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Abstract

In recent years graphics processing units have become more and more
powerful. They are now capable of executing arbitrary code in a massively
parallel fashion. The Reyes rendering pipeline is a commonly used method
of rendering higher order surfaces in offline renderers. It is possible to
execute the Reyes pipeline in parallel. In this work we show a Reyes renderer
that is capable of rendering simple scenes with interactive to real time
frame rates. Our implementation runs on the graphics card and uses a
persistent Megakernel which performs the entire rendering process in one
kernel call. The scenes for our renderer are given as Renderman scenes.
Our renderer supports materials and surface displacement through the
Renderman shading language. We show a compiler that translates these
shaders into CUDA code. The shaders are compiled and loaded at runtime.
We support texture access from the shaders. Our renderer supports bicubic
Bezier patches and Catmull-Clark subdivision surfaces as input geometry.
We show an algorithm for subdividing Catmull-Clark subdivision surfaces
on the graphics card. This algorithm creates patches from the faces of a
subdivision mesh which are then processed in parallel. It takes advantage of
the fact that faces of a subdivision mesh with a regular neighborhood can be
converted to Bezier patches. We show that the inclusion of this conversion
can increase the performance of the rendering pipeline dramatically.
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Kurzfassung

In den letzten Jahren hat sich die Rechenleistung von Grafikkarten stark
gesteigert. Sie sind jetzt in der Lage beliebige Berechnungen auf der großen
Anzahl an parallelen Rechenkernen auszuführen. Die Reyes Rendering
Pipeline ist eine beliebte Methode für offline Renderer um glatte Oberflächen
zu rendern. Es ist möglich die Reyes Pipeline parallel auszuführen. In dieser
Arbeit zeigen wir einen Reyes Renderer der einfache Szenen mit interak-
tiven bis Echtzeit Frameraten rendern kann. Unsere Implementierung wird
auf der Grafikkarte ausgeführt und benutzt einen persistenten Megaker-
nel. Dieser führt die gesamte Renderpipeline in einem Kernelaufruf aus.
Die Szenen für unseren Renderer sind als Renderman Szenen gegeben.
Unser Renderer unterstützt Materialien und Oberflächen-Displacement
Funktionen die als Renderman Shader gegeben sind. Wir zeigen einen
Compiler, der diese Shader in CUDA Code übersetzt. Die Shader werden
zur Laufzeit des Programms compiliert und geladen. Wir unterstützen Tex-
turen in den Shadern. Unser Renderer unterstützt bikubische Bezier Flächen
und Catmull-Clark Subdivision Surfaces als geometrische Primitiven. Wir
zeigen einen Algorithmus, der Catmull-Clark Subdivision Surfaces auf der
Grafikkarte unterteilt und rendered. Dieser Algorithmus erstellt einen Patch
für jede Face in einem Catmull-Clark Subdivision Surface. Diese Patches
werden dann auf der Grafikkarte parallel verarbeitet. Der Algorithmus
wandelt Faces mit einer regulären Umgebung in Bezier Flächen um. Wir
zeigen, dass diese Umwandlung die Performance unseres Renderers stark
verbessert.
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1. Introduction

In the recent years graphics processing units (GPU) have evolved from
accelerators of fixed function rendering pipelines into programmable mas-
sively parallel processors. In addition to graphics toolkits like OpenGL it
is now also possible to execute programs written in languages like CUDA
or OpenCL. Today’s GPUs have thousands of processing cores that are
capable of performing arbitrary computations. The performance of GPUs
for parallelized algorithms is several times higher than that of a CPU.

The Reyes rendering pipeline was developed by Cook et al. [CCC87] in 1987

at Pixar. Reyes is an acronym for Render Everything You Ever Saw and
was designed to create photo-realistic results. It is widely used in offline
renderers such as Pixar’s Renderman [Pixa]. The Reyes algorithm enables
the rendering of curved surfaces such a Bezier patches or Catmull-Clark
subdivision surfaces. It also supports displacement mapping.

In addition to the Reyes rendering pipeline Pixar also introduced the Ren-
derman interface (RI) specification [Pix05]. It defines a protocol to describe
3-dimensional scenes which can be rendered with a Reyes renderer. The
specification also contains a way to define the lighting of a scene and the
materials of the geometry in the scene. This is accomplished by the intro-
duction of the Renderman shading language (RSL). So in addition to the
scene geometry a RI scene also contains light sources and materials that are
defined by RSL functions.

The structure of the Reyes pipeline makes it possible to run the algorithm
in parallel. However implementing the pipeline on the GPU is challenging
as it contains a recursive loop. We present an implementation of the Reyes
rendering pipeline on the GPU, that is able to render scenes according to
the RI specification with materials and surface displacement given as RSL
shaders. With our implementation it is possible to view and walk through

1



1. Introduction

Renderman scenes interactively. In Figure 1.1 we present renderings of two
Renderman scenes that where rendered with our implementation of the
Reyes rendering pipeline.

(a) Dragonhead (b) Killeroo

Figure 1.1.: Rendering produced by our implementation of the Reyes pipeline.

The remainder of this work is structured as follows: In section 2 we discuss
the related work. In section 3 we present the geometric primitives our im-
plementation is able to render. In section 4 we give an overview of the Reyes
pipeline. In section 5 we introduce the Renderman scene description and the
Renderman shading language. In section 6 we describe our implementation
of the Reyes pipeline. In section 7 we present the results of our renderer
and compare the performance of different settings This is followed by the
conclusion in section 8.
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2. Related Work

In 1987 Cook et al. [CCC87] introduced the Reyes image rendering architec-
ture, designed for photo-realistic results. It is based on the idea of adaptive
surface subdivision. The algorithm was designed to be run in parallel. In the
Reyes pipeline each geometric primitive is recursively subdivided by the so
called bound and split loop. When a subdivided primitive is small enough
it is diced into a grid of micropolygons. A micropolygon is a quad polygon
with a size that is not greater than 1 pixel. These micropolygons are then
shaded and sampled to produce the output image. We will describe the
algorithm in more detail in section 4. In combination with the introduction
of general purpose computation on the graphics card this gave rise to several
GPU based Reyes implementations.

Patney and Owens [PO08] were the first to move the entire Reyes pipeline
to the GPU. The most challenging part to parallelize in the Reyes pipeline
is the bound and split loop that subdivides the input geometry. This loop
recursively subdivides the primitives until they are small enough for dicing.
Patney and Owens approach to implementing this recursive loop on the
GPU was to use a breadth first approach. Their implementation uses 3

kernel launches per subdivision level to split the geometry. Followed by one
kernel launch for the creation of the micropolygons. These micropolygons
are then rendered using OpenGL They support bicubic Bezier patches as
input primitives. This approach leads to a high number of kernel launches
and to a large overhead for CPU - GPU synchronisation.

Patney et al. [PEO09] showed an approach similar to Patney and Owens
[PO08]. Their algorithm supports Catmull-Clark subdivision surfaces. The
algorithm is based on a breadth first approach and performs an view
dependent subdivision of the input primitives. They produce a crack free
mesh using special templates between two faces with a different subdivision
level.

3



2. Related Work

The first algorithm that implemented the entire Reyes pipeline on the GPU
was RenderAnts [Zho+09]. The bound and split loop is similar to the one
of Patney and Ownes [PO08]. The following dice, shading, and sample
stages are also implemented on the GPU. Between those stages RenderAnts
introduces a set of scheduling stages. In these stages the currently drawn
region is subdivided, so that the memory requirements for rendering the
parts are smaller than the device memory. The subdivided parts of the
screen are then processed one after another. Their implementation uses 8

different kernels for the Reyes pipeline. Most of them are launched multiple
times due to the division in the scheduling stages and the recursive bound
and split loop. This leads to an overhead from the high amount of kernel
launches that are needed to render a scene. RenderAnts is the only other
GPU Reyes implementation that is capable of rendering Renderman scenes.
It also supports materials using the Renderman shading language.

In 2010 Tzeng et al. showed the first implementation of the Reyes pipeline
using a persistent kernel [TPO10]. In their implementation the persistent
kernel is only used to compute the recursive bound and split loop. The
other stages of the Reyes pipeline were performed by 4 different kernels.
For their persistent kernel they use a distributed queuing approach with
task donation. Tzeng et al. were the first to achieve interactive frame rates
for the Reyes pipeline on a single GPU.

Nießner et al. [Nie+12] presented a method for fast rendering of Catmull-
Clark subdivision surfaces on the GPU. Their approach relies on the tessel-
lation shader of the DirectX pipeline. They perform an adaptive subdivision
of the input mesh. This means, that they convert faces with no extraordinary
vertices to bicubic B-Spline patches after each subdivision of the mesh. These
patches are then rendered using the DirectX tessellation shader. Only faces
with extraordinary vertices are then further subdivided using the subdi-
vision rules. This approach leads to fewer faces to be rendered while still
producing the correct limit surface. The subdivision steps are precomputed.
They build a table with information needed for the subdivision steps at each
level. This table only needs to be recomputed if the topology of the mesh
changes. Animations of the mesh can be performed without recomputing it.
This makes this approach especially suitable for animated scenes.

Over the years there have also been several approaches to render Catmull-
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2. Related Work

Clark subdivision surfaces by approximating them with parametric patches.
Loop et al. [LS08] have shown a method to approximate them with bicubic
Bezier patches. In general, approximating methods do not reproduce the
subdivision surface perfectly. In the case of regular faces, however, the
method by Loop et al. [LS08] produces the same surface as the initial
subdivision mesh. We take advantage of this fact as described in section
3.2.2.

In 2014 Steinberger et al. introduced Whippletree [Ste+14], an approach to
schedule dynamic, irregular workloads on the GPU. Whippletree makes it
possible to execute complex algorithms like the Reyes rendering pipeline
entirely on the GPU. It uses a persistent Megakernel approach with queues.
In Whippletree different parts of a algorithm can be implemented as proce-
dures. A procedure is a function that takes a work item from a queue and
performs computations on it. It is also possible to spawn the execution of
other procedures from within a procedure by inserting work items into a
queue. This makes it possible to execute the Reyes pipeline, including the
recursive bound and split loop, in one kernel launch. In the Whippletree
paper Steinberger et al. show an implementation of Reyes rendering. We
[SS15] extended the implementation by a proper rasterization algorithm,
motion blur, depth of field and displacement mapping. Our implementation
of the Reyes pipeline builds on top of this work.
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3. Geometric Primitives

Our implementation of the Reyes pipeline supports two types of primitives:
Bezier patches and Catmull-Clark subdivision surfaces. In this chapter we
will give a short overview of these primitives.

3.1. Bezier Patches

Bezier patches are parametric surfaces. They are based on Bezier curves. We
will first describe Bezier curves.

3.1.1. Bezier Curves

Bezier curves are parametric curves that are heavily used in computer
graphics. They are defined by a set of control points. A Bezier curve has to
have a degree. The degree determines how many control points influence
the position of the curve at a certain parametric value. The number of
points that influence the position is degree + 1. E.g. the points on a linear
Bezier curve are influenced by two control points. Our implementation only
considers Bezier patches that are based on Bezier curves of degree three.
Those curves are called cubic Bezier curves. For these, the position of the
curve is determined by four control points.

The end control points of a Bezier curve lie directly on the curve, whereas
the mid control points only influence the direction of the curve. Bezier
curves produce smooth curves that connect the first and last control point.
Two Bezier curves of degree d can be joined with Cd−1 continuity. This
means that cubic Bezier curves can be joined with C2 continuity which leads

6



3. Geometric Primitives

to a smooth appearance. The curve positions are all within the convex hull
of the control points. An example of a cubic Bezier curve can be seen in
figure 3.1(a).

(a) Initial Curve

(b) Curve Divided by DeCasteljau Algorithm

Figure 3.1.: An example cubic Bezier curve

DeCasteljaus Algorithm The DeCasteljau algorithm makes it possible to
split a given Bezier curve into two shorter Bezier curve of the same degree.
The combination of the two curves exactly resembles the original curve. The
split can be performed at an arbitrary parametric value. The DeCasteljau
algorithm makes it possible to evaluate Bezier curves in a recursive manner.
The algorithm can also be used to evaluate the position of the Bezier curve
at an arbitrary parametric value. In Figure 3.1(b) a Bezier curve that was
split at the parameter value 0.5 is shown. The combination two new curves,
shown in green and red, resemble the initial curve seen in Figure 3.1(a).

7



3. Geometric Primitives

3.1.2. Bezier Surfaces

Bezier surfaces are parametric surfaces that use Bezier curves as a basis.
They are defined by a grid of control points. This control grid can be seen
as a number of Bezier curves in u direction, or as a number of Bezier curves
in v direction. The position of the surface at a certain parametric value ut, vt
is computed by first evaluating the surrounding degree + 1 Bezier curves
around the point in u direction at parameter value ut. This results in a Bezier
curve in v direction which is then evaluated at vt to get the surface point.

In Figure 3.2 is an example of the surface position evaluation of a bicubic
Bezier patch. The surface is evaluated at parameters u = 0.5 and v = 0.5.
The black dots denote the control points of the Bezier patch. These control
points can be seen as four curves in u direction. From evaluating these
curves at the u parameter value of 0.5 a curve in v direction is created. This
curve is shown in red. The surface position is then computed by evaluating
this curve at the v parameter value 0.5.

Figure 3.2.: Bezier Patch: Evaluation of the Surface position at parameter value (0.5, 0.5)

Our implementation only supports bicubic Bezier patches. They are based
on cubic Bezier curves which are defined using 4 control points. This means,
that each patch is defined by a grid of 4× 4 control points. The four control

8



3. Geometric Primitives

points in the corner of the patch lie directly on the resulting surface. The
other points influence the surface position, but don’t lie on the surface
itself.

DeCasteljaus Algorithm Bezier patches, like curves, can be split using
the DeCasteljau algorithm. To split a patch into two patches along the v
parameter value of 0.5 the DeCasteljau algorithm is used on the Bezier
curves in v direction. Every curve is split into two curves at parameter
value 0.5. The combination of the first halves of each curve form the first
new patch. The other halves form the other smaller patch. The combination
of the two new patches creates the same surface as the initial patch. To
split a patch along the u direction the same algorithm is applied in the u
direction.

Normal computation The normals can be computed from the tangents in
u and v directions. To compute the tangent at a specific parametric value
ut, vt, along the u direction, we first have to compute the cubic Bezier curve
that runs along the parametric value vt in u direction. This is done with
the same algorithm that is used for computing the surface position. The
normal can be computed from the resulting cubic Bezier curve using the
DeCasteljau algorithm for quadratic Bezier curves [She].

tangent(ut) = deCasteljau(P2− P1, P3− P2, P4− P3, ut) (3.1)

Where P1 to P4 are the control points of the computed bicubic Bezier curve.
The same algorithm can be used to compute the tangent in v direction. From
the tangent, the normal is computed using the cross product.

normal = tangentv × tangentu (3.2)

3.2. Catmull-Clark Subdivision Surfaces

Catmull-Clark subdivision surfaces are another kind of smooth surfaces.
They were introduced by Catmull et. al [CC78] in 1978 and are widely

9



3. Geometric Primitives

used in computer graphics. A Catmull-Clark subdivision surface is given
as a control polygon mesh with arbitrary topology. The actual surface is
computed by repeatedly subdividing the input mesh. This subdivision
creates a smooth surface which is C2 continuous on the whole mesh except
for extraordinary vertices where it is C1 continuous. Extraordinary vertices
are control points with a valence that is not four. We also call those irregular
vertices. Vertices with valence four are called regular vertices.

The ability to generate smooth surfaces from polygon meshes with arbitrary
topology presents an advantage over parametric surfaces such as Bezier sur-
faces. Small details can be added to a model without creating large amounts
of points in the rest of the model. This makes modelling of subdivision
surfaces easier and generates a more compact representation of a model.

3.2.1. Subdivision Rules

The actual surface of a Catmull-Clark subdivision surface is computed by
recursively subdividing the faces of the input mesh into smaller faces. In
this section we will describe these subdivision rules.

The first part of the subdivision is to add new points to the subdivided
mesh. The second part of the subdivision moves the original vertices of the
mesh. A complete subdivision step consists of the following three steps:

1. Insert face points: For each face a new point is added to the mesh.
The position of the point is the average of all points of the face.

Fi =
1
m

m

∑
j=1

Vj (3.3)

Where m is the number of points in the face and Vj are the vertices of
the face.

2. Insert Vertex Points: For each edge connecting two vertices a new
point is inserted. The position of the new point is computed:

Ei =
1
4
· (V0 + V1 + F1 + F2) (3.4)

10



3. Geometric Primitives

V0, V1 are the endpoints of the edge, and F1, F2 are the face points of
the adjacent faces.

3. Move Vertex Points: Each vertex point is moved to a new position:

Vi =
F
n
+

2E
n

+
V(n− 3)

n
(3.5)

Where F is the average of all adjacent face points, E is the average of
all adjacent edge points and V is the old vertex point.

Figure 3.3.: Catmull-Clark subdivision step with a mesh of 9 faces. Note that the illustration
only shows the subdivided faces that contain one of the 4 inner vertices.

The faces of the subdivided mesh are then assembled from these points: A
face with m vertices is split into m new faces. Each of the new faces contains
a face point, a vertex point, an edge point and another vertex point. The
new faces always contain four vertices. This means, that all newly generated
faces are quads. Therefor a subdivision mesh only consists of quads after
one subdivision. The valence of the face point is equal to the number of
vertices in this face. The valence of the edge points is four. The valence
of the vertex points is equal to the valence of the vertex point before the
subdivision The subdivision steps are visualised in 3.3. The example shows
a face that is surrounded by eight other faces. All vertices of the face have
valence four and the face is a quad. Therefore, the resulting points all have
valence four.

Limit Rules

The vertices of a subdivision mesh describe the surface of a subdivision sur-
face, but they do not lie on the surface itself. The points however approach
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3. Geometric Primitives

the surface when the number of subdivisions of the mesh goes to infinity.
Therefore we call it the limit surface of a subdivision mesh. It is possible to
compute the limit of the subdivision for a vertex with a modified version of
the Move Vertex rule:

V limit
i =

F
n(n + 5)

+
4E

n(n + 5)
+

nV
n(n + 5)

(3.6)

This rule is obtained by computing the limit of repeatably applying the
Move vertex rule as shown by Halstead et al. [HKD93].

Normal Rules

The normal of a subdivision surface can be computed from the cross product
of two tangents. The tangents can be computed as follows:

tx =
n

∑
i=1

An cos
(

2πi
n

)
Ei +

n

∑
i=1

(
cos

(
2πi
n

)
+ cos

(
2π(i + 1)

n

))
Fi (3.7)

ty =
n

∑
i=1

An sin
(

2πi
n

)
Ei +

n

∑
i=1

(
sin
(

2πi
n

)
+ sin

(
2π(i + 1)

n

))
Fi (3.8)

where An = 1 + cos
(2π

n
)
+ cos

(
π
n
)√

18 + 2 cos
(2π

n
)

Where n is the valence of the vertex. Ei are the vertices that are connected
to the vertex with an edge. Fi are the vertices that connect the edge vertices
Ei and Ei+1. They are called E and F because after a subdivision the normal
can be computed from the newly created edge, face and vertex points. Ei
are taken from the edge points and FI from the face points. Note that this
formula only works for quad meshes. Other meshes must be subdivided at
least once to obtain a quad mesh.

The normal can then be computed by the cross product:

normal = tx × ty (3.9)

The rules where derived by Halstead et. al [HKD93].
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3. Geometric Primitives

Border Rules

The aforementioned rules are only valid for vertices that are surrounded by
faces. They do not work for vertices that lie on the border of a subdivision
mesh. In these cases special rules apply:

Subdivision Rules During subdivision there are modified rules for the
edge points and the vertex points. The computation of the face points is the
same as in the non border rules.

1. Insert Edge Points The edge point is computed from the two end-
points V0/1:

Ei =
1
2
(V0 + V1) (3.10)

2. Move Vertex Points The new vertex point is only influenced by the
points on the border:

Vi =
1
8
(6V + V0 + Vk) (3.11)

Where V is the vertex point and V0/k are the two adjacent points on
the border.

Limit Rules The limit rule is also modified and is similar to the move
vertex rule for borders:

V limit
i =

1
6
(4V + V0 + Vk) (3.12)

The limit rule, and the following normal rules, were derived by Biermann
et. al [BLZ00].

Normals Rules Like in the non-border subdivision rules, the normal is
computed from two tangents. The tangent tx can easily be computed:

tx = Vk −V0 (3.13)
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3. Geometric Primitives

There are two formulas for the computation of ty. One for the case if the
vertex has valence two and another general rule for valence greater than
two.

1. Valence 2
ty = −4 ∗V + V0 + V1 + 2Fi (3.14)

Where Fi is the face point adjacent to the vertex
2. General

ty = αV + β0V0 +
k−1

∑
i=1

βiVi +
k−1

∑
i=0

γi fi + βkVk (3.15)

Where α, βi, γi are computed as follows:

Rk =
1 + cos(π

k
ksin(π

k )(3 + cos(π
k ))

(3.16)

α = 4Rk(−1 + cos(
π

k
)) (3.17)

β0 = βk = −Rk(1 + 2cos(
π

k
)) (3.18)

βi =
4sin(i π

k )

k(3 + cos(π
k ))

(3.19)

γi =
sin(i π

k ) + sin((i + 1)π
k )

k(3 + cos(π
k )

(3.20)

Like in the standard normal computation rule vi and fi denote the
vertices near the vertices the normals are computed for. An illustration
of these points can be seen in figure 3.4. It shows a vertex with valence
5 that lies on the border of a subdivision surface.

The normal is then computed from the cross product of the two tangents.
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3. Geometric Primitives

Figure 3.4.: Example of a subdivision surface near a border.

3.2.2. Approximation using Bezier Patches

Loop et al. [LS08] showed that Catmull-Clark subdivision surfaces can be
approximated using Bezier patches. In the general case the resulting surface
positions and normals are not the same as the original surface. Therefor it
cannot be used to accurately render subdivision surfaces. There is one case
however when the approximation using Bezier patches produces the same
surface as the Catmull-Clark subdivision mesh. This is the case when a face
is a quad and all four vertices of the face have valence four and no border.
We call those faces regular faces, and we use this property to render such
faces faster.

To convert such a regular face to a Bezier patch, the neighboring vertices
and faces are considered. As the face itself is a quad face, and it is bordered
by 8 other quad faces, there are 16 points that need to be considered. In
figure 3.5 an example of such a face can be seen.

Computation of the Bezier patch

The Bezier control points are computed using masks on the subdivision
surface control points. The masks can be seen in figure 3.5. The red point
denotes the output point that is influenced by the mask points. The mask
points are highlighted green. The number inside the points gives the weight
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3. Geometric Primitives

(a) Corner Points (b) Outer Points (c) Inner Points

Figure 3.5.: Masks for the computation of Bezier patches from a regular Catmull-Clark
subdivision surface face

of the point. In the computation the weights are normalized to get a sum of
1. There are three different masks for different points in the output patch:

1. Corner points are the points at the corner of the output patch. The
four output points are computed by rotating the mask seen in Figure
3.5(a).

2. Outer points are the points on the edges of the output patch. There
are eight outer points. They are computed by mirroring and rotating
the mask seen in Figure 3.5(b).

3. Inner points are the four remaining points inside the output patch.
They again are computed by rotating the mask seen in Figure 3.5(c).

These rules produce 16 points in a grid of 4× 4. These 16 points describe
a Bezier patch as seen in section 3.1. This Bezier patch produces the same
surface as the face of the Catmull-Clark subdivision surface that was con-
verted.

16



4. The Reyes Rendering
Architecture

4.1. Pipeline Stages

The Reyes (Render Everything You Ever Saw) image rendering architecture
was developed by Cook et al. in 1987 [CCC87] as a method to render photo-
realistic scenes with limited computing power and memory. Today it is
widely used in offline renderers like e.g. Pixar’s Renderman. Reyes renders
parametric surfaces using adaptive subdivision. A model or mesh can, e.g.,
be given as a subdivision surface model or as a collection of Bezier patches.
As a direct rasterization of such patches is not feasible, Reyes recursively
subdivides these patches until they cover roughly a subpixel or less. Then,
these patches are split into a grid of approximating quads which can be
rasterized easily. The Reyes rendering pipeline is divided into five stages.
These stages are not simply executed one after another, but include a loop for
subdivision, which makes Reyes a challenging problem with unpredictable
memory and computing requirements. The pipeline stages are visualized
in Figure 4.1 and listed in the following paragraphs. Figure 4.2 shows an
example of the split and dice stages of the Reyes pipeline using a Bezier
patch.

Before a geometric primitive is rendered using the Reyes pipeline we create
patches from the primitive which are then processed by the pipeline. For
Bezier patches this is straightforward: Every patch is processed by the
pipeline. In the case of Catmull-Clark subdivision surfaces a patch is created
for every face in the mesh.
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4. The Reyes Rendering Architecture

Supersampled Image

Primitives

Sample

Dice and 
Shade

Bound

Split

Figure 4.1.: The Reyes Pipeline Stages

Figure 4.2.: Example pass of the Reyes pipeline. The figure shows the split and dice of a
Bezier patch. The example starts with the input patch in the top left. It is split
two times and then diced into a grid of micropolygons.
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Bound The bound stage decides what happens with a given patch. Every
patch is first processed by the bound stage. It clips the input primitive
against the viewing frustum. If a primitive is not culled, a bound formula is
applied. It decides, if a geometric primitive can be forwarded to the dicing
stage. The formula is based on the screen space size of the primitive. If the
input primitive is not small enough for dicing it is forwarded to the split
stage.

Split Splits the input primitive into several smaller primitives. In the case
of a Bezier patch it can be subdivided either along the u direction, or along
the v direction. The split is performed using the DeCasteljau algorithm
described in section 3.1.1. This results in two smaller Bezier patches. Faces
of a Catmull-Clark subdivision surfaces are split into four smaller faces by
applying the subdivision rules as seen in section 3.2.1. After the split, the
new geometric primitives are again checked by the bound stage.

Dice A given primitive is diced into a grid of micropolygons. Dicing means,
that a given geometric primitive is divided into a grid of points. These grid
points form the micropolygons that are sampled and shown in the output
image. A micropolygon is a quadrilateral polygon that is approximately
the size of one subpixel in the output image. The points in this grid are
then forwarded to the shade stage. After shading the micropolygons are
assembled and forwarded to the sample stage.

Shade Each geometric primitive can have an associated displacement
shader. If a displacement shader is present, the grid points in a given
micropolygon grid are displaced in the shade stage. Then every grid point
is shaded with a surface shader, resulting in a color for every point.

Sample In the sample stage a given micropolygon is sampled. In our
implementation the sampling stage is implemented as a micropolygon
rasterizer. It loops over all subpixels in the axis aligned bounding box of
a micropolygon. If a subpixel lies inside the micropolygon, the rasterizer
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4. The Reyes Rendering Architecture

interpolates the colors of micropolygon corner points and writes them to
the output image.

Composite The composite stage combines the subpixels in every pixel of
the output buffer to generate the final output image. In our implementation
the composite stage computes an average of all subpixels in a pixel and
displays them in an OpenGL viewport.
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5. Renderman Scene description

Our implementation supports Renderman scenes using the Renderman
Interface (RI) Specification. This specification describes a way to define a
three dimensional scene with lighting and materials. In this section we give
a short overview over the scene description. We will only cover the high
level concepts and some important details. For further information see the
Renderman Interface specification [Pix05] [Pixb].

There are two ways to define a Renderman scene: There is a C interface
Here the graphics state is manipulated by function calls. There is also the
Renderman Interface Bytestream (RIB) Protocol. This is an ASCII scene
description, which consists of statements that are equivalent to the functions
of the C interface. Our implementation only support RIB files for scene
description.

5.1. The Renderman Interface

A Renderman scene given as a RIB file is a collection of statements. These
statements define a graphics state for rendering the scene. The graphics state
is a hierarchy of different sections. In the following we call these sections
nodes as they can be seen as nodes of a hierarchy tree. They contain global
settings called options, setting for the following geometric primitives called
attributes and the geometric primitives themselves. In the following sections
we will explain the most important hierarchies, options and attributes.

A statement in a RIB file is defined by the statement name followed by the
statement parameters. The name and the parameters are given as ASCII
strings. Here you can see a example of such a statement:
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5. Renderman Scene description

Translate 18.3095 -43.5387 46.8071

This statement defines a translation of the coordinate system in x, y and z

direction.

5.1.1. Hierarchies

A node in the hierarchy of a RI scene is defined by a Begin and an End

statement. E.g. a transformation hierarchy block is defined as follows:

TransformBegin

<Statements>

TransformEnd

Our implementation supports the following hierarchy sections:

• Frame: Defines a frame that is rendered. A RI scene can consist of an
arbitrary number of frames. Our implementation only supports scenes
with a single frame. When entering a Frame hierarchy all options are
saved and restored at the end of the frame.
• World: All geometry of a frame must be defined inside a world block.

The only exception are Object blocks which are not supported by our
implementation. The rendering options cannot be changed inside the
world node. The world block also defines the world coordinate system.
• Attribute: Saves the current attributes and restores them after the end

of the block.
• Transform: Saves the current transformation and restores it after the

end of the block.

These hierarchy sections also save the current attributes and restore them
after the end of the block. The World section of a frame can contain multiple
Attribute and transform sections. These nodes can also be nested arbitrarily.
To get the parameters of a geometric primitive the attribute nodes from the
primitive up to the root node are searched for attributes. If a attribute is
defined multiple defines the last occurrence in the hierarchy is used.
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Transformations

The transformation from a geometric primitive in the scene to the camera
is defined by transformation statements and the transformation hierarchy
nodes. The transformation hierarchy nodes only save and restore the current
transformations. The transformations themselves are defined by statements
inside the hierarchies. These statements are listed in section 5.1.2 and section
5.1.3.

There are three important named coordinate systems for a given geometric
primitive. The camera, object and shader coordinate systems. The camera

coordinate system is defined by the Projection statement and it defines
the camera the scene is rendered with. The object coordinate system de-
fines the coordinate system of the current geometric primitive. The shader

coordinate system is the coordinate system in which the surface and dis-
placement shader are defined. All parameters of the shaders are defined
in this coordinate system if not stated otherwise. For all scenes we have
rendered the object and shader coordinate systems are the same.

The transformation matrix for the transformation from a given coordinate
system to another one is computed by multiplying the transformation
matrices of the transformation statements in the current transformation
section up to the target coordinate system. If the origin coordinate system is
higher in the hierarchy than the target system the inverse matrix from the
target to the origin system is used.

5.1.2. Options

In this section we will discuss the most important program options in a
RI scene. Options are global settings in the Renderman scene. This is not
a complete list of all supported options. For more informations see the RI
specification.

• Projection: Defines the camera projection matrix. The RI specification
defines orthographic and projective cameras, but only projective

cameras are supported in our implementation. The projective camera
takes the field of view as an additional argument. This statement also
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defines the camera coordinate system in which the shading operations
are performed.
• Format: Defines the resolution of the output image. In our implemen-

tation the resolution is preset to the given value, but can be changed
manually by resizing the render output window.
• Clipping: Defines the near and far z-plane of the camera.
• Shader Search Path: The shaders of a scene are given as shader source

code files as described in section 5.2. This option adds folders to the
path in which the application searches for shader files.

5.1.3. Attributes

In the following we describe the most important attributes in a RI scene.
Attributes are local settings that apply to subsequent geometric primitives.
This again is not a complete list of all supported attributes.

• Transformations: The following statements push transformation onto
the current transformation hierarchy. As described in section 5.1.1 the
transformation matrices constructed from these statements define the
coordinate systems in the scene.

– Scale: Scales the model in x,y,z.
– Translate: Moves the model in x,y,z direction.
– Rotate: Rotates the model around a given rotation axis.
– Transform: Transformation matrices can also be directly given as

an array of 16 float values.

• Materials: The material of a primitive is given by the surface and
displacement shaders that are defined in the attribute hierarchy of the
primitive. The material names must correspond to a shader of the right
shader type that can be found in the defined shader path. Additionally
there is a number of standard shaders that are predefined and can be
used without additional shader files.
The parameters of the shaders are passed as name, value pairs. They
can also be defined as statements in the RI scene. E.g. the Color state-
ment defines the surface color. Point, Normal and Vector parameter
are transformed from the current coordinate system to the camera
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coordinate system when they are passed to the shader. This is done
because the shading computations are performed in camera space
whereas the parameters given in the RI file are always given in the
current coordinate system. Our implementation supports two types of
shaders. More information about the shaders can be found in section
5.2 and in the RI specification.

– Surface: Defines the surface shader of a primitive. The shader is
called before the rasterization of a micropolygon grid. It defines
the surface color of the rendered geometry.

– Displacement: Defines a displacement shader that is executed
before the surface shading is performed. The displacement shader
can move the grid points in the micropolygon grids to add small
details to a model. It is not mandatory to give a displacement
shader for a geometric primitive. If no displacement shader is
given the displacement step of the Reyes pipeline is skipped.

• LightSource: Light sources are also defined as shader instances. Their
parameters are defined the same ways as for the material shaders.
Note that if the light has a position or direction associated with it, it is
transformed to the camera space when the shader instance is created.

5.1.4. Geometric Primitives

A geometric primitive is given as a statement in RIB file. The parameters
of a mesh are given as geometry attributes inside the statement. Those are
name, value pairs, where the name specifies the attribute and the values
are given as an array of values. The geometry attribute P defines the control
point positions of a primitive and must always be present. The texture
coordinates can be given as geometry attributes with the names s and t

or as a single geometry attribute st. The RI specification also states that
all shader parameters can be given as geometry attribute values, but our
implementation does not support this at the moment.

The RI specification supports a number of different geometric primitives.
In our implementation we only support Bezier patches and Catmull-Clark
subdivision surfaces:

25



5. Renderman Scene description

• Patch: Defines a patch. The RI supports bilinear and bicubic patches
with an arbitrary base. Our implementation however only supports
bicubic patches with a Bezier basis function. For more information
on Bezier patches see section 3.1. The basis function is defined by
the Basis statement which must occur before a patch is defined. The
geometry of a bicubic patch is given by 16 control vertices. The texture
coordinates can be given as an array of 4 points that correspond with
the 4 corners of the patch.
• SubdivsionMesh: Defines a Catmull-Clark subdivision mesh as de-

scribed in section 3.2. The mesh structure is defined by a series of
arrays: The first array defines the number of vertices in each face in
the mesh. One integer number is given for every face in the mesh.
Then for each of this faces and each vertex in a face the point index
is given. This index defines the index in the geometry attribute for
the current vertex. After that a list of tags defines special attributes
for certain faces, vertices or edges. E.g. a face can be tagged as a hole
which means that it is not rendered.
After the tags the geometry attributes are stated. The number of
positions is defined by the maximum index in the index array. Apart
from the position texture coordinates can be given. We support two
different ways of defining the texture coordinates:

– Varying means that every vertex has one texture coordinate. In
this case, the number of texture coordinates must be the same as
the number of positions.

– Facevarying means that in every face, every vertex is assigned
a texture coordinate. This means, that a vertex that is present
in more than one face can have a different texture coordinate in
each of these faces. In this case, the number of texture coordinates
must be the sum over the number of vertices of all faces.

5.2. The Renderman Shading Language

As already state, materials in RI scenes are specified as shaders. Those
shaders must be written in the Renderman Shading Language (RSL). RSL is
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a C like language with the addition of several shading specific constructs
and types. The grammar of the RSL is given in appendix A.

5.2.1. Language description

RSL shaders are given as shader source files with the extension .sl. A RSL
can contain an arbitrary number of shader and function definitions. Our
implementation supports three types of shaders: Surface, Displacement, and
Light shaders (See section 5.2.2). The RI specification also defines Image
and Volume shaders, but our implementation does not support them and
they will not be discussed here.

A shader is defined by the keyword for the shader type followed by the
name of the shader, the parameters, and the statements in curly brackets.
The definitions looks very similar to a function definition in C.

A function definition is very similar to a shader definition, but instead of
the shader keyword the return type is given. Functions can be called from
within the shader body.

Here you can see an example of a light shader definition:

l i g h t p o i n t l i g h t (
f l o a t i n t e n s i t y = 1 ;
c o l o r l i g h t c o l o r = 1 ;
point from = point ” shader ” ( 0 , 0 , 0 ) ; )

{
i l l u m i n a t e ( from )

Cl = i n t e n s i t y ∗ l i g h t c o l o r / L . L ;
}

Note that apart from the shader type there are several differences to C. We
will not discuss all of these differences, but in the following we will give an
overview of the additional variable types, light loops, transformations and
the built-in functions of the RSL.
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Variable Types

In the following is a list of the variable types in the RSL. Note that the
RSL does not support integer variables. If a integer constant is given it is
converted into a floating point number.

• float 32-bit floating point number.
• Point A point in space. If not stated otherwise a point is given in the

camera coordinate system. A point is described by three float numbers.
• Normal A face normal. Like a point it is also described by three float

numbers.
• Vector A vector in space. Also defined by three float numbers.
• Color The standard color system in RSL is RGB, but colors can be

transformed into other color spaces like HSV or HSl. RGB colors are
described by three normalized floats.
• String The RSL supports strings and string operations. We do sup-

port the string variable type, but due to limitations on the GPU our
implementation does not support string operations.
• Matrix A 4× 4 matrix. Can be used as a transformation matrix.

Light Loops

Light loops are a special language construct used for lighting the scene.
There are three types of light loops which must either be defined in a light
or surface shader:

• Illuminance: Must be defined in a surface shader. This loop defines an
iteration over all active light sources with an Illuminate or Solar loop.
Within each iteration the light shader function of the current light
source is called. Inside the Illuminance loop two additional variables
are defined: L is the direction to the light source and Cl is the light
color.
• Illuminate: Must be defined in a light shader. It is called in the itera-

tions of the Illuminance light loop. It defines the casting of light from
a specified point in space. The additional variable L defines the vector
from the light source to the shaded surface point. The length of L is
the distance between the light source and the surface.
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• Solar: Is similar to the Illuminate statement, but does not specify a
light origin. A light direction must however be given. The light is cast
from infinity in this direction.

All three types of light loops can specify a cone. In the case of light shaders
this cone specifies the direction in which light rays are cast into the world.
This is useful e.g. for spotlights or directional solar light sources. In case of
surface shaders it specifies from which directions the surface receives light.
Often this is set to the normal vector ±90◦, to only allow illuminating the
front of the surface.

If a light shader does not specify a illuminate or solar statement it is
classified as an ambient light source. In addition to the light loops there are
three Built-in functions that loop over all light sources. They are described
in the section built-in Function 5.2.1.

Transformations

Another special language construct are transformations between color spaces
and coordinate systems. For example a transformation of the point (0,0,0)
to the coordinate system shader looks like this.

point var = point ” shader ” ( 0 , 0 , 0 )

This automatically multiplies the given value with the right transformation
matrix. In this example the point transformation matrix from camera space to
shader space would be used. The camera coordinate system is the standard
coordinate system in shaders.

Color transformations work the same way for variables of the type color.
The standard color space is rgb. Our implementation supports transforma-
tions to and from hsl and hsv.

Built-in Functions

In this section we will list some of the most important built-in functions in
RSL. This is not a comprehensive list, and we do not include self explana-
tory functions like min or max. For a complete list of functions see the RI
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specification [Pix05]. Note that our implementation does not support all
built-in functions described in the specification.

• transform, ntransform, ctransform: transform points, normals, and
colors to the given space. This performs the same transformations
described in section 5.2.1. With these functions it is however also
possible to specify the coordinate system from which the variable is
transformed.
• calculatenormal: calculates the approximate normal at the given posi-

tion. This function takes the position of the surface and can be used
to recompute the normal after displacement mapping. The normal is
approximated using the neighboring positions in the micropolygon
grid.
• ambient: loops over all ambient light sources and adds up the light

colors.
• diffuse: is equivalent to the light loop:

i l luminance ( P , N, PI /2)
C += Cl + normalize ( L ) .N;

It loops over all active light sources and computes the diffuse part of
the lighting.
• specular: is equivalent to the light loop:

i l luminance ( P , N, PI /2)
C += Cl + specularbrdf ( normalize ( L ) , N, V, roughness ) ;

It loops over all active light sources and computes the specular part of
the lighting.
• texture: is a texture lookup function. The texture name is the texture

file name. The texture coordinates are given as normalized floats.

Preprocessor

The RSL supports a C-like preprocessor. It supports all C preprocessor
statements. We did not implement all of them. A list of the supported
preprocessor statements can be seen in section 6.4.1.
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5.2.2. Shader types

Our implementation of the Reyes pipeline supports three shader types. They
are described in the following:

Surface Shaders

Surface shaders compute the surface color of a geometric primitive. Accord-
ing to the RI specification, the surface shader also computes the opacity
of the surface, but as we do not support transparent objects, the opacity is
ignored. The surface shader function is called for every grid in the microp-
olygon grid. It takes the surface parameters as input, most importantly the
position and the normal of the surface, but also the texture coordinates s
and t. The surface shader is responsible for the lighting of the scene. This is
done through the light loop which call the light shader functions of every
active light source.

Displacement Shaders

Displacement shaders, like surface shaders are called for every grid point in
the micropolygon grid. They are called before the surface shader and can
displace the surface of a geometric primitive. Typically this displacement is
along the normal of the surface and according to a displacement texture. The
output of a displacement shader is the new position and the new normal of
the surface. The normal of the surface needs to be recomputed inside the
displacement shader after the surface is displaced. It is nor mandatory for a
surface to have a displacement shader. If no displacement shader is given,
the normal and position of the surface are not modified.

Light Shaders

Light shaders describe the light sources in the scene. Every light source
is associated with a light shader function. Like described in the surface
shader section, these functions are called in the light loops of the surface
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shaders. The light shaders compute the light direction and light color that
is accessible inside the light loops of the surface shaders.
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We implemented the Reyes renderer using C++, CUDA and Whippletree
[Ste+14]. In this chapter we will first give a short overview of our program.
Then we will discuss the subdivision on the GPU for Bezier patches and
Catmull-Clark subdivision surfaces. Finally we will describe the integration
of the RSL shading language into our program.

Program Overview In the following we will give a short overview of the
different steps in the execution of our program.

1. Parse the RIB File: The RIB file is parsed using Boost Spirit [Guz].
This results in a hierarchy of RI statements.

2. Compile the Shaders: The shader source files given by the RIB file
are compiled, written to a CUDA file, and then added to the Reyes
pipeline. See section 6.4.

3. Build the Scene: The parsed RIB statements are processed to generate
the scene data. This generates the geometry, the transformation hierar-
chy, the attribute hierarchy, the light sources and the render options.
Shader instances for the rendering of the geometric primitives are
created during this step.

4. Load the Reyes Pipeline: We decided to put the rendering pipeline
and all other GPU related things into a separate library that is loaded
at runtime. In this step, the RSL shader functions are added to the
Reyes pipeline. The pipeline is compiled into a dll. This dll is then
loaded by the program. It contains all methods to add the geometry
to the scene and render it.

5. Load the Geometry: The scene geometry is prepared for rendering
and then sent to the GPU. While doing this the shader parameters are
also sent to the GPU.
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6. Render the Scene: The scene is rendered. Unlike other Reyes renderers
the result is not immediately written to the output image. The scene
can be viewed in an OpenGL viewport. The camera can be moved
around the scene.

6.1. Reyes Pipeline

As already mentioned, the Reyes pipeline is built using Whippletree [Ste+14].
The Reyes pipeline stages are implemented as Whippletree procedures.
We implemented pipelines for rendering Bezier patches (section 6.2) and
Catmull-Clark subdivision surfaces (section 6.3). Those two pipelines are
combined into one Whippletree technique. Thus it is possible to render
Catmull-Clark subdivision surfaces and Bezier patches at the same time.
This is also important for the rendering of regular subdivision patches
which uses some procedures from the Bezier patch pipeline.

The whole pipeline is outsourced to a library that is compiled and loaded
at application startup. We decided to do this to support the loading of RSL
shaders at runtime. The pipeline library is responsible for preparing the
geometry for GPU subdivision, sending the geometry to the GPU, preparing
and loading the shaders onto the GPU and rendering the scene.

Micropolygon Rasterization

In the rasterization step of the pipeline we perform a simple bounding box
based rasterization: First the axis aligned bounding box of the micropolygon
is computed. Then for every pixel in this bounding box an inside test
is performed. If the pixel lies inside the bounding box the colors of the
micropolygon vertices are interpolated using barycentric coordinates. Then
a z-test is performed. Finally, the pixel is written to the output image. The
last two steps are performed using a compare and swap loop because
the graphics card we used does not supports 64-bit atomic minimum or
maximum instructions.
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For the rasterization we use one thread per micropolygon. This approach
is faster than using a stamp based method considering that a typical mi-
cropolygon has a bounding box of 1 pixel as shown by Fatahalian et al.
[Fat+09]

Holes The fact that the Reyes algorithm can produce different subdivision
levels for neighboring patches can lead to holes in the output image. These
are caused by the limitations of numerical precision of floating point num-
bers and the fact that different levels of subdivision use different points on
the surface for the rasterization. E.g. if a patch is subdivided once more
than a neighboring patch, this patch uses twice the amount of points for the
micropolygons. As the geometric primitives we use are curved, the diced
points do not necessarily lie on the edge of one of the micropolygons of the
other patch. This effect is amplified when displacement mapping is used
because in addition to using different points on the surface this points might
also be displaced differently.

These holes are generally much smaller than a single subpixel. We therefor
decided to slightly enlarge the micropolygons to close the holes.

6.2. Bezier Patches

Models made of Bezier patches usually consist of a number of separate
Bezier patches. These patches need little preparation before they are sent to
the GPU. The control points can be sent to the GPU without any preprocess-
ing. The shading information, the texture coordinates and the u/v coordi-
nates are added to the control points. The shading information consists of a
shader id and the three parameter texture offsets for the displacement and
surface shader (see section 6.4.3). The following Whippletree procedures
implement the Reyes rendering pipeline for Bezier patches:

Bound This procedure is executed for every input geometric primitive. It
clips patches that are completely outside the view frustum. It also checks
if a patch needs to be split. If the size of the screen space bounding box is
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below a certain threshold in x and y direction, the patch is forwarded to
dicing. The threshold for dicing is determined by the biggest dice dimension.
To choose the right dice procedure the size of the bounding box is again
tested against the thresholds of the dice procedures with the different dice
dimensions. If the bounding box is larger than the dice threshold, the patch
is forwarded to the split procedure in U or V direction. This procedure
uses 16 threads per input patch. Each thread is responsible for one control
point.

Split U/V and Bound There are two split procedures. One for the split
in U direction and one for the split in V direction. In this procedure, a
given patch is split in halves using the DeCasteljau algorithm. Then, the
same checks as in the Bound procedure are execute for each of the two new
patches. They are then either clipped, forwarded to dicing, or forwarded to
Split U/V. This procedure uses 4 threads per input patch. Each thread is
responsible for one row/column of control points.

Dice and Shade There are three dice and shade procedures in our program.
They differ in the number of micropolygons that are produced in the dicing
stage. We call this number the dice dimension. The three procedures have a
dice dimension of 15× 15, 7× 7, and 3× 3. This results in a grid of points
of 16× 16, 8× 8, and 4× 4 respectively. Each of this grid points is first
displaced using the current displacement shader. Then each grid point is
shaded using the surface shader. Finally each micropolygon is rasterized.

We decided to implement three procedures with different dice dimensions
to decrease the oversampling, and thus the rendering performance, for small
patches.

The grid points are computed using the DeCasteljau algorithm. First, we
compute a number of Bezier curves by subdividing the patch in U direction.
The number of curves is given by the dice dimension. Then these curves
are subdivided in V direction to get the positions of the grid points. These
procedures use one thread per grid point. This results in 256, 64 and 16

threads for each of the dice dimensions. The rasterization is done using one
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thread per micropolygon. They use three floating point numbers as shared
memory per grid point for the grid point positions.

6.3. Subdivsion Surfaces

Due to their less regular topology Catmull-Clark subdivision surfaces are
harder to render. We have split the rendering of subdivision surfaces into
two stages. First, the surfaces are subdivided once on the CPU. Then a patch
is created for every face in the subdivided mesh. Those patches are then
sent to the GPU for rendering.

6.3.1. Subdivision on the CPU

Our implementation of Catmull-Clark subdivision surface on the GPU is
only capable of subdividing quad faces. Catmull-Clark subdivision surface
however can have arbitrary topology. Which means, that faces with more or
less vertices can occur in a mesh. To render such meshes, each subdivision
surface is first subdivided on the CPU once. This produces a mesh of quad
faces. During this subdivision faces with more or less vertices are divided
into a corresponding number of quad faces.

The subdivision is performed according to the rules seen in section 3.2. For
the computation of the points the algorithms often need access to vertices
nearby. E.g. the face point computation needs all the vertices in a given face.
For this a half edge data structure is used:

The Half Edge Data Structure

The half edge data structure can be used to describe a mesh with arbitrary
topology. A half edge can be seen as a pointer from one mesh vertex to
another, with information of the surrounding mesh. It consists of a origin
Vertex, a twin half edge, a next half edge, a previous half edge and a face:

• Vertex: The origin vertex of the half edge.
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• Next: This is another half edge. The origin vertex points at the end
point of the current half edge.
• Previous: This is also another half edge. The next pointer of this half

edge points to the current half edge.
• Twin: Points to the half edge, that has the vertex of the face-next point

as origin and the current origin vertex as end point. The twin is only
present when the half edge does not lay on a mesh border.
• Face: Points to the face of the current half edge. The face contains

additional information about the mesh. In our implementation each
face contains its texture coordinates and a flag that defines if the face
is a hole. If the face is specified as a hole in the RI scene it is not
rendered.

With these pointers it is possible to navigate around the surrounding mesh.
There are two important operations that are needed for subdividing a
mesh:

• Rotate Around Face: To rotate a half edge around a mesh, the next or
previous pointers of a half edge are considered.
• Rotate Around Vertex: There are two ways to rotate around a vertex:

Forward, and backward. To rotate forward around the vertex we take
the twin, and then the next pointer of the twin. To rotate backward, we
take the previous pointer, and then the twin of the previous pointer.
Rotation around the vertex is only possible if there is no border in the
rotation direction.

In addition to the half edges we also store the vertices and faces. These are
referenced by the half edges, but can also be accessed separately. The vertices
contain the position of the mesh control points. The faces contain the texture
coordinates and a pointer to one of the half edges in the corresponding face.
Which half edge in the face is referenced does not matter as rotation around
the face is cheap.

The Subdivision

Before the subdivision, the half edge data structure for a given mesh is built.
Then the subdivision according to the rules of Catmull-Clark subdivision

38



6. Implementation

surfaces is performed. The precise rules can be seen in section 3.2.1.

First, for every face a face point is inserted, by iterating over all faces.
Then for every edge an edge point is inserted, by iterating over all half
edges. These points are stored in maps to access them in the move vertex
step of the subdivision. After the vertices are moved, the new faces are
constructed from the previously computed points. For every face in the
old mesh a number of faces is constructed. The number of new faces in a
face is determined by the number of vertices in the old face. The texture
coordinates are computed before the construction of the new faces.

Texture Coordinates As already stated in section 5.1.4, texture coordinates
can be given in two different ways: varying and facevarying. The only
difference in handling these two types is in the construction of the initial
mesh structure.

The texture coordinates are stored in the faces of the subdivision mesh.
There is one coordinate for every vertex in the face. During subdivision the
coordinates are interpolated linearly along the edges and the faces. This
means, that the texture coordinate of a face point is the mean of all vertex
texture coordinates. The coordinate of a edge point is the mean of the end
point texture coordinates in the corresponding face. The coordinates on the
vertex points do not change during subdivision.

6.3.2. Subdivision on the GPU

After the first subdivision on the CPU the subdivision meshes are guaran-
teed to only have faces with four vertices. We now can generate the patches
for the subdivision on the GPU.

Patch Creation

We create one patch for every face in a given subdivision mesh, except when
a given face is classified as a hole. A patch contains the face and all vertices
that are needed to subdivide this face. This means, that all vertices of all

39



6. Implementation

neighboring faces are part of the patch. We call the face that is subdivided
the inner face, and the neighboring faces outer faces. In addition the patch
needs the texture coordinates and the information about the shaders. This
includes the shader id and the parameter texture offsets for the displacement
and surface shaders.

The vertices of the faces in the patch are stored in an array in the patch.
The first four entries are the positions of the inner face vertices in clockwise
order. Followed by the vertices of the outer faces that are not part of the
inner faces. The order of these vertices is determined by the position around
the inner patch. They are arranged clockwise around the inner face. The
first vertex after the inner vertices is part of a corner face in the first corner
of the patch. Examples of the point order can be seen in figure 6.1. In these
examples the red face in the middle is the inner face. This is the face that is
rendered by subdividing this patch. The number on the vertices denote the
index of the point in the patch.

The subdivision of a patch is performed by four threads. Every thread is
responsible for subdividing the faces adjacent to the corner vertex. The inner
face point is computed by the first thread. The edge points of the inner face
are computed by the four threads. Each thread is responsible for the edge
that starts at the respective corner point and ends at the next corner point
in clockwise direction. The face point of the face that contains this edge is
also computed by the same thread. We call those faces edge faces. The other
outer faces are called corner faces.

We decided to create three types of patches for performance reasons. These
three types can handle different kinds of topology around the face. They
are called regular, multi-face and border patches.

Aside from the points each patch also contains two arrays of integer for the
number of corner faces per corner and the border position at each corner.
We will explain the meaning of those number in the following paragraphs.
These arrays are present in all patch types even tough they are only used
in multi-face and border patches. We decided to do this because it makes
it easier to cast the type between patch types. This is needed in the check
procedure and the split procedures. These procedures insert a patch into
the queue for the right patch type after checking or subdividing the input
patch.
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(a) Regular Patch (b) Multi-Face Patch (c) Border Patch

Figure 6.1.: Example patches from Catmull-Clark subdivision surfaces.

The patches also contain four texture coordinates and four uv coordinates.
One of each for every corner of the inner face. They also contain informa-
tion about the displacement and surfaces shaders: The shader id and the
parameter offset textures for each parameter type.

Regular Patch A regular patch consists of a inner face surrounded by
eight outer faces. Each of the vertices in the inner face has valence four. An
example of a regular patch can be seen in figure 6.1(a). Regular patches
always have 16 control points. The subdivision of such a patch is straightfor-
ward: The indices of the needed points for the face points, edge points and
vertex points in each corner can be computed easily. The subdivision needs
very little branching and no loops. After the new points are computed a new
face is created in every corner. All the newly created patches are regular
patches. Again the assembly of the new patches is straightforward. Thus
the subdivision for these kinds of patches is the fastest.

Additionally to the fast subdivision these patches can be converted into
Bezier patches as seen in section 3.2.2. This makes it possible to use the
Bezier patch dice procedure to dice these kind of patches. This procedure is
capable of dicing a patch into a larger number of micropolygons. Therefor
less subdivision steps are necessary to produce micropolygons that are the
size of one subpixel.
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Multi-Face Patch In a multi-face patch each vertex of the inner face can
have an arbitrary number of neighboring vertices, with some limitations
(See limitations section below). An example of a multi-face patch can be
seen in figure 6.1(b). This example shows a patch with a valence five vertex
in the lower left corner and a valence three vertex in the top right corner.
Note that every regular patch is also a multi-face patch and can therefor be
subdivided with the multi-face procedure.

The subdivision of such a patch is more complicated than in the regular
case: Before the subdivision the offsets for the points in each corner have to
be computed. The patch contains information for how many corner faces
each vertex of the inner face has. From the number of faces per corner point
we can compute the number of points at the corner, the number of face
points, and the number of edge points. From these we can compute the
index offsets for the points of the outer faces and the indices of the inserted
points in each corner. With these offsets the outer faces in each corner can
be assembled. The computation of the corner face and edge point needs a
loop which makes the computation slower than the regular case.

The subdivision again produces one new patch for every corner. The as-
sembly of the new patches is again more complicated than in the regular
case. Each new face may have more than one corner face.This is however
only possible for the corner where the vertex point of the initial patch has
multiple faces. This means, that after one subdivision on the GPU, or two
subdivisions in total, each multi-face patch can have at most one irregular
corner. The patches that are created at the regular corners of a patch are
regular patches. Therefor they can be inserted into the queues for the regular
patches. This speeds up the rendering because the regular split procedure is
faster and regular patches can be diced into more micropolygons.

For an example mesh with multi-face patches see figure 6.2. The figure on
the left shows which dice procedures where used for which output pixels.
Here the irregular vertex near the camera only produces three pixels that
were diced with the multi-face dice procedure. The surrounding of the
irregular vertex was converted to regular patches after subdivision. The
figure on the right shows that the geometry around the irregular vertex is
subdivided into much smaller patches before dicing. This means that more
subdivision steps must be performed. Notice that the patches get smaller as
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the irregular vertex is approached. This is because the regular patches are
produced at every subdivision level. The first subdivision levels produce
the bigger patches that are then immediately diced. The patches get smaller
after each subdivision.

(a) Visualization of the Dice Procedures (b) Patches before dicing and Inital Mesh

Figure 6.2.: Visualisation of dicing of multi-face patches. The rendering shows the sub-
division of a cube mesh. The blue pixels were diced using the Bezier dice
procedure. The green pixels were diced using the multi-face dice procedure.
The red rectangle in the left figure is shown magnified.

In the dicing stage the patch is subdivided once more. For the vertex points,
the limit surface and the normal rules are used as seen in section 3.2.1.
After the subdivision these rules are also applied to the edge points and
the face point of the inner face. These points all have valence four. Therefor
the computation is straightforward. This produces a micropolygon grid of
2× 2 micropolygons. From here one the dicing is similar to the one of a
Bezier patch. The grid points are displaced with the displacement shader.
Then they are shaded using the surface shader. Finally each micropolygon
is rasterized.

Border Patch In a border patch each vertex of the inner face can be
adjacent to a border of the subdivision surface. Like a multi-face patch the
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vertex points can have an arbitrary number of neighboring vertices, with
the same limitations. An example of a border patch can be seen in Figure
6.1(c). This example shows a patch with a border at the lower left vertex
and a border that goes from the upper left vertex to the lower right vertex.
Note that every multi-face patch is also a border patch and can therefor be
subdivided with the border procedures.

The subdivision is more complicated than the multi-face patch: The index
computation is similar to the multi-face patch. In addition to the informa-
tion about the number of corner faces per vertex these patches also need
information about the borders. This information is given as an integer value
and can have the following values:

• -1: This means, that there is no border at the vertex.
• A positive number n: This means, that there is a border at the vertex.

The border is between the corner face n-1 and the corner face n of the
corner.
• 0: This means, that there is a border at the vertex. The border is

between the edge face of the next corner counterclockwise in the face
and the first corner face of the corner.
• -2: This means, that there is a border at the vertex. The corner is at

the edge face between the corner and the next corner clockwise in the
face.

This must be considered in the index computation. The vertices and edges
that are on the border of a mesh need different subdivision rules as seen in
section 3.2.1. This increases the divergence in case of a border.

The subdivision again produces four new patches. One in each corner. The
assembly of the patches is similar to the multi-face patches. If a vertex of
the initial patch is regular, the subdivision produces a regular patch in this
corner. As in the multi-face case, these patches are inserted into the queues
of the regular patches. The assembly of the new patches needs to consider
the borders between the corner faces and the possibly missing edge faces. It
is therefor slower than the multi-face case.

The dicing of border patches is similar to the multi-face patches. If there
is a border adjacent to a vertex or edge however, the subdivision rules for
borders have to be used. This again increases the divergence when a border
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is present. After the 2× 2 micropolygon grid is created, the dicing is the
same as in the multi-face patches.

Procedures

In this section we will describe the Whippletree procedures that are used in
rendering Catmull-Clark subdivision surfaces on the GPU.

Bound This procedure is executed for every input geometric primitive.
It is the same for all three types of patches. The patch type is checked to
insert the primitive into the right queue. The procedure is similar to the
bound procedure for Bezier patches. It clips patches that are outside the
view frustum. It checks if a patch needs to be split. For this, the screen space
size of the inner face is considered. If the size of the axis aligned bounding
box of the face is below a certain threshold, the patch is forwarded to dicing.
Due to the different dice procedures for regular and multi-face/border
patches this threshold is different for the different patch types. If the face is
too big, the patch is forwarded to the split procedure of the current patch
type.

This procedure uses 4 threads. Each thread is responsible for one corner of
the inner face. It uses a single 32 bit integer as shared memory. This memory
is used for the culling against the view frustum.

Split Regular/Multi-Face/Border This procedure splits a given patch into
four smaller patches. The split algorithms are described in the previous
section. After the subdivision the newly created patches are checked again
with the same formula as in the bound procedure. They are then either
clipped, forwarded to the according dicing stage or split again. The multi-
face and border procedures check the topology of the new patches and
insert the patches into the queues for the regular procedure if possible. The
border procedure also checks if a subdivided patch can be inserted into the
queues of the multi-face procedures.

The split procedures use 4 threads. Each thread is responsible for computing
the face, edge and vertex points around a corner. It is also responsible for
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computing the offsets and the assembly and insertion into a queue of the
four subdivided patches.

Dice Regular This procedure performs the conversion of a regular sub-
division surface patch to a Bezier patch and then uses the Bezier patch
dice function for the dicing stage. The algorithm for the conversion to a
Bezier patch can be seen in section 3.2.2. The procedure first converts the
input patch to a Bezier patch. Then this new primitive is inserted into the
according Bezier dice procedure. There is one procedure for every Bezier
dice procedure (dice dimensions of 15× 15, 7× 7, and 3× 3).

This procedure also uses 4 threads. Each thread is responsible for computing
the four Bezier control points near the corner of the input patch. The
procedures does not use shared memory.

Dice Multi-Face/Border This procedure dices the input patch into a grid
of 2× 2 micropolygons. The computation of the grid points is described
in the previous section. After the dicing each grid point is displaced using
the displacement shader. Then each grid point is shaded with the surface
shader. Finally each micropolygon is rasterized.

The procedure uses 4 threads for the subdivision into the 4 micropolyons. It
then uses 9 threads, one for each grid point, to displace and shade the grid
points. Due to limitations in the Whippletree framework this procedure is
execute using 16 threads.

Limitations

Our implementation of Catmull-Clark subdivision surface on the GPU has
several limitations.

• Valence 2 Vertices: We do not currently support vertices with valence
two. It would be possible to include the support of valence two vertices
into our patch structure, but the performance would suffer, because
they introduce several special cases.
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• Number of Vertices per Patch: Catmull-Clark subdivision surface
support vertices with arbitrary high valence. To support this we would
need subdivision patches which support an arbitrary number of points
in the patch. This would mean that each patch may use a different
amount of memory. Whippletree does not support this, and if it was
supported the performance would probably suffer. Therefor we limited
the number of points in a patch to 24. This means if a patch only has
one irregular vertex with no border, this vertex can have a maximum
valence of 8.

6.4. RSL Shader Compiler

The RSL shaders are integrated into our pipeline using a transcompiler to
CUDA. The compiler first performs a preprocessor pass, then the Parser
creates an abstract syntax tree (AST) from the resulting output. The CUDA
code is created from the AST. Finally the generated code is compiled by the
CUDA compiler to get the executable shader functions.

6.4.1. Preprocessor

The preprocessor supports the following statements:

#define identifier definition

#define identifier(arg0, ..., argn) definition

#ifdef identifier

#ifndef identifier

#endif

#include<filename>

The statements have the same semantics as the equivalent preprocessor state-
ments in C. Note, that our implementation does not support all preprocessor
statements defined in the RI specification.
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6.4.2. Parser

The RSL parser was created using Boost Spirit [Guz]. The grammar for RSL
can be seen in appendix A. The parser creates an AST that represents all
statements in the shader. The AST is not processed before it is given to the
code generator.

6.4.3. CUDA Code generation

The AST is handed to the CUDA code generator. The code generator tries
to produce CUDA code that looks as similar to the original RSL code as
possible. However, as CUDA and RSL are different languages this is not
always possible. E.g. RSL has built-in light loops, that are converted into
for loops over all lights. Additionally, the code must be callable from the
Reyes pipeline without knowledge of the shader parameters. Therefor the
shader parameters are loaded inside the shader function.

Types

The transcompiler does not have a type checker. It assumes, that the code
only contains valid type conversion and the CUDA compiler takes care of
the conversions.

In the following I will show how the different types are handled. We use a
mathematics library which provides the float3 and float4x4 data types.

• Strings: Our implementation only supports string constants as string
operations on the GPU would be difficult to implement and probably
very slow. All string constants are converted into an unsigned 32

bit integer using the standard C++ hash function std::hash. The
constants in the RSL source code are hashed at compile time. The ones
in the RIB files are converted when the shader instances are created.
• Vector Types: All vector types (Color, Point, Vector, Normals) are

represented as a float3 variable. This means that conversions between
these types are possible and will not produce a warning from the
compiler.
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• Transformation Matrices: Are represented as a float4x4 variable.

Shader Parameter

It is not feasible to give the shader parameters directly as parameters to
the CUDA functions because the number of parameters can be arbitrarily
high. This means, that for every shader the Reyes pipeline would need to be
recompiled, which takes a considerable amount of time with Whippletree.
Additionally, the GPU memory consumption and transactions would grow
as the parameters would need to be present in every subdivided patch.

We therefor decided to put the parameters values in texture memory. The
values are distributed over three texture:

• Float Texture Values: Contains the parameters of type float, string
and matrix. The string texture values are converted to an unsigned 32

bit value. The bits of the integer are then placed in the floating point
texture and interpreted as an integer after loading. It only contains
the matrices that are defined as parameter of the shader and not as
transformations.
• Transformation Texture Values: Contains the matrices for the transfor-

mation between the different coordinate spaces. The compiler requests
all the needed transformations. The first transformation always is
the point transformation from shader to camera space. The second
transformations is the normal transformation from shader to camera

space.
• Float3 Texture Values: Contains the values of all the vector types.

To access the values, each shader instance contains an offset for each of the
textures. The offset points to the first parameter value of the respective type.
The order of the values in the texture is the same as the one in the shader
definition. The position of the values in respect to the offset is determined
in the shader compiler.

Light Loops
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Solar and Illuminate The light loop statements in the light shaders are
converted into if statements. The if condition checks, if the light is inside
the cone of the calling illuminance loop and if the surface position of the
calling surface shader is inside the cone of the light source. The checks are
only performed if the mentioned cones are specified. Inside the if statement
the light direction is computed.

For every light loop, the whole light shader is executed.

Illuminance The illuminance statement loops over all active light sources.
It is converted to a for loop that loops over all light sources in the scene
instead. The number of light sources, the types of lights sources, and its
parameters are again stored in textures:

• Light Shader ID Texture: Contains the shader ids of the different light
sources. The id determines which light source is associated with which
light shader. The first value of this texture contains the number of
lights in the scene. Note that our implementation always treats all the
lights as activated. The RI specification mentions an active light list,
which we do not support.
• Light Shader Offset Texture: Contains the offset for the parameter

values of each light source. For each light source there are three offset
values (float, transformation, float3). The values are stored in the same
three textures as the values for the displacement and surface shaders.

So, for a given Illuinance loop, the number of lights in the scene is loaded
from the texture. Then for every entry in the light list, the shader id and
the parameters offsets are loaded from the offset texture. Then the shader
function with the given id is executed. Finally, the statements defined inside
the illuminance loop are executed. Inside this loop the incoming light
direction L and the light color Cl are defined and set by the executed light
shaders.

Textures

Our implementation supports textures that are given as tiff files. The tex-
tures are loaded after the RI scene is assembled from the RIB file, but before
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the Reyes pipeline is executed. In our current implementation the texture
files must be defined in the RIB file. Texture names that are embedded in
the RSL code are not recognized.

For every loaded texture, a CUDA texture object is created. These are placed
in a CUDA source file which is then included in the Reyes pipeline. The
file is then either included in the generated shader file (See section 6.4.4) or
a separate file is created, which is then linked to the Reyes pipeline. The
generated file also includes functions for accessing the textures by filename
as specified in the RI specification. These functions take texture coordinates
as normalized floating point coordinates. Like all string values, the texture
filenames are hashed at compile time.

Built-in Functions

The RSL defines a set of built-in functions that the shaders may use. As al-
ready mentioned in section 5.2.1 our implementation only supports a subset
of the functions found in the specification. The functions are implemented
in CUDA. Some of the functions need access to standard shader parameters
and some special parameters that were added by our implementation. E.g.
for the calculateNormal function we need access to a shared memory array
to approximate the normal using the neighboring positions.

Multiple Shader Files

The shader path of a RI file normally contains more than one shader source
file. Each of these files is compiled to CUDA. The resulting code is then
written into one generated shader file. It is possible, that the different shader
source files contain shaders and functions with the same name. To support
this, we put all functions and shaders of a single source file into a unique
namespace.
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Limitations

Our implementation of RSL has several limitations. They exist partly because
of performance concerns on the GPU and partly because of our incomplete
implementation.

• String operations As already mentioned in the type section, our im-
plementation computes a hash of every string in the shader. This
makes it impossible to support string operations like concat. The only
string operations that are supported are assignment and comparison.
• Return Type Polymorphism: The RSL allows for functions to be over-

loaded based on the return type. E.g. the noise function can return
either a single float value or one of the float3 type values. Our
implementation does not have a type checker which could infer the
most suitable return type at compile time, and CUDA does not allow
return type polymorphism. Therefor we do not support overloading
on return types. There are several functions in the built-in library
that define multiple versions with different return types. For these
functions we only implemented one return type.
• Calls to Some Built-in Functions from other Functions: As already

mentioned, some of the built-in functions need access to the shader
parameters. It is not possible to call these functions from within other
functions because these parameters are only available directly in the
shader. Built-in function that do not need any of these parameters can
be called from anywhere.
• Active Light List As already mentioned in the light source section,

we do not support the active light list. The RI specification states that
defined lights can be activated and deactivated using the Illuminate

statement. In our implementation all lights are assumed to be active
for the entire scene.

6.4.4. Integration into the Reyes Pipeline

The Execute Shader Function The compilation of the RSL shaders is
performed on program startup. After the generation of the CUDA code
for all shader source files, we generate the functions that calls the shader.

52



6. Implementation

The Reyes pipeline cannot call the shader functions directly as they are
only known after the shaders were compiled. Therefor a function that
calls the right shader function is created by the CUDA code generator.
The function takes the shader id, the parameter texture offsets, and the
standard shader parameters and calls the shader with the corresponding
id. A separate function for displacement and surface shaders is created.
There is no function for light shaders as they are only called from within
the surface shader functions.

Integration into the Pipeline After the code generation, the generated
CUDA code is written into a CUDA file. The same is done for the texture
access code. This files are part of the Reyes pipeline project. When the
shaders and the texture information are written to their respective files, the
Reyes pipeline project is compiled. The shader and texture functions are
linked to the already compiled Reyes pipeline. The inclusion of the functions
into the pipeline CUDA file would result in a better performance at runtime,
but the compile time using Whippletree makes this impractical.

The resulting dll is then loaded by the program.
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In this chapter we will discuss the results of our implementation of the
Reyes rendering pipeline. First, we will list the scenes that we used for
evaluation and show renderings of these scenes. Then we will compare
the renderings of the hole closing algorithm with different parameters.
Finally we will discuss the performance impact of multiple parameters of
our implementation.

All renderings were performed on a PC with an Intel i5-4590 CPU @3.3GHz,
8GB RAM and a Nvidia GeForce GTX680 GPU with 4GB VRAM. They were
run on Windows 8.1 using CUDA 7.5 and Microsoft Visual Studio 2013.

7.1. Rendering Results

7.1.1. The Scenes

We evaluated our implementation using multiple scenes in RIB format. The
scenes are described in the following. All renderings were performed using
16 times supersampling. For the hole closing algorithm a factor of 0.1 was
used. For comparison the Dragonhead and the Killeroo scene were also
rendered with Pixar’s Renderman [Pixa] version 20. In table 7.1 we show
information about the geometric primitives in the scenes and how many
patches were created to render the scene.
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#Subdivision
Meshes

#Subdivision
Faces #Patches

Cube 1 96 384

Killeroo 466 9218 11576

Dragonhead na na 1236

Killeroo 2 11 4308 15048

Teapot 1 448 1792

Table 7.1.: Informations about the geometric primitives in the scenes. The values show
the number of Catmull-Clark subdivision surface in the RIB file, the number of
faces in these meshes and the number of patches that were sent to the GPU. The
Dragonhead scene does need have any subdivision meshes as it only contains
Bezier patches.

Dragonhead

The Dragonhead model 1 is the only model we evaluated that consists of
Bezier patches. It is modelled with 1236 Bezier patches. For the surface
a plastic shader is used, with different colors for different parts of the
model. The model does not use a displacement shaders. Renderings of the
Dragonhead can be seen in figure 7.1.

Cube

The Cube model was exported from Blender using the plugin RIBMosaic
[Gab]. The model is a single Catmull-Clark subdivision mesh. The control
mesh is a cube with 16 quad polygons on each side, which produces the
appearance of a Cube with smooth edges and corners. In Figure 7.2 ren-
derings of the Cube model with three different materials can be seen: The
standard plastic shader, a procedural brick shader and a procedural wood
shader. The two procedural shaders were taken from the shader library of
the RIBMosaic plugin. The bricks in the brick shader are computed from the
texture coordinates of the model. The wood texture is computed from the
surface positions. They can be found in the surface shader files brick1.sl

and wood2.sl.

1Dragonhead: http://ricpp.sourceforge.net/samples.html
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(a) Our Implementation (b) Pixar’s Renderman

Figure 7.1.: Dragonhead model rendered with our implementation and Pixar’s Renderman.

(a) Plastic (b) Brick (c) Wood

Figure 7.2.: Renderings of the Cube model with different shaders.

56



7. Results

Killeroo

The Killeroo model 2 consists of Catmull-Clark subdivision surfaces. It is
composed of 466 subdivision surfaces. Each of those only consists of few
faces surrounded by hole faces. In figure 7.3 a rendering of the Killeroo
model can be seen. The model uses a displacement shader with a displace-
ment texture. The surface shader also has a texture and is otherwise similar
to the standard plastic shader.

In figure 7.4 an illustration of the dicing of the Killeroo model is shown.
In figure 7.4(a) the borders of the patches before dicing them into microp-
olygons are shown. The two images below show an illustration of the dice
procedures that were used to compute the micropolygons for each pixel
in the output image. A blue pixel means, that it was diced using the dice
procedure for regular patches, i.e. it was converted into a Bezier patch before
dicing. A green pixel means that it was diced using the dice procedure for
multi-face patches, and for a red pixel the dice procedure for border patches
was used. The rendering of these illustrations were performed using no
supersampling for a better visualisation. The two illustration of the dice
procedures were produced with two different settings of the Reyes pipeline.
The illustration in Figure 7.4(b) was rendered by always using the most
efficient type of patch type after each split operation. The image is mostly
composed of pixels that were diced with the regular dice procedure as
after each split of a multi-face or border patch 3 of the 4 created patches
are regular patches. In Figure 7.4(c) the patches that were produced by
each split operation used the same patch type as the initial patch. In this
image the different patch types of the initial patches around the non-regular
vertices can clearly be seen.

The renderings using the real surface shaders of the model produce the
same result with each method. The performance of the method shown in
Figure 7.4(b) however is significantly better as discussed in section 7.2.3.

2Killeroo: http://ricpp.sourceforge.net/samples.html
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(a) Our Implementation (b) Pixar’s Renderman

Figure 7.3.: The Killeroo model rendered with our implementation and Pixar’s Renderman.

Killeroo 2

The Killeroo 2 model 3 is similar in appearance to the Killeroo model. This
model however is composed of 11 larger subdivision surfaces instead of the
high number of small surfaces in the first Killeroo model. The two meshes
also differ in the size of the model and the topology of the meshes. The first
Killeroo model for example has several borders patches around the mouth,
the eyes and the toes whereas the Killeroo 2 model has no border patches.
Additionally the renderings are performed from a different viewpoint and
are rendered in a different resolution. Therefor we do not compare the
performance or appearance of the two Killeroo models.

In Figure 7.5 renderings of the Killeroo 2 model can be seen. The left
renderings shows the model with a plastic shader whereas the right one was
rendered using a wood shader. The wood shader is the same as in the Cube

3Killeroo 2: http://www.headus.com.au//samples2012/killeroo-mk2-subd-
2x1/download.html
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(a) Patches before Dicing

(b) Dice Procedures: Optimal after Split (c) Dice Procedures: Same after Split

Figure 7.4.: Illustration of the patches before dicing and the different subdivision surface
dice procedures. Subfigure (a) shows an illustration of the patches before dicing.
Subfigure (b) shows the dice procedures when regular patches are used after a
split operation if possible. Subfigure (c) shows the dice procedures when the
patch types remain the same after a split operation. The pixel colors depict the
patch type: Blue: Regular, Green: Multi-Face, Red: Border.
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model. In both renderings we use a displacement shader that displaces the
surfaces according to a displacement texture.

(a) Plastic (b) Wood

Figure 7.5.: The Killeroo 2 model. The two renderings show the model with two different
shaders.

Teapot

The Teapot model 4 is a model of the Utah teapot using Catmull-Clark
subdivision surfaces. It consists of one subdivision mesh. In Figure 7.6 you
can see a rendering of the Teapot model. The model was rendered using the
standard plastic shader.

7.1.2. Holes

As described in section 6.1 we implemented an algorithm to close the
holes that appear in the rendering through different subdivision levels an
floating point precision. In figure 7.7 example outputs of these hole closing
algorithm can be seen. The images show a rendering of the Killeroo 2

model with different enhancement factors. The image was rendered with
no supersampling and a green background to better show the holes and

4Teapot: http://ptex.us/samples.html
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Figure 7.6.: The Teapot model.

artifacts. Note that some holes appear green and some grey. The green holes
show the background behind the models whereas the grey ones show the
arm of the model. We chose to show the belly of the model because most
holes can be seen in this region. The knee on the other hand shows little
holes, but in this region the artifacts created by our algorithm are more
visible.

The lower enhancement factors show little artifacts but a higher number
of holes in the rendering. The higher the factor gets the less holes can be
seen. Even when a low factor of 5% is used a significant part of the holes
disappear. At a factor of 100% no holes are seen in the rendering, there
are however visible artifacts. These artifacts can be seen best in regions
with high contrast, e.g. at the knee of the model. They appear because the
resulting colors of micropolygons are written to surrounding pixels. A few
of these artifacts start to appear even when the enhancement factor is only
5%. They get noticeable at around 20%. We decided to use an enhancement
factor of 10% as a trade off between artifacts and holes.

7.2. Performance comparison

In this section we will discuss several options and their influence on the
performance of our implementation. All performance comparisons where
performed using the fastest configuration if not mentioned otherwise. In
this configuration the supersampling is set to 1, the generated shader and
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(a) 0% (b) 5% (c) 10%

(d) 20% (e) 50% (f) 100%

Figure 7.7.: Comparison of the hole closing algorithm with different factors. The images
show parts of the Killeroo 2 model. The upper ones are near the belly. The
lower ones show the knee of the model. The captions denote the enhancement
factor of the hole closing algorithm.
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texture code is included into the Reyes pipeline, subdivision surfaces always
use the best patch type and three dice procedures were used.

7.2.1. CUDA Linking Performance

Cube Brick Killeroo Dragonhead

Time Run
(ms)

Comp
(s)

Run
(ms)

Comp
(s)

Run
(ms)

Comp
(s)

Linking (R) 40 18.19 101 15.94 35 15.10

Linking (G) 38 18.16 95 15.89 31 15.15

Linking (GT) 38 14.35 95 12.23 31 11.47

No Linking 33 52.48 56 51.64 21 49.30

No Shader 9 0.45 44 0.45 11 0.45

Killeroo 2 Killeroo 2 Wood Teapot

Time Run
(ms)

Comp
(s)

Run
(ms)

Comp
(s)

Run
(ms)

Comp
(s)

Linking (R) 193 16.38 288 18.81 94 15.14

Linking (G) 187 16.40 274 18.47 84 15.06

Linking (GT) 189 12.70 271 14.72 84 11.49

No Linking 124 49.96 242 53.13 54 49.22

No Shader 79 0.45 79 0.45 35 0.46

Table 7.2.: Runtime for different CUDA linking configurations. The runtime per frame
(Run) is given in milliseconds. The time the Reyes pipeline took to compile the
shaders and link them (Comp) is given in seconds. The letters in the parentheses
define where the parameter textures and the shader textures are located.

When including the compiled RSL shaders into the Reyes pipeline we have
a few choices how we include the generated code into the library. We can
either place the code into a separate compilation unit (Linking) or into the
Reyes pipeline compilation unit. In addition to the shader code we also have
options on where to place the parameter textures and the shader textures.

In CUDA linking different compilation units can have a big influence on the
performance of the generated program. This is mainly because the compiler
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can optimize the program better if all code is known in the compile step.
Especially the shader calling functions can utilize these optimization because
the RI specification specifies a high number of standard shader parameters.
Most shaders do not use all of these parameters so they can be removed by
the compiler if this fact is known at compile time.

The performance results of these different placement can be seen in table
7.2. In the following we will discuss the different configurations:

1. Linking (R): The Reyes pipeline, the shader code and the shader tex-
ture code are placed in three different compilation units. The parameter
textures are placed with the Reyes pipeline. This configuration has the
worst runtime. That is because parameter textures are mainly used
by the shader code. The Reyes pipeline only loads the transformation
matrices from these textures.

2. Linking (G): This configuration is similar to the first one. The only
difference is that the parameter textures are placed with the shader
code. It is 5-10% faster than the first one. The compile time is practically
the same.

3. Linking (GT): This configuration is similar to the second one, but
in addition to the parameter textures, the shader textures are also
placed with the shader code. The runtime of models without textures
is exactly the same as in the second configuration. This is because the
shader functions are not used. The Killeroo also has the same runtime
as before. The Killeroo 2 with the wood shader is slightly faster than
before, but the Killeroo 2 with the plastic shader is slightly slower.
This is likely to different optimization steps of the CUDA compiler
when all the code is known versus the linking of the textures. In this
configuration the compile time is lower than in the previous cases
because the linker needs to link one fewer file. The compile time will
however be worse when only the texture files have changed.

4. No Linking: This configuration places everything in they Reyes pipeline
compilation unit. It is about 15-40% faster than the previous ones. That
is because the compiler can perform more optimizations when all the
code is present. The optimizations have a higher impact when the
shader is simple. E.g. the Dragonhead with its plastic shader has a 33%
decrease in render time, whereas the cube with the more complicated
brick shader has only a 15% decrease. This is because the shader call
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itself needs a larger percentage of the overall render time when the
shader is faster, but also because the simple shaders use less of the
standard shader parameters which can be optimized away.

5. No Shader: We also performed a test with no RSL shaders activated.
Instead a simple phong shader with one light source was used. This
function is hardcoded into the Reyes pipeline so no linking is per-
formed. The compile time is fast because the Reyes pipeline does not
need to be recompiled when no shaders change. The performance of
all the scenes is significantly faster. The speedup of the scenes with
the more complicated shaders is higher than the ones with the simpler
shaders as expected. However the performance of the scenes with the
simpler shaders also improves drastically. This is mainly because the
parameters of the shaders need to be loaded from texture memory
and because of the light loops. In each light loop the parameters of the
light shaders also need to be loaded from texture memory.

As it can be seen from the data, the placement of the shader code can
have a large impact on the applications performance. E.g. the performance
difference for the Killeroo model is approximately 45% between the worst
and best runtime. However using the option to put the shader code into the
Reyes pipeline compilation unit increases the compile time. If the shader
code does not change over successive runs the no linking option is preferable.
Otherwise the option to put the parameter textures, the shader textures and
the shader code in one additional compilation unit is preferable.

It can also be seen that the usage of RSL shaders has a large impact on the
performance. While in the case of the simple shaders in the Killero model
the difference in performance is small, but still noticeable, the performance
impact of more complicated shaders is much larger. E.g. for the Cube with
the brick shader there is a factor of 3.6 in the render time.

The compile time is influenced by the complexity of the used shader, but
the difference is much smaller than the runtime difference. The difference
is less than 4 seconds between the slowest and fastest shader compilation.
The compile time in table 7.2 only includes the compile time of the CUDA
compiler. The compilation of the RSL code to CUDA code is not included.
This however does not make much difference in the results as the longest
compile time (brick shader) is only 0.11 seconds.
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7.2.2. Usage of Different Subdivision Surface Patch Types

Used Split Procedures All Init All Only Border
Cube Brick 33 39 200

Killeroo 56 119 OOM
Killeroo 2 124 264 OOM

Killeroo 2 Wood 241 402 OOM
Teapot 54 114 OOM

Table 7.3.: The performance for the usage of the different subdivision surface patch types.
All: regular and multi-face patches are used initially and after a split. Init All:
regular and multi-face patches are used initially. The patch type remains the
same after a split. Only Border: Only border patches are used. OOM means that
a queue ran out of memory.

As mentioned in section 6.3.2 our implementation distinguishes between
three different subdivision surface patches. Regular patches that consist of
four vertices with valence 4. Multi-Face patches that can handle vertices
with different valences, and border patches. These can handle patches near
borders of the mesh. Regular patches are the fastest as the subdivision is
the least complicated and they can be converted to Bezier patches before
dicing. This makes it possible to use larger dice dimensions and therefor
less split operations are necessary.

In table 7.3 a performance comparison between different usages of these
patch types can be seen. We use three different configurations:

1. All: Regular and multi-face patches are used initially and also after
each split operation if possible.

2. Init All: Regular and multi-face patches are used initially, but after
each split operation the patch type of the input patch is used.

3. Only Border: Only border patches are used, initially and after each
split operation.

In all scenes the performance is best when the most suitable patch type is
always selected. The performance cost for only using the most suitable patch
type initially is largely dependent on the number of non-regular vertices
in the model. The cube with only 8 non-regular vertices only loses about
15% performance whereas the Killeroo 2 model takes more than twice the
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time to render. When only border patches are used initially and after a
split, the performance drops significantly. The Cube model takes about 6

times as long to render as in the optimal case. We could not compare the
other models as the queues filled up too fast, ran out of memory, and the
application crashed.

In figure 7.4 the used dice procedures for the All and Init All configuration
are shown for the Killeroo model. It can be seen, that in the All configuration
the regular dice procedures are used almost exclusively. The other dice
procedures are only used for few pixel around the non-regular vertices.

7.2.3. Dice Procedures

In section 6.2 we mentioned that we use three dice procedures for Bezier
patches with different dice dimensions. These dice dimensions are also used
for the dicing of regular subdivision surface patches as seen in section 6.3.2.
The dice dimensions of these procedures are 15× 15, 7× 7, and 3× 3. In
table 7.4 we compare the performance of this configuration against using
only one dice procedure with dice dimension 15× 15.

The usage of multiple dice procedures increases the performance for most
scenes. That is because these scenes are subdivision surfaces with a number
of non-regular vertices. When subdividing around this vertices the split
procedures emit smaller and smaller regular patches with each subdivision
level. These patches can then be diced using less threads when smaller dice
dimensions are available. Thus, the performance increases.

The increase of performance is the most dramatic for the Killeroo scene. For
this scene the rendering performance almost doubles. That is because the
Killeroo model contains the most non-regular vertices, including a number
of border patches which are the most complicated and slowest to compute
patches. In the Cube scene the performance gets worse when using multiple
dice dimensions. This scene only has 8 non-regular vertices and therefor the
smaller dice dimensions are hardly used. The performance increase likely
comes from a better optimization of the CUDA compiler when less code
needs to be compiled, or from a lower number of used registers.
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For the Dragonhead scene the performance gets about 10% worse when
using multiple dice dimensions. This scene only consists of Bezier patches
which do not have non-regular vertices. Therefor, even when multiple dice
procedures are available they are not used much. Again, the performance
increase likely stems from better compiler optimizations.

One Dice Procedures (ms) Multiple Dice Procedures (ms)
Cube Brick 29 33

Killeroo 98 56

Dragonhead 19 21

Killeroo 2 182 124

Killeroo 2 Wood 331 242

Teapot 70 54

Table 7.4.: Performance comparison for the number of dice procedures. We compare the
usage of one dice procedure with dice dimension 15× 15 against the usage of
three dice procedures with dice dimension 3× 3, 7× 7, and 15× 15.

7.2.4. Supersampling

In table 7.5 we compare the performance of different supersampling fac-
tors. The performance difference between the supersampling factors is
roughly equivalent to the difference between the supersampling factors.
I.e. the performance difference between a supersampling factor of 4 and a
supersampling factor of 1 is approximately 4. The performance difference
between no supersampling and 4 times supersampling varies between 3.4
for the Dragonhead model and 4.1 for the Cube model. This variation can
be explained by the fixed time overhead each frame and the fact that for a
bigger supersampling factor the model needs to be subdivided into smaller
patches before dicing.

7.2.5. Micropolygon Rasterization

In table 7.6 a statistic of the micropolygons of the different scenes is shown.
The table contains the number of rasterized micropolygons while rendering
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Supersampling 1 (ms) 4 (ms) 16 (ms)
Cube Brick 33 135 545

Killeroo 56 191 724

Dragonhead 21 71 277

Killeroo 2 124 446 1725

Killeroo 2 Wood 241 924 3637

Teapot 54 203 779

Table 7.5.: The performance for different supersampling factors.

the scenes and information about the size of the micropolygons. The four
right columns show the percentage of the micropolygons in a scene with
a specific bounding box size. The size of the bounding box is given as the
number of pixels inside the bounding box.

It can be seen, that for most scenes the proportion of micropolygons with no
pixels is about two thirds of all micropolygons. In the Teapot scene it is even
higher with 75%. This means, that most micropolygons do not contribute
to the output image. This fact has a large negative impact on performance
as a large number of unnecessary split, dice and shading operations are
performed.

The easiest way to increase performance would be to increase the size
of the dice threshold. However this would also increase the number of
micropolygons that are bigger than one pixel. Our implementation already
produces up to 1 percent micropolygons with a 2 pixel sized bounding box.
However, the size of a micropolygon should not be bigger than one pixel.
Therefor an increase of the dice threshold is not possible without breaking
this constraint.
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Number of Micropolygons Pixels in BB (%)
0 1 2 4

Cube Brick 621,223 65.4 33.9 0.7 0.0
Killeroo 2,468,833 66.8 32.4 0.8 0.0

Dragonhead 769,507 65.0 34.2 0.9 0.0
Killeroo 2 4,799,538 64.6 34.6 0.8 0.0

Teapot 2,131,872 75.5 24.2 0.2 0.0

Table 7.6.: Statistics of the micropolygon sizes in the different scenes.
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8.1. Conclusion

We have shown an implementation of the Reyes rendering pipeline that
is able to render simple scenes at interactive to real time frame rates on a
GPU. The renderer supports Bezier patches and Catmull-Clark subdivision
surfaces as input primitives. Scenes can be given as Renderman scenes. Our
implementation supports materials and surface displacement through the
Renderman Shading Language.

We have shown a method to render Catmull-Clark subdivision surfaces
on the GPU. In this method, a patch is created for every face in a given
subdivision mesh. These patches are then sent to the GPU and rendered
according to the Reyes pipeline. If possible these patches are converted
into Bezier patches before the dicing step of the Reyes pipeline to increase
performance.

We have shown a compiler that translates the shaders into CUDA code
that can be included in our rendering pipeline. With this shader compiler
we are able to support complex materials such as a procedural wood or
brick shaders. The inclusion of shaders into the pipeline has a moderate
to high impact on the performance of the implementation, depending on
the complexity of the shader. We noticed, that linking the shader code to a
precompiled Reyes pipeline decreases the runtime performance dramatically
compared to including the shader code in the same translation unit. The
compile time however increases drastically when including the shader code
in the Reyes pipeline translation unit.
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8.2. Future Work

Our implementation currently uses a bound formula that is based on the axis
aligned bounding box of a geometric primitive. We use a similar formula
for both Bezier patches and Catmull-Clark subdivision faces. This approach
produces a large number of micropolygons that are smaller than one sub-
pixel. A better check formula would probably increase the performance of
our implementation dramatically.

The algorithm to close the holes, which are produced during rendering, is
not accurate and produces artifacts. An algorithm that ensures that no holes
are produced between patches should be implemented.

We currently only support basic Catmull-Clark subdivision surfaces. Sup-
port for creases and semi-sharp creases could be added to this primitive
type. Our implementation also does not support vertices with valence two.
Support for these could also be added.

We currently subdivide each subdivision mesh once before sending the
patches to the GPU. This is done to ensure that the mesh only consist of
quad faces. This first subdivision step could be moved to the GPU.

Our implementation currently only supports Renderman scenes with one
frame. Support for rendering multiple frames could be added. In Renderman
scenes shadow maps are usually generated using multiple frames. This
means, that with support for multiple frames in a scene we could also
support shadow maps.
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Renderman Shading Language
Grammar

〈procedures〉 ::= (〈shaderdefinition〉
| 〈functiondefinition〉
| 〈preprocessorstatement〉)*

〈shaderdefinition〉 ::= 〈shadertype〉 〈identifier〉 ’(’ [〈formals〉] ’)’ ’{’ 〈statements〉
’}’

〈shadertype〉 ::= ’light’ | ’surface’ | ’displacement’

〈type〉 ::= ’float’ | ’string’ | ’color’ | ’point’
| ’vector’ | ’normal’ | ’matrix’ | ’void’

〈functiondefinition〉 ::= [〈type〉] 〈identifier〉 ’(’ [〈formals〉] ’)’ ’{’ 〈statements〉
’}’

〈formals〉 ::= 〈formalvariabledef 〉 (’;’ 〈formalvariabledef 〉)* [’;’]

〈formalvariabledef 〉 ::= 〈outputspec〉 〈typespec〉 〈defexpressions〉

〈variables〉 ::= 〈variabledefintions〉 (’;’ 〈variabledefintions〉)*

〈variabledefintions〉 ::= 〈externspec〉 〈typespec〉 〈defexpressions〉

〈typespec〉 ::= [’varying’ | ’uniform’] 〈type〉

〈defexpressions〉 ::= 〈defexpression〉 (’,’ 〈defexpression〉)*

〈defexpression〉 ::= 〈identifier〉 [〈definit〉]
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〈definit〉 ::= ’=’ 〈expression〉

〈outputspec〉 ::= [’output’];

〈externspec〉 ::= [’extern’];

〈statements〉 ::= statement+

〈statement〉 ::= 〈variabledefintions〉 ’;’
| 〈compoundstatement〉
| 〈assignexpression〉 ’;’
| 〈procedurecall〉 ’;’
| 〈returnstatement〉
| 〈loopmodstmt〉 ’;’
| 〈ifstatement〉
| 〈loopstatement〉
| 〈preprocessorstatement〉
| 〈functiondefinition〉

〈loopstatement〉 ::= 〈loopcontrol〉 〈statement〉

〈ifstatement〉 ::= ’if’ 〈relation〉 〈statement〉 [’else’ 〈statement〉]

〈returnstatement〉 ::= ’return’ 〈expression〉 ’;’

〈compoundstatement〉 ::= ’{’ 〈statements〉 ’}’

〈loopcontrol〉 ::= 〈whileloopcontrol〉 | 〈forloopcontrol〉 | 〈lightloopcontrol〉

〈whileloopcontrol〉 ::= ’while’ 〈relation〉

〈forloopcontrol〉 ::= ’for’ ’(’ 〈expression〉 ’;’ 〈relation〉 ’;’ 〈expression〉 ’)’

〈lightloopcontrol〉 ::= 〈lightlooptype〉 ’(’ [expressionlist] ’)’

〈loopmodstmt〉 ::= (’break’ | ’continue’) [〈int〉]

〈expressionlist〉 ::= 〈expression〉 (’,’ 〈expression〉)* 〈expression〉 = 〈logopor〉

〈logopor〉 ::= 〈logopand〉 [’||’ 〈logopor〉]

〈logopand〉 ::= 〈relopeq〉 [’&&’ 〈logopand〉]

〈relopeq〉 ::= 〈relopueq〉 [(’==’ | ’!=’) 〈relopeq〉]

〈relopueq〉 ::= 〈binopadd〉 [(’>’ | ’>=’ | ’<’ | ’<=’) 〈relopueq〉]
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〈binopadd〉 ::= 〈binopcross〉 [(’+’ | ’-’) 〈binopadd〉]

〈binopcross〉 ::= 〈binopfactor〉 [’ˆ’ 〈binopcross〉]

〈binopfactor〉 ::= 〈binopdiv〉 [’*’ 〈binopfactor〉]

〈binopdiv〉 ::= 〈binopdot〉 [’/’ 〈binopdiv〉]

〈binopdot〉 ::= 〈expressiontop〉 [’.’ 〈binopdot〉]

〈expressiontop〉 ::= ’(’ 〈expression〉 ’)’ | 〈unaryexpression〉 | 〈primary〉

〈unaryexpression〉 ::= (’-’ | ’!’) 〈expression〉

〈typecastexpression〉 ::= 〈type〉 [〈spacetype〉] 〈expression〉

〈primary〉 ::= 〈constant〉
| 〈texture〉
| 〈procedurecall〉
| 〈typecastexpression〉
| 〈assignexpression〉
| 〈triple〉
| 〈sixteentuple〉
| 〈arrayindexedvar〉

〈constant〉 ::= 〈float〉 | 〈string〉

〈arrayindexedvar〉 ::= 〈identifier〉 [〈arrayindex〉]

〈arrayindex〉 ::= ’[’ 〈expression〉 ’]’

〈triple〉 ::= ’(’ 〈expression〉 ’,’ 〈expression〉 ’,’ 〈expression〉 ’)’

〈sixteentuple〉 ::= ’(’ 〈expression〉 15 * ( ’,’ 〈expression〉) ’)’

〈spacetype〉 ::= 〈quotedstring〉

〈relation〉 ::= 〈expression〉

〈assignexpression〉 ::= 〈identifier〉 [〈arrayindex〉] (’=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’)
〈expression〉

〈procedurecall〉 ::= 〈identifier〉 ’(’ [〈procarguments〉] ’)’

〈procarguments〉 ::= 〈expression〉 (’,’ 〈expression〉)*
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Appendix A. Renderman Shading Language Grammar

〈texture〉 ::= ’texture’ ’(’ 〈texturefilename〉 [〈channel〉] [〈texturearguments〉]
’)’

〈texturefilename〉 ::= 〈expression〉

〈channel〉 ::= ’[’ 〈expression〉 ’]’

〈texturearguments〉 ::= ’,’ 〈expression〉 (’,’ 〈expression〉)*
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