensive
research topic for many years. One of the major goals of controller design for such
oscillatory multi-mass system is to improve its dynamic response. Dynamic response
describes how fast the closed-loop system (controlled system) reacts to a change in refer-
ence and/or to an external disturbance. The higher the dynamic response requirement,
the higher are the instantaneous torques introduced by the controller via the motor into
the drivetrain.

Consider a standard speed control loop as shown in Figure 1.2, and that the reference
velocity r is changed in the form of a step function. By its nature, the step command
excites the controller momentarily with all frequencies making up the Fourier series
for the step function. Consequently, the closed loop is commanded to respond to all
frequencies starting from the highest at the initiation of the step to a final steady state
value after the transient. An appropriately tuned speed controller loop bandwidth will
have its gain crossover frequency1 well below the resonance frequency. Thus, the gain
at the resonance frequency is well below unity (or 0dB) and so the resulting transient

1The frequency at which the gain of the open-loop transfer function crosses 0dB line.
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1.2. Literature review

oscillations from resonance frequency will be damped satisfactorily by the controller.
But, due to the mechanical properties of the system or due to the dynamic response
requirements, if the resonance frequency is close to the bandwidth of the controller, the
controller will not be able to damp the transient oscillations due to resonance. These
sustained oscillations often within 100-300 Hz range (bandwidth of a typical speed
controller) of the drive train and the inertias are perceived as an audible “humming”.
These high torque oscillations may decrease the life of drivetrain or ultimately lead to
total mechanical failure. Thus, location of the resonance frequency/frequencies in a
multi-mass oscillatory system relative to the controller bandwidth plays a crucial role on
its performance.

1.2. Literature review

The ubiquitous presence of electrical drive systems in various industrial branches coupled
with a continuous rise in the dynamic response, precision and reliability requirements
from motion control applications led to the proposal of a multitude of solutions ad-
dressing the problem of mechanical resonance. Well known industrial applications
suffering from mechanical resonance include, but are not limited to position and velocity
control in paper machines [Val+05a] and rolling mills [DKT92; Par+03], electric vehicle
transmission [ABP04a; AH11; Pet97], control of deep space antenna drives [Gaw07],
position control of robotic manipulators [IYH05].

In spite of this variety the identified mathematical model in most of the cases can
be reduced to a two- or three- inertia oscillator system. This observation lead to a
lot of publications addressing the problem of speed and position control of such a
two mass oscillator (dual inertia oscillator) system. Standard PI controller for such a
dual inertia oscillator (DIO) using pole placement techniques to influence the damping
characteristics of the system is developed in [Zha00]. Zhang et.al. conclude that the type
of pole assignment strongly depends on the inertia ratio of motor to load. A self tuning
PI controller based on optimization of the phase margin for a DIO system is proposed in
[WS00]. These standard PI controller tuning techniques either require manual tuning
of the controller or techniques requiring high computational power. A comparative
study on vibration suppression in a DIO system using PI speed controller and additional
feedbacks is reported in [SO07]. Hori et.al. [HSC99] proposed a disturbance observer
based resonance ratio control (RRC), where the main aim is to change the ratio between
the resonance and anti-resonance frequency by feeding back the estimated shaft torque

5



1. Introduction

in a DIO. Katsura et.al. [KO07] uses a similar disturbance observer with a phase-lead
compensator for stabilizing all the resonant modes of a multi-mass resonant system.
Implementation issues and the resulting performance achieved using PI, PID, and RRC
controllers with regard to both closed-loop robustness and control of the process variable
of a DIO system are discussed in [Per+07].

State feedback techniques for instance based on H∞ robust control [KSD00] and µ-
synthesis framework [IIM04] have been designed to optimize the performance for
guaranteed robust stability. These techniques are computationally demanding and
require extensive knowledge for designing the required weights. Kalman filter based
shaft torque estimation and consequent feedback of this estimated torque to damp the
oscillations in the torque controller of a vehicle drive train is proposed in [ABP04b].
Nonlinear extended Kalman filter is used by Szabat et.al. [SO06] to estimate the shaft
torque and load side speed which are used as additional feedbacks for damping the
torsional vibrations in a DIO system. A LQ based speed controller using Kalman filter
is reported in [JS95]. A torque controller based on sliding mode techniques for both
estimation of the shaft torque and control is reported in [AH11]. Model predictive
controller based suppression of torsional oscillations in a steel rolling mill is proposed in
[Wan+06]. Examining the myriad of proposed solutions it becomes clear that choosing
any particular approach for a given problem depends on various factors: formulation of
the goal, availability of various signals for measurement, computational effort and ease
of deployment and/or tuning.

1.3. Thesis objective and contribution

The main focus of this work is to improve the robustness of an existing speed controller
(in a printing testbench) with respect to torsional resonance. The rear axle of the
printing testbench described in Section 2.3.1 is modeled as a dual-inertia oscillator. Major
constraints for controller design in this particular application are the availability of
measurement signals (only motor velocity is measurable) and limited computational
power. Figure 1.3 shows the measured open-loop frequency response2, between the
electrical torque input to the actuating motor (see Figure 2.9) and the measured motor
velocity (from the rear axle of the) of the testbench, against the calculated response from
an identified mathematical model representing a DIO with output delay. Also shown in

2Refer to 2.3.2 and 2.3.3 for details regarding the experimental set-up used to measure the frequency
response.
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green is the response of the same identified DIO model but without the output delay and
without the shaft (torsional) compliance, i.e. having a rigid shaft with infinite stiffness. It
is evident from the plot that the gains of the system with compliance (shown in red) are
increased around and after a certain frequency called the resonance frequency fr. This is
due to the well known mechanical resonance phenomenon. Considering a proportional
speed controller with unity gain, the measured frequency response plot shown in Figure
1.3 can be also be interpreted as the open loop bode plot for the speed control loop.
Magnitude of the resonance frequency relative to that of the phase crossover frequency
(the frequency at which the open loop has a phase shift of −180◦, represented as fpc in
Figure 1.3) determines how the resonance affects the performance of the speed controller.
Within this work the so called low-frequency resonance is considered where the resonance
frequency is smaller than the first phase crossover frequency.

Using the bode plot from Figure 1.3, the stability of the speed control loop with respect
to changes in the controller gain can be assessed using the concept of gain margin3.
Gain margin is the distance expressed in dB between the gain of the open loop transfer
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Figure 1.3.: Experimental frequency response of a DIO

3Refer to Appendix A.
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1. Introduction

function at the phase crossover frequency and the 0 dB line. Gain margin is a measure
of how much the open loop gain (controller gain + plant gain) can be increased before
the stability limit is reached. If the open loop gain is increased beyond this critical
gain, the closed loop transfer function is no more BIBO-stable implying that the internal
stability of the control loop is lost. Thus, in theory if an open loop transfer function
has a gain margin of −G dB, then the loop gain could be safely increased by a factor of
10G/20 before the system becomes unstable. But in practice, the loop gains are increased
only until the open loop has a safety gain margin of −Gsm dB, ensuring that any un-
modeled/neglected dynamics of the plant and/or controller will not render the closed
loop unstable. Thus the amount of practical gain margin for any given control loop is
(Gsm − G) dB.

Compared to the frequency response of open loop comprising a plant without compliance
(see Figure 1.3), the gain margin of the one with compliance is reduced significantly.
This lost gain margin significantly decreases the maximum allowed (considering the
safety margin as mentioned above) loop gain, thus severely limiting its closed loop
performance. The main aim of this thesis is to gain back a portion of the gain margin lost
due to the compliance. As a consequence the loop gain of an existing speed controller can
be increased without impacting its closed loop stability (Safety) margins. The improved
loop gain will ultimately result in improving the dynamic (step- as well as disturbance)
response of the speed control.

Towards this goal a technique called the acceleration feedback (AF) is employed. Ac-
celeration feedback works by effectively increasing the moment of inertia of the motor,
thereby reducing the drive’s sensitivity to mechanical resonance. However the perfor-
mance improvement achievable with this technique is limited due to the presence of
dead time in the speed control loop. An extended version of this approach based on
loop-shaping techniques is proposed in this work and is verified both in simulation and
with experiments on the printing testbench.

A major contributor to the phase lag of the open-loop transfer function at higher
frequencies is the dead-time present in the speed control loop. This dead time is the
sum of dead times from various sources like the computational delay, sampling delay,
communication delay and various other filters that are used to damp high frequency
components in the speed signal. The additional phase lag due to dead time will result
in gain margin limitation of the speed control loop. This observation motivated the
work on techniques to mitigate the dead time. Use of a Smith-predictor for mitigating
the dead-time and ideas of incorporating a rational approximation of the dead-time in
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the plant model for the purpose of controller design are analyzed. Stability of these
dead-time mitigation techniques with respect to the uncertainties in plant model are
also considered. For practical experiments, a technique based on the output tracking
for a non-minimum phase system, the so-called stable system center technique is used.
The DIO plant is represented as a non-minimum phase plant by considering a Padé
approximation for the dead time. Output tracking problem of this non-minimum phase
plant is reformulated as a state tracking problem with the use of stable system center
approach. A sliding mode controller, because of its robustness property, is used for state
tracking. Both numerical and experimental results on a Quanser rotary flexible joint test
set-up are reported.

1.4. Structure of this thesis

This document is organized as follows: Chapter 2 starts by summarizing the theory
and modeling aspects of the DIO system and closes with a concrete description of the
problem. Also described in this chapter are the experimental set-ups used in this work
along with their parameter identification results. Chapter 3 presents theoretical analysis
of Acceleration Feedback (AF), practical issues concerning the implementation of AF
on the printing testbench and the results of implementation. Chapter 4 describes the
practical limitations of AF and proposes a technique to extend the AF technique. Chapter
6 starts by representing a DIO as a Non-minimum phase (NMP) system and gives
theoretical details regarding the problem of output tracking for such an NMP system. A
technique namely, Stable system center approach used for output tracking of an NMP
system is introduced. Practical issues and results of implementing this technique on a
DIO are presented in Chapter 7. Finally, Chapter 8 gives an outlook and concludes the
thesis.
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2. Plant Modeling and Analysis

2.1. Mathematical modeling

The class of mechanical systems considered in this work is the so-called Dual-inertia
oscillator (DIO), also known as Dual mass oscillator. A schematic of such a dual inertial
oscillator is shown in Figure 2.1. The system consists of a motor with moment of inertia
equal to JM driving a load of inertia JL through a mass-less elastic shaft with stiffness k
and a torsional damping coefficient of d. The input to the DIO is the electrical torque
Te, and a disturbance torque equal to Td acts on the load side. Total torque transmitted
by the compliant torsional shaft is denoted by Ts. The angular position and angular
velocities on the motor and load side are respectively denoted by ϕM, ϕL, and ωM, ωL.
Such elastically coupled systems eliminate the use of gearboxes, belts or chains to drive

JM

Motor

ϕM

ϕ̇M = ωM

ϕ̈M = ω̇M

k

d

Te

Load

ϕL

ϕ̇L = ωL

ϕ̈L = ω̇L

ωM Ts

Sha f t

JL Td

ωL

Figure 2.1.: Schematic of the two mass oscillator

the load. This results in increased efficiency, reduced noise, precise positioning, absence
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2. Plant Modeling and Analysis

of backlash and also increased longevity of the machines. DIO systems are quite often
found in various fields, for example the drive line of an automobile, steel rolling mills,
paper production machines, printing machines, etc.

In order to derive a mathematical model for the DIO system, shown in Figure 2.1, the
following assumptions are made

• the friction at the bearings is negligible and

• the elastic shaft behaves linearly.

Total torque transmitted by the shaft is given as

Ts = k (ϕM − ϕL) + d (ωM − ωL) . (2.1)

Torque responsible for the acceleration on motor side, represented by TM, is given as

TM = Te − Ts =⇒ JM ϕ̈M = Te − k (ϕM − ϕL)− d (ωM − ωL) , (2.2)

and the accelerating torque on the load side, represented by TL, is given as

TL = Ts − Td =⇒ JL ϕ̈L = k (ϕM − ϕL) + d (ωM − ωL)− Td. (2.3)

With the help of Equations (2.1) to (2.3) the signal flow diagram [Sch09] for the DIO
system is sketched in Figure 2.2. Torque from the electric motor Te is the input to the

Te TM

1
sJM

ϕ̇M

∆ϕ̇

1/s

∆ϕ

k

d

TL

1
sJM

ϕ̇L
• •

ϕ̇L

− Ts
•

−
Td
−

Figure 2.2.: Signal flow diagram for a dual inertia oscillator

system and ωM, ωL are the measurable outputs. It can be seen from the signal flow
diagram that the system consists of three integrator elements, resulting in a state-space
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2.1. Mathematical modeling

representation of order three. The three state variables are ϕ̇M, ∆ϕ and ϕ̇L. Te represent
the manipulated variable and Td the disturbance variable. With the help of Equations
(2.1) to (2.3), the following state equations are written

ϕ̈M =
1

JM
Te −

k
JM

∆ϕ − d
JM

ϕ̇M +
d

JM
ϕ̇L (2.4)

∆ϕ̇ = ϕ̇M − ϕ̇L (2.5)

ϕ̈L =
k
JL

∆ϕ +
d
JL

ϕ̇M − d
JL

ϕ̇L +
1
JL

Td. (2.6)

The matrix representation of these state-variable equations is given in Equation (2.7).


ϕ̈M

∆ϕ̇

ϕ̈L

 =


− d

JM
− k

JM

d
JM

1 0 −1
d
JL

k
JL

− d
JL

 ·


ϕ̇M

∆ϕ

ϕ̇L

+


1

JM

0

0

 · Te +


0

0
1
JL

 · Td (2.7)

ẋ = A · x + b · u + w · v

2.1.1. Analysis of the model from a system theory perspective

In the present work only ωM is considered to be measurable. The transfer function
between output ωM and the input Te is derived as

Gdio(s) =
L {ωM}
L {Te}

=
1

(JM + JL)s︸ ︷︷ ︸
GR(s)

JLs2 + ds + k(
JM JL

JM + JL

)
s2 + ds + k︸ ︷︷ ︸

GC(s)

. (2.8)

The first fraction in Equation (2.8) denoted by GR(s) represents a rigidly connected
system i.e., when the motor is rigidly connected with the load. This rigidly connected
system is represented by a scaled integrator. The second fraction denoted by GC(s)
represents the effect of the compliant shaft. In order to analyze this fraction its numerator
and denominator are compared to a standard second-order polynomial

P(s) = s2 + 2ϑωns + ω2
n, (2.9)

where ωn is the natural frequency and ϑ the damping ratio. The characteristic frequencies
of the numerator and denominator represented by ωn,N and ωn,D respectively are given
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2. Plant Modeling and Analysis

as

ωn,N =

√
k
JL

rad/s ωn,D =

√
k (JM + JL)

JM JL
rad/s. (2.10)

To investigate the frequency response of the transfer function given by Equation (2.8),
first its limiting behaviour at very low frequencies and at very high frequencies is
considered.
At low frequencies, i.e. s → 0:

Gdio(s) ≈
1

s (JM + JL)
=

1
sJt

, (2.11)

where JT represents the total inertia, i.e. JT = JM + JL. Equation (2.11) is same as that of
the fraction GR(s) in Equation (2.8), implying that the low frequency behaviour of the
DIO system is same as that of a rigidly connected system.

At higher frequencies, i.e. s → ∞:

Gdio(s) ≈
1

s (JM + JL)

JL
JM JL

JM + JL

=
1

sJM
. (2.12)

At high frequencies the effective inertia is contributed solely by the motor as can be seen
from Equation (2.12). This can be physically envisioned by considering the fact that the
reaction of the load via the elastic shaft on the motor is always delayed.
Now in order to investigate the frequency response behaviour around the frequencies
ωn,N , ωn,D, the following inertia ratio is introduced

r =
JM

JM + JL
=

JM

JT
< 1. (2.13)

Using Equation (2.13), Equation (2.10) is rewritten as

ωn,N =

√
k

(1 − r) JT
ωn,D =

√
k

r (1 − r) JT
. (2.14)

From Equation (2.14) and the fact that r < 1 it follows that ∀(k, JM, JL) ∈ R+, ωn,N <

ωn,D and the ratio of natural frequencies is given as

ωn,N

ωn,D
=

√
r. (2.15)
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log ω

log|Gd|

ωn,Dωn,N

1
Jt

1
JM

Figure 2.3.: Schematic sketch of the amplitude response of a dual inertia oscillator

Using Equations (2.10) till (2.12) a schematic sketch for the amplitude response of transfer
function in Equation (2.8) is drawn in Figure 2.3. The shape of the amplitude response
around the natural frequencies of the numerator and denominators of the fraction GC(s)
is regulated by the amount of damping from the corresponding polynomial. At and
around the natural frequency of the numerator polynomial the magnitude is reduced
and similarly, at and around the natural frequency of the denominator the magnitude is
increased. Similar to the amplitude response, due to the integral behaviour of Equation
(2.11) phase of Gdio(s) is −90◦ at low frequencies and increases first (∵ ωn,N < ωn,D)
due to the numerator term and decreases afterwards due to the denominator and finally
goes back to −90◦ at high-frequencies due to Equation (2.12). Based on the behaviour of
magnitude around the natural frequencies, given by Equation (2.10), these frequencies
are given the names Anti-Resonance far and Resonance fr frequencies respectively. These
frequencies in Hz are given as

far =
1

2π

√
k
JL

Hz (2.16)

fr =
1

2π

√
k (JM + JL)

JM JL
Hz. (2.17)

Figure 2.4 shows the bode plot of a transfer function given by Equation (2.8) with
different values for the inertia ratio r given by Equation (2.13). The higher the inertia
ration r, i.e. the greater the inertia of motor compared to the total inertia, the lower
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2. Plant Modeling and Analysis

is the resonance frequency. This relation between motor inertia JM and the resonance
frequency fr can also be seen from Equation (2.17); when JL >> JM,

fr ≈
1

2π

√
k

JM
. (2.18)

In many practical applications there is always a small dead time around the control loop.
This dead time is the result of the combination of several factors. Due to the fact that the
controllers are implemented on a digital microprocessor, sampling process is inevitable.
In addition to the inherent delay from sampling and calculation processes, there is the
velocity calculation delay in motion control applications. Usually in motion control
applications the position is measured and the velocity is calculated as the difference of
the two most recent positions. Depending on the quality of the position measurement
additional signal processing is done on the calculated velocity signal which will also add
some delay. This dead time can be represented as an exponential function in Laplacian
domain as shown in Equation (5.2). Taking these dead times into account the DIO system
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Figure 2.4.: Bode plot of Gdio(s) with different inertia ratios.
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represented by Equation (2.8) is modified as

Gt(s) = Gdio(s) · e−τs, (2.19)

where τ is the dead time around the loop in seconds. Figure 2.5 shows the effect of the
dead time on the frequency response of a DIO system. A detailed description of the
affects of dead time on the stability of close-loop are given in Section 5.2.

The following facts support the assumption made at the beginning of this section that
only the motor angular velocity is measurable.

• A transfer function between Te and ωL is given as

GdL(s) =
ωL(s)
Te(s)

=
1

(JM + JL)s
ds + k(

JM JL

JM + JL

)
s2 + ds + k

. (2.20)

Due to the missing s2 term in the numerator (compared to Equation (2.8)), the
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phase goes below −180◦ which makes it much more hard to control the plant with
ωL as the measured output.

• One encoder on the motor is always required for controlling the motor and an
additional encoder on the load side increases the associated costs.

2.2. Problem description

Example 2.2.1 (Motivating example). Consider the problem of calculating a speed
controller for a DIO described by Equations (2.4) to (2.6). The unity-feedback loop
shown in Figure 2.6 is considered for this purpose. For the sake of analysis

• the controller is assumed to be a proportional controller with gain kp, and

• dynamics of the current controller and the power inverter, which are essential for
real world implementation (see Section 2.3.2), are neglected assuming that their
dynamics are sufficiently faster than that of DIO.

In Figure 2.6, ωM,r represents the reference angular velocity of the motor and ym repre-
sents the measured motor angular velocity. In order to predict the closed loop dynamics
of this unity-feedback system, its open-loop is studied. The open-loop or the loop
transfer function, using Equation (2.8) is given as

L(s) = kpGdio(s)e−τs. (2.21)

Using the parameters in Table 2.1, the bode plot of the open-loop is drawn in Figure
2.7a and the closed loop frequency response is plotted in Figure 2.7b. It is evident from
Figure 2.7 that the closed loop system is unstable based on the fact that both gain and
phase margins are negative and are equal to −2.1 dB and −24.6 ◦ respectively.

ωM,r
kp

ϕ̈M = 1
JM

Te − k
JM

∆ϕ − d
JM

∆ϕ̇

∆ϕ̇ = ϕ̇M − ϕ̇L

ϕ̈L = k
JL

∆ϕ + d
JL

∆ϕ̇ + 1
JL

Td

e−sτ
Tee y ym

•
−

Figure 2.6.: Unity-feedback loop structure for the speed control
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Table 2.1.: Simulation parameters

Parameter Value Units

JM 0.1 kg.m2

JL 0.9 kg.m2

d 0.1 N.m.s/rad
k 10 N.m/rad
τ 0.01 s
kp 20 A.s
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Figure 2.7.: Bode plot depicting the inertial-reduction instability

In order to study the influence of mechanical compliance present within the DIO on
the performance of the speed controller, bode plot of the open-loop system as given by
Equation (2.21) is plotted twice in Figure 2.8 once with the mechanical compliance and
once without (for simplicity kp is set to 1 in both the cases). The first curve, drawn in
blue, represents the open-loop system with mechanical compliance and the second curve,
drawn in red, represents the system with a rigid shaft. GMC, GMR represent the gain
margins of the open-loop system with and without the compliant shaft. It is obvious
from Figure 2.8 that GMC < GMR. Due to the increase in gain (of the DIO) around
and after the resonance frequency, the gain margin of an otherwise rigidly connected
motor and load is eroded. This reduction in gain margin ultimately affects the closed
loop performance (by reducing the maximum achievable gain of the controller before
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Figure 2.8.: Plot depicting the erosion of gain margin due to the elastic shaft

the closed loop is rendered unstable). N

Mechanical compliance can generate instability in two ways: tuned resonance and inertial-
reduction instability [Ell04]. With tuned resonance (also known as high-frequency res-
onance), the system oscillates at the resonant frequency of the combined motor and
load; the motor and load oscillate at that frequency, moving in opposite directions as
energy circulates between the two. A common characteristic of tuned resonance is that
the resonance frequency is often above the first phase crossover frequency. Machines
that most often demonstrate tuned resonance are those with low cross-coupled viscous
damping. The system often oscillates with frequencies over a narrow band around the
resonance frequency resulting in a pure pitch, sounding much like a tuning fork. The
frequency of oscillation is mechanically fixed, and changing controller gains may change
the intensity of the oscillations but not the pitch.

With inertial-reduction instability (sometimes also known as low-frequency resonance),
the system becomes unstable above the motor-load resonant frequency. Here the flexible
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coupling essentially disconnects the load from the motor. Figure 2.8 plots the bode plot
of the DIO together with lines representing the rigidly connected DIO and of the motor
only (represented by red and brown lines respectively). At low frequencies, the DIO
with compliant shaft overlaps with rigidly connected system and at high frequencies it
overlaps with that of the motor only. This can also be seen from Equations (2.11) and
(2.12). A key characteristic of a system exhibiting inertial-reduction instability is that the
resonance frequency is below the first phase crossover frequency, and in case instability,
the system oscillated with a frequency which is above, often well above, the resonant
frequency of the motor and load. This can be seen from the closed loop frequency
response plot in Figure 2.7b; the frequency of oscillation (represented by the peak) is
167 rad/s where as the resonance frequency is 10 rad/s. Instability in inertial-reduction
instability comes from a gain increase that occurs over a wide frequency range, not from
a narrow gain spike as with tuned resonance. Thus the frequency of oscillation can
occur anywhere above the resonant frequency of the motor and load, but close to the
bandwidth of the speed controller.

A machine suffering with tuned resonance will usually emit a pure pitch, like a tuning
fork. The frequency of the oscillation is fixed (and depends on the mechanical parame-
ters), and changing the controllers gains only changes the intensity of the pitch, but not
the pitch. Whereas in the case of inertial-reduction instability, the frequency of oscillation
is influenced by the control loop gain. A little variation of the loop gain1 is common, and
any variations influences the frequency of instability through a corresponding shift. Such
variations causes the frequency of oscillation to vary resulting in a distorted tone. Thus
a system suffering from inertial-reduction instability makes a rough grinding noise.

The problem of instability due to inertial-reduction is considered in this work. Main goal
of this work is to improve the performance of a DIO suffering from inertial-reduction
instability. Two different approaches, namely acceleration feedback and output tracking
of a non-minimum phase system are employed in this work. Acceleration feedback
deals with the problem mentioned above by artificially increasing the motor inertia and
thereby improving the gain margin. The second technique approaches the problem from
a different perspective, i.e. by mitigating the dead-time and thus reducing the phase lag
around the loop.

1for instance, current loop performance can vary because large current magnitudes can reduce rotor
inductance
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2.3. Printing testbench

2.3.1. Features

The printing testbench shown in figure 2.9, built in cooperation with Bernecker and
Rainer Industrie-Elektronik Ges.m.b.H. [BRA] from Salzburg, is used for experiments in
this work. The rear axle of the testbench consisting of the actuating motor, the elastic
shaft, a load inertia and a disturbance motor behaves as a DIO.

Main aim behind the development of this printing testbench is to simulate various
problems with printing machines in a laboratory environment. An annotated CAD
drawing of its top-view highlighting important components is shown in Figure 2.10. The
motor on the top left drives the counter-pressure cylinder via an elastic shaft. This shaft
is connected to the motor on one side and the cylinder on the other with the help of
rigid couplings. There is an additional motor on the right side of the counter-pressure
cylinder which can be used to simulate disturbance torques. The disturbance motor
and the counter-pressure cylinder are joined using a bellow coupling, which is used to
compensate for any axial misalignment. A second larger cylinder the so-called print
cylinder is driven by another motor, and this whole axis is mounted on a pivot-able

Figure 2.9.: Printing testbench
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arm as can be seen from Figure 2.11. This pivot-able arm is connected to the base
plate via a spring mounted load-cell enabling the measurement of contact force between

Counter-pressure cylinder

Print cylinder

Shaft

Rigid coupling Bellow coupling

M
ot

or

M
ot

or

M
otor

Shaft pivots

Figure 2.10.: Printing testbench; Top view

Load side motor
Print cylinder

Load cell

Pivot-able arm

Spring mount

Pivot point

Base plate Ground plate

Figure 2.11.: Printing testbench; Side view
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the two cylinders. The printing process is described with the help of Figure 2.12.

TE
ST

TE
ST

Counter-pressure cylinder

Rubber clichéPrint cylinder

Paper

Figure 2.12.: Illustration of the printing process

The print cylinder is wrapped with a rub-
ber cliché which carries the impression
to be printed onto the paper, and the pa-
per itself is fed between the cylinders. The
pressure between the two cylinders is used
to transfer the ink onto the paper. An opti-
mal pressure has to be maintained in order
to ensure a consistent print quality. Often
the rubber cliché is not long enough to
cover the entire circumference of the print
cylinder resulting in uneven contact force
between the cylinders during operation,
which ultimately introduces vibrations into the base plate.

It can be seen from Figure 2.11 and Figure 2.10 that the whole machine rests on a
pivot-able base plate which is connected to the ground plate via a couple of shaft pivots.
Carefully placed encoders at these pivot points enables the measurement of the relative
movement between the base and ground plates. This feature enables the testbench to
simulate the vibrational behaviour of a pick-and-place robot. A pick-and-place robot
introduces vibrations into its base due to the rapid start and stop moves between two
given points in space. If the rear axle of the machine is rapidly positioned back and
forth between two points, it introduces torsional oscillations in the elastic shaft which
ultimately introduce vibrations in the base plate.

2.3.2. Motor controller

All the three motors used in the testbench are three phase permanent magnet syn-
chronous motors (PMSM) with a rated torque of 39 Nm and a rated speed of 1000 rpm.
These motors are driven with ACOPOSmulti [ACO], a servo drive from B&R, which
mainly consist of

• EnDAT[int] interface for communicating with the motor encoder

• motion controller

• power converter.
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2.3. Printing testbench

The power converter is used as the actuator (variable frequency signal generator) which
drives the PMSM. The motors are fitted with absolute encoders which are used for
measuring the rotor position. This rotor position is used on one hand by the servo
drive for the commutation of currents and on the other hand for the feedback control of
velocity and position of the motor. The servo drive together with the driven mechanical
load is often called as the servo drive axis.

An industry standard cascaded type controller, shown in Figure 2.13, is used as the
motion controller on the ACOPOSmulti. A signal generator within the position controller
is used to generate a reference position profile based on the current position and the
target position ϕr. The signal generator also takes into account the restrictions on the
maximum acceleration and velocities of the motor while calculating the reference profile.
This reference profile is compared against the measured position ϕm by the position
controller to generate the reference velocity ωr. Also within the position controller is a
filter that calculates the current velocity ωm from the measured position. The position
controller task runs every 400 µs, i.e. with a frequency of 2.5 kHz. The measured velocity
along with the reference velocity are processed by the velocity controller running every
200 µs or at 5 kHz to calculate the reference quadrature current iq,r.

The machine is normally operated in constant torque mode where the direct-axis current
id is set to zero, and only the quadrature-axis current iq is responsible for the torque
production [Kri01]. This torque producing reference quadrature-axis current iq,r is
calculated by the velocity controller. The aim of the current controller is make the
measured current components iq,m and id,m to correspond to the desired values (iq,r and
id,r). Based on the error between the desired and the measured values current controller
calculates the reference voltages vq,r and vd,r in d-q frame. The reference voltages in d-q
frame are converted to the three phase voltages using Park transformations [Vuk12].
These reference voltages are realized by the switching action of power transistors in the

Position
controller
(400 µs)

Velocity
controller
(200 µs)

Current
controller
(50-200 µs)

Inverter
+ PMSM

ϕr
ωr

ωm
iq,r

vq,r

vd,r

ϕm
iq,m

id,m

Figure 2.13.: Structure of the cascaded controller structure used in ACOPOS
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inverter circuit. The operating frequency of the current controller can be set to 2.5 kHz,
5 kHz, 10 kHz or 20 kHz. The power transistors within the inverter module are switched
at the same frequency as that of the current controller. It is well known that higher
switching frequencies tend to dampen the magnitude of ripple in the current signal. All
the experiments performed on the testbench in this work are programmed in the current
controller part. So if the switching frequency is increased (by decreasing the cyclic time
of the current controller task) the time available for executing the user written programs
is reduced. A switching frequency of 5 kHz is used for all the experiments presented in
this work.

The following three different control modes are differentiated

1. position control mode

2. speed control mode

3. torque control mode.

When a machine in running is position control mode, all the three cascaded controllers
are active and are working to keep the position of the motor at a given reference value
or following a given reference trajectory. In the case of speed control mode only the
speed controller and the underlying current controller are actively keeping the reference
velocity / velocity profile. The third case is when only the current controller is active
and a reference torque is generated by the motor.

2.3.3. Parameter identification

As mentioned in Section 2.3.1, the rear axle of the printing testbench behaves as a
DIO. This section presents the details regarding parameter estimation for this DIO
system. Parameters that need to be estimated are the motor, load inertia, and stiffness,
damping of the shaft. For identification the DIO is excited with a Pseudo-Random-
Binary-Signal (PRBS) [MRH10]. The PRBS is fed into the mechanics as the torque
generating component of the stator current [VPE05; WGH13]. The advantage of using
PRBS signal is that it minimizes the movement due to excitation so that it is suitable
also for machines with limited movement capabilities. The response of the excitation is
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2.3. Printing testbench

measured by differentiating the position signal2 which is measured by the encoder on
the motor shaft. The quantization effects from the differentiation can be neglected due to
the high resolution of the encoders in industrial servo drives. A switching frequency of
5 kHz was used for the identification experiment. Figure 2.14 plots the time domain data
collected from an identification experiment. The transient data is neglected from the
experimental data and only the steady state measurements are used for identification.
Using the time domain experimental data the frequency response data is calculated
using fast Fourier transform (FFT) algorithm in Matlab. This frequency domain data is
used to fit a parametric model based on the transfer function given by

Gd(s) =
L {ωm}

L {Te(s)}
=

1
(JM + JL)s

JLs2 + ds + k(
JM JL

JM + JL

)
s2 + ds + k

e−τs, (2.22)

where τ represents the dead-time. The transfer function in (2.22) is parametrized using
JT, fr, far, d, τ and the initial values for the parameters JT, fr and far are estimated from
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Figure 2.14.: Time domain measurements from the identification experiment

2The differentiation and subsequent conditioning and filtering operations on the position signal are
performed in the firmware of the servo drive and only the angular velocity is available for experiments,
thus the angular velocity is assumed to be measured in this work.
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Table 2.2.: Estimated parameters

Parameter Value Units

JM 0.0658 kg.m2

JL 0.2843 kg.m2

d 2.51 N.m.s/rad
k 32.013 kN.m/rad
τ 0.001 s

the experimental data. A non linear least squares fitting technique is used to fit the
model to the experimental data.

Figure 2.15 plots the frequency response of the identified model against the measured
frequency response from the PRBS excitation. Number of data points in the low frequency
are limited due to the limited amount of memory available on the servo drive. The
high frequency content (around 1000 Hz) shows a number of secondary resonance
peaks in the magnitude response. These secondary resonance peaks are formed by the
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Figure 2.15.: Measured frequency response Vs. frequency response of identified model
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different couplings present in the drive train connecting the load to the actuating and
the disturbance motors (Refer to Figure 2.9). A higher order system considering more
than two masses is required to model the behaviour of the system exactly, but for the
purpose of experiments in this work only the dominant resonance frequency and the
corresponding dual inertia system is modelled. The dominant resonance frequency,
the damping factor effecting the magnitude of this resonance peak and the dead-time
effecting the phase are satisfactorily identified. Table 2.2 lists the identified parameters.

2.4. Quanser rotary flexible joint

Figure 2.16 shows the experimental setup with the rotary flexible joint (RFJ) from
Quanser [Qua]. The setup mainly consists of an aluminium frame which supports all the
mechanics. A DC motor drives the carrier frame via a reduction gear. A rotary cantilever
load is mounted on the carrier frame with the help of two flexible springs. Additional
weights are mounted on the cantilever to increase the moment of inertia. Two encoders,

Spring

Load side encoder

Carrier frame

Motor side encoder

DC motor

Reduction gear

Load

Frame

Figure 2.16.: Quanser rotary flexible joint experimental setup
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one on the motor and the other on the load side, allow for the measurement of angular
positions. An equivalent circuit diagram depicting both the electromagnetic subsystem
and the mechanical subsystem of the RFJ setup is shown in Figure 2.17. The DC motor
(with moment of inertia Jdc about the axis of rotation, electrical resistance RM, inductance
LM, motor torque constant Kt, motor current iM, input voltage UM, rotor position ϕM

and rotor velocity ωM) drives the carrier frame via a gear box with gear ratio v. The load
(with moment of inertia JL) is connected to the carrier frame (with moment of inertia JCF)
via the spring with stiffness k and damping factor d. The velocities of both the motor and
load are calculated using the difference between two recent position measurements. It is
assumed that the shafts connecting the motor to the gears and the gears to the carrier
frame are rigid, and that there is no play in the gears. Using this assumption the total
inertia to the left of the spring (in Figure 2.17) can be lumped together into JM making
the dynamics of the RFJ setup similar to that of DIO.

UM

iM
RM LM

iM

k

d

ϕM, ωM

JLJCF

ϕL, ωL

v

Jdc

Figure 2.17.: Equivalent electromechanical circuit diagram of the Quanser RFJ setup

2.4.1. Parameter estimation

For the purpose of identification, back-EMF introduced within the DC motor is neglected.
This allows the relation between the torque induced by the DC motor and the applied
voltage UM to be described by the following linear equation

Te =
Ktv
RM︸︷︷︸

:=KM

UM. (2.23)

An excitation signal in the form of Te is generated and applied to the setup via UM using
the relation (2.23). The motor speed ωM is calculated from the measured rotor position

30



2.4. Quanser rotary flexible joint

ϕM. Additional low-pass filters are used as well to filter out high frequency noise from
the calculated speed signals. These input and output signals are used for estimating
the parameters describing the dynamics of the RFJ setup in the form of DIO. Coulomb
and viscous friction components are also considered in the parameter estimation. The
parameters are estimated using a recursive least square identification technique. Table
2.3 presents the estimated model parameters, f rc, f rv denote the Coulomb and Viscous
friction coefficients. Plotted in Figure 2.18 are the input torque from the DC motor
(related to the input voltage via (2.23)), the measured and simulated velocities and the
error in the simulated velocity. In spite of the fact that the dynamics of the RFJ setup are
approximated to that of DIO, the estimated model fits the measured data quite well as
seen from Figure 2.18.
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Figure 2.18.: Parameter estimation for the RFJ experimental setup
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Table 2.3.: Estimated parameters

Parameter Value Units

JM 0.1897 kg.m2

JL 0.4773 kg.m2

d 0.3 N.m.s/rad
k 39.27 N.m/rad
τ 0.03 s

f rv,M 3.56 N.m.s/rad
f rv,L 0.07 N.m.s/rad
f rc,M 0.028 N.m
f rc,L 0.00 N.m
KM 0.13 A.s
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3. Acceleration Feedback

As described in Section 2.2, elastic shaft connecting the driving motor to the driven load
leads to a increase in gains around and after the resonance frequency. These increased
gains erode the gain margin thus limiting the performance of a speed control loop.
Following section presents some well-known cures for mechanical resonance. Motivation
and the basic idea behind Acceleration Feedback (AF) technique are presented in Section
3.2. Theoretical analysis of AF supported by numerical simulations is presented in Section
3.3. Section 3.4 presents three differentiation techniques which can be used with noise
corrupted measurement signal for estimating the acceleration signal. Implementation
details for implementing AF on the printing testbench and the experimental results are
discussed in Sections 3.5 and 3.6 respectively.

3.1. Cures for mechanical resonance

There are numerous mechanical and electrical cures for mechanical resonance described
in the literature [EG01; VBL05, and references therein]. The following techniques are
quite often employed

• increase motor to load inertia ratio,

• stiffen the shaft,

• electronic filters.

Increasing the motor to load inertia ratio is one of the most reliable ways of improving
the resonance problem. This is because the smaller the ratio of load inertia to motor
inertia, the less compliance will affect the system. The effect of this inertia ratio can
be seen from Figure 2.4; the smaller the ratio of load to motor inertia, the shorter is
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the distance between two parallel lines (refer Equations (2.11) and (2.12)). This in-turn
reduces the amount of gain margin lost due to resonance phenomenon.

Increasing the stiffness of the elastic shaft connecting the motor to the load is another
well-known technique for improving the performance of a system affected by resonance.
Increasing the stiffness of the shaft will push the resonance and anti-resonance frequen-
cies higher on the frequency axis (see Equations (2.16), (2.17)). There will be a stiffness
value after which the resonance frequency is above the first phase crossover frequency,
resulting in changing the system behaviour from inertial-reduction instability to a tuned
resonance. Stiffness of the shafts can be increased by using stiffer materials, increasing
the diameter of shaft, or by using shorter shafts [VBL05]. Adding more mechanical damp-
ing will also help. These mechanical solutions are almost always economically taxing,
and in some situations may not be implementable because of design restrictions.

Electronic solutions generally make use of Notch filters [SR99], and Bi-quad filters
[EG01]. The common objective for these two filters is to attenuate the loop gain at a
particular frequency, thus suppressing the effects of resonance. These filters are tuned
to the frequency at which the closed loop oscillates (see Figure 2.7b). These filters are
rendered useless when there is a change in peaking frequency of the closed loop. As
mentioned in Section 2.2 the frequency of oscillation in case of a system suffering from
inertial-reduction instability is not fixed.

Another solution is the so-called acceleration feedback (AF) which increases the motor
inertia electronically. It has been shown in [Val+05b] that this method is robust against
variations in inertia ratio, damping and stiffness of the connecting shaft. And the fact
that this technique can be applied by electronic means makes it more interesting.

3.2. Motivation

The amount of gain margin (GM) lost due to the increase in gain around and after the
resonance frequency depends on the moment of inertia of the motor, as can be inferred
from Figure 2.3 and Figure 2.8. In order to increase the GM it is sufficient if the moment
of inertia of the motor is increased. This way the high frequency asymptote is shifted
closer to the low frequency asymptote, resulting in an increased GM. The main goal
behind AF is to electronically increase the inertia of the motor. Assuming that this goal
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is achieved by adding an additional inertia Ja to JM, Equation (2.4) is modified as

ϕ̈M (JM + Ja) = Te − k (ϕM − ϕL)− d (ϕ̇M − ϕ̇L) (3.1)

=⇒ ϕ̈M JM = Te − k (ϕM − ϕL)− d (ϕ̇M − ϕ̇L)− ϕ̈M Ja

=⇒ ϕ̈M JM = Te − ϕ̈M Ja − k (ϕM − ϕL)− d (ϕ̇M − ϕ̇L) . (3.2)

As seen from Equation (3.2) subtracting the signal ϕ̈M Ja from Te results in an apparent
increase in the motor moment of inertia. This additional signal is the product of motor
acceleration ϕ̈M, which is not directly measurable, and a constant gain Ja, which is
chosen at will. Following section presents the numerical simulation of AF technique for
a dual-inertia oscillator.

3.3. Numerical simulation of AF technique

Consider the velocity control loop as shown in Figure 3.1, where a proportional controller
is used for tracking the reference angular velocity ωM,r. Acceleration feedback, as
mentioned in the previous section is implemented with a gain of Ja which effectively
becomes the additional (or active) inertia added to JM.

For the sake of simplicity, acceleration signal is assumed to be available by differentiating
the output velocity signal. The transfer function of the open-loop system is given as

ym

ωM,r
= kp

Gdio(s)
1 + Gdio(s) Ja s

, (3.3)

ωM,r
kp

ϕ̈M =
1

JM
Te −

k
JM

∆ϕ − d
JM

∆ϕ̇

∆ϕ̇ = ϕ̇M − ϕ̇L

ϕ̈L =
k
JL

∆ϕ +
d
JL

∆ϕ̇ +
1
JL

Td

d
dt

Ja

Tee ym
•

•

−−

Figure 3.1.: Velocity control loop with incorporated AF loop
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using Equation (2.8), the above equation is rewritten as

ym

ωM,r
= kp

1
(JM + Ja + JL)s

JLs2 + ds + k(
(JM + Ja)JL

JM + Ja + JL

)
s2 + ds + k

. (3.4)

One can see that the numerator does not change implying that the antiresonance fre-
quency remains the same, but the resonance frequency is shifted to a lower frequency.

fr =
1

2π

√
k(JM + Ja + JL)

(JM + Ja) JL
(3.5)

This shift in the resonance frequency (compare Equations (2.17) and (3.5)) is also seen
when the bode plot of the open loop is plotted as shown in Figure 3.2. The identified
printing testbench parameters from Table 2.2 together with a proportional gain of kp = 1
are used for plotting this bode diagram. It can also be seen from the figure that the
magnitude peak at the resonance frequency is also damped with the use of AF. The
effective increase in the motor inertia also increases the gain margin of the speed control
loop.

For simulating the behaviour of AF in closed speed control loop, consider the propor-
tional gain kp = 80. Now the results of two simulations, one with Ja = 2JM and the
second one with Ja = 3JM, are presented in Figure 3.3. In both the cases the speed
controller gain remains the same. It is clearly seen from Figure 3.3 that the speed
controller without AF yields the undesirable peaking behaviour in closed loop where
as the simulations with AF does not. This implies that the step response of the closed
loop without AF is oscillating with a dominant frequency equal to the frequency of
the peak in the bode plot shown in Figure 3.2. Another fact is that this frequency is
higher than the original mechanical resonance frequency. The resonance frequency of the
plant is about 130 Hz where as the frequency of oscillation in closed loop (represented
by the peak) is well above the original resonance frequency, about 250 Hz. This once
again proves the fact that the printing testbench can be classified as a mechanical system
suffering from inertial-reduction instability as mentioned in Section 2.2.

Thus AF is effectively a method of reducing drives sensitivity to mechanical resonance
achieved by electronically increasing the drive’s inertia. This active inertia, Ja is superior
because it does not require extra flywheels and does not limit the response of drive to
fast commands as adding physical inertia would. For implementation, differentiating
the measured motor velocity signal ϕ̇M is not appropriate because the acceleration signal
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3.4. Differentiation techniques for estimating the acceleration

that results is badly contaminated with quantization noise and has an inherent lagging
property. Some interesting techniques to counteract these limitations are presented in
Section 3.4.

3.4. Differentiation techniques for estimating the acceleration

Fast and robust estimation of the derivatives of measured (or sampled) time signals
is a very important issue in a variety of applications in control engineering, failure
diagnosis, signal processing, etc. Due to the fact that, in practice, signals are affected
by measurement noise, main goal of any differentiator is to achieve a good signal-to-
noise ratio for the calculated derivative. In this section three techniques for estimating
the derivative of a signal corrupted with measurement noise are presented. First, a
nonlinear technique namely the Robust exact differentiator (RED) which is based on
a 2-order sliding mode algorithm1 is presented. The second technique presented here
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Figure 3.2.: Comparison (in simulation) of open loop bode plot with and without AF

1The underlying ideas of Sliding mode control are presented in Appendix C
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is the so-called algebraic derivative estimation. This technique is used to approximate
the derivative of a signal based on truncated Taylor series approximation of the signal
and its representation as a chain of integrators. The third method uses LTI systems to
approximate the derivative of a signal. The relative advantages/disadvantages of each
method in view of implementation/tuning on a real-time hardware are discussed as
well.

3.4.1. Robust exact differentiator

Levant [Lev98] proposed a robust exact differentiation (RED) technique based upon
2-sliding algorithm2 for signals with a given upper bound on the Lipschitz’s constant
of their derivatives. Given an input signal y(t), the Lipschitz’s constant is a constant L
defined as

L = sup
|y(t1)− y(t2)|

|t1 − t2|
= sup

∣∣∣∣δy
δt

∣∣∣∣. (3.6)
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Figure 3.3.: Closed loop simulation of the speed controller for DIO with and without AF

2Refer Appendix C
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f ż0 = v = −1.5L1/2|e|1/2 sign(e) + z1

ż1 = −1.1L sign(e)

∫e u z0−

Super-Twisting controller

Figure 3.4.: Schematic illustration of Robust exact differentiator

Consider a signal f (t) be a function defined on [0, ∞), which is a result of real-time
noise corrupted measurement of some unknown smooth signal f0(t) with the first
derivative ḟ0(t) having a known Lipschitz constant L > 0, i.e. | f̈0(t)| ≤ L. The function
f (t) is assumed to be Lebesgue-measurable function, the unknown measurement noise
f (t)− f0(t) is assumed to be bounded. The task is to estimate the derivative ḟ (t) in
real-time using only the values of f and the number L. The estimation is to be exact in
the absence of noise i.e., f (t) = f0(t). Consider an auxiliary system (shown in Figure
3.4)

ż0 = u, (3.7)

where u is the control signal and let the sliding variable be defined as

e = z0 − f (t). (3.8)

The idea from here is to drive e and ė to zero in finite time. This objective can be achieved
by the use of a 2-sliding mode. In that case

ė = e = 0 =⇒ z0 = f and ḟ = u. (3.9)

A super-twisting controller is employed in [Lev98] towards this goal. The differentiator is
given as:

ż0 = v = −λ0L1/2|z0 − f |1/2 sign(z0 − f ) + z1, (3.10)

ż1 = −λ1L sign(z0 − f ), (3.11)

with λ0 = 1.5, λ1 = 1.1. Here z0 is the smoothed input f and both v, z1 can be taken as
ḟ . The sufficient convergence conditions are stated as

∀λ2 > L,
2(λ2 + L)2

λ2
1(λ2 − L)

< 1.

It is also shown in [Lev98] that:
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1. If f (t) = f0(t), i.e. in the absence of noise

z0 = f0(t) and z1 = ḟ0(t).

The differentiator is exact in the absence of measurement noise.

2. If | f (t)− f0(t)| < ε, then there exists a positive constant µ depending exclusively
on the parameters of differentiator such that,

|z1 − ḟ0(t)| ≤ µε1/2

3. v is noisy in the presence of input noise (measurement noise) and z1, a Lipschitzian
signal, has a small phase delay in the presence of input noise.

4. The transient process time is uniformly bounded if the initial deviations |z0(t0)−
f (t0)| and |z1(t0)− ḟ (t0)| are bounded.

Example 3.4.1 (RED). This example illustrates the working of a robust exact differen-
tiator as described by Equations (3.10) and (3.11). Consider a signal f0(t) = sin(ωt) +
0.001sin(20ωt); with ω = 2π ∗ 50 rad/s. To this base signal a noise signal with sufficiently
high frequency (filtered white noise with frequency components from 35 kHz to 50

kHz)components is added. The first derivative of f0 has a Lipschitzian constant of 1.4 ω2.
A robust exact differentiator is calculated for differentiating this signal as described
above, and the whole system is simulated with Matlab/Simulink using Euler method
with a sample time of 1e-5 s. Figure 3.5 plots the results from this simulation. Referring
to the schematic shown in Figure 3.4 the legend in Figure 3.5 is understood as follows:

1. u = v: the output of differentiator, u, is taken as v,

2. u = z1: the output of differentiator, u, is taken as z1, and

3. ḟ0(t) represents the differentiation of the noise less base signal, f0(t).

It can be easily seen from Figure 3.5 that the noise content of the output signal in the
first case is considerably greater than the noise content in second case. However, there is
a small phase lag in the second case as mentioned above in this section. N
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3.4. Differentiation techniques for estimating the acceleration

3.4.2. Robust exact differentiator of n-th order

An extension of the above mentioned differentiator to n-th order is proposed in [Lev03].
This differentiator assumes a Lipschitzian bound on the n-th derivative f (n)0 equal to L.
The nth-order differentiator has the form:

ż0 = v0, v0 = −λ0L1/(n+1)|z0 − f (t)|n/(n+1) sign(z0 − f (t)) + z1

ż1 = v1, v1 = −λ1L1/n|z1 − v0|(n−1)/n sign(z1 − v0) + z2

...
...

żn−1 = vn−1, vn−1 = −λn−1L1/2|zn−1 − vn−2|1/2 sign(zn−1 − vn−2) + zn

żn = −λnL sign(zn − vn−1),



(3.12)

0 1 2 3 4 5

·10−2

−500

0

500

ḟ(
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Figure 3.5.: Result of differentiation using RED
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3. Acceleration Feedback

where λi > 0 for i = 0, 1, . . . , n are chosen sufficiently large. zi is the ith derivative
estimate of the input signal.

Example 3.4.2 (RED-n-th order). Consider the same signal as in example 3.4.1, but here
a second order differentiator is used to generate the first derivative estimate. All the
other simulation parameters remains the same. The constants λi are chosen according
to [Lev03] as λ0 = 3, λ1 = 1.5, λ2 = 1.1, and the results are plotted in Figure 3.6. It is
evident from Figure 3.6 that using a second order differentiator for estimating the first
derivative of the signal provides a much better accuracy in the presence of noise. Thus,
the additional smoothness of the unknown input signal (known Lipschitz constant of
second derivative) f0(t) is used to improve its derivative estimate based on the noisy
measurement f (t). N

Remarks on RED

Following remarks are relevant for the purpose of real-time implementation of the robust
exact differentiator.
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Figure 3.6.: First derivative calculated using first and second order differentiators
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3.4. Differentiation techniques for estimating the acceleration

1. Knowledge of the Lipschitz constant for the signal to be differentiated is required
for tuning the differentiator.

2. Both the variables v and z1 from Equations (3.10) and (3.11) respectively can be
used as the estimated derivative, i.e. both of them converge to ḟ0(t) in the absence
of noise.

3. An nth-order differentiator used to estimate lth derivative, with l < n, produces a
more accurate estimation, in the sense of signal-to-noise ratio.

4. Use of the smallest available integration and sample time steps produces accurate
results.

3.4.3. Algebraic derivative estimation

Non-model based close approximations to time derivatives of arbitrary analytical time
signals based on truncated Taylor series approximation and its representation as a chain
of integrators is proposed in [RRF05]. Due to the fact that the estimates are solely
based on the integrals of measured signals, this technique is quite robust with respect to
measurement noise. Compared to a linear observer or a linear filter, the non-asymptotic
nature of this algebraic derivative estimation technique promises faster estimation.

Consider an analytic time signal y(t) whose derivative is to be determined. The truncated
Taylor series approximation of order N is

y(t) ≈ yN(t) =
N

∑
i=0

αi
ti

i!
, (3.13)

where the coefficients αi are the i-th derivative of y(t) evaluated at t = 0, i.e.

αi =
diy
dti

∣∣∣∣
t=0

and i = 0, . . . , N. (3.14)

Using Laplace transform,

yN(t) c sYN(s) =
N

∑
i=0

αi

si−1 . (3.15)

The main idea of algebraic derivative estimation method is to manipulate Equation (3.15)
with the help of operational calculus, and to isolate the j-th coefficient αj = y(j)(0), j =
0, 1, . . . , N. Once this coefficient is isolated, it is transformed back into time domain to
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3. Acceleration Feedback

obtain the estimate of the j-th time derivative of y(t). The expression for j-th derivative
is given as

y(j)(t) ≈ (−1)j
∫ T

0
Πj,N(t, τ)y(t − τ)dτ, (3.16)

where

Πj,N(t, τ) =
(N + j + 1)!(N + 1)!

tN+j+1

N−j

∑
κ1=0

j

∑
κ2=0

(−1)N+j−κ1−κ2 (t − τ)κ1+κ2 τN−κ1−κ2

κ1!κ2!(N − j − κ1)!(j − κ2)!(N + 1 − κ1)(N − κ1 − κ2)!(κ1 + κ2)!
(3.17)

where y(t) is the measured signal and T represents the interval of integration. This
interval of integration can be interpreted as the window width of a receding horizon
strategy and should be chosen small to calculate the derivative estimate within an
acceptable short delay. The advantage of this method is that the derivative is obtained by
integration of weighted measured signal. In order to suppress the measurement noises
the integration interval T has to be chosen large enough.

Example 3.4.3 (Algebraic derivative estimation). Consider the same signal as in Example
3.4.1. A toolbox for Matlab called the derivative estimation toolbox [ZRH07] (DET)
which uses the above mentioned algebraic derivative estimation is used for the derivative
estimation in this example. Table 3.1 lists the simulation parameters used in this example.
Figure 3.7 shows the result of derivative calculation using DET. Represented in blue is

Table 3.1.: Parameters of the simulation

Parameter Value

Sample time Ts 1e-5 s
Window width T 70 Ts s

Taylor series order N 2

the estimated derivative, which is calculated using DET and in red is the derivative of
the original noise free signal. The effect of the receding horizon window can be clearly
seen from Figure 3.7. During the first 70 samples the derivative remains at zero and
then almost instantaneously (non-asymptotically) jumps close to the expected derivative.
Inset in Figure 3.7 shows the accuracy of the estimated derivative. N
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3.4. Differentiation techniques for estimating the acceleration

0 1 2 3 4 5

·10−2−200

0

200

t (s)ḟ(
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Figure 3.7.: First order derivative estimation using DET

Remarks on algebraic derivative estimation technique

Following remarks are relevant to the practical implementation on an industrial control
unit.

1. Estimate of the derivative is only available after a time interval of T seconds but
on the other hand the estimate is non-asymptotic.

2. Both the window width T and the order of calculation N are to be tuned beforehand
in simulation, preferably with measurement data from the real-world plant.

3. Amount of processing power required depends on the window width and the
sample time, because the number of measurement samples that has to be processed

at any time is equal to
T
Ts

.
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3. Acceleration Feedback

3.4.4. LTI filters for differentiation

Use of LTI filters in combination with a pure differentiator is a very well known technique.
For example, a simple first order low-pass filter can be used

Y(s) =
s

τs + 1
U(s), τ > 0 (3.18)

where Y(s), U(s) are Laplace transforms of the original signal u(t) and ŷ(t), the approxi-
mation of its derivative, respectively. τ is the time constant of the filter and s the Laplacian
operator. Similar to the filter given in Equation (3.18) any higher order low-pass filters
can be used to achieve a better approximation of the differentiated signal.

A particularly interesting filter is shown in Figure 3.8, where the LTI filter is restructured
in the form of a control loop. Noise corrupted measurement signal ωM enters the filter.
The PID block is to be tuned so that the output of an auxiliary plant described as

d
dt

ωM, f ilt = x, (3.19)

tracks the input signal (ωM) asymptotically. Note that this structure is very similar to
the structure used in robust exact differentiator. Inspecting the auxiliary plant, x is the
acceleration signal to be estimated and ωM, f ilt denotes the filtered input signal ωM. In
the case of perfect tracking, i.e.

ε := ωM − ωM, f ilt = 0 (3.20)

holds and using Equations (3.19) and (3.20)

x =
d
dt

ωM (3.21)

ωM
PID

∫ε

ωM, f ilt

x

ω̇M,est

•−

Filter

Plant

Figure 3.8.: Schematic of the acceleration signal filter
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3.5. Acceleration feedback implementation on the printing testbench

results.

The use of the above mentioned filter structure for calculating the derivative of a signal
has the following advantages.

• The transfer function between the input ωM and the filtered signal ωM, f ilt can
be tuned to behave as a low-pass filter by appropriately choosing the PID block
parameters. Considering the PID parameters to be kp, ki, and kd respectively, the
transfer function of the filter is given as

L
{

ωM, f ilt
}

L {ωM} =
kds2 + kps + ki

(1 + kd) s2 + kps + ki
. (3.22)

Choosing appropriate parameters will result in a second order low-pass filter. This
is especially useful when the frequency range of the noise in the measured signal
is known.

• The structure of the differentiator mentioned above permits it to be studied as an
acceleration estimator. To this end, consider the differential equation (2.4), relating
the motor acceleration and the electrical torque

ϕ̈M =
1

JM
Te −

k
JM

∆ϕ − d
JM

ϕ̇M +
d

JM
ϕ̇L. (3.23)

If the signals containing stiffness k and damping d are considered as external
disturbance, then (3.23) can be considered as an integrator with input Te

JM
and

output ωM = ϕ̇M. With this consideration, the acceleration filter mentioned
above can be restructured as an observer if the input Te is measurable. In general
the electrical torque input is directly proportional to the motor current which is
measurable. Using the measured torque, the structure of the acceleration estimator
is shown in Figure 3.9.

3.5. Acceleration feedback implementation on the printing

testbench

Both the AF and the differentiator for calculating the acceleration signal are implemented
in the current controller part of the standard cascaded control structure shown in Figure
2.13. Due to the unavoidable processing power restrictions imposed by ACOPOS and for
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3. Acceleration Feedback

the sake of simplicity of tuning, an acceleration estimator as shown in Figure 3.9, which
offers both the advantages of being intuitive to tune and computationally economical, is
implemented for differentiating the measured velocity ym on the testbench.

In order to tune the PID bock in the estimator the transfer function between ωM and
ωM, f ilt is considered

L
{

ωM, f ilt
}

L {ωM} =
kp,AFs + ki,AF

s2 + kp,AFs + ki,AF
, (3.24)

where kp,AF and ki,AF are the proportional and integral gains3. Now the filter is tuned by
choosing these gains such that the transfer function (3.24) has desired dynamics. In this
work, these desired dynamics are chosen as a second order Butterworth low-pass filter,
which gives a flat frequency response within the filters bandwidth. The characteristic
polynomial of such a second order Butterworth filter is given as

s2 +
√

2sωc + ω2
c , (3.25)

where ωc represents the corner or cut-off frequency of the filter. Comparing the desired
dynamics against the filter dynamics, the gains are chosen as

kp,AF =
√

2ωc (3.26)

ki,AF = ω2
c . (3.27)

For the experiments in this work the filter is set to have a cut-off frequency of 400 Hz.

ωM
PID

∫kt
JM

ε

ωM, f ilt

x•

ω̇M,est

•−

iq,m

Estimator

Figure 3.9.: Schematic diagram of the acceleration signal filter with additional feed-forward path

The torque input is calculated based on the measured quadrature component of the

3Derivative part is ignored for obvious reasons.
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3.6. Experimental results and discussion

current iq,m and the known torque constant kt of the PMSM motor4 as

Te = ktiq,m, (3.28)

The structure of the acceleration estimator with inputs ωM, iq,m is presented in Figure
3.9.

3.6. Experimental results and discussion

Acceleration feedback together with the acceleration estimator mentioned in the previous
section are implemented on the printing testbench and experiments are made to analyse
the impact of AF on the speed controller. The experimental setup used here is explained

ωM,r
kp

ϕ̈M =
1

JM
Te −

k
JM

∆ϕ − d
JM

∆ϕ̇

∆ϕ̇ = ϕ̇M − ϕ̇L

ϕ̈L =
k
JL

∆ϕ +
d
JL

∆ϕ̇ +
1
JL

Td

Acceleration
estimator

Ja

Tee
•

ym
•

•
ẏest

−
−

Figure 3.10.: Schematic depicting the experimental setup

based on the schematic shown in Figure 3.10. The actuating motor is driven in speed
control mode and AF along with the acceleration estimator are running in the current
controller (refer Figure 2.13) of the ACOPOS. In order to verify the influence of AF
on the DIO plant several frequency response and step response measurements were
taken by varying the speed controller gain and the additional moment of inertia Ja.
The frequency response is calculated between the plant input torque and the measured
output angular velocity, represented by the blue arrows in Figure 3.10. One result from

4zero-direct-axis-current control [Kri01] is used for the PMSMs, allowing the simple linear relation
between the torque and the direct component of the current when the parameters of the motor are assumed
to be independent of the variations in temperature.
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Figure 3.11.: Open loop frequency response depicting the influence of AF

a frequency response test is presented in Figure 3.11
5. The depicted plot shows the

frequency response of the testbench from torque to motor velocity with and without AF.
The value for additional moment of inertia Ja

6 is chosen to be equal to half that of the
motor inertia JM for this experiment. It is evident that the resonance frequency is shifted
from around 70 Hz to around 60 Hz and also the magnitude peak at the resonance
frequency is damped by about 20 dB. But the open loop gain margin in both the cases
is more or less the same, which is unlike the simulation results shown in Figure 3.3.
Further results with different values of Ja are depicted in Figure 4.3 presented in the next
chapter, also the justification for this unexpected behaviour based on a careful analysis
is presented.

In order to see the influence of AF on the performance of the speed controller in time
domain, the following experiment is conducted. The actuating motor (see Figure 2.9)

5When compared to the measured frequency response shown in Figure 2.15 the resonance frequency of
the plant is shifted from around 130 Hz to around 70 Hz. This is because of a change in the shaft to a less
stiffer one with stiffness of 9.7541 kN.m/rad.

6The values of Ja are always taken as multiples of JM.
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3.6. Experimental results and discussion

is operated in speed control mode7, and the parametrization of the speed controller
(proportional controller) is performed such that there is gain margin of around 10 dB,
which results in the speed controller gain of 70 As

rad . The disturbance motor is operated
in torque control mode where the current controller parameters are auto tuned by the
ACOPOS. With this setup a disturbance torque Td equal to 32 N.m is applied using
the disturbance motor, while the actuating motor is running at a constant speed of 1

Hz. This disturbance is applied as a step by changing the reference current iq,r of the
disturbance motor. The motor angular velocity is measured in both the cases with (once
again the result shown here is with Ja = 0.5JM) and without AF and is plotted in Figure
3.12. The depicted plot shows that as the step disturbance is applied at about 0.1 s,
resonance oscillations are introduced in the velocity and that the magnitude of these
oscillations is greatly reduced with AF. Any further increase in the additional Ja inertia
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Figure 3.12.: Plot depicting the effect of disturbance on the motor velocity with and without AF

through AF did not bring in any improvement, in fact Ja values above JM worsened the
closed loop response. The reason behind this limit on Ja and a possible way to overcome
this limit is dealt with in the next chapter.

7refer Section 2.3.2
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4. Extended Acceleration Feedback

An extension to the AF technique is proposed in this chapter. It is mentioned in Section
3.6 that there exists a maximum value for the additional inertia Ja above which unwanted
oscillations are introduced into the speed control loop. First the reason behind this
performance limitation is presented Section 4.1. The technique itself and the numerical
simulations using Matlab are given in Section 4.2. Section 4.3 presents the results of
experiments on the printing testbench. Section 4.4 concludes this chapter.

4.1. Motivation

As mentioned before the maximum value of Ja using AF is limited, implying that
the improvements in gain margin is limited which ultimately limits the performance
improvement of the speed controller. For the purpose of analysing the reason behind
this limitation with AF, consider the following schematic shown in Figure 4.1. The closed

ω-ctrl
i-ctrl

&
inverter

Dual inertia system
with

dead time

Acceleration
filter
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ωM,r Te,r im
•

•

ym
•

•
ẏest

−−

Augmented plant

Figure 4.1.: Schematic of the setup with AF
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loop with in the blue highlighted rectangle, consisting of the current controller, the plant
and the AF is referred to as “Augmented plant”. It is to be noted that the dynamics of
this augmented plant can be influenced by changing the value of Ja. In this work the
dynamics of the current controller and inverter are neglected because their dynamics are
considerably faster compared to that of the speed controller (ω-ctrl in Figure 4.1), and
the acceleration filter is assumed to be ideal.

In order to study the influence of Ja on the performance of the speed control loop first the
augmented plant is studied. Since the augmented plant is itself a closed loop consisting
of the DIO and the AF, its open-loop frequency response is analysed. Its open loop
transfer function is given as

Gap = Gdioe−τs · sJa

=
Ja

JM + JL

JLs2 + ds + k(
JM JL

JM + JL

)
s2 + ds + k

e−τs. (4.1)

Figure 4.2 presents the open loop frequency response of the augmented plant with
Ja = 0.75JM and Ja = 2JM. It can be obviously seen from the figure that gain margin
of the augmented plant is close to zero when Ja = JM and the gain margin becomes
negative when Ja > JM, ultimately leading to the well known peaking behavior in the
magnitude of the closed loop frequency response. This is also confirmed in Figure 4.3
where experimentally measured frequency response plots from the printing testbench
are plotted with varying values of Ja. The secondary peak1 clearly forms around the first
phase crossover frequency 250 Hz. On the other hand as Ja is increased the frequency
and magnitude of the resonance peak is reduced, but this improvement is negated by
the secondary peak as it is close to the phase crossover frequency. The aim behind the
extended acceleration feedback (EAF) is to manipulate this secondary peak in such a
way that there is a positive influence on the speed controllers performance by regaining
the eroded gain margin due to the secondary peak.

Similar conclusion can be drawn with the help of Describing function analysis [Kha02].
Consider that the speed controller is a saturated proportional controller, then the de-
scribing function is given as

N(A) =
2kp

π

[
arcsin

a
A

+
a
A

√
1 −

( a
A

)2
]

, A ≥ a, (4.2)

1The primary peak being the peak in magnitude due to the mechanical resonance.
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4.1. Motivation

where A denoted the amplitude of sinusoidal input signal of the nonlinear element, a is
half the width of the linear zone2 and kp is the proportional gain. Introduce for the sake

of analysis a new constant ρ =
a
A

, and differentiate N(A) with respect to ρ

d
dρ

N(A) =
2kp

π

(
1√

1 − ρ2
+
√

1 − ρ2 − ρ2√
1 − ρ2

)
(4.3a)

=
4kp

π

√
1 − ρ2. (4.3b)

The describing function (4.2) is valid only when A ≥ a ⇒ρ ≤ 1 and from (4.3b)
d

dρ
N(A) > 0, so N(A) is a decreasing function as A is increasing and similarly −1/N(A)

is also decreasing. The range of possible values for the amplitude A are from a to ∞,
and −1/N(a) = −1/kp and −1/N(∞) = −∞. Therefore, the locus of N(A) is a straight
line starting from −1/kp and limiting at −∞. Based on the well known equation of
harmonic balance [Vid02] a limit cycle occurs at the intersection of the Nyquist plot of
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Figure 4.2.: Open loop frequency response of the augmented plant showing the loss of gain margin with
the increase in Ja

2The parameter a depends on the slope and the saturation limits in the controller.
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Figure 4.3.: Measured frequency response on the printing testbench with AF showing the influence of Ja

the open-loop (see Figure A.4) and the straight line −1/N(A), i.e. the −180◦ phase
cross-over frequency of the open loop Bode diagram. This once again confirming the
conclusion arrived upon by considering the secondary peak argument before.

4.2. Extended acceleration feedback and numerical simulations

The proposed method, Extended Acceleration Feedback (EAF), extends the applicability
of AF by manipulating the secondary peak as mentioned in Section 4.1. In order to
attenuate the secondary peak an additional filter is employed (see Figure 4.4). Any of
the following filters can be used

• Low pass filter

• Lag filter

• Notch filter.
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Use of any of the above mentioned filters should also take into account the amount of
the introduced phase lag. This is particularly important because, the amount of phase
lag introduced by the additional filter influences the first phase crossover (of the open
speed control loop) which ultimately determines the gain margin of the speed control
loop [MRH12].

Initially the Inward approach [CS90; Che95] is used for the design of the lag and low
pass filter. For this approach the closed loop specifications were given in terms of rise
time and maximum overshoot. From these specifications the dominant pole pair were
calculated. Then the desired closed loop transfer function is designed by placing the
remaining stable poles (order of closed loop system3 - 2) sufficiently away from the
dominant pole pair. This design technique did not result in expected behaviour as the
controller calculated using the inward approach introduces zeros into the system that
the designer has no control over.

Later the filters were tuned in simulation so that the secondary peak in the magnitude
plot has the maximum attenuation while keeping the phase lag around the secondary
peak frequency to a minimum. For example the plots in Figure 4.5 represent the
simulated frequency response of GOL,EAF with AF and EAF using a lag filter, where

GOL,EAF = Gω−ctrl .GEAF− f ilter.Gap, (4.4)

and Gω−ctrl , GEAF− f ilter are the transfer functions of the speed controller and the EAF-
filter respectively. If the amount of phase lag around the secondary peak is too much then
the crossover frequency shifts to the left decreasing the gain margin, on the other hand
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Figure 4.4.: Schematic of extended acceleration feedback

3Dead time is approximated as a rational transfer function using Padé approximant
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if the phase lag at the crossover frequency is small then the gain margin is improved as
shown in the plot. Due to this reason a lag filter is preferred to a low pass filter4 because
the lag filter can provide (at and after a given frequency) the maximum attenuation of
the magnitude with very small phase lag.
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Figure 4.5.: Frequency response plot depicting the increase in gain margin with the use of EAF

Parameterization of the Lag and Notch filters

This section describes the parametrization of lag and notch filters that are used in this
work. The lag filter is parametrized based on the mean frequency ω0 and the maximum
lag ∆ϕmax to be achieved at the mean frequency [HN04]. The parametrized lag filter is

4The magnitude of a first order low pass filter rolls off at 20 dB/decade (or at a higher rate for filters
of higher order) while the phase lag increases from 0 to 90 degrees and remains at 90 degrees for high
frequencies.
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given as

Glag(s) =
1 +

sα

ω f

1 +
s

ω f

, (4.5)

where

ω f = ω0
√

α, and α =
1 − sin(∆ϕmax)

1 + sin(∆ϕmax)
. (4.6)

The maximum amount of amplitude attenuation from the lag filter is given as

∆Amax = 20 log10(α). (4.7)

Figure 4.6 plots the frequency response of a lag filter with the mean frequency at 110

Hz and varying phase lags at the mean frequency. It can be seen clearly from the plot
that the magnitude of the lag filter (depicted in red color) starts from 0 dB and reaches a
constant maximum value of -4.6 dB, while the phase lag starts at 0

◦ goes to a maximum
of 15

◦ and goes back to 0
◦ at high frequencies. This behaviour of the lag filter makes it

possible to attenuate the magnitude at a frequency while keeping the phase lag at that
frequency to a minimum, thus rendering it a good candidate for the use in EAF.
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Figure 4.6.: Figure plotting the frequency response of lag filter
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4. Extended Acceleration Feedback

Notch filter is parametrized by the notch frequency and the bandwidth. The notch
frequency is the frequency at mean frequency ω0 around which the notch filter is active
and the bandwidth ωBW is the difference of the -3 dB cut-off frequencies. The maximum
attenuation from the filter ∆Amax is fixed to be equal to -40 dB. The filter is given as

GNF(s) =
s2 + 0.01ωBW + ω2

0

s2 + ωBW + ω2
0

. (4.8)

Figure 4.7 plots the frequency response of a notch filter with the mean frequency at 250

Hz and a bandwidth of 150 Hz.

102 103

−30

−20

−10

0

185 335ω0

−3
ωBW

M
ag

ni
tu

de
(d

B
)

102 103

−50

0

50

Frequency (Hz)

Ph
as

e
(◦
)

Figure 4.7.: Plot depicting the frequency response of a Notch filter

Matlab tool for estimating the optimal value of Ja

The effect of a well tuned lag filter in series with the speed controller on the frequency
response of the open loop, i.e. GOL,EAF can be seen from Figure 4.5. The major advantage
with EAF is that the open loop gain margin is improved. This implies that the maximum
value of Ja, represented as Ja,max, for which the closed speed control loop is stable should
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4.2. Extended acceleration feedback and numerical simulations

also increase compared to AF. The aim of this section is to be able to pre-compute
an optimal value for Ja so that the commissioning times can be reduced. This can
be done with the help of the flow chart shown in Figure 4.8. First the type of filter
and the filter parameters are initialized, then using a pre-defined value for Jstep, Ja is
incremented as shown in the increment (incr) block. Using the values of Ja and filter
parameters the open loop and closed loop transfer functions, represented by GOL,EAF

5

and TEAF respectively, are calculated. The stability of the closed loop determines if the
calculation has to be further carried on. If the closed loop is stable, the gain margin of

select Ja = 0,
calculate GEAF− f ilter

init

Ja = Ja + Jstepincr

Calculate

1. GOL,EAF

2. TEAF =
GOL,EAF

1 + GOL,EAF
3. Poles of TEAF

comp

Poles(TEAF)
< 0

Calculate gain margin
of GOL,EAF and plot

draw

Stop calculations
end

no

yes

Start

Figure 4.8.: Flow chart to calculate the maximum values of Ja.

5Once again the dead time is approximated with the help of Padé approximant.
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4. Extended Acceleration Feedback

Table 4.1.: Simulation parameters

Parameter Value Units

JM 0.0658 kg.m2

JL 0.2843 kg.m2

d 2.51 N.m.s/rad
k 9.754 kN.m/rad
τ 0.0012 s

the open loop is calculated from its transfer function GOL,EAF and plotted against the
corresponding value of Ja. Figure 4.9 shows such a plot for the printing testbench model.
The parameters used for the simulation are tabulated in Table 4.1. The optimal value of
Ja as represented by J∗a in Figure 4.9 represents the value of Ja for which the open loop,
represented by GOL,EAF has the maximum gain margin. It can be seen that with AF, the

maximum gain margin is achieved for Ja =
5JM

6
, which is a close match to the actual

value from measurements as mentioned in Section 3.6.
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Figure 4.9.: Plot of Gain margin Vs Ja generated using Matlab, depicting the optimal values J∗a
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4.3. Experimental results and discussion

4.3.1. Frequency response measurements

The proposed EAF filters are implemented in the current controller part of the ACOPOS
firmware (refer Figure 2.13). The lag filter is tuned to provide a phase lag of -30

◦

at a mean frequency of 110 Hz and the notch filter is tuned to have a bandwidth of
100 Hz at 250 Hz (mean frequency). With these filters in place, once again open loop
frequency response measurements are made on the testbench with the help of PRBS
signal. Measured frequency response for three different configurations (cf. to the legend
in Figure 4.10) are plotted in Figure 4.10. In each configuration the value of Ja was set to
the optimal value as determined from Figure 4.9.
Compared to the frequency response plot with AF, the addition of notch filter shifted
the first phase crossover frequency from around 240 Hz to 180 Hz. Also the secondary
peak as discussed in Section 4.2 is attenuated by the notch filter. Due to the lag filter the
phase crossover is shifted to 160 Hz and there is also a considerable increase in the gain
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Figure 4.10.: Measured frequency response plots comparing AF and EAF
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4. Extended Acceleration Feedback

margin as depicted in Figure 4.10. The simulated gain margins as plotted in Figure 4.9
are in good accordance with the experimental values shown in Figure 4.10.

In order to see the influence of EAF on the speed controller’s 6 gain, i.e. to transform the
values of gain margins calculated from Figure 4.8 to kv, the maximum peak criteria [SP05,
p. 35] is used. According to this criteria, the maximum peak in the complementary
sensitivity function7, defined as

MT = max
ω

|TEAF(jω)| (4.9)

should be less than 2 dB. A larger value of MT indicates poor performance as well as
poor robustness. If MT = 2 dB it can be ensured that the gain margin GM ≥ 1.5 and
the phase margin PM ≥ 29◦. The value of MT can be estimated either graphically or
can be calculated numerically. MT can be read from the Nichols chart by the use of
M-circles (See Figure 5.2). In order to calculate MT numerically first a speed controller
gain is chosen, then using the measured frequency response data from the testbench
the closed loop frequency response is calculated. MT is extracted from this data as
the maximum peak in the amplitude and compared against the specification. If the
estimated MT is smaller than the specification, the chosen value of speed controller’s
gain is increased and the process is repeated until the specification is met. Figure 4.11

shows the numerically calculated frequency response plots of GOL,EAF and TEAF using
the measured frequency response of Gap. The calculated values of speed controller gains
which meet the maximum peak criteria, denoted by kv,max, are plotted against the value
of Ja in Figure 4.12.

4.3.2. Time domain measurements

In order to compare the effects of EAF in the time domain, first a benchmarking
experiment is carried out without EAF. The aim of this benchmarking experiment is
once again, as presented in Section 3.6, to simulate a disturbance toque Td using the
disturbance motor (running in constant torque mode) and measure its effect on the
speed controller.

6The speed controller is assumed to be a proportional controller. The reason behind this choice will be
made clear in Section 4.3.2.

7For the unity-feedback loop configuration, the closed loop transfer function also known as the

complementary sensitivity function is given as T(s) =
L(s)

1 + L(s)
, where L(s) is the open-loop transfer

function.
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Figure 4.11.: Frequency response plots to calculate kv using maximum peak criteria

Benchmarking experiment

Normally a printing machine is operated in full cascade control mode as shown in Figure
2.13 (i.e. all the three controllers, position, speed and current are active) to achieve a
better printing performance. In addition to the feedback controllers, also feed-forward
control is employed to further improve the performance. The lag error calculated within
the position control loop is considered as a performance measure. For the benchmark
experiment the values of kp and kv are chosen as

• kp = 50, proportional gain of the position controller

• kv = 120, proportional gain of the speed controller.

Idea in this experiment is to increase the value of kv until the loop becomes unstable,
where as the value of kv from Figure 4.12 was based on the more conservative maximum
peak criteria. A rectangular periodic disturbance of magnitude ±16 Nm is applied using
the disturbance motor (refer Figure 2.9).
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Figure 4.12.: Maximum values of kv, for which the closed loop satisfies the maximum peak criteria, plotted
against Ja.

Experiment with EAF

The same experiment as mentioned previously is repeated with EAF using the lag filter
presented in Section 4.3. The proportional gains this time were set to

• kp = 50

• kv = 180.
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Figure 4.13.: Lag error plot showing the improvement with the use of EAF
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Here the position controller remains the same as that of the benchmarking experiment
where as the gain of the speed controller is more due to EAF. The resulting lag error in
both the experiments is plotted in Figure 4.13. The lag error of the position control loop
with EAF has been improved by about 35% compared to the benchmarking experiment.
This improvement is attributed to the fact that with an increase of the loop gain, both
bandwidth and disturbance attenuation property of the closed loop are improved. This
improvement in the loop gains is a direct result of the improvements in the gain margin
achieved with the help of EAF.

4.4. Conclusions

Mechanical resonance in electromechanical systems is a phenomenon that is the result
of elastic transmission elements used within these systems. In order to meet strict
control requirements, these transmission elements are made to have high stiffness to
damping ratio resulting in weakly damped resonance frequencies. If these weakly
damped resonance frequencies are excited (by for example a disturbance torque), they
could lead to a degradation of the controller’s performance or in worst case to the drive
failure. These resonance frequencies can be divided into two categories, low-frequency
and high-frequency resonances depending on how they effect the speed control loop.
Low-frequency resonance limits the bandwidth of the speed controller, by decreasing its
gain margin (due to the increased gain at and above the resonance frequency), where as
the high-frequency resonance does not influence the bandwidth of the speed controller
as it is well above the first phase crossover frequency. This distinction is very important
in order to design techniques for counteracting the resonance frequency. With the use
of acceleration feedback, the magnitude of the resonance peak can be attenuated and
the resonant frequency itself can be shifted to lower frequencies. This reduction in
magnitude at the resonance frequency helps for the improvement of bandwidth of the
speed controller. Another feature of this technique is that it is robust against parameter
variations. Following list briefly describes the major results from Chapter 3 and Chapter
4. In conclusion the following remarks are made:

• Acceleration Feedback technique is analysed and implemented on the ACOPOS
system,

• The possibility of using AF to increase the loop gains, by improving the gain
margin, is presented, and
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4. Extended Acceleration Feedback

• Frequency response measurements also indicate the increase in the gain margin.

• Limitation of AF technique has been presented and an extension to AF, using
loop-shaping ideas is proposed which further improves the performance of the
speed control loop.

• The performance improvement has been experimentally demonstrated both in time
and frequency domain.

• Matlab tools for pre-computing the optimal values of Ja, the additional inertia
added by AF and kv, the speed controllers gain are demonstrated.

Even though the filter in EAF is designed to improve the speed controller’s performance,
the conservation principles from Bode integrals means that there is always a limit on
the performance of a given system. This fact being established, the next chapters in
this work deals with the dead time present in the speed control loop. This emphasis
on the dead time makes sense because the distinction between low-frequency and high-
frequency resonance is made by the amount of dead time. For a given system with
known resonance frequency if the dead time is very small then the first phase crossover
frequency is far to the right of the resonance frequency which means the increase in
magnitude around the resonance frequency does not influence the gain margin. On the
contrary, if the dead time is large enough such that the resonance frequency and the first
phase crossover frequency are close to one another (on the frequency scale), then the
increase in the magnitude at and around the resonance frequency will influence the gain
margin.
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5. Dead Time and its Compensation

5.1. Motivation and introduction

Main goal of AF and EAF was to improve the performance of a DIO suffering from
mechanical resonance in particular from inertial-reduction instability. Inertial-reduction
instability can be distinguished by the fact that the resonance frequency is below the
first phase crossover frequency. The presence of the time delays in combination with the
increase in gains at the resonance frequency leads to reduced gain margins, resulting
in limited bandwidths. EAF technique was able to improve the performance of the
speed controller by manipulating its gain margin, i.e. by manipulating the loop gains
around the crossover frequency. On the other hand the gain margin can also be improved
by manipulating the phase crossover frequency. The motivation behind the work in
Chapters 5 - 7 is to manipulate the phase crossover frequency to achieve the goal of
improving the speed controller’s performance. Since the main reason for the phase lag
to increase beyond -180

◦ is the dead time, first the effects of dead time on the closed loop
dynamics are presented in this chapter. Later in the chapter, a well-known technique for
dead time compensation namely the Smith predictor is also introduced.

Dead time can be represented by an infinite-dimensional system with the transfer
function e−sτ. Controllers involving an infinite-dimensional dead time compensator
(DTC) like Smith predictor are typically used for mitigating the dead time. Also
finite-dimensional controllers are developed by approximating the dead time by a finite-
dimensional rational approximation. Any technique employed to mitigate the dead time
should also have a certain degree of robustness to the mismatches in dead time between
the actual and designed values. A brief introduction on how the dead time affects the
closed-loop dynamics is presented in Section 5.2. The Smith predictor and its robustness
with respect to mismatches in dead time is presented in Section 5.3.
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5.2. Effects of dead time on closed loop dynamics

5.2.1. Introduction

Consider the unity-feedback loop depicted in Figure 5.1, where P is a plant, C is a
controller, r is a reference signal, u is the control signal, and y is a measurable output
signal. It is assumed that the measured signal y is delayed by τ. This is reflected in
Figure 5.1 by the delay operator denoted by Dτ and defined as

Dτx(t) = x(t − τ). (5.1)

It is readily seen that Dτ is linear and, whenever τ is constant, is time-invariant and
BIBO stable. If given x(t) c sX(s), then the Laplace transform for the delayed signal,
g(t) := x(t − τ), is given by

g(t) c sG(s) =
∫ ∞

0
g(t) · e−stdt

=
∫ ∞

0
x(t − τ) · e−stdt

=
∫ ∞

0
x(T) · e−s(T+τ)dT, ∵ τ is constant

= e−sτ
∫ ∞

0
x(T) · e−sTdT

G(s) = e−sτX(s). (5.2)

Thus the transfer function of the dead time is given by e−sτ.

r
C P Dτ

ue y
•

−

Figure 5.1.: Unity-feedback structure with the plant having output dead time

5.2.2. Effects of loop delays on closed-loop dynamics

This section shows how the presence of loop delays affects the dynamics of the closed-
loop control systems. First, the frequency domain properties in connection with the
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5.2. Effects of dead time on closed loop dynamics

well known Nyquist stability criterion are considered, then the classical problem of pole
placement is presented. At the end, approaches by means of rational approximation of
the delay element are presented.

Frequency response and Nyquist stability criterion

Consider the open-loop transfer function of the unity-feedback loop shown in Figure
5.1

L(s) = Lr(s)e−τs,
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where

Lr(s) = P(s)C(s) (5.3)

is assumed to be rational. It is obvious from the frequency response of L(s),

L(jω) = Lr(jω)e−jwτ = |Lr(jω)|ej arg Lr(jω)e−jωτ = |Lr(jω)|ej(arg Lr(jω)−ωτ) (5.4)

that the magnitude of L(jω) is not affected by the delay element but, however, additional
phase lag is introduced. This phase lag grows linearly with the frequency ω and is
proportional to the dead time τ. With these cues the frequency response plots of L(s)
can be produced from those of Lr(s) by following simple rules.

Bode plot: the magnitude plot does not change while the phase plot is shifted down by
180/πωτ degrees at the frequency of ω rad/s.

Nyquist diagram: every point on the diagram of Lr(s) is rotated by ωτ radians in
clockwise direction.

Nichols chart: every point on the chart is shifted to the left by
180
π

ωτ degrees.

Example 5.2.1. Stability analysis of the closed loop system in the presence of loop delays
using the Nyquist criterion.

Consider a first order transfer function Lr(s) =
2

s + 1
and a dead time of τ = 0.25 s.

Using the rules from above, Figure 5.2 depicts the frequency response plots of Lr(s) and
L(s).

From the frequency response plots of Figure 5.2 it can be inferred, with the help of
Nyquist stability criterion, that the closed-loop system will be unstable with the dead-
time, while the system without dead-time is stable. For example, the Nyquist plot of the

open-loop transfer function
2

s + 1
e−1.25s shown in Figure 5.2 (b) does encircle the critical

point (−1, 0), thus making the corresponding closed-loop system unstable. Moreover
it is readily seen from these plots that larger the τ, smaller the stability margins are.
Although this is encountered in many practical applications, it is not generic. The
following example illustrates such an exception.
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5.2. Effects of dead time on closed loop dynamics

Example 5.2.2. Illustration of interlaces stability of closed loop system in the presence of
loop delays using the Nyquist criterion [MP05].

Consider the system with Lr(s) =
0.4

s2 + 0.1s + 1
. The Nichols and Nyquist plots of this

open-loop transfer function with different delays are presented in Figure 5.3. It is readily
seen from both the plots that the closed-loop system is stable for τ = 0 and τ = 5 (blue
lines) but is unstable for τ = 1 (red lines). This happens when the phase lag at the
first crossover frequency is greater than π and the phase lag at the second crossover
frequency is smaller than 3π, i.e. when the resonance peak is between the two critical
points and the Nichols plot do not encircle neither of the two critical points. Also in case
of the Nyquist diagram it is evident that the plot with τ = 1 encircles the critical point
once, making the closed-loop unstable.
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Figure 5.3.: Frequency response plots of
0.4

s2 + 0.1s + 1
e−τs.

Pole placement

Adapting the classical pole placement method to systems involving dead-times is consid-
erably more complicated than adapting the Nyquist stability criterion. This complication
is easily understood by considering the characteristic polynomial of the closed-loop
system given in Figure 5.1

∆CL(s) = A(s) + B(s)e−sτ, (5.5)
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where the polynomials

A(s) = sn + an−1sn−1 + . . . + a0 and B(s) = bmsm + bm−1sm−1 + . . . + b0

are the denominator and the numerator polynomials, respectively, of the open-loop
(loop) transfer function Lr(s) given in Equation (5.3). The presence of irrational element
due to the dead-time in the characteristic polynomial results in infinite number of roots
for every τ > 0. This simple facts makes the pole placement and/or stability study of the
closed loop system complicated in comparison to the stability study based on frequency
domain as presented in previous section.

Rational approximations of the delay systems

The technical difficulties mentioned above for stability analysis or pole placement for
systems involving time delays in continuous time originate from the infinite dimension-
ality of the delay element e−sτ. Idea here is to approximate the delay element (the system
with delay element) by a finite-dimensional system so that the standard analysis and
design techniques can be applied. Towards this goal we write the infinite-dimensional
time delay as

e−sτ =
e−sτ/2

esτ/2 ≈
1 −

sτ

2

1 +
sτ

2

, (5.6)

where approximation is achieved with Taylor series expansion. A better approximation
for the irrational exponential function is given by Padé approximant, a detailed discussion
of which is presented in [Par04]. The Padé approximation for the delay element is given
as

e−sτ ≈ Pn(−s)
Pn(s)

, (5.7)

where Pn(s) is a stable polynomial of degree n which is the degree of Padé approximation
and

Pn(s) =
n

∑
i=0

τi (2n − i)!n!
(2n)! (n − i)!i!

si. (5.8)

Thus the first two Padé approximations are given by, P1(s) = 1 +
sτ

2
and P2(s) =

1 +
sτ

2
+

s2τ2

12
.
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Any rational approximation of the delay element has only a finite phase lag, where
as the phase lag of e−jωτ approaches infinity as ω increases. Thus the approximation
makes sense only when considered over a finite frequency range. Figure 5.4 shows

the bode plots of the transfer function L(s) =
2

s + 1
e−1.25s with different orders of

Padé approximations. It can be clearly seen that the Padé approximation of the delay
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Figure 5.4.: Bode plot showing the influence of Padé approximation on the phase lag.

element of increasing order matches the phase lag from the pure delay within increasing
frequency ranges.

5.3. Smith predictor and its robustness against mismatches in

dead time

5.3.1. DTC using Smith predictor for SISO system

Smith predictor [Smi57] is a classic example of DTC which uses the infinite-dimensional
pure delay element within the controller. It is a well-known method for controlling
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systems with a constant loop delay that uses a model of the plant and the delay to
control the system as if there were no delay in the loop [ÅH95]. The block diagram of a
typical Smith controller is depicted in Figure 5.5, where the controller C(s) (dark blue
box) consists of a primary controller Ĉ(s) and an internal feedback of the form

Π(s) = P̂(s)− P̂(s)e−τ̂s (5.9)

called the Smith predictor. P̂(s) is the model of the plant P(s) and similarly τ̂ is an
estimate of the dead time τ. The role of DTC can be readily understood by the fact that
the signal v(t) contains an estimate of y(t) during the dead time. Therefore the adjusted
error, ẽ(t), which is fed into the primary controller carries that part of the error which is
directly caused by the primary controller. This eliminated the over-corrections usually
associated with conventional controllers when operating on processes with large dead
times which require significant reductions in the controller gains and frequently result
in poor control performance.

The above qualitative argument are supported analytically by examining the signal ẽ. It
can be seen that ẽ = r − P(s)u (under the assumption that P̂(s) = P(s) and τ̂ = τ, i.e.
no uncertainty in the plant model and dead time.), which means that the loop from u to
ẽ does not contain any delay element, i.e. the Smith predictor compensates for the time
delay. Writing the closed loop transfer function from r to y

Ty,r(s) =
Y(s)
R(s)

=
PĈ

1 + PĈ
e−sτ, (5.10)

where Y(s) and R(s) are the Laplace-transformed signals of y(t), r(t) respectively. It is
clear from this transfer function that its characteristic equation is now free of any delay
element. This offers a clear advantage, compared to the characteristic polynomial of the
closed loop given in Equation (5.5). The controller design with Smith-predictor only
considers the delay-free plant P(s). The designed controller is implemented by adding
the Smith predictor as an internal feedback.

5.3.2. Practical stability of DTC with Smith predictor

When the DTC with Smith predictor is properly designed in the ideal case (complete
matching between the true and assumed models) the overall system is asymptotically
stable. In certain circumstances the overall system may loose its stability when there are
slight changes in the dead time. Systems which are asymptotically stable in the nominal
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Ĉ(s)

Π(s)

P(s) e−τsr ẽ u y
•

v
−

•
−

C(s)

Figure 5.5.: Block diagram showing the dead time compensator using Smith predictor.

case but loose stability for small mismatched between the true and assumed models are
called practically unstable systems.

We restrict the study of stability here only to mismatches in the dead time, i.e. P̂(s) =
P(s). For the system with the DTC controller to be closed-loop practically stable, it is
necessary that [Pal80]

lim
ω→∞

|Q(jω)| < 1
2

, (5.11)

where

Q(s) =
ĈP

1 + ĈP
. (5.12)

Note that this condition for practical stability does not depend on the dead time. The
asymptotic stability in the presence of a mismatch in dead time given by ∆τ := τ − τ̂ is
given by the following conditions:

1. A closed loop system is asymptotically stable for any variation ∆τ if

|Q(jω)| < 1
2

for all ω ≥ 0

2. There exists a finite positive (∆τ)max such that the closed loop is asymptotically
stable for any |∆τ| < (∆τ)max if

|Q(jω)| ≤ 1 for all ω ≥ 0 and lim
ω→∞

|Q(jω)| < 1
2

A conservative estimate for the maximum value of (∆τ)max is given as

(∆τ)max =
π

3ωs
, (5.13)

where ωs is the frequency above which |Q(jω)| < 1
2

.
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5. Dead Time and its Compensation

5.4. Stability of Smith predictor for printing testbench in the

presence of dead time mismatch

Consider the plant to be the printing testbench with the parameters as shown in Table
4.1. The controller is once again chosen to be a proportional speed controller as done in
Section 4.3.1. A gain of kv = 150 is chosen which is between the benchmarking value
and the maximum value achieved using EAF in Section 4.3.2. With these parameters the
value of ωs is equal to 3960 rad/s or 630 Hz, and the corresponding value of (∆τ)max

is equal to 0.000265 s. This number is very close to the sample time of the controller,
which is equal to the reciprocal of the operating frequency of the servo drive, 0.0002 s.
Since the dead time on the printing testbench is estimated using the frequency response
measurements, any measurement inaccuracies or unmodeled dynamics will lead to a
difference between the estimated and the actual dead time in the plant. As seen from
Figure 2.15 the phase response of the measurement is much different from the identified
model especially at high frequencies due to unmodeled mechanical components in the
drive train.

The dead time is estimated by choosing the frequency at which phase lag is equal to
180

◦, call it ω180◦ . The total phase lag at this frequency is due to the plant and the dead
time. The contribution from the DIO to phase lag, above the resonance frequency, is 90

◦.
Thus the additional 90

◦ of phase lag is only due to the dead time. The phase lag due to
pure dead time is given as (from Equation (5.4)),

φ(ω) = −ωτ. (5.14)

Using (5.14) the dead time can be approximated as

τ̂ =
π

2
1

ω180◦
. (5.15)

Now, consider τa to be the actual dead time in the plant and τ̂ as the measured dead time
using (5.15). Since the maximum allowable mismatch in dead time (∆τ)max is known,
the worst case allowable mismatch in ω180◦ , represented as (∆ω)180◦,max is given as

(∆ω)180◦,max = ω180◦,a − ω180◦,m =
π

2

(
1
τa

− 1
τ̂

)
(∆ω)180◦,max =

π

2

(
τa − τ̂

τaτ̂

)
=

π

2

(
(∆τ)max

τa (τa + (∆τ)max)

)
. (5.16)
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5.4. Stability of Smith predictor for printing testbench in the presence of dead time mismatch

In the particular case of printing testbench the value of (∆ω)180◦,max is about 37 Hz.
This implies any mismatch of 37 Hz and above when calculating the phase crossover
frequency from the measurements may affect the closed loop asymptotic stability. This
estimate is a very conservative value since the model and actual plant are assumed to
be completely matched when calculating this value. Since the measurements are done
using a PRBS signal with a limited measurement buffer, the number of frequency points
that are calculated from a given measurement are limited. This limitation means that
there is always a finite (∆ω)180◦ . Considering these facts, the method of Smith predictor
for mitigating the dead time is not further investigated on the printing testbench in this
work.
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6. Output Tracking for a NMP System

6.1. Introduction

The problem of designing controllers for plants with dead time is complicated because
of the irrational models used for the dead time. This is illustrated in Section 5.2.2 using
Equation (5.5), where it appears in the denominator of the closed loop system dynamics.
One technique to overcome this problem of dealing with irrational transfer functions
is to approximate them with a rational transfer function of sufficiently high order. The
order of the approximation directly influences the bandwidth over which the rational
approximation is valid when compared to the pure delay.

In this thesis, a rational approximation for the dead time with the help of Padé ap-
proximant is used. The plant transfer function is extended to consider this rational
approximation. This extended plant description has a non-minimum phase nature. This
chapter considers the problem of output tracking for such a non-minimum phase plant.
First the output tracking problem is reformulated as a state tracking problem by defining
state reference profiles calculated using the so-called stable system center technique.
Then a robust state tracking controller is designed which ultimately results in the output
tracking.

This chapter is organized as follows: Section 6.2 introduces the NMP systems and the
concept of internal dynamics which characterize a NMP system in state-space. The Padé
approximation for the dead time and the resulting non-minimum phase representation
are presented in Section 6.3. The non trivial nature of output tracking for a non-minimum
phase systems and the advantages of considering state tracking against output tracking
are given in Section 6.4. Section 6.5 presents a technique for calculating the state reference
profiles, namely the stable system center technique. Finally, Section 6.6 presents a state
tracking controller for the NMP system which results in output tracking.
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6. Output Tracking for a NMP System

6.2. Non-minimum phase systems

Consider two transfer functions

G1(s) =
s − z
s + p

and G2(s) =
s + z
s + p

,

with their poles and zeros as plotted in Figure 6.1. G1(s) has one zero s = z, z > 0 in
the open right half-plane. G2(s) is obtained by reflecting this zero into the left half-plane.
Now if the gains and phases of G1(s) and G2(s) are compared, then the vector from zero
z to any point on the jω-axis and from zero −z to the same point have the same length,
i.e.

|G1(jω)| = |G2(jω)|

for all ω ≥ 0. Although they have the same gain behavior, their phases are quite different.
From Figure 6.1,

∠G1(jω) = θ1 − φ ∠G2(jω) = θ2 − φ.

and in general ∠G1(jω) ≥ ∠G2(jω) for all ω ≥ 0. Thus, if a transfer function has right
half-plane zeros, reflecting these zeros into the left half-plane gives a transfer function
with the same amplitude but a smaller phase1 than the original transfer function. This
motivates the definition of minimum and non-minimum phase systems. A proper
rational transfer function is called a minimum-phase transfer function if all its zeros lie
inside the open left half s-plane, otherwise it is called a non-minimum phase transfer
function and the corresponding zero as the non-minimum phase zero.

Re s

Im s

�
ω

z-p

φ θ1 Re s

Im s

�
ω

-z -p

φθ2

Figure 6.1.: Non-minimum phase transfer function

1smaller in terms of absolute value
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6.2. Non-minimum phase systems

Given a stable, proper transfer function P(s) with one zero at s = α, α > 0 the following
representation is possible

P(s) = P0(s)

(
1 −

s
α

)
(

1 +
s
α

) .

The transfer function P0(s) has poles and zeros with negative real part only. The BIBO
stable transfer function

A(s) =

(
1 −

s
α

)
(

1 +
s
α

)
is the so-called All-pass filter, the gain of which is |A (jω)| = 1, ∀ω. The phase behavior
of A(s) is non trivial and depends on its order2, and for a first order All-pass filter the
response is shown in Figure 6.2. Given a standard control loop with C(s) denoting the
controller transfer function, the open loop transfer function given by L(s) = C(s)P(s)
can also be split into an All-pass and a transfer function with stable poles and zeros.

L(s) = L0(s)A(s),

where L0(s) = C(s)P0(s). Due to the additional phase lag from the non-minimum
phase zero the stability margins of the open loop transfer function are altered. Thus the
non-minimum phase zeros may render an otherwise stable control loop unstable.
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Figure 6.2.: Phase behaviour of A(s)

2The order of A(s) is equal to the number of zeros of P(s) with positive real part.
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6. Output Tracking for a NMP System

6.2.1. Non-minimum phase system and internal dynamics

Non-minimum phase systems can also be recognized from the state space representation
when it is transformed into the so-called Byrnes-Isidori normal form [BI88; BI91].
Consider a system represented by the transfer function

G(s) =
β0 + β1s + . . . + βm−1sm−1 + sm

α0 + α1s + . . . + αn−1sn−1 + sn , (6.1)

where α0, α1, . . . , αn−1, β0, β1, . . . , βm−1 are constant coefficients. It is also assumed that
the numerator and denominator are co-prime polynomials and that n ≥ m. A minimal
state-space realization (both controllable and observable) of G(s) is given as

ẋ(t) =



0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . .
...

0 0 0 . . . 1

−α0 −α1 −α2 . . . −αn−1


︸ ︷︷ ︸

A

x +



0

0
...

0

1


︸︷︷︸

b

u(t) (6.2a)

y(t) =
[

β0 β1 . . . βm−1 1 0 . . . 0
]

︸ ︷︷ ︸
cT

x. (6.2b)

In order to transform this state space representation into the Byrnes-Isidori normal
form, the following n × n nonsingular state transformation [Sva06] is used

T =



cT

cTA
...

cTAn−m−1

1
. . .

1

0
. . .

0



m

, (6.3)

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−m
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6.2. Non-minimum phase systems

where n − m represents the so-called relative degree3 of the system. The resulting state
vector in the new coordinates z(t) = Tx(t), is partitioned as

z(t) =

ξ(t)

η(t)

 , (6.4)

with

ξ(t) =



ξ1(t)

ξ2(t)
...

ξn−m(t)


=



z1(t)

z2(t)
...

zn−m


=



y(t)

ẏ(t)
...

y(n−m−1)(t)


(6.5)

and

η(t) =



η1(t)

η2(t)
...

ηm(t)


=



zn−m+1(t)

zn−m+2(t)
...

zn(t)


=



x1(t)

x2(t)
...

xm(t)


(6.6)

to get the Byrnes-Isidori normal form given as

ξ̇1(t) = ξ2(t) (6.7a)

ξ̇2(t) = ξ3(t) (6.7b)

...

ξ̇n−m−1(t) = ξn−m (6.7c)

ξ̇n−m(t) = aTz + b′2u (6.7d)

η̇(t) = Pξ + Qη, (6.7e)

3Refer to Section C.4
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6. Output Tracking for a NMP System

where aT = cTAn−mT−1, b′2 = cTAn−m−1b, P ∈ Rm×(n−m), Q ∈ Rm×m and

[P Q] =


1

. . .
1

0
. . .

0

AT−1.

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−m

(6.8)

As seen from (6.5) and (6.7), ξ(t) ∈ Rn−m describes the input-output dynamics whereas
η(t) ∈ Rm describes the so-called internal dynamics, so named as they are the unobserv-
able part of the dynamics.

The system dynamics in Byrnes-Isidori normal form given by (6.7) reduces to the so-
called zero dynamics [Isi95] when the output y(t) and all its higher derivatives are set
identically to zero ∀t ≥ 0 by proper choice of input and initial conditions. For the system
considered above, the zero dynamics are given as

η̇(t) = Qη(t). (6.9)

From (6.6) the dynamics of the internal state are given as (using (6.2))

η̇1 = ẋ1 = x2

η̇2 = ẋ2 = x3

...
...

η̇m = ẋm = xm+1. (6.10)

Using the output equation in (6.2)

y(t) = β0x1 + β1x2 + . . . + βm−1xm + xm+1, (6.11)

and due to the definition of zero dynamics y(t) = 0, so

xm+1 = −β0x1 − β1x2 − . . . − βm−1xm. (6.12)

using (6.12) and (6.10) the matrix Q in (6.9) is given as

Q =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

−β0 −β1 −β2 . . . −βm−1


. (6.13)
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6.3. Representation of dead-time using NMP system

The characteristic polynomial of the matrix Q in (6.13) is

∆(s) = sm + βm−1sm−1 + . . . + β1s + β0, (6.14)

and this polynomial is same as the numerator polynomial of the system transfer function
given in (6.1). So the eigenvalues of Q coincide with the zeros of the transfer function,
i.e. the stability of internal dynamics depends on the zeros of the transfer function. Thus
the internal dynamics of a non-minimum phase system are unstable.

6.3. Representation of dead-time using NMP system

Consider the case where a signal y(t) is measured using a device which introduces a
delay of τ seconds. Thus the measured signal ym(t) in the laplacian domain is represented
as

L {ym(t)} = Ym(s) = Y(s)e−sτ ≈ Y(s)

(
1 −

sτ

2

)
(

1 +
sτ

2

) , (6.15)

where the last rational transfer function is the first order Padé approximation for the
dead time (cf. Equation (5.6)). A new output variable Y̌m(s)4 is introduced to make this
approximation exact. Thus

Y̌m(s) =

1 −
sτ

2

1 +
sτ

2

Y(s)

Y̌m(s)

(
1 +

sτ

2

)
= Y(s)

(
1 − sτ

2

)
.

Transforming back into time domain yields

y̌m + ˙̌ym
τ

2
= y − ẏ

τ

2
. (6.16)

Introducing the new state variable ζ := y̌m + y Equation (6.16) reads as

ζ̇ =
2
τ

ζ − 4
τ

y̌m. (6.17)

4Laplace transform of y̌m(t) is Y̌m(s)
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6. Output Tracking for a NMP System

One can readily see that the homogeneous part of the above differential equation,
considering y̌m as the input, is unstable and that the stability characteristics of this
differential equation is influenced by the non-minimum phase zero in the transfer
function (6.15). Any arbitrary order Padé approximation of the time delay contributes at
least one non-minimum phase zero to the transfer function of the system, thus any plant
with output/input delay can be approximated by a non-minimum phase system of a
sufficient order.

6.4. Output tracking for a non-minimum phase system

As shown in the previous section, a plant with output delay can be represented as a
non-minimum phase system by approximating the dead time as a rational function with
the help of Padé approximation. This section considers the problem of output tracking
for such a non-minimum phase system.

6.4.1. Introduction and literature review

It is well known that zeros cannot be moved with the help of feedback while the poles
can be arbitrarily placed when the given system is controllable [Won79]. The presence of
unstable zeros lead to internal stability issues. Solvability of the output tracking problem,
considering that the reference profile is generated from an exo-system, is related to
some conditions on the transmission zeros of a combination of the given system and the
exo-system [Hua04, Chap. 1]. In particular, the presence of right half-plane transmission
zeros impose limitations on the tracking. In the case of nonlinear systems the NMP
nature of the plant restricts the application of powerful nonlinear control techniques
such as feedback linearizion [MK93] and sliding mode control.

Two classical techniques for output tracking are inversion and output regulation. The
inversion based techniques provides exact output tracking but leads to internal stability
issues in case of non-minimum phase systems, because of the unstable zeros. Stable
system inversion in the coordinates of the Byrnes-Isidori normal form is proposed in
[DCP96; CP96; ZD04]. The main idea is to apply reverse-time integration of the unstable
internal dynamics. This however, results in reference trajectories that are noncausal.

The output regulation theory developed in [IB90] ensured asymptotic output tracking
and internal stability for a class of nonlinear systems with reference trajectories generated
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6.4. Output tracking for a non-minimum phase system

by an exo-system. The control law proposed in [IB90] uses feedback stabilisation of a
certain state trajectory calculated as the solution of nonlinear partial differential equations
which is not always easy. Approximate solutions to this partial differential equation
are proposed in [GK93]. Control of NMP systems via sliding mode control was also
first studied in this paper. Gopalswamy and Hedrick identified a particular solution of
the internal dynamics that is acceptable (ideal internal dynamics) and used an output
redefinition technique to make these ideal internal dynamics attractive. The central idea
was to use the input to control robustly (against matched perturbations) the modified
output and use this controlled output to stabilize the internal dynamics.

Before proceeding to the discussion about the problems with output tracking in the case
of a NMP system, the stabilization problem is first considered.

Example 6.4.1. (Problem of stabilizing a NMP system) Consider the following LTI-SISO
system 

ẋ1

ẋ2

ẋ3

 =

0 0 1
0 −1 1
0 4 −1.2




x1

x2

x3

+


0

−0.2

−20

 u, (6.18)

and the output is given as
y = x1 − x2. (6.19)

The given system is completely controllable and is open-loop unstable with the eigenval-
ues at {0,−3.1, 0.9}. The input-output transfer function is given as

G(s) =
Y(s)
U(s)

=
0.2 (s + 10.816) (s − 9.616)

s(s + 3.102)(s − 0.902)
. (6.20)

It is clear from the transfer function that the given system has a NMP-zero at s = 9.616.
The input-output (I/O) dynamics are of order one (i.e. the relative degree is one) and
are given as

ẏ = −y + x1 + 0.2u (6.21)

and the residual dynamics of order two which are not directly involved in the I/O
relation are given as ẋ1

ẋ3

 =

0 1

4 −1.2


x1

x3

+

0

1

 (−4y − 20u). (6.22)
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6. Output Tracking for a NMP System

Consider the output stabilization problem using sliding mode control method. For the
system (6.21), the sliding surface is introduced as σ = y = 0, and the equivalent control
providing the system motion on the sliding surface is identified from (6.21) and (6.22) as

u = ueq = −5x1. (6.23)

The sliding mode dynamics on the surface σ = 0 are given asẋ1

ẋ3

 =

 0 1

104 −1.2


x1

x3

 . (6.24)

The dynamics described by (6.24) are the zero dynamics and they are unstable as
the eigenvalues are {−10.816, 9.616}. The instability of the zero dynamics causes the
equivalent control (6.23) to grow unbounded resulting in the loss of internal stability. N

6.4.2. Problem formulation

The following LTI SISO plant is considered

ẋ = Ax + bu, y = cTx, (6.25)

where x ∈ Rn and y ∈ R are state vector and the controlled output respectively, u ∈ R

is the control input. A ∈ Rn×n, b, c ∈ Rn are system matrix and input, output vectors
respectively. (A, b) is a controllable pair and (A, c) is an observable one. Consider the
change of coordinates using (6.3) which brings the system into Byrnes-Isidori normal
form given as

ξ̇(t) = Rξ + Sη+ b2u (6.26a)

η̇(t) = Pξ + Qη, (6.26b)

where the terms R, S and P, Q are as defined in (6.29) and (6.8), and b2 =
[
0 0 . . . b′2

]T
.

It is assumed that both the states ξ, η can be measured/estimated. The plant is assumed
to be a non-minimum phase system, meaning the zero dynamics are unstable, i.e. Q is
non-Hurwitz.

Given a smooth output reference profile, yc(t) ∈ R (assumed to be generated by a known
exosystem of known order), the problem is to design an output tracking controller.
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6.4. Output tracking for a non-minimum phase system

This controller should be able to drive the tracking error ey := yc(t) − y(t) to zero
asymptotically in the presence of system model uncertainties while maintaining the
internal stability. The characteristic polynomial of the linear time-invariant exosystem
generating the smooth output reference profile is assumed to be given by

∆k(s) = sk + ρk−1sk−1 + . . . + ρ1s + ρ0, (6.27)

where k is the order of the exosystem and ρ0, ρ1, . . . , ρk−1 are non-negative real num-
bers.

6.4.3. Reformulation of the output tracking problem as a state tracking

problem

Any controller that deals with the task of output tracking of a nonminimum-phase
system has to ensure the internal dynamics are stable. In the case of a non-minimum
phase system the internal dynamics are unstable and so they have to be stabilized
explicitly by feedback. For this purpose a state-feedback controller is designed. The
considered output tracking problem can be reformulated as a state-tracking problem
by calculating the state reference trajectories (for both external and internal dynamics).
If these reference trajectories are identified such that the state-tracking asymptotically
yields output tracking for any reference profile, then the state-tracking problem can be
solved using conventional SMC techniques.

For obtaining the state-reference trajectories, dynamic inversion of the plant can be used.
But, for a nonminimum-phase system this inverse is unstable. As mentioned in Section
6.4.1, a bounded reference trajectory for the internal state ηc ∈ Rm can be calculated
as the solution to a partial differential algebraic equation of the center manifold [IB90].
A method to get a bounded solution to the unstable internal dynamics (6.26b) driven
by yc(t) (reference output trajectory) asymptotically is the so-called stable system center
technique [SS02].
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6. Output Tracking for a NMP System

6.5. State reference profile generation via stable system center

approach

6.5.1. System center

The output tracking problem of non-minimum phase system (6.7) is considered here.
For the sake of convenience, system (6.7) which is already in the Byrnes-Isidori normal
form is rearranged, such that it is as well in the regular form5 [UGS99], as

η̇ = Qη+ Pξ (6.28a)

ξ̇ = Sη+ Rξ + b2u, (6.28b)

where

[
R S

]
(n−m)×n

=



n − m︷ ︸︸ ︷
0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

m︷ ︸︸ ︷
0 . . . 0

0 . . . 0

...
. . .

...

0 . . . 0

cTAn−mT−1



, (6.29a)

b2 =
[
0 0 . . . cTAn−m−1b

]T
, b2 ∈ R(n−m) (6.29b)

and P, Q are as defined in (6.8).

As mentioned in Section 6.4.2 the output reference profile yc(t) is assumed to be gen-
erated from a known exosystem. First, the state reference profile ξc(t) for the state
ξ(t) is calculated using Equation (6.5). Then, according to relation (6.28a) the state
reference profile for the internal state, represented by ηc(t), should satisfy the differential
equation

η̇c = Pξc + Qηc. (6.30)

5useful for the design of sliding mode controller
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6.5. State reference profile generation via stable system center approach

The internal dynamics (ID) in reference coordinates can be written as

η̇c(t) = Pξc + Qηc (6.31a)

yc(t) =
[

1 0 . . . 0

]
ξc + 0(1×m)ηc. (6.31b)

This linear system of differential-algebraic equation (DAE) is named as the system center
[Sht97]. The state reference profiles can be extracted by solving the system center. The
existence of solution for the DAE is guaranteed (shown in the following Section 6.5.2) by
the observability assumption for the given system.

6.5.2. Existence of solutions to the system center

Consider the system center given in (6.31)

η̇c(t) = Pξc + Qηc (6.32a)

yc(t) = eT
1 ξc + 0(1×m)ηc, (6.32b)

where eT
1 is the standard basis unit vector. This is rewritten as

0 0

0 Im×m


︸ ︷︷ ︸

=:Ed

ξ̇c

η̇c

 =

 eT
1

P Q


︸ ︷︷ ︸

=:Ad

ξc

ηc

+

[
−yc(t)

0

]
︸ ︷︷ ︸

=:f(t)

, (6.33)

where P ∈ Rm×n−m, Q ∈ Rm×m and Ad ∈ R(m+1)×n. Equation (6.33) is in the standard
form of linear differential-algebraic equations with constant coefficients (cf. (2.1) in
[KM06]). According to [KM06], a given DAE is solvable for a given smooth inhomo-
geneity f(t) if and only if the matrix pair (Ed, Ad) is regular. The matrix pair (Ed, Ad)

is called regular if both the matrices Ad, Ed are square and the so-called characteristic
polynomial p(s) defined by

p(s) = det(sEd − Ad) (6.34)

is not the zero polynomial. In our case the matrices are not square, so we consider the
other states of ξc(t) as in (6.5) to extend the algebraic constraint of the system center
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6. Output Tracking for a NMP System

as

0 ξ̇c = I(n−m)ξc +



−yc(t)

−ẏc(t)

−ÿc(t)
...

−y(n−m−1)
c (t)


. (6.35)

Due to the special structure of the considered system (minimal realization) and the
transformation matrix T from (6.3), the matrix P is reduced to

P(m×n−m) =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
1 0 . . . 0

 . (6.36)

Now using Equation (6.9), the new DAE is given as

0 0

0 Im×m


︸ ︷︷ ︸

Ed,r

ξ̇c

η̇c

 =



1 0 . . . 0 0 . . . . . . . . . 0

0 1 . . . 0 0 . . . . . . . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . . . . . . . 0

0 0 . . . 0 0 1 0 . . . 0

0 0 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . 1

1 0 . . . 0 −β0 −β1 −β2 . . . −βm−1


︸ ︷︷ ︸

Ad,r

ξc

ηc

+

+
[
−yc(t) −ẏc(t) −ÿc(t) . . . −y(n−m−1)

c (t) 0 0 . . . 0
]T

︸ ︷︷ ︸
fr(t)

.

(6.37)

Using the assumption on the input reference profile, fr(t) can be considered smooth,
and now additionally the matrices, Ed,r and Ad,r are square. Thus we check if the
characteristic polynomial p(s) = det(sEd,r − Ad,r) is a zero polynomial. As can be seen
from Equation (6.37) Ad,r has full rank (because β0 6= 0) implying that the characteristic
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6.5. State reference profile generation via stable system center approach

polynomial p(s) is not a zero polynomial which, further implies that the considered
matrix pair (Ed,r, Ad,r) is regular. Thus a solution to the DAE given in Equation (6.37)
exists.

The regularity of the matrix pair is closely related to the choice of state transformation
matrix given in (6.3), as the structure of the matrix Ad,r depends on the choice of matrix
T. This matrix is only invertible when it has full rank. The last m rows of T are linearly
independent and the first (n − m) rows are same as the rows of the observability matrix
for the system (6.1) (as defined in [Kal59]). Since the original system in (6.2) is assumed
to be observable these rows are linearly independent. Thus, the observability of the
considered system results in an invertible transformation matrix T as given in (6.3). In
conclusion, the existence of solutions to the DAE in (6.37) according to [BCP95, Theorem
2.3.1] depends on the regularity of the matrix pair (Ed,r, Ad,r) which in turn depends on
the observability of the considered system.

6.5.3. Stable system center approach

The system center describing the dynamics of the internal state reference profile ηc(t) is
given in Section 6.5.1 and the existence of solutions to this system center is established
in the previous section. Different techniques to solve a given DAE are presented in
literature for example [BCP95; KM06]. Due to the NMP nature of the problem, the
matrix Q from Equation (6.9) is non-Hurwitz rendering the system center described by
(6.31) unstable. Thus a direct integration of this unstable system center will result in an
unbounded reference signal for the internal states ηc(t) demanding an unbounded input
signal for asymptotic tracking.

A method to generate a stable system center (SSC) which provides output tracking in
systems with linear unstable internal dynamics is developed in [SS01]. The key idea is to
use a dynamic extension of the system center that achieves a stable system center from
which the bounded state reference profiles are calculated. Subsequent stabilization of
the state tracking-error results in the output tracking of the original system. To this end
the bounded η∗(t), which asymptotically approaches ηc(t), is selected as a solution of
the equation

η̇∗(t) = θc(t) + Qη∗(t)− g∗(t) (6.38)

where the term θc is given as
θc(t) = Pξc(t), (6.39)
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6. Output Tracking for a NMP System

and the dynamics of the term g∗(t) are chosen such that they converge to zero asymp-
totically, i.e. limt→∞ g∗(t) = 0. A suitable choice for the dynamics of g∗(t) is given
as

0

∑
j=k−1

Tjg∗(j) = η∗(k) +
0

∑
i=k−1

ρiIη∗(i) (6.40)

where ρ0, ρ1, . . . , ρk−1 are the coefficients of the characteristic polynomial describing
the kth-order exosystem generating the output reference profile (6.27), I = Im×m is the
identity matrix, and the constant matrices Tk−1, . . . , T0 ∈ Rm×m are to be chosen. With
the proper choice of these constant matrices

• a bounded state reference profile η∗(t) which asymptotically reaches the ηc(t) can
be generated, and

• lim t→∞ g∗(t) = 0 holds.

According to SSC the internal state reference profile η∗(t) which asymptotically converges
to ηc(t) is given by the following matrix differential equation

η∗(k) + ck−1η∗(k−1) + . . . + c1η̇∗ + c0η∗ = −
(

Mk−1θ
(k−1)
c + . . . + M1θ̇c + M0θc

)
(6.41)

where the numbers c0, c1, . . . , ck−1 are chosen to provide eigenvalue placement for the
convergence η∗ → ηc and the matrices Mk−1, . . . , M0 are given as

Mk−1 =
(

I + ck−1Q−1 + . . . + c0Q−k
) (

I + ρk−1Q−1 + . . . + ρ0Q−k
)−1

− I

Mk−2 = ck−2Q−1 + . . . + c0Q−k+1 − (Mk−1 + I)
(

ρk−2Q−1 + . . . + ρ0Q−k+1
)

...
...

... (6.42)

M1 = c1Q−1 + c0Q−2 − (Mk−1 + I)
(

ρ1Q−1 + ρ0Q−2
)

M0 = c0Q−1 − (Mk−1 + I) ρ0Q−1.

The derivation of the matrix transfer function in Equation (6.41) and the proofs for the
convergence of η∗(t) → ηc(t) and g∗(t) are given in Appendix B.2.

The driving term in the internal dynamics equation θc(t) can be obtained with the help
of the relation (6.5) as

θc(t) = Pξc(t) = P
[
−yc(t) −ẏc(t) −ÿc(t) . . . −y(n−m−1)

c (t)

]T

. (6.43)
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6.6. Sliding mode controller design

6.6. Sliding mode controller design

Once the state reference trajectories ηc(t) and ξc(t) are identified, the problem of pro-
viding state-tracking in the system (6.7) can be solved using sliding mode control as
follows. Introduce the error coordinates eη(t) = η(t)− ηc(t) and eξ(t) = ξ(t)− ξc(t).
The system in error coordinates is given as

ėη = Qeη + Peξ (6.44a)

ėξ = Seη + Reξ + b2u, (6.44b)

Define the sliding surface σ ∈ Rn−m as

σ = eξ + λTeη, λT ∈ R(n−m)×m. (6.45)

In sliding mode, i.e. when σ = 0,

eξ = −λTeη (6.46)

and the internal state dynamics is given as

ėη = (Q − PλT)eη. (6.47)

Asymptotic stability of the internal state dynamics (6.47) can be ensured by choosing the
eigenvalues of the matrix (Q − PλT) to be in the left half-plane. The ability of arbitrary
eigenvalue placement for (Q − PλT) depends on the controllability [Kal59] of the pair
(Q, P). Controllability of the pair (Q, P) is given when the pair (A, b) is controllable
(see Section B.1 for the proof of this statement). Thus the internal state dynamics can be
asymptotically stabilized in sliding mode by appropriate choice of λ.

Depending on the relative degree of the system under consideration an output redefini-
tion is required for designing the SMC law. The following conditions on relative degree
are given

• Relative degree γ = 1: a standard first order sliding mode control law is suitable
to enforce sliding mode

• Relative degree γ > 1:

– first an output redefinition (see [GK93]) such that γ = 1 is performed and
later a standard SMC law is used
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6. Output Tracking for a NMP System

– higher order sliding mode control laws can as well be used here.

In the case of output tracking for a DIO suffering from output delay, the relative degree
of the system is equal to one, and thus a standard SMC law is designed in Chapter 7.
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7. Stable System Center Approach based

Output Tracking for a DIO

7.1. Introduction

The stable system center technique introduced in the previous chapter is used for
output tracking of a DIO system suffering from output delay. First, the state space
representation of the DIO system is considered along with the dead time and then,
it is extended to a NMP system by approximating the output delay using the Padè
approximation (Section 7.2). Results of simulation study are presented in Section 7.3
followed by the results from an experimental implementation on the Quanser rotary
flexible joint in Section 7.4.

7.2. Representation of DIO with output delay as NMP system

The state space representation of the DIO system as given in (2.7) is

d
dt


ϕ̇M

∆ϕ

ϕ̇L

 =


− d

JM
− k

JM

d
JM

1 0 −1
d
JL

k
JL

− d
JL




ϕ̇M

∆ϕ

ϕ̇L

+


1

JM

0

0

Te (7.1)

y =

[
1 0 0

] 
ϕ̇M

∆ϕ

ϕ̇L

 . (7.2)
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The measured output ym is available with a dead time of τ seconds, i.e.

Ym(s) = Y(s)e−sτ, (7.3)

where Ym(s) and Y(s) are Laplace transforms of ym(t) and y(t) respectively. Following the
procedure described in Section 6.3, an additional state variable ζ = y̌m + y is introduced
to include the rational approximation of the dead time into the state space realization
given by (7.1). Dynamics of the additional state variable ζ(t) are given by

ζ̇ =
2
τ

ζ − 4
τ

y̌m. (7.4)

Now, the state space model is extended by including the dynamics of y̌m as follows

˙̌ym = ζ̇ − ẏ, (7.5)

using (7.2) and (7.4)

˙̌ym =
2
τ

ζ − 4
τ

y̌m −
(
− d

JM
y − k

JM
∆ϕ +

d
JM

ϕ̇L +
1

JM
Te

)
=

2
τ

ζ − 4
τ

y̌m +
d

JM
(ζ − y̌m) +

k
JM

∆ϕ − d
JM

ϕ̇L −
1

JM
Te

˙̌ym =

(
2
τ
+

d
JM

)
ζ +

(
− 4

τ
− d

JM

)
y̌m +

k
JM

∆ϕ − d
JM

ϕ̇L −
1

JM
Te. (7.6)

Thus the extended state space realization representing the non-minimum phase approxi-
mation of the DIO with output delay is given as



˙̌ym

ζ̇

∆ϕ̇

ϕ̈L


=



a11 a12
k

JM

−d
JM

−4
τ

2
τ

0 0

−1 1 0 −1

− d
JL

d
JL

k
JL

− d
JL


·



y̌m

ζ

∆ϕ

ϕ̇L


+



− 1
JM

0

0

0


· Te, (7.7)

ẋe = Ae · xe + be · u

where a11 = − 4
τ
− d

JM
and a12 =

2
τ
+

d
JM

.

This approximation is pictorially represented in Figure 7.1. The transfer function
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describing the DIO system with the Padé approximation of the time delay is given as

Gdio,td =
1

(JM + JL)s
JLs2 + ds + k(

JM JL

JM + JL

)
s2 + ds + k

1 − sτ

2

1 +
sτ

2

 . (7.8)

It has a relative degree1 of 1, i.e. if the input-output dynamics are defined by the state
ξ(t) then, ξ ∈ R and if internal dynamics are described by the state η(t), then η ∈ R3. In
this case,

ξ := y̌m, and (7.9)

η :=


ζ

∆ϕ

ϕ̇L

 . (7.10)

Thus the zero dynamics for the system given in Equation (7.7) can be written as

η̇(t) =


ζ̇

∆ϕ̇

ϕ̈L

 =


2
τ

0 0

1 0 −1
d
JL

k
JL

−d
JL


︸ ︷︷ ︸

:=Q


ζ

∆ϕ

ϕ̇L

 . (7.11)

Inspecting the spectrum of Q

λ (Q) =

 2
τ

,
−
(

d −
√

d2 − 4JLk
)

2JL
,
−
(

d +
√

d2 − 4JLk
)

2JL

 , (7.12)

DIO
Eqn. (7.1) e−sτ

Te y ym DIO (NMP)
Eqn. (7.7)

=
Te y̌m

Figure 7.1.: Approximating the DIO with output time delay as a non-minimum phase system

1Refer C.4.
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and considering the fact that JL, k, d and τ are all positive, there is always one positive

eigenvalue at
2
τ

rendering the zero dynamics unstable.

The vector P ∈ R3×1, R ∈ R, b2 ∈ R and the vector S ∈ R1×3 for the considered DIO
system are given as

P =


− 4

τ

−1

− d
JL

 , R = − 4
τ
− d

JM
, b2 = − 1

JM
and S =

[
2
τ
+

d
JM

k
JM

−d
JM

]
. (7.13)

Thus using Equations (7.9) and (7.13) the DIO system with output delay in the Byrnes-
Isidori normal form2 is given as

η̇(t) = Py̌m(t) + Qη(t) (7.14a)
˙̌ym(t) = Ry̌m(t) + Sη(t) + b2u. (7.14b)

7.3. Simulation of output tracking for a DIO system

represented as an NMP system

Using the NMP representation of a DIO with output delay as given in the previous
section, a SSC based reference trajectory generator as well as a standard first order SMC
based state-tracking controller will be simulated in this section.

7.3.1. SSC based reference profile generation

For the generation of a bounded reference profile from the unstable internal dynamics
(7.14a) using the method of SSC, first the following third-order characteristic polynomial
is assumed for the exosystem generating the output reference profile

∆3(s) = s
(
s2 + ω2

n
)

, (7.15)

2simultaneously in the regular form for SMC law design
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where ωn is the frequency of the sinusoidal reference signal yc(t).
Now, the system center is written as

η̇c(t) = Pξc(t) + Qηc(t)

yc(t) = ξc(t) + 0ηc(t). (7.16a)

According to the SSC method the bounded reference profile η∗(t) which asymptotically
approached ηc(t) is given by the relation3

η̄∗(s) = −
(
Mk−1sk−1 + . . . + M1s + M0

)
(sk + ck−1sk−1 + . . . + c1s + c0)

PΞc(s) (7.17)

where the numbers c0, c1, . . . , ck−1 are chosen to provide eigenvalue placement for the con-
vergence of the bounded internal state reference profile and the matrices Mk−1, . . . , M0

are as given in (6.42) and Ξc(s) is the Laplace transform of ξ(t). The order of the exosys-
tem generating the output reference profile is k = 3, and using (7.15) the coefficients of
the characteristic polynomial defining the exosystem are given as ρ2 = 0, ρ1 = ω2

n, ρ0 = 0.
Using these values, the matrices from (6.42) are reduced as follows

M2 =
(

I + c2Q−1c1Q−2 + c0Q−3
) (

I + ω2
nQ−2)−1 − I

M1 = c1Q−1 + c0Q−2 − ω2
n (M2 + I)Q−1

M0 = c0Q−1

 . (7.18)

And the transfer matrix generating the bounded internal reference profile is given by the
following matrix transfer function

η̄∗(s) = −
(
M2s2 + M1s + M0

)
(s3 + c2s2 + c1s + c0)

PΞc(s). (7.19)

7.3.2. Sliding mode control law for state tracking

The original problem of output tracking is solved indirectly by stabilizing the system in
error coordinates which are defined as

eξ(t) = ey(t) = yc(t)− y̌m(t), (7.20a)

eη(t) = ηc(t)− η(t). (7.20b)

3Once again the usual representation for the Laplace-transform holds as in page 100
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Thus, the system in error coordinates is given as

ėη = Qeη + Pey (7.21a)

ėy = Seη + Rey + b2u. (7.21b)

For the use of a SMC law, the following sliding surface is defined

σ := ey + λTeη, (7.22)

where λ ∈ R3×1 is a design vector. Assuming that the sliding occurs, i.e. in sliding mode
σ(t) ≡ 0,

ey = −λTeη, (7.23)

implying that the system is described by the following reduced order dynamics

ėη = Qeη − PλTeη,

ėη =
(

Q − PλT
)

eη.
(7.24)

Thus the choice of vector λT influences the dynamics of eη(t) in sliding mode, and
it is chosen such that the matrix

(
Q − PλT) has negative eigenvalues. The ability of

placing arbitrary eigenvalues of this matrix is guaranteed by the controllability property
of the pair (Q, P), which in turn depends on the controllability4 of the pair (Ae, be) from
Equation (7.7). The controllability of the pair (Ae, be) can be easily verified by the Hautus
rank test [Hau70], the matrix Hu ∈ R4×5 given as

Hu =
[
sI − Ae be

]

Hu =



s +
d

JM
+

4
τ

− d
JM

− 2
τ

− k
JM

d
JM

− 1
JM

4
τ

s − 2
τ

0 0 0

1 −1 s 1 0

d
JL

− d
JL

− k
JL

s +
d
JL

0


(7.25)

has for all the eigenvalues of the matrix Ae the rank 4. It can be seen directly from (7.25)
the last three columns are linearly independent and depending on the value of the
complex variable s, the first two columns would at least give one column that is linearly

4Refer Appendix B.1
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independent with the last three columns. Thus the pair (Ae, be) is controllable and so is
the pair (Q, P).

It is assumed when writing Equation (7.23) that the sliding mode is enforced on the
system. In order to enforce sliding mode, one choice for the input u(t) is given by the
following condition on the derivative of the sliding surface

dσ

dt
!
= −κ sgn(σ), κ ∈ R+. (7.26)

Using Equation (7.22),
ėy + λTėη = −κ sgn(σ). (7.27)

The left hand side of Equation (7.27) is expanded using Equation (7.20)

ėy + λTėη =
d
dt

(yc − y̌m) + λT d
dt

(ηc − η) . (7.28)

As both the reference profiles yc(t) and ηc(t) are known and are free of any high
frequency noise, their time derivatives ẏc(t) and η̇c(t) respectively can be numerically
calculated. Thus using (7.14), Equation (7.28) is expanded as

ėy + λTėη = ẏc − (Ry̌m + Sη+ b2u) + λT (η̇c − Py̌m − Qη) . (7.29)

Considering that the vector

λT =

[
λ1 λ2 λ3

]
, (7.30)

and substituting Equations (7.10), (7.13) into Equation (7.29) results in

ėy + λTėη = ẏc + λT η̇c + ν1y̌m + ν2ζ + ν3∆ϕ + ν4 ϕ̇L +
u
JM

, (7.31)

where the constants ν1, ν2, ν3 and ν4 ∈ R are given as follows

ν1 =
4
τ
(1 + λ1) + λ2 + d

(
1

JM
+

λ3

JL

)
ν2 = − 2

τ
(1 + λ1)− λ2 − d

(
1

JM
+

λ3

JL

)
ν3 = −k

(
1

JM
+

λ3

JL

)
ν4 = d

(
1

JM
+

λ3

JL

)
+ λ2


. (7.32)
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Substituting back Equations (7.31) and (7.32) in (7.27) and solving for the control input
results in

u = JM

(
−κ sgn(σ)− ẏc − λT η̇c − ν1y̌m − ν2ζ − ν3∆ϕ − ν4 ϕ̇L

)
. (7.33)

For the sake of simulation it is assumed that all the state variables are available within
the controller and that there is no uncertainty in the plant. Thus any value κ > 0 will
drive the system trajectories in finite time to the sliding surface. On the sliding surface,
i.e. during sliding mode the system behaves as a reduced order system given by the
dynamics of eη in (7.24).

7.3.3. Simulation of SMC based output tracking for DIO with output delay

using SSC technique

The structure of the Simulink model used for the simulation is given in Figure 7.2. The
exosystem generates the output reference profile to be tracked and the SSC generates
the internal state reference profile. The NMP model is used to generate the states η,
y̌m, and their corresponding errors are fed into the SMC law based tracking controller
to generate the required control input u. For the sake of simulation the parameters of
the RFJ given in Table 2.3 are used as the DIO model. The exosystem is parametrized
such that the frequency of the sinusoidal output reference profile ωn = 2 rad/s, the
amplitude to be 4 rad/s and has an offset of 0.5 rad/s. For the implementation of SSC
to generate a bounded internal state reference profile, i.e. for the implementation of
transfer matrix given in Equation (7.19), the parameters c0, c1 and c2 are chosen such
that the denominator of (7.19) has three eigenvalues at −6.

For the sliding mode controller, first constants describing the sliding surface, λT, are
chosen such that eigenvalues of the matrix describing the reduced order dynamics in

SSCExosystem
SMC tracking

controller
NMP
model

yc ηc

eη

ey

u

η−

y̌m−

•

Figure 7.2.: Block diagram showing the SM output tracking controller using SSC.
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Figure 7.3.: Results of NMP output tracking using SSC and SMC law based feedback considering the whole
internal state vector η in the feedback
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sliding mode are at −15 − 12,−10. This choice of eigenvalues results in

λT =

[
−0.73 −5.6 0.13

]
. (7.34)

Finally the gain of the discontinuous sign function for the sliding mode control law is
chosen as κ = 5. In an effort to make the control input signal continuous/smooth, i.e.
to eliminate chattering, the discontinuous function sgn(.) is replaced by the following
saturated linear relation within a thin boundary layer neighboring the sliding surface

satφ(σ) =

sgn(σ), |σ| ≥ φ
σ

φ
, |σ| < φ,

(7.35)

where φ gives the thickness of the boundary layer.

The plant, SSC and the SMC based state tracking controller are implemented in Simulink.
This model is simulated using a fixed-step solver with a sample time of 1 ms. The
simulated states are used for the control, i.e. all the states are assumed to be measurable5.
Figure 7.3a plots the result of output tracking along with the tracking error, whereas
Figures 7.3b and 7.3c plot the calculated control signal and the sliding variable dynamics.
The sliding variable starts from an initial value away from zero and converges to zero in
finite time and stays at zero, but due to the included linear approximation of the sign
function with in a boundary layer, the sliding variable does not exactly slide along zero,
but oscillates around σ = 0.

Instead of considering the whole internal state η(t) in the design of the sliding surface
one could only consider the dynamics of ζ(t) (cf. Equation (7.7)), as the dynamics of[

∆ϕ ϕ̇L

]
are bounded input bounded state stable. Thus, the new sliding variable is

defined as
σ = ey + λeζ , (7.36)

and by a suitable choice of the input u(t), sliding mode is enforced. In sliding mode

ey = −λeζ , (7.37)

and the reduced order dynamics are given as

ėζ =

(
2
τ
+

4
τ

λ

)
eζ . (7.38)
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Figure 7.4.: Results of NMP output tracking using SSC and SMC law based feedback considering only a
part of the internal state namely ζ in the feedback
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Thus the error in the internal sate eζ(t) is driven to zero by an appropriate choice of
variable λ

λ < −0.5, (7.39)

which ensures that the output error is also driven to zero asymptotically (Equation 7.37).
The appropriate choice of input signal to enforce sliding mode can be derived from
Equations (7.33) and (7.32) by choosing λ2, λ3 = 0 and λ1 = λ ∈ R and replacing η̇c by
ζ̇c as

u = JM

(
−κ sgn(σ)− ẏc − λζ̇c − ν1y̌m − ν2ζ +

k
JM

∆ϕ − d
JM

ϕ̇L

)
, (7.40)

where ν1 =
4
τ
(1 + λ) +

d
JM

and ν2 = − 2
τ
(1 + λ)− d

JM
.

For the sake of simulation the variable λ = −0.75 is chosen. The results of simulation are
plotted in Figures 7.4a and 7.4. It can be seen clearly from Figure 7.4a that the precision
of output tracking is similar to the previous result, whereas the control signal shown in
Figure 7.4b is more oscillatory when compared to the previous experiment. Also the
precision of sliding variable dynamics in sliding mode in both the cases is similar. Note
that the following assumptions are made for the simulations above

• all the states are available

• no model (plant) uncertainties

• the signal y̌m is used in the feedback.

Since the signals ζ(t) and y̌m(t) are only introduced in the extended model and are not
part of the original DIO model, an observer is designed (as presented in the next section)
for estimating these signals.

7.3.4. Sliding mode observer for unmeasurable states

Since only the output, angular velocity of the motor, y(t) is available for measurement
an observer is designed for estimating the rest of the states. A sliding mode observer
is designed for this purpose [MRH13]. Consider the system given in the regular form
(7.14) which is rewritten here as

η̇(t) = Py̌m(t) + Qη(t) (7.41a)
˙̌ym(t) = Ry̌m(t) + Sη(t) + b2u. (7.41b)

5A SMC law based observer was developed for the actual experiments on the plant.
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First the Observability of the system is verified using Hautus criterion6 similar to
Section 7.3.2. The observer proposed by [Utk81] has the form

˙̂η(t) = Pỹ(t) + Qη̂(t) + Lν (7.42a)
˙̃y(t) = Rỹ(t) + Sη̂(t) + b2u − ν, (7.42b)

where (η̂, ỹ) represent the state estimates for (η, y̌m), L ∈ R3×1 is a constant feedback
gain vector and the discontinuous variable ν is defined by

ν = M sgn (ỹ − y̌m) (7.43)

where M ∈ R+. If the errors between the estimates and the true states are written as
e1 = η̂− η and e2 = ỹ − y̌m, then using Equation (7.41) the following error dynamics is
obtained

ė1(t) = Pe2(t) + Qe1(t) + Lν (7.44a)

ė2(t) = Re2(t) + Se1(t)− ν. (7.44b)

Since the pair (Ae, cT) is observable, the pair (Q, S) is also observable7. As a consequence
the vector L can be chosen such that the eigenvalues of the matrix (Q + LS) lie in
C−. Consider a change of coordinates8, dependent on L, defined by the following
transformation matrix

T =

I3 L

0 1

 . (7.45)

Due to the special structure of the chosen transformation matrix T, its inverse is given
as

T−1 =

I3 −L

0 1

 . (7.46)

Thus, the error dynamics in the new coordinates ẽ1 := e1 + Ley are given as

˙̃e1(t) = Q̃ẽ1(t) + P̃ey(t) (7.47a)

ėy(t) = Sẽ1(t) + R̃ey(t)− ν, (7.47b)

6rank of the rectangular matrix

[
cT

sI − Ae

]
!
= 4, where cT =

[
1 0 0 0

]
7This result can be obtained as a dual result to the one obtained in Section B.1
8The aim of introducing the coordinate transformation is to simplify the analysis and design of the

discontinuous term by restricting its effect to the last differential equation.
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where Q̃ = Q + LS, P̃ = P + LR − Q̃L and R̃ = R − SL. Now, by appropriate choice of
M sliding mode can be enforced resulting in ey = 0 in some finite time and the reduced
plant dynamics in sliding mode are reduced to

˙̃e1(t) = Q̃ẽ1(t). (7.48)

By appropriate choice of vector L, it follows that ẽ1 → 0 and consequently η̂ → η(t)
as t → ∞. The discontinuous term ν in the observer (7.47b) is responsible for robust
stabilisation of the error system. Now, consider adding a negative output error feedback
to these equations [ES98]

˙̃e1(t) = Q̃ẽ1(t) + P̃ey(t)− G1ey (7.49a)

ėy(t) = Sẽ1(t) + R̃ey(t)− G2ey − ν. (7.49b)

By choosing G1 = P̃ and G2 = R̃ − Gs
2, where Gs

2 < 0, then

˙̃e1(t) = Q̃ẽ1(t) (7.50a)

ėy(t) = Sẽ1(t) + Gs
2ey − ν. (7.50b)

Since already, by choice of L, the eigenvalues of the matrix Q̃ lie in C− and Gs
2 < 0, the

error system is asymptotically stable for ν ≡ 0. The discontinuous term now is only
responsible for robustness against bounded uncertainties.

7.3.5. Feedback of actual delayed output

The simulation results presented in the previous section use the signal y̌m(t) generated
from the NMP system model in the feedback, but in the real world experiment it is
required to feedback the actual measured signal ym(t). Figure 7.5 plots the output
tracking result when ym(t) is fed back (used in the design of the sliding surface) instead
of y̌m(t) keeping all the other simulation parameters same as in the previous section9.
Clearly the tracking results are poor since the controller is actually designed for the
output y̌m(t).

In order to improve the tracking performance a Smith predictor type feedback is used.
Figure 7.6 shows the block diagram representing the Simulink model incorporating
this type of feedback. A model of the actual plant GDIO(s) (cf. Equation (2.8)) with the

9The internal state measurements from the observer are used in the controller.
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Figure 7.5.: Simulated output tracking by feeding back the delayed output

dead time e−τs, represented respectively as ĜDIO(s) and e−τ̂s, along with the observer
from the previous section are used in the feedback as shown in the block diagram. In
case of a perfect model and dead time match, i.e. ĜDIO = GDIO, τ̂ = τ the feedback y f

only consists of the signal y̌m(t). The internal state ζ(t) estimated by the observer and
the error in the internal state eζ(t) are represented in violet for the sake of clarity. The
results of output tracking with this kind of feedback are similar to the results reported
in Figure 7.4.
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Figure 7.6.: Block diagram showing the Smith predictor type feedback used in NMP output tracking

7.4. Output tracking for rotary flexible joint: experimental

results

The RFJ experimental setup from Quanser [Qua] as explained in Section 2.4 behaves
as a DIO. The identified parameters including the output dead time are given in Table
2.3. The Simulink models developed in the previous section (cf. Figure 7.6) for the
purpose of simulation can be used as well for programming the Quanser RFJ. This is
made possible by the code generation functionality of Matlab/Simulink.

Before going into the details of implementation, the Simulink models are first updated
to take into account that the actual plant input is voltage applied across the motor. The
relation between the torque input to the NMP representation of the RFJ with output
delay (6.37) and the actual voltage input to the plant is

Te = KMUM, (7.51)

where KM is the motor torque constant as given in (2.23) and UM is the voltage that is
applied to the motor. For the purpose of output tracking, the reference output profile
yc(t) = ξc(t) is assumed to be generated by the same exosystem as in Section 7.3.1 whose
characteristic polynomial is given as

∆3(s) = s
(
s2 + ω2

n
)

, (7.52)

The reference profile generated by the exosystem is given as

yc(t) = a + b sin ωn(t) + e cos ωn(t), (7.53)
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where ωn is the frequency of the reference signal and a, b, e are real numbers. For the
experiments the these parameters are chosen as follows

a = 0, b = 0.2, e = 0, and ωn = 2π rad/s. (7.54)

Only the error state eζ(t) is explicitly stabilised using the sliding mode controller. Thus
the unstable system center is given as

ζ̇c = − 4
τ

ξc +
2
τ

ζc (7.55a)

yc = ξc. (7.55b)

Comparing this system center with Equation (7.16)

P = − 4
τ

, Q =
2
τ

. (7.56)

Since the internal state considered for tracking only consists of one variable ζ(t), the
matrices M0, M1, M2 in (7.18) reduce to scalars and are given as (using Equation (7.56))

M2 =
4c2τ + 2τ2(c1 − ω2

n) + c0τ3

8 + 2τ2ω2
n

M1 =
τ2(c0 − c2ω2

n) + 2τ(c1 − ω2
n)

4 + ω2
nτ2

M0 = c0
τ

2


. (7.57)

The transfer matrix in Equation (7.19) reduces to the following transfer function

ζ̄∗(s) = −
(

M2s2 + M1s + M0
)

s3 + c2s2 + c1s + c0
PYc(s), (7.58)

where ζ∗(t) c s ζ̄∗(s), yc(t) c sYc(s) and the convergence of ζ∗(t) → ζc(t) is guaran-
teed by the choice of parameters c2, c1 and c0. These parameters are chosen such that the
denominator of (7.58) has three eigenvalues at -6.

The sliding mode observer as presented in Section 7.3.4 is implemented first for estimat-
ing the signals y̌m(t) and ζ(t). The sliding mode controller as given in (7.40) is modified
for the Quanser RFJ as

UM = u =
JM

KM

(
−κ sgn(σ)− ẏc − λζ̇c − ν1y̌m − ν2ζ +

k
JM

∆ϕ − d
JM

ϕ̇L

)
, (7.59)
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with ν1 =
4
τ
(1 + λ) +

d
JM

and ν2 = − 2
τ
(1 + λ)− d

JM
.

The discontinuous terms in both the controller and observer are replaced by the saturated
linear relation within a thin boundary layer neighbouring the sliding surface as was done
in Section 7.3.3. The boundary layer widths are represented as φctrl and φO respectively
in the controller and the observer. The parameters for the experiment are chosen as
given in Table 7.1. The sample time was chosen as 1 ms for the experiments through out
this section. The output tracking result using these parameters is plotted in Figure 7.7. It
is obvious from the error plot that the tracking error in the output is not driven to zero.
This is because of the unmodelled friction that is acting both on the motor side and the
load side. The friction on the load side is unmatched with respect to the control input
UM, so the SMC is not able to compensate this disturbance10.
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Figure 7.7.: Tracking result from Quanser RFJ experimental set up using SSC and SMC based state tracking
controller.

In order to improve the performance of the tracking controller, the classical technique of
adding an integrator by extending the system order is employed. Towards this end the
new state variable ε is introduced as

dε

dt
= yc − y f = ey. (7.60)

10See Appendix C for more details about matched and unmatched disturbances.
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Table 7.1.: Controller parameters

SMC Observer
Parameter Value Parameter Value

λ -1.75 Gs
2 -5.5

κ 50 M 300

φctrl 0.05 φO 0.01

Using this new state variable, the system in error coordinates given by (7.21) is extended
as (considering only ζ(t) for internal state)

ėζ =
2
τ

eζ −
4
τ

ey

ėy =

(
2
τ
+

d
JM

)
eζ +

(
− 4

τ
− d

JM

)
ey +

k
JM

∆ϕ − d
JM

ϕ̇L −
KM

JM
UM

ε̇ = ey. (7.61)

The sliding surface defined in (7.22) is also extended to include the new state vector as

σ(t) = ey(t) + λe ζ(t) + µε(t) = ey(t) + λeζ(t) + µ
∫ t

0
ey(t̃)dt̃. (7.62)

The control input UM from (7.59) is extended as

UM = u =
JM

KM

(
−κ sgn(σ)− ẏc − λζ̇c − ν1y̌m − ν2ζ +

k
JM

∆ϕ − d
JM

ϕ̇L − µey

)
. (7.63)

Using the sliding surface with the integral of the output error and the controller as
given in (7.63) the improved tracking results obtained on the RFJ experimental set up are
plotted in Figure 7.8. It is clear from the figure that the tracking error increases when
the angular velocity crosses zero because of the static friction present in the system. This
static friction is generated by the multiple slip rings present between the carrier and the
base frames as shown in Figure 2.16 on page 29. Since the friction on the load side is
unmatched with respect to the control input, UM

The same experiment is conducted with a PI controller replacing the state tracking
SMC law. The PI controller parameters are tuned such that the peak in the measured
angular velocity is as close to 0.2 rad/s as possible and that the oscillations in the
velocity response are minimum. The parameters used for the experimentation are
kp = 12, ki = 80, where kp and ki are the proportional and integral gains respectively.
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Figure 7.8.: Output tracking result from Quanser RFJ experimental set up using SSC and SMC with integral
action.

One can clearly see the improvement that the SSC based state tracking brings to the
output tracking. The major reason behind this improvement is the fact that the PI
controller has as its input the error in the output signal calculated using the delayed
measured signal, whereas the SSC based SMC controller has the delay free output signal
y̌m(t) within the feedback.
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Figure 7.9.: Tracking result from RFj with PI controller.
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8. Conclusion and Outlook

This thesis deals with a motion control system involving a dual-inertia system whose
velocity loop bandwidth is limited by mechanical resonance. When the resonance mode
is weakly damped, this loop results in torsional oscillations that degrades the loops
response and might even damage the mechanical structure. Any control engineering
technique that is designed to improve the response of such a velocity control loop should
take into account the influence of the location of the resonance frequency in relation
to the loop’s phase crossover frequency. Following two categories are distinguished,
low-resonance frequency and high-resonance frequency. A system is said to be suffering
from low-resonance frequency if the resonance frequency is closer to the phase crossover
frequency (typically between 100 to 300 Hz), and high-resonance frequency (typically
between 400 Hz and above) if it is much higher than the phase crossover frequency. Most
frequently encountered problem of high-resonance frequency can be overcome by using
digital filters like the Notch or Bi-quad filters. But the low-frequency resonance, due to
its close proximity to the phase crossover frequency demands more attention. The work
in this thesis is concerned with the systems suffering from low-frequency resonance.

Using a mathematical model the two phenomena namely mechanical resonance and dead
times, responsible for the loss of velocity control loop’s gain margin in the considered
system, are elucidated in Sections 2.1 and 2.2. The work reported in this thesis is
divided into two parts, and the first part deals with the extended acceleration feedback
technique which is designed to win back a part of the gain margin that is lost due
to the mechanical resonance. AF technique effectively reduces drive’s sensitivity to
mechanical resonance by increasing its inertia. Interestingly the results presented in
Chapter 3 using the AF technique did not bring in any noticeable improvement in the
speed response. A systematic investigation based on frequency domain analysis and
describing function analysis (Section 4.1) followed by careful design of additional filters
resulted in the EAF technique presented in Section 4.2. The implementation details, the
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achieved improvements both in frequency (in terms of increase in the gain margin) and
time domain (in terms of the control error) are reported in Section 4.3.

The second part of the work dealt with mitigation of dead time in the control loop. The
technique used herein is based on a non-minimum phase representation of the dead
time using Padé approximation. Thus, the output tracking problem for a system with
output delay is approximated as the non-minimum phase output tracking problem.
The unstable internal dynamics introduced by the Padé approximation is calculated
(asymptotically) using the so-called stable system center technique in Section 6.5. Using
this signal, the output tracking problem is reformulated as a state-tracking problem and
a sliding mode controller is designed (Section 6.6). The sliding mode controller drives
both the output tracking errors and also the error from the stable system center approach
to zero. This technique is implemented on a laboratory test setup and the details are
presented in Chapter 7.

Following are a list of problems of interest for further work:

• applicability of the EAF method in case of three mass system;

• robustness of the SMC with stable system center technique in case of variable
dead-time system as in the case of networked drives, i.e. where a controller drives
more than one motor via a communication network;

• online identification of the characteristic polynomial describing the exo-system
generating the output reference profile as reported in [Sht+12].

• The SMC used in the work cannot cope with the disturbance on the load side as
it is unmatched with respect to the control signal. Techniques for compensating
unmatched disturbances could be investigated for the current application [YLY13;
Yan+14; LBF13]

• Investigation of the advantages and realization of a controller if an additional
measurement velocity/position from the load side is available or is estimated
[SO07; SO08].
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A. Relative Stability: Phase and Gain

margins

Considering a unity-feedback system as shown in Figure 1.2. If the transfer functions
of the controller and the plant are C(s) and G(s), respectively, then the stability of this
feedback loop can be verified by asserting that the poles of its transfer function given
as

T(s) =
G(s)C(s)

1 + G(s)C(s)
(A.1)

have negative real part. One can also use Bode or Nyquist plot of the loop transfer
function L(s) := G(s)C(s) for determining the stability of T(s). An added advantage
with these frequency domain plots is the ability to determine a measure for the degree
of stability of the closed-loop system which is useful when designing control systems.

A.1. Gain margin, Phase margin and stability

Consider the bode plot of an open-loop transfer function as shown in Figure A.1. The
frequency at which the phase of L(s) is equal to −180◦ is known as the phase crossover
frequency, represented as ωp. The frequency at which the gain of L(s) crosses the
0 dB-line is known as the gain crossover frequency, represented as ωg. The, gain margin
is defined as the distance between the 0 dB-line and the gain at the phase crossover
frequency. Similarly, the phase margin is defined as the distance measured in ◦ between
the −180◦-line and the phase at the gain crossover frequency. These concepts are also
similarly defined on the Nyquist plot, which plots the real part of the open-loop transfer
function against its imaginary part with increasing frequencies.
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−1 1

−1

1

Gain margin > 0

�

�Phase
margin > 0

ωg

ωp Re{L(jω)}

Im{L(jω)}
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A.2. Bode and Nyquist plots for unity-feedback loop with DIO

The stability of T(s) given in (A.1) can be inferred from the Bode plot, if both the gain
and phase margins are positive for a given L(s). However, this criterion is only valid
when the open loop transfer function is stable and there are no multiple gain and/or
phase crossovers. The stability analysis using Nyquist plot does not have this restriction
and is also valid for unstable loop transfer functions. In the case of the Nyquist plot,
the point (−1, 0) is known as the critical point, while it represents the situation where
the open loop gain is 1, i.e. 0 dB and the phase if −180◦. The T(s) in (A.1) is stable if
and only if the Nyquist plot of L(s) does not pass through the critical point and the
number of counter-clockwise encirclements of the critical point equals the number of
open right-half-plane poles of L(s).
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Figure A.3.: Plot depicting the erosion of gain margin due to the elastic shaft
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A.2. Bode and Nyquist plots for unity-feedback loop with DIO

Consider the Bode plot of an open-loop transfer function (2.21) consisting of the DIO
and a proportional speed controller as shown in Figure A.3. From the first glance it is
clear that there are multiple gain crossovers at ≈ 1, 7 and 10.8 rad

s as well as multiple
phase crossovers at −180◦,−540◦, . . . ,etc. It seems to be incorrect to consider in this case
gain margin as a measure of relative stability.

Now, consider the Nyquist plot for this same DIO transfer function as plotted1 in
Figure A.4. The plot begins for smaller frequencies at −∞, while the phase at low
frequencies is −90◦, and crosses the unit circle (corresponds to the 0 dB-line in Bode
plot) three times and goes to the origin after infinite encirclements around it (due to the
considered dead time). It can be seen from the inlet of Figure A.4, which zooms close to
the origin, that the loop transfer function always remains to the right of the critical point.
Thus it can be concluded from the Nyquist plot that the closed loop system will indeed
be stable and that gain margin can be used as a measure of stability.

In fact according to [HEE01], a closed-loop system is stable if the open-loop system
is stable and the Bode plot of the open-loop transfer function has a magnitude less
than 0 dB at all frequencies corresponding to a phase lag of 180◦ + n ∗ 360◦, with
n = 0, 1, . . . , ∞. The gain margin in this case with multiple gain crossovers is calculated
from the crossover frequency corresponding to a larger n, whichever exhibits the largest
magnitude in dB. In the case of DIO, this calculation is shown on both the Bode plot A.3
and the Nyquist plot A.4.

1kp is increased to 3 for the sake of illustration

132
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B. Stable System Center Technique- Proofs

B.1. Controllability proof

A proof of the controllability assumption for the pair (P, Q) given the controllability of
pair (A, b) is presented here. Remember that the Byrnes-Isidori normal form given in
the regular form by Equations (6.28a) and (6.28b) is obtained from the fully controllable
system (6.2) with the help of a linear nonsingular state transformation (6.3). So, if the
pair (A, b) is controllable, then so is the pair

(
Ā, b̄

)
where

Ā =

(
Q P
S R

)
and b̄ =

(
0

b2

)
.

Then, using the Hautus rank test [Hau70]

row rank
(

sIn − Ā b̄
)
= n.

⇒ row rank

(
sIm − Q −P 0
−S sIn−m − R b2

)
= n ∀s

⇒ row rank
(

sIm − Q −P
)
= m ∀s

⇔ row rank
(

sIm − Q P
)
= m ∀s.

Therefore the pair (Q, P) is controllable.
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B. Stable System Center Technique- Proofs

B.2. SSC

The dynamic variable g∗ is introduced as follows

η̇∗ = Qη∗ + θc + g∗, (B.1)

where θc is given as
θc = Pξc

and the dynamics of g∗ are given by the following differential equation

η∗(k) + ρk−1Imη∗(k−1) + . . . + ρ1Imη̇∗ + ρ0Imη∗ = Tk−1g∗(k−1) + . . . + T1ġ∗ + T0g∗. (B.2)

Here Im ∈ Rm×m is the identity matrix, k the order of the exo-system as mentioned in
Section 6.5.3 and the matrices T0, T1, . . . , Tk−1 ∈ Rm×m are to be chosen properly. Using
(B.2), the following equation holds in Laplacian domain(

Tk−1sk−1 + . . . + T1s + T0

)
G∗(s) =

(
skI + ρk−1sk−1I + . . . + ρ1sI + ρ0I

)
η̄∗(s), (B.3)

where G∗(s) and η̄∗(s) are the variables g∗ and η∗ in Laplacian domain. Similarly, (B.1)
in Laplacian domain1

sη̄∗ = Qη̄∗ + Θ̄c + G∗. (B.4)

Substituting (B.4) in (B.3) to eliminate G∗(s) results in the following matrix differential
equation[

sk (I − Tk−1) + sk−1 (Tk−1Q − Tk−2 + ρk−1I) + . . .+

+s (ρ1I + T1Q − T0) + (T0Q − ρ0I)] η̄∗ = −
(

Tk−1sk−1 + . . . + T1s + T0

)
Θ̄c.

(B.5)

Pre-multiplying (B.5) with (I − Tk−1)
−1 on both sides results in[

sk + sk−1 (I − Tk−1)
−1 (ρk−1I + Tk−1Q − Tk−2) + . . .+

+s (I − Tk−1)
−1 (ρ1I + T1Q − T0) + (I − Tk−1)

−1 (T0Q + ρ0I)
]

η̄∗

= −
[
(I − Tk−1)

−1 Tk−1sk−1 + . . . + (I − Tk−1)
−1 T1s + (I − Tk−1)

−1 T0

]
Θ̄c.

(B.6)

1θc(t) c sΘ̄c(s)
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B.2. SSC

In order to provide desired eigenvalue placement for the asymptotic convergence η∗ → ηc

the coefficient matrices in (B.6) are chosen as

ck−1I = (I − Tk−1)
−1 (ρk−1I + Tk−1Q − Tk−2)

... (B.7)

c1I = (I − Tk−1)
−1 (ρ1I + T1Q − T0)

c0I = (I − Tk−1)
−1 (ρ0I + T0Q) .

It remains to represent the matrices T0, T1, . . . , Tk−1 in terms of the chosen numbers
c0, c1, . . . , ck−1 and ρ0, ρ1, . . . , ρk−1 and the known matrix Q. To this end, the following
matrices are defined

Mk−1 := (I − Tk−1)
−1 Tk−1

... (B.8)

M1 := (I − Tk−1)
−1 T1

M0 := (I − Tk−1)
−1 T0.

Now, consider for example

c0I = (I − Tk−1)
−1 (T0Q + ρ0I)

= (I − Tk−1)
−1 T0Q + (I − Tk−1)

−1 ρ0I,

using the definition in (B.8)

c0I = M0Q + (I − Tk−1)
−1 ρ0I

⇒ M0 = − (I − Tk−1)
−1 ρ0Q−1 + c0Q−1. (B.9)

Similar calculation yields

M1 = c1Q−1 + c0Q−2 − (I − Tk−1)
−1
(

ρ0Q−2 + ρ1Q−1
)

... (B.10)

Mk−1 = ck−1Q−1 + . . . + c1Q−k+1 + c0Q−k − (I − Tk−1)
−1
(

ρ0Q−k + . . . + ρk−1Q−1
)

.
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B. Stable System Center Technique- Proofs

Consider

Mk−1 = (I − Tk−1)
−1 Tk−1

(I − Tk−1)Mk−1 = Tk−1

(I − Tk−1) (Mk−1 + I) = I

Mk−1 + I = (I − Tk−1)
−1 . (B.11)

Substituting (B.11) into (B.10)

Mk−1 =
(

I + ck−1Q−1 + . . . + c0Q−k
) (

I + ρk−1Q−1 + . . . + ρ0Q−k
)−1

− I,

Mk−2 = ck−2Q−1 + . . . + c0Q−k+1 − (Mk−1 + I)
(

ρk−2Q−1 + . . . + ρ0Q−k+1
)

,

... (B.12)

M1 = c1Q−1 + c0Q−2 − (Mk−1 + I)
(

ρ1Q−1 + ρ0Q−2
)

M0 = c0Q−1 − (Mk−1 + I) ρ0Q−1.

Thus the particular choice of coefficients given that Q is nonsingular ensures η∗ → ηc

asymptotically.

It remains to show that the introduced dynamic variable g∗ → as t → ∞. Firstly, (B.1) is
differentiated (k − 1)-times

η̇∗ = Qη∗ + θc + g∗,

η̈∗ = Qη̇∗ + θ̇c + ġ∗,
... (B.13)

η∗(k) = Qη∗(k−1) + θ
(k−1)
c + g∗(k−1)

and substituted into (B.2) results in

θ
(k)
c + ρk−1Imθ

(k−1)
c + . . . + ρ1Imθ̇c + ρ0Imθc = −

[
(I − Tk−1) g∗(k)+

+ (Tk−1Q − Tk−2 + ρk−1I) g∗(k−1) + . . . + (ρ1I + T1Q − T0) ġ∗ + (T0Q − ρ0I) g∗
]

.
(B.14)
If each component θc,i, i = 0, 1, . . . , n − m can be defined by a linear exosystem with the
characteristic polynomial (6.27), then in steady state(

sk + ρk−1sk−1 + . . . + ρ1a + ρ0

)
θc ≡ 0. (B.15)
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B.2. SSC

Thus in Laplacian domain[
skI + sk−1 (I − Tk−1)

−1 (Tk−1Q − Tk−2 + ρk−1I) +

+ . . . + (I − Tk−1)
−1 (T0Q − ρ0I)

]
G∗(s) = 0,

(B.16)

and due to the particular selection of coefficients (cf. (B.7)) the asymptotic convergence
of g∗ → 0 is guaranteed given that Q is a nonsingular matrix.
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C. Sliding Mode Control

C.1. Conventional Sliding Mode

Sliding mode control (SMC)[Utk77], a nonlinear control technique, is considered as
one of the main methods for control and observation under uncertainty conditions
[Mor+15]. Classified as a kind of variable structure control system, SMC technique alters
the dynamics of a system by applying a discontinuous control signal that forces the
system to move along a carefully selected surface in the state space. Based on the current
state of the system, SMC switches between two (continuous) control laws forcing the
system trajectories to move towards a predefined sliding surface. This sliding surface
is so designed such that the control task is achieved asymptotically (or even in finite
time) when the system is in sliding mode, i.e. when the system is sliding along the sliding
surface.

The design of a sliding mode controller is achieved in two steps. First, an appropriate
sliding surface which defines the dynamics of the controlled system is sliding mode is
designed [Sht+14]. The second step is to design a discontinuous control law that forces
the system trajectories to reach the sliding surface in finite time. This phase is known as
the reaching phase.

For the sake of illustration consider a double integrator given as

ẍ = u, (C.1)

and let the choice of the sliding surface, σ be a linear combination of the states gives as

σ = cx + ẋ, (C.2)
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Figure C.1.: System trajectories of the double integrator controlled with SMC

where c ∈ R is a constant. Now the (discontinuous) sliding mode control signal is
chosen as

u = −u0 sgn(σ), (C.3)

where the following definition of the sign operator is used

sgn(s) =


1, if s > 0,

0, if s = 0,

−1, if s < 0.

(C.4)

Based on this control signal, the state plane can be divided into two semi-planes, the
upper and the lower depending on the sign of σ as shown in Figure C.1. Due to the
choice of the sign of the control signal based on the present state, the state trajectories
are always moving towards the switching line σ = 0, and once the trajectory reaches
this line, they are switched about this line with (theoretically) infinite frequency. So, the
trajectories cannot leave this switching line σ = 0. Thus, the system in sliding mode
is governed by the equation σ = cx + ẋ = 0 implying that the time evolution of the
system in sliding mode is only influenced by the constant c and not by the original
plant parameters and/or disturbances. For example, consider that an unknown bounded
disturbance d(t) acts on the double integrator

ẍ = u + d(t), (C.5)
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C.1. Conventional Sliding Mode

with |d(t)| ≤ D > 0. With the same sliding surface as considered before, let us now look
at the dynamics of the sliding variable σ

σ̇ = cẋ + ẍ

σ̇ = cẋ + u + d. (C.6)

In order to make the system trajectories move to the sliding surface and stay there, the
sliding variable is made attractive1 by choosing u such that (using Figure C.1)

σσ̇
!
< 0 (C.7)

⇒ σ̇ = −κ sgn(σ), (C.8)

where the constant κ ∈ R. Using (C.6),

u = −κ sgn(σ)− d − cẋ. (C.9)

Assume that the velocity ẋ(t) is measured and can be compensated directly in the
control signal. Now, choosing κ such that κ > D ensures that the condition (C.8) is
met implying that the system trajectories reach the sliding surface irrespective of the
disturbance acting on the plant. Thus the SMC is robust against perturbations and/or
modelling uncertainties in the plant. Another advantage of the sliding mode controller
is that once the sliding surface is reached the motion of the trajectories is governed by
the 1st-order system, which guarantees that there will be no overshoot in the system
response.

Fast switching action around the switching line between +u0 and −u0 is known as the
Chattering phenomenon (see Figure C.2), and in reality the frequency of this switching
action is not infinitely high but is limited due to the physical limitations of the switching
element. This chattering behaviour is a disadvantage of the classical SMC law as this
control signal will reduce the life of any physical actuator. One well-known technique to
avoid the chattering phenomenon is to replace the discontinuous signal with a saturated
linear relation within a thin boundary layer neighbouring the sliding surface as shown
in(7.35). Another restriction for the use of sliding mode control techniques is that the
constraint to be held at zero (σ) has to be of relative degree2

1, that is the control needs to
explicitly appear in the first time derivative of the constraint. Suppose that the problem

1In order to make the surface attractive, using Figure C.1, one can formulate that σσ̇
!
< 0 and the

relation (C.8) follows
2Refer Section C.4
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Figure C.2.: Discontinuous control action with SMC

is to keep the sliding variable s at zero and that the control appears in s̈. This problem
cannot be tackled with the conventional (classical) sliding mode control. Second- and
higher-order sliding mode controllers [Lev93] introduced in Section C.3 are developed
for such problems.

C.2. Matched and unmatched disturbances

Consider once again the double integrator with bounded time varying disturbance as
mentioned in the previous section. This system is rewritten here in state space with
x1 := x and x2 := ẋ

ẋ1 = x2 (C.10a)

ẋ2 = u + d (C.10b)

It has been shown in the previous section that the system dynamics in sliding mode are
insensitive to the bounded disturbance d(t). However, one has to bear in mind that the
disturbance is entering in the second equation (C.10b). Consider another disturbance
w(t) entering in the first equation (C.10a) as follows

ẋ1 = x2 + w (C.11a)

ẋ2 = u + d (C.11b)

where |w(t)| < W. Assume that an SMC u is designed such that the trajectories of the
system (C.11) reach the sliding surface in finite time and maintain motion on the sliding
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surface. In sliding mode the following relation is valid

σ = 0 ⇒ x2 = −cx1. (C.12)

Therefore the reduced order system dynamics are given as

ẋ1 = x2 + w (C.13a)

x2 = −cx1. (C.13b)

It is evident from (C.11) and (C.13) that the disturbance d(t) does not affect the system
dynamics in sliding mode while the disturbance w(t) can prevent the states from
converging to zero in the sliding mode. Thus, there is a basic difference between
d(t) entering the input channel (system equation containing the input u) and w(t).
The disturbance d(t) is called a matched disturbance (matched by the control) and the
disturbance w(t) the unmatched disturbance.

C.3. Second-order Sliding mode control

As mentioned in Section C.1, conventional sliding mode provides robustness against
matched uncertainties/disturbances, however suffer from two major drawbacks that of
relative degree requirement and chattering. Suppose now that it is required to keep
the sliding variable s at zero and the control appears in s̈, i.e. the relative degree γ = 2.
Now, one can select a new variable σ = s + ṡ and then use conventional SMC to make
σ = 0 in finite time, then s tends asymptotically to zero. However keeping it at exact
zero is not possible and it is required to estimate ṡ which is usually not measured. Both
these tasks can be accomplished by the 2-order sliding mode techniques.

Consider the same 2-order technique applied to a system where γ = 1, by considering
the control derivative as a new virtual control input. Then the task of driving s to zero
is achieved by means of continuous control as a consequence the chattering effect is
significantly attenuated.

As an example for a 2-order sliding mode technique the so-called super-twisting control
is introduced here. Consider once again the double integrator system with bounded
disturbance as in (C.5). Assuming that the term ϕ(t, ẋ) := cẋ + d = 0 in the sliding
variable dynamics (C.6), choose the following continuous control

u = −k|σ|1/2 sgn(σ), k > 0. (C.14)
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Then the sliding variable dynamics (C.6) become

σ̇ = −k|σ|1/2 sgn(σ), (C.15)

and it is clear that the sliding variable σ reaches zero in finite time. However, when the
term ϕ(t, ẋ) 6= 0, the σ-dynamics become

σ̇ = cẋ + d − k|σ|1/2 sgn(σ) (C.16)

and convergence to zero does not occur. If an additional term that tracks ϕ(t, ẋ) in
finite time is added to the control input u, then the disturbance will be completely
compensated. Towards this goal the following extension for u is presented [EKL93]

u = k1|σ|1/2 sgn(σ) + u1 (C.17)

u̇1 = k2 sgn(σ). (C.18)

Also let the term |ϕ̇(t, ẋ)| < C, the by choosing k2 = 1.1C and k1 = 1.5
√

C the goal of
driving σ to zero in finite time is achieved as the term u1 becomes equal to ϕ(t, ẋ) in finite
time. Finally the super-twisting is continuous since both k1|σ|1/2 and u1 = k2

∫
sgn(σ)dt

are continuous.

C.4. Relative degree

Consider a single-input, single-output system described as

ẋ = f(x) + g(x)u (C.19)

y = h(x), (C.20)

where x ∈ Rn, u and y ∈ R and f : Rn → Rn, g : Rn → Rn are smooth vector fields and
h : Rn → R a smooth scalar function of the state x. Then the derivative of y with respect
to time is given by

dy
dt

=
∂h
∂x

dx
dt

, (C.21)

using Equation (C.19)
dy
dt

=
∂h
∂x

(f(x) + g(x)u) . (C.22)
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Rearranging Equation (C.22) results in

dy
dt

=
∂h
∂x

f(x)︸ ︷︷ ︸
:=Lfh

+
∂h
∂x

g(x)︸ ︷︷ ︸
:=Lgh

u, (C.23)

where the scalar functions Lfh and Lgh are the Lie derivatives [Sch36] of function h with
respect to (or along) the vector fields f(x) and g(x) respectively. Thus, the Lie derivative
Lfh can be interpreted as the derivative of h along integral curves (or solution trajectories)
of the vector field f. Higher order Lie derivatives are defined similarly

L2
f h := Lf(Lfh) =

∂(Lfh)
∂x

f(x). (C.24)

If the first derivative of the output ẏ is not influenced by the input signal u, i.e. Lgh ≡ 0
for all x in some neighbourhood of 0. Then (C.23) becomes

ẏ = Lfh. (C.25)

The second derivative of the output is

d2y
dt2 = L2

f h + Lg(Lfh)u. (C.26)

Again if we consider Lg(Lfh) ≡ 0, ∀x in some neighbourhood of 0,

dy
dt

= Lfh

d2y
dt2 = L2

f h

...
dγy
dtγ

= Lγ
f h + Lg

(
Lγ−1

f h
)

u. (C.27)

It is assumed that the γth-derivative of y(t) “sees” the input signal u(t). In this case the
system described by (C.19) and (C.20) is said to have a relative degree γ.

In order to understand the meaning of relative degree γ in the case of a linear system
consider the following state space realization of an LTI SISO system of order n with
input u and output y

ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) + du(t). (C.28)

147



C. Sliding Mode Control

The transfer function for the realization given above is given as

G(s) :=
y(s)
u(s)

= d + cT(sI − A)−1b. (C.29)

Consider that the determinant of the characteristic polynomial, det(sI − A) is known
and given as

det(sI − A) = sn + an−1sn−1 + . . . + a1s + a0, (C.30)

where ai ∈ R for i = 0, 1, . . . , n − 1.
Also let

Adj(sI − A) = B0sn−1 + B1sn−2 + . . . + Bn−2s + Bn−1, (C.31)

where Bi ∈ Rn×n for i = 0, 1, . . . , n − 1 are constant matrices3 [Ros70]. We have that

(sI − A) adj(sI − A) = det(sI − A)I. (C.32)

Substituting (C.31), the left hand side of (C.32)

(sI − A)
(

B0sn−1 + B1sn−2 + . . . + Bn−2s + Bn−1

)
= B0sn + (B1 − AB0) sn−1 + . . . + (Bn−1 − ABn−2) s − ABn−1.

(C.33)

A comparison of coefficients with the right hand side of (C.31) using (C.30) results in

B0 = I

B1 − AB0 = an−1I

B2 − AB1 = an−2I
...

Bn−1 − ABn−2 = a1I

−ABn−1 = a0I


. (C.34)

Using the relation (sI − A)−1 = 1
det(sI−A)

adj(sI − A),(C.31) and (C.34) the transfer func-
tion (C.29) is rewritten as

G(s) = d +

(sn−1 + an−1sn−2 + . . . + a2s + a1)cTb+
(sn−2 + . . . + a3s + a2)cTAb + . . .

. . . + (s + an−1)cTAn−2b+
+ cTAn−1b

sn + an−1sn−1 + . . . + a1s + a0
. (C.35)

3The order of the polynomial in (C.31) is n − 1 as the adjoint matrix is composed of determinants of the
cofactor matrices of sI − A which have the dimension n − 1.
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C.4. Relative degree

If the difference of the degree of denominator and numerator polynomials of a given
transfer function is represented by δ, then the value of δ can easily be calculated using
the system parameters.
Consider the case when d = 04, the degree difference δ depends on the existence of the
terms given by cTAj−1b for j = 1, 2, . . . , n as follows

δ = min
{

j : cTAj−1b 6= 0; j = 1, 2, . . . , n
}

. (C.36)

The vectors cTAj−1b for j = 1, 2, . . . , n are precisely the vectors that influence the effect
of input u on the jth derivative of the output y. So, the degree difference δ and relative
degree γ are identical in the case of linear systems.

4If d 6= 0 then δ = 0.
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