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Abstract

The Internet of Things is becoming an integral part of our daily lives, spreading into many different
domains such as smart cities, health care and disaster prevention. Wireless Sensor Networks are used as
enablers for the Internet of Things. For safety critical applications it is crucial that every packet arrives,
despite interference. Nowadays interference is omnipresent, as WiFi and other wireless technologies
populate the same frequency band used for communication in Wireless Sensor Networks. Therefore it
is necessary to understand the influence of WiFi interference on communication, which is acquired by
experimentation.

As platform the Tmote Sky equipped with the popular CC2420, running Contiki is chosen. Con-
tikiMAC is examined through experiments with interference generated using JamLab. The focus of
the evaluation is reliability. Due to insufficient data gathering tools provided with Contiki it is neces-
sary to develop a framework which aids researchers in running experiments. Using the new framework,
weaknesses of ContikiMAC are exposed and subsequently corrected. Following that the performance of
ContikiMAC is increased under interference using Forward Error Correction and Jamming Agreements.





Kurzfassung

Das Internet der Dinge wird ein immer größerer Bestandteil unseres Lebens und übernimmt Anwen-
dungen in den Bereichen von Smart Cities, Gesundheit und Katastrophenschutz. Drahtlose Sensornetz-
werke werden verwendet um diese Anwendungen zu verwirklichen. Bei sicherheitskritischen Anwen-
dungen ist es notwendig, dass jedes Packet, trotz Störungen ankommt. Da WiFi und andere Drahtlos-
Technologien im Frequenzband leben, welches für die Kommunikation in drahtlosen Sensornetzwerken
genutzt wird, ist es notwendig den Einfluss von WiFi Störungen auf die Kommunikation innerhalb sol-
cher zu verstehen. Dies wird mittels Experimenten mit Störungen generiert durch JamLab erreicht.

Als Plattform für die Experimente werden die Tmote Sky mit dem beliebten CC2420, mit Contiki als
Betriebssystem genutzt. Der Fokus der Experimente und deren Auswertung liegt auf der Verlässlichkeit
der Kommunikation. Da Contikis derzeitige Tools zur Auswertung und Aufzeichnung von Daten unzu-
reichend sind, wird ein Framework entwickelt, welches bei der Ausführung von Experimenten mit MAC
Protokollen unterstützt. Mit Hilfe dessen werden Schwächen in ContikiMAC festgestellt und daraufhin
behoben. Darüber hinaus wird die Performance von ContikiMAC durch den Einsatz von Forward Error
Correction und Jamming Agreements verbessert.
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Chapter 1

Introduction

The Internet of Things (IoT) is a rather new, vastly growing field. The vision of IoT is: as more and
more of our daily objects we use gain access to wireless communications (smart phones, smart watches,
sensors, Radio-Frequency IDentification (RFID) tags and many more), they will gain the means to com-
municate with each other, exchange data to work towards a common goal [Atzori, Iera, and Morabito,
2010]. These goals vary and infiltrate our very lives in many different ways.

As mentioned before the IoT is growing fast with more and more applications being created while
new hardware is developed at lightning speed. Examples for IoT applications show a wide variety: from
personal use, over home automation to smart cities. There are several different fields which experience
being redesigned and made ready for the IoT, each of which has its own benefits and challenges:

• Smart City: Cities where tiny sensors installed, for example, in the ground, provide information,
that can make daily life more comfortable as well as save energy in different fields [Zanella et al.,
2014]:

– Smart parking is one of those applications. Every driver in a city has experienced the frus-
tration of looking for free a spot on a busy day. An app which tells the user if parking spots
in an area are taken or not would be beneficial not only for the mood of the driver but also
for the environment, as less time spent looking for a free spot equals to less pollution [Chin-
rungrueng, Sunantachaikul, and Triamlumlerd, 2007]. There are different solutions for this
problem: sensors in the ground beneath a parking lot communicate if it is occupied to a base
station.

– On-demand garbage collection can save a lot of energy and money for the companies em-
ployed by the city and frustration for the residents. At the moment many cities have a sched-
uled garbage collection, which can be made more efficient by placing sensors in garbage bins
which communicate if they have to emptied. The companies themselves can then find the
optimal way to collect the garbage.

– Air quality: An application which can tell users where the air is best in the city for outdoor
activities as well as alarm the authorities if pollution levels in certain areas should be reduced,
could be realized by installing small sensor devices (sensor nodes) which communicate the
current air quality to a base station.

– Smart Lighting: The current paradigm of lighting systems in cities uses continuous illumi-
nation of streets and bigger places [Müllner and Riener, 2011]. Most of the time the need
for light during the night time is only short. Other than replacing current lamp posts with
LED lighting, posts would also need sensor nodes which would act as actuators, as soon as a
person is detected within its radius by for example, GPS via cellphone.

1



2 1. Introduction

– Water quality control: Sensors placed in the water monitor different quality indicating at-
tributes, and communicate these values back via a wireless network [Le Dinh et al., 2007].
This can be used to not only detect hazards as fast as possible, but also to detect leakages
faster, a process which often takes time as only a big part of a water network can be detected
automatically to have a leakage. Automating the whole process might result in water savings,
which would be helpful for many big cities.

There are many more applications for smart cities, but the examples given above should give the
reader a good idea about the direction cities and their technologies will move to.

• Smart Home: Home automation has come a far way. Temperature control, cleaning robots, shut-
ters that react to light intensity or wind velocity are some examples. The next step is to be able to
control all these different system over the net. Security is an important concern of users. Nobody
wants a stranger to be able to control one’s home. The system should use little additional energy
or save energy altogether.

Temperature control is something that has existed for quite a while now, with a central control and
maybe a remote control. Now there would be several sensors, enough to have a good estimate
of the room temperature which send the data to a central device which then decides based on for
example daytime which temperature to achieve. The user can retrieve the data from central device
via cellphone or computer and decide whether the standard values are good enough or not. The
user also can decide to put other sensors like outside temperature, humidity and wind into the
equation of the inside temperature.

Most of the aforementioned devices will communicate over the air and will have to compete with
WiFi and the microwave, both of which exist in the same frequency band. Therefore it is necessary
to ensure little energy consumption together with reliable transmissions.

• Smart Health: Wearable devices that monitor the health status to your cellphone or in case of an
emergency to the ambulance have existed for a while now. In this field miniturization led to many
different possibilities:

– Implanting devices under the skin which can monitor blood or release contraceptive [Review,
2014].

– Training exercise gadgets like socks or watches which synchronize to a smart phone to show
how well the training session went

– Sensors implanted in the bed which monitor a person’s sleep and sends the date to its smart
phone [Beddit, 2015].

– Heart monitors which automatically send emergency calls if an anomaly happens.

For these devices it is often more important to reliably deliver the information than the delivery
speed. For some of the devices, for instance the implanted contraceptive or blood sugar monitor,
energy efficiency is essential. This means that unnecessary transmission should be minimized,
meaning the sending device should always know if its data arrived at the destination or not.

• Smart Grid: As in other sectors, the ’smart’ revolution did not stop here. At the moment most
of the plans for the smart grid are still being implemented slowly. The goal is to have a grid
which is self-aware, and can react to changes itself. Smart Meters at every end of the connection
enable two-way communication; the user him/herself can choose which tariff to use, while reading
the meters does not require an employee anymore. Sensors on every every transformer can tell a
company how the state of its hardware is and inform quickly if there is a power outage.

While it may seem like it would not be important for these devices to run with little energy, its
purpose actually is to save power and work. This means that even though energy might not be
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essential, saving energy still is an important goal. Moreover most of the communication will
still be over the air, as installing wired connections would be impracticable. The need for proper
communications protocols which are reliable yet energy-saving can be seen in this use-case as
well.

• Disaster Detection: In recent years sensors were installed in endangered areas to monitor the
potential for disasters like wildfire, landslides or volcanic activity. For example, Ramesh et al
[Ramesh, 2009] build a wireless sensor network, a network of tiny battery-powered computers,
to monitor soil of an area to estimate landslide risks. In their field tests they installed 20 sensors
nodes with a lead battery which was recharged by a solar panel. The information gathered by the
sensor nodes is then forwarded to a gateway via wireless communication. The gateway itself is a
more powerful computer which is equipped with WiFi which is than used to transmit the data to a
central server. The data of the sensor nodes is then analysed on the server.

The schema described above is often used to monitor large, remote areas where a steady power
supply is hard to achieve and in order to reliably monitor the whole area, many sensors are needed.
In this case as well it is important to reliably deliver information while the latency is not that
important.

The Internet of Things (IoT) has many different applications and many of those are based on Wireless
Sensor Networks (WSN) which build the backbone of the IoT. It is important not to confuse these two
terms. WSNs are a key component and key enablers of the IoT which strives to connect everything to
internet. Many of the examples above consist of WSNs but not all of them. Some just need a connection
to a remote control and had better not be connected to the Internet (for example, the implanted contra-
ceptive). The focus of this thesis lies on WSN and its communications. To be more specific the focus
will lie on the reliability and energy-efficiency of the communications within WSNs.

1.1 Problem Statement

The examples provided have a theme in common: small microprocessors with little power supply need
to communicate their data, mostly using wireless communications, sometimes in harsh environments.
These so-called sensor nodes should be long-lived and need almost no maintenance, as changing batteries
is often as cost-intensive as redeployment, if we think of harsh environments. However, sometimes just
saving energy is not enough: the data which is monitored and transmitted is important and potentially
life-saving, so it needs to be transmitted reliably, to be ensured to arrive at the destination.

If we think back to the examples of WSN for disaster detection, it is desirable to ensure that every
data communicated from the sensor nodes reaches the base station, as data loss could potentially cost
lives. This will lead to retransmissions if a packet is lost due to external factors which will in turn cost
more energy, but losing packets is not an option.

A quite different example would be smart parking applications in cities. Sensors are in the ground
and communicate if nearby parking spots are occupied or not. Exchanging batteries might be very cost
intensive and induce the need to close off the street while the procedure is ongoing. This in turn costs
additional manpower which makes it even more expensive if batteries run out. While it is annoying if a
sensor node fails to transmit the status of its parking lot it will not endanger lives, which means that it is
desirable to have a high success rate when transmitting data, but it is more important to save energy, a
trade-off which is not avoidable.

As final example smart health devices like heart monitors or blood sugar measurement devices come
to mind: The delivery of every packet is essential, it could be an alarm which would save a person’s life.
No external factors, be it WiFi streaming of video or music, which happens more often in homes these
days, or a micro-wave oven which was switched on just before the blood sugar was dropping, should be
able to keep the packet from being delivered. It does not matter if the packet is delayed for half a second
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in those cases, but it absolutely has to be delivered. At the same time energy should not be wasted,
meaning therefore the sender should know if the packet was transmitted successfully, in order to prevent
unnecessary retransmissions.

The focus of this thesis lies on being able to reliably transmit data despite interference, while using
as little energy as possible. This means that whenever data has to be transmitted it should be delivered
and acknowledged. The acknowledgements serve the purpose of giving the sender correct information
of the state of the packet. This can be used to save energy as information does not have to be resend after
an ACK is received. In general when no data has to be transmitted, very little energy should be used for
the protocol. This will be the case most of the time for many safety critical applications. These send
regular updates, with the occasional alarm which is sent if a threshold is passed.

These challenges can be solved on the Media Access Control layer where connection or link between
the nodes is managed. There the radio is directly controlled using the driver and which additional data
concerning the connection should be sent. Currently there are several different methods to mitigate
interference and some of them might work well together while others will not. The aim of this thesis is
to understand the effects of interference on MAC protocol performance on a detailed level. Through the
gained knowledge counter measures should be found and applied, and the effects of those will then be
evaluated.

1.2 Approach

In this thesis, the followed approach is experimental computer science. Contiki’s default protocol, Con-
tikiMAC, is being tested, under reproducable conditions in environments rich of radio interference. To
ensure comparability among protocols, a repeatable interference generator is needed, for which JamLab
was chosen. The different interference sources will consist of different types of influence, like video
streaming via WiFi, Microwave ovens and file transmissions. These are typical interference patterns
which can happen in a work or home environment.

ContikiMAC will be evaluated by the following metrics:

1. reliability of the communication and

2. the total energy consumption used for a given number of packets transmitted.

After evaluation weaknesses exposed through the experiments will be solved and the enhanced protocol
will be re-evaluated. In order to achieve these goals and to enable fast development of the protocol, a
test-framework has been developed which eases testing as much as possible.

The experiments are carried out in the testbed located at Technical University Graz, ITI which is
equipped with Tmote Sky sensor nodes. As operating system for the sensor nodes Contiki (see Sec-
tion 2.2) has been chosen, due to its popularity and widespread use.

1.3 Limitations

The focus of this thesis lies on MAC protocols, their energy consumption and reliability, which will be
evaluated on a single link. Energy consumption and reliability are not the only important factors. For
a video surveillance system latency and throughput might be important, while energy consumption and
reliable communication might be of less interest.

Another way of combating interference is to adjust the Routing layer, which controls which nodes
are used to send packets from one node to another. Adaptive routing could also be used to ensure higher
reliability and lower energy consumption, but routing relies on the underlying MAC protocol to provide
stable links.



1.4. Contributions 5

The energy consumption of the nodes is not directly measured, but rather estimated by Contiki’s
inbuilt Energest, which provides a good estimate. It would be another work to develop an infrastructure
which could directly and accurately measure the energy consumption of every node in a testbed, which
is why Energest, which is cheap and easy to use, is the tool used for energy consumption measurement.

Although JamLab provides repeatable interference patterns, recorded from real interference, it still
is not real life interference, which is a mixture of many different devices using the same frequency band.
JamLab is periodic, real life interference is not. JamLab still is a good representative of the classes of
interference which can be found in homes, offices and is therefore used as interference source.

1.4 Contributions

This thesis contributes an improved statistic system to Contiki which is ready to use with the CC2420
and ContikiMAC, as well as a framework which assists in running experiments and evaluating MAC
protocols in Contiki for the Tmote Sky sensor node.

Additionally this thesis contributes a more resilient version of ContikiMAC to WiFi interference,
enhanced with Forward Error Correction (FEC) and more reliable acknowledgements using jamming
agreements.

1.5 Structure of this thesis

In Chapter 2 the necessary theoretical background is given in order to be able to understand the following
chapters of this thesis. Chapter 3 introduces the test-setup and shows the results of the first experiments.
The results led to the development of a testing framework, explained in detail in Chapter 4. Using
this framework we will revisit our previous experiments in Chapter 5. The new insight leads to the
development of a new protocol introduced in Chapter 6, its evaluation follows and the protocol is refined
and adapted in Chapter 7. Finally related and future work is given in Chapter 8.
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Chapter 2

Background

Wireless Sensor Networks (WSN) are an integral part of the IoT and their correct operation is of utmost
importance in several application areas. The focus of this thesis lies on the operation of WSN MAC
protocols in congested radio environments: as we will show in the next chapters, their performance can
largely affect the reliability and energy-efficiency of the overall network.

In order to introduce the reader of this thesis to these topics, we first provide an overview of wireless
sensor networks in Section 2.1, with specific emphasis to common hardware platforms (Section 2.1.1)
and operating systems (Section 2.1.2) in use nowadays. We then specifically describe the Contiki oper-
ating system in Section 2.2, as we choose this as the main software platform for our experiments. We
provide an overview of MAC protocols in Section 2.3 by discussing the different strategies that have been
developed by the research community and describe the implementations that are available in Contiki in
Section 2.4. We conclude this chapter with an introduction to Forward Error Correction (FEC) in Sec-
tion 2.5. As we will show in the following chapters, this technique can significantly help in increasing
the performance of MAC protocols in congested radio environments.

2.1 Wireless Sensor Networks

Wireless Sensor Networks (WSN) are networks consisting of small, power efficient micro chips with a
radio module. They communicate on the ISM frequency band and are mostly battery powered. WSNs
are often used to gather data which is then forwarded to a base station, which then processes the data.

2.1.1 Hardware Platforms

The hardware platforms used in WSN are typically power efficient micro-controllers with very con-
strained ROM and RAM size (see Figure 2.1). Additionally they are equipped with several different
sensors, such as temperature, humidity or light sensors. Finally to be able to communicate the sensor

Figure 2.1: A collection of different WSN hardware platforms [Image gratefully extracted from Boano
[2015a, page 2] ]

7
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node is equipped with a radio module, which commonly consumes most of the power when used. Sen-
sor nodes are typically battery-powered and often the batteries are bigger than the sensor node itself. If
sensor nodes are deployed in the wilderness or remote areas energy harvesting, like solar panels are used
to ensure a long lifetime of the sensor nodes.

We now describe two examples of wireless sensor nodes: the first generation of “motes” (i.e., the
TelosB or Tmote Sky nodes released in 2004) and one of the latest (i.e., the TI SensorTag CC2650
released in 2015). The Tmote Sky sensor node is the one used throughout this thesis and, despite its age,
it is still a popular sensor node deployed in many testbeds.

2.1.1.1 Tmote Sky

The Sentilla Tmote Sky [Advantic Sys, 2015], [Moteiv Corporation, 2006] is perhaps the most widely-
used wireless sensor node: the original design from Berkeley University and a number of replicas from
different manufacturer have been on the market for quite a while. The Tmote Sky comes with:

• a TI MSP430F1611 with 48KB programmable flash, 10KB of RAM and a clock speed of 8MHz.
Its current draw is 330µA in active mode and 1.1µA in standby mode [Texas Instruments, 2015b].

• a TI CC2420 2.4GHz RF transceiver module which is IEEE 802.15.4 compliant. Its current draw
is 18.8mA in RX mode and 17.4mA in TX mode.

• two different light sensors (560nm and 960 nm peak sensitivity), as well as a temperature and
humidity sensor.

• a 12-bit ADC, an UART via USB which also serves as programming interface.

The Tmote Sky nodes are supported by all major IoT operating systems (Tiny OS, Contiki, RIOT) and
have been very popular in the last decade. The CC2420 radio has been used very widely, due to its
compliance to IEEE 802.15.4 and its ability to duty cycle [Buettner, Gary V. Yee, et al., 2006] and even
though the Tmote Sky has little RAM to use it is able to run an IPv6 stack with 6LoWPAN and Contiki
as underlying OS [Durvy et al., 2008]. The Tmote Sky can be powered by either by USB or by two AA
batteries. The battery lifetime depends mainly on the use of the radio module and its duty-cycling. At
the moment the Tmote Sky itself isn’t available anymore, but there are several replicas that have been
produced. The version which is used for the experiments conducted in this thesis is the MTM-CM5000
v0.2 manufactured and sold by Advanticsys.

2.1.1.2 TI SensorTag CC2650

The TI SensorTag (see Figure 2.2) is a series of popular boards that have been attracting several de-
velopers in the past years. Its latest version, the CC2650 [Texas Instruments, 2015a], was chosen at
the Institute for Technical Informatics of TU Graz for several courses, such as the Embedded Internet
laboratory [Boano, 2015b].

This sensor node features:

• ARM Cortex-M3 with up to 48-MHz clock speed, 128KB in-system programmable flash, 28KB
of SRAM.

• Ultra-low-power sensor control which can run autonomously from the rest of the system.

• 2.4-GHz RF transceiver compatible with BLE 4.1 and IEEE 802.15.4 physical and MAC layer.

• Peripherals like four general-purpose timer modules, 12-Bit ADC with 200k samples/s, UART,
AES-128 module, and many more.
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Figure 2.2: An image of the SensorTag CC2650 with sleeve [Image gratefully extracted from Texas Instru-
ments [2015c] ]

The SensorTag can further be easily extended with several development packs [Texas Instruments,
2015d]:

• a debug devpack that adds a JTAG debug interface

• a watch devpack that contains a small 96 x 96 ultra-low power graphical display

• a LED audio devpack that contains 4 high-power multicolor leds and a 4W audio amplifier

The SensorTag CC2650 was released in 2015 and can be acquired for € 29 and is hence significantly
cheaper than the Tmote Sky. Despite being rather new, the CC2650 SensorTag is already supported by
several IoT operating systems such as Contiki and constantly maintained. While preparing the Embedded
Internet laboratory and this thesis, we found several bugs in the Contiki implementation [GitHub, 2015]
that were filed and fixed.

2.1.2 Operating Systems

The WSN community grew rapidly and soon the first embedded operating systems, which have little
to do with real-time operating systems, emerged. Developing bare metal is a nightmare as anyone who
had to do that can attest. It takes very long to read into the technical specifications of a board and
development for just one platform is very inefficient. Code should be reusable easily and driver- and
platform-development should be well separated from application development. While that may introduce
some inefficiencies, the gain in development speed and the decrease in code complexity is invaluable.
Moreover most of the application developers do not want to touch low level code. They would rather
concentrate on their applications or communication protocols.

So what is important for a WSN operating system? While it has to provide hardware abstraction like
a general purpose OS (Linux, Windows), it also has to deal with heavily constrained devices like the
Tmote Sky or the sensortag. Because of this, dynamic memory and threading are often not fully, if at all,
provided by the OS. This introduces different approaches to the problem of (semi-) parallel execution
and its programming.

We now describe a few OS that are popular in the WSN community. We start with Tiny OS, which
is the oldest. Tiny OS’s approach was to minimize the code size and optimise energy consumption and
execution overhead. Therefore Tiny OS chose an event driven approach to its scheduling. Afterwards
Contiki, a widely used IoT operating system, with its semi-threaded approach will be introduced. Contiki
focused more on the ease of development for its platform than on raw efficiency. Finally, as an example
of a very recent operating system, RIOT is introduced which features full multi-threading support.
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2.1.2.1 Tiny OS

Tiny OS [Levis et al., 2004] is one of the first WSN operating systems. Its development started at
USC Berkeley but was soon made open source and several other research groups (CMU, UCLA, UIUC,
Vanderbilt) started to contribute.

Tiny OS is event based and highly modular. Concurrency is also event-driven. Tiny OS possesses
a task-queue which contains all the tasks the scheduler has to execute. The tasks themselves are only
function calls which can be pre-empted by interrupts which in turn can trigger hardware events. Those
can add additional tasks to the queue. If all tasks in the queue have been executed, which leaves the
queue empty, the sensor node goes to sleep and resumes execution on the next interrupt. Tasks can be
encapsulated into a named component (or module) together with a state. Every component has interfaces
which it uses to communicate to other components. Interfaces can either be commands or events a
component can handle. Commands are requests, events signal the completion of such a request. A
Developer can specify an application by taking several components and connecting their interfaces. This
process of programming reminds of the way one would program with hardware description languages,
such as Verilog.

While this approach is very efficient in execution and memory, it also gets very complex with the
number of components used. This is caused by the necessity of an explicit program state which is
interacts with several components. Moreover all commands and events need to be non-blocking which
leads an even more complex state machine.

2.1.2.2 Contiki

Contiki was conceived at the Swedish Institute of Computer Science by Adam Dunkels [Dunkels, Grön-
vall, and Voigt, 2004]. It came after Tiny OS and introduced an alternative to the purely event-driven
concept of Tiny OS: a hybrid model called Protothreads, which are similar to threads on pre-emptive
systems like Linux or Windows.

Since its introduction, Contiki gained a lot of attention and has, in addition to its own highly mod-
ular network stack, a fully-working IPv6 stack [Durvy et al., 2008] with 6LoWPAN and RPL [Tsiftes,
Eriksson, and Dunkels, 2010]. Contiki is the operating system which has been chosen as platform for
this master thesis and will be described in depth in Section 2.2

2.1.2.3 RIOT

RIOT [Baccelli et al., 2012] came into existence when a German-French team started analysing the
existing operating systems which had already conquered WSNs and Linux as representative of a desktop
operating system with support for many programming languages and a comfortable API and came to
conclusion that none of those operating systems satisfied their needs.

The basic structure of RIOT is a highly modular and consists of a microkernel that only needs a
few hundred bytes of RAM. The kernel itself is written in ANSI C and supports full multithreading,
application programming is allowed in C++. Moreover the POSIX standard is in part supported, which
makes it even easier for developers to switch to RIOT as a development platform. Another unique feature
of RIOT are its real-time characteristics.

RIOT seems very promising and has an active community which also works together with Contiki to
ensure interoperability between protocol implementations.
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PROCESS( p r o t o t h r e a d _ e x a m p l e , "A s h o r t d e s c r i p t i o n " ) ;
PROCESS_THREAD( p r o t o t h r e a d _ e x a m p l e , ev , d a t a ) {

PROCESS_BEGIN ( ) ;
/ / program code here

PROCESS_END ( ) ;
}

Listing 2.1: An example on how to create a Protothread in Contiki.

2.2 Contiki

As Contiki and its MAC protocols have been chosen as basis of this master thesis, we now provide a
short introduction to the operating system and its programming. Contiki has its own programming style
due to its design.

2.2.1 Kernel

Contiki’s kernel, like Tiny OS is lightweight and event driven. The kernel has two different ways to
execute programs:

• Events which are forwarded to processes and their respective event handlers. Once an event han-
dler started execution it cannot be preempted unless it does so itself. There are synchronous or
instantaneous events, which are always executed immediately and asynchronous events which are
enqueued to be executed later.

• Polling handlers which are used in between asynchronous events to check hardware states.

2.2.2 Timers

There are different timers provided by Contiki in order to enable timed execution in a process:

• etimer or event timer, triggers an event on time-out.

• ctimer or callback timer, executes a function on time-out.

• rtimer is the most precise timer. Also can be used to execute a function on time-out.

2.2.3 Protothreads

Protothreads are like normal threads in programming, but they don’t have stack and won’t be pre-empted
unless the user explicitly does so. This leads to the necessity of global variables for program data and a
program state which introduces a bit of complexity compared to unconstrained multi-threaded program-
ming.

Other than that protothreads are very comfortable and easy to use. An example on how to write a
protothread is provided in Listing 2.1

Within protothreads execution can be handed over to another thread by calling any of the macros
mentioned below, all of which pre-empt the thread:

• PROCESS_WAIT_EVENT(); wakes up the thread up at the next event posted to it.
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• PROCESS_WAIT_EVENT_UNTIL(ev == ANY_EVENT); wakes the thread up when the condition inside
the parenthesis are met, in this case the event posted is equal to ANY_EVENT.

• PROCESS_YIELD(); hands back the execution after the other thread(s) have handed back execution.

Events can be posted to other protothreads by calling process_post(&protothread_example, ANY_EVENT
, (void*)some_data);

2.2.4 Energest

Energest is a tool to estimate the energy consumption of a portion of the hardware platform during
execution [Dunkels, Osterlind, et al., 2007]. It counts the clock ticks during which a specific hardware
component (e.g., radio, LED) is active (e.g., on or off) or in a certain mode (e.g., low-power mode
(LPM) for the CPU). While this is very helpful, it still requires knowledge of how much current the part
in question uses. The function call energest_type_time(ENERGEST_TYPE_CPU); returns the rtimer ticks
during which the specified resource, in this case the CPU, has been active. Other important resources are
ENERGEST_TYPE_LPM which returns the time the CPU has spent in LPM, ENERGEST_TYPE_TRANSMIT and
ENERGEST_TYPE_LISTEN which return how long the radio has been active in sending or receiving mode,
respectively.

While this estimation is very useful and provides a cheap alternative to expensive hardware, it is
not completely accurate. On Energest’s accuracy Hurni et al.[Hurni et al., 2011] have found that due to
difference in manufacturing the power consumption of the same node type can differ up to 4 % .

2.2.5 Low Level Network Stack

Contiki’s Network stack is configured at compile time via #defines and built in the following way:

• NETSTACK_CONF_RADIO is used to specify the hardware module running the radio. In our case
that would be the cc2420_driver, for the sensortag cc26xx_rf_driver

• NETSTACK_CONF_FRAMER specifies the frame used for transmission. We normally use framer_802154,
which is the 802.15.4 frame.

• NETSTACK_CONF_RDC is used to specify which radio duty-cycling protocol is used. Examples
would be contikimac_driver for ContikiMAC or cxmac_driver for Contiki’s XMAC imple-
mentation.

• NETSTACK_CONF_MAC is used to specify which MAC protocol is used. Examples: csma_driver
for CSMA or nullmac_driver for no additional MAC protocol.

2.2.6 Network Stacks

Contiki supports two different network stacks: Rime and IPv6. Rime was first developed for Contiki
as a lightweight alternative to the IP stack for WSN with much thinner layers, which only provide one
functionality at a time. IPv6 is currently on its slow way to conquer the internet and is used by IoT
through 6LoWPAN.

2.2.6.1 Rime

The common theme of network stacks in WSN operating systems used to be cross layer communication,
resulting in more complex and efficient code [Dunkels, Österlind, and He, 2007]. Adding new applica-
tions often was not that easy as knowledge of the underlying layers was mandatory in order to use them
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Figure 2.3: Rime’s many layers. [Image extracted from Boano [2015c, page 31] ]

efficiently. This violates the layering principle, which caused several attempts to create another efficient
approach which honoured layering.

Dunkels et al. [Dunkels, Österlind, and He, 2007] came up with a model that had a similar form to
IP: The hourglass model, slim at the waist, variety at the ends. Many protocols use header-compression
and need to be aligned. For efficiency reasons upper layers decided how the header had to look and then
had to also begin to fill those headers. The new approach suggested instead of using the header itself,
rather use attributes, which are easy to handle and do not need to be aligned. This could be done in
the application layer without any deeper knowledge of the underlying implementation. The translation
from header attributes to the header itself are done by Chameleon which according to the configured
technology takes care of putting the header together.

Rime itself is lying above this translation module and is a thinly layered collection of protocol prim-
itives, each adding a tiny bit of functionality, starting from anonymous broadcasts (abc) up to reliable-
multihop (rmh). The application chooses the kind of connection it needs to maintain with other nodes
and also, similar to UDP/TCP has logical channels to separate different communications. While very
efficient the rise of IPv6, RPL and 6LoWPAN led to Contiki now being delivered with its IPv6 network
stack if not specified differently.

2.2.6.2 IPv6

IP is one of the most successful protocols used in the Internet, still being used after 25 years and it looks
like it is going to take several years until the transition to its successor IPv6 is going to happen [Vasseur
and Dunkels, 2010]. IP (or IPv4) has a too little address space which lead to the development of the IPv6
standard as early as 1998 [Deering, 1998]. Although many different techniques, like Network Address
Translation and private networks have saved IP from the thread of having no IP addresses anymore.

IPv6 is one of the enabling technologies of the IoT: Everything is on the internet. With its 128 bit
addresses it is possible to have 3.4 1038 different addresses or approximately 4.8 1023 addresses per
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person. This is the reason why the dominant IoT operating systems (RIOT and Contiki) have IPv6 stacks
enabled by default. IPv6 originally wasn’t build for embedded devices but rather for routers which benefit
from the design of the IPv6 header: it is always the same length and uses extended headers when needed
(see figure 2.3). This format allows several hardware optimizations for routers which do neither run on
battery nor have constraint RAM or computing power.

Sensor nodes in WSNs have to act as sensor and as router for its neighbours which makes it necessary
to understand IPv6. As sensor nodes do not have hardware optimizations and need to keep packet lengths
much shorter than is required by IPv6, it was necessary to find a way to compress the IPv6 header as
much as possible, which is done by 6LoWPAN.

2.3 MAC Protocols

Medium Access Control(MAC) protocols are applied on the link layer, controlling access to the radio,
deciding when to communicate with the neighbour [Huang et al., 2013], [Roemer, 2014]. There are
many different simple mechanisms which can be used to make them more efficient or reliable. Due to
its control of the radio, which uses the most power of all the components of the sensor node, it has the
most influence on power consumption. Moreover, as MAC protocols are responsible for how to directly
communicate it has the most options to secure communications against interference.

2.3.1 Duty-Cycling

Turning the radio on is costly, it doesn’t matter if it is to listen or to transmit, the needed power is about
the same. For the Tmote Sky as for all the sensor nodes most of the power consumption comes from
the RF module (see section 2.1.1.1). Therefore a technique called Duty Cycling was developed which
allowed the radio to stay in off-mode most of the time and wake up fast in order to receive or transmit a
packet.

Doing so introduces new problems: When do devices wake up, how does a device know there is a
signal on the air which is indeed a packet and not noise. How to deal with this problem will be explained
in the following sections.

2.3.2 CSMA vs. TDMA

The two biggest categories used to classify MAC protocols are CSMA and TDMA protocols. CSMA
stands for: Carrier Sense Multiple Access while TDMA means Time Division Multiple Access. CSMA
is used to determine whether the channel is busy or not, and is also used to decide whether there is a
packet on the air or not. The value measured is the Received Signal Strength Indicator (RSSI) which is
normally written in dBm. A threshold is configured which determines above which signal strength the
channel is busy. This value should be well above the noise threshold. If in a given area the noise strength
and the signal strength are well known, one can choose a good value, slightly below the signal strength.

Carrier Sense also means that sensor nodes which want to send a packet first listen and decide whether
it is safe to send. Sensor nodes cannot determine whether a packet has been received successfully, but it
can make sure that it started to send when no other signal was on the air which would have been strong
enough to make the transmission unusable, or in other words, would have corrupted the transmission.
The process of checking if the channel is clear to send is called Clear Channel Assessment (CCA).

TDMA assigns every sensor node its own timeslot to send. No other participant of the network is
allowed to send during this time, which should guarantee a successful transmission, assuming there is no
noise strong enough to corrupt the packet.

TDMA needs good time synchronization in order to work, which results in an overhead of commu-
nication, as clocks will drift apart without readjustments. CSMA will sometimes result in having to try
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several times before being able to send, delaying the packet, but not wasting energy. If TDMA is used at
all it used together with CSMA, as it normally costs little to nothing but results in much saved energy.
Examples for CSMA: ContikiMAC, S-MAC, T-MAC
Examples for TDMA: LMAC

2.3.3 Multichannel vs. Singlechannel

The physical layer of wireless communication technologies normally provides several different frequency
ranges, called channels which can be used to have concurrent transmissions, not interfering with each
other. For example IEEE 802.15.4 can operate in three ISM bands (800MHz, 900MHz, 2.4GHz). Lately
more of the lower bands have been added to the 802.15.4 bands: 314-316 MHz and 430-434 MHz. In
total there are 16 channels in the 2.4GHz band which are usable. But most of them are shared with WiFi,
which has stronger signals and can corrupts packets on the air when sent concurrently. Other interference
sources which fall into the same frequency band are, for example, Bluetooth and microwave ovens.

Single-channel, as the name suggests, operates on only one channel, and never switches channels. If
there is interference or noise which disturbs communication, the underlying MAC protocol has to find a
way to deal with that, for example by periodically checking the channel and delaying. Another solution
would be that the routing protocol has to abandon that route and find another way.

Multichannel protocols operate on several different channels and change channels on a regular basis.
This is useful if there are several different sources of interference on different channels, so that one cannot
choose a good and safe channel for communication. This technique is also called channel hopping and
requires, like TDMA, good synchronization, and mechanisms to recover if neighbours have not heard
from each other for a longer period. Multichannel protocols are much simpler than their counterpart
and therefore often preferred if the channel used is guaranteed to be free. Several famous protocols, like
Bluetooth Low Energy (BLE) [Gomez, Oller, and Paradells, 2012] and the rest of the Bluetooth family,
use channel hopping to be more robust and reliable.

2.3.4 Sender vs. Receiver initiated

Communication can either be started or initiated by the sender or the receiver. For example if the sender
wants to transmit its data to another node it starts sending preambles before it starts sending. The receiver
then wakes up and starts receiving. No further setup is needed: The sender just starts sending whenever
it needs to.

Receiver initiated communication is not used that much in WSNs as it needs further set-up and
therefore more messages until the transmission starts. The receiver first sends a preamble, signalling it is
ready for data. The sender wakes up and receives the preamble. Afterwards it can start to send its data to
the receiver. This is useful if the network is master-slave based and the master needs data from its slave.
Examples for sender initiated MAC protocols: B-MAC, WiseMAC, ContikiMAC
Examples for receiver initiated MAC protocols: A-MAC, Y-MAC, PW-MAC

2.3.5 Flooding (Capture Effect)

The capture effect describes the phenomenon that if two signals within similar signal strength are re-
ceived, only the stronger one is actually received. This is used by flooding protocols in which all nodes
try to transmit the same packet at nearly the same time, which results in a boosted signal. Every node
receiving, does not notice the weaker signals, only the one from the transmitter nearest to it, due to the
capture effect. Examples are Glossy and Chaos.
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2.4 MAC Protocols in Contiki

We now examine in detail the MAC protocols for which an open-source Contiki implementation exists.
ContikiMAC has several different MAC protocols and currently more protocols are developed for it, such
as Glossy and TSCH.

2.4.1 Medium Access Control vs. Radio Duty Cycling

In Contiki there is a distinction between MAC and RDC. Those two mechanisms, while being on the
same OSI layer, are handled separately. Technically, RDC handles the radio access more directly and
is used to control when the radio is switched on and off in order to save energy. This in turn impacts
the ability to correctly receive packets. CSMA is used as a retransmission mechanism if sending on the
RDC layer fails, which is somewhat redundant for RDC protocols with inbuilt retransmissions. Newer
protocols do not differentiate between MAC and RDC and handle both mechanisms in one protocol.

2.4.2 NullMAC/NullRDC

NullMAC and NullRDC are the very basic variant of any MAC protocol. No CSMA is used and the
radio is always on. This is normally not useful as keeping the radio always on will keep the battery way
too fast. The decision to not use CSMA on the other hand can sometimes end up in better results if
the interference on the air is so strong and frequent that every CCA attempt fails because the medium
is assumed busy. The only alternative for NullMAC is CSMA in Contiki, while NullRDC has several
alternatives, which will be described in the following sections.

2.4.3 XMAC

XMAC’s primary design idea was to introduce asynchronous duty cycling, as most protocols at this time
had at best a combination of low-power listening and synchronous duty cycling [Buettner, Gary V Yee,
et al., 2006]. Moreover, long preambles were being used to indicate the imminent transmission of a
packet. As written above, the radio module accounts for the highest power consumption and therefore
must be kept off as much as possible.

The need to reduce the usage of the radio, gave birth to the idea of shorter preambles, which, to
reduce overhearing, also contained the ID of the target. Overhearing means that a node which the packet
was not meant for also wakes up and receives the packet, only to discard it afterwards. By being able to
decide whether a packet was meant for a node by only receiving the preamble reduces the time the radio
has to be kept on, as nodes which were not the intended receivers can go back to sleep immediately. The
short preamble, with pauses between each transmission is called a strobed preamble.

If a node receives its ID in a packet it replies with a so-called early ACK which causes the sending
node to send the data packet. After the first packet was transmitted the receiver keeps its radio on in order
to receive any other queued packets meant for it (see Figure 2.4).

2.4.4 ContikiMAC

ContikiMAC is Contiki’s default MAC protocol and has been published in 2011 [Dunkels, 2011]. It is
a duty cycling protocol that is sender-initiated. The idea is that the receiver periodically wakes up to
execute two CCAs in quick succession and based on that decide whether it is getting an transmission or
not. The sender sends its packet as long as it does not receive an ACK (see Figure 2.5). For that to work
properly several timing constraints have to be met (see Figure 2.6):

• ta, time between packet reception and the start of ACK transmission
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Figure 2.4: The sender transmits small preambles which contain the ID of the receiver. The receiver
wakes up and sends back an ACK which triggers the actual transmission. After the
received packet the receiver keeps its radio on to receive other queued packets. [Image
extracted from Buettner, Gary V Yee, et al. [2006, page 310] ]

Figure 2.5: The receiver sleeps most of the time and does two CCAs in a short period of time to
determine if there is an ongoing transmission. If it received one it stays awake and send
back an ACK. [Image extracted from Dunkels [2011, page 2] ]

• td, amount of time needed to receive ACK

• ti, the time between to data packets, has to be greater than ta + td, otherwise receiving an ACK
cannot be guaranteed.

• tr, the time which is needed to execute a CCA

• tc, the time between two quick CCAs, has to be greater than ti otherwise reliable recognition of
incoming data packets cannot be guaranteed.

• ts, minimum packet transmission time, needs to be bigger than tr + tc + tr, otherwise packets could
fall into the time between two CCAs.

Additionally, to minimize packet retransmission senders can note when the receivers ACK arrived,
and use that knowledge to send exactly twice. This is called phase optimization.
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Figure 2.6: The different important timings of ContikiMAC are displayed here. [Image extracted from
Dunkels [2011, page 2] ]

2.5 FEC

Forward Error Correction (FEC) codes are used to recover corrupted bits in a packet after it has been
received. There are properties which are shared by FEC codes: Given a message of k bits and an encoded
message with n bits, where n > k and n, k ∈ N, then at most b n−k

2 c bits can be recovered, which means for
MAC protocols that additional robustness against interference comes at the price of additional bits which
have to be transmitted. There are several different FEC codes, but in this thesis only Reed-Solomon
Codes are used, which is why only they are introduced in the background section.

2.5.1 Reed-Solomon Codes

Reed-Solomon codes were developed in 1960 by IS Reed and have been used in several different fields
[Guruswami, 2010], [Richardson, Iain and Riley, Martyn, 2016]:

• Storage devices such as CDs, DVDs, tape

• ADSL, xDSL

• Satellite communications

Reed-Solomon Codes are defined for integers 1 ≤ k < n, over a Field F with size ≥ n and a set
S = α1, . . . , αn as

Reed − S olomonF,S [n, k] =
{
(p(α1), p(α2), . . . , p(αn)) ∈ Fn|p ∈ F[X]is a polynomial of degree ≤ k − 1

}
(2.1)

To encode a message m = (m0,m1, . . . ,mn) ∈ Fk the message is interpreted as polynomial

p(X) = m0 + m1X + · · · + mk−1Xk−1 ∈ F[X] (2.2)

The polynomial is evaluated at the points α1, α2, . . . , αn to get the corresponding codeword. This means
that the message-vector is multiplied with the generator-matrix G containing all generator polynomials.

For decoding the message is evaluated at the points α1, . . . , αn−k and has to vanish in all those points.
If so, the added code can be taken away from the message without further computation as the received
message is c = m + e.

If less than b n−k
2 c errors occurred one has to:

1. Find an error locator polynomial (Berlekamp-Massey, Euclid)



2.5. FEC 19

2. Find the roots of this polynomials

and then calculate the Symbol error values using the Forney algorithm.
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Chapter 3

Experimenting with Interference

In order to understand the influence of interference on the performance of ContikiMAC experiments with
repeatable interference were designed. First the environment in which the experiments are carried out
and the experimental design are described in Section 3.1. The repeatable interference generator used in
the experiments is described in Section 3.1.1. Following are the metrics which shall be determined by
the experiments are introduced in Section 3.2. Afterwards the results of the experiments are discussed in
Section 3.3. During the experiments issues occurred which are described in Section 3.4.

3.1 Experimental Setup

The testbed used for the experiments is located the Institute of Technical Informatics, Technical Univer-
sity of Graz. It contains up to 90 Tmote Sky sensor nodes distributed over two rooms, Lab North and
Lab South. The distribution and location of the nodes can be seen in Figure 3.1. Lab North has a higher
number of nodes and higher node density, while Lab South has nodes equipped with SMA antennas,
which results in a 6dbm gain and a stronger signal. The final experiments in this work were carried out
in Lab South as it has been available more often than Lab North, which was used by other researchers as
well.

In Lab South the following sensor nodes were used:

Channel TX TX Power CCA [dbm] RX TX Power CCA [dbm] Interferer TX Power
20 205 7 -80 201 7 -80 213 31
11 200 7 -83 211 7 -83 202 31
26 204 15 -83 214 15 -83 212 31

Data from all these nodes was gathered for the experiments. The results of the nodes was then
averaged and the standard deviation calculated. Every experiment consisted of a certain amount of
packets, mostly 1000, being sent from a dedicated sender node to its assigned receiver. During the whole
duration of the experiment the same interference level is present, in order to find out how well a protocol
does under certain levels of interference. After the experiments the results were evaluated by the metrics
given in the section below. The interference for the experiments was created using a dedicated interfering
node, running JamLab, explained in Section 3.1.1.

Every experiment was redone many times during the development phase. For the evaluation one
experiment with 1000 packets to be sent, was run during the night, when the external interference should
be minimal.

21
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Figure 3.1: In this picture the locations of all the nodes in Lab South can be seen. [Image extracted
from Boano [2016] ]
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3.1.1 JamLab

While the community was developing protocols it was lacking the means to debug and test them effi-
ciently. It was hard to create interference reliably and neigh impossible to do so in a repeatable manner.
In 2011 JamLab [Boano, Voigt, et al., 2011] was developed as a tool to aid developers when creating
a protocol. Testbeds at universities were normally equipped with many nodes but not with dedicated
interfering devices, which were configurable over the internet. JamLab solves that problem by turning
ordinary sensor nodes into interfering devices. This also means that no additional hardware needs to be
bought in order to create interference. JamLab’s target platform is the Tmote Sky and the CC2420 radio.

In order to create repeatable interference JamLab uses prerecorded interference patterns which is
replayed at runtime. Such patterns contain video-streaming, surfing or data transmissions over WiFi,
microwave ovens, which when switched on interfere with a wide range of channels, or Bluetooth, which
due to its channel hopping also affects a wide variety of frequencies.

In order to record interference a much higher sampling frequency of the medium is needed than in
normal 802.15.4 operations. This is because WiFi sends at a higher frequency than 802.15.4. Therefore
the cpu speed needs to be boosted and can reliable catch all 802.11b communications. Unfortunately
with the CC2420 it is not possible to reliably detect the smaller 802.11g/n frames, which means we
cannot emulate this kind of interference.

This tool enables developers to test their protocols in the same settings and therefore enables mean-
ingful performance comparison between protocols. This is why JamLab was decided as this Thesis’
generator of interference.

As mentioned above JamLab incorporates many different styles of interference, from audio stream-
ing via 802.11b to total jamming of the carrier. In our experiments we only use the different WiFi
interferences as these are the most commonly found.

• WiFi1: is audio streaming and very little interference, but today many households use audio
streaming.

• WiFi2, is video streaming which is slightly stronger than audio streaming. In all the experiments
only WiFi2 is used representing weaker interference.

• WiFi3, is FTP file transfers, which nearly jams the carrier. Here we can see how well protocols
fare against harsh conditions.

3.2 Metrics

The metrics which are used to determine how well a protocol does are:

• Success Ratio: how many packets which are sent by the application, arrive successfully at the
target.The success ratio tells us how reliable a protocol is, a crucial point for all protocols. For
some applications a low success ratio might be sufficient as it only contains non-critical data, such
as a fridge communicating its content, or a coffee-machine sending its tank status. Also for audio-
streaming application where realtime is more important than receiving all packets a low success
ratio might be sufficient. For other applications such as a security system or health care products
losing packets might not be acceptable.

• Total Energy consumption: energy consumption in general is an important characteristic for MAC
protocols. Remote sensor nodes need to use as little battery as possible and therefore communica-
tion must use as little resources as possible and not communicating should not cost battery. As we
will notice the PRR heavily influences the energy consumption.
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• Latency: the time between sending the packet and the successful reception. While this is an
important characteristic for some applications, this work will not put any emphasis on latency.

3.2.1 Secondary Characteristics

All of the aforementioned metrics, can be calculated by gathering data on the MAC layer and below, and
monitoring the energy consumption. As mentioned above there are different kinds of events that will
happen during communication under interference, which will be used to determine the metrics.

• Number of successfully received packets,

• number of acknowledged packets,

• number of sent packet,

• number of packets dropped due to channel activity, referred to as deferred, packets

• number of corrupted packets,

• number of lost packets, which were sent but not noticed at the receiver. These can only be calcu-
lated off-line,

• number of lost acknowledgements, which were sent by the receiver but did not reach the sender.
These as well can only be calculated off-line, after a finished experiment.

Some of the secondary characteristics do not directly relate to the metrics but might indicate why
a protocol does poorly and what can be done as a countermeasure. Moreover, knowing exactly what
happened to a packet increases certainty in the data.

In order to gather this data, we need to look at the device driver and the MAC protocols, which
contain the low level part of the communication. We need to count every event and print updates on what
is happening during the experiment.

There is such a mechanism in Contiki which has been used to determine how well Rime and its proto-
cols do, but we are not interested in Rime and its many layers, but MAC protocols such as ContikiMAC.
RimeStats gives a good idea on how to implement collecting the data and actually gathers a good amount
of what we will need, but as will be seen later, some data is still missing.

Concerning the energy consumption, energest will be used to estimate the energy used during com-
munication.

All this data, RimeStats and energest, will be printed over the serial interface, with every node print-
ing its data over its own device, in addition to some additional output by the protocol. This data will be
parsed afterwards by post-processing.

The data which is needed to calculate this metrics is gathered using RimeStats, an inbuilt data gath-
ering tool which counts certain events listed below. All of the meanings given to the items were extracted
directly from the code. If no further explanation was given to an item, it was not used for any calculation
or in any protocol experimented with.

• tx, contains every successfully sent packet,

• rx, contains every successfully received packet,

• reliabletx, contains every packet which is not a broadcast and passed NullRDCs CCA before
sending,

• reliablerx, not used,
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• rexmit, not used,

• acktx, not used,

• noacktx, not used,

• ackrx, contains the acks the sender received

• timedout, not used,

• badackrx, not used,

• toolong, form of corruption on the driver layer,

• tooshort, form of corruption on the driver layer,

• badsynch, form of corruption on the driver layer,

• badcrc, form of corruption on the driver layer,

• contentiondrop, contains the packets which failed the CCA in the driver

• sendingdrop, not used,

• lltx, contains every packet loaded into the sending buffer,

• llrx, contains every packet received on the driver which was not corrupt in any. way

The metrics which were used were calculated in the following way:

Experiment Packet Number = Number of Packets enqueued to be sent = 1000 (3.1)

sent = lltxsender − contentiondropsender (3.2)

corrupt = toolongreceiver + tooshortreceiver + badsynchreceiver + badcrcreceiver (3.3)

received = llrxreceiver + corrupt (3.4)

PRR % =
llrxreceiver

sent
(3.5)

Lost % =
sent − received

sent
(3.6)

Corrupt % =
corrupt

llrxreceiver + corrupt
(3.7)

Sender Success Rate % =
ackrxsender

ExperimentPacketNumber
(3.8)

Deferred % =
contentiondropsender

lltxsender
(3.9)

Acks Lost % = 1 −
ackrxsender

sent
(3.10)

Success Rate % =
llrxreceiver

Experiment Packet Number
(3.11)

How reliable the protocol is can be seen through the Success Rate, which describes the portion of
packets which arrived successfully at the application layer. The sender success rate shows how reliably
the sender achieved to send a packet and receive an ACK, basically the reliability of the connection from
the sender’s point of view.
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Figure 3.2: Metrics calculated from the data gathered for NullRDC

3.3 Results

The results of the first experiments under interference are documented here. First the whole setup was
verified with NullRDC, first with no interference, then with WiFi2 (video streaming) and WiFi3 interfer-
ence (FTP). Afterwards ContikiMAC was tested in order to understand how ContikiMAC behaved under
interference, and also why, as this understanding is necessary for improving the protocol.

3.3.1 Verification: Aloha (NullRDC)

In order to have some comparability between ContikiMAC and NullRDC considering the timing and on
how long the experiments take, the delay between each packet sent for NullRDC was 1

8 of a second. We
can see in figure 3.2 that NullRDC does not do too bad performance wise, but under heavy interference
more than 40% of the packets are corrupt. The PRR is slightly higher than the Success Rate or PDR,
as it is only counts packets which were really sent. In other words: If a packet is sent, how high is the
probability for it to arrive at the receiver correctly. Not every packet which is queued to send is actually
send. Some are dropped or deferred if the CCA check directly before sending is not passed. We can see
that up to 15% of packets are not sent due to heavy interference in figure 3.3. As NullRDC does not have
any form of retransmission, every deferred packet will not get transmitted to the receiver.

3.3.2 ContikiMAC

For ContikiMAC the stats indicate that most packets, which are sent, are lost, even without interference,
which can be seen in figure 3.4. This is the reason why the PRR is below 50%, but this has no influence
on the reliability itself, but the energy consumption. A lower PRR means more retransmission and there
more energy consumption. Considering that some packets will always be lost if the sender has to find
the receivers schedule, the result for no interference is good. The success rate tells us how reliable the
protocol all in all is and for no interference it is 100%.

Upon further investigation we notice that lltx does not describe every low level packet sent, but
rather every packet that is loaded into the buffer, which is a big difference in ContikiMAC. This means
we will need more data in order to correctly calculate the packets which are actually sent in ContikiMAC,
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Figure 3.3: Metrics calculated from the data gathered for NullRDC

and also to find out why ContikiMAC does so poorly under interference. Although we can determine the
Success Rate correctly we do not know why exactly ContikiMAC crumbles under interference

3.4 Issues during Experimentation

Currently a tool provided by Contiki called serial-dump. It can read from one or more serial devices at
the same time, in a single thread. It can send commands to the nodes, but every node will receive the
same command, which often does not make sense. The data of all nodes read, will be written into one
file, which can then be parsed later.

This is not ideal for many reasons:

• To read many nodes at once one can start one process for each node which has to be logged, or
write one’s own tool.

• Sending commands to single nodes during the experiment is not possible. Only global commands
are possible if one instance of serial-dump is started for all nodes and with the approach of one
process per node sending individual commands is possible but not practicable.

• Configuration is therefore not possible on an individual level.

It would be much better to have:

• One thread per node inside a single process.

• A possibility to configure every single node individually, reducing the number of resets and flashes.

• Possibility to have control during the experiment, for example: print current status.

• Do some precomputations in order to reduce effort during the post processing phase.

Not being able to configure also introduces another issue: Every reconfiguration means recompilation
and then re-flashing. Depending on the testbed structure reflashing equates to having to wait longer than
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Figure 3.4: We can see that without interference performance is good, but even when weak inter-
ference is present the performance drops significantly. The data itself does not suggest
a clear culprit, so further investigation is necessary.

the experiment might take, especially during development where most of the time different approaches
are tried out.

The issues which occurred during experimentation together with the data which is needed to accu-
rately analyse ContikiMAC led to the decision to build the framework, described in Chapter 4.



Chapter 4

Framework

In the last chapter problems that arose during experiments were described, as well as data which was
missing. In this chapter first the motivation for implementing a framework assisting in executing and
evaluating experiments will be given in Section 4.1. The complete design and reasoning behind it are
given in Section 4.3. After that the implementation and all its details are described in Section 4.4. Finally
in Section 4.5 some improvement opportunities of the current implementation are discussed.

4.1 Motivation

In order to ensure easy evaluation and analysis of protocols a test framework was written. The first step
was to gain a deeper understanding of Contiki’s protocols under interference which was not possible with
current tools available in Contiki. How many packets were actually sent and passed the CCA? Why was
this transmission aborted? In order to design countermeasures against interference a deep knowledge of
what happens during a transmission is needed. This was the leading design ideal.

Another design ideal was to ensure smooth experiments with a clear, easy and automatable workflow.
As during development and fine-tuning of a protocol many experiments are necessary, the less time is
spent on configuration, compilation and re-flashing the faster the progress. This is even more important
as often experiments are executed on large testbeds with many nodes, sometimes up to hundreds of
nodes, where re-flashing will take even longer.

Generally these experiments all are similar: A large number of packets is sent from sensor node
A to sensor node B, sometimes over a multi-hop network, sometimes only over a single hop. For this
thesis only the single hop case is observed. During transmission, an interferer is activated to disturb the
communication. Now packets are lost or not sent due to channel activity, acknowledgements are lost and
packets are corrupted. All of these events have to be recorded in order to be evaluated later.

While this does not sound complex at all, there are three different challenges that arise when doing
experiments:

• Generating repeatable interference

• Software running on the nodes

• Software running on the host

4.1.1 Generating Repeatable Interference

The problem of generating repeatable interference was solved using JamLab and described in chapter 3.
JamLab itself is not integrated in this framework.

29
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4.1.2 Testing Software running on the nodes

For every single experiment the node configuration has to be adjusted. Concerning Contiki that means:

• the configuration has to be adapted, for example the frequency of wake-ups for duty cycling pro-
tocols,

• Contiki has to be recompiled and the sensor node has to be flashed with the new binary

This is quite time consuming and flashing multiple sensor nodes can take a wile, dependant on the infras-
tructure used for experimentation. Furthermore every node will print debug-output which can be used
for evaluation via its serial connection. These outputs, also called traces, are recorded on a server, which
is connected to the nodes. After the experiment is finished the traces are analysed and post processed
to extract the data sought after and finally a new experiment can be started, after reconfiguration. As
many different experiments are necessary in order to analyze, improve, debug and fine-tune a protocol
every time saving mechanism should be built into the testing framework. In general the software running
on the nodes should apart from being highly configurably online also gather a variety of data which is
described in Section 3.2. The complete implementation is described in Section 4.4.2.

4.1.3 Testing software running on the host

All the nodes are normally connected to one or more servers. On it a piece of software is running which
collects the serial output of all the nodes. This data is called traces and normally the software doing
this job is simple and cannot do anything apart from reading the serial device. Additionally the current
implementation is single-threaded which means that in order to collect data from more than one node, a
second process needs to be started which makes sending commands, such as configuration parameters or
start and stop commands to nodes harder. The implementation of the host is described in Section 4.4.1.

4.2 Requirements

There are several different requirements to a framework:

• Scalability: There are huge testbeds with several hundreds of nodes. The framework should be
able to handle a testbed that big. Moreover it should be very easy to add more nodes to an already
configured experiment.

• Extendability: It should be fairly easy to add new commands and configuration options to the
framework. Often during experiments the need for more, additional data arises, which is why
there should be one file in the framework which needs to be changed to add additional data.

• Reduction of flashing the testbed: Every time the need to flash the testbed arises, time is wasted,
which is why as much as possible should be configurable during runtime. This also needs to be
added to Contiki itself, as many of the configuration options are decided at compile time. This will
not be necessary any longer for the latest hardware, as it has much more memory available and
could therefore handle being configured at runtime. This, we cannot influence though, we have to
work with what is given by Contiki.

4.3 Design

With the requirements mentioned above in mind the following design, see figure 4.1, came to light
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Figure 4.1: On the left hand side the host/server can be seen which reads the configuration and
sends it to the nodes at start up. The nodes can be found at the right hand side which
communicate via the serial interface with the host. For every node a thread is started
which relays commands and logs the output of the nodes.

• Node - Test Client: Every node has the same piece of software on it, running a certain proto-
col. It waits for instructions of the controller and its configuration before the experiment can be
started. As the aim is to test point to point connections every node has to be paired with a com-
munication partner, which is given to node by its configuration. Additionally the CCA threshold,
sending power, channel, who is the sender and the receiver, are all transmitted to the node by its
configuration.

After that an experiment can be started by the controller, which consists of many packets being
sent from the sender node to the receiver node. When the experiment is done, the nodes signal
they are finished to the controller, indicating a new experiment can be started.

On the node, in the MAC protocols data is gathered. Adding a new datum only requires manipu-
lating the statistics file and adding a line where to count the event. As every MAC protocol has its
own metrics and data which influences its performance this is a necessity.

Adding new commands also is very easy and is taken from the existing shell structure of Contiki,
which means little effort is needed to implement new commands.

• Server - Controller/Host: Every node is connected the controller which runs the testing host. At
startup it reads a configuration file with the configurations for all the nodes which take part in the
experiment. After that connection to the nodes is established, a check is made whether all the
nodes are connected, the configuration transmitted and a thread for communication is started.

Afterwards an interactive shell is started enabling the user to control the nodes and adjust config-
urations is necessary. Then the experiment can be this started. During the experiment the output
of all nodes will be written line by line to the terminal, which should enable users to follow their
experiments in real time. For every node, log-files are created containing only their output. If a
node’s message starts with a [tag] a new file only containing those messages is created. New tags
can be added easily and new files will be created automatically. This makes it easier to have a fast
overview of how the experiment is going and eases post-processing.
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Rime−Address Channel TX−Power P a r t n e r −Address Cont inuous −Mode [ 0 /1= on ] CCA[dBm]
Sender / T r a n s m i t t e r [ 0 /1= s e n d e r ]

0 . 1 9 26 15 0 . 1 8 0 −35 1
0 . 1 8 26 15 0 . 1 9 0 −35 0

Listing 4.1: The first line describes the basic syntax of the config file while the other two lines
show an example of two nodes set up for an experiment. The nodes with addresses
0.18 and 0.19 communicate on channel 26 with TX power set to 15 and a CCA
threshold of -35 (which equals to -80dBm). 0.19 is the sender and the experiment is
not automatically repeated afterwards.

4.4 Implementation

As implementation language C was chosen. C is very efficient, but developing in C comes at a cost:
Development is much slower than with a high-level language and it comes with less comprehensive
libraries which are not needed anyways. The implementation language for the Contiki program was C as
well, which was predetermined by the Contiki platform itself.

4.4.1 The Host

The program is started as follows:
./test_program -b <baudrate> [-f <savedirname>] -c <config-file> -p <numberofpackets>
<serialdevice1> <serialdevice2> [more serial devices] ....
At start the program reads the config-file, which has several options per node connected to the computer.
The config-file has one line per node which contains, in any order, all the nodes which should be used
for testing. The syntax per line can be seen in Listing 4.1. The program saves all the logs in the given
directory, which, if it did not exist at program start, will be created. The baudrate determines the speed
with which the host-pc communicates with the sensor node(s). The sensor nodes’ serial devices, which
are used for the experiment, are written at the end of the program invocation.

After reading the config-file the host will try to connect to all the serial-devices and send them the
configuration after connecting successfully. Then the command-prompt will be printed, the user can
make further adjustments to the experimental setup or start the experiment itself, by issuing the start
command. See Figure 4.2 for an example on how a program start looks like. Most of the commands are
just sent to every node connected, but some commands are also or only affecting the host. If a command
is not known by the host, it is automatically sent to all devices. The main commands are:

• start - starts an experiment, also sends a command to all devices to start the experiment

• stop - stops an experiment, sends stop command to all devices and flushes all files,

• continue - continues a stopped experiment, sends continue command to all devices

• send [node id] command - send one command to one node

• save - all the files currently in use are flushed, nothing is sent to nodes themselves

• exit - exits the program, also writes and closes all open files
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Figure 4.2: The program is started with a baudrate of 115200, a packet number of 10.000 and
two nodes connected two the serial devices /dev/moteN07 and /dev/moteN10. After
program start the configuration is read and after checking the serial devices for actual
nodes running the test-client, which is indicated by [OK], the configuration is sent. The
nodes print their configurations and wait for further commands afterwards.

4.4.2 The Node

The nodes have to run the a certain program which features a basic shell, which is provided by Contiki.
The nodes understand the following commands:

• ccathreshold [threshold in dbm] - sets the CCA threshold of the node.

• txpower [power from 0 - 31] - sets the transmission power of the node,

• rfchannel [11 - 26] - sets the communication channel of the node.

• start - starts an experiment, with the role given by the configuration. It also resets all the recorded
statistics, so that if an experiment was run before it does not influence the statistics of the current
program.

• stop - stops the experiment,

• continue - continues the current experiment,

• getMoteId - the command used to check if the serial device is a node. The node answers with its
ID.

• test-config <number of packets> <channel> <TX power>
<target node id (e.g. 0.19)> [<continuous = y(/n)>] - this command is used to trans-
mit the configuration in one go to the client.

Adding more commands to the client is, as was required, fairly easy. The code for an additional
command can be seen in Listing 4.2. At the moment there are several more commands which come with
the basic shell. To view these send the help command to the nodes.

After an experiment has been started it runs until completion. At completion the nodes each send
a message, indicating that the experiment has been completed. Another experiment can then be started.
All messages will be logged in one file, additionally for every line printed starting with a [tag] a new
file will be generated which contains all the lines that started with [tag]. As such adding a new [tag] is
very easy: It is done by adding a printf("[newtag] data\n"); to the client. Currently the following
tags exist:
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PROCESS( cmd_process_name , " p r o c e s s _ s t r i n g " ) ;
SHELL_COMMAND( command_name ,

" command_s t r ing " ,
" command_s t r ing " ,
&cmd_process_name ) ;

PROCESS_THREAD( cmd_process_name , ev , d a t a ) {
PROCESS_BEGIN ( ) ;
/ / command code here

PROCESS_END ( ) ;
}

/ / s h e l l code
PROCESS_THREAD( p r o t o c o l _ t e s t i n g _ s h e l l , ev , d a t a ) {

PROCESS_BEGIN ( ) ;
/ / i n i t i a l i z a t i o n
s e r i a l _ s h e l l _ i n i t ( ) ;

. . .

/ / own commands
s h e l l _ r e g i s t e r _ c o m m a n d (&cmd_name ) ;

. . .

PROCESS_END ( ) ;
}

Listing 4.2: At first a new process has to be declared. Afterwards a new shell command is
created. The code for the command itself is in the PROCESS_THREAD and any passed
arguments apart from the command itself can be found in data. Finally the command
has to be registered in the shell which is running on the client.
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• [energy] - Which contains the cycles for the cpu in low power and normal mode, TX and RX
mode of the RF module. There are several other interesting values, like the clock cycles spent
in interrupt routines, but as these are neglectable compared to the energy consumption of the RF
module they are not used.

• [macstats] - This tag contains the statistics which are being logged, for example: packets sent,
packets received, packets lost, packets corrupted, and many more. All of the statistics taken are
printed, but not always all of them are actually useful for every protocol. The decision to always
print all of the statistics came with the desire to be able to always use the same plotting script for
the statistics.

• [rimestats] - This tag pronounces the inbuilt statistics which are shipped with Rime. The MAC
statistics provide all the Rime statistics plus additional others.

• [packet] - These lines contain per packet statistics, like the RSSI and the LQI, as well as the
packet number itself. These are only printed by the receiver, on receiving a packet.

4.4.3 MacStats

After the start command has been received, the sender-node starts sending packets. Every 500 packets
(this is adjustable) it prints out the current MAC statistics. The MAC statistics are mostly recorded in the
CC2420 driver, but some are in the RDC/MAC layer, as there are several statistics which are unique to a
protocol, for example duplicate detection or lost ACKs. The following statistics are taken:

• lltx - driver level, preparing transmission

• llrx - driver level receiver wake-ups

• lltx_ok - driver level finished transmission

• lltt - driver level transmission calls (included CCA failed transmissions as well)

• tx - successfully transmitted packets which means the MAC driver return TX_OK, counted in the
application

• rx - successfully received packets in the test client

• corruptrx - the packet received was corrupted, but passed the MAC layer, happens rarely

• acklosttx - the packet sent was not acknowledged

• toolong - the packet received in the driver was too long to be a packet

• tooshort - the packet received in the driver was too short, maybe just a false wake up

• badsynch - the first byte received indicated a packet which is too long

• badcrc - the packet did not pass the CRC check. If FEC is available the packet will be corrected
if possible

• collisiontx - the driver could not send the packet because of a failed CCA check

• collisiontx2 - the driver could not send the packet because of a failed CCA check, possibility
number 2 in the cc2420 driver

• duplicate - the MAC driver received a packet it had already received. This probably happened
due to a lost ACK
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• collisionlosttx - the packet was not sent and the network stack returned that the packet could
not be sent. This happens after several tries of sending the packet and failing the CCA check,
meaning the medium was busy every time an attempt to send was started.

• ackcollisionoverheardtx - ContikiMAC did get noise instead of an ACK and therefore stopped
sending.

• contikimacdeferred - ContikiMAC found a busy channel before starting to strobe and therefore
dropped the packet.

• colrxwtx - receiving a packet just before sending, in ContikiMAC, counted as collision

• acklostcomptx - the sender could not make sure its packet was sent due to missing ACKs and
the network stack returns it lost the packet due to an absence of an ACK. This is rather impropable
as ACKs are very short and the probability is higher to lose the packet sent.

• unknownlosttx - if the network stack returns it lost the packet without a reason it would be
logged here

• badcrclost - only counted if FEC is on and the packet had too many errors to be corrected

• badcrcrecovered - only counted if FEC is on and the packet was recovered

• onlycrcrecoverd - if the packet passed the crc check but FEC

• swackrx - software acks received

• swackfectx - software acks send, only used within ContikiMAC with FEC

It is fairly easy to add additional statistics. In the statistics.h file there is a struct containing all the
statistics taken. In there the new value is added. After that it has to be added to the print function as well,
which has due to efficiency reasons, all of the statistics printed hardcoded. At a point it was done by a
loop which was so inefficient, that it was slowing down the experiments. Adding a value to the can be
done by calling MACSTATS_ADD(value_name);.

Every second the energy used is printed for the following node modules:

• RF Module:

– TX: The cycles the RF Module has been on and in transmission mode

– RX: The cycles the RF Module has been on and in listen mode

• CPU:

– LPM: The cylces the cpu has been running in low power mode

– normal: the cycles the cpu has been running in normal mode

4.5 Discussion

At first it was planned to create a host which did most of the experiments automated and on its own.
Taking C for that undertaking was not the optimal choice. Any other language with true multi-threading
and a vast library would have been better.
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• One of the ideas was, in order to speed up communications and to omit printf on the node side, to
implement binary communication, or in other words: to send the data objects directly. The problem
that arose was that this would have cost much time, due to serial driver adjustments which would
have been necessary. Also debugging on the nodes would have been harder, as printf-debugging
would not have been possible, without adding extra modes in the driver. As the target was to
implement the test-client without interfering too much with Contiki’s underlying code-base, so it
would be possible to adopt it in the repository, this idea was then dropped.

• In the beginning the experiment layout also considered having the two nodes communicating with
each other taking turns in sending, in order to find out if multipath-fading had influenced the
performance of the tested protocol. This did not work well under interference, as the nodes had
to make sure that every message was delivered, before continuing to send the next test-packet.
Otherwise collisions due to the test-protocol were possible, as one node was thinking that it had
already successfully received a message, while the other did not receive an ACK so it retried to
send an outdated packet.

The solution, which also resulted in much simpler test-client code, was to run the whole experiment
with only one sender. Afterwards, if necessary, a second experiment would be started which
switched the initial sender and receiver settings. This adjustment made it unnecessary to make
sure that every packet arrived, which meant that if a MAC protocol decided that a packet got
lost, the next in line would be sent and the packet was logged as lost without any further added
complexity.

• Another issue was the growing complexity of the host. At one point during this project, the host
calculated many of the statistics on-line, which made it necessary to implement another command
structure in which certain [tags] in the logs from serial devices resulted in calculations. This
would have been much easier with binary objects, but as this failed due to reasons described
before, it was necessary to parse everything. As this is much easier in object-oriented languages or
languages with larger library support than C (e.g. Python, C++), this was then done either while
plotting or with extra python scripts.

• An issue which we found in the version of Contiki we used was a bug in Energest which al-
ready existed in previous versions but was not discovered until another bug in the clock of the
MSP430 was fixed. The change in behaviour of Contiki was found with git-bisect. The problem
at hand was that the numbers of two exclusive, but always present modes (Low Power Mode
and Normal Mode of the CPU) did not add up. Energest lost cycles with every switch be-
tween these two exclusive modes, as well as direct switches from RX to TX and vice versa of
the RF module. The basic problem was that switching from one mode to another was done
with two separate macros which led to a loss of cycles in between. Instead the new macro
ENERGEST_SWITCH(type_off, type_on) (for the full code see Listing 4.3) which had to be
used instead of the separate ENERGEST_ON(type_on) and ENERGEST_OFF(type_off) macros.
Mr. Atis Elsts kindly provided us with a bug-fix which was then applied to Contiki and led to the
desired behaviour.
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# d e f i n e ENERGEST_SWITCH( t y p e _ o f f , t ype_on ) do { \

r t i m e r _ c l o c k _ t now = RTIMER_NOW( ) ; \

i f ( e n e r g e s t _ c u r r e n t _ m o d e [ t y p e _ o f f ] != 0) { \

e n e r g e s t _ t o t a l _ t i m e [ t y p e _ o f f ] . c u r r e n t += ( r t i m e r _ c l o c k _ t ) ( now − \

e n e r g e s t _ c u r r e n t _ t i m e [ t y p e _ o f f ] ) ; \

e n e r g e s t _ c u r r e n t _ m o d e [ t y p e _ o f f ] = 0 ; \

} \

e n e r g e s t _ c u r r e n t _ t i m e [ type_on ] = now ; \

e n e r g e s t _ c u r r e n t _ m o d e [ type_on ] = 1 ; \

} whi le ( 0 )

Listing 4.3: Instead of two separate macros only one macro has to be called to switch directly
from one state to another. While this still is not perfect, it loses unnoticably little
cycles and is therefore much better and far more accurate than its predecessor.



Chapter 5

Revisiting ContikiMAC

After gathering new data via MacStats, ContikiMAC is now ready to be re-evaluated with new insights.
Therefore at first the metric calculation is updated in Section 5.1. Afterwards in Section 5.2 the earlier
experiments are repeated for ContikiMAC in order to gain new insights on its actual performance. The
results are discussed in Section 5.3 where improvements to Contiki’s performance are suggested. The
experiments are repeated with these improvements applied and its results shown in Section 5.4.

5.1 Metric Updates

Due to the new data, the metrics needed to be updated. In order to prevent confusion: ContikiMAC does
not necessarily stop to send due to failed CCA checks, but there are several stages in the protocol where a
packet can be dropped due to noise on the channel, which is why there is a difference between collisions,
which simply result in a packet not being sent by the driver, giving control back to the MAC protocol,
and dropped packets, which ContikiMAC decided it could not transmit.

The following statistics have been used for the plots:

sent = lltx_oksender (5.1)

collisions = collisiontxsender + collisiontx2sender (5.2)

dropped = contikimacdeferredsender + colrxwtxsender + ackcollisiontxsender (5.3)

corrupt = toolongreceiver + tooshortreceiver + badsynchreceiver + badcrcreceiver (5.4)

received = llrxreceiver + corrupt (5.5)

PRR % =
rxreceiver

sent
(5.6)

Lost % =
sent − received

sent
(5.7)

Corrupt % =
corrupt
received

(5.8)

Sender Success Rate % =
txsender

sent
(5.9)

Dropped % =
dropped

Experiment Packet Number
(5.10)

Acks Lost % =
rxreceiver − txsender

rxreceiver
(5.11)

Success Rate % =
rxreceiver

Experiment Packet Number
(5.12)
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Figure 5.1: Results of the former experiment compared to the results gained from MacStats.

5.2 Results

In order to see the difference between these experiments and the ones done before they are shown side
by side in Figure 5.1. This time we used the correct amounts of packets which were actually sent,
meaning on the air, passing the CCA. As we saw before the PRR is not that great and the real amount
of transmissions done by ContikiMAC does even makes it worse, but this accounts only for protocol
analysis and energy consumption.

Earlier only the amount of packets loaded into buffer was counted as transmitted packets. This had
an influence on all the stats calculated apart from the Success Rate, which only looks at how many of the
enqueued packets were delivered, which is why it did not change. This also means that concerning the
reliability of ContikiMAC no new insights were gained.

It can be seen that for heavy interference most packets are lost, which can be explained to the receiver
being asleep when the actual sending took place. But is that really what happened? If we look at how
many packets were dropped early in Figure 5.2, we find out that three quarters of the enqueued packets
were dropped before the nodes were even trying to send them. Another fifth was early dropped due to
noise which happened to be on the channel instead of an ACK. For a node running ContikiMAC which
retransmits for one period until it receives an ACK this is a fatal flaw under interference.

5.3 Discussion

From these results can be seen that ContikiMAC suffers very hard under interference, the problem being
not even starting to strobe, but instead return MAC_COLLISION_TX to the upper layer. If there would be a
CSMA layer on top of the duty cycling protocol, that would make it slightly better, but if the interference
stays the same for a longer period of time even that will not change much.

The exact part in the code where this decision is taken can be seen in Listing 5.1. The channel is
repeatedly checked for activity. If any is found, the transmission will be cancelled, and not even begun.
Before that in the code is a check for incoming transmissions, so this is redundant, which is why it was
disabled. This made it also necessary to disable the Phase Lock mechanism as it did not work any more
with the changed timing. We leave it to future work to fix that mechanism, as it also introduces other
problems as well.
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f o r ( i = 0 ; i < CCA_COUNT_MAX_TX; ++ i ) {
t 0 = RTIMER_NOW( ) ;
on ( ) ;

# i f CCA_CHECK_TIME > 0
whi le (RTIMER_CLOCK_LT(RTIMER_NOW( ) , t 0 + CCA_CHECK_TIME) ) { }

# e n d i f
i f (NETSTACK_RADIO . c h a n n e l _ c l e a r ( ) == 0) {

c o l l i s i o n s ++;
MACSTATS_ADD( c o n t i k i m a c d e f e r r e d ) ;
o f f ( ) ;
break ;

}
o f f ( ) ;
t 0 = RTIMER_NOW( ) ;
whi le (RTIMER_CLOCK_LT(RTIMER_NOW( ) , t 0 + CCA_SLEEP_TIME ) ) { }

}
}

i f ( c o l l i s i o n s > 0) {
w e _ a r e _ s e n d i n g = 0 ;
o f f ( ) ;
PRINTF ( " c o n t i k i m a c : c o l l i s i o n s b e f o r e s e n d i n g \ n " ) ;
c o n t i k i m a c _ i s _ o n = con t ik imac_was_on ;
re turn MAC_TX_COLLISION ;

}

Listing 5.1: For several times the medium is checked for activity. If one of those CCA checks
fails the transmission is stopped. The default configuration for the amount of CCAs
is 6.
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NETSTACK_RADIO . t r a n s m i t ( t r a n s m i t _ l e n ) ;
/ / . . .
wt = RTIMER_NOW( ) ;
r t i m e r _ c l o c k _ t s t = wt ;
whi le (RTIMER_CLOCK_LT(RTIMER_NOW( ) , wt + INTER_PACKET_INTERVAL) ) { }

i f ( ! i s _ b r o a d c a s t && (NETSTACK_RADIO . r e c e i v i n g _ p a c k e t ( ) | |

NETSTACK_RADIO . p e n d i n g _ p a c k e t ( ) | |

NETSTACK_RADIO . c h a n n e l _ c l e a r ( ) == 0) ) {
u i n t 8 _ t ac k bu f [ACK_LEN ] ;
wt = RTIMER_NOW( ) ;
whi le (RTIMER_CLOCK_LT(RTIMER_NOW( ) , wt + AFTER_ACK_DETECTECT_WAIT_TIME) ) { }

l e n = NETSTACK_RADIO . r e a d ( ackbuf , ACK_LEN) ;
i f ( l e n == ACK_LEN && seqno == a ck bu f [ACK_LEN − 1 ] ) {

g o t _ s t r o b e _ a c k = 1 ;
# i f WITH_PHASE_OPTIMIZATION

e n c o u n t e r _ t i m e = t x t i m e ;
# e n d i f

s t = RTIMER_NOW( ) − s t ;
p r i n t f ( " g o t ack a f t e r %d s t r o b e s , t ime %d \ n " , s t r o b e s , s t ) ;
break ;

} e l s e {
p r i n t f ( " c o n t i k i m a c : c o l l i s i o n s w h i l e s e n d i n g \ n " ) ;
c o l l i s i o n s ++;

}
}

Listing 5.2: If during the strobe process, after sending a packet instead of an ACK, channel
activity is found strobing is stopped altogether

The other problem mentioned before was stopping the strobes earlier than one full period if instead
of an ACK the channel was busy. In a noisy environment this will happen more often than not. The code
which led to that behaviour and was therefore disabled, can be found in Listing 5.2.

5.4 Revaluation

After disabling those two optimisations mentioned before, the experiment is repeated. In Figure 5.3 it can
be observed that instantly the Success Rate is increased by far if any interference was present. For FTP
interference nearly 50% of enqueued packets were delivered, up from about a percent or two. Another
notable fact is that around 85% of all the packets received are corrupt. Maybe there is a way to reduce
the number of corrupt packets and increase the Success Rate.

Unfortunately the newly found performance comes at a cost: The energy consumption for the trans-
mitter increases heavily, indicated by the lower PRR, which can be seen in Figure 5.4, but being more
reliable will always come at a cost.
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Chapter 6

ContikiMAC with Forward Error Correc-
tion (FEC)

In the last chapter it was shown that ContikiMAC suffers from many corrupt packets, which arrive at
the receiver instead of meaningful communication. Due to this it was decided to employ FEC as is
used in BuzzBuzz, described in [Liang et al., 2010]. First, in section 6.1, in this chapter is the initial
design described which is used together with the existing ContikiMAC design. After that the addition
of FEC into Contiki is described in Section 6.2. In Section 6.3 the experiments which were done in the
previous chapters are repeated for ContikiMAC with FEC, and its results are presented there. Finally in
Section 6.4 the results are discussed and further improvements suggested.

6.1 Protocol Design

Basically adding FEC to ContikiMAC, is adding the code itself after the data and, should the CRC check
fail, call correction function to rectify any incorrect bytes. Unfortunately it is not that easy:

• FEC needs a fixed packet size which has to be transmitted, which means the size of the packets
is pre-determined. This can be omitted but then extra information has to be transmitted with the
frame: How many bytes of error-code have been added to the packet.

For every packet size there seems to be an amount of error-code that improves the overall perfor-
mance, which means that it is its own work to find a good method for handling smaller packets.
The decision was take to the same approach as BuzzBuzz and take 50 bytes of data together with
15 bytes of 802.15.4 frame and encode them with 30 bytes of error-code.

• FEC is slow. In [Liang et al., 2010] runtimes from 100ms up to 200ms depending on how many
errors occurred were observed. Our implementation needs 55ms without errors up to 140 if 15
errors had to be corrected. While our implementation is faster it is still far too slow to work with
ContikiMAC in its current form, as ContikiMAC waits for an ACK for a short period of time and
then sends the next strobe. This time needs to be short as it has to be smaller than the two CCA
checks the receiver does to determine if there is a packet to receive.

To solve that problem the following steps were taken:

1. Sender sends packet with FEC.

2. As soon as a packet arrives, and it is recognized as such an early ACK is sent.

3. On arrival the sender stops sending further strobes and switches its radio off, waiting for the re-
ceiver to perform FEC on the sent packet.
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Figure 6.1: Design of ContikiMAC: In this case the early ACK arrives and the sender stops sending
and waits for the rest of the strobe period and the duration of the correction for the
ACK.
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Figure 6.2: Design of ContikiMAC: In this case the early ACK does not arrive and the sender
keeps sending for the whole strobe period and waits afterwards for the duration of the
correction for the ACK.

4. The receiver also switches off the radio and corrects the packet. It then waits until the maximum
time which could be needed for FEC has passed and sends another ACK in order to signal that the
packet was correct.

5. The sender wakes up after the tFEC,max and waits for the ACK. Afterwards the status is returned.

This still suffers from a serious problem: What if the first ACK is lost? As the automatic hardware
ACKs of the CC2420 cannot be used. Hardware ACKs are only sent if the CRC check passes, which
means for the early ACK in the other cases software ACKs have to be used. Software ACKs are slower
and have therefore a different timing than hardware ACKs which is why only software ACKs were used.

The solution for this problem results in further information which needs to be sent to the receiver:
The last two bytes of each packet sent now contain the time which had passed since the sender started to
send strobes. This information needs to be updated with each strobe, which makes it necessary to reload
the buffer with the timing information. This also makes it impossible to encode those two bytes with
FEC, as it takes too long. This is why the timing information bytes are located after the error-code.

With this information the receiver can calculate when the sender would stop to strobe if the early ACK
did not arrive. The receiver then waits, after correcting the packet, for the rest of the strobe duration and
the tFEC,max until it responds with an ACK. This takes a long time which is why no higher channel check
rate than 4 is possible with FEC. This design is illustrated in Figure 6.1 and Figure 6.2

6.2 Implementation

ContikiMAC previously did not have any FEC implementation included which is why the decision was
taken to include an Reed-Solomon Code implementation with ContkiMAC. In order to make it easier to
use for others who want to enhance any protocol with FEC it the calls to encode and decode any packet
were included in the packet buffer and are ready to use. The function’s names are:
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Figure 6.3: Stats for ContikiMAC with FEC.

• int packetbuf_encode_rs(); after the framer was called, or the header has been generated.
A negative return value means that encoding has failed, which only happens if the code did not fit
into the packet any more.

• int packetbuf_decode_rs(); before the packet is handed to the framer. A negative return
value means that decoding has failed due to too many errors in the packet. If successful, the
function return 0 if the packet did not have to be altered, and the number of errors corrected
otherwise.

• void remove_rs(); removes the error code from the packet and hides it from the upper layers.

• packetbuf_set_corrupt(uint8_t status); is used to mark corrupt packets in the driver
layer. Reflects the status of the hardware CRC check.

• uint8_t packetbuf_get_corrupt(); is used in the MAC layer to determine whether the
driver’s CRC check failed or not.

Furthermore a function to send software ACKs was included with ContikiMAC as it is needed there
twice. Generally it seems advisable to have one 802.15.4 software ACK implementation for Contiki but
at the moment there is no dedicated space for it.

6.3 Experimental Results

The results of the experiment show a massive improvement in reducing corrupt packets for heavy inter-
ference, which can be seen in Figure 6.3 , but the timing problems which come through using software
ACKs and the long period of waiting for the error correction seems to make things worse otherwise. In
Figure 6.4 can be seen that FEC is less effective for weak interference, as less of the corrupt packets can
be corrected. In addition to that, many ACKs which are sent from the receiver, are lost, which can be
seen in Figure 6.5. The energy consumption of ContikiMAC with FEC can be seen in Figure 6.6 is by
far higher, which can be explained by the many missed ACKs and the lower CCR which leads to longer
strobing periods.
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Figure 6.6: Total Energy Consumption of ContikiMAC with FEC compared to the improved Con-
tikiMAC.

6.4 Discussion

We see that the addition of FEC reduced the amount of corrupt packets for heavy interference by nearly
50%. For weak interference the addition FEC seemed to reduce the total number of corrupt packets,
but the additional corrupt packets that occurred due to the additional length of the packet seemed to add
enough incorrectable packets, to make it not beneficial to use FEC in that case. Due to timing problems
we can see that not all the ACKs arrive at the sender, which is something we might look into.
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Chapter 7

ContikiMAC with FEC and Jamming Agree-
ments (JAG)

In the last chapter we saw that lost ACKs are a serious flaw of ContikiMAC with FEC which is why
in an attempt to improve the amount ACKs received the Jamming Agreement is added to ContikiMAC
with FEC which is shown in this chapter. In Section 7.1 the changes to the design are explained, and
shown. Afterwards the implementation details can be found in Section 7.2. Following are the results of
the experiments in Section 7.3 and finally the discussion of those results in Section 7.4.

7.1 Design

The addition of JAG did not change the design in its core, but it made it easier to receive the second,
final ACK. The two scenarios described in chapter 6 stay the same, but the final ACK is replaced with a
Jamming sequence. The scenarios can be seen in Figure 7.1 and Figure 7.2. If the early ACK arrives its
measured RSSI is used for searching for the jamming sequence. If no early ACK arrives, the RSSI must
not return to the noise floor for the duration of the jamming in order to be recognized as such.

7.2 Implementation

The implementation is heavily based on source code provided by Dr. Boano, which was included in my
Contiki implementation. The code needed for jamming is based on the platform itself, which is why the
necessary code was placed in platform/sky/dev/. In order to start a jamming sequence the function
jamming_acknowledgment(rtimer_clock_t duration, uint8_t carrier_type, uint8_t jamming_power);
needs to be called. The parameters are used as follows:
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Figure 7.1: Design of ContikiMAC: In this case the early ACK arrives and the sender stops sending
and waits for the rest of the strobe period and the duration of the correction for the
Jamming Agreement.
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Figure 7.2: Design of ContikiMAC: In this case the early ACK does not arrive and the sender
keeps sending for the whole strobe period and waits afterwards for the duration of the
correction for the Jamming Agreement.
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Figure 7.3: Stats for ContikiMAC with FEC and JAG.

• duration defines the duration of the jamming sequence.

• carrier_type selects the type of jamming. 1 is for a modulated carrier and 0 for an unmodulated
one.

• jamming_power adjusts the strength of the jamming and is essentially the same as the transmission
power.

In order to check for jamming sequences the function
uint8_t jam3_check_for_jamming(int8_t wanted_rssi);
has to be called. wanted_rssi describes which RSSI is the expected jamming level. If a value below
the noise floor is passed then the signal must not return to the noise floor to qualify as jamming.

7.3 Results

We can see in Figure 7.3 that the addition of JAG did not really impact the receiver side performance.
Performance under heavy interference decreased slightly, while performance under light interference
increased. JAG was only meant to increase the accuracy of information for the sender, which can be seen
in Figure 7.4. The energy comsumed with JAG is again higher than its previous version, where only an
ACK was sent. This can be seen in Figure 7.5.
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7.4 Discussion

The addition of JAG provided us with far better ACK reception than the previous version of ContikiMAC
with FEC. There might still be the possibility of further improvement for overall reliability of the protocol
by fixing the timing issues it has, as many of the problems this protocols has stem from it being slowed
down by FEC.

The high energy cost can partly be explained by the attempt to send as fast as possible. Without
Phase Lock this will result in the maximum number of sent data strobes by the sender. This means that
in turn for the protocol to work better the Phase Lock mechanism needs to be fixed.



Chapter 8

Outlook and Related Work

Interference has been a problem for WSN for a while, so there have been different approaches and helpful
tools in mitigating its effects:

8.1 Forward Error Correction

The idea to use Forward Error Correction codes to enhance the performance of a protocol stems from
[Liang et al., 2010] which is used in their protocol BuzzBuzz. The protocol itself uses multiple headers
as well as FEC to enhance its performance.

In contrast to this work, they used real networking hardware for generating interference in their
experiments and analysed WiFi’s (802.11b/g) impact on 802.15.4. In order to make sure that no hardware
specific features influenced their work, they used many different access points from different producers.
They observed that in close vicinity most of the bit errors were in the beginning of the packet, due
to a backoff built in the protocols of WiFi. This lead them to the addition of multiple headers, which is
possible without any additional implementation issues on the receiving side due to the design of 802.15.4.
For 802.11b interference this led to an improvement of 30% while for 802.11g it led to 100% PRR with
a preamble 9 Bytes. This lead to the decision to add a second header to the packet, which in turn added a
problem with the CRC check, which has to be disabled. Therefore no hardware acks can be sent, as they
rely on the hardware CRC check.

To deal with interference with the source being further away FEC was added, namely the Reed-
Solomon codes. Their ratio of data to code was 65 to 30. Depending on how close the interferer is,
50 to 80% of the corrupted packets can be recovered. In their paper they omit to derive how many
retransmission can be saved by the usage of BuzzBuzz, but rather use it in a test-setup using CTP together
with BuzzBuzz. They say it reduced the amount of not acknowledged packets by 50% but do not make
any comment on how many less retransmissions were needed, or on the exact test-setup, which is why
we decided to look into that.

8.2 Constructive Interference

Using constructive interference in WSN was considered to be nigh impossible due to it needing tight
time synchronization. Ferrari et al introduced Glossy as a protocol exploiting constructive interference
and showing that achieving such synchronization is possible and provided for free with their protocol
[Ferrari et al., 2011].

WSN radios use O-QPSK as modulation scheme to transmit its data. First the data is grouped into
4-bit symbols which are then mapped onto a pseudo-random noise sequence of 32 bits, so-called chips.
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This sequence adds redundancy and WSN radios decide on a chip level rather than the signal itself.
This fact enables radios to correctly detect chips up to a delay of 0.5µs. This was first verified using
simulations and the results, 98%, were beaten in actual experiments due to the capture effect.

In order to achieve time synchronization a 1-byte field is embedded into the message, called the relay
counter c. The initiator sets it to zero while every subsequent node increases the counter. During a flood
the packet length does not change, therefore the time needed to send the packet does not change either.
This can be used to use c to calculate the time the flood was initiated, and also the time the packet has to
be resent.

Glossy is radio driven and the network flooding needs to be decoupled from all other events, as it
needs to be accurately periodic. This introduces the need for a scheduler, an operating system part not
found in Contiki. The authors added their own scheduler and suggest the following architecture for the
scheduler/operating system: ADDPIC. Interestingly this need for accurate periodic timings reminds of
real-time operating systems. Contiki would surely benefit from having those capacities if needed. So
far Contiki relies on cooperative scheduling, which in turn relies on the foresight of the developer to not
block the CPU.

Glossy takes many measures to achieve its temporal accuracy, which is not easy as the clock drift of
the Tmote Sky, which was used for the novel implementation, is pretty strong and temperature dependant.
The authors managed to achieve good results for their flooding protocol: 99.9% packets were transmitted
to all target nodes in tests without any interference. It would be really interesting how well Glossy does
in harsh environments.

8.3 Handshakes under Interference

A general hard problem are handshakes or in other words: How to agree on a value using a noisy channel.
[Boano, Zuniga, et al., 2012] investigated the possibility of jamming based agreements.

Most of the time it is not essential that the communication partner received the ACK to his message,
but sometimes it is, which is then a hard problem, comparable to the Two Generals Problem, where two
armies have to coordinate an attack. Therefore messengers, which can be caught on the way, are being
sent to acknowledge a plan. If a messenger is caught, than the attack has to be aborted. In order to reach
agreement an infinite number of acknowledge messages have to be sent figure 8.1. The probability to
successfully transmit the last ACK can be increased by sending it k times.

Looking at WSNs or networks in general, n-way handshakes are used, which means that n messages
are begin sent to ensure that both parties of the communication agree on the same value (TCP, WPA2).
Generally a value is accepted if a party receives all of the intended messages, otherwise the value is
discarded. This means, if the last message is lost the two parties disagree, under interference definitely
possible.

In order to make sure both parties agree if a sender initiates an exchange the receiver answers with
an acknowledge. In addition the sender, on reception of the acknowledge responses with a jamming
signal. The receiver meanwhile observes the medium and concludes that if the medium has been busy
for a certain time period, the sender must have received the acknowledgement. This works due to the fact
that interference which is commonly found, such as WiFi, microwave ovens, Bluetooth, are all periodic
and have short bursts of interference with pauses in between. If the medium is jammed longer than the
longest common interference found in this environment it has to be part of the handshake.

While itself this handshake is not a protocol, it is intended to be used as a building block to enhance
existing protocols, like FEC. Many protocols use acknowledgements in their design which would be a
2-way handshake. Many of those could benefit from JAG and should therefore be experimented with.
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Figure 8.1: Two Generals Problem: The two generals use messengers which can be captured to
communicate and try to agree on the time of a coordinated attack. The problem is simi-
lar to communication using a noisy channel. Each packet has a probability of failing, so
both parties can only then be sure that a certain state is reached if an infinite number of
ACKs is sent. The probability of the last ACK can be enhanced by sending it k-times.

8.4 Channel Hopping

While ContikiMAC has a good single-channel performance, it crumbles under heavy interference. MiC-
MAC was designed to take ContikiMAC’s idea to multiple channels [Al Nahas et al., 2014]. Like Con-
tikiMAC it uses two short consecutive CCAs to detect incoming frames. In addition to that every node
switches channels (called channel hopping) using a pseudo random function with low computational
cost.

Ideally a node always knows the channel and wake-up times of its communication partner, but if
sending fails several times the sender needs to find the schedule of the receiver. The schedule is given by

Xn+1 = (aXn + c) modN, n ≥ 0 (8.1)

where X is the channel, N the number of available channel, X0 the seed, a and c a multiplier and the
increment with (0 ≤ a, n < N) defining the channel hopping sequence. Importantly there is NO black-
listing built in the protocol, which means that every channel configured is being hopped to, regardless
of its conditions. There can be short sequences (only using one 〈c, a〉) or long sequences using multiple
configurations after another.

Similar to ContikiMAC, MiCMAC has a channel-lock phase in which communicating neighbours
find out their schedule. The sender strobes one channel of the configured N channels and strobes
it for one whole hopping sequence (see 8.2). After receiving the data-frame the receiver sends an
acknowledgement-frame containing a, c and X0. With this information the sender can compute the next
channel and also has the wake-up time (phase lock) of its communication partner, therefore communica-
tions are know more efficient than before (see 8.3).

If the sender fails to receive an ACK after several tries on the expected channels of its communication
partner it will start again with the initial rendezvous phase, otherwise it will always update its information
on the receiver.
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Figure 8.2: Initial rendezvous for MiCMAC with 4 channels. The sender repeatedly sends its data-
frame on the same channel for a period of a whole pseudo-random sequence, a short
one in this case. After successful transmission of the data-frame the receiver answers
with an acknowledgement frame containing the channel configuration. Image extracted
from Al Nahas et al. [2014, page 2]

Figure 8.3: After reception of an ACK the sender can calculate the next channel and wake-up time
of the receiver. Image extracted from Al Nahas et al. [2014, page 2]
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8.5 Future Work

JamLab (see 3.1.1) was used for all of the experiments within this thesis and is in our opinion valuable for
testbeds. Therefore it should be updated to newer hardware, such as the CC2650 used by the SensorTag.
Maybe the addition of newer radios and faster CPUs will make it possible to emulate newer WiFi versions
such as 802.11g/n which would be great for developing protocols resilient to interference.

Concerning ContikiMAC with FEC and JAG it should be possible to adjust the Phase Lock to work
with the new and changed timings, this could make the protocol more energy-efficient.

As for the experiment framework, this could use a complete rewrite in e.g. Python with a database
back-end to store all the experiment data. This should make it far easier to create plots, comparing
different experiments and protocols with each other would then only be a matter of selecting the data in
the database.
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