TU

Grazm

Christian Paul Kollmann, BSc

Integrating Universal Second Factor
Authentication into CRYSIL

An Approach for Extensible and Flexible Second Factor Authentication

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

O.Univ.-Prof. Dipl-Ing. Dr.techn. Reinhard Posch
Institute of Applied Information Processing and Communications

Advisor

Dipl.-Ing. Florian Reimair

Graz, May 2015

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources. The text
document uploaded to TUGRAZonline is identical to the present master’s thesis.

S Unterzeichner Christian Paul Kol | nmann
SR
IS 2 .
15 o) Datum/Zeit-UTC 2016-05- 07T14: 40: 19+02: 00
Prifinformation I nformationen zur Prifung der
~___ el ektroni schen Signatur finden Sie unter:
https://ww. si gnat ur pruef ung. gv. at
Hinweis This docunent is signed with a qualified el ectronic
signature. According to § 4 art. 1 of the Signature Act it
inprinciple is legally equivalent to a handwitten
signature.
Graz,
Date Signature

ii

Abstract

The simple combination of username and password is frequently used to authen-
ticate users to services. However, using the secret password alone does not meet
high security standards for authentication, according to NIST. Two-factor authen-
tication (2FA) is an accepted way to increase the security of user verification. 2FA
adds a second form of authentication to the process, typically proof of posses-
sion of a physical object or a personal characteristic of the user, e.g. a fingerprint.
Despite offering benefits, today’s methods for 2FA also exhibit deficiencies: Most
methods lack adequate user experience and protection against man-in-the-middle
attacks. The FIDO Alliance created an approach called Universal Second Factor
(U2F) to address some of the shortcomings of existing methods for 2FA. U2F is an
open standard, relying on special USB tokens connected to the user’s device com-
pleting a challenge-response protocol. However, this idea of USB tokens does not
extend to mobile scenarios, e.g. when using smartphones. Furthermore, the user
cannot easily use existing cryptographic devices with U2F implementations.

Our approach provides an extensible and flexible method for 2FA. We build upon
the broad adoption of U2F and integrate it into the CRYSIL system. CRYSIL is a
solution for remote key storage providing cryptographic operations to heteroge-
neous platforms. We adapt the U2F implementation in the Google Chrome and
Chromium browsers and develop a credential provider for Microsoft Windows.
Both solutions enable forwarding authentication challenges to a CrySIL instance.
The modular architecture of CRYSIL system makes it possible to implement mod-
ules to support various authenticator devices, including genuine U2F tokens us-
ing NFC transport, existing smart cards, and similar systems such as electronic
identity cards. We also succeed in fully virtualizing the U2F token by employing a
module relying on a pure software implementation. Even more valuable, we can
use any Android device running a CRYSIL instance as a U2F token. We enable the
user to utilize existing devices as a strong second factor, retaining the benefits and
security properties of the U2F standard. Websites, which already support U2F, ac-
cept our system as a form of 2FA. Our approach provides solutions for challenges
present in common approaches and offers many advantages compared to existing
solutions.

iii

Kurzfassung

Die Kombination aus Name und Passwort ist weit verbreitet um Benutzer ge-
geniiber einem Dienst zu authentifizieren. Ein geheimes Passwort alleine ent-
spricht laut NIST jedoch nicht hohen Sicherheitsanforderungen. Zwei-Faktor-Au-
thentifizierung (2FA) ist eine bewdhrte Methode um die Sicherheit zu erhéhen.
Dazu wird wihrend der Authentifizierung ein zweiter Faktor abgefragt, etwa der
Besitz eines Objektes oder eine physische Eigenschaft des Benutzers, bspw. ein
Fingerabdruck. Aktuelle Methoden fiir 2FA weisen einige Nachteile auf, bspw.
geringen Schutz gegen Man-in-the-Middle-Angriffe oder mangelhafte Benutzer-
freundlichkeit. Die FIDO Alliance hat Universal Second Factor (U2F) entwickelt,
um Defizite bestehender Methoden fiir 2FA zu eliminieren. U2F ist ein offener
Standard der spezielle USB-Token nutzt, welche ein kryptographisches Protokoll
zur Authentifizierung absolvieren. Diese Token konnen jedoch nicht in mobilen
Umgebungen eingesetzt werden; ebenso wenig konnen bestehende kryptographi-
sche Gerite auf einfache Weise im U2F-Ablauf verwendet werden.

Unser Ansatz bietet eine erweiterbare und flexible Methode fiir 2FA. Dazu in-
tegrieren wir eine Implementierung des U2F-Standards in das CrySIL-System.
CRrYSIL ist eine Losung fiir eine zentrale Schliissel-Verwaltung welche kryptogra-
phische Operationen fiir heterogene Umgebungen anbietet. Wir modifizieren die
U2F-Implementierung in Google Chrome (bzw. Chromium) und entwickeln ein
Plugin zur Anmeldung an ein Microsoft-Windows-System. Beide Losungen er-
lauben es uns, die Authentifizierung an eine CRYSIL-Instanz weiter zu leiten. Das
modulare CRYSIL-System ermoglicht es uns, verschiedene Module zu entwickeln,
um eine Vielzahl von kryptographischen Gerdten zu unterstiitzen: U2F-Token
mit einer NFC-Schnittstelle, bestehende Smartcards, oder auch Osterreichische
Biirgerkarten. Zusétzlich kann jedes Android-Gerét mit einer CrRySIL-Instanz als
U2F-Token verwendet werden. Mit unserer Losung kann der Benutzer bestehende
Gerdte als sicheren zweiten Faktor zur Authentifizierung verwenden, wahrend al-
le Sicherheitseigenschaften des U2F-Standards beibehalten werden. Webseiten die
U2F bereits unterstiitzen akzeptieren unser System. Unser Ansatz bietet Losungen
fiir einige Herausforderungen fiir 2FA-Systeme und weist Vorteile im direkten
Vergleich mit bekannten Methoden auf.

iv

Contents

Abstract

1 Introduction
1.1 Challenge
1.2 Contribution
1.3 Structure e

2 Preliminaries

2.1 Universal Second Factor Authentication
21.1 Protocol Messages
2.1.2 Man-in-the-Middle Protection
2.1.3 Attestation Certificates
214 CounterValue.
215 Key Generation oL

2.2 Cryptographic Service Interoperability Layer

2.3 Microsoft Windows Credential Provider

24 Summary

3 Related Work
3.1 Second Factor Authentication.
3.2 Alternative Approaches
33 U2F Adoption.o
34 Summary

4 Approach
41 Generalldea
42 Applications. L L
43 Advantages

iii

N O QO

®

10
18
19
19
20
22
23
24

25
25
27
29
31

Contents

4.4 Attestation Certificates.
45 Summary

5 Implementation

5.1 CrYSIL Modules
5.1.1 Design Decisions
51.2 CrySIL U2F Bridge
5.1.3 Smart Card Actor.

5.1.4 Electronic Identity Card Actor

5.1.5 Android Implementation . . .
5.2 Chromium Extension
52.1 Browser Integration
522 MessageFlow
5.3 Windows Credential Provider
53.1 Login Integration
532 WorkFlow.
54 Summary

6 Evaluation

6.1 U2F Considerations
6.2 Classification
6.3 Comparative Evaluation
6.4 Security Analysis
641 Model
6.4.2 Methodology
643 Assets
6.44 Assumptions
6.4.5 AttackClasses
6.4.6 Security Goals
6.4.7 Security Measures
648 Threats.
6.49 Residual Risks
6.4.10 Conclusion
6.5 Summary

7 Conclusions

vi

40
41
42
44
45
48
49
51
51
54
55
56
57
59

60
60
62
63
65
65
67
67
68
69
69
70
75
81
83
84

85

Contents

Bibliography 90
A Message Format 96
A.l Registration o o 97
A.2 Authenticationo o oo oL 100
B Screenshots 103

vii

List of Figures

2.1
2.2
23
24

4.1
4.2

5.1
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10
511
5.12

6.1
6.2
6.3

B.1
B.2
B.3
B.4

U2F registration process 13
U2F authentication process 16
CRYSIL instance overview 22
MOoCRYSIL instance overview 23
Comparison of general U2F approach and our approach 34
Message mapping from U2FtoCrYSIL 35
Alternatives for placement of the CrySIL U2F bridge 43
Message flow for registration 46
Message flow for authentication 46
Building blocks of the actor for smartcards 47
Building blocks of the actor for EID cards 48
Overview of adapted MOCRYSIL instance 51
Setup of browser to CrySIL instance 52
Software modules of the browser extension 53
Message flow in the browser 55
Setup of Windowsto CRYSIL 56
Software modules of the Windows credential provider 57
Windows application overview 58
Security architecture of a U2F solution 66
Security architecture of our approach, using CrySIL 66
Security architecture of our approach, using MoCrySIL 66
Screenshot of the extension for the browser 104
Screenshot of the credential provider for Windows 105
Screenshot of the configuration application for Windows 106

Screenshot of the Android application 107

viii

List of Listings

2.1
2.2
23
24
25
2.6

Al
A2
A3
A4
A5
A6
A7
A8
A9
A.10
All
Al2
A3
Al4
A.15
A.l6
A7

U2F registrationrequest 14
UZ2F registration request converted 14
U2F registrationresponse 14
U2F authenticationrequest 17
U2F authentication request converted 17
U2F authentication response 17
CRYSIL message format 96
U2F registration: Step 1 97
U2F registration: Step 2 97
U2F registration: Step3 98
U2F registration: Step4 98
U2F registration: Step5 98
U2F registration: Step6 99
U2F registration: Step 7 99
U2F registration: Step 8 99
U2F authentication: Step1 100
U2F authentication: Step2 100
U2F authentication: Step3 101
U2F authentication: Step4 101
U2F authentication: Step5 101
U2F authentication: Step6 102
U2F authentication: Step7 102
U2F authentication: Step 8 102

ix

Acknowledgments

I am grateful to Florian Reimair for his marvelous supervision. I also need to thank
Florian and Bernd Priinster for our fruitful discussions.

I thank Christoph, Michael, Patrick, Richard, and Stefan for reading through parts
of this thesis and providing me with excellent feedback.

My deepest thanks, however, go to Verena for her invaluable support.

1 Introduction

Users regularly use the combination of a username and password to authenticate
to a variety of services, e.g. operating systems or web applications. The username
is usually publicly known, but users should keep their passwords secret. How-
ever, most users are not up to the challenge of creating and remembering secure
passwords for a myriad of services. Taneski, Hericko, and Brumen [43] describe
that passwords are often shared among different services and are either weak and
therefore easily cracked by a dictionary attack or easy to figure out by an attacker
using social engineering. Mirante and Cappos [29] show that stolen databases are
containing plenty of passwords, often insufficiently hashed, representing a viable
source for attackers to break into user accounts. NIST specifies four security lev-
els of authentication, showing that using passwords as the single factor does not
meet high-security standards [10]. Hardware-based cryptographic tokens must be
used to achieve compliance with the highest level. This NIST recommendation is
widely adopted by government agencies in the US and companies worldwide.

Two-factor authentication (2FA) is a common way to add security to the process of
user verification. It combines the secret password known to the user (first factor)
with some other form of authentication (second factor). O’Gorman [34] describes
and compares popular choices for the second factor: Tokens to prove possession
of a physical object and biometrics as a physical characteristic of the user. An
every-day example of 2FA is the use of a bank card (proof of possession) together
with the PIN (proof of knowledge) to withdraw money from a cash dispenser.
This example and similar methods do not scale well to the ubiquitous use of au-
thentication to web applications in the browser nowadays. Web service providers
may use another form of 2FA such as one-time passwords (OTP). These short
codes (usually around 6 to 8 characters) may either be sent to the mobile phone

1 Introduction

of the user or generated by a special device such as an RSA SecurID token®. Aus-
tria’s mobile phone signature?, one implementation of the Austrian citizen card
concept defined by Leitold, Hollosi, and Posch [25], uses this method. The web
service grants access to the private signature key when the user provides his
password and the OTP sent to the cell phone of the user.

Common methods for 2FA increase the security in the authentication process but
exhibit some limitations. OTP requires the user to copy manually codes from
the device generating the codes to the device performing the login. When using
mobile phones, there may be coverage issues and delays in receiving the codes.
Special hardware tokens often work for one particular site only. Methods based
on a challenge-response protocol, e.g. cryptographic smart cards, require special
reader hardware on the client side. This requirement also holds for electronic iden-
tity (eID) systems based on smart cards, sometimes called citizen cards. Addition-
ally, these EID cards by definition identify the user and are controlled by the gov-
ernment. Users may be unwilling to use them on a website where a pseudonym
otherwise identifies them. All these aspects place an unnecessary burden on the
user and impede user acceptance.

Research shows some drawbacks of common 2FA solutions: Petsas et al. [35] il-
lustrate that, despite the clear value added to account security when using a
second factor, no more than 6.4 % of Google users activate 2FA. Weir et al. [45]
state that users of e-banking solutions perceive one-factor methods as secure and
convenient options and demonstrate a reluctance to use two-factor methods for
authentication. Herley and van Oorschot [16] even claim that passwords are here
to stay since they are the best fit for many scenarios and suggest supporting pass-
words better instead of trying to replace them. Even though using 2FA increases
the security of login procedures, attacks are still possible. Schneier [39] explains
that established 2FA methods, in general, are not immune to man-in-the-middle
and phishing attacks. To put it in a nutshell, today’s methods for 2FA lack ad-
equate user experience and resilience to sophisticated attacks and thus, are not
widespread among average users.

Thttps://www.rsa.com/en-us/products-services/identity-access-management/securid/
hardware-tokens
2https://www.handy-signatur.at/hsz/

https://www.rsa.com/en-us/products-services/identity-access-management/securid/hardware-tokens
https://www.rsa.com/en-us/products-services/identity-access-management/securid/hardware-tokens
https://www.handy-signatur.at/hs2/

1 Introduction

Srinivas et al. [40] define the Universal Second Factor (U2F) as an open authen-
tication standard, targeting some of the shortcomings of existing 2FA solutions.
The FIDO Alliance, an industry consortium formed to develop and standardize
online authentication methods, backs development of the specification. The stan-
dard enables online services to add strong 2FA to existing user login procedures.
Furthermore, it aims at unifying 2FA by using an open protocol and simple hard-
ware tokens. Design goals of the standard include ease of use and cost efficiency,
trying to make second-factor authentication viable for the average user on the
Web. One authenticator device can be utilized for an infinite number of services
since the token creates new credentials for every service.

The emerging U2F standard currently gains industry support and can be used as
a second factor for authentication on several websites, including those provided
by Google, Dropbox, and Github. Native support on the client side is being imple-
mented in browsers, starting with Google Chrome, or rather its open source vari-
ant Chromium. Yubico, among other companies, produces compatible hardware
in the form of a FIDO U2F Security Key?, allowing for driver-less USB operation.
To sum it up, a broad number of users can use implementations of the standard
throughout the Web as of today.

1.1 Challenge

Existing U2F tokens embed a secure element in a small form factor as simple
USB key fobs. Registration of new tokens and authentication of users is handled
by a challenge-response protocol between relying party and the hardware to-
ken. The client software running on the user’s computer mediates between those
two. One goal of U2F is to strengthen user authentication on the Web; usually a
browser plays the role of the client software. The client takes measures to prevent
man-in-the-middle attacks on the authentication process. The user experience is
simplified, requiring the user to insert merely the USB token and press the only
button on it to prove possession of the device and confirm the operation. This
procedure works quite well on desktop devices and is reasonably fast when the
user has his token at hand.

3https://www.yubico.com/applications/fido/

https://www.yubico.com/applications/fido/

1 Introduction

However, this idea does not extend to scenarios involving mobile devices such as
smartphones and tablets. Nearly all of them apparently lack a standard USB port
and thus the user cannot easily connect the token to the smartphone. Although
some U2F tokens offer an NFC interface, no mobile browser supports this method
of operation as of February 2016. This limitation requires the website to fall back
on some other method for authentication. That method has to be configured by
the user in advance and typically relies on a different second factor. Obviously,
this additional configuration increases the complexity and reduces ease-of-use for
the user.

Moreover, only certified hardware tokens can be used for U2F, further diminish-
ing the potential user base. Existing smart cards or similar cryptographic devices
such as EID cards cannot be easily used in the process. Therefore, the user has
to carry around a particular U2F token all the time to be able to use it in the au-
thentication process. Overall, the U2F process clearly lacks flexibility on the client
side with the usage of hardware tokens as they exist today.

All things considered, an ideal solution for 2FA has to stand many challenges.
First, the hassle of competing standards and methods should be avoided, for both,
users and service providers. Second, the user needs to have the option to use his
authenticator device no matter on what service the account is registered. There-
fore, service providers need to be able to implement the solution easily. Third, the
user should be able to utilize existing cryptographic devices and not need to buy
and carry an additional device. Nevertheless, the security of the authenticator
device has to rely on proven cryptographic standards, ideally backed by a secure
hardware element. Fourth, the setting of the login procedure should not affect the
user experience, i.e. it should not matter if the user logs in to his account using
a desktop browser or a mobile device. The user should be able to use the same
token in both scenarios. Finally, the whole process of confirming possession of the
second factor should be as effortless as possible. A solution meeting all these re-
quirements would not only increase security in existing authentication processes
but would most probably also be widely accepted by users.

1 Introduction

1.2 Contribution

Our contribution is an approach as a step towards an ideal 2FA solution as de-
scribed before. Our proposal builds upon the existing implementations of U2F
clients and the support from service providers to reach a large number of users.
We take a step forward by increasing the flexibility of the standard in two aspects:
We can use different, existing authenticator devices and show that U2F is not only
suitable for the Web, as demonstrated by the early implementations, but also for
local systems, i.e. the Microsoft Windows login.

The foundation for our work is the integration of the U2F standard into the
well-tried cryptographic service interoperability layer (CrySIL). Reimair, Teufl,
and Zefferer [37] describe CrYSIL as an approach standing the challenges of key
management and utilizing cryptographic functions within heterogeneous applica-
tion deployment scenarios. It offers a centralized, secure key storage and crypto-
graphic engine to empower access to the keys everywhere at any time. Clients can
execute cryptographic operations on the central instance utilizing a defined pro-
tocol. The modular architecture of CRYSIL supports the combination of various
front-ends receiving operation requests and back-ends executing cryptographic
operations. These back-ends usually use hardware devices to conduct the opera-
tions.

We show that our approach enables various applications for secure second-factor
authentication. We adapt the U2F client implementation in Google Chrome, and
its open source variant Chromium, to forward the authentication challenges to a
CRYSIL instance. We also implement a custom credential provider for Microsoft
Windows 10 to add a second factor to the login procedure on a local system. The
architecture of CRYSIL permits using a variety of devices and appropriate mod-
ules to act as the authenticator device in the U2F process. We can fully virtualize
the U2F token as the cryptographic requests are not necessarily handled by an
actual U2F hardware device. The CrYSIL instance can even be provided by a
cloud service, supporting universal access from any client. The client implemen-
tation in the Google Chrome browser makes it possible to apply our approach in
real-world scenarios on several websites.

1 Introduction

Additionally, we enable the user to use her existing mobile device as the second
factor in an authentication process. To offer this possibility, we use a MOCRyYSIL in-
stance on an Android device. Reimair et al. [38] describe MoCRYSIL as a solution
to carry your cryptographic keys in your pocket by running a CrySIL instance
on a mobile device. We rely on a technique called WEBVPN to connect the U2F
client to the MOCRYSIL instance securely. Reimair et al. demonstrate this WEBVPN
scheme to solve the challenge of reaching the mobile device despite ever-changing
IP addresses and NAT behind routers. Within the scheme, a relay service medi-
ates between a CRYSIL client and the MOCRYSIL instance. The service utilizes
WebSocket connections and push notifications and provides end-to-end security
between the two communication partners. When using his mobile device for au-
thentication, the user can choose to handle the cryptographic operations with the
hardware-backed key store provided by the Android system* or with an external
token. That token can be connected over NFC and be either a compatible smart
card or a genuine U2F token. In the latter case, the relying party in U2F can not
tell the difference between the user connecting the token directly and utilizing
our solution.

In addition to the Web use case described before, we facilitate a solution for 2FA
on a local Microsoft Windows system. We empower the user to use smart cards
and similar systems such as eID cards to provide the cryptographic services. To
support the usage of these devices, we implement a suitable module for CrySIL.
This module enables any CrySIL instance to execute commands on any compat-
ible smart card. Integrated into our approach, the smart card will take the part
of the hardware token in the U2F process. This concept empowers the user to
use existing cryptographic devices for secure 2FA. The interoperability features
of CrySIL make it possible to use these authenticator devices for all U2F clients,
including the browser scenario described earlier.

The advantages of our solution compared to a traditional U2F approach are as fol-
lows: We enable the use of existing cryptographic devices, including smart cards
and similar EID cards. The user can use these devices as the secure second factor
in applications supporting U2F, including the Chrome browser. Our solution also
makes it possible to use an Android smartphone as the authenticator device. The
system can be extended to support even more devices, given the extensibility of

4https://developer.android.com/training/articles/keystore.html

https://developer.android.com/training/articles/keystore.html

1 Introduction

the CrYSIL approach. Additionally, we show how to utilize U2F in local scenarios
such as the Windows login.

Only a few limitations arise when using our approach: When using a smart card,
the same key is used for all authentication challenges. Reusing the key contra-
dicts the concept of one key per relying party of U2F, but does not influence the
strong cryptographic properties. It, however, compromises the privacy of the user
if he uses the same device for different accounts or across cooperating relying
parties. Relying parties could then connect the accounts because they share one
public key. When using the Android key store, a self-signed certificate is used as
the attestation certificate for registration of a new token in U2F. This certificate
prevents the relying party from identifying the manufacturer of the token, which
contradicts a convention of U2F.

1.3 Structure

In Chapter 2 we describe the fundamentals of our work, including the main build-
ing blocks U2F and CRYSIL. In Chapter 3 we survey the literature to find existing
solutions for an ideal 2FA method. In Chapter 4 we describe our approach in
detail and explain supported use cases in real-world applications. In Chapter 5
we outline the software components we have implemented, including modules
for the CrYSIL system. In Chapter 6 we perform a security analysis of our system
and compare our approach to existing solutions. In Chapter 7 we conclude with
thoughts on open questions and further research opportunities.

2 Preliminaries

We base our approach for 2FA on two well-tried systems: U2F provides the au-
thentication standard and some existing client implementations; CrySIL presents
an open and flexible architecture where its implementation offers a centralized
key store and an API for cryptographic services. In this chapter, we introduce
the U2F standard in general, including details about the protocol for registration
of tokens and authentication of accounts. Additionally, we show how U2F takes
measures against man-in-the-middle attacks. We also explain concepts central to
the U2F standard, such as attestation certificates and generation of credentials.
We illustrate the architecture of the CrYSIL system and explain how that system
can be extended with custom modules. We will combine both systems so that a
CrYSIL instance can act as the authenticator device in a U2F setting. Moreover,
we provide background information on the login system that Microsoft uses for
its Windows operating systems.

In Section 2.1 we discuss the U2F standard, including the core idea, servers,
clients, and the protocol in detail. In Section 2.2 we describe the CRYSIL sys-
tem, which provides the software framework for our approach. In Section 2.3 we
examine the Microsoft Windows login system including the extensible credential
providers.

2.1 Universal Second Factor Authentication

U2F is an open standard maintained by the FIDO Alliance [40]. Several indus-
try companies are members of the FIDO Alliance, including Yubico, Google, and
NXP. The goal of U2F is to provide an open and flexible method for secure second-
factor authentication with the focus put on Web use cases. It is designed to aug-
ment existing authentication procedures which rely on usernames and passwords

2 Preliminaries

only. The standard specifies the use of authenticator devices (also simply called
tokens) completing a cryptographic challenge-response protocol to prove posses-
sion of the device. That device may be hardware-backed or may be realized in
software, where the first option is preferable. Various websites have adopted the
specification already and offer U2F as a method for 2FA, including Google, Drop-
box, and Github. Nevertheless, native client support is implemented in the Google
Chrome browser (and its open-source variant Chromium) only as of February
2016. Yubico and other companies produce special USB tokens compatible with
the U2F standard. These authenticator devices are relatively cheap compared to
other security tokens but support the U2F protocol only.

The standard addresses some of the shortcomings of common second-factor au-
thentication methods. The authentication process for the user is greatly simpli-
tied: In addition to the traditional combination of username and password, the
user only has to plug her USB token into the computer and confirm the opera-
tion by pressing the only button on the token. In general, the relying party (e.g.
a website) communicates via the client (e.g. the browser) with the authenticator
(e.g. a hardware token) to complete a challenge-response protocol. A single token
supports an unlimited number of websites and relying parties. Nevertheless, the
token generates new credentials for each relying party. To deal with a large num-
ber of credentials, manufacturers may decide to provide enough tamper-resistant
storage or to export private keys in a secure manner.

Advantages of U2F include the use of standard cryptography, namely the use of
private—public key pairs on an elliptic curve and matching digital signatures. The
standard is designed to provide the user with freedom of choice for authentica-
tor devices. Users can use the same token for several relying parties instead of
one device per service. Several manufacturers produce low-cost devices for U2F,
significantly lowering the financial barrier for users. Clients can implement ad-
ditional checks in the protocol to mitigate common man-in-the-middle attacks.
Lang et al. [24] describe some design goals of U2F, including ease of use for end-
users and developers as well as increased privacy, since the credentials used for
authentication are specific to one relying party and do not leak information about
the user.

Nevertheless, some shortcomings exist in the usual setting of U2F. The user still
needs to carry an additional, though small, device to use it in the authentica-

2 Preliminaries

tion process. This requirement introduces additional hassle for the user, and such
a token can be easily lost. The problem of a lost token is in part mitigated by
the general recommendation to use two hardware keys and some other fallback
solution implemented in software by the relying party. Another drawback is that
existing cryptographic devices, e.g. smart cards, cannot be easily used with imple-
mentations of the standard. This limitation prevents the user from using devices
he already owns, such as electronic identity cards or smartphones with crypto-
graphic functionality and forces him to carry another device. Moreover, existing
implementations are not suitable for the mobile use case, as no mobile browser
supports U2F as of February 2016.

2.1.1 Protocol Messages

The basic operation mode of U2F for registration and authentication is a chal-
lenge-response protocol. In U2F terms, the relying party, e.g. a website, sends a
random challenge to the client, e.g. the browser, which forwards it to the authen-
ticator device (or token), e.g. a Yubico security key. The client verifies the validity
of the challenge by checking the application identifier provided by the relying
party. This verification ensures that no third party has injected a malicious au-
thentication request. The client forwards the request to the hardware device. The
device performs the cryptographic operations and sends the result back to the
client. The client, in turn, sends the response to the relying party, which verifies
the calculations. The main use case of U2F is authentication on the Web though
other software can implement the protocol and use it for secure second-factor
authentication. In the Web scenario, only websites accessed over TLS are allowed
to send U2F requests to the browser.

All cryptographic operations involved in U2F are based on public key crypto-
graphic. More explicit elliptic curve cryptography is used, based on the secp256r1
curve defined in [1], also known as P-256 defined in [5]. That means that any pri-
vate key used for signature generation is simply a multiplier, used together with
the generator of the curve to calculate the public key. The public key is then a
point on the elliptic curve. The public key representation used in the U2F proto-
col consists of two 32 byte values of the x and y coordinate of the point on the
elliptic curve.

10

2 Preliminaries

For calculating the signature over the challenges from the relying party, ECDSA
is used, established in [21]. The signature itself is represented as an ASN.1 struc-
ture, defined in [18], containing two 32-byte values. All message digests used
throughout the protocol are calculated using SHA256, described in [12], yielding
a 32-byte long digest. The attestation certificate sent in the registration response
is encoded using DER, defined in [19].

The two following subsections describe the details of the U2F protocol for registra-
tion and authentication, laying out the format of all messages between clients and
relying parties. Balfanz, Birgisson, and Lang [2] define the JavaScript API used for
the U2F protocol, whereas Balfanz and Ehrensvard [3] designate the format of the
raw messages used in the protocol. We use both documents as the source for the
description. Since U2F was primarily designed for Web applications, the URL-
safe variant of Base64 encoding is used [22]. In this variant, all “~” are replaced
with “+”, all “/” are replaced with “_”, and the padding character “=” and all
newline characters are stripped from the encoded text. In all steps described in
the following, the version of the U2F protocol is included in the messages and
has the fixed value U2F_V2. We are not considering older versions of the protocol
in our approach and this thesis.

Registration

When the user activates second-factor authentication for his account, the relying
party starts the registration workflow of U2F. Therein, the authenticator token
creates new credentials—a private—public cryptographic key pair—bound to the
relying party. The token exports the public key and a handle identifying the new
key pair in subsequent authentication requests.

Figure 2.1 shows the message flow for registration in a U2F setting. Details for
this message flow are as follows:

1. The relying party (or server, S) generates a random challenge (r) and in-
cludes its application identifier (a) in the request to the client (C). On the
Web, this application identifier is simply the base URL of the website.

S— C:(a,r)

11

2 Preliminaries

. The client verifies the authenticity of the application identifier. The client
builds a data structure (d) which may include the TLS channel identification
for MITM protection.

C : generate d

. The client includes that data structure in the request and forwards it to-
gether with the challenge from the relying party to the token (T).

C—T:(ard)

. The token always generates a fresh private—public key pair (k, P) to be used
for this application identifier only. The token calculates a signature (with
the private key matching the public key of the attestation certificate) over
the combination of application identifier, random challenge, data structure,
public key (P), and key handle (k).

T : generate k, P,h, s =sign(a,r,d,P,h)

. The token sends back that signature together with a key handle identifying
the new private—public key pair, the public key of the pair and an attestation
certificate (f) to the client.

T — C:(P,ht,s)

. The client sends back the response from the token to the relying party, to-
gether with the challenge and the client data structure.

C—S:(rdP,ht,s)

. The relying party checks the signature and verifies the other data, including
the attestation certificate.

S : verify s, t

12

2 Preliminaries

Server Client Token

P> | Verify appld

<__| Generate
key-pair,

handle

<

appld, challenge

appld, challenge, clientData

€ - ------- - - - - -
e e = - = public key, handle, attestation cert
challenge, clientData, public key, signature(appld, challenge, clientData,
handle, attestation cert, signature public key, handle)
Check signature,
:I verify data
T B -

Figure 2.1: Sequence diagram showing a registration operation in the U2F process. Server, client, and
token complete a challenge-response protocol. Names refer to data fields in the definition
of the standard.

Listing 2.1 describes the format of the registration challenge sent from the relying
party to the client. Listing 2.2 illustrates the conversion of that first message on
the client. Listing 2.3 presents the answer from the token to the client and relying
party. The structure clientData used in the messages are the bytes of the UTF8-
encoded JSON representation of the structure stated. The field cid_pubkey therein
is optional and may include the TLS channel identification for MITM protection.
The magic number 0x05 in the registration data field in the answer is the value
of the reserved byte, used for legacy reasons. The magic number 0x00 in the
signature input in the answer is a byte reserved for future use. The public key
has a length of exactly 65 bytes and is an uncompressed representation of a curve
point on the P-256 NIST elliptic curve. The key handle has variable length but is
limited to 255 bytes, since the length of the key handle has to be stated in one byte
preceding the handle. The attestation certificate also has variable length, but the
length is determined by the DER encoding used. All hashes are calculated using
SHAZ256, yielding a 32-byte long digest.

13

2 Preliminaries

{ appId: "https://example.com”,
challenge: Base64 (32 byte random),
version: "U2F_v2"

}

Listing 2.1: Registration challenge sent from the relying party to the client. Message is shown in the
JSON format defined by the standard.

{ appIdHash: Base64 (SHA256 (<appIld>)),
challengeHash: Base64(SHA256(clientData)),
version: "U2F_v2"

3

clientData = {
origin: <appld>,
challenge: <challenge>,
typ: "navigator.id.finishEnrollment",
cid_pubkey: {

kty: "EC", crv: "P-256",
Xx: Base64(coordinate), y: Base64(coordinate)
} /x optional =/
3

Listing 2.2: Converted registration challenge on the client, suitable for the token. Message is shown
in the JSON format defined by the standard. Names in angle brackets refer to contents
from the previous message.

{ clientData: <clientData>,
registrationData: Base64(0x05, <publicKey>, <keyHandlelLength>,
<keyHandle>, <attestationCertificate>, <signature>)
3
/* signature over (@0x00, <appIdHash>, <challengeHash>, <keyHandle>,
<publicKey>) =*/

Listing 2.3: Registration response from the token. Message is shown in the JSON format defined by
the standard. Names in angle brackets refer to contents from previous messages or data
generated by the token.

14

2 Preliminaries

Authentication

When the user has activated second-factor authentication for his account and
wants to log in, the relying party initiates the authentication workflow of U2F.

There, the relying party sends the key handle from the registration process to

the token. The token then either looks up the key pair or creates the private key

directly from the handle, as we shall discuss in Section 2.1.5.

Figure 2.2 shows the message flow for authentication in a U2F setting. Details for
this message flow are as follows:

1.

The relying party (or server, S) generates a random challenge (r) and in-
cludes its application identifier (a) and the key handle () of the token reg-
istered in the request to the client (C).

S—C:(a,rh)

The client verifies the authenticity of the application identifier and creates a
data structure (d) equivalent to the one in the registration protocol flow.

C : generate d
The client adds that structure to the challenge and sends it to the token (T).
C—T:(ar,dh)

The token uses the handle to look up or calculate the appropriate private key
(k). It uses that key to compute a signature over the application identifier,
random challenge, data structure, and a counter value (c).

T :lookup k, P, s =sign(a,r,d,c)

The token sends back that signature together with the counter value in plain
to the client.

T —C:(cs)

The client sends back the data received from the token to the relying party,
together with the challenge and data structure.

C—S:(rd,cs)

15

2 Preliminaries

7. The relying party verifies the signature and checks the other data, including
the counter value.

S :verify s, c

Server Client Token

P> Verify appld

appld, challenge, handle

<_—I Look up private key
'\ increase counter
appld, challenge, clientData, handle :

€ - -----------
- - - - - = = === === = counter, signature(appld,
challenge, clientData, counter, signature challenge, clientData, counter)
Check signature,
verify data
T s s

Figure 2.2: Sequence diagram showing authentication in a U2F process. Server, client, and token
complete a challenge—response protocol. Names refer to the data fields in the definition of
the standard.

Listing 2.4 describes the format of the authentication challenge from the relying
party to the client. Listing 2.5 illustrates the conversion of that first message on
the client. Listing 2.6 presents the answer from the token to the client and relying
party. The counter value kept internally by the token is exactly represented in four
bytes using big endian encoding (most-significant byte values first). The structure
clientData used in the messages are the bytes of the UTF8-encoded JSON repre-
sentation of the structure stated. The field cid_pubkey therein is optional and may
include the TLS channel identification for MITM protection. The magic number
0x@1 in the signature input is the value of the user-presence byte, indicating the
user has actively approved this request. The U2F standard mandates a form of
user consent.

16

2 Preliminaries

{ appId: "https://example.com”,
challenge: Base64 (32 byte random),
keyHandle: Base64(key handle),
version: "U2F_v2"

}

Listing 2.4: Authentication challenge sent from the relying party to the client. Message is shown in
the JSON format defined by the standard.

{ appIdHash: Base64 (SHA256 (<appIld>)),
challengeHash: Base64(SHA256(clientData)),
keyHandle: <keyHandle>,
version: "U2F_v2"

}

clientData = {
origin: <appld>,
challenge: <challenge>,
typ: "navigator.id.getAssertion”,
cid_pubkey: {

kty: "EC", crv: "P-256",
x: Base64(coordinate), y: Base64(coordinate)
} /*x optional =x/
}

Listing 2.5: Converted authentication challenge on the client, suitable for the token. Message is shown
in the JSON format defined by the standard. Names in angle brackets refer to contents
from the previous message.

{ challenge: <challenge>,
keyHandle: <keyHandle>,
clientData: <clientData>,
signatureData: Base64(0x01, <counter>, <signature>)

}

signature over (<appIdHash>, ©0x@1, <counter>, <challengeHash>)

Listing 2.6: Authentication response from the token. Message is shown in the JSON format defined
by the standard. Names in angle brackets refer to contents from previous messages or
data generated by the token.

17

2 Preliminaries

2.1.2 Man-in-the-Middle Protection

Schneier [39] states that common 2FA methods offer no protection against man-
in-the-middle (MITM) and phishing attacks. The attacker can always set up a fake
website and trick the user into entering his credentials including the second factor.
Those credentials are obviously valid for a session initiated by the attacker to the
real website. U2F actively addresses this threat of MITM attacks.

Upon registration, a U2F token is required to generate a new private—public key
pair unique to the origin (application identifier) of the relying party. Consequently,
the key handle exported is tangled with the origin internally. If the attacker tries
to send an authentication request to a U2F device using a false origin, e.g. while
performing a phishing attack, the device will detect the mismatch between key
handle and origin and will abort the authentication. Additionally, the authenticity
of the origin stated by the relying party has to be checked by the client.

Balfanz and Hamilton [4] define the channel ID extension to TLS. This standard
establishes a long-lived cryptographic channel between client and server that per-
sists across multiple connections and sessions. The U2F specification recommends
that the client use this extension to detect more sophisticated attacks. If the server
uses this TLS extension, the browser will insert the public key of the current con-
nection into the client data object sent to the token. The value of this public key,
along with the origin and key handle, is signed by the token and sent back to the
relying party. The server can then verify that the client data signed by the token
contains the actual origin and correct channel ID of the TLS connection. Since an
attacker performing a man-in-the-middle attack needs to establish two separate
TLS connections, one to the user and one to the server, a mismatch in the channel
ID will be detected by the origin site.

This protection against MITM attacks will not work if either the browser does not
support the channel ID extension or if the attacker presents a valid TLS certificate
for the attacked site. Another example of MITM attacks where the protections by
the protocol will not help is the following: The user first registers a new account
without a second factor on a website. Subsequently, when the user adds a U2F
token to her account, the attacker intercepts this request and does not forward it
to the actual website. On ensuing logins on the website forged by the attacker, the

18

2 Preliminaries

user may use her U2F token, but the attacker can simply strip the second factor
and forward a simple login request to the legitimate website.

Popov et al. [36] define a new standard to replace channel ID, called token bind-
ing. As of February 2016, the proposed standard is in draft status. Nevertheless,
the MITM protection in U2F will not be affected by this future change. The
browser will simply use the token information instead of the channel ID and
proceed as before.

2.1.3 Attestation Certificates

Authenticator devices present an attestation certificate in the response to a reg-
istration challenge of a relying party. This attestation certificate can be used by
the relying party to identify the authenticator device class. Relying parties may
even prevent the user from registering authenticators not matching an expected
attestation certificate or an expected issuer of the certificate. The U2F certification
process for tokens makes sure that this certificate does not contain information
identifying a specific device. Otherwise, this would permit collaborating relying
parties, or one single relying party, to connect accounts using the same token. The
current version of the U2F specification does not define the content of the attes-
tation certificate. Future versions may specify the format of the content to enable
the relying party to identify features of the device, e.g. the form of user consent
or additional hardware features.

2.1.4 Counter Value

In every authentication response in the U2F protocol, the token includes a counter
value. This value is transmitted in plain text as well as included in the signature to
prevent tampering by the client between the token and relying party. The authen-
ticator device stores this counter value and must increase it on every signature
operation. The standard does not specify whether to increase this value globally
for all key handles or to keep one counter per application identifier. Furthermore,
the increment value of the counter is not specified, meaning consecutive values
may well vary by a value greater than one.

19

2 Preliminaries

Using this strict monotonically increasing counter value enables relying parties
to detect some attacks on the authenticator device. An example of a detectable
attack is the following: The user authenticates to a relying party, sending counter
value 4 in the process. An attacker can clone the device afterward, which includes
the counter value of 4. When the user authenticates to the same relying party two
times again, the device will send the counter value 6. If the attacker tries to lo-
gin later on that relying party using his cloned device, the device will send the
counter value 5. The relying party can detect this mismatch and deny authentica-
tion.

This example, however, has several limitations: If the authenticator device in-
cludes a secure element, cloning of the whole device should not be possible.
Nevertheless, software-based implementations of authenticator devices are per-
mitted by the U2F standard. Also, if the attacker uses the cloned device before
the user does, the attack can not be detected. The counter value is limited to 4
bytes in the message definitions of the protocol, meaning it will roll over, from
the maximum value to the starting value o, eventually. The relying party needs to
handle this case thoughtfully. However, 4 bytes limit the number of operations to
over 4 billion before reaching the point of rollover, which may never be achieved
during the reasonable lifetime of a token.

2.1.5 Key Generation

The U2F standard mandates that the authenticator device has to create a new key
pair for each registration command. The public key and a key handle to identify
this key pair are exported to the relying party. If the token was to store all private
keys and matching key handles, it would require a practically unlimited amount
of secure storage. Thus, the standard does not necessitate the key handle to be
strictly an index to a table containing all private keys.

Yubico implements this requirement of creating a new key pair for each registra-
tion despite refraining from including huge amounts of secure storage [33, 46].
On Yubico tokens, the private key is derived from the application identifier and a
nonce, using a single device secret. An authentication operation includes the key
handle; with that information, the device can restore the private key.

20

2 Preliminaries

The detailed key derivation process is as follows:

1. The PRNG (pseudo random number generator) on the token generates a
nonce (n).

n = PRNG()

2. An HMAC function uses the application identifier (a) and the nonce as
input, and the device secret as the key (s) to generate a private key (k).

k = HMAGC;(a, n)

3. A second HMAC function uses the application identifier and the private key
as input, and again the device secret as the key to calculate an intermediate
value (x).

x = HMAGC;(a, k)

4. The token exports the last output of the HMAC concatenated with the nonce
as the key handle (h) to the relying party.

h=nl|x

5. The token multiplies the generator point (G) on the elliptic curve with the
private key and exports the resulting public key (P) to the relying party.

P=kxG

For the keyed-hash function, HMAC-SHA256 is used [14]. For authentication, the
relying party sends its application identifier and the key handle to the token. The
token can extract the nonce from the key handle and recalculate the private key.
This private key is then used to calculate the signature in the authentication pro-
cess. The token will detect any modification to the key handle by comparing the
intermediate value (x) from the handle to the value of its internal calculation. Se-
curity of this process seems to rely mostly on the unpredictability of the random
number generator used. However, no thorough security analysis is available as of
today.

21

2 Preliminaries

2.2 Cryptographic Service Interoperability Layer

Reimair, Teufl, and Zefferer [37] define CrYSIL as an approach standing the chal-
lenges of key management and utilizing cryptographic functions within hetero-
geneous application deployment scenarios. It offers a centralized, secure key stor-
age and cryptographic engine to empower access to the cryptographic keys every-
where at any time. Figure 2.3 shows the structure of a CRYSIL instance, containing
several modules. These modules are defined as building blocks so that the mod-
ules can be implemented on any platform, and an instance can run on any device.
This flexible architecture of CRYSIL makes it easy to extend the system to support
new use cases.

CrySIL Instance

Client é@ >| Receiver

Actor |€— —>| Device

Figure 2.3: CRYSIL instance with the main building blocks: Receiver, router and actor. Arrows show
communications paths among the components. The cloud indicates a possible remote
connection between client and instance.

Reimair et al. [38] describe MOCRYSIL as a solution to carry your cryptographic
keys in your pocket by running a CrySIL instance on a mobile device. The authors
describe the WEBVPN scheme to solve the challenge of reaching the mobile device
despite ever-changing IP addresses and NAT behind routers. The scheme acts as
a relay service utilizing WebSocket connections and push notifications while pro-
viding end-to-end security between the two communication partners. MoCRrYSIL
executes cryptographic commands on the hardware-backed key store provided by

22

2 Preliminaries

the Android system®. The prototypical implementation presented by the authors
shows the successful integration of an Android device into the CrySIL landscape.
Figure 2.4 shows the structure of a MoCRYSIL instance, containing the same mod-

ules as a CRYSIL instance. Between client and instance, the WEBVPN relay service
is added.

A TLS tunnel between the two communication partners is established to prevent
this relay service from manipulating the messages between client and instance.
This tunnel provides end-to-end encryption from the client to the MoCRYSIL in-
stance. The modular concept of CRYSIL enables the use of the modules providing
this security feature in all other CrySIL scenarios.

MoCrySIL Instance

WebVPN Relay Service é@ >1 Receiver

Client

Actor |<& >| Android Key Store

Figure 2.4: MoCRYSIL instance with the main building blocks: WEBVPN, receiver, router and actor.
Arrows show communications paths among the components. Clouds indicate remote
connections.

2.3 Microsoft Windows Credential Provider

The module responsible for handling interactive login to a local Microsoft Win-
dows operating system is called Winlogon. Microsoft [28] describes how that mod-
ule can be extended by implementing a custom credential provider. Credential
providers describe the interface available to the user when logging into a Win-
dows system. Each credential provider registered with the system can show tiles,

1ht’cps: //developer.android.com/training/articles/keystore.html

23

https://developer.android.com/training/articles/keystore.html

2 Preliminaries

each one representing one form of authentication. The user can usually choose
between different providers and authentication methods. Credential providers in-
cluded in Windows 10 involve the ordinary password credential, a variant with
a shorter PIN and Windows Hello, which can authenticate the user using biomet-
rics®>. The credential provider framework enables convenient extensions of the
Windows login system to support any form of authentication.

2.4 Summary

In this chapter, we have outlined the standards and technologies which build the
foundation for our approach. U2F provides an open standard for secure second-
factor authentication. We explained the sequence of steps for both basic opera-
tions, which are registration and authentication. We analyzed how the standard
addresses limitations in existing approaches for 2FA, e.g. man-in-the-middle at-
tacks. We described the CrySIL system, which exhibits a flexible and extensible
architecture for cryptographic operations. Finally, we showed how the Windows
login system permits extending its features by implementing custom credentials
providers. In the next chapter, we shall survey existing solutions for second-factor
authentication.

2ht’cp: //windows.microsoft.com/en-us/windows-10/getstarted-what-is-hello

24

http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-hello

3 Related Work

In this chapter, we survey existing approaches to increase security in authenti-
cation processes. We limit our review to approaches for adding a strong second
factor to existing user verification methods. We concentrate on authentication on
the Web, as this is one of the most prevalent use cases nowadays. In this Web set-
ting, the usual form of authentication is the username together with the password.
Some of the methods we present, try to make use of the ubiquitous mobile phone
for authentication. Other methods are suggesting novel approaches for 2FA, e.g.
by combining biometrics and possession of cryptographic devices. Furthermore,
we take a look at the adoption of the U2F standard on the client and server side.
We shall see that some commercial frameworks already implement the standard
in their portfolio of authentication methods.

In Section 3.1 we survey existing solutions for second-factor authentication. In
Section 3.2 we examine some novel forms of authentication. In Section 3.3 we
analyze the current state of U2F adoption.

3.1 Second Factor Authentication

The use of one-time passwords (OTP) on the Web is relatively wide-spread. To
use them as a strong second factor, the OTP is commonly based on possession of
a device, e.g. a particular hardware token or an application on a mobile phone.
Generation of the codes may rely on time-synchronization between client and
server or on a secret seed and an algorithm to generate a chain of passwords.

Examples for OTP methods are HOTP and TOTP. HOTP (HMAC-based OTP [30])
builds on cryptographic keyed hash functions to compute subsequent passwords.
TOTP (Time-based OTP [31]) is established by adding the current timestamp to

25

3 Related Work

that calculation. Both methods depend on a key exchange before calculating the
tirst password. However, even systems using special tokens generating the OTP
are vulnerable to attacks, as shown in an attack against the RSA SecurID system?,
where attackers were able to get hold of the seeds of the tokens.

OTP used for authorization in banking applications throughout Europe are called
TAN (transaction authentication numbers). These short codes are often trans-
ferred out-of-band to the user, e.g. through text messages to a mobile phone,
or distributed by mail in advance. Mulliner et al. [32] argue that SMS-based TAN
cannot be considered secure anymore. The authors state attacks against cellular
networks and specialized trojans for mobile phones as the primary reasons for
this conclusion.

Dmitrienko et al. [13] show exhaustive attacks against various 2FA schemes em-
ployed by websites today, such as SMS-based TAN. The authors also show that
attacks against the popular Google Authenticator application can succeed. The
attacks rely on cross-platform infection to gain control over both endpoints, the
PC and the mobile device. Some attacks can be mitigated by redesigning how 2FA
is integrated into the services. The authors also call for more secure mobile 2FA
solutions, which should leverage trusted execution environments on the device
and protect against man-in-the-middle attacks.

Van Rijswijk and van Dijk [44] introduce an authentication framework based on
a smartphone application scanning QR codes displayed on websites. That code
contains a challenge which will be answered by the smartphone after entering
the correct PIN. The challenge represents an OTP, which will be sent to the au-
thentication endpoint of the website, thus sparing the user from entering the code
manually.

Everts, Hoepman, and Siljee [15] implement a system using smartphones to sign-
in users to websites using a PC or laptop. The approach supports both, usernames
and passwords and an authentication based on public-key cryptography. The sys-
tem enables a seamless switch from passwords to the more secure user verifica-
tion later on. In the first phase, the smartphone application acts as a password

Ihttps://arstechnica.com/security/2011/06/rsa-finally-comes-clean-securid-is-
compromised/

26

https://arstechnica.com/security/2011/06/rsa-finally-comes-clean-securid-is-compromised/
https://arstechnica.com/security/2011/06/rsa-finally-comes-clean-securid-is-compromised/

3 Related Work

manager. This solution obviously requires integration from service providers to
offer this service to end-users.

Suoranta, Andrade, and Aura [42] propose a scheme to enable strong authentica-
tion based on hardware security modules found in mobile phones. The authors
integrate their solution into a single sign-on (SSO) system to help users being tired
of typing passwords. The targets for implementation are the Shibboleth identity
provider and Nokia phones, but the modular solution supports substituting these
parts. Advantages are that neither the browser nor the client application relying
on the SSO provider needs to be adapted. A disadvantage of the approach is that
the user needs to compare manually session identifiers to link the session and
authentication to each other.

Czeskis et al. [11] offer a system called PhoneAuth that uses personal devices to
provide a strong cryptographic authentication. That factor can be added to com-
mon authentication with passwords on Web services. The phone and the browser
on the computer communicate over a Bluetooth channel to perform the authen-
tication. The implementation consists of adaptions of the browser, a particular
application on the phone and support on the website provider. Security of the
scheme is based on public-key cryptography, but no details about the exact im-
plementation on the phone are given. We believe that this work of Czeskis et al.
is one predecessor to the U2F standard.

3.2 Alternative Approaches

The usual categorization for authentication methods is based on knowledge, pos-
session, and inherence (biometrics). Brainard et al. [9] propose to use somebody
you know as a fourth-factor authentication. The authors introduce their concept
of vouching as a secure form of emergency authentication, e.g. when the user can-
not access the first or second factor for authentication. Even a prototype system
based on SecurID hardware tokens is described. Nevertheless, the use cases of
this approach are severely restricted.

27

3 Related Work

Jin, Ling, and Goh [20] propose a novel authentication approach by combining
biometrics with random tokens generated by smart cards. This concept relieves
the user of the burden to remember passwords completely. However, to roll out
this solution, the user needs a smart card reader and a fingerprint reader to per-
form a login.

Sun et al. [41] define an interesting system called Touchln that enables a 2FA
method by using a multi-touch mobile device. The knowledge factor is repre-
sented by a simple drawing on the touchscreen (the curve password), whereas
the biometrics factor is represented by the characteristics of the input, such as
pressure and acceleration. Unfortunately, the security analysis only covers cases
where the attacker can observe the drawing pattern and no sophisticated man-in-
the-middle attacks on the authentication process itself.

Zwattendorfer and Tauber [47] describe how to achieve secure cloud authentica-
tion using electronic identities issued by governments. The authors show how to
use the European STORK ID framework for secure and reliable authentication at
applications offered by cloud service providers. This approach not only enables
authentication but also for identification. However, this idea yields some privacy
issues. Users often use pseudonyms for accounts on websites. In this case, they
may not want to be identified by their name when logging in to this account.
Furthermore, this approach would permit cooperating service providers to track
users across different services.

Machani et al. [27] define UAF (the universal authentication framework), another
standard developed by the FIDO Alliance. It aims at replacing passwords alto-
gether by local authentication specific to a device. That device is authenticated
to the relying party, and the user authenticates himself to that device only, e.g.
by providing a fingerprint or entering a PIN. The relying party in this process
can state a policy to restrict the local authentication methods valid for logging in.
UAF also includes the opportunity to show the user data related to the transac-
tion. The standard itself looks promising to provide the flexibility needed in times
of fast-changing user behavior and device support.

28

3 Related Work

The FIDO Alliance itself expects the standards UAF and U2F to further evolve
and eventually harmonize?. Few products implement a UAF authenticator, most
notably the fingerprint sensor on some Samsung Galaxy smartphones and finger-
print readers on Lenovo ThinkPads3. PayPal offers a fingerprint authentication
on several Samsung mobile devices, which is based on UAF4. Nevertheless, the
every-day user of the Web cannot use UAF to log in to any website, yet.

3.3 U2F Adoption

Lang et al. [24] show that employing a two-factor authentication solution based
on U2F leads to an increased level of security and user satisfaction. The authors
base their findings on a large-scale deployment within Google and on public
web applications offered by Google. They show that the time spent authenticat-
ing using U2F keys (called Security Keys by the authors) is lower compared to
traditional OTP methods (received either via an application or SMS). Also, no
authentication failures occurred when using U2F. Such failures may occur when
using traditional OTP methods and the user incorrectly the code from the mobile
phone to her laptop used for the log-in.

More important for the adoption of U2F is support on all three sides, i.e. from
relying parties, from client software vendors, and from hardware manufacturers.
Various companies produce U2F tokens, including Yubico5, Hypersecu® and an
iris identity authenticator by EyeLock?. NXP® and Infineon? provide reference
implementations of hardware tokens.

Several implementations for U2F are available as open source software. These of-
ferings include libraries written by members of the FIDO Alliance to be integrated

2https://Fidoalliance.org/about/faq/
3https://Fidoalliance.org/assets/downloads/FIDO—U2F—UAF—Tutoria1—v1.pdf
4https://www.paypal—pages.com/samsunggalaxysS/us/index.html
5https://www.yubico.com/products/yubikey—hardware/
6https://www.hypersecu.com/products/hyperfido
7https://www.eyelock.com/index.php/in—the—news/news/1/415/
8http://www.claritycommunications.com/pdf/NXP—FIDO.pdf
9https://www.infineon.com/fido

29

https://fidoalliance.org/about/faq/
https://fidoalliance.org/assets/downloads/FIDO-U2F-UAF-Tutorial-v1.pdf
https://www.paypal-pages.com/samsunggalaxys5/us/index.html
https://www.yubico.com/products/yubikey-hardware/
https://www.hypersecu.com/products/hyperfido
https://www.eyelock.com/index.php/in-the-news/news/1/415/
http://www.claritycommunications.com/pdf/NXP-FIDO.pdf
https://www.infineon.com/fido

3 Related Work

into existing server solutions'. Few websites offer support for U2F as a second-
factor method, most notably Dropbox**, Github*?, and Google'3, as of today.

Client support for U2F is implemented in the Google Chrome desktop browser'+
and its open-source variant Chromium. Support for the protocol was first im-
plemented as an after-market extension for Chrome but was later moved into
the crypto-token extension integrated directly in the browser code. Mozilla has
planned to support U2F in the Firefox browser. As recently as February 2016,
the implementation is underway'>. There also exists an experimental third-party
add-on trying to add U2F support to Firefox™.

Microsoft has announced to implement support for U2F in Windows 10'7 and
the Edge browser®® but has not yet completed its implementation as of February
2016. Recently the focus of the Edge developer team has shifted towards imple-
menting an upcoming FIDO 2.0 Web API standard' to be integrated in Microsoft
Passport. Microsoft Passport is a two-factor authentication solution for Microsoft
accounts®®, which can be used on local Windows installations.

Several authentication frameworks integrate U2F as an authentication method.
One of them is Transakt U2F from Entersekt** where the smartphone can be
utilized as a U2F token when installing an application. According to information
provided by Entersekt, the private key used for U2F authentication is stored on
an application server hosted by Amazon AWS, wrapped with a key stored on
the phone. Since that product is still in its beta phase, no source code or detailed
security analysis is available. The same holds for the SurePassID authentication

10https://github.com/showcases/universal—2nd—factor
11https://blogs.dropbox.com/dropbox/2®15/08/u2f-security-keys/
12https://github.com/blog/2071—github—supports—universal—an—factor—authentication
13https://support.google.com/accounts/answer/61@3523
14https://googleonlinesecurity.blogspot.com/2014/1e/strengthening—z—step—
verification-with.html
Bhttps://bugzilla.mozilla.org/show_bug.cgi?id=1065729
6https://addons.mozilla.org/firefox/addon/u2f-support-add-on/
17https://blogs.windows.com/business/2015/02/13/microsoft—announces—fido—support—
coming-to-windows-10/
18https://dev.windows.com/en-us/microsoft-edge/platform/status/fidouzf
19https://wpdev.uservoice.com/forums/257854—microsoft—edge—developer/suggestions/
6830216-u2f-support-2-factor
Dhttps://technet.microsoft.com/en-us/library/dn985839. aspx
21http://blog.entersekt.com/google-and-fido—uzf

30

https://github.com/showcases/universal-2nd-factor
https://blogs.dropbox.com/dropbox/2015/08/u2f-security-keys/
https://github.com/blog/2071-github-supports-universal-2nd-factor-authentication
https://support.google.com/accounts/answer/6103523
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1065729
https://addons.mozilla.org/firefox/addon/u2f-support-add-on/
https://blogs.windows.com/business/2015/02/13/microsoft-announces-fido-support-coming-to-windows-10/
https://blogs.windows.com/business/2015/02/13/microsoft-announces-fido-support-coming-to-windows-10/
https://dev.windows.com/en-us/microsoft-edge/platform/status/fidou2f
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6830216-u2f-support-2-factor
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6830216-u2f-support-2-factor
https://technet.microsoft.com/en-us/library/dn985839.aspx
http://blog.entersekt.com/google-and-fido-u2f

3 Related Work

server** which apparently enables various multi-factor authentication methods
and tokens, including U2F, for existing server applications. Another open source
example is privacyIDEA?3, which permits the integration of several two-factor
authentication methods including U2F into existing applications.

The Ledger U2F applet** provides a Java Card implementation of the U2F stan-
dard. It may be installed on compatible Fidesmo®> smart cards, which come with
an NFC interface for use on mobile devices. Together with the Google Authenti-
cator app for Android, this could enable a mobile use case for U2F authentication
in the Chrome browser for Android®® in the future.

3.4 Summary

In this chapter, we showed that some established authentication frameworks al-
ready integrate the U2F standard. Nearly all of the commercial applications are
closed source and are not inter-operable with other solutions. Most of the solu-
tions require the user to trust a third party with their credentials. This fact reduces
the chance of broad adoption by both, service providers and end-users. There are
also still usability constraints with many authentication solutions, complicating
their use for the average user. As an example, all methods relying on an OTP
require the user to manually copy the OTP from one device to another. Some
promising ideas to strengthen user authentication on the Web exist, but they lack
support from websites and clients. Overall, existing approaches do not demon-
strate enough flexibility and extensibility to be used by a majority of users. In the
next chapter, we shall outline our approach proposed to address shortcomings of
methods described in this chapter.

22ht’cp: //www. surepassid.com/why-we-are-unique/fido-authentication-support/
Bhttps://www.privacyidea.org/

24ht’cps: //github.com/LedgerHQ/ledger-u2f-javacard

25ht’cp: //www.fidesmo.com/store

26http://about. fidesmo.com/nfc-u2f-android/

31

http://www.surepassid.com/why-we-are-unique/fido-authentication-support/
https://www.privacyidea.org/
https://github.com/LedgerHQ/ledger-u2f-javacard
http://www.fidesmo.com/store
http://about.fidesmo.com/nfc-u2f-android/

4 Approach

In the previous chapter, we showed that existing solutions for 2FA offer several
limitations. Our goal is to provide an extensible and flexible approach for 2FA
that is usable in various authentication use cases among different services. To
achieve this goal, we combine the rising U2F standard with the open CrYSIL sys-
tem. The freedom of CRYSIL to assemble custom instances by combining several
software modules provides the flexibility needed to support numerous use cases.
We implement modules for the CrYSIL architecture to receive U2F messages and
other modules to support miscellaneous cryptographic devices. We modify the
U2F client in the Chrome browser to insert a CrRYSIL node. This node makes it
possible to forward authentication requests from websites to any CRYSIL instance.
In addition to the browser scenario, we enable the use of a second factor during a
Windows login procedure. There, we extend the usual combination of username
and password for authentication on a local system with a U2F token. Our ap-
proach is entirely transparent to the relying party in the U2F process, as it can
not differentiate between an actual U2F token and our system.

In Section 4.1 we describe our approach in general terms. In Section 4.2 we lay
out applications and use cases supported by our solution. In Section 4.3 we state
advantages of our approach compared to existing solutions and address limita-
tions of our idea. In Section 4.4 we discuss specifics of the U2F protocol, namely
attestation certificates and the realization thereof in our approach.

32

4 Approach

4.1 General Idea

Existing solutions for second-factor authentication exhibit a few limitations. Some
of them are constrained in the applicability on the server side, limiting the use
of a particular solution to one relying party. Others require the user to buy and
carry special tokens, again usable only for a restricted set of service providers. No
solution empowers the user to easily use his existing cryptographic devices for
2FA among different services. In general, support of open solutions is decidedly
limited.

A CrySIL instance implements a centralized key storage and offers an interface
for client applications to perform cryptographic operations. Those operations of-
fered include common tasks such as encrypting and signing data. An instance
also provides advanced procedures such as generating and exporting wrapped
keys. The cryptographic operations performed by an authenticator device in U2F
boil down to creating a new asymmetric key pair and signing challenges with it.
Aligning those requirements and offerings, we think it is feasible to use a CRYSIL
instance as the authenticator device (token) in the U2F system.

Registering a new token for an existing account on a service generates a registra-
tion command in U2F. The token is then supposed to create a new asymmetric
key pair, provide an attestation certificate and calculate the signature over the
challenge. We will use the commands provided by CrySIL, namely generating a
wrapped key and signing data, to fulfill this requirement.

When the user wants to log in and has a token registered with her account, the
relying party requests an authentication in U2F. To answer this request, the token
needs to calculate the signature over the challenge and a counter value. The rely-
ing party includes a key handle in its message to the token that enables the token
to identify the key pair which was generated in the registration process described
earlier. We will again use existing commands of CrySIL first to generate the key
from the handle given and second to sign the data with this key. Additionally, we
will implement functionality to store the counter securely and include it in the
signature data.

33

4 Approach

U2F Relying Party

U2F Relying Party

v
U2F Client &
CrySIL Bridge

v

U2F Client

\

CrySIL Instance
Y Yy

Authenticator N
User Control Authenticator

User Control

Figure 4.1: Left: General U2F approach with relying party, client, and authenticator. Right: Our
approach with relying party, client including the CRYSIL bridge, CRYSIL instance, and
authenticator. In both cases, the user has control over the client and authenticator. In our
approach, the user additionally controls the CRYSIL instance. The clouds in the picture
denote remote connections between relying party and client, and between client and
CrySIL instance.

Note that this is a simplified view of the whole process; we describe the details of
the U2F protocol in Section 2.1.1 and the implementation details of our solution in
Section 5.1.1. Figure 4.1 explains the differences of a common U2F setting to our
approach. In the former scenario, the user has control over the U2F client in his
browser and the authenticator device. In our approach, the user additionally has
control over the CrYSIL instance, and the U2F client is extended with a CrySIL
bridge. This bridge is a realization of a CRYSIL node and contains a receiver com-
patible with the U2F protocol and a forwarder. This forwarder sends commands
to a CrYSIL instance over HTTPS. The connection between the relying party and
the client in the U2F setting may be a remote connection, just as the connec-
tion between the U2F client and the CRrYSIL instance in our approach. Figure 4.2

34

4 Approach

shows the message flow between the U2F client, the CrRYSIL bridge therein and
the CrySIL instance in our approach. As described before, two CrySIL messages
are generated for one U2F command.

U2F Client CrySIL Bridge CrySIL Instance
I I I
1 il 1
|
register/authenticate

g ! I 0 generateUZFKey()>

<+ _Wrzlpged_Ke_y T

sign() -

o e e - - - - s_ign_atare_ -7
- result o -

Figure 4.2: Sequence diagram showing the messages among the U2F client, the CRYSIL bridge, and
the CRrYSIL instance to execute one U2F command. The CRYSIL bridge generates two
CRYSIL messages for one U2F request. This holds for both commands in U2F, registration
and authentication.

We provide actors for the CRYSIL system to execute the commands needed on
a variety of devices suitable for second-factor authentication. These authentica-
tor devices include existing smart cards and EID cards. One example for such
an identity card is an Austrian health insurance card with activated citizen card
functionality. Furthermore, we can use the Android key store as an authentica-
tor device when using MoCRrySIL. That solution for Android also enables using
cryptographic devices connected over NFC, such as dual-interface smart cards
and even U2F tokens from Yubico. Furthermore, the existent actor providing a
software implementation of cryptographic commands, based on a file key store,
is extended to be compatible with our solution.

35

4 Approach

4.2 Applications

One of the most prevalent use cases of authentication today is a user logging
in to a website in his browser. The U2F standard explicitly focuses on that sce-
nario. As of February 2016, only one web browser supports U2F authentication;
that is Chromium or Google Chrome. To show the applicability of our solution in
real-world scenarios, we adapt the U2F client implemented in the browser. The
implementation of the client comprises a front-end receiving commands from re-
lying parties and a back-end handling those commands. The browser can use our
implementation of a CryYSIL bridge as such a back-end. The front-end, used by
developers of websites to send challenges to U2F tokens, is not altered. This sepa-
ration allows our approach to retain compatibility to all websites supporting U2F,
which includes Dropbox, Github, and Google. Our custom back-end forwards all
U2F requests to a CrRYSIL instance configured by the user. Overall, our approach
essentially replaces the token in the U2F process with a CrYSIL instance.

We can apply the same concept to any other U2F client, not necessarily in a
browser. We implement a credential provider for Microsoft Windows to showcase
this possibility. We increase the security of the local login process of a Windows
system by adding a second factor to the account password commonly used. The
implementation involves a relying party and client for U2F as well as the CrySIL
bridge. Again, any CRrySIL instance can be configured by the user to be used
in the authentication process. In contrast to the solution involving Chromium,
the Windows credential provider additionally plays the role of a relying party.
Therefore, it has to verify actively the data provided as the response by the U2F
token.

The adaptability of our solution enables a mix-and-match of clients and authenti-
cator devices to support various use cases. Any of the two clients, the Chromium
browser, and the Windows login provider can talk to any CryYSIL instance. That
instance can pass on the requests to any device supported: Smart card, electronic
identity card, Android key store, software implementation, or a genuine U2F to-
ken over NFC. Therefore, the user can use her smartphone as a secure second
factor when accessing her Google account. Another option is to use her EID card
as the second factor when logging in to a local Windows system.

36

4 Approach

4.3 Advantages

We extend the flexibility of the U2F process with our approach: We enable the use
of existing cryptographic devices, including smart cards and similar eID cards.
Given the modular concept of the CRYSIL approach, one can also implement ac-
tors to support even more devices. Additionally, we show how to employ U2F in
local scenarios, in contrast to the focus on Web authentication of early implemen-
tations.

Our approach keeps the benefits of U2F over traditional solutions for 2FA. We
retain the property of resilience to man-in-the-middle attacks and other critical
security aspects. We also maintain the user-friendliness and simplicity of U2F for
the user, only requiring the user to confirm each operation on the authenticator
device. Moreover, when using our approach based on an Android device, the user
is relieved of connecting a particular hardware token to the device performing the
login. Therefore, the user does not have to carry around yet another device for
2FA. We further keep the broad support from service providers for U2F, meaning
that a significant number of users on the Web can use our approach.

In the realization of our approach, we build on the existing structure of the CrySIL
system. As one consequence, the communication of the client with the CrRYSIL in-
stance (acting as the authenticator device) requires an active network connection.
This is no constraint for authentication on the Web, but may be of concern for
a local login on a Microsoft Windows system. Furthermore, when using an An-
droid smartphone as the authenticator device, there may be coverage or power
issues.

4.4 Attestation Certificates

U2F tokens send an attestation certificate in the response to a registration chal-
lenge. The relying party can use this certificate to identify the device class and
type. It may deny the user to use this specific device based on the information
provided therein. Our approach includes these attestation certificates, with char-
acteristics peculiar to the actor utilized by the CrYSIL instance. In the registration

37

4 Approach

step, the key pair designated by the attestation certificate needs to be used to
calculate the signature for the response message.

When using a smart card, the actor in our implementation uses a certificate stored
on the card as the attestation certificate. This certificate is then used in the re-
sponse to all registration commands. Relying parties can track this specific au-
thenticator device using the attestation certificate. Though, this does not neces-
sarily leak personal information about the user, depending on the content of the
certificate.

When using an Austrian eID card, i.e. a smart card containing an implementation
of the Austrian citizen card concept, a certificate for the key pair of the card is
stored on the card. The subject of this certificate identifies the owner of the card
by its full name. To prevent leaking this personal information to relying parties
in our approach, we use a self-signed certificate instead. The actor for the EID
cards creates such a certificate on every registration command. Therefore, this
implementation avoids the identification of the user by the attestation certificate.
Nevertheless, all attestation certificates contain the same public key, i.e. the one
stored on the card.

When using the Android key store, or a software implementation as the actor for
the CrySIL instance, again a self-signed certificate is exported as the attestation
certificate. This implementation of self-signed certificates also prevents the relying
party from gaining any information about the device class used. This feature
may restrict the applicability of our solution if the relying party will only accept
devices with an attestation certificate signed by certain issuers. However, this
behavior of relying parties would also contradict the notion of freedom of choice
in the U2F standard.

For smart cards and EID cards, the same key is used every time to answer reg-
istration commands. As a consequence, relying parties can track the authentica-
tor device if the user connects it to different accounts. Nevertheless, a fresh key
handle is created for every registration request. This procedure ensures that key
handles from one relying party cannot be used to trick the card into generating
signatures for another relying party.

Smart cards and similar systems such as identity cards also present another con-
straint: They offer no storage to save the counter required by the U2F protocol

38

4 Approach

securely. This counter needs to be included in every authentication response and
needs to be increased at least globally on each operation, as we described in Sec-
tion 2.1.4. As long as the CrYSIL instance is running on the same computer, the
counter can be stored in software and cached to disk. However, this obviously
adds the possibility of an attacker modifying this value and causing the relying
party to probably invalidate this authenticator device because of the mismatch in
the counter values.

4.5 Summary

In this chapter, we described the general idea of our approach towards an extensi-
ble and flexible solution for 2FA. We explained how to combine the U2F standard
with the CRrRYSIL scheme. We empower the user to use a diverse array of cryp-
tographic devices as a secure second factor by profiting from the flexibility of
CRYSIL. We also showed how to deploy our approach in a variety of real-world
applications, ranging from authentication on the Web to local Windows login. We
keep the advantages of U2F and even provide some more benefits. We addressed
limitations concerning attestation certificates emerging in certain cases of our ap-
proach. In the next chapter, we shall outline the implementation of our approach,
in particular, the modules developed for CrYSIL enabling support for various
scenarios.

39

5 Implementation

In the preceding chapter, we described the general idea of our approach for an
extensible and flexible method for 2FA. To assemble our approach, we implement
several modules for the CrYSIL system. In this chapter, we explain the design
decisions we took in the course of our implementation, concerning placement of
the bridge and handling the concept of user presence. This bridge element will be
included in the U2F clients and enables forwarding the authentication challenges
to a CrYSIL instance. We also describe the design of the actors in general and pro-
vide implementation details on the various modules. The implementation of the
actors for the MoCRrYSIL instance running on an Android devices gives the user
the chance to handle authentication requests with different actors and hardware
tokens. Moreover, we demonstrate how to integrate our approach into the existing
U2F client in the Chromium and Google Chrome browsers. To achieve this, we
enhance the existing extension handling the U2F commands in the browsers. To
enable another showcase for our approach, we implement a credential provider
for Microsoft Windows. This credential provider enhances the local login process
for the user with a second factor.

In Section 5.1 we explore the modules implemented for CrYSIL. In Section 5.2
we analyze the extension for the Chromium and Google Chrome browsers. In
Section 5.3 we examine the custom credential provider implemented for Microsoft
Windows. In Appendix B we show screenshots of the clients in the browser, the
Windows applications, and the Android application.

40

5 Implementation

5.1 CrySIL Modules

A CRrySIL instance is composed of several software modules: Receivers, a router,
and actors. For the implementation of our approach, we develop receivers which
understand U2F commands and actors compatible to various authenticator de-
vices. The router module mediates between the receivers and actors in an instance.
We extend existing U2F clients by including a CRYSIL bridge. This CrYSIL bridge
comprises a receiver and forwarder module to send all authentication challenges
from the U2F client to a CRYSIL instance. We embed this bridge into existing soft-
ware that implements a U2F client, e.g. a browser. Additionally, we implement
several actors, each one capable of executing commands on a specific hardware
device. U2F commands sent to the CRYSIL instance are then executed on these de-
vices. Our approach can either use CrYSIL instances with existing actors adapted
to the needs of our U2F integration or instances running one of the newly devel-
oped actors. Generally speaking, any receiver can be matched with any actor to
build a custom CrYSIL instance suitable for the use case in question.

We implement the following CRrySIL receivers for our approach:

¢ A general U2F receiver as a Java module, converting incoming U2F mes-
sages into CRYSIL commands.

* A receiver in JavaScript, to supplement the U2F extension for Chromium
and Google Chrome.

* A receiver in C++, to extend the credential provider for Microsoft Windows.

Together with a forwarder, such a receiver constitutes a bridge between U2F and
CRrYSIL. The forwarder sends the commands over an HTTPS connection to a
CRrYSIL instance.

We implement the following CRrYSIL actors for our approach:

* An actor supporting smart cards.

* An actor supporting electronic identity cards.

* An actor running on Android supporting U2F tokens and smart cards over
NEFC.

41

5 Implementation

In addition to the actors described preceding, we adapt the following existing
actors:

¢ The actor using the IAIK-JCE" security provider for Java, backed by a file
key store, executing cryptographic commands in software.

¢ The actor using the Bouncycastle? library on an Android device, using the
Android key store.

5.1.1 Design Decisions

We discussed in Section 4.1 that the CrYSIL bridge converts each U2F command
received into two CRYSIL commands which will be forwarded to a CrYSIL in-
stance. The two CRYSIL commands are used first to create a wrapped key and in
the second step to use this key to calculate a signature value. The relying party
in U2F stores a key handle to identify the key from the registration response
in subsequent authentication requests. CRYSIL offers a method to generate and
export wrapped keys in containers based on the cryptographic message syntax
(CMS, [17]). However, this container can not be used as the key handle for U2F
because the length of a handle is limited to 255 bytes in the standard. Therefore,
instead of relying on the CMS format, we implement different strategies for key
generation specific to the U2F use case. One of the strategies resembles the key
generation algorithm used by Yubico, which we described in Section 2.1.5. As
a result of this decision to implement a new key generation functionality, exist-
ing actors for the CRYSIL system have to be adapted to be employed in U2F use
cases.

We could implement the receiver bridging the commands between the U2F format
and the CrySIL format on either side of the connection between the U2F client
and the CryYSIL instance. Figure 5.1 shows these alternatives. We have decided to
implement it on the side of the U2F client. This choice bears the advantage that
we can handle authentication for cryptographic devices on the client as intended
by the CRrYSIL protocol. At first glance, it seems counter-intuitive to require au-
thentication for a second factor in an authentication protocol. Nevertheless, this

1ht’cps: //jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
2ht’cps: //www.bouncycastle.org/

42

https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
https://www.bouncycastle.org/

5 Implementation

step is needed to support authenticator devices which require a PIN to be en-
tered for every command executed. One example of such a device is an Austrian
health insurance card with activated citizen card functionality. This implementa-
tion choice enables the CRYSIL node in the U2F client to prompt the user for that
PIN. Also, other authentication methods supported by the CrYSIL system could
be implemented that way.

U2F Relying Party U2F Relying Party
U2F Client U2F Client

oc 3

CrySIL Instance CrySIL Instance

Figure 5.1: Alternatives for the placement of the bridge converting messages between the U2F and
CRYSIL formats. Left: Implementation of the bridge in the U2F client. Right: Implemen-
tation of the bridge as a module in the CRYSIL instance. We chose to implement the
alternative on the left. Clouds indicate remote connections.

As a consequence of this placement of the bridging element, a single U2F com-
mand is converted into two CrYSIL commands on the client. Therefore, we need
to consider another subtlety of the U2F protocol: The signature input in the au-
thentication step includes the counter value of the authenticator device. We de-
scribed this mechanism in detail in Section 2.1.4. However, this counter value is
known only to the actor of the CrYSIL instance. Since the bridge on the client side
assembles the signature input and creates the command requesting the signature
value, it cannot access the counter value. To solve this challenge, we introduce
a new header type for CRYSIL commands that includes the counter value. The

43

5 Implementation

bridge sends this header, but with an empty value for the counter. If the actor
executes a command containing such a header, it exports the counter value in the
response. The client can then add this counter value to the response to the U2F
relying party to conform to the standard.

The U2F standard places importance on the concept of user presence: The user
has to confirm explicitly every operation on an authenticator device. We achieve
a similar behavior in our approach in several ways, depending on the actor and
cryptographic device used. When using an Android device in a MOCRYSIL set-
ting, the user has to choose actively which actor should handle the operation. This
actor can either be the software implementation using the Android key store or
the actor communicating with a second device using NFC. When using a CrySIL
instance with an EID card, every signing operation on the card requires a PIN to
be entered by the user. Our approach handles this by sending a CRYSIL authenti-
cation challenge to the client, as described before. When using a smart card, and
a PIN is set for the key pair in use, the same principle applies. However, other
CRYSIL actors may choose not to require the user’s consent for every operation.

5.1.2 CrySIL U2F Bridge

In the preceding section, we discussed the placement of the CrYSIL bridge. We
embed this element into the U2F client to handle authentication requests from ac-
tors of the CrRYSIL instance, e.g. for smart cards. Therefore, we need to implement
this bridge in the programming language of existing U2F clients we want to sup-
port. We also need to adapt these clients to forward all authentication requests to
our bridge element.

Figure 5.2 shows the message flow between a U2F client, the CrySIL bridge and
the CrySIL instance for a registration command. A relying party in the U2F set-
ting issues this command when the user wants to register a new hardware token
for his account. The CrYSIL bridge receives all data from the U2F client, including
application identifier and client data structure. First, the bridge sends a command
to request the generation of a wrapped key to the CrYSIL instance. The bridge
uses the key from the response to this request for the next step. In that second
step, the bridge requests a cryptographic signature over various data. The bridge

44

5 Implementation

combines the responses from both CRrYSIL requests to create and send a response
to the U2F client.

Figure 5.3 shows a similar message flow between the software elements for an
authentication command. A relying party sends this command to request proof of
possession of the hardware token from the user. The bridge creates the same two
commands as in the previous case of registration: It requests a wrapped key from
the instance, and uses that key to request a cryptographic signature. In contrast
to the registration flow, the wrapped key is calculated from the handle and not
newly generated. Also, the CRYSIL instance has to insert a counter value into the
signature data. Furthermore, the CryYSIL bridge has to include this counter value
in its response to the U2F client.

5.1.3 Smart Card Actor

To use smart cards in our approach, we implement an actor using the PKCS#11 li-
brary? and the PKCS#11 security providert from the Institute of Applied Informa-
tion Processing and Communications (IAIK). This library offers a programming
interface to communicate with cryptographic devices, including smart cards and
hardware security modules. Figure 5.4 presents the building blocks of the imple-
mentation of this actor. This figure also shows that the device running the CrySIL
instance with this actor needs an additional smart card reader to communicate
with the card. Such readers are usually connected to a USB interface.

3https: //jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/PKCS_11_Wrapper
4ht’cps: //jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/PKCS_11_Provider

45

https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/PKCS_11_Wrapper
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/PKCS_11_Provider

5 Implementation

U2F Client CrySIL Bridge CrySIL Instance
I I I
| | |
] [| Generate
- - - key-pair,
register(appld, clientData) P handle
generateU2FKey(appld, clientData) ZI
< ‘wrappedKey, handie, certificate |
P |Sign dat
sign(wrappedKey, appld, clientData, 19n data
handle, publicKey) :'
- —— e — = T

public key, handle,

T attestation cert, signature | |

Figure 5.2: Flow of messages between a U2F client, a CRYSIL bridge embedded therein, and a CrySIL
instance to handle a U2F registration request from a relying party.

U2F Client CrySIL Bridge CrySIL Instance
I I I
| |
[[] Generate
- _a key-pair,
auth(appld, clientData, handle) handle

P
generateU2FKey(appld, handle) <_—|

wrappedKey, handle, certificate Insert counter

P> sign data
sign(wrappedKey, appld, clientData) <——|

signature

T T T
| | |

counter, signature

Figure 5.3: Flow of messages between a U2F client, a CRYSIL bridge embedded therein, and a CrySIL
instance to handle a U2F authentication request from a relying party.

46

5 Implementation

CrySIL Instance

Smart Card Actor

CrySIL Router |€4+—>| Java Code Smart Card

N 7/
A\ 4 A4

PKCS11 Library |<€ >| Reader

Figure 5.4: Building blocks of the smart card actor inside a CRYSIL instance: The CRYSIL router sends
commands to the Java implementation, which forwards them with help of the PKCS#11
library to the smart card reader. That reader is usually connected to an USB interface.

The card needs to offer an ECC key pair to be usable in our approach. We use
this key pair to handle all U2F operations. The elliptic curve used needs to be
P-256 (or secp256r1 equivalently) as required by the U2F protocol. Additionally,
a certificate has to be stored on the card, which will be used as the attestation
certificate in U2F registration responses. The private key matching the public key
in that certificate also needs to be available for signing the registration response.
Additionally, an RSA key pair on the card will be used to generate and verify key
handles. We use this key pair to emulate the device secret in the key generation
process, as it generates deterministic cryptographic signatures. In the registration
step, we do not generate a new key pair on the card, but only a new key han-
dle that gets exported to the relying party. On subsequent authentication steps,
we can verify the authenticity of the key handle the relying party sends with
the challenge. Any PIN required for smart card operations will be handled by
the authentication mechanism of the CRryYSIL protocol, as we described in Sec-
tion 5.1.1.

47

5 Implementation

5.1.4 Electronic Identity Card Actor

The implementation of the actor for electronic identity cards is similar to the actor
for smart cards. Figure 5.5 shows the building blocks of this actor for EID cards.
Again, an external card reader is necessary to use the cards.

CrySIL Instance

elD Card Actor

CrySIL Router |€4+—>| Java Code elD Card

N 7/
Y A4

SMCC Library |« >| Reader

Figure 5.5: Building blocks of the electronic identity card actor inside a CRYSIL instance: The CRYSIL
router sends commands to the Java implementation, which forwards them with help of
the SMCC library to the card reader. That reader is usually connected to an USB interface.

The implementation of the module uses the smart card communication library
(SMCC) from the MOCCA5 project. MOCCA is a modular, open source citizen
card environment, initiated by EGIZ®, Austria’s eGovernment innovation center.
The library exposes a programming interface to perform certain operations on
the cards, including signature creation. The range of cards compatible with the
library includes Austrian health insurance cards with activated citizen card func-
tionality and similar EID cards from other European countries. For application in
our approach, the ID card has to provide an ECC key pair on the curve P-256
that can be used to create cryptographic signatures. In the case of the Austrian
cards, this key pair is also used for qualified electronic signatures. A second key
pair based on RSA needs to be available to generate and verify key handles, as
we described in the preceding subsection for the actor for smart cards. These key

5ht’cps: //joinup.ec.europa.eu/site/mocca/
6ht’cps: //www.egiz.gv.at/

48

https://joinup.ec.europa.eu/site/mocca/
https://www.egiz.gv.at/

5 Implementation

handles get exported to relying parties in the U2F registration phase. The certifi-
cate for the ECC key pair on the card usually identifies the owner. To prevent
leak of this personal information in our approach, we do not use this certificate
directly as the attestation certificate for U2F purposes. Instead, the actor creates a
new self-signed certificate for the ECC key pair. This certificate will be signed by
the RSA key pair on the card.

5.1.5 Android Implementation

When running a MoCRryYSIL instance on an Android device, the instance uses the
actor based on the Android key store. The Android key store supports hardware-
backed keys since the release of Android 4.3 in mid-20137. Depending on the
implementation of a trusted execution environment on the device, the key store
then uses either a Secure Element, a Trusted Platform Module (TPM), or an ARM
TrustZone. The capabilities of the key store were extended even further in An-
droid 68, released by the end of 2015. The security of our approach relies on
a device providing such a hardware-backed key store. The private key material
will then never leave the secure zone on the device and cannot be extracted.

In our implementation, we use the Android key store to store a single RSA key
pair. This key pair will be used to generate and verify key handles, resembling
the function of a device secret on a U2F token. The approach for key generation
is similar to the one used by Yubico, described in Section 2.1.5. The private key
is derived from the application identifier and a nonce to create a new key pair
for registering on a relying party. Thus, this actor fulfills the requirement of the
U2F standard to generate a fresh key pair for every registration command. An
attestation certificate will be created on-the-fly and signed with the same key pair.
We also use the Android key store to securely store the counter value we need for
the authentication step in the U2F protocol. Because the key store can only store
cryptographic keys and certificates for those keys, we exploit the serial number
of a certificate to save the counter value.

7https: //developer.android.com/about/versions/android-4.3.html#Security
8ht’cps: //source.android.com/security/keystore/

49

https://developer.android.com/about/versions/android-4.3.html#Security
https://source.android.com/security/keystore/

5 Implementation

Additionally, we implement an actor using the NFC interface of the Android de-
vice. This actor enables the user to tap an external cryptographic token to the
Android device and let the CRYSIL instance execute the commands on that token.
Our implementation supports two different devices, namely the YubiKey NEO?
and the SmartCard-HSM Dual Interface Card*®. For both devices, the actor di-
rectly sends the correct APDU (application protocol data unit) messages over the
NFC interface. When using a YubiKey, the built-in U2F functionality of the token
is used, and the actor does not alter the responses in any way. When using a smart
card, an approach very similar to the one adopted in the smart card actor is used.
Overall, this NFC actor is a viable alternative to retain strong security properties
in case the key store of the Android device is not hardware-backed.

When interacting with a MoCRrySIL instance, instead of contacting the instance
directly, the forwarder in the U2F client contacts a WEBVPN relay service first.
This relay service then communicates with the Android device and transmits mes-
sages between the two communication partners. To prevent the relay service from
eavesdropping on the conversation, we use end-to-end encryption as described
by Reimair et al. [38]. We use the appropriate CRYSIL modules to establish a
TLS channel between the bridge in the U2F client and the MoCRryYSIL instance,
wherein the latter is authenticated. The modular architecture of CRYSIL allows us
to use these modules in all implementations, whether a WEBVPN relay service
is present. Figure 5.6 shows this setup, including the relay service and the two
actors.

On every incoming request, the user has to actively choose one of the actors
available to handle the request. To implement this feature, we adapt the router
in the MoCRyYSIL implementation. This interaction ensures that the user is aware
of any authentication request happening and complies with the concept of user
presence in the U2F standard.

9https: //www.yubico.com/products/yubikey-hardware/yubikey-neo/
1Oht’cp: //www.smartcard-hsm.com/

50

https://www.yubico.com/products/yubikey-hardware/yubikey-neo/
http://www.smartcard-hsm.com/

5 Implementation

CrySIL U2F Bridge MoCrySIL Instance
>| Receiver KSActor |& >| Android Key Store
T\
\ 4
WebVPN Relay Service Router | S | NFCActor [€ >| YubiKey
T~

Figure 5.6: MOCRYSIL instance adapted to our approach, showing our implementation of two actors
and the adaptation of the router (in bold). Arrows show communications paths among
the components. Clouds indicate remote connections.

5.2 Chromium Extension

U2F clearly focuses on user authentication on the Web. Several websites im-
plement U2F as a method for second-factor authentication, and the Chromium
browser (respectively Google Chrome) can be used as a client. Support for the
protocol was first implemented as a third-party extension for Chromium. Older
versions of the extension have provided an interface for handling U2F requests
with a custom helper written in another extension. This support has been dropped
by the developers when they moved the extension into the main source code of
the browser. As our approach relies on this functionality to include a custom
helper, we have ported that support into the current source code of the Chromium
browser. As a consequence, the source code of the browser has to be patched and
recompiled to use the CRYSIL bridge, and therefore our approach, with U2F. Fig-
ure 5.7 shows an overview of the software components of our approach in this
scenario.

5.2.1 Browser Integration

We implement an additional Chromium extension that serves as a bottom-half
helper to the crypto-token extension. The developers of that extension make a dis-
tinction of bottom-half and top-half in their code. This separation enables other
developers to extend the back-end (bottom-half) functionality while keeping the

51

5 Implementation

Chromium CrySIL Instance
Context of Website >| Receiver
N N
\4 \ 4
Crypto-Token Extension {3 Router
N N
\4 \4
CrySIL U2F Extension |[& Actor |& >1 Authenticator

Figure 5.7: Setup of our approach in a Web use case: We add our CrySIL U2F extension to the
Chromium (or Google Chrome) browser. Consequently, all U2F requests are forwarded to
the CrySIL instance. We developed the components in bold specifically for our approach.
The cloud indicates a remote connection between browser and CRrYSIL instance.

front-end (top-half) for website developers unchanged. When our extension is
loaded, e.g. when the browser starts, it will register itself with the crypto-token
extension. Our extension sends a message over the message passing API'* to the
crypto-token extension to perform this registration. The crypto-token extension
will accept this request if an internal whitelist contains the identifier of the inquir-
ing extension. To ensure this acceptance, we modified the code of the crypto-token
extension and added the identifier of our extension.

Websites include either a custom JavaScript file to handle U2F authentication or
use the scripts provided by the crypto-token extension. Either way, the website
will use the message passing API to send any U2F-related request to the crypto-
token extension. The crypto-token extension verifies every incoming request, e.g.
it checks the origin of the website sending the request. It also creates the client
data structure and may include the TLS channel identification there, if supported
by the website. If the checks succeed, the extension uses the messaging API to
forward the extended request to the bottom-half helper, i.e. our extension.

Figure 5.8 gives an overview of the software modules implemented in our exten-
sion. When our extension receives a request from the crypto-token extension in

11ht’cps: //developer.chrome.com/extensions/messaging

52

https://developer.chrome.com/extensions/messaging

5 Implementation

the message listener, it passes it on to the receiver module. The converter mod-
ule then converts the message from the U2F format into the format suitable for
CrYSIL. We use external open-source libraries to perform operations such as cal-
culating message digests. The adapter module encapsulates these libraries for
use in the other modules. The converter module creates two CrYSIL commands:
One to request the generation of a wrapped key and one to request the creation
of a signature. The forwarder module sends these converted commands to the
CrYSIL instance that the user has configured. The authentication module may
display a JavaScript dialog to prompt the user for authentication if requested by
the CrySIL instance. The response is then converted back to the format suitable
for the crypto-token extension and sent back.

In the conversion step from the U2F messages into CrRYSIL commands, we use
external open-source libraries to perform operations such as calculating message
digests. We do not use any functionality that is exclusively offered in Google
Chrome. As a result, our extension works in both browsers, the open source
Chromium browser and Google Chrome.

CrySIL U2F Extension
Crypto-Token Extension [« >| Message Listener Auth. Handler

N A
\4 \4

Receiver [€ >| Forwarder |« @9 CrySIL Instance
N
\ 4

Converter |<& >| Ext. Lib. Adapter

Figure 5.8: The software modules and communication paths of our extension for the Chromium and
Google Chrome browsers. The message listener communicates with the existing crypto-
token extension of the browser. The receiver gets this messages, and passes it on to the
converter to create CRYSIL commands. The adapter for external libraries calls third-party
JavaScript modules for cryptographic operations. The forwarder sends the commands to
the external CRYSIL instance. The authentication handler processes any authentication
challenges from the CrYSIL instance. The cloud indicates a remote connection to the
CRYSIL instance, all other connections are internal.

53

5 Implementation

5.2.2 Message Flow

Figure 5.9 shows the message flow among the software components described
before. The process starts, when the user either tries to log in to a website (au-
thentication in U2F) or is already logged in and wants to register a new token
(registration in U2F). The sequence of messages is as follows:

1.

The website fulfills the role of the relying party in U2F. It sends the proper
request to the browser.

The browser, more precisely the crypto-token extension, takes the part of the
client in U2F and receives the request from the relying party. It constructs
the client data structure.

The crypto-token extension forwards the incoming request to our extension,
that has been registered as a bottom-half helper in advance.

. The CrYSIL bridge in our extension converts the commands into a format

suitable for a CRYSIL instance.

The forwarder module sends the commands to the CrYSIL instance config-
ured by the user beforehand.

The CrySIL instance fulfills the role of the authenticator device in U2F and
executes the cryptographic commands.

The CrySIL instance sends the results back to the CrySIL bridge in our
browser extension.

Our extension passes the result on to the crypto-token extension

The website receives the result of the command from the browser, validates
it, and either confirms the login or registers the new token.

In the step involving the CrySIL instance, an authentication for the smart card
used as the authenticator device may be required. This verification is handled
with a CrySIL authentication challenge, as we described preceding. Therefore,
the user may be prompted to enter the PIN for the card by a simple JavaScript
dialog in the browser. In Appendix A we list the format of all messages exchanged

between the components.

54

5 Implementation

Website Crypto-Token Extension Our Extension CrySIL Instance

I I I I
| | | |
Convert]]
B | challenges

requestld, type,

registerRequests, : |

signRequests, > tg%r;;grltl_

timeoutSeconds type, enrollChallenges, Generate
signData, timeout, z Key pair
timeoutSeconds sigh daté

generateKey & sign

<]

________ wrappedKey, handle,

_______ type, code, certificate, signature
type, requestld, version, enrollData
responseData . - -

h

Figure 5.9: Message flow between a website issuing a U2F command, the crypto-token extension
in the browser, the extension of our approach, and a CRrYSIL instance. For the first two
connections, the message passing API in the browser is used. The last connection is
established over HTTPS and used to transmit two commands.

5.3 Windows Credential Provider

There exist various credential providers for Microsoft Windows, presenting alter-
natives to the usual password authentication for login. However, no open-source
implementation offers 2FA with support for U2F tokens. Therefore, we cannot
adapt an existing solution to integrate our approach into the login system of Win-
dows. To showcase our approach for local authentication, we implement a new
credential provider. It extends the usual login (only requiring a password) with
a second factor, provided by our approach. It implements functionality of a U2F
client as well as functionality of a relying party. The second part is necessary be-
cause we need to generate authentication challenges and to verify the signature
values returned by the CRrYSIL instance. Figure 5.10 shows the building blocks of
our implementation for Windows in detail.

55

5 Implementation

Windows CrySIL Instance
Logon Ul >| Receiver
N N
\ 4 \ 4
Credential Provider <3 Router
N N
\4 \4
CrySIL Bridge < Actor |& >| Authenticator

Figure 5.10: Setup of our approach for Windows: Our credential provider extends the Windows login
system to support U2F functionality. The bridge forwards the authentication requests to
a CrYSIL instance. We developed the components in bold specifically for our approach.
The cloud indicates a remote connection between Windows system and CrySIL instance.

5.3.1 Login Integration

The entry point for our credential provider is the Logon Ul component from
the operating system. This component queries all registered credential providers
on the system to get all available credentials. Each credential of a provider is
represented as one tile on the login screen. The Logon Ul displays these tiles
and supplies the credentials the user enters back to the credential provider. Our
implementation provides one such tile for each user account. This tile shows the
usual password field and information about the registered authenticator device.

Figure 5.11 shows the software modules of our credential provider. Logon UI
calls our credential provider when the user selects the corresponding tile on the
login screen. The credential module does not create CRYSIL commands directly,
to keep the software design similar to our browser extension. Instead, it creates
a U2F request that is passed on to the CRYSIL receiver. This module converts
the incoming commands analogous to the module in the browser extension de-
scribed before. We use Microsoft’s Cryptography API: Next Generation (CNG)*?
to validate signatures received from the client and other cryptographic tasks.

12ht’cps: //msdn.microsoft.com/en-us/library/windows/desktop/aa376210.aspx

56

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376210.aspx

5 Implementation

CrySIL U2F Credential Provider

LogonUl |« >1 Provider Credential [&€—>>] Registry Adapter
N
\4
Receiver |<€ >| Forwarder [€ @9 CrySIL Instance
A N
\4 \ 4
Converter Auth. Handler

Figure 5.11: The software modules and communication paths of our credential provider for Microsoft
Windows. The Logon UI of the system communicates with the credential module of
our provider. This module reads information from the registry. Then, it generates a U2F
command that is handled by the receiver module. This module passes it on to the con-
verter to create CRYSIL commands. The forwarder sends the commands to the external
CRySIL instance. The authentication handler processes any authentication challenges
from that instance. The cloud indicates a remote connection to the CrYSIL instance, all
other connections are internal.

5.3.2 Work Flow

Our approach for Windows includes two distinct components. The credential
provider itself creates only U2F authentication commands to verify the possession
of the registered token during login. The second application is used to register
a new authenticator device for the login activities. Therefore, it issues only U2F
registration commands. This registration application also enables modifying the
connection information for the CrySIL instance that the credential provider will
use during login. The Windows registry stores all configuration values along with
the registered public key and key handle of the authenticator device. Figure 5.12
shows the interaction of the credential provider, the configuration app and the
Windows registry to store the information.

57

5 Implementation

Registration Application

N
\ 4

Local Registry CrySIL Instance |<€ >| Authenticator

N
\ 4

Credential Provider

Figure 5.12: Setup of the Windows approach, showing the application needed for registration of

tokens and the login provider for authentication. Arrows show communications paths
among the components. Clouds indicate remote connections.

The sequence of registering an authenticator device and then logging in with it is
as follows:

1.

The user enters connection details in the registration application, which
stores the values in the Windows registry.

. The user registers a new authenticator device with this application. The reg-

istration application fulfills the role of the relying party in the U2F process.
The CrYSIL bridge included in the application plays the role of the client in
U2F and uses the forwarder module to send the commands to the CrySIL
instance defined by the user.

The CRrySIL instance operates as the authenticator device in U2F and exe-
cutes the registration commands.

The registration application verifies the result and stores the key handle and
public key in the Windows registry.

The user logs out of the system and selects the tile of our CrYSIL U2F
credential provider on the user interface of the log-in screen.

The credential provider looks up the information about the registered au-
thenticator device in the Windows registry.

The user enters his password, as usual, and confirms the login.

The credential provider takes the role of the relying party in U2F to authen-
ticate the token registered to the user. The CrySIL bridge included in the
credential provider acts as the client in U2F and sends the commands to the

58

5 Implementation

CRrySIL instance.
9. The CRrYSIL instance again operates as the authenticator device in U2F and
handles the authentication commands.

10. The credential provider validates the result from the instance and either
permits or denies access to the system. The validation of the password is not
handled by our credential provider but by the Windows security authority
module.

The CryYSIL instance may issue an authentication challenge for the authenticator
device, e.g. a smart card. The client handles this challenge by showing a simple
Windows dialog, prompting the user to enter the PIN for the card.

5.4 Summary

In this chapter, we described the implementation of our approach. We demon-
strated the integration of our approach in the Chromium and Google Chrome
browsers and the Microsoft Windows login system. To enable the use of our ap-
proach on the Web, we augmented the browser with a custom extension, enhanc-
ing the existing U2F client. To support the Windows use case, we implemented
a custom credential provider to extend the login system. Both clients forward
commands to a CrySIL instance over HTTPS to execute the cryptographic com-
mands. We presented the various actors we implemented for the CrYSIL system.
These actors enable assembling CRYSIL instances performing cryptographic op-
erations on a variety of devices. Devices include a smart card, a traditional U2F
token, and EID cards. When running our approach on an Android device, the
MoCRrySIL instance can use the hardware-backed key store provided by the An-
droid system. In the next chapter, we shall evaluate our approach and perform a
security analysis.

59

6 Evaluation

In the previous chapter, we illustrated the implementation of our approach. In
this chapter, we evaluate our approach and the security properties of it. To start,
we discuss the cryptography used by U2F implementations and address concerns
about the security of the standard in general. After that, we classify and catego-
rize our approach using established frameworks to compare it to other solutions
for 2FA. We show that our approach has some advantages over existing solutions
since it enables the uncomplicated use of existing cryptographic devices in the
authentication process. The U2F idea shows several beneficial properties when
compared with established solutions for 2FA. Our approach keeps these proper-
ties intact. Furthermore, we perform a thorough security analysis of our approach
based on an existing analysis of the U2F standard. Our approach increases the
attack surface, as it introduces more components in the picture of user authenti-
cation. Nevertheless, the security analysis shows that, under certain assumptions,
the additional threats can be mitigated. Only few residual risks remain in certain
use cases of our approach.

In Section 6.1 we address properties of the U2F standard concerning the security
of the implementation. In Section 6.2 we classify our approach and compare it
with other solutions for 2FA. In Section 6.3 we compare our approach with exist-
ing solutions based on an established framework. In Section 6.4 we perform the
detailed security analysis of our approach.

6.1 U2F Considerations

U2F uses wide-spread standards for cryptography, mainly public-key cryptogra-
phy based on the P-256 elliptic curve, ECDSA to calculate signatures, and SHA256

60

6 Evaluation

to provide message digests. On the one hand, NIST classifies both, ECDSA based
on a curve with public keys of 256-bit length and SHA256, as acceptable, mean-
ing “the algorithm and key length are safe to use; no security risk is currently
known” [6]. So ECDSA is acceptable for digital signature verification and gener-
ation, whereas SHA256 is acceptable for all hash function applications. On the
other hand, NSA’s Suite B' indicates that the curve P-384, resulting in public
keys with 384-bit length, should be used for all levels of classified information.
Before August 2015 and the announcement of the NSA to transition away from
the advocated algorithms, the curve P-256 was included in the recommendation.
Koblitz and Menezes [23] speculate about the reasons for this announcement.
There is the rumor about the NSA having influenced parameters of several cryp-
tographic standards. As a result, Bernstein and Lange [7] deem the curve P-256
as not safe.

Besides the cryptography standards, there are other security concerns about U2F
in general. As an example, a relying party could match two accounts using the
same token. To accomplish this, it needs to send the same key handle to tokens of
different accounts. If those tokens accept the same key handle, it must be the same
physical token. This matching is possible because a token in U2F has no concept
of a user, but only the concept of an origin. A token generates key handles so
that they are bound to the origin, but they do not store additional information.
Nevertheless, while performing such a procedure, the relying party will have to
take many error responses into account. Furthermore, users should get suspicious
about the huge number of authentication challenges they must complete.

Authenticator devices used in U2F settings send an attestation certificate in the re-
sponse to a registration challenge. A class of tokens, e.g. all Yubico Security Keys
usually share one such certificate. Relying parties can use this information to pre-
vent users from using certain tokens. Our approach primarily sends self-signed
certificates as the attestation certificate. This fact may lead to the unexpected be-
havior of relying parties denying access when the user uses an implementation of
our approach. However, our tests have shown, that Google, Dropbox, and Github
do not deny access based on the attestation certificate.

1ht’cps: //www.nsa.gov/ia/programs/suiteb_cryptography/

61

https://www.nsa.gov/ia/programs/suiteb_cryptography/

6 Evaluation

6.2 Classification

Van Rijswijk and van Dijk [44] define a classification of authentication solutions
based on six categories. The categories are hardware independence, software inde-
pendence, security, cost, compliance to open standards, and ease of use. Table 6.1
shows the classification of our approach compared to the classification of existing
solutions given by van Rijswijk and van Dijk. For each of the categories, one so-
lution can achieve up to five points, where “++” indicates the highest score, and
“--” indicates the lowest score.

Compared with existing methods, our approach prevails in several categories.
Hardware independence is given since several existing devices, e.g. smart cards
and Android devices can be used in our approach. Software independence is
indifferent since we need support in the client software and a CrySIL instance,
but our software runs on different platforms. We show the security features later
in this chapter. Cost is negligible since the user usually does not need to buy and
carry new devices. Due to the use of the open U2F standard and the published
CRYSIL architecture, the open standards compliance is positive. Ease of use is also
favorable since the user only needs to confirm the authentication operations with
a simple tap.

W
)
S o
= 3 =
N S
Y = <= ©
NN D = 3
) c%‘ S &
= = >~ = :
s = N S
— = b <)
~ = T
= =z 5 & 2 2
v
T & »n O @) a5
Passwords ++ o+ -+t = +/-
OTP over SMS | + = - - N
OTP apps + +/= + +/= +/= =
PKI token - - ¥+ - — n
Our approach | + = 4+ + T+ 4+

Table 6.1: Classification of our approach compared to existing authentication solutions. The catego-
rization and ratings of existing solutions were developed by van Rijswijk and van Dijk
[44].

62

6 Evaluation

6.3 Comparative Evaluation

Bonneau et al. [8] define a framework for the evaluation of authentication schemes
on the Web. The authors include a set of 25 benefits in the categories of usability,
deployability and security. Bonneau et al. conclude that no existing scheme comes
close to providing all desired benefits. Lang et al. [24] perform an evaluation of
the U2F standard according to that scheme. The evaluation shows that U2F of-
fers some advantages when compared with existing hardware tokens and phone-
based solutions such as OTP over SMS. U2F is partially memorywise-effortless be-
cause the user does not need to remember passwords. It is efficient-to-use and
operates with infrequent-errors as shown in the deployment at Google. U2F of-
fers security benefits because it is resilient-to-phishing and requires no-trusted-third-

party.

We base the evaluation of our approach on the ratings for the U2F standard from
Lang et al. Table 6.2 shows the results of our evaluation, with the evaluation of
existing schemes given for comparison. Our approach keeps the relevant prop-
erties of U2F. In addition to that, our approach offers quasi-nothing-to-carry since
existing devices the user is probably already carrying, e.g. mobile phones, can be
used. This benefit also translates to negligible-cost-per-user since usually no addi-
tional devices need to be purchased. All security properties of U2F are retained,
as we show in the security analysis later in this chapter. We also assign the prop-
erty of physically-effortless to our approach, since when using an Android device
for authentication, the user does only need to tap the screen. There is no need to
connect a token directly to the user’s computer, as it is the case with traditional
security tokens. The property of no-trusted-third-party still applies to our approach,
as the CrYSIL instance is a third party in the setting of the authentication process.
Nevertheless, it cannot compromise the prover’s security or privacy since all key
material is stored on the authenticator devices.

63

6 Evaluation

a|quyuiur]
JUaSU0D)-101]dxF-Suriinbay

Ry avd-pany] -paisni]-ON

Hou 1-03-juar]isay
SunystyJ-03-udij1say]

SAIUYLII ~AY IO -UOL-SY DI T-0-FUL[ISTY
UOLIVOAISQO)~]VULIFUT-0F-JUILISTY
SUISSIND)-Pa1104Y UL -03-JUIN[1SY
SUISSIND)-Pa11041 [-03-JUI[ISIY
UOLVUOSIIAUT-PajadIn] -01-JUdLISTY
UOLVQA2Sq)-10I1SAY J-03-JUI[ISIY

ity

Secur

O O e o

Aivgaridos J-uoN
2UNJUIN
21913vdui0)-13smoig
21913vdu10)-120.125
12SN-13d-150)-2]q18118N
219155200y

Deployability

O © © | &6 6 6 06 06 06 06 06 0 0 0

e}

O © © | &6 6 06 06 06 06 06 06 0 0 0

SS0T-1U04J-N1200003-ASvT
siorig-juanbarfur
as-03-juanoyffq
uvaT-03-Asvy
ssajpioff7-Aqvashyq
A110D)-03-8UIyjoN
S49S[-40{-21qV]VIS
$S9]340fJF-aS1MALOUWITN

Usability

® 6 O 06 o o ¢ 0 0 o

® O O O (O

(o]

o O

Scheme
Passwords
OTP over SMS |e o ©
OTP with app

Default U2F
Our approach [0 0 0 e e e @

e = offers the benefit; o = almost offers the benefit; no circle = does not offer the benefit.

Table 6.2: Comparative evaluation of our approach with existing methods for reference. The cate-

gorization was published by Bonneau et al. [8], whereas the assessment of the existing

solutions was given by Lang et al. [24].

64

6 Evaluation

6.4 Security Analysis

Lindemann, Baghdasaryan, and Hill [26] provide a security reference of the two
authentication standards from the FIDO Alliance, UAF and U2F. Based on this
existing analysis, we perform a security analysis of our approach. We inherit
some properties of the analysis, adapt them to our approach in particular, and
extend other properties and requirements.

6.4.1 Model

Figure 6.1 shows the architecture of a traditional U2F solution. There, the relying
party, client, and the authenticator device are the relevant components. Figure 6.2
shows the architecture of our approach and therefore the model we are evaluat-
ing. Compared with the traditional U2F architecture, our approach additionally
involves a CrYSIL bridge and a CrySIL instance. The U2F client is extended with
the CrySIL bridge, and the CrySIL instance is placed between client and authen-
ticator. Figure 6.3 shows that, when using a MoCRYSIL instance, the architecture
is even further extended, incorporating the WEBVPN relay service as an addi-
tional element. This service is placed between the CrRYSIL bridge and the CrySIL
instance. The environment of the relying party in our approach is typically un-
changed when compared with other U2F applications. One exception is the case
of the credential provider for Microsoft Windows, as it plays the role of the relying
party as implemented for our approach.

As our flexible approach supports many use cases, depending on the actor em-
ployed, we have to consider several cases for the security analysis. The authentica-
tor device is either a smart card, a similar system such as an EID card, a genuine
U2F token, or the Android key store. The CRYSIL instance contacted by the U2F
client is either a CrYSIL instance running on a computer or a MOCRYSIL instance
running on an Android device. The U2F client containing the CrYSIL bridge may
be incorporated in the extension for Google Chrome or the credential provider
for Microsoft Windows. The relying party is either unmodified, when using the
Chrome extension, or is part of our implementation for Windows. For the most
of this analysis, the cases of using a smart card or an EID card will have the same

65

6 Evaluation

Relying Party e@% Client |« >1 Authenticator

Figure 6.1: Architecture of a traditional U2F solution showing the relying party, the client, and the
authenticator device (or token). The cloud indicates a remote connection between relying
party and client.

U2F Client CrySIL Instance
U2F Relying Party é@—& U2F Client Interface > Receiver
N N
A4 A4
CrySIL Bridge Router
N
\4
Authenticator [« > Actor

Figure 6.2: Architecture of our approach when using a CRYSIL instance, extending the traditional
U2F architecture. Clouds indicate remote connections.

U2F Client MoCrySIL Instance
U2F Relying Party (—@—9 U2F Client Interface m >| Receiver
N) N
WebVPN Relay Service

A4 A4

CrySIL Bridge |& @J\ Router
N
\4

Authenticator | >| Actor

Figure 6.3: Architecture of our approach when using a MoCRYSIL instance, extending the traditional
U2F architecture. Compared to the case of using a CRYSIL instance, the relay service for
the WEBVPN solution is added. Clouds indicate remote connections.

66

6 Evaluation

effect. Therefore, all consequences for smart cards will also apply to electronic
identity cards unless stated otherwise.

6.4.2 Methodology

To start our security evaluation, we describe the methodology used throughout
this section. First, we identify the assets of our approach, which include the cryp-
tographic keys used for authentication. Second, we specify the assumptions un-
der which we perform the security evaluation. Third, we declare the classification
of attacks on our approach. Fourth, we state the security goals (also called ob-
jectives) of our approach. Fifth, we define the security measures taken in our
approach. The implementation uses these measures to accomplish the security
goals set before. Next, we list and describe the threats to our approach. We cate-
gorize the threats into the attack classes and analyze the impact on the assets and
security goals. Finally, we identify the residual risks and give a conclusion of this
analysis.

6.4.3 Assets

We determine the assets we want to protect as the following:

A-1 Cryptographic authentication key. The keys used in U2F are unique for
the combination of relying party and authenticator and are generated on
a registration request. Our approach may not create a new key for each
registration, but use an existing key of the authenticator device, depending
on the actor.

A-2 Cryptographic authentication key reference. The relying party stores the
public key of the asymmetric cryptographic authentication key to verify
the signatures from the authenticator.

A-3 Authenticator attestation key. Each authenticator stores a key to attest the
authentication key and the type of the authenticator. These keys (and the

67

A-4

6 Evaluation

certificates for them) are typically shared among a device class of authenti-
cators. Our approach may use self-signed attestation certificates, depend-
ing on the actor. Thus, there may be no explicit attestation key on the
device, but only authentication keys.

Key handle of the cryptographic authentication key reference. The rely-
ing party stores the key handle of the authentication key sent by the au-
thenticator. It may contain the encrypted private key, depending on the
implementation of the token (and the actor in our approach).

6.4.4 Assumptions

We assume that the existing algorithms and systems we use for our approach
have been evaluated elsewhere. Therefore, this security analysis relies on some
assumptions. If any assumption listed is violated, the security goals defined in
the following sections cannot be met.

The security assumptions are as following:

SA-1

SA-2

SA-3

SA-4

SA-5

The cryptographic algorithms (e.g. ECDSA for signature creation and
SHA256 for message authentication) and parameters (the elliptic curve
P-256) used by our system do not exhibit weaknesses that would render
them useless for our purposes.

Operating systems executing our applications enforce boundaries for priv-
ilege separation mechanisms. In particular, the Android smartphone run-
ning the MOCRYSIL instance is not rooted and thus enforces sandboxing
between applications.

The applications and environment on the U2F client and the CRrYSIL in-
stance act as trustworthy agents of the user.

The applications and environment on the Windows system running our
credential provider act as trustworthy agents of the relying party.

The existing authenticator devices are secure. This assumption includes
the smart cards, EID cards, and U2F tokens. Furthermore, these devices
require either explicit user authentication (smart cards) or user presence

68

SA-6

6 Evaluation

(UZF tokens) to perform cryptographic operations. Additionally, the An-
droid key store used by the MOCRYSIL instance is hardware-backed, e.g.
the keys cannot be extracted from the secure zone.

The implementation of the algorithms used in various parts of our ap-
proach is secure and correct. This assumption includes the third-party
JavaScript libraries used in the browser extension and the implementation
of the Windows cryptographic API used in the credential provider for
Windows.

6.4.5 Attack Classes

We categorize the attacks into the following classes:

AC-1

AC-2

Attacks that are automatable and lead to the attacker being able to imper-
sonate the victim without actually involving the authenticator device.

Same as [AC-1], but requiring the authenticator device for each authenti-
cation.

6.4.6 Security Goals

We will show that our approach keeps all the security goals originally defined
for U2F intact. Therefore, we adopt the security goals declared by Lindemann,
Baghdasaryan, and Hill as following:

SG-1

SG-2

SG-3

SG-4

Strong authentication: The relying party can authenticate, that means rec-
ognize, the authenticator device of a user account with high cryptographic
strength.

Resilience against credential guessing: Protect against eavesdroppers try-
ing to guess credentials of the authenticator device.

Resilience against credential disclosure: Protect against phishing attacks,
including attackers actively manipulating network traffic.

Unlinkability: Relying parties should not be able to link authenticators to
users, even when two or more relying parties cooperate.

69

6 Evaluation

SG-5 Resilience against verifier leaks: Protect against leaks from other relying
parties, i.e. make sure the information known to one relying party can not
be used to impersonate a user to another relying party.

SG-6 Resilience against authenticator leaks: Protect against leaks from authen-
ticator tokens, i.e. make sure the information leaked by an authenticator
can not be used to impersonate a user to another relying party.

SG-7 User presence: The user has to be present and explicitly confirm any op-
eration before a relationship between a previously unknown relying party
and the authenticator is established.

SG-8 Limited personal information: Make sure the amount of personal infor-
mation leaked to the relying party is the absolute minimum needed for
strong authentication.

SG-9 Attestable properties: Relying party has to be able to verify the authenti-
cator device to assign an associated risk for that device.

SG-10 Resilience against forgery: Prevent attackers from being able to eavesdrop
and modify communication to impersonate a user.

SG-11 Resilience against parallel session attacks: Prevent attackers from imper-
sonating a user by creating a parallel session out of a wiretapped valid
communication.

SG-12 Resilience against replay attacks: Prevent attackers from begin able to re-
play or forward an overheard session to impersonate the user.

6.4.7 Security Measures

The security measures following are based on the existing U2F security reference.
We will show that our approach either keeps the security measures unimpaired
or extends them where necessary.

SM-1 Key protection:

The authenticator device protects the authentication key against abuse. To achieve
this measure, we rely on the security of the used smart cards and the Android key
store. This assumption is covered by [SA-5]. When using the MOCRYSIL solution,

70

6 Evaluation

the authenticator key is derived from a key stored in the hardware-backed An-
droid key store. This key is then used by the MoCRySIL application to calculate
signatures. Under security assumption [SA-2], the Android device is not rooted,
and thus no other application can read this key from memory.

Supported goals: [SG-1] Strong authentication, [SG-2] Resilience against credential
guessing, and [SG-3] Resilience against credential disclosure.

SM-2 Unique authentication keys:

On every incoming registration request, the authenticator device creates a new
cryptographic authentication key. The implementation of the corresponding ac-
tor for the device ensures the implementation of this step. This measure cannot
be achieved when using smart cards since our approach will then use a single
cryptographic key pair for every request. We address this residual risk in [R-1].

Supported goals: [SG-4] Unlinkability, [SG-5] Resilience against verifier leaks, and
[SG-8] Limited personal information.

SM-3 User presence:

U2F requires the user to confirm each signing operation on the authenticator
token explicitly. Our approach enforces this user presence by requiring the user
to either tap the NFC token to the Android smartphone, select the Android actor
on the smartphone screen, or require authentication for the use of smart cards.

Supported goals: [SG-7] User presence.

SM-4 Signature counter:

U2F mandates that authenticators include an increasing counter in signature op-
erations and responses. This feature enables relying parties to check for cloned
authenticator tokens. Our approach emulates this behavior when using the actor
for the Android key store. However, we have no way to store that counter value
securely when using a smart card. We address this residual risk in [R-2].

Supported goals: [SG-1] Strong authentication, [SG-3] Resilience against credential
disclosure and [SG-6] Resilience against authenticator leaks.

71

6 Evaluation

SM-5 Secure channels:

U2F requires the use of a TLS channel with server authentication between rely-
ing party and client. Our approach keeps this property when using the browser
extension, as the U2F client in the browser is not directly modified. When using
the credential provider for Windows, the relying party and client run in the same
application, thus no secure channel is needed. We extend this property of U2F
further: We use an end-to-end encrypted TLS channel between the CrRYSIL bridge
in the U2F client and the CrYSIL instance. This channel is particularly important
when communicating with a MoCRYSIL instance on Android device and using
the WEBVPN scheme.

Supported goals: [SG-7] User presence, [SG-10] Resilience against forgery, [SG-11]
Resilience against parallel session attacks, and [SG-12] Resilience against replay
attacks.

SM-6 Round trip integrity:

Our Windows registration application and the credential provider verify that data
sent as the challenge and data received in the response are identical. This verifica-
tion is not needed for the browser extension, as we only extend client functionality.
In this setting, the website as the relying party will ensure the round trip integrity.

Supported goals: [SG-10] Resilience against forgery, [SG-11] Resilience against par-
allel session attacks, and [SG-12] Resilience against replay attacks.

SM-7 Cryptographically secure verifier database:

In a U2F implementation, the relying party stores only the public key of the au-
thentication key and the key handle, both exported by the authenticator. This han-
dle may represent an encrypted private key, dependent on the implementation of
the token (and the actor in our approach). This measure is implemented in the
Windows credential provider, as it stores these values in the Windows registry.

Supported goals: [SG-2] Resilience against credential guessing and [SG-5] Resilience
against verifier leaks.

72

6 Evaluation

SM-8 Authenticator class attestation:

In the U2F concept, authenticator devices of the same batch of manufacturing
share an attestation certificate. Our approach has several implementations of this
idea, depending on the actor used: When using an £ID card or the Android key
store, a fresh self-signed certificate is used. In the case of smart cards, a certificate
selected from the card is used. Only in the case of using a genuine U2F token, the
intended attestation certificate is sent to the relying party. Altogether, this security
measure may not be completely fulfilled by our approach. We address this fact as
a residual risk in [R-3].

Supported goals: [SG-4] Unlinkability and [SG-9] Attestable properties.

SM-9 Channel binding:

Usage of the channel ID extension of TLS ensures the continuity of a secure chan-
nel between the relying party and the client in a U2F setting. U2F implementa-
tions in the browser employ this feature to prevent man-in-the-middle attacks.
We do not modify this implementation in our browser extension. In the Windows
use case, no TLS channel and thus no channel binding is necessary, as the relying
party and client run on the same host.

Supported goals: [SG-1] Strong authentication, [SG-10] Resilience against forgery,
[SG-11] Resilience against parallel session attacks, and [SG-12] Resilience against
replay attacks.

Note that not all security measures from the existing security reference apply to
U2F, as the document also covers the UAF standard. We do not need to consider
the security measure of a trusted facet list, as this only applies to scenarios in-
volving mobile applications as the relying party. Additionally, the trust store of
certified authenticators is not implemented by any U2F server library. Table 6.3
shows which security goals are ensured by which security measures, and there-
fore gives an overview of the description list preceding.

73

6 Evaluation

[SM-8] Authenticator class attestation

[SM-7] Cryptog. secure verifier database
® | [SM-9] Channel binding

[SM-2] Unique authentication keys
[SM-3] User presence

[SM-5] Secure channels

[SM-6] Round trip integrity

® | [SM-4] Signature counter

[SG-1] Strong authentication
[SG-2] Resilience ag. credential guessing
[SG-3] Resilience ag. credential disclosure

® ® ¢ [SM-1]Key protection
[]

[SG-4] Unlinkability ° °
[SG-5] Resilience ag. verifier leaks ° °
[SG-6] Resilience ag. authenticator leaks °

[SG-7] User presence ° °

[SG-8] Limited personal information °

[SG-9] Attestable properties .

[SG-10] Resilience ag. forgery
[SG-11] Resilience ag. parallel session att.
[SG-12] Resilience ag. replay attacks

Table 6.3: Mapping of security goals to security measures. A cell with a e indicates that a security
goal is supported by a security measure.

74

6 Evaluation

6.4.8 Threats

In the following list, we identify threats to the U2F client, the CRryYSIL instance,
the authenticator devices and our approach in general. We will assign an attack
class to each threat, state which security goals are violated, and describe the con-
sequences and possible mitigation procedures.

T-1 Mis-registration:

The attacker tricks the user into registering her token on a forged website. This
means the user will log in to the forged website using her username and pass-
word, and then register a new token on this website.

Attack class: [AC-2] Automatable impersonation, requiring the authenticator de-
vice.

Violates: [SG-1] Strong authentication.

Consequence: The attacker can use the first factor (username and password) to
register a token for the account of the user on the legitimate website.

Mitigations: This problem exists in the original U2F system as well and cannot be
mitigated by a U2F implementation or by our approach. The relying party needs
to be aware of this possibility.

T-2 U2F client or CRYSIL instance corruption:

The attacker can execute code in the environment of the U2F client or the CrySIL
instance.

Attack class: [AC-2] Automatable impersonation, requiring the authenticator de-
vice.

Violates: [SA-3] Clients act as trustworthy agents of the user.

Consequences: Violation of [SA-3], complete control over the authentication pro-
cess. The attacker can forge all U2F requests, and forward genuine requests to an
authenticator device under his control.

Mitigations: [SA-2] Operating system enforcing process boundaries. Also, the mea-
sures [SM-1] Key protection and [SM-3] User presence prevent the attacker from

75

6 Evaluation

gaining full access to the authenticator device. Nevertheless, a malicious imple-
mentation of a MoCRYSIL instance can perform arbitrary signature operations
with the keys stored in the Android key store. We address this residual risk in

[R-4].

T-3 Physical user device attack:

The attacker can obtain physical access to the device running the CrYSIL instance,
but not the authenticator device itself. When using an Android device with a
MoCRYSIL instance, the user device is also the authenticator device. This option
is approached in the next threat.

Attack class: [AC-2] Automatable impersonation, requiring the authenticator de-
vice.

Violates: [SA-3] Clients act as trustworthy agents of the user.
Consequences: Violation of [SA-3] by installing malicious software.

Mitigations: Measure [SM-1] Key protection mitigates this threat as the keys are
not stored on the CRrYSIL instance, but the authenticator device. In the case of a
MoCRyYSIL instance, the hardware-backed Android key store denies extraction of
any keys, by assumption [SA-5] Secure authenticator devices.

T-4 Physical authenticator device attack:

The attacker can gain physical access to the authenticator device, e.g. by stealing
it. The authenticator device may be either a smart card, an Android device, or a
U2F token.

Attack class: [AC-1] Automatable impersonation.
Violates: [SA-3] Clients act as trustworthy agents of the user.

Consequences: Violation of [SA-3]. The attacker may be able to perform an offline at-
tack, thereby impersonating the user and violating the security goal [SG-1] Strong
authentication.

Mitigations: Partially by measure [SM-3] User presence: If the authenticator de-
vice is a smart card or an EID card, a PIN is required to perform cryptographic
operations. In the case of a U2F token, a simple finger touch is sufficient, and no
countermeasures against impersonation can be taken. We address this residual

76

6 Evaluation

risk in [R-4]. The Android device may have a screen lock, requiring the attacker
to unlock the phone to gain access to the MOCRYSIL instance. Physical attacks,
trying to extract key material, are covered under assumption [SA-5] Secure au-
thenticator devices.

T-5 Authenticator device corruption:

The attacker can foist a malicious smart card or NFC device on the user. It may
be a cloned device prepared by the attacker. The user subsequently uses that
malicious device to perform registration and authentication.

Attack class: [AC-1] Automatable impersonation.

Violates: [SG-1] Strong authentication in case of a manipulated algorithm, e.g. re-
turning the same key pair for every operation, [SG-2] Resilience against credential
guessing, e.g. the attacker knows the key creation algorithm and [SG-3] Resilience
against credential disclosure, e.g. the key pairs created are known to the attacker.

Consequences: The attacker can use the cloned device to impersonate the user.

Mitigations: Partially by measure [SM-4] Signature counter, as the relying party
can detect a cloned authenticator device. Relying parties may be able to detect
malicious authenticator devices by their attestation certificate. However, a residual
risk emerges and is covered under [R-4].

T-6 Windows registry read attack:

The attacker gains access to the Windows registry and reads the information
stored about the authenticator devices registered with accounts on the system.

Attack class: None, as the attacker is not able to impersonate the user.

Violates: [SG-5] Resilience against verifier leaks, as the attacker may be able to
factorize public keys, maybe [SG-4] Unlinkability and [SG-8] Limited personal
information as described in the consequences.

Consequences: In the case of using a smart card as the authenticator device regis-
tered on the relying party, the attacker can read the (unique) public key of the
card. This information can be used to link user accounts across relying parties
and identify the user. This linking is not possible when using our approach with
an Android device, as this actor will generate a new key pair for each registration.

77

6 Evaluation

Mitigations: Measure [SM-2] Unique authentication keys renders extracted key
data useless for attacks on other relying parties, when not using a smart card.
Measure [SM-7] Cryptographically secure verifier database ensures that the rely-
ing party stores no more than the public key and the key handle.

T-7 Windows registry modification attack:

The attacker gains write access to the Windows registry. She can then modify the
information about key handles and public keys for the user accounts registered
on the system.

Attack class: [AC-1] Automatable impersonation.
Violates: [SA-4] Server acts as trustworthy agent of the relying party.

Consequences: The attacker can inject her own public key and key handle, and
modify the connection information to point the credential provider to a CrySIL
instance under her control. Nevertheless, she would still require the password of
the user account to be able to login to the Windows system.

Mitigations: The Windows registry is the only viable place to store information
used by credential providers. Our approach relies on the integrity of the registry,
under assumption [SA-4] Server acts as trustworthy agent of the relying party
(which runs on the device of the user in this case).

T-8 Windows malware:

The attacker can execute software on the Windows machine and use the infor-
mation stored in the Windows registry. This threat is similar to [T-6] Windows
registry read attack.

Attack class: None, as the attacker is not able to impersonate the user.

Violates: [SG-5] Resilience against verifier leaks, maybe [SG-4] Unlinkability, and
[SG-8] Limited personal information.

Consequences: The attacker can send random authentication requests to the CrYSIL
instance, possibly creating a denial of service attack.

Mitigations: Consequences for the user authentication to other relying parties are
mitigated by measure [SM-2] Unique authentication keys. The consequence of a
denial of service attack is mitigated by measure [SM-3] User presence.

78

6 Evaluation

T-9 Man-in-the-middle attack:

The attacker can perform a man-in-the-middle attack on the TLS connection be-
tween the CrYSIL bridge (embedded in the U2F client) and the CrYSIL instance
talking to the authenticator device. Reimair et al. [38] state that the implementa-
tion of the TLS tunnel is somewhat susceptible to MITM attacks: The user needs
to compare hash values to ensure the validity of certificates during the initial
communication handshake.

Attack class: [AC-1] Automatable impersonation.

Violates: [SG-1] Strong authentication, [SG-3] Resilience against credential disclo-
sure.

Consequences: The attacker can modify any request and response to and from the
CrYSIL instance. He can use the authenticator device as an oracle for signature
creation. The attacker can intercept any authentication response from the client,
therefore gaining access to the PIN entered by the user.

Mitigations: As described in the security analysis of the MOCRYSIL system, this
remains a residual risk, addressed in [R-5].

Table 6.4 gives an overview of the threats and shows which security goals are
attacked by which threats.

79

6 Evaluation

[T-2] U2F client or CrYSIL instance corr.
[T-3] Physical user device attack

[T-6] Windows registry read attack

[T-7] Windows registry modification attack

[T-8] Windows malware
® | [T-9] Man-in-the-middle attack

® | [T-4] Physical authenticator device attack

® | [T-1] Mis-registration

[SG-1] Strong authentication

[SG-2] Resilience ag. credential guessing
[SG-3] Resilience ag. credential disclosure
[SG-4] Unlinkability

[SG-5] Resilience ag. verifier leaks

[SG-6] Resilience ag. authenticator leaks
[SG-7] User presence

[SG-8] Limited personal information . o
[SG-9] Attestable properties

[SG-10] Resilience ag. forgery

[SG-11] Resilience ag. parallel session att.
[SG-12] Resilience ag. replay attacks

® ¢ o [T-5] Authenticator device corruption

e e

Table 6.4: Mapping of security goals to threats. A cell with a e indicates that a security goal is attacked
by a threat.

80

6 Evaluation

6.4.9 Residual Risks

The following risks emerged from the threat analysis and can not be fully miti-
gated by our approach:

R-1

R-2

R-3

R-4

Linkability of user accounts (even shared among different relying parties)
when using a smart card or an EID card. This risk arises from the fact
that these cards can calculate signatures with their fixed private key only.
Therefore, this key is used to handle all U2F operations. That means the
same public portion of this key pair is sent to the relying party, even for
different origins. This behavior violates goal [SG-4] Unlinkability.

When using a smart card or EID card, we have no means of storing the
counter value needed for U2F authentication operations securely. There-
fore, the counter is only stored in software as long as the CrySIL instance
is running. As a consequence, relying parties may deny an authentication
because the counter value is less than the value of a previous success-
ful authentication process. That means our approach may fail to imple-
ment measure [SM-4] Signature counter correctly, thereby not fulfilling
goals [SG-3] Resilience against credential disclosure and [SG-6] Resilience
against authenticator leaks.

When using a smart card, the same certificate is returned as the attestation
certificate for every registration command. When using an eID card, a
self-signed certificate (for the same key pair every time) is returned. The
actor for the Android key store returns a self-signed certificate for a new
key pair on every occasion. Overall, these implementations violate [SG-4]
Unlinkability and [SG-9] Attestable properties.

Authenticator device corruption can not be detected by software and there-
fore not mitigated by our approach. If the user is careless in handling his
personal devices, an attacker can perform a targeted attack and slip mali-
cious cryptographic devices on the user. This risk also covers the case of
a malicious implementation of MOCRYSIL instance installed on the user’s
Android device, as it can perform arbitrary operations with the keys in the
Android key store. This risk may affect the security goals [SG-1] Strong au-
thentication, [SG-7] User presence, and [SG-9] Attestable properties.

81

6 Evaluation

R-5 Man-in-the-middle attack against the TLS connection between CrySIL for-
warder in the U2F client and MoCRrySIL instance. This weakness may com-
promise the goals [SG-1] Strong authentication, [SG-3] Resilience against
credential disclosure, and [SG-9] Resilience against forgery.

Table 6.5 gives an overview about the list preceding, showing which security goals
are not entirely met by our approach.

[R-1] Linkability of user accounts
[R-2] Storage of the counter value
[R-3] Same attestation certificate

® | [R-4] Authenticator device corruption
® | [R-5] Man-in-the-middle attack

[SG-1] Strong authentication

[SG-2] Resilience ag. credential guessing
[SG-3] Resilience ag. credential disclosure
[SG-4] Unlinkability

[SG-5] Resilience ag. verifier leaks

[SG-6] Resilience ag. authenticator leaks °

[SG-7] User presence °
[SG-8] Limited personal information
[SG-9] Attestable properties o o
[SG-10] Resilience ag. forgery .
[SG-11] Resilience ag. parallel session att.
[SG-12] Resilience ag. replay attacks

Table 6.5: Mapping of security goals to residual risks. A cell with a e indicates that a security goal can
not be fully met, and therefore a risk remains.

82

6 Evaluation

6.4.10 Conclusion

This security analysis showed that our approach keeps the security properties
of the U2F standard mainly intact. However, when using a smart card, or an
Austrian EID card, a few risks remain, mainly because of the use of a single key
pair for authentication on all relying parties. These risks are naturally not present
in a traditional U2F model. However, in both cases, in our approach and the U2F
approach, one risk remains: If the user is careless in handling the authenticator
devices, all security measures may be worthless.

The use of one key pair for all cryptographic operations enables relying parties to
track the device, and therefore the user, among different accounts and services. As
a result, the user may be reluctant to use our approach with a smart card or ID
card for authentication on the Web. Nevertheless, the user can benefit from the
flexibility of our approach by using his own Android device. With this possibility,
the user can avoid the risks mentioned before while building on the security
features of U2F. We showed that in this application of our approach the only
residual risk is a man-in-the-middle attack on the connection between browser
and Android device. The user can minimize this risk when he makes extra effort
while connecting to the Android device for the first time and carefully verifies the
certificate of the CRYSIL instance for the TLS tunnel.

Our approach embracing smart cards and similar systems is still suitable for local
authentication, despite the risks involved. When using our credential provider for
Microsoft Windows, the relying party in the process is under control of the user.
Therefore, the linkability of user accounts (because of the one key pair used) may
be negligible. The implementation of the credential provider could be modified
not to verify the counter value provided by the authenticator device, and then
even the risk of lacking secure storage for the counter value can be reduced.

83

6 Evaluation

6.5 Summary

In this chapter, we approached some concerns about the U2F standard and its
implementations. We also provided a classification of our approach to compare it
with existing solutions for 2FA. We were able to show that we keep the benefits
of U2F. We even add desirable properties concerning usability and deployability
to our approach. Therefore, our approach stands up well compared with other
solutions. The security analysis showed that our approach keeps the desirable se-
curity features of U2F intact, whereas only a few residual risks remain. In the next
chapter, we shall conclude this thesis and provide an outlook including further
research opportunities.

84

7 Conclusions

The average user today needs to authenticate himself to many services, both on-
line and offline. Second-factor authentication increases the security of these au-
thentication processes. Several approaches for 2FA exist, each with distinctive
advantages and limitations. Among those methods is U2F, which currently gains
industry support and can be used on a variety of services on the Web today. Imple-
mentations of the U2F concept provide important security features. Nevertheless,
we reasoned that the client side of U2F does not meet the acclaimed universality
of the approach. Several limitations, e.g. only one usable browser client and the
requirement of specific USB tokens remain.

We presented an approach for an extensible and flexible method for 2FA. We
integrate the promising U2F standard into the flexible CrRYSIL architecture. This
combination of two existing and established systems provides an advantageous
approach. We replace the actual U2F token in the authentication process with a
CrYSIL instance. We implemented several modules to be used as the back-end for
such an instance. Our implementation allows the user to use existing smart cards,
EID cards, the Android key store on smartphones and even genuine U2F tokens
over NFC for secure second-factor authentication.

We show the universality of our approach by implementing two different client
applications. As the first application, we extend the existing U2F client implemen-
tation in the Chromium and Google Chrome browsers. As the second application,
we provide a client to enhance the security of the Microsoft Windows login. The
flexibility of our approach allows the user to utilize an implementation of our
approach fitted to her needs. As one example, the user can use her personal
smartphone as the second factor while performing a login on a website in her
desktop browser. As another example, the user can augment her login to a local

85

7 Conclusions

Microsoft Windows system with a second factor and use a smart card or ID card
for the cryptographic operations.

Our approach offers several advantages when compared to traditional methods
for 2FA. We build on the strong security features of U2F, including resilience
to phishing and man-in-the-middle attacks. Compared to the conventional U2F
approach, we enable the uncomplicated use of existing cryptographic devices,
including smart cards. Additionally, our approach makes it possible to use an
Android smartphone as the authenticator device. Our approach can be extended
to support even more devices, given the modular concept of the CRYSIL system.
Since our implementation is compatible to existing U2F relying parties, we can
use our approach for authentication to various real-world services on the Web.
In the security analysis, we compared our model to a traditional U2F setting.
We showed that, despite the added components, we keep the security properties
of the U2F standard intact. We introduce only a few residual risks, and those
risks mostly arise from limitations of the used tokens, e.g. smart cards and ID
cards. The user is free to select secure devices to diminish the remaining risks
and strengthen the security properties of our approach. We argued that this is
the case when selecting an Android device running a MoCRYSIL instance as the
authenticator device.

Only a few limitations arise when using our approach: When using a smart card
(or an EID card), the same key is used for cryptographic operations in all authen-
tication challenges. This key reuse contradicts the concept of one key per relying
party of U2F but does not influence the strong cryptographic properties. When
using the Android key store or an EID card, self-signed certificates are used as
the attestation certificates. These certificates may prevent the relying party from
identifying the token, which contradicts a convention of U2F. Nevertheless, tests
have shown that various websites supporting U2F unconditionally accept our ap-
proach. Furthermore, the client system performing the login must be able to reach
the CrySIL instance over HTTPS to perform the authentication.

Besides the strong results of our work, we identify certain areas of possible future
work. Yubico, for example, is working on a token-less U2F solution for Android
and iOS devices'. Details remain unclear at this point, but the solution may be

Ihttps://www.yubico.com/?p=92445

86

https://www.yubico.com/?p=92445

7 Conclusions

implemented as follows: The Chrome browser for Android could forward U2F
authentication requests to the Google Authenticator app. The app, in turn, could
use a YubiKey over NFC to answer the challenge®. Future work may explore how
to integrate our approach into this mobile scenario. This integration would enable
the user to easily use existing smart cards for 2FA even when performing the login
on a mobile phone.

Other browsers could also provide a target for integration of our approach. Ac-
cording to the bug tracker3 at Mozilla, the implementation of a U2F client in the
Firefox browser is underway. Subsequent work may cover the integration of our
approach into this browser extension.

Another opportunity for future work is the development of alternative means of
communication between the browser and an Android device used for authentica-
tion. If the user performs the login on his desktop device and has the smartphone
in physical proximity, a connection between the two devices over the Internet us-
ing the WEBVPN relay service appears cumbersome. A direct connection between
the devices, e.g. over Bluetooth or WiFi, could be more convenient.

With the latest release of the Android operating system, version 6.0, developers
can store ECC key pairs in the key store directly. In future work, our approach
using the MOCRYSIL instance could be adapted to use this feature. Currently, our
approach derives the key pairs for authentication on-the-fly in software when
handling an authentication request. However, when using this new feature of
Android, key pairs created for a registration request could be stored in the key
store. On subsequent authentication requests, the key pair stored in the key store
can be used for the calculation of the signature. This change would most certainly
further strengthen the security properties of our approach.

All in all, the challenge of secure authentication becomes more important as the
average user today uses a vast number of accounts on various services. We take a
step towards a flexible and extensible approach for 2FA with compelling security
properties. We enable the uncomplicated use of existing cryptographic devices,
even mobile phones, as a secure second factor. We showcase another applica-
tion of cryptographically strong EID cards by integrating them into our approach.

2ht’cps: //security.googleblog.com/2015/12/a-new-version-of-authenticator-for.html
3ht’cps: //bugzilla.mozilla.org/show_bug.cgi?id=1065729

87

https://security.googleblog.com/2015/12/a-new-version-of-authenticator-for.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1065729

7 Conclusions

Overall, we considerably increase security in authentication processes, both local
and on the Web. In times of increased sensibility for security and privacy, more
users are eager to protect their data. We help everybody to protect precious pri-
vate data by offering a secure and easy-to-use method for strong authentication.

88

Appendix

Bibliography

(1]

ANSI. X9.62: 2005: Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature algorithm (ECDSA). ANSI. 2005 (cit. on
p- 10).

Dirk Balfanz, Arnar Birgisson, and Juan Lang. FIDO U2F Javascript API. FIDO
Alliance Proposed Standard. May 14, 2015. URL: https://fidoalliance.org/
specs/fido-u2f-javascript-api-ps-20150514.pdf (cit. on p. 11).

Dirk Balfanz and Jakob Ehrensvard. FIDO U2F Raw Message Formats. FIDO
Alliance Proposed Standard. May 14, 2015. URL: https://fidoalliance.org/
specs/fido-u2f-raw-message-formats-ps-20150514.pdf (cit. on p. 11).

Dirk Balfanz and Ryan Hamilton. Transport Layer Security (TLS) Channel IDs.
Internet Draft draft-balfanz-tls-channelid-01. IETF Secretariat, June 2013. URL:
https://tools.ietf.org/html/draft-balfanz-tls-channelid-01 (cit. on
p- 18).

Elaine B. Barker. Digital Signature Standard (DSS). Tech. rep. July 2013. DOTI:
10.6028/nist.fips.186-4. URL: https://dx.doi.org/10.6028/NIST.FIPS.
186-4 (cit. on p. 10).

Elaine B. Barker and Allen L. Roginsky. Transitions: Recommendation for Tran-
sitioning the Use of Cryptographic Algorithms and Key Lengths. Tech. rep. Nov.
2015. DOI: 10.6028/nist.sp.800-131ar1. URL: https://dx.doi.org/10.
6028/nist.sp.800-131ar1 (cit. on p. 61).

Daniel] Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography. 2013. URL: https://safecurves.cr.yp. to (visited on
03/01/2016) (cit. on p. 61).

90

https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-javascript-api-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-raw-message-formats-ps-20150514.pdf
https://tools.ietf.org/html/draft-balfanz-tls-channelid-01
http://dx.doi.org/10.6028/nist.fips.186-4
https://dx.doi.org/10.6028/NIST.FIPS.186-4
https://dx.doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.6028/nist.sp.800-131ar1
https://dx.doi.org/10.6028/nist.sp.800-131ar1
https://dx.doi.org/10.6028/nist.sp.800-131ar1
https://safecurves.cr.yp.to

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography

Joseph Bonneau et al. “The Quest to Replace Passwords: A Framework for
Comparative Evaluation of Web Authentication Schemes.” In: 2012 IEEE Sym-
posium on Security and Privacy. Institute of Electrical & Electronics Engineers
(IEEE), May 2012. DOI: 10.1109/sp.2012.44. URL: https://dx.doi.org/10.
1109/SP.2012. 44 (cit. on pp. 63, 64).

John Brainard et al. “Fourth-factor authentication.” In: Proceedings of the 13th
ACM conference on Computer and communications security - CCS "06. Association
for Computing Machinery (ACM), 2006. DOI: 10.1145/1180405.1180427. URL:
https://dx.doi.org/10.1145/1180405.1180427 (cit. on p. 27).

William E. Burr et al. Electronic Authentication Guideline. Tech. rep. National
Institute of Standards and Technology (NIST), Nov. 2013. DOI: 10.6028/nist.
Sp.800-63-2. URL: https://dx.doi.org/10.6028/NIST.SP.800-63-2 (cit. on
p-1).

Alexei Czeskis et al. “Strengthening user authentication through opportunis-
tic cryptographic identity assertions.” In: Proceedings of the 2012 ACM con-
ference on Computer and communications security - CCS "12. Association for
Computing Machinery (ACM), 2012. DOI: 10.1145/2382196. 2382240. URL:
https://dx.doi.org/10.1145/2382196.2382240 (cit. on p. 27).

Quynh H. Dang. Secure Hash Standard. Tech. rep. National Institute of Stan-
dards and Technology (NIST), July 2015. DOI: 10.6028/nist . fips.180-4.
URL: https://dx.doi.org/10.6028/NIST.FIPS.180-4 (cit. on p. 11).

Alexandra Dmitrienko et al. “On the (In)Security of Mobile Two-Factor Au-
thentication.” In: Financial Cryptography and Data Security. Springer Science
+ Business Media, 2014, pp. 365-383. DOI: 10.1007/978-3-662-45472-5_24.
URL: https://dx.doi.org/10.1007/978-3-662-45472-5_24 (cit. on p. 26).

Donald Eastlake and Tony Hansen. US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF). RFC 6234. RFC Editor, May 2011. URL: https:
//www.rfc-editor.org/rfc/rfc6234.txt (cit. on p. 21).

Maarten Everts, Jaap-Henk Hoepman, and Johanneke Siljee. “UbiKiMa: Ubig-
uitous authentication using a smartphone, migrating from passwords to
strong cryptography.” In: Proceedings of the 2013 ACM workshop on Digital
identity management - DIM. Association for Computing Machinery (ACM),

91

http://dx.doi.org/10.1109/sp.2012.44
https://dx.doi.org/10.1109/SP.2012.44
https://dx.doi.org/10.1109/SP.2012.44
http://dx.doi.org/10.1145/1180405.1180427
https://dx.doi.org/10.1145/1180405.1180427
http://dx.doi.org/10.6028/nist.sp.800-63-2
http://dx.doi.org/10.6028/nist.sp.800-63-2
https://dx.doi.org/10.6028/NIST.SP.800-63-2
http://dx.doi.org/10.1145/2382196.2382240
https://dx.doi.org/10.1145/2382196.2382240
http://dx.doi.org/10.6028/nist.fips.180-4
https://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.1007/978-3-662-45472-5_24
https://dx.doi.org/10.1007/978-3-662-45472-5_24
https://www.rfc-editor.org/rfc/rfc6234.txt
https://www.rfc-editor.org/rfc/rfc6234.txt

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Bibliography

2013. DOI: 10.1145/2517881.2517885. URL: https://dx.doi.org/10.1145/
2517881.2517885 (cit. on p. 26).

Cormac Herley and Paul van Oorschot. “A Research Agenda Acknowledging
the Persistence of Passwords.” In: IEEE Security & Privacy Magazine 10.1 (Jan.
2012), pp- 28-36. DOI: 10.1109/msp.2011.150. URL: https://dx.doi.org/10.
1109/msp.2011.150 (cit. on p. 2).

Russell Housley. Cryptographic Message Syntax (CMS). REC 5652. RFC Editor,
Sept. 2009. URL: https://www.rfc-editor.org/rfc/rfc5652. txt (cit. on
p-42).

ITU-T. Information Technology — Abstract Syntax Notation One (ASN.1): Specifi-
cation of basic notation. Recommendation X.680. International Telecommunica-
tion Union (ITU-T), Aug. 2015. URL: http://handle.itu.int/11.1002/1000/
12479 (cit. on p. 11).

ITU-T. Information Technology — ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encod-
ing Rules (DER). Recommendation X.690. International Telecommunication
Union (ITU-T), Aug. 2015. URL: http://handle.itu.int/11.1002/1000/
12483 (cit. on p. 11).

Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. “Biohashing:
two factor authentication featuring fingerprint data and tokenised random
number.” In: Pattern Recognition 37.11 (Nov. 2004), pp. 2245-2255. DOI: 10.
1016/j.patcog.2004.04.011. URL: https://dx.doi.org/10.1016/j.patcog.
2004.04.011 (cit. on p. 28).

Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital
Signature Algorithm (ECDSA).” In: International Journal of Information Security
1.1 (Aug. 2001), pp. 36-63. DOT: 10.1007/5102070100002. URL: https: //dx.
doi.org/10.1007/s102070100002 (cit. on p. 11).

Simon Josefsson. The Basel6, Base32, and Base64 Data Encodings. RFC 4648.
RFC Editor, Oct. 2006. URL: https://www.rfc-editor.org/rfc/rfc4648.txt
(cit. on p. 11).

Neal Koblitz and Alfred Menezes. A riddle wrapped in an enigma. Tech. rep.
IACR Cryptology ePrint Archive, Report 2015/1018, 2015 (cit. on p. 61).

92

http://dx.doi.org/10.1145/2517881.2517885
https://dx.doi.org/10.1145/2517881.2517885
https://dx.doi.org/10.1145/2517881.2517885
http://dx.doi.org/10.1109/msp.2011.150
https://dx.doi.org/10.1109/msp.2011.150
https://dx.doi.org/10.1109/msp.2011.150
https://www.rfc-editor.org/rfc/rfc5652.txt
http://handle.itu.int/11.1002/1000/12479
http://handle.itu.int/11.1002/1000/12479
http://handle.itu.int/11.1002/1000/12483
http://handle.itu.int/11.1002/1000/12483
http://dx.doi.org/10.1016/j.patcog.2004.04.011
http://dx.doi.org/10.1016/j.patcog.2004.04.011
https://dx.doi.org/10.1016/j.patcog.2004.04.011
https://dx.doi.org/10.1016/j.patcog.2004.04.011
http://dx.doi.org/10.1007/s102070100002
https://dx.doi.org/10.1007/s102070100002
https://dx.doi.org/10.1007/s102070100002
https://www.rfc-editor.org/rfc/rfc4648.txt

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Bibliography

Juan Lang et al. “Security Keys: Practical Cryptographic Second Factors
for the Modern Web.” In: Proceedings of the 20th International Conference on
Financial Cryptography and Data Security (FC). Feb. 2016 (cit. on pp. 9, 29, 63,
64).

Herbert Leitold, Arno Hollosi, and Reinhard Posch. “Security architecture of
the Austrian citizen card concept.” In: 18th Annual Computer Security Applica-
tions Conference, 2002. Proceedings. IEEE. Institute of Electrical & Electronics
Engineers (IEEE), 2002, pp. 391-400. DOI: 10.1109/csac.2002.1176311. URL:
https://dx.doi.org/10.1109/csac.2002.1176311 (cit. on p. 2).

Rolf Lindemann, Davit Baghdasaryan, and Brad Hill. FIDO Security Reference.
FIDO Alliance Proposed Standard. May 14, 2015. URL: https://fidoalliance.
org/specs/fido-security-ref-ps-20150514.pdf (cit. on pp. 65, 69).

Salah Machani et al. FIDO UAF Architectural Overview. FIDO Alliance Pro-
posed Standard. Dec. 8, 2014. URL: https://fidoalliance.org/specs/fido-
uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.pdf (cit. on
p- 28).

Microsoft. Credential Provider driven Windows Logon Experience. Microsoft
Corporation. 2016. URL: https://go.microsoft.com/fwlink/?LinkId=717287
(cit. on p. 23).

Dennis Mirante and Justin Cappos. Understanding Password Database Compro-
mises. Tech. rep. TR-CSE-2013-02. Dept. of Computer Science and Engineering
Polytechnic Inst. of NYU, Sept. 13, 2013. URL: https://isis. poly.edu/
~jcappos/papers/tr-cse-2013-02.pdf (cit. on p. 1).

David M'Raihi et al. HOTP: An HMAC-Based One-Time Password Algorithm.

RFC 4226. RFEC Editor, Dec. 2005. URL: https://www.rfc-editor.org/rfc/
rfc4226.txt (cit. on p. 25).

David M'Raihi et al. TOTP: Time-Based One-Time Password Algorithm. REC 6238.
REC Editor, May 2011. URL: https://www.rfc-editor.org/rfc/rfc6238. txt
(cit. on p. 25).

Collin Mulliner et al. “SMS-based One-Time Passwords: Attacks and De-
fense.” In: Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2013, pp. 150-159. DOI: 10 . 1007 /978 -3-642-39235-1_9. URL:
https://dx.doi.org/10.1007/978-3-642-39235-1_9 (cit. on p. 26).

93

http://dx.doi.org/10.1109/csac.2002.1176311
https://dx.doi.org/10.1109/csac.2002.1176311
https://fidoalliance.org/specs/fido-security-ref-ps-20150514.pdf
https://fidoalliance.org/specs/fido-security-ref-ps-20150514.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.pdf
https://go.microsoft.com/fwlink/?LinkId=717287
https://isis.poly.edu/~jcappos/papers/tr-cse-2013-02.pdf
https://isis.poly.edu/~jcappos/papers/tr-cse-2013-02.pdf
https://www.rfc-editor.org/rfc/rfc4226.txt
https://www.rfc-editor.org/rfc/rfc4226.txt
https://www.rfc-editor.org/rfc/rfc6238.txt
http://dx.doi.org/10.1007/978-3-642-39235-1_9
https://dx.doi.org/10.1007/978-3-642-39235-1_9

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Bibliography

Dain Nilsson. Key generation. Yubico. URL: https://www.yubico.com/2014/
11/yubicos-u2f-key-wrapping/ (visited on 02/21/2016) (cit. on p. 20).

Lawrence O’Gorman. “Comparing passwords, tokens, and biometrics for
user authentication.” In: Proceedings of the IEEE 91.12 (2003), pp. 2021-2040.
DOI: 10.1109/ jproc. 2003 .819611. URL: https://dx.doi.org/10.1109/
jproc.2003.819611 (cit. on p. 1).

Thanasis Petsas et al. “Two-factor Authentication: Is the World Ready?: Quan-
tifying 2FA Adoption.” In: Proceedings of the Eighth European Workshop on
System Security. Association for Computing Machinery (ACM), 2015, p. 4.
DOI: 10.1145/2751323.2751327. URL: https://dx.doi.org/10.1145/2751323.
2751327 (cit. on p. 2).

Adrei Popov et al. The Token Binding Protocol Version 1.0. Internet Draft draft-
ietf-tokbind-protocol-04. IETF Secretariat, Jan. 2016. URL: https: //tools.
ietf.org/html/draft-ietf-tokbind-protocol-04 (cit. on p. 19).

Florian Reimair, Peter Teufl, and Thomas Zefferer. “WebCrySIL - Web Cryp-
tographic Service Interoperability Layer.” In: WEBIST 2015 - Proceedings of the
11th International Conference on Web Information Systems and Technologies, Lisbon,
Portugal, 20-22 May, 2015. 2015, pp. 35—44. DOI: 10.5220/0005488400350044.
URL: https://dx.doi.org/10.5220/0005488400350044 (cit. on pp. 5, 22).

Florian Reimair et al. “MoCrySIL - Carry Your Cryptographic Keys in Your
Pocket.” In: SECRYPT 2015 - Proceedings of the 12th International Conference
on Security and Cryptography, Colmar, Alsace, France, 20-22 July, 2015. 2015,
pp- 285-292. DOI: 10.5220/0005547902850292. URL: https://dx.doi.org/10.
5220/0005547902850292 (cit. on pp. 6, 22, 50, 79).

Bruce Schneier. “Two-factor authentication: too little, too late.” In: Commu-
nications of the ACM 48.4 (Apr. 2005), p. 136. DOI: 10.1145/1053291.1053327.
URL: https://dx.doi.org/10.1145/1053291.1053327 (cit. on pp. 2, 18).

Sampath Srinivas et al. Universal 2nd Factor (U2F) Overview. FIDO Alliance
Proposed Standard. May 14, 2015. URL: https://fidoalliance.org/specs/
fido-u2f-overview-ps-20150514.pdf (cit. on pp. 3, 8).

94

https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
http://dx.doi.org/10.1109/jproc.2003.819611
https://dx.doi.org/10.1109/jproc.2003.819611
https://dx.doi.org/10.1109/jproc.2003.819611
http://dx.doi.org/10.1145/2751323.2751327
https://dx.doi.org/10.1145/2751323.2751327
https://dx.doi.org/10.1145/2751323.2751327
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-04
https://tools.ietf.org/html/draft-ietf-tokbind-protocol-04
http://dx.doi.org/10.5220/0005488400350044
https://dx.doi.org/10.5220/0005488400350044
http://dx.doi.org/10.5220/0005547902850292
https://dx.doi.org/10.5220/0005547902850292
https://dx.doi.org/10.5220/0005547902850292
http://dx.doi.org/10.1145/1053291.1053327
https://dx.doi.org/10.1145/1053291.1053327
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-overview-ps-20150514.pdf

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Bibliography

Jingchao Sun et al. “TouchIn: Sightless two-factor authentication on multi-
touch mobile devices.” In: 2014 IEEE Conference on Communications and Net-
work Security. Institute of Electrical & Electronics Engineers (IEEE), Oct. 2014.
DOI: 10.1109/cns. 2014.6997513. URL: https://dx.doi.org/10.1109/cns.
2014.6997513 (cit. on p. 28).

Sanna Suoranta, André Andrade, and Tuomas Aura. “Strong Authentication
with Mobile Phone.” In: Lecture Notes in Computer Science. Springer Science +
Business Media, 2012, pp. 70-85. DOI: 10.1007/978-3-642-33383-5_5. URL:
https://dx.doi.org/10.1007/978-3-642-33383-5_5 (cit. on p. 27).

Viktor Taneski, Marjan Hericko, and Bostjan Brumen. “Password security—No
change in 35 years?” In: Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2014 37th International Convention on. IEEE. 2014,
pp- 13601365 (cit. on p. 1).

Roland M. van Rijswijk and Joost van Dijk. “Tiqr: A Novel Take on Two-factor
Authentication.” In: Proceedings of the 25th International Conference on Large
Installation System Administration. LISA'11. Boston, MA: USENIX Association,
2011, pp. 7-7. URL: https://dl.acm.org/citation.cfm?id=2208488.2208495
(cit. on pp. 26, 62).

Catherine S. Weir et al. “Usable Security: User Preferences for Authentication
Methods in eBanking and the Effects of Experience.” In: Interact. Comput. 22.3
(May 2010), pp. 153-164. 1SSN: 0953-5438. DOI: 10.1016/j.intcom. 2009.10.
001. URL: https://dx.doi.org/10.1016/j.intcom.2009.10.001 (cit. on p. 2).

Yubico. Key Generation. Yubico Developer Documentation. URL: https://
developers.yubico.com/U2F/Protocol _details/Key_generation.html (vis-
ited on 02/21/2016) (cit. on p. 20).

Bernd Zwattendorfer and Arne Tauber. “Secure cloud authentication using
elDs.” In: 2012 IEEE 2nd International Conference on Cloud Computing and
Intelligence Systems. Institute of Electrical & Electronics Engineers (IEEE), Oct.
2012. DOI: 10.1109/ccis.2012.6664435. URL: https://dx.doi.org/10.1109/
ccis.2012.6664435 (cit. on p. 28).

95

http://dx.doi.org/10.1109/cns.2014.6997513
https://dx.doi.org/10.1109/cns.2014.6997513
https://dx.doi.org/10.1109/cns.2014.6997513
http://dx.doi.org/10.1007/978-3-642-33383-5_5
https://dx.doi.org/10.1007/978-3-642-33383-5_5
https://dl.acm.org/citation.cfm?id=2208488.2208495
http://dx.doi.org/10.1016/j.intcom.2009.10.001
http://dx.doi.org/10.1016/j.intcom.2009.10.001
https://dx.doi.org/10.1016/j.intcom.2009.10.001
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
http://dx.doi.org/10.1109/ccis.2012.6664435
https://dx.doi.org/10.1109/ccis.2012.6664435
https://dx.doi.org/10.1109/ccis.2012.6664435

A Message Format

In this chapter, we describe the format of all messages exchanged in a typical
use case enabled by our approach: Registration of a new authenticator device on
a website with U2F support while using the Google Chrome browser and our
extension for the browser. Therefore, we will outline all messages in the JSON
format defined by either the U2F standard or the CrYSIL system.

Listing A.1 describes the general form of a CRYSIL command. A single command
comprises a header and a payload. The format of the payload part is specific to the
commands, whereas the header is usually in the same format for all commands.
The listings following omit the header if it is not specific to that command.

{ header: {
type: "standardSkyTrustHeader"”,

nn

commandId:
sessionId: "",
path: [1,
protocolVersion: "2.0"
3,
payload: {
type: <specificType>
/* other content depends on specific command =*/

3

Listing A.1: General layout of CRYSIL commands

96

A Message Format

A.1 Registration

The message flow for registration of a new authenticator device (or token) occurs
between several software components: The website, the crypto-token extension in
the browser, our extension, and the CRYSIL instance. These messages match the
description of the message flow we give in Section 5.1.2 and Section 5.2.2. The
following steps are executed:

1. The website sends a request to the crypto-token extension:

{ type: "u2f_register_request”,
requestId: 1,
registerRequests: [{
version: "U2F_V2",
challenge: <challenge>,
appld: <appld>

1,

signRequests: [],

timeoutSeconds: 29

2. The crypto-token extension generates a client data structure, and forwards
the message to the bottom-half helper, i.e. our extension:

{ type: "enroll_helper_request”,

enrollChallenges: [{
version: "U2F_V2",
challengeHash: Base64 (SHA256(<clientData>)),
/* clientData was generated by the crypto-token extension x/
appIdHash: Base64 (SHA256 (<appId>))

I,

signData: [],

timeout: 29,

timeoutSeconds: 29

97

A Message Format

3. Our extension sends a request to generate a new wrapped key to the CRYSIL
instance. The field encodedRandom represents the key handle:

{ payload: {
type: "generateU2FKeyRequest"”,
appParam: <appIdHash>,
clientParam: <challengeHash>,
encodedRandom: null,
certificateSubject: "CN=CrySIL"
}

/* header omitted =x/

4. The CrYSIL instance responds with a new wrapped key:

{ payload: {
type: "generateU2FKeyResponse",
encodedRandom: <encodedRandom>,
encodedWrappedKey: <encodedWrappedKey>,
encodedX509Certificate: <encodedX509Certificate>
}

/* header omitted =x/

5. Our extension sends a request to calculate a signature to the CrYSIL in-
stance:

{ payload: {

type: "signRequest”,

signatureKey: {
type: "wrappedKey"”,
encodedWrappedKey: <encodedWrappedKey>

3,

algorithm: "SHA256withECDSA",

hashesToBeSigned: [(0x00, <appIdHash>, <challengeHash>,
<keyHandle>, <publicKey>) 1]

}

/* header omitted =x/

98

A Message Format

6. The CrySIL instance responds with the signature:

{ payload: {
type: "signResponse”,
signedHashes: [<signature>]
/* signature over (0x00, <appldHash>, <challengeHash>,
<keyHandle>, <publicKey>) */
}

/* header omitted =/

7. Our extension responds to the crypto-token extension:

{ type: "enroll_helper_reply"”,
code: 0,
version: "U2F_V2",
enrollData: Base64(0x05, <publicKey>, <keyHandleLength>,
<keyHandle>, <attestationCertificate>, <signature>)

8. The crypto-token extension responds to the website:

{ type: "u2f_register_response”,

requestId: 1,

responseData: {
registrationData: <enrollData>,
challenge: <challenge>,
version: "U2F_v2",
appld: <appId>,
clientData: <clientData>

99

A Message Format

A.2 Authentication

The message flow for authentication of an already registered authenticator token
occurs between the same software components as in the case of registration: The
website, the crypto-token extension in the browser, our extension, and the CrySIL
instance. These messages match the description of the message flow we give in
Section 5.1.2 and Section 5.2.2. The following steps are executed:

1. The website sends a request to the crypto-token extension:

{ type: "u2f_sign_request"”,
requestId: 1,
registerRequests: [],
signRequests: [{
version: "U2F_v2",
challenge: <challenge>,
keyHandle: <keyHandle>,
appld: <appId>

I,

timeoutSeconds: 29

2. The crypto-token extension generates a client data structure, and forwards
the message to the bottom-half helper, i.e. our extension:

{ type: "sign_helper_request"”,

enrollChallenges: [],

signData: [{
version: "U2F_V2",
challengeHash: Base64 (SHA256(<clientData>)),
/* clientData was generated by the crypto-token extension */
appIldHash: Base64 (SHA256 (<appld>)),
keyHandle: <keyHandle>

7,

timeout: 29,

timeoutSeconds: 29

100

A Message Format

3. Our extension sends a request to generate a new wrapped key to the CRYSIL
instance:

{ payload: {
type: "generateU2FKeyRequest"”,
appParam: <appIdHash>,
clientParam: null,
encodedRandom: <keyHandle>,
certificateSubject: "CN=CrySIL"
}

/* header omitted =x/

4. The CrYSIL instance responds with a new wrapped key:

{ payload: {
type: "generateU2FKeyResponse",
encodedRandom: <encodedRandom>,
encodedWrappedKey: <encodedWrappedKey>,
encodedX509Certificate: <encodedX509Certificate>
}

/* header omitted =x/

5. Our extension sends a request to create a signature to the CrYSIL instance:

{ header: {
type: "u2fHeader”,
counter: 0
/* remaining values unchanged =*/

3,
payload: {
type: "signRequest”,
signatureKey: {
type: "wrappedKey"”,
encodedWrappedKey: <encodedWrappedKey>
3,
algorithm: "SHA256withECDSA",
hashesToBeSigned: [(<appIdHash>, 0x@o1,
0x00, O0x00, 0x00, 0x00, <challengeHash>) 1]
}

101

A Message Format

6. The CrySIL instance responds with the signature, plus the counter value:

{ header: {

type: "u2fHeader"”,
counter: <counter>
/* remaining values unchanged x/

1,

payload: {
type: "signResponse”,
signedHashes: [<signature>]
/* signature over (<appIdHash>, 0x@1, <counterArray>,

<challengeHash>) x/

/* <counterArray> represents the <counter> in 4 bytes

7. Our extension responds to the crypto-token extension:

{ type: "sign_helper_reply"”,
code: 0,
responseData: {
version: "U2F_v2",
challengeHash: <challengeHash>,
appIdHash: <appIdHash>,
signatureData: Base64(0x01, <counterArray>, <signature>)

8. The crypto-token extension responds to the website:

{ type: "u2f_sign_response”,

requestId: 1,

responseData: {
signatureData: <signatureData>,
challenge: <challenge>,
version: "U2F_v2",
appld: <appld>,
keyHandle: <keyHandle>,
clientData: <clientData>

102

B Screenshots

Figure B.1 shows the Chromium browser with our extension enabled. The exten-
sion offers a button in the toolbar of the browser. Clicking this button, the user
can enter the URL of the CrYSIL instance that will handle all U2F authentication
requests.

Figure B.2 shows the login screen for a user on a local Microsoft Windows system
with our credential provider selected. There, the user can enter the password
as usual. Below the password field, we provide detailed information about the
authenticator device registered with this account. The user has still the option to
select the common login method of a password only by selecting the other tile
presented at the bottom of the screen.

Figure B.3 shows the second application of our approach for Microsoft Windows.
This application is used to configure the connection to the CrRYSIL instance and
to register a new token. This information will be stored in the Windows registry
and used by the credential provider on login.

Figure B.4 shows the MOCRYSIL instance running on an Android device. On the
screenshot, an incoming request is pending, and the user can choose which actor
shall perform the operation.

103

B Screenshots

e ———————————

& - C # @A https://demo.yubico.com/u2f s =

Enter the URL of the CrySIL instance
TEST YOUR U2F DEVICE |nttps://localhost:8443/api/u2f/?id=1 |

This demo will let you create a user and register a U2F device, then authenticate yourself using the registered device.
This requires a U2F device, as well as a browser with U2F support.

Start by registering a user, then try logging in.

Register Login

Register a U2F device

Usermname Enter a username and password to initialize the
U2F registration process. In the next step you will
password be prompted to register your U2F device.

As this demo service may be used by multiple
users at the same time, you should select a
username that isn't likely to be in use already.
Names such as "test” or "demo” are not
recommended. If someone else registers a user
with the same name as you, you will no longer be
able to log in as your password and U2F
registration will have been overwritten.

Mext

Figure B.1: Screenshot of the Chromium browser with our extension installed and the configuration
dialog opened (upper right corner). The user can enter the URL of the CRrySIL instance
that will handle all U2F authentication requests.

104

chris-local

CrySIL U2F Credential Provider

Hide additional information

Key Handle: fleWRGIPBAMO1J711sLcgeN-
xtj-9HpvytiK_0712rKBFC6460B6qwXpAhDAQ
J6AQgb0Gg1TCAYyAHBR88IMTbA

Public key:
04

Sign-in options

CrysiL
UzF

B Screenshots

chris-local

Dialog

Enter PIN to authenticate against CrySIL:

chris-local

© . Welcome

(a) The credential provider (b) The user can respond (c) After successful verifica-

shows details of the to-

ken registered for this
account. At the bottom
of the screen, the user

can select other creden-

tial providers installed
on the system.

to authentication chal-
lenges, e.g. a PIN for
an EID card, by enter-
ing the value in a dialog
box.

tion of the authentica-
tor device, the creden-
tial provider logs in the
user.

Figure B.2: Screenshots of the login flow with our credential provider for Microsoft Windows.

105

B Screenshots

W CrySIL UZF Key Manager

User |,L:hris-lncal R |
Host / Port | localhost| 8443 |
URL | api/uZ/7id=1]
Save values
KeyHandle AcWRGIFBAMO 1J71lsLoge Madj-
SHpwytikK_0712rKBRCE460 B6qwXpAhDdQIE
AQgb0Gg1 TCAyAHBREBSM ThA
Public Key 04:A8:C3:12:3C:79:83:F3:BB:36: 7TA:EA DAL

:87:16:44:B0:76:40:1B:53:A8:91:EC.DF:32:D
C:63:F9:AL:43:4A:62 7AA2-5F BS:54:593:3D:5
9:47:E6:FAS2:80:8E:C6:85:A3:03:.0D:5A62:
BE:51:43:08:F8:18:75:03:6B:5F

Delete Key Register Key

Figure B.3: Screenshot of the second application for Microsoft Windows, used for configuration of the

credential provider. The user can enter the connection information to the CRYSIL instance
and register a new token.

106

B Screenshots

= .l 09:39

n

Choose Actor to Handle Request

External Token over NFC

Internal Key Store O

OK

Figure B.4: Screenshot of the Android application when receiving a registration or authentication
request. The user can select which actor of the MoCRYSIL instance shall perform the
operation.

107

	Abstract
	1 Introduction
	1.1 Challenge
	1.2 Contribution
	1.3 Structure

	2 Preliminaries
	2.1 Universal Second Factor Authentication
	2.1.1 Protocol Messages
	2.1.2 Man-in-the-Middle Protection
	2.1.3 Attestation Certificates
	2.1.4 Counter Value
	2.1.5 Key Generation

	2.2 Cryptographic Service Interoperability Layer
	2.3 Microsoft Windows Credential Provider
	2.4 Summary

	3 Related Work
	3.1 Second Factor Authentication
	3.2 Alternative Approaches
	3.3 U2F Adoption
	3.4 Summary

	4 Approach
	4.1 General Idea
	4.2 Applications
	4.3 Advantages
	4.4 Attestation Certificates
	4.5 Summary

	5 Implementation
	5.1 CrySIL Modules
	5.1.1 Design Decisions
	5.1.2 CrySIL U2F Bridge
	5.1.3 Smart Card Actor
	5.1.4 Electronic Identity Card Actor
	5.1.5 Android Implementation

	5.2 Chromium Extension
	5.2.1 Browser Integration
	5.2.2 Message Flow

	5.3 Windows Credential Provider
	5.3.1 Login Integration
	5.3.2 Work Flow

	5.4 Summary

	6 Evaluation
	6.1 U2F Considerations
	6.2 Classification
	6.3 Comparative Evaluation
	6.4 Security Analysis
	6.4.1 Model
	6.4.2 Methodology
	6.4.3 Assets
	6.4.4 Assumptions
	6.4.5 Attack Classes
	6.4.6 Security Goals
	6.4.7 Security Measures
	6.4.8 Threats
	6.4.9 Residual Risks
	6.4.10 Conclusion

	6.5 Summary

	7 Conclusions
	Bibliography
	A Message Format
	A.1 Registration
	A.2 Authentication

	B Screenshots

		2016-05-07T14:40:19+0200
	Christian Paul Kollmann
	Signaturpruefung unter http://www.signaturpruefung.gv.at

