
Julia Lesky, BSc

Test Data Generation for RFID

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Institute for Software Technology

 Diplom-Ingenieurin

Supervisor

Graz, May 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

Testing is an important, quality-assuring factor in the software development
process. Especially when it comes to highly heterogeneous, distributed
systems, components often cannot be tested without test data fitting to the
tester’s need. However, in these systems test data has to fulfill numerous
specialized requirements to bring the system into a desired state and there-
fore data is generated manually, which is time-consuming, error-prone and
non-reproducible. In this master’s thesis, the problems of manual data gen-
eration for various test cases in the challenging field of RFID supply chain
management, one prime example for a distributed system with heteroge-
neous components, are discussed. The general challenges of the distributed
system architecture as well as the goals of testing in this field of application
are presented. To overcome problems of manual data generation, two data
generation models are introduced: A sequential model and a stochastic
model. Both models are evaluated regarding their usefulness for two dif-
ferent use cases for supply chain management. First, to bring the system
into a desired state and second, for the generation of massive amounts of
data for various performance tests. To test their usability and suitability, an
implementation of both models is applied to a deployed RFID system for a
realistic use case scenario.

v

Abstract

Testen ist ein wichtiger Qualitätssicherungsaspekt in jedem Softwareent-
wicklungsprozess. Vor allem im Bereich von vielseitigen, verteilten Syste-
men können einzelne Komponenten oft nicht ohne passende Testdaten
getestet werden. Gerade in diesem Anwendungsfall müssen Testdaten
oft verschiedenartige Spezifikationen erfüllen, um das System in einen
gewünschten Zustand zu bringen, daher werden Testdaten manuell ge-
neriert. Dies ist jedoch zeitaufwändig, fehleranfällig und häufig nicht re-
produzierbar. In dieser Masterarbeit werden die Probleme von manueller
Datengenerierung für verschiedene Testfälle im anspruchsvollen Gebiet von
RFID-Lieferketten-Management vorgestellt, einem Paradebeispiel für eine
verteilte Systemarchitektur mit vielfältigen Komponenten. Die allgemeinen
Herausforderungen von verteilten Systemen sowie die Ziele des Testens
in diesem Bereich werden aufgezeigt. Um die erwähnten Probleme von
manueller Datengenerierung zu überwinden, werden zwei Modelle zur
automatisierten Datengenerierung präsentiert, ein sequentielles Modell und
ein stochastisches Modell. Beide werden anhand ihrer Verwendbarkeit für
zwei Anwendungsgebiete analysiert: um das System in einen bestimmten
Zustand zu bringen und zur Generierung von großen Datenmengen für
Last- und Performancetests. Um die Eignung und Benutzerfreundlichkeit
in einer realistischen Umgebung auszuwerten, werden Implementationen
beider Modelle in ein laufendes RFID-System integriert.

vii

Acknowledgments

First, I would like to express my gratitude to my supervisor Prof. Wotawa,
for all the valuable feedback and guidance during the work on this master’s
thesis.

Thanks also to Michael Goller, who made this work in cooperation with
Enso Detego GmbH possible. Thank you for all the support, whether it was
an insightful discussion, constructive criticism or proofreading. I would also
like to thank all my colleagues for their understanding and patience during
stressful times - you’re an amazing team and it’s always a pleasure to work
with you!

I would like to thank my mother Sabine and my grandparents, Harald and
Herta, for their guidance and support throughout my whole life. Without
you, my university career wouldn’t have been possible and I wouldn’t have
achieved what I’ve done until now. Thank you for your unconditional love
and encouragement whenever I need it.

Furthermore I want to thank my best friend Christina, for being here for me
since more than twenty years. You’re the best friend one can imagine and
I’m grateful fo your understanding and help in all aspects of my life.

ix

Contents

Abstract v

Contents xi

List of Figures xv

1. Introduction 1
1.1. Motivation . 1

1.2. Problem Definition . 4

1.3. Overview . 6

2. Prerequisites 9
2.1. Distributed Systems . 9

2.2. RFID Systems . 11

2.3. Model Requirements . 14

2.3.1. Functional Requirements 14

2.3.2. Controllability and Observability 17

2.3.3. Performance and Scalability 18

2.3.4. Usability, Adaptability and Extensibility 19

3. Modeling 21
3.1. Process Model . 21

3.1.1. Exemplary Process Steps 23

3.2. Related Work . 26

3.2.1. Existing Tools . 27

3.2.2. State Machines . 28

3.2.3. Probabilistic Models . 28

3.2.4. Evolutionary Algorithms 29

3.3. Sequential Model . 30

xi

Contents

3.4. Stochastic Supply Chain Model 33

3.4.1. Transition Model . 33

3.4.2. Time and Item Set Characteristics 40

4. Implementation 43
4.1. System Overview . 43

4.2. Implementation Details . 46

4.2.1. Graphical Interface . 47

4.2.2. Classes . 48

4.2.3. Logging . 49

4.3. Sequential Approach . 50

4.3.1. Usage . 51

4.4. Stochastic Supply Chain Model 51

4.4.1. Usage . 53

5. Empirical Analysis and Usability 55
5.1. System under Test . 55

5.2. Execution Times . 62

5.3. Application . 67

5.3.1. Data Quality . 68

5.3.2. Performance Tests . 70

5.3.3. Coverage . 74

5.4. Usability and Limits . 76

5.4.1. Sequential Model . 76

5.4.2. Stochastic Supply Chain Model 78

6. Conclusion 81

A. Method Summary 85
A.1. General . 85

A.2. Service Interface . 86

A.3. Data Interface . 86

A.4. Store Functionality . 87

A.5. Stochastic Supply Chain Model 88

A.6. Distribution Classes . 89

List of Abbreviations 91

xii

Contents

Bibliography 93

xiii

List of Figures

1.1. Sample supply chain . 2

2.1. Components of an RFID system 12

3.1. Abstract process flow for an individual item 23

3.2. Supply chain for the sequential approach 31

3.3. Simple Markov process . 35

4.1. Sample RFID architecture . 44

4.2. Framework architecture . 45

4.3. Abstract class diagram . 46

5.1. Number of actions, training set 1 60

5.2. Average number of items per action, training set 1 60

5.3. Number of actions, training set 2 61

5.4. Average number of items per action, training set 2 61

5.5. Relative number of actions in both training sets. 62

5.6. Average execution time . 64

5.7. Execution times for a small store 64

5.8. Execution times for a medium store 65

5.9. Execution times for a large store 65

5.10. Average execution time per action 67

5.11. Number of actions, comparison 71

5.12. Comparison: number of items per action 72

xv

1. Introduction

This master’s thesis aims to discuss the challenges highly heterogeneous,
distributed systems face when it comes to the need of test data. Test data
generation is a complex process which needs much of the testing time if
done manually. This is why it is important to establish ways to generate
test data automatically. In this work a model-driven test data generation
framework for distributed software systems with applications in supply
chain management is presented.

1.1. Motivation

Software testing is a very important, quality-assuring factor in every field of
information technology. Yet testing is still expensive and time-consuming if
done manually. S. Dustdar and S. Haslinger [11] even state that testing soft-
ware needs an average of 40% to 85% of the whole development process. To
reduce time and costs, testing techniques suitable for the specific considered
field of application need to be found. One possible way to minimize the
effort is test automation with known techniques, such as regression tests,
code-driven testing or graphical user interface (GUI) testing, to name a few
examples.

The mentioned factors and the complexity depend heavily on the considered
system architecture and required system components. Especially distributed
systems are a challenging field of application due to their heterogeneous
architecture with different abstraction layers, such as front-end, back-end,
different types of hardware and software, all of these components commu-
nicating with each other. RFID (Radio Frequency Identification) systems are

1

1. Introduction

Figure 1.1.: Example for a typical supply chain in the fashion industry by M. Goller [18]. A
supply chain consists of multiple connected nodes representing various stages,
such as manufacturers, distributors and stores, with the customer as endpoint.

one prime example for a complex, multi-layered and distributed architec-
ture with a close hardware integration, with their main characteristic being
the contactless object identification over radio waves. The peculiarities of
systems using this technology add even more complexity to the system, for
example by unforeseeable behavior due to environmental influences during
the identification process.

One field of application for such a distributed architecture is supply chain
management. In Figure 1.1, an example for a supply chain is shown, span-
ning over manufacturers, distribution centers and stores. Additionally, it
is possible that a system could also span only over parts of the supply
chain. This could mean that RFID is only used in DC and stores and not at
the manufacturers. Regarding testing and test automation, this makes the
scaling of test data difficult.

Considering the mentioned factors, such as the different system layers and
the functional principle, test automation in this field faces several challenges
compared to traditional software systems, such as:

2

1.1. Motivation

• Distributed system issues: As a sample for a distributed architecture,
RFID systems face the same testing challenges, such as comprehensive
testing rather than only tests of the single components, or tests to
ensure correct system behavior in aspects of heterogeneity, scalability
or failure handling. The topic of challenges and design requirements
will be evaluated in more detail in Section 2.1.
• Environmental issues: When testing an RFID system, the tester needs

to consider the peculiarities of the contactless identification of objects
with applied tags/transponders regarding the environment. The main
issues here are reflections by different media or the distance between
tag and reading device. When test automation should cover aspects
such as reading performance or detection rates, thoughts must be
spared on how to get a test environment as stable as possible.

While the problem of test automation for individual RFID system compo-
nents was already discussed by C. Pichler [31], it is not always possible to
test particular components without additional test data. Typically, test data
is generated manually by means of simple, deterministic models that cover
the most important aspects of the investigated software module. A realistic
scenario to show the problems caused by the complexity of distributed sys-
tems is their usage in the fashion industry. The system is used to monitor the
whole supply chain of a company. Such a supply chain starts with the items
being created at the manufacturer and covers typical processes of logistics
and retail in this sector, meaning items leaving the manufacturer and being
sent to a distribution center (DC) for further distribution to retailers (stores).
Processes in a distribution center include the sorting and packaging of items
for the redistribution or the sending process to the retailers. When items
arrive at the retailer, they are added to the store’s stock (goods in) and are
involved in processes such as stock takings, movements on the store area or
sales. In all these processes, RFID hardware is used to detect and identify
the single items and the corresponding data is processed by the underlying
software. Identifiers (in this industry EPCs, Electronic Product Codes) and
article data of tagged items are stored in a database, and the procedures are
performed with application software using the RFID hardware.

The following example will outline the complexity of the manual test data
modeling. For every use case and functionality to test, a suitable data set

3

1. Introduction

has to be created. At all stages of the supply chain, various processes are
performed, for example the typical sale in a store. Each of these processes
causes data transactions in the back-end and has influence to one or more
parts of the supply chain. Even for a small test case scenario, different use
cases have to be considered and considerable large data sets have to be
generated to get expressive results.

1.2. Problem Definition

To test a supply chain management system, it is essential to know which
data is needed to perform certain tests and to bring the system into the
desired state at any time. As testing is a time-consuming factor in the devel-
opment process, test automation and methods to establish fixed, reusable
test routines are very important techniques to ensure a fluid test process.
However, even with a high test coverage due to automated tests and suitable
test environments, manual testing still has to be done to a certain extent.
Whether the performance and manageable data load of a system should be
tested or just to bring the system into a certain state for one particular test
case, data should be at hand as quickly as possible.

In this master’s thesis, we will discuss the requirements and challenges of
testing distributed systems, such as heterogeneity, concurrency or scalability,
with the focus on test data generation for aforementioned problems. We
present a model-based test data generation framework for application in
distributed, heterogeneous software systems in supply chain management.
The developed model utilizes empirical data from productive systems for
the estimation of model parameters and the model evaluation with respect
to various functional and non-functional system tests .

With the model application, it should be possible to simulate supply chain
processes in the most possible realistic way. Examples for the usage of a
data generation model are the simulation of a sequence of consecutive store
processes to either bring a sample test environment into a desired state, or to
apply performance or load tests onto the system. Before the actual modeling
process, the characteristics and properties the model should have must be
defined. This means one must be aware which test types are covered with

4

1.2. Problem Definition

the data created by the model and where the limits are. In this work, the
focus lies on two aspects:

• The tester wants to bring a test environment into a specified state to
perform one particular test case or needs to verify wrong behavior of
the system. The application of the data generation model should fill
the test system with a sequence of actions and processes over a fixed
amount of time.
• To evaluate the capacity and performance of a system and find possi-

ble bottlenecks or other wrong behavior when confronted with a large
amount of data, the tester wants to fill the system with a reasonable
amount of realistic data. Rather than performing all the actions manu-
ally to get large amounts of data into the system, the model should
provide an easy and fast way to apply these tests.

The goal of this thesis is to create a generative data model to cover the pre-
viously mentioned aspects. To achieve this, different modeling approaches,
such as deterministic or stochastic methods, as well as simulation frame-
works or engines with focus on their usability for heterogeneous, distributed
systems will be evaluated and compared regarding their benefits and draw-
backs for test data generation for this challenging field of application. The
created model should cover a reasonable complexity and number of param-
eters to ensure easy application and integration into supply chain manage-
ment systems.

In a following step, the model will be implemented and included into a
framework so that it can be used in real test environments for RFID supply
chain management systems. The application should provide interfaces for
an easy integration into the systems as well as a simple user interface to
set the parameters which the data model should use when the test data
generation process is executed.

As a practical part, the developed modeling framework is applied to an
existing software solution with application in the fashion retail supply
chain management with particular focus on the processes on the store level,
detego SUITE [17]. The usability of the created data model will be evaluated
within this productive environment containing software components, such
as database, web service and different types of application software (one of
them running on a mobile RFID device), and interfaces for different types

5

1. Introduction

of stationary and mobile RFID reading and printing devices. The effort of
automatic test data creation will be compared to manual test data creation
to get insight to the model’s applicability to test various aspects of supply
chain management systems.

1.3. Overview

In Chapter 2 we will discuss the properties of the system to test, starting
with challenges and requirements of distributed systems. The focus lies on
how these challenges and requirements can be covered with the created data
generation model. After that, we will go into more detail and specify which
aspects are important for an RFID system, a special type of distributed
system. This will also cover a general overview about what RFID systems
are as well as peculiarities different from other distributed systems. In
the last part of Chapter 2 the model requirements will be specified more
clearly. This section discusses which previously presented requirements
or challenges can be tackled with the created data generation model. This
also covers functional and non-functional model requirements, such as the
test types for which the model should be able to generate data as well as
non-functional requirements, such as scalability or performance.

In Chapter 3 the modeling is presented. The first part describes how a
supply chain management system works in general and presents exem-
plary process steps on the store level of such a supply chain. Related work
shows the state of the art regarding model-based data generation with their
advantages and limitations of test data generation in the special case of
supply chain management. The modeling process covers two different mod-
els. The sequential model is a simple-to-use model based on the lifecycle
of a single item in a supply chain. As this model has some limitations, a
more sophisticated, stochastic model is presented, which generates test data
based on empirical data taken from a productive supply chain management
system.

Chapter 4 describes the implementation details of the two developed mod-
eling approaches presented in Chapter 3. The functionalities as well as the

6

1.3. Overview

usage is described, as are implementational characteristics of the sequential
and the stochastic model.

The application of the designed models and implemented framework on a
deployed supply chain management system with focus on the store layer of
a supply chain is presented in Chapter 5. The interactions of the framework
and models with the deployed system will be described. We will evaluate the
model framework’s execution time compared to manual test data generation
as well as the quality of the generated data. The evaluation also covers the
application to different use cases, such as data generation for particular test
cases or for performance tests. In addition, the usability and adaptability of
the model framework in different use cases is discussed.

This work concludes with Chapter 6, where all important aspects of the
previous chapters will be highlighted again for a final summary. This covers
advantages of test data generation with the help of a model as well as
limitations of the used models and an outlook for future work.

7

2. Prerequisites

This chapter discusses the various requirements a generative data model
should fulfill in a distributed environment. We will start with a short
overview about general properties and challenges of distributed systems
in Section 2.1 with the focus on the required data to effectively test these
systems. In Section 2.2, a more detailed of additional peculiarities of RFID
systems will be given. Finally, Section 2.3 discusses the requirements the
model to design should fulfill in the given environment.

2.1. Distributed Systems

To line out the test data requirements of a distributed system, this section
covers details on the properties and challenges of distributed systems.
Tanenbaum and van Steen [35] describe a distributed system as a collection
of independent computers which appear as a single system to its users.
This means a distributed system contains a various number of applications
on different computers, possibly devices of different types, to perform its
tasks by communication via message exchange. The concept of a distributed
system spreading over a network faces a few challenges.

Coulouris et al. [8, Ch. 1.1, p.3] describe the most important issues of a
distributed system compared to a single system as the ability for resource
sharing between concurrently executed processes, the need to synchronize
the clocks of different components due to the lack of a global clock and
failures of single components. Including a few thoughts on data modeling,
the most important challenges faced when working with distributed systems
are discussed as follows (see [8, Ch. 1.4] for more details):

9

2. Prerequisites

• Heterogeneity: Distributed systems consist of various different hard-
ware and software types. Communication between various devices,
operating systems and pieces of software has to be ensured. Regarding
testing, it should be possible to create considerable large test data
which can be used to test the different system components.
• Concurrency: In a distributed system, resource sharing between con-

currently executed programs must be ensured to prevent blocked
processes because of resources locked for only one program. Test
data must be designed in a way to be able to check if resource sharing
works correctly. In addition, awareness of the limited ability to synchro-
nize clocks between devices and other components of the distributed
systems is needed for correctly timed message exchange.
• Scalability: A system is scalable if it still works stable and efficiently

even with a great increase of resources and users accessing compo-
nents. Regarding test data creation, this means with the model and a
later framework it should be possible to create a large amount of data
to test the scalability and to detect performance losses and bottlenecks
in a distributed system.
Performance is a challenge for every system, more so if it is hetero-
geneous and distributed. Users expect the system to be responsive in
every situation, regardless the performance and load of a network or
the size of data to be transmitted. The differences in response time
can be seen with the example of access to a cached page (fast) or
a not cached image of larger data size (slower) from [8, Ch. 2.2.5,
pp.43-44]. In addition to responsiveness, two other performance as-
pects are throughput (the amount of work processed over an amount
of time) and the ability to handle computational loads (for example
by distributing one process over more than one component for load
balancing). The system should be able to perform its tasks for all
users accessing it at the same time. One way to react to performance
issues is the usage of caching and replication techniques to achieve better
responsiveness and a smaller computational load on the system.
• Openness: Openness is an important factor for distributed systems to

ensure correct system behavior when a system is expanded by new
components. Also a created data generation model should be able to
be expanded by newly introduced processes at any time.

10

2.2. RFID Systems

A few other challenges are listed as well. These are for once the topic of
failure handling, which is the ability of a distributed system to handle faulty
behavior or failures of a system component by introducing sensible failure
policies. Another point is transparency, meaning that the distributed system
must act as one entity to the user. The last challenge is security, where access
rights, especially for sensible data, needs to be handled correctly. However,
these challenges are not relevant for this work and will not be discussed in
more detail.

2.2. RFID Systems

Radio Frequency Identification (RFID) systems are one special example for
a distributed architecture. Therefore, they also share many of the previously
presented challenges and architectural requirements. In this section a general
overview of RFID technology will be given.

The main concept of RFID is contactless unique identification of objects
with radio waves. The two main components of an RFID system are the
transponder (also called tag) and the interrogator, commonly referred to as
reader. The transponder is a device, usually without its own power supply,
which holds data relevant to the object it is placed on. While various types
of transponders exist, their main elements are a coupling element and a
microchip. The minimum elements of a reader are a radio frequency module
which acts as transmitter and receiver, a control unit and a coupling element
(antenna). However, many of them have additional interfaces to be coupled
with other systems to forward data received from transponders. In order to
collect data from the transponder when it comes into the interrogation zone
of the reader, the transponder has to be activated. The required power is
supplied contactless through the coupling units on reader and transponder
[12, Ch. 1.3].

Although the transponder and reader can be seen as a small RFID system, a
setup of only these two components is of little practical use. An appropriate
description of the components needed for a productive RFID system is
shown in Figure 2.1.

11

2. Prerequisites

Figure 2.1.: Sample components of an RFID system by S. Lahiri [26]. This image describes
the main parts a typical RFID system consists of, which are a computer system,
RFID reading units, tags as well as possible sensors (inputs triggering the RFID
elements) and annunciators (output produced from the RFID elements).

12

2.2. RFID Systems

Not only can an RFID system consist of more than one of the mentioned
tags, readers and sensors, especially in large systems the underlying soft-
ware system typically consists of a set of distributed host devices and a
multitude of software applications. Therefore, an RFID system qualifies
as a distributed system with heterogeneous components. Considering the
particular application in supply chain management, a software system typi-
cally spans over various manufacturers, distribution centers and stores, all
of them equipped with an appropriate infrastructure to cover the relevant
processes at the particular stage. For a smooth work flow, communication
between all components must be ensured. To achieve that, the previously
listed general challenges and requirements for distributed systems can also
be applied on RFID technology and the testing process, as they share the
peculiarities of distributed systems.

While these are probably the most important points regarding the productive
software of an RFID system, there are a few other things to consider in a
productive RFID environment, which are for one different environmental
influences regarding the main RFID components, and second, interfaces
to other systems, for example external ERP systems. When using RFID
technology, one must be aware that various things can influence the behavior
of the reader-tag interaction. Not only the distance between reader and
transponder is an important factor for the behavior, where the detection
rate decreases with increasing reader-to-transponder distance, but also the
wave transport media (air/water) or reflecting/blocking elements in the
surroundings of the stationed RFID technology.

As we will focus on the challenging distributed and heterogeneous aspects
on the software side of RFID systems to reduce the need of RFID devices
for data generation, the technical details of RFID hardware components, for
example frequency ranges for various usage fields or transponder types,
will not be discussed in detail. Refer to the RFID Handbook [12] or the
RFID Sourcebook [26] for more information on the physical aspects of RFID
technology.

13

2. Prerequisites

2.3. Model Requirements

In this section, the requirements of the data generation model will be de-
scribed. Basically, requirements can be divided into two two types: functional
and non-functional requirements. Functional requirements describe how well
the model meets the specification, meaning what the model does, in contrast
to what it is supposed to do. In this work, the main functional requirement
of the model is that test data should be generated according to the test
definition, which will be discussed in Section 2.3.1. The functional require-
ments also cover the test types where data should be generated for with the
created model.

Non-functional requirements are other factors that should be fulfilled, re-
gardless of the defined functionality. Examples for non-functional require-
ments are a certain degree of scalability or usability of an application or
framework. These and another two important aspects, controllability and
observability, are discussed in the following sections. How well the model
framework fulfills the listed requirements is evaluated during the usability
study in Chapter 5.

2.3.1. Functional Requirements

In the best case, a data generation model should be versatile enough fulfill
the data needs of a wide range of test types. However, as this would be out
of the scope of this work, we will concentrate on a few selected test types
and challenges for which test data should be generated. Basically, every
single piece of software needs a certain amount of data to work with. While
it can be sufficient for simple applications to cover all possible test cases
and scenarios with unit and/or module tests with simple and easy-to-create
data types as parameters, this is not always the case.

Already when looking at the simple example presented in Myers’ The Art
of Software Testing [30, Ch.1], one can see that even for this very simple
application to verify if three input parameters build a valid triangle a quite
comprehensive data set is needed to cover each test scenario. From that we
can assume that the effort to think of meaningful test data sets to use as

14

2.3. Model Requirements

either input data, calculation parameters or to fulfill any other test need
grows exponentially the larger an application or system to test is.

According to [15], data input generation for testing can be divided into
two sections: test sequence generation and test data generation. This work
explains test sequence generation as dealing with what method sequences
to test, test data generation on how to generate the data for these methods.
With the data generation model, we aim to do both. Actions in the supply
chain are methods to test in the software. Sequences of these actions should
be generated and performed accordingly to test workflows and we want to
generate meaningful input data to execute these methods with.

We can distinguish the following test types the data generated by the model
should cover: generate data to bring the system into a particular state to
test one component or method of the system, whether it is only a single
action for an encapsulated test or a sequence of actions to simulate system
behavior over a certain amount of time, or to generate data loads for stress
and performance tests on the underlying system. The system under test SUT
will act as a black box, meaning based on given input we will examine the
output of the system without knowing anything about the internal system
structures (see [30, Ch.2] for details). The test types are described in more
detail as follows:

Data generation for particular test cases: Basically, when we want to bring
the system into a desired state, this means that test data should be created in
order to be able to perform one particular test case. Especially in distributed
systems with an underlying database, it is not always possible to perform
these test cases independently from test data. In simple test cases, this
can even mean that generating the data manually might take more time
than verifying that the system works correctly. In this case we want to
use the framework to do the work - give it some parameters to reach the
desired state, start the simulation and perform the test cases as needed.
The created model framework should provide ways to fill the system with
the data needed for test cases, whether they are tests for one module of the
system or comprehensive tests of system components interacting with each
other. In the framework, it should be possible to set parameters such as the
size the generated data set should have (such as the stock size), the different
number or types of supply chain actions that should be performed.

15

2. Prerequisites

One standard use case for this type of generated test data could be the
testing of one module of the system (which is for example the execution of
one action in the supply chain lifecycle). The tester wants to verify the correct
behavior (correct output based on the data input) on the software side of
the system and exclude possible faulty behavior due to the peculiarities and
possible interferences when using RFID technology.

Data generation for performance testing: Performance testing describes
testing how well a system performs under different workloads, such as the
number of users accessing the system or data sent over the system. The data
generation model should be used to test the system’s performance under
extreme cases of workload over various amounts of time to find out the
behavior of the system in these cases. The topic of performance testing with
usage of the data generation model is divided into two sub-topics (after
[30]). In addition, the topic of endurance tests will be covered as well. The
performance tests can be described as follows:

• Load testing or volume testing: The system is filled with large amounts
of data or needs to handle an absurdly high workload at once. When
performing load tests, the goals are to find the data limit the system
can handle and how responsive the system still stays in case of such a
high amount of data.
• Stress testing is the test of a system’s behavior during peak times,

meaning the system is confronted with a heavy workload over a short
amount of time. This type of test is performed to determine whether a
system still fulfills the performance specifications when facing these
peak amounts of data.
• Endurance testing describes testing the system’s behavior when it has

to handle a particular workload over a long amount of time.

With the manual creation of test data, it is often difficult to get data sets to
test the performance of a system, especially when it comes to stress or load
tests, where the system is confronted with a large amount of data at once.
When this is done manually in such a distributed system for store supply
chains, this could mean that a large testing environment is needed with
more than one tester, multiple RFID devices and large amounts of physical
tags. In this case it can be difficult to time the actions performed by each
tester accordingly in an reproducible way. In addition, due to interferences

16

2.3. Model Requirements

when using RFID devices or different testing behavior of the testers, it can be
difficult to control the system at every moment of time to make qualitative
assumptions about the system’s behavior in such a test case.

A second aspect for performance testing is that in many cases the system
should not be confronted with any, possibly random data just to find the
amount it can handle, but rather it should be meaningful data according
to specifications of the supply chain or the lifecycle of items in the supply
chain. The system’s behavior should be observed with large amounts of
realistic data to see how well it performs during times of extreme workload
and to find the limits of data the system can handle.

2.3.2. Controllability and Observability

Controllability and observability are two important aspects when testing a
system, more so if it is distributed over various components. It is important
that the tester knows the exact state a system is at any time to verify correct
system behavior or prove the existence of errors or failures. In this context,
the problems of controllability and observability are discussed in various
works about testing distributed systems [7, 16, 22, 36].

However, this might not be that easy to accomplish in a distributed systems.
In the model to design we still want to provide the best possible controlla-
bility and observability. Summarized, the two problems are described as
follows:

Controllability: When testing a system, the tester wants to be able to
control a program’s inputs, outputs, operations or behavior at any time
[16]. Especially in distributed systems, when testers are situated at var-
ious parts of the system, maintaining controllability is not always pos-
sible due to the concurrent nature of these system types with the lack
of global clocks. For the testers it is not always clear when to send an
input with no or delayed responses from other parts of the system [22].
This means that, especially in a distributed system with inputs from differ-
ent sources, the problem of time dependencies can arise if no notifications
are given as to who submitted messages to the system or when new mes-
sages can be sent. As the data generation model is set upon a distributed

17

2. Prerequisites

system, it should be tried to avoid this scenario. In an RFID supply chain
management system in particular, it is very important to coordinate inputs
so that no race conditions occur which would lead to data inconsistencies.

Example: Any two actions are performed nearly simultaneously. Assuming
that the second action would reverse the first one, should this be allowed or
not? Scenarios similar to this must be thought of in the system specification
to define a correct workflow. However, for the data generation model con-
trollability would mean that we can exactly track what is executed at which
time, meaning the data created with performed actions, locations, items
moved with actions, as this will be the input to the test system to bring it
into a desired state.

Observability: The observability problem occurs if it is not possible for a
tester to find out which input caused a certain output [36]. To overcome
the observability problem, the tester wants to trace back every output to
a unique input from the data generation model. In the model, there will
be no possibility to force the system to produce an output as expressive
as possible, it rather depends on how the system under tests presents and
makes the produced data accessible.

The easiest way to provide a certain level of controllability and observability
when using the data generation model in this work would be the logging
of each input or calculation done. This should include timestamps and
other important runtime information to trace the messages sent to the test
system.

2.3.3. Performance and Scalability

When applications are used, the question of their performance and scala-
bility arises. K. Wiegers and J. Beatty [37, Ch. 14, Table 14-1] describe the
performance requirement as the time a system needs to respond to user
inputs or other events, and how predictable these responses are. Scalability is
described as the ability of the system to grow in order to handle extensions,
such as more transactions, servers or users.

Generally, when talking about how well a system performs, this aims at
the response and calculation times of an application under a particular,

18

2.3. Model Requirements

pre-defined workload. Whether this workload is the expected amount of
data and information a system or application has to handle during usage,
or a larger workload over a longer amount of time or during peak-usage,
the application or system should maintain a reasonable performance. The
model hence should be able to generate representative, large-scale data sets
to test a system’s scalability or performance.

When an application or system is scalable, this means that it is able to
handle an increasing workload due to a higher amount of data to process,
users accessing the system or calculations to be performed with respect to
the performance specification. The system qualifies as scalable if the higher
workload can be handled in a time not crossing a specified threshold. In
case of this work the model framework should be able to adapt to needs
for large amounts of data to generate, for example for stress testing the
system.

Summarized, when stress tests or other tests with the need of a large amount
of data should be performed on the SUT, the user should be able to generate
these data sets with the model framework in a reasonable amount of time.
How well the model framework adapts to the performance and scalability
requirements will be evaluated in Chapter 5 by comparing the manual
effort of test data generation to data generation with usage of the model
framework for extreme cases of workload.

2.3.4. Usability, Adaptability and Extensibility

The requirement for usability mostly applies to the model’s application.
Even if the complex structure of supply chain data is modeled, the model
should provide means of an easy and intuitive usage and fast applicability
to the system under test to the create test data. This means the model should
be as powerful as possible regarding the test data generation, but should still
maintain a certain degree of usability, which also covers easy adaptability
and extensibility. To achieve this, the complexity with respect to the number
of model parameters and general model size has to stay within a reasonable
range which can be understood by the tester.

19

2. Prerequisites

As an example, consider any data generation model which is able to create a
wide range of test data for a large, distributed test environment. For a tester,
it would be of little to no practical use considering the mentioned factors
of usability, adaptability and extensibility, as the model probably consists
of thousands of nodes, methods or calculations. Maintaining or extending
such a model is practically impossible for a human tester.

For the user it should be possible to understand the data generation model’s
structure at any point to be able to add, remove or change parts of the
model. In case of data generation for supply chain management it should
be easy to change or add properties, such as actions or locations, to the
model for it to be applicable to various parts of the supply chain based on
the use case. In addition, the previously mentioned factors controllability
and observability also increase the model’s usability.

When designing a data generation model, not only the use cases for the
data creation need to be defined. Additionally, also various non-functional
requirements have to be considered to increase the model’s quality. These
could be summarized as the ability to control and observe the model during
the data generation process, as well as a certain degree of performance
and scalability for various types of use cases. Finally, the model should be
easy to use with respect to application as well as adaption and extension to
different parts of the supply chain.

20

3. Modeling

For the test data modeling, two model types were considered and evaluated
regarding their usability for supply chain systems: a sequential model and
a Markov model, one type of stochastic model. In the next sections, we will
describe both models in more detail and discuss how they will be used
to generate test data. In Section 3.1 the processes of a supply chain are
described. This section covers the properties of a supply chain and intro-
duces the relations of sites, locations, actions and items in a supply chain
to describe the system’s functionality to model. Section 3.2 presents related
work on data-modeling, such as already existing data generation tools and
popular modeling types like state machines or evolutionary algorithms. In
Sections 3.3 and 3.4 we present two models which were considered to be
suitable for the purpose of test data generation.

3.1. Process Model

In this section, the basic structure of a supply chain is described. A typical
supply chain consists of three basic elements: locations, items and actions.
Locations describe different areas of sites (nodes in the supply chain, such
as different stores or distribution centers). Prime examples for locations are
sales floors, back rooms or shop windows in a store, or different storage
rooms at a distribution center. An individual item is one element of a
product, for example a shirt. The sum of all individual items in a supply
chain, spread over the locations, form the stock I, with length ‖I‖ being the
total number of items. On items, actions are performed. These are basically
procedures to change or detect the physical location of an item in the store,
such as stock takings or relocations, or to change the number of items in
stock, for example with a sale action. In Section 3.1.1, the most important

21

3. Modeling

actions describing the everyday behavior in a supply chain actions are
presented.

In a supply chain, different locations on various parts of the supply chain
(sites) exists, each of them containing items. The sum of all of these items
form the stock I over all considered sites of the supply chain, which can be
defined as

L1 ∪ L2 ∪ ...∪ Ln = I,

with

L1 ∩ L2 ∩ ..∩ Ln = ∅

meaning that items in stock can only be present at one location at a time.

I and L1, L2, ..., Ln are represented as list of present items, containing the
items’ Electronic Product Codes (EPC), a unique identifier, to clearly identify
each item.

Example: With every action/transaction in the supply chain, a subset Lk
of items are potentially changing their location/state. Figure 3.1 shows a
simplified example within a store with two locations, back room BR and
sales floor SF. The nodes describe the mentioned locations, meaning where
an item is present at one moment of time, being the empty node before it is
added to the store’s stock, the back room, the sales floor and the customer.
The edges/transitions describe the location-changing actions from the first
moment an individual item is detected in the store until it reaches its final
destination, the customer (C).

As shown in the previous example, it is not a realistic scenario that actions
are only changing the number of items on any location L1, L2, ..., Ln. It is
more likely that at some point either a set of new items is introduced to
add it to I or any other location, or that actions cause sets of items to leave
the supply chain and decrease I. At a moment of time tk, an action ak is
performed either on I or on a subset of I or L1, L2, ..., Ln, respectively. With
that, we have a sequence of actions a1, ..., ak, ..., an to simulate the activity in
an supply chain during the time interval (t1, tn).

22

3.1. Process Model

Figure 3.1.: Abstract process flow for an individual item, starting from where an item first
enters the system’s back room location. Possible location-changing actions are
then relocations, until its final destination, the customer is reached (with the
possibility to be returned to the system).

For each action, a meaningful item subset needs to be selected. In most
cases, this should typically be an amount of items bound by a minimum and
maximum number of items

[
blow, bup

]
of ‖I‖, ‖L1‖ , ‖L2‖ , ..., or ‖Ln‖. We

need not only to define the size of the subset, but also the items contained
in the set. Both steps need further knowledge, and can, for example, be
selected based on domain knowledge or by learning from empirical data
analysis.

3.1.1. Exemplary Process Steps

In this section a few typical supply chain actions are described with focus
on the store-level. These exemplary process steps are also used for the
model evaluation in Chapter 5. We present the following actions in detail:
initialization, stock take, relocation, inbound, outbound, write off, sale and
return, which all have their own characteristics regarding the subset size
and location-changing properties. The initialization, stock take, relocation
and inbound are actions which can be performed on either location, while
for sales only items on the sales floors are considered. Returns can only

23

3. Modeling

happen for items not in the stock I, with a sale as last action. The outbound
process is independent from where items are located.

• Initialization: When items arrive at a store, they must be recorded
in the database and given a location. The initialization step is used
to either initialize the first items in a new testing environment in
a database with 0 items so far, or to simulate the arrival of new
goods in a store at a given time. The number of items to initialize can
either be defined manually by the framework user with the need to
fill a database with items, or by selecting a random number inside
predefined lower and upper bounds

[
blow, bup

]
, whether they are set

based on knowledge of the application field or estimated by training
the model with existing real-life data.
An initialization action adds items to a location Lk and therefore to I
as well and increases ‖I‖ by the amount of items initialized.
• Stock take: Stock takes are used to detect the amount of items on a

store’s location, and can be done on any of the locations L1, L2, ..., Ln.
The stock take process updates each detected item’s location to the
location the stock take is performed on. In an example, this means
that an item with last location back room still has it as a location if it
is detected at a stock take on the back room, but the location changes
to sales floor if it is detected at a stock take on the sales floor.
The goal is to have a coverage as high as possible on each floor, that
is, in the best case a stock take should detect 100% of the items on
a specific location. In addition, it is also possible that items from
other locations are detected - this could be the case if the are placed
on a location without the proper location-changing action, or due
to peculiarities regarding the RFID interrogation zone of a reader
(shielding, reflection). As an example, we define the number of items
for a stock take ST on a location L1 in a store with two locations L1
and L2 as

ST = p · ‖L1‖+ q · ‖L2‖
where p and q are selected from the percentage interval for the number
of items to select from each floor. The exact determination of the
intervals for p and q as well as the selection technique for the items is
described in detail for each approach in the corresponding sections.

24

3.1. Process Model

However, it still can be said that the number to detect from the location
other than the stock take’s should be modeled as small as possible,
as only a small amount of items, mostly located in the border area
between locations, will be detected.
• Relocation: A relocation is performed when an item is carried from

one location to another, meaning that the action changes the item’s
location to the one it is relocated to. When an item is relocated to the
same location it already was registered on, the action is still performed.
After the relocation, the item will still have the same location, but has
the relocation as its last action. The number of items for a relocation
Rel is is calculated with

Rel = p · ‖Lk‖

with the percentage interval
(

plow, pup
)

forming boundaries for the
number of items to select. Typically, this is a rather small number of
items, as with a relocation only a few individual items are carried
from one location to another.k
• Sale: For a sale, only items on sales floors are available to a customer.

This is the reason why only items from the sales floors are selected for
the Sale action. Again, in comparison to the number of items present
on the sales floor, the amount of items in the typical shopping basket
of a customer is rather small. More details on how this amount is
selected can be found later depending on the approach.
Each sale decreases ‖Lk‖ by the number of sold items.
• Return: Only items already sold qualify for a return, and only a small

amount of items will be returned and added to stock I again. This
amount is determined, depending on the approach, either by setting it
to a small amount of only a few sold items, or from an empirical data
analysis.
With every return, ‖I‖ is increased by the amount of items returned.
• Write Off: From a process point of view, there are numerous reasons

when particular items need to be removed from the stock in a given
location. The write off process provides this functionality and depend-
ing on the use case, a selected number of items is removed from the
stock I.
• Inbound: An inbound or goods in process is performed when new

25

3. Modeling

items are delivered to a store by either the manufacturer, DC or another
store. With an inbound process, the delivered items are added to the
store’s stock system. Usually, a store is informed of the arrival of new
goods beforehand. This means that a delivery notice containing the
advised items and their quantity per product is added to the store
system before these items arrive at the store.
After their arrival, they need to be added to the store’s stock. This
is done using the delivery notice to check which items actually were
delivered and which were possibly missing. For the inbound process
this means that the number of items to add corresponding to the
number in the list d can be defined as

In = p · ‖d‖ ,
with p > 0 being the percentage of the actually delivered items.
• Outbound: When items leave the store to be transferred back to a

distribution center or the supplier, this is done with an outbound or
goods out process. Each item in stock I potentially qualifies for an
outbound process, and usually cartons containing more than one item
leave the store. The number of items for an outbound depends on the
store’s size and can be formulated similar to the relocation process as

Out = p · ‖I‖
with the percentage interval

(
plow, pup

)
forming boundaries for the

number of items to select from the stock.

3.2. Related Work

To find the most suitable model, research was done on how the topic of test
data generation can be approached and which model types and simulation
frameworks to create test data already exist. In this section, the results of the
literature research are presented. This will cover a general overview about
selected model types as well as an evaluation of advantages, drawbacks and
limitations of already existing modeling approaches regarding the intended
purpose of the model to design. The most remarkable test data generation
types and models are described in the next sections.

26

3.2. Related Work

3.2.1. Existing Tools

There exist quite a few test data generation tools, which create test data
according to specifications or by code analysis. To name examples, Doungsa-
ard et al. [6] present a framework to generate test data from software
specifications, namely UML diagrams, and S.J. Galler and B.K. Aichernig
present an overview about popular test data generation tools for various
programming languages [14]. However, more research into the topic of ex-
isting frameworks and tools showed two main problems for their suitability
for this work.

One problem is the dependency on a certain programming language of most
of the tools described in [14]. While this work also covers the implementation
of the model and integration into a running supply chain system’s test
environment, the sole usage of one of these tools would not be sufficient. In
addition, most tools need to be integrated or set upon existing source code
to analyze methods and workflows for test data generation depending on
the specific system under test.

The second problem is the need of a program or workflow specification
to generate test data. The software to test is based on specifications and
defined workflows. Yet the model to design in this work should simulate a
supply chain in general for various test data needs, independent from one
specific system description in form of workflow diagrams, for example to
infuse erroneous data contradicting this workflow. This and the need for
program code are the reasons why none of the frameworks found in various
works during the research process was taken into consideration.

Additionally, not much research work or presented frameworks are available,
as supply chain management with the usage of RFID technology is a quite
new field of application. Thus, only a few different systems for this special
type of distributed application exist. Testers of these systems still need to rely
on specialized test methods. Tools directly developed for the peculiarities
are used to assure the quality and confidence of their products. This is why
more general approaches must be evaluated regarding their usability for
this technology.

27

3. Modeling

3.2.2. State Machines

State machines are one prime example covered in current publications on
model-based testing of distributed systems and test data generation. The
distributed system behavior is often described with a collection of finite state
machines for test case generation, for example in [19, 21]. When looking at
Figure 3.1 and at the definition of a state machine as a set of n states and m
state transitions (a more detailed explanation can be found in [21, Ch.2.2]),
we can see that a single item’s movement cycle in a store could be easily
modeled as a state machine, where the states are the locations an item could
be on and the transitions are the actions with which the location is changed.
This is why an abstract state machine approach was taken for one of the
presented models in Section 3.3, where store processes are modeled with
simple state transitions.

However, this model has a few limitations due to the static structure of states
and transitions, which need to be designed manually based on workflows
from specifications or expert knowledge. This limits the flexibility of the
model regarding test coverage, as a generalized definition of states and
transitions in addition to a specified workflow makes this model type too
complex for sensible user interaction.

3.2.3. Probabilistic Models

Probabilistic or stochastic models are a popular way for test generation
and are for example shown in [4, 40], as a probabilistic model is a flexible,
powerful model type for this field of application. In this context, especially
Markov chains are considered, one prime example for a stochastic model,
where transition probabilities between system states at observed times
are used to simulate system behavior. In contrast to other approaches, for
example state machines, a training process with realistic data can be applied
to this model type to estimate the transition probabilities between states.
This adds flexibility regarding the application of the data generation model,
as such a model is easily extensible and can be varied to cover unlikely cases
as well for a high test coverage. In Section 3.4, a stochastic data generation
model will be presented.

28

3.2. Related Work

In addition, other probabilistic models were considered and research on
alternatives was performed. One type appearing in the results were so called
Hidden Markov Models (HMM [24, 32, 33]. In addition to the definition
of states of time and transition probabilities, in an HMM unobservable
“hidden states” exist and add more complexity to the Markov model. This
makes it more powerful, however, HMMs have other specialized fields of
application, for example speech or facial recognition.

3.2.4. Evolutionary Algorithms

Evolutionary algorithms (EA), often also called genetic algorithms, take
advantage of evolution theory for algorithm design.This means evolutionary
algorithms make use of data populations and evolutionary process struc-
tures like mutations to solve modeling or optimization problems. More
detailed, this can be described after D. Ashlock [3] as operations on popula-
tions. Data structures are chosen to represent populations, quality measures
and different methods to vary data structures are applied. In addition, stop-
ping criteria need to be introduced to know when the data structure has a
satisfying quality.

While there exist many approaches on how to use EA for test data generation,
such as [10, 27, 38, 39], research shows that for this work, an approach with
evolutionary algorithms would be similar to the selected stochastic model.
With both it is possible to generate test data a by simulating a supply chain
and analyze path coverage with various data sets. However, the definition
of parameters and initial data sets for mutations is a very complex process.
In contrast to the learning process of a stochastic model, an evolutionary
algorithm is very sensitive regarding parameter changes and the mutation
and comparison process might change the results significantly so that the
initial data set and mutation parameters must be set very carefully. As
this additional complexity is considered unneeded in this work’s scope, a
stochastic model is preferred over an evolutionary algorithm.

29

3. Modeling

3.3. Sequential Model

Considering the exemplary process step description, an intuitive modeling
approach is to consider the individual locations in terms of a standard
state machine and the individual actions in terms of a simple, sequential
process flow. Naturally, this approach describes the lifecycle for individual
items. This model is used to handle store processes for test data generation
in a randomized way. Based on expert knowledge of the workflow for
single items, transitions between nodes (locations) are defined. Basically, the
sequential model is an abstract representation of a single item’s lifecycle in
the supply chain, mapped to a sequential representation of actions covering
a subset of items in stock I.

In a sample model instance, we will assume that a store has only two
locations: the back room BR and the sales floor SF with the process flow
and the actions displayed in Figure 3.2. In this model, a number of l store
processes are performed consecutively according to the transitions in the
graphic. The possible actions covered by this model are initialization, stock
take, relocation, sale and return and with regards to the locations can be
further divided into:

• InitBR: Initialization on the back room.
• InitSF: Initialization on the sales floor.
• STBR: Stock take on the back room.
• STSF: Stock take on the sales floor.
• RelBR: Relocation to the back room.
• RelSF: Relocation to the sales floor.
• Sale: Sale.
• Return: Return.

Any sequence length l (the number of actions performed) can be assumed
as this model contains no mechanisms to limit the length or generate
the sequence length from any empirical analysis. For the model instance
depicted in Figure 3.2, this means the execution of such a sequence always
starts with an initialization on either the back room or the sales floor. The
initialization step could contain any number of items and is usually defined
beforehand. From that point on, the next step is performed based on the
last action according to the defined transitions.

30

3.3. Sequential Model

Figure 3.2.: Process flow for an individual item in the sequential approach. This example
covers the item being added to the stock with an initialization as well as various
actions such as stock take, relocation, sale or return. The item leaves the stock
when it reaches the customer.

31

3. Modeling

Each action in the sequence changes the number of items of at least one
location in the supply chain. For example, stock takes and relocations change
‖BR‖ and ‖SF‖, initializations and returns increase ‖I‖ and sales decrease
‖I‖. The amount of items per action is selected randomly, but is limited by
predefined boundaries inside the following intervals for each action:

• Initialize: The number of items to initialize is any integer number
i > 0.
• Stock Take: For the stock taking process, the number of items consid-

ered is defined as

STBR = p · ‖BR‖+ q · ‖SF‖

or

STSF = p · ‖SF‖+ q · ‖BR‖ ,

depending on the location the stock take is performed on.
The usual coverage

(
plow, pup

)
is defined with plow = 0.7 and pup = 1

for the location of the stock take and
(
qlow, qup

)
with qlow = 0 and

qup = 0.1 for the items detected from other locations. This means
between 70% and 100% of the items of the stock take location are
detected, plus an additional amount of between 0 and 10% of items on
the other location. The item selection follows a uniform distribution,
where every item on a location has the same probability to be picked.
• Relocation: With a relocation, between 1 and 5% of I is selected for

a relocation, that is, plow = 0.01 and pup = 0.05 for the interval(
plow, pup

)
, with the random selection following a uniform distribution

on I. This is based on the domain knowledge that only a small amount
of items will be relocated, for example to bring items from a back
room to the sales floor.
• Sale: The average shopping basket can be defined as one to ten items

from the sales floor, randomly selected from SF by a uniform distribu-
tion.
• Return: As already mentioned, only a very small amount of sold

items is returned again. Therefore, either one or two items are picked
randomly from the set of sold items.

32

3.4. Stochastic Supply Chain Model

Basically, the presented sample model can be extended to a various amount
of nodes and transitions to represent a more complex item lifecycle in the
supply chain. The sequential model is intended to execute one action after
another for a possibly infinite amount of steps, following a very strict order
of defined transition rules according to a single item’s lifecycle. To generate
meaningful data with this model, expert knowledge is needed to define
states and transitions between these states manually. Based on the structure
of this model, it also faces a few limitations. Therefore, it is not possible
to model store actions independent from each other, like different actions
taking place at the same time on different locations in the store. As example
taken from the sample model, a sale must be followed by a return action
from items back to the sales floor, which does apply to a single item, but not
to the definition of actions performed in the supply chain. The sequential
model is an easy-to-use model for quick test data generation with a few
limitations regarding extensibility and coverage based on the process flow
with respect to specifications.

3.4. Stochastic Supply Chain Model

A more sophisticated approach to tackle the challenges of test data genera-
tion is the usage of a stochastic model. Different to the sequential model,
instead of defining boundaries and process flows based solely on knowledge
of the system, real-life data from deployed store supply chain management
systems is used to train the behavior of a data generation model. In this
section, we will discuss general properties of Markov chains and Markov
models and how they can be applied to the considered scenario of supply
chain management with a particular focus on the fashion retail supply chain.
This stochastic model is a generalization of the sequential model to allow a
wider range of transitions independently from a defined workflow.

3.4.1. Transition Model

A Markov model is the model of a so called discrete time Markov chain
(DTMC) or discrete Markov process, one special type of stochastic process. A

33

3. Modeling

stochastic process {Xi} is described by Cover & Thomas [9, Ch. 4.1, p.71] as
an indexed sequence of random variables X1, ...Xn with a possible arbitrary
dependence among them.

In a Markov chain, the random variables are called states and the character-
izing property of a memory-less or first-order Markov chain is that at any
time t, the directly following state at time t + 1 depends only on the state at
time t and no other past states. A simple explanation of a Markov chain is
given by M. Kuperberg [25] as a set of discrete states which, at any point of
time, is in exactly one of these states.

Defined by L.R. Rabiner [32], a discrete Markov process is a system which
in any time is in one of N distinct states S1, S2, ..., SN where S1, S2, ...SN are
random variables describing each state. Depending on transition probabili-
ties between the states, the system changes its state at given times t = 1, 2, ...
with the state at time t being called qt (random variables). As mentioned
before, in a first-order Markov chain the current state is only depending on
its predecessor state, hence we can describe the probability of the system
being in state Sj as

P
[
qt = Sj|qt−1 = Si, qt−2 = Sk, ...

]
= P

[
qt = Sj|qt−1 = Si

]
.

According to [32], we can write the probability distribution as a transition
matrix A with dimensions N × N using the right side of the previous
equation as

aij = P
[
qt = Sj|qt−1 = Si

]
such that

aij ≥ 0

and

N

∑
j=1

aij = 1.

34

3.4. Stochastic Supply Chain Model

Figure 3.3.: A simple Markov process with two states and four possible state transitions.

For the model in this master’s thesis, the challenge is to find the initial
vector ν, as well as the transition matrix A. ν contains the probabilities for
the system to be in a state Si at time t0, therefore with this vector the “start
state” is defined. To obtain ν and the model’s probability distribution and
transition matrix A, it is trained with a given set of state sequences from
practical usage. By analyzing these sequences, ν and A are updated. To
find a meaningful model, sufficiently large training sets need to be selected.
More details on how the training works in the special case of this work
can be found in the definition of the test data generation model in the next
Section 3.4.2. However, examples to train Markov models are different EM
algorithms (expectation maximization) such as the Baum-Welch algorithm
discussed by L.R. Rabiner and B.H. Juang [33], as well as techniques for so
called hidden Markov models (HMM), one special type of Markov model
containing unobservable states, presented by Khreich et al. [24].

With these parameters defined, a sequence of state transitions can be gen-
erated from the model. Basically, in each state the next state is selected
randomly depending on the probabilities given in A. This is usually done
using algorithms suitable for the purpose (examples for different types of
Markov chains were discussed shortly in lecture notes by K. Sigman [34]).

Example: Figure 3.3 shows a simple Markov chain with two random vari-
ables/states X and Y and their transition probabilities. A possible initial

35

3. Modeling

vector for this state machine can be

ν =

(
0.5
0.5

)
,

where each of the two states is equally likely when the process is started.
The corresponding transition matrix is defined as

A =

(X Y
X 0.3 0.7
Y 0.8 0.2

)
.

For test data generation, a Markov chain is used to model supply chain
actions, such as were explained in Section 3.1. For the model’s set of states,
we need to define the set of actions as

M = {a1, a2, ..., am}

and the set of locations as

L = {L1, L2, ..., Ln}

for all locations of the store to model. With M and L defined the model’s
state set S can be written as the Cartesian product

S = M× L,

with the number of states

|S| = |M| · |L| .

This means that theoretically each action can possibly be performed on each
of the locations. With these definitions, the initial vector ν is defined with
length |S| and the dimensions of the transition matrix A as |S| × |S|.

36

3.4. Stochastic Supply Chain Model

Example: If we consider a sample system with the actions

M = {Initialization, Stocktake, Relocation, Writeo f f , Sale, Return}

and two locations L1 (back room) and L2 (sales floor), we get 12 states for
the model: Initialization on back room or sales floor, stock take on back
room or sales floor, and so on. In this example, the initial vector ν would be
of length 12, the transition matrix A of dimension 12× 12.

At this point it needs to be said that possibly not all of these actions are
depending on a specific location. However, we might need to create faulty
data like this with the model, so these cases still need to be considered. This
is why we calculate the Cartesian product of actions and locations instead of
defining some exceptions or constraints. This can be simply done by adding
noise to ν or A after the training process described in the following.

Previous to the training, the initial vector and the transition matrix have to
be initialized. For both A and ν, a zero matrix or zero vector, respectively,
is assumed and will be updated by training the model with a sequence
obtained from a productive system. For the stochastic model to work and
generate meaningful test data, it must be trained with sequences consisting
of a consecutive list of n actions with the following information:

• The store action performed.
• The location the action was performed on.
• The number of items moved with the action. Note that the number

of items is not used for the model training but to obtain a meaningful
number of items for each action in the later execution of a state
transition sequence generated by the stochastic model.

In the update algorithm for A, every transition from one action in the
sequence to the next is considered. The update algorithm depending on the
given training sequences works as described in Algorithm 1.

In addition, the initial vector ν needs to be trained based on the first action
of each sequence. While the training process of A and ν needs the same
training data as input, we describe the calculation of ν with Algorithm 2 for
better readability.

37

3. Modeling

Algorithm 1 Training of transition matrix A

INPUT: training sequences with n action× location pairs

set A = 0 at each index
for all sequences do

get action× location of elements ik and ik+1 for k = 1 in the sequence
list
increment value of A at index action × location(ik), action ×
location(ik+1)

while k + 1 ≤ n do
set k = k + 1
get action× location of ik and ik+1
increment value of A at index action × location(ik), action ×
location(ik+1)

end while
end for

for j = 1 to #rows in A do
sj = ∑ values in row
if sj > 0 then
∀ values in row: v = v

sj

else
set value = 1

row.length for each value in row
end if

end for

return A

38

3.4. Stochastic Supply Chain Model

Algorithm 2 Update initial vector ν

INPUT: training sequences with n action× location pairs

set ν = 0 at each index

for ∀ sequences do
get a, first action× location pair of sequence
increment value of ν at index a

end for

for all values v in ν do
v = v

#sequences
end for

return ν

Adding noise to distort the results from the model is a simple task after ν
and A are trained. This is achieved by adding an additional relative factor
ε to the transition matrix or initial vector, such that values are altered and
possible zero values are considered when generating an action sequence
from the model. A sample matrix of dimension 3× 3 with an additional ε
for noise is

A =

a1,1 − ε
2 a1,2 − ε

2 ε
a2,1 − ε

2 ε a2,3 − ε
2

a3,1 − ε
2 ε a3,3 − ε

2

,

where ε replaces zero values in the matrix. The same could also be applied
to the initial vector ν to generate faulty start states. However, training the
model and the possible addition of faulty behavior only covers the selection
of actions to perform on particular locations, but has no information about
the number of actions to execute or which amount of items are considered
for an action. The characteristics of sequences and item distributions are
covered in the next section.

39

3. Modeling

3.4.2. Time and Item Set Characteristics

In addition to the estimation of ν and A, the average size of a generated
transition sequence and the average number of items for each action need
to be estimated. Taking another look at the training sequences, we count
the number of actions for each sequence and take the mean value as λ to
model a Poisson distribution as described by N. Henze [20, Ch. 24, pp.189-
194]. The same must be done for each action× location pair in S relative
to the training data set’s stock size. Thus, in the Poisson distribution, λ
will represent the average percentage of items taken for each action. This
is why we define a as the mean value of the number of items for each
action× location pair and can calculate

λ =
a

size
· 100.

Example: A stochastic model is already trained with only two actions and
two locations, called a1 and a2 and L1, L2, respectively. We have the following
four training sequences and a store size of 30 items:

1. (a1, L1, 3 items), (a1, L2, 4 items), (a2, L2, 6 items)
2. (a1, L2, 10 items), (a1, L2, 8 items)
3. (a2, L1, 3 items), (a2, L1, 4 items), (a1, L1, 5 items), (a2, L2, 8 items)
4. (a1, L1, 10 items), (a2, L2, 7 items), (a1, L2, 3 items)

We get

A =

a1, L1 a1, L2 a2, L1 a2, L2

a1, L1 0 1
3 0 2

3
a1, L2 0 1

2 0 1
2

a2, L1 1
2 0 1

2 0
a2, L2 0 1 0 0

and

40

3.4. Stochastic Supply Chain Model

ν =

0.5

0.25
0.25

0

.

For the sequence length Poisson distribution, we calculate

λseq =
(3 + 2 + 4 + 3)

4
= 3.

For the actions we calculate λa1,L1 = (3+5+10)·100
3·30 = 1800

90 = 20

And following from that λa1,L2 ≈ 20.83, λa2,L1 ≈ 11.67 and λa2,L2 ≈ 23.33.

With this knowledge base, we can generate transition sequences with the
model and its supporting distributions. The first step is to get the length the
generated sequence should have. To get the number of actions, a random
number r following the calculated Poisson distribution is selected. This
random number is most likely to be similar to the calculated λseq, but
more flexible than defining a fixed value for the sequence length. With the
stochastic model, a state q0 at time t0 is picked randomly based on the
distribution of ν. From this start state the model knows from which row
in A the next transition is selected based on the transition probabilities.
All q1, ..., qr states of the sequence to generate are then picked randomly
according to the probability distribution of A.

The generated sequence of length r contains a list of action× location pairs
and suggest the actions and locations to perform for test data creation
to simulate a store’s everyday procedure. The actions will be performed
consecutively at the given location with a random percentage of items (based
on the determined distribution from the training).

Again, it is possible to add noise for faulty behavior, for example to alter the
expected results and confront the system to test with unexpected, possibly
erroneous data. To achieve that, the Poisson distributions for actions as well
as the sequences can be altered by adding a relative ε to change the expected
number of items or sequence length.

41

3. Modeling

Summarized, in contrast to the sequential model, the stochastic model can be
trained using empirical data from productive environments. This adds more
flexibility, as the modeling process is not only limited to specifications and
domain knowledge. By means of analyzing the process structure provided
by the store data, a set of realistic probabilities for store actions can be
estimated with the presented Algorithms 1 and 2. Depending on the data,
it is possible that each action can occur at any location and at any point of
time during the sequence generation, based on the previously estimated
probability distribution for the supply chain actions. Additionally, from the
training data the number of actions performed over an observed amount of
time as well as the distributions of the item set size for each action can be
estimated.

The stochastic model can be generalized even more with the addition of
noise to any model parameter, whether it is the initial vector, the transition
matrix or item distributions for actions and sequences. This causes the
incorporation of unlikely state transitions in order to increase test coverage,
as they still occur in practice and often cause unexpected or faulty system
behavior.

42

4. Implementation

This chapter covers details on the implementation of the test data generation
framework. In Section 4.1 we give a short introduction to the underlying
system for the implementation. Section 4.2 contains all implementational
details, such as used programming languages, libraries and the general
structure of the implementation. In Section 4.3, we will present the im-
plementation of the sequential model described in Section 3.3. Section 4.4
covers the stochastic model described in Section 3.4.

4.1. System Overview

The underlying system for the implementation is a distributed, service-based
RFID system on the store level of a supply chain. Figure 4.1 shows a sample
structure of a service-based RFID test system with its main components.
Basically, the displayed Windows Communication Foundation (WCF) [28]
web service acts as a communicator between the different components of the
distributed system, namely a database server as well as devices with running
software applications, possibly communicating with RFID devices.

For the implementation, an interface to the web service is used to communi-
cate with the database in two ways: to get required data from the database
and to perform actions and write them into the database. As the execution
of these service calls should simulate the usage of the store system’s applica-
tions to create test data, these applications are negligible. More information
about a store process in general was already given in Section 3.1.

Directly at the web service is where the data generation model will be
located. As with the software applications in the system, communication is
possible in two ways:

43

4. Implementation

Figure 4.1.: Sample architecture for a productive RFID solution in the fashion industry
by the Enso Detego GmbH [17]. This architecture consists of the databases
for each component in the supply chain, communicating with each other over
WCF web services. In addition to the communication with IT-backend and
database, applications such as point of sale (POS) or various stationary or web
applications use said database and web services to perform actions.

44

4.1. System Overview

Figure 4.2.: Framework architecture presenting the model architecture and its application
onto the system under test. Based on the model, either specifications or training
data is used for the data generation. Before the data can be applied to the SUT,
it has to be adapted to meet the SUT’s requirements.

1. For the simulation of store actions, it is necessary to have information
on the data already stored in the stock, such as the stock size, the
items’ EPCs or the item distribution over the store’s locations. To be
able to perform the actions according to the process model of Section
3.1, it is necessary that the required information can be retrieved with
a request to the web service.

2. When the generated data should be sent to the test system by the
model, the interface should handle the correct conversion from the
information the generated test data contains to data the service can
process. The goal is that the web service stores the data in the database
and makes it accessible for the other system components which need
to be tested with the generated data.

The communication of the model framework with the system’s web service
is done over an interface and is displayed in Figure 4.2. The framework
covers the data conversion for the models as well as the models and data

45

4. Implementation

Figure 4.3.: Abstract class diagram of the most important parts of the model framework.
These are both the sequential and the stochastic model, the sequence and item
distributions, as well as the transformation class to prepare the generated data
to be sent to the test system over the provided interfaces.

transformation to be used by the interface communicating with the system
under test.

4.2. Implementation Details

The implementation of the model-based test data generation framework
is a C# WPF application [29] with a graphical user interface (GUI). In this
section, all general functionality of the application, any used libraries and
the usage independent from the implemented test data generation models
are described. The next sections cover the interfaces to the underlying
system, data handling and other useful functionality besides the sequential
and stochastic supply chain model.

As introduction, Figure 4.3 shows a diagram of the most important classes
of the model framework, such as the models and distributions, as well as
the data transformation class connected to SUT’s interfaces. In the following,

46

4.2. Implementation Details

the graphical interface, the main classes and the logging mechanisms are
described.

4.2.1. Graphical Interface

The MainWindow.cs class contains all the application’s superficial function-
ality. Here the graphical user interface such as button functionality, user
input and output to the user as well as file dialogs, is located. In addition to
the model implementations, the following functionality is included:

1. Sequences: It is possible to import a semicolon-delimited CSV file
with unique pre-defined headers to convert it into a training sequence
for the stochastic model. The input CSV needs to contain the fields
TimestampEvent, LocationName and BusinessStepName (the action per-
formed). All other possible fields in the table are not needed and are
ignored. From this data, all entries with the same timestamp, location
and action are counted and written into the training sequence file (also
a CSV file). After the conversion, the training sequences contain a list
of consecutive actions on different locations with a varying number of
items per action. Example: stock take on the sales floor with 100 items.

2. Masterdata: The functionality to open and execute a .bat file to re-
instantiate the database where test data needs to be created with
predefined masterdata is provided. The masterdata could contain
anything from the definition of locations, product masterdata and all
other connectivities for a productive system to work. In addition, it
is possible to initialize the database size, that is, the number of items
which should be present in the test database before applying any
model functionality.

3. Single Processes: In some cases it can be useful that not a whole
sequence of store actions is executed, but only data from a single
process, for example one sales process, is needed for a test. Therefore,
functionality to select a process from a dropdown menu, add the
required data (location and/or number of items) and perform only
this single action is added.

47

4. Implementation

Summarized, to give the tester the possibility to prepare the system for the
model application, a selection of additional functionality is included in the
framework. This includes the conversion of a database extract to a sequence
file, the possibility to reset the system under test as well as to perform single
process steps independently from the models.

4.2.2. Classes

In addition to the model implementations, the application uses four other
classes to provide necessary functionality. These are a class for general
functionality, two interfaces for data and service access as well as a class for
supply chain functionality to communicate with the interfaces.

In the GeneralFunctions.cs class, all the system’s functionality which does
not fit to other, more specified classes is handled here. Methods of this
class contain methods to import or export data from/into files as well as
calculations or data conversions. The most important methods are listed in
Appendix A.1.

In the underlying system, all processes regarding store actions are handled
by the web service. The application calls the system’s web service via an
interface to get access to its functionality and methods to send data into the
database. The interface is implemented in the ServiceCalls.cs class and
each method uses a data client to reach the desired web service URL for the
methods listed in Appendix A.2.

ServiceCalls.cs provides these methods via communication with the ref-
erenced web service to ensure that, depending on the underlying system,
the functions with the correct parameters are sent to the system. The imple-
mentation of these methods must handle that the passed model parameters
and variables are possibly not enough to perform the service call and add
reasonable additional data.

All calls to the system regarding already stored data in the database is
handled by the DataCalls.cs class. In the application, the web service’s
data is accessed via HTTP requests, to get a list of values in the desired
table to use in other methods of the application. In the DataCalls.cs class,

48

4.2. Implementation Details

the methods described in Appendix A.3 can be called to get data from the
test system’s database to perform various store actions.

The StoreFunctionality.cs class is the main class to pass all the actions
performed by the model to the web service interface. Basically, this class
prepares the given data from the model execution such that the underlying
interface can handle it better, being it by performing additional calculations
(such as the selection of a given number of EPCs from the database) or
adding static parameters as the interface call requires them, but are not
required at this state of the model design. The method descriptions can be
found in Appendix A.4.

4.2.3. Logging

To all important processes and methods in the implementation, log output
is added using the Apache log4net library [13]. By including log4net in the
desired classes and initializing the logger it can be used all over the class
to define different types of log output at any time and will be saved to log
files which can be found in the log folder of the deployed application. The
log file contains a timestamp, the logging level, the class which called the
corresponding logger as well as the log output.

As the log file should contain important runtime information about the
application and to maintain a certain level of observability, the generated log
output can be summarized as the executed processes, generated sequences
and execution times. The executed processes cover the successful execution
of actions as well as logging about the training process or completed se-
quence execution. In addition, the generated sequences are logged before
their actions are executed to be able to identify possible discrepancies or
faulty behavior. Another thing logged is the time needed to execute various
processes. This is important to evaluate results of load or performance
tests.

49

4. Implementation

4.3. Sequential Approach

The StoreAutomaton.cs class contains the sequential model’s implementa-
tion. For this approach, the Stateless .NET State Machine Framework [5].
The Stateless framework can be used to implement simple state machines or
workflows similar to state machines. This is the reason why it seemed useful
for this purpose and the sample distribution matrix from Section 3.3 was
transformed to a Stateless state machine, where the actions are executed on
entering the next state, based on the transition rules.

Example: Basically, a very simple state machine with two states StateA
and StateB and the actions actionA and actionB would be implemented as
follows:

S t a t e i n i t = S t a t e . StateA ;
var stateMachine =

new StateMachine<Sta te , Trans i t ion>
(() => i n i t , s=> i n i t = s) ;

stateMachine . Configure (S t a t e . StateA)
. Permit (T r a n s i t i o n .A, S t a t e . S ta teB)
. OnEntryFrom (T r a n s i t i o n . B , t => act ionB ()) ;

stateMachine . Configure (S t a t e . B)
. Permit (T r a n s i t i o n . B , S t a t e . StateA)
. OnEntryFrom (T r a n s i t i o n .A, t => actionA ()) ;

In this code, the state machine is configured with the two states and state
transitions Transition.A from StateA to StateB and the other way round.
Each time a state is entered with a transition, either actionA or actionB is
performed. One state transition can be fired manually with a call such as

stateMachine . F i r e (T r a n s i t i o n .A) ;

50

4.4. Stochastic Supply Chain Model

4.3.1. Usage

The functionality of the sequential model is spread over two tabs: Automatic
for the execution of a sequence of a manually defined length and Manual to
execute actions of the sequential model step by step with the possibility to
get direct information about the performed actions.

Automatic Execution: For an automatic sequence execution of the sequen-
tial model, the user needs to select the number of items to be initialized
in the database and how many randomly selected actions should be per-
formed (how many transitions are performed, with method execution on
entering or leaving). As the state machine works too fast for a human user
to follow the steps, no direct output or information is given to the user, all
performed actions with the number of items can be found in the log output
file instead.

Manual Execution: A manual execution is possible with the sequential
model. Basically, the functionality is the same as the automatic execution
with the difference that the user only defines the number of items to initialize
the database with and from that on fires every state transition and action
execution manually. Information about the actions performed is displayed
in a text box.

4.4. Stochastic Supply Chain Model

To implement the stochastic supply chain model and probability distribu-
tions defined in Section 3.4, the functionality of the Accord.NET framework
[1], a C# library for machine learning and statistics, licensed under the
GNU Lesser General Public License v2.1, is used. The store’s stochastic
model functionality is implemented in the class StoreMarkovModel.cs, the
distributions for sequence length and number of items in SequenceDistribu-
tionModel.cs and ItemDistributionModel.cs.

In general, the HiddenMarkovModel class of the Accord.NET framework is
used to define the Markov model parameters ν, the initial vector, and A, the
transition matrix. As an HMM supports unobservable states (see [32] for

51

4. Implementation

more information), for this purpose it is assumed that the number of states
is equal to the number of observable symbols, meaning both are equal to
the set S. Based on this definition, the HMM matrix B, the emission matrix
for observable output probabilities, is not needed, as every state can have
exactly one output. This is the reason why B is initialized as identity matrix
of dimension |S| × |S|, because with this emission matrix, an HMM acts the
same way as a Markov model without hidden states.

However, a few drawbacks of the framework were encountered while im-
plementing the model functionality. Without going further into detail, the
HiddenMarkovModel training methods do not support the update mecha-
nism of the transition matrix A alone with a predefined initial vector ν and
emission matrix B. This is the reason why, among other things, the update
algorithm from the model definition was implemented independently from
the used Accord.NET framework and passed to the model afterwards. In
addition, the functionality to either train the model with training sequences
provided by a running store solution or to import previously saved model
parameters (transition matrices, distributions and other needed data) is
contained in the application. The stochastic supply chain model’s implemen-
tation spans over three different classes, the stochastic model, the sequence
distribution and the item set size distributions.

In the StoreMarkovModel.cs class, methods to create and train the Markov
model as well as the functionality to generate and execute sequences is
implemented. Basically, the first step before any model can be created or
trained, the store actions which should be covered by the model need to be
defined. In this work, these are initialization of items, stock take, relocation,
sale, return, write off, inbound and outbound, all of them possible on
different locations in a store. For the HiddenMarkovModel class, the possible
action × location pairs (the states) need to be edited in a way the model
can understand, which means they need to be defined as integer values.
To translate the states we use a codebook to map each state to a unique
integer value. After that, the Markov model can be created, trained, and
sequences can be generated. Thus, the generated sequence will have the
form of an array of integer values. Only at that point the codebook is used
again to translate the integer values back to the action× location pairs for
the execution. Details on the methods contained in the class can be found in
Appendix A.5.

52

4.4. Stochastic Supply Chain Model

The two classes for the sequence distribution and the item distributions
contain distribution calculations for each store action to generate a fitting se-
quence length or number of items used for each action automatically. For the
distributions, the PoissonDistribution class provided by the Accord.NET
framework is used, as this library provides all needed functionality to learn
a distribution and generate observations. Based on the methods summarized
in Appendix A.6, the average sequence length and number of items to use
for an action can be estimated when applying the stochastic model.

4.4.1. Usage

With the stochastic supply chain model, the first step is to train the model
to define the model’s parameters, the transition matrix and distributions.
For the training the interface provides three possibilities:

• Train with predefined sequences: To get a quick and simple model
definition to work with in case no other training data is available,
a small training sequence is deposited and can be used to train the
model. A short message informs the user if the training was successful.
• Import model parameters: As learning the parameters with training

sequences can be time-consuming, it is possible to import an already
trained Markov model as well as sequence and item distributions. A
file dialog prompts the user to select the Markov model file (.hmm)
as well as the distribution files for the average sequence length and
the item distributions for the store actions (.dist). As these three files
are saved by default after every successful training, it is easy to store
them as a backup.
• Training with a sequence file: The standard training is done with the

selection of a sequence file from a file dialog and then train the model.
A short message informs the user if the training was successful.

After the training, the model is ready to generate test data. Again, it is
possible to either define a sequence length manually (in case one wants
to test how many consecutive actions the system can handle) or select
Automatic Length to get the sequence length based on the calculated Poisson

53

4. Implementation

distribution. Again, all actions performed produce log output for better
observability and maintainability of the process.

54

5. Empirical Analysis and Usability

In this chapter, the designed and implemented data generation model will
be analyzed and evaluated regarding its usefulness and usability on a real-
life test system for RFID supply chain management. In collaboration with
the Enso Detego GmbH, the framework was included in their system for
store supply chain management, detego SUITE, with the intent to relieve
the testers from the tedious task of manually creating test data such that
certain test cases can be executed. This chapter will cover a short overview
about the system where the model is integrated, and afterwards the analysis
on how well the model framework performs its tasks according to the speci-
fied test types and requirements. Results regarding module functionality,
performance and data generation times will be presented and compared
to the manual creation of test data. In addition the topic of coverage in
combination with the data generation models will be discussed.

5.1. System under Test

The system under test, detego SUITE, is a web-service-based distributed
system for supply chain management using RFID technology and is dis-
played in Figure 4.1. The database contains all system information, in case
of store management locations, article and item information, item tracking
information and so on. With usage of the software applications and the
additional hardware, the processes of the supply chain and actions of the
everyday store life (goods availability, for example) are performed. For that,
the web service is called to either retrieve data from the database to use or
display in one of the applications, or data collected by the application is
given to the web service to process them to the database.

55

5. Empirical Analysis and Usability

While the system covers applications for the various parts of the supply
chain, for example solutions for logistics, store management or central
components, for the evaluation of this work we are concentrating on testing
selected actions in the store system. Namely, these are the sample process
steps which were presented in Section 3.1.1.

The test system contains three locations to perform the previously named
store actions on: sales floor, back room and shop window. According to
this information, the interfaces were implemented to include the model
framework in the SUT. Both the sequential and the stochastic supply chain
model are applied to the store system to evaluate how well they meet the
requirements. The generated data can be used in the various components of
the system. In this case these are an application for a mobile RFID device,
a desktop application and a web application. However, in this work the
focus for the analysis lies mainly on three system aspects to analyze the
framework functionality:

• Direct access to the database: In order to verify that the generated data
was correctly added to the system, the corresponding tables are ac-
cessed. The content will be extracted and analyzed for various test
cases.
• Web service log output: The log output of the web service will be in-

spected for possible failures, exceptions or wrong handling of the
generated data from the models.
• Web application: The web application of the system under test contains

information regarding a store’s stock. The web application mainly con-
sists of reports for stock information, for example the item distribution
over the store’s locations, as well as reports for the different actions
performed in the store, which is information about the time and num-
ber of items for performed actions. For the framework analysis, the
web application will be the main application used for the verification
of the generated data.

With this information base, the processes to test the two models can be
discussed. As an outlook, the following example will describe one possible
test scenario and how it would be performed manually.

Example: The user wants to test one specific report of the web application,
in this case the inbound report. This page contains a list of all inbounds,

56

5.1. System under Test

regardless if they are open (delivery numbers and information about the
items contained in the inbounds) or already performed. For each inbound,
information about the status can be displayed. That is, if they were com-
pleted with all items detected, missing items or additional items. For manual
generation, the following steps are required:

1. Use a central component or whatever it needs to add deliveries to the
store system.

2. Use an RFID device to encode the corresponding tags with the correct
EPCs for all of the deliveries.

3. Verify in the database that the deliveries are added correctly.
4. Verify that the deliveries are displayed correctly in the web application.
5. Use the mobile RFID application to perform three different types of

inbounds:

• Complete one inbound with all its advised items.
• Complete one inbound with missing items.
• Complete one inbound with more items than advised.

6. As the inbounds were performed manually with an error-prone appli-
cation, verify in the database that the inbounds are added correctly
according to the specifications.

7. Verify that the graphical interface of the web application shows the
correct data.

We can now see that, when the test data needs to be created manually, there
exists a high time factor for the creation of the deliveries, the tag encoding
and the actions performed with the mobile device. In addition, all these
processes performed manually are prone to cause erroneous data, whether
this happens due to wrong handling of the user, faulty behavior of the used
applications or simply due to environmental issues causing interferences
when using RFID technology. Summarized, one simple manual test of this
type could easily take 10 minutes and more. This knowledge will later be
used to evaluate the measured execution times of the model framework.

To overcome these problems, the model framework for data generation is
applied and the two implemented models will be compared to each other
and the manual data generation process. On the one hand, we want to test
how well the models cover the functionality of the previously listed actions.

57

5. Empirical Analysis and Usability

Set 1 Set 2
Store Size 10000 1800

#Sequences (Days) 114 12

Avg. Sequence Length 225 55

Total #Actions 25925 620

Table 5.1.: Used data sets for evaluation with information about store size, the number of
sequences and the number of actions.

With the method to test called by the framework, we want to verify that
the service works as specified. In addition, coverage regarding the selected
actions will be discussed in form of path coverage in Section 5.3.3.

To compare the created data and train the stochastic model, we have two
different data sets from deployed supply chain management solutions. These
data sets are recordings of the item movements over days. One sequence in
the sets describes the behavior of the system over a day and contains a list
of actions covered by the models’ implementations, including the number
of items for each action. We refer to them as training set 1 and training set 2.
The data sets’ basic information can be described as displayed in Table 5.1.
More details are listed as follows:

Training set 1: The larger one of the data sets is equal to a large database
size for the test data generation. Figure 5.1 shows the distribution of
the executed actions for an overall amount of nearly 26,000 measured
actions relevant for the test data generation. Counting the number
of executions per action shows that in a deployed system, sale and
relocation are the two most-executed actions. In relation to that, Figure
5.2 shows the number of items used in each action. From this we can
conclude that, while sale and relocation are executed many times a
day, only a small amount of items is used, an average of one to two
items is sold at once, and relocated is an average of about ten items
- this corresponds to the previous explanation that only what can be
carried by one staff member is relocated at once.
After that, other regular actions are inbounds and stock takes (also
referred to as inventory). Inbounds explain the arrival process of new
goods in a store. This is usually a higher amount of items at once and
this can also be seen in the graphic. The same applies for the stock

58

5.1. System under Test

take/inventory, however, other than expected, the number of items is
not “most of the stock on one location”, as in a store of medium size,
this would be definitely more than approximately 370 items. This can
be explained that usually more than one staff member performs stock
takes with one device each on different parts of a location and reads
only a subset of the items present. The number of items detected is
later concatenated by other processes running in the system.
One other significant value is the average number of items used for
an outbound. As the number of performed outbounds is rather low
over the selected amount of time, we can assume that items leaving
the store for other reasons than sales are items which are not needed
anymore. This could be for example outdated seasonal ranges sent
back to the distribution center or manufacturer when the items in
stock change and would explain the high amount of items combined
in a single outbound action.

Training set 2: Figure 5.3 and Figure 5.4 show a similar behavior for the
smaller data set. In training set 2 the most-performed actions are
again sale and relocation, followed by stock takes and inbounds. One
interesting thing can be seen in the items per action chart in Figure
5.4 - the amount of used items is near to the numbers shown in Figure
5.2 from a data set nearly 5 times larger. One possible explanation
is that regardless of the store size, customers tend to buy only a
small amount of items and that one staff member can only perform a
particular workload.

As a comparison for the training sets, Figure 5.5 shows the similarity of both
training sets regarding the frequency of actions. To evaluate the models’
functionality, both the sequential and the stochastic model were applied to
the system under test for different use cases. The results of execution times,
data quality, performance tests as well as usability will be discussed in the
next sections. Basically, we will apply tests to three different test store sizes,
covering the previously mentioned three locations and eight actions. The
store/database sizes are defined as a Poisson distribution of small, medium
and large size. The distributions have the following average size set as λ:

• Small store: A small store is defined with a stock size of around 2,000

items. Therefore, λ = 2000.

59

5. Empirical Analysis and Usability

Figure 5.1.: Number of action executions in training set 1 (total amount of 25,925 actions).

Figure 5.2.: Average number of items per action used in the first training set (data over 114

days, sequence length about 225).

60

5.1. System under Test

Figure 5.3.: Number of actions, training set 2 (total amount of 620 actions, store size around
1).

Figure 5.4.: Average number of items per action used in the second training set (data over
12 days, sequence length about 55).

61

5. Empirical Analysis and Usability

Figure 5.5.: Comparison of the relative number of actions in training set 1 and training set
2.

• Medium store: A medium store is defined with a stock size of around
5,000 items. Therefore, λ = 5000.
• Large store: A large store is defined with a stock size of around 10,000

items. Therefore, λ = 10000.

The exact size for a test run is a Poisson number, drawn from one of the
defined distributions.

5.2. Execution Times

In Table 5.2, the results for the average execution time for a sequence of 100

actions is displayed for both models. The time presented is the average in
seconds over 10 experiments each. However, preparations need to be made
for both models before the actual execution time for data generation can be
measured. The sequential model must have the number of items to initialize
in the first step as input parameter, and the stochastic supply chain model
must be trained before a sequence can be executed. The preparation was
performed as follows:

62

5.2. Execution Times

Sequential Model Stochastic Model
Small 127.26s 53.98s
Medium 288.90s 142.76s
Large 480.03s 415.84s

Table 5.2.: Execution times for a sequence of length 100 for each store size in seconds. The
larger the store, the more items need to be handled when performing actions
and therefore the time needed increases.

• Sequential model: Input parameter for the first initialization step was
set with 100 items.
• Stochastic supply chain model: Before any executions can be done

with the stochastic model, it needs to learn its probability distribution
from training sequences once. For this experiment, we used a rather
small set of 12 sequences with an average length of 55 actions per
sequence. The training of the model with these sequences additionally
takes between 7 and 45 seconds additionally, depending on the store
size the training data must be fitted to. However, this training process
needs to be done only once and therefore this time is not included in
the comparison.

Figure 5.6 shows a visualization of the average execution time per store
size for both the sequential and the stochastic model. In the chart it can
be seen that the execution time of the sequential model shows a linear
growth with the store size. Figures 5.7 to 5.9 show the results of the single
executions - again both models are compared to each other. Especially with
the large store size, it can be seen that the execution times of the stochastic
supply chain model are varying very much and the results are exceeding
the execution times of the sequential model. After analyzing the detailed
log output of the execution times per action, this can be easily explained
due to the reason that the actions take more time to be executed depending
on the action performed and the number of items used. For both models
the execution times can be explained as follows:

• Sequential model: In the sequential model, the amount of items is
taken from a fixed interval, corresponding to the stock size. Depending
on the actual size, especially the number of items for stock takes or
relocations is rather high compared to the stochastic model, as the

63

5. Empirical Analysis and Usability

Figure 5.6.: Average execution times in seconds per store size. The larger the store, the
more items need to be handled when performing actions and the higher is the
amount of time the execution needs.

Figure 5.7.: Execution times per experiment for a small store. Due to the differing item set
sizes, the stochastic model performs better than the sequential model.

64

5.2. Execution Times

Figure 5.8.: Execution times per experiment for a medium store. Some actions take more
time than others, and this explains the varying execution times of the stochastic
model.

Figure 5.9.: Execution times per experiment for a large store. Again, some actions need
more time than others, so the execution times of the stochastic model are in
some cases even higher than the sequential model for a large store size.

65

5. Empirical Analysis and Usability

amount of items used is much higher than in the stochastic model.
The used training set showed that, different to the sequential model,
only a small amount of items is relocated, usually only what one
staff member can carry at once. Also the stock takes show that with
one stock take not most of the stock is detected on one location, but
rather only a small part. This can be explained with the usage of more
persons working on a stock take with different devices to be merged
after all persons have finished their RFID reading processes.
• Stochastic supply chain model: In general, it can be said that the

execution of the action sequence generated by the stochastic model
is faster than the sequential model. However, one can see in Figure
5.9 that the execution time is even longer than the sequential model
in three cases. Analysis of the log output of the executions of the
stochastic model showed that these long execution times are due to a
high amount of performed inbounds, which take approximately ten
times longer to execute at the web service than the other processes.
Why the trained stochastic supply chain model suggested such a high
amount of the same action consecutively will be discussed in the next
section.

In addition to the execution times of sequences with the sequential and the
stochastic model, Figure 5.10 shows the average execution times measured
in the implementation of the models for each action with an amount of 100

items, including the calculation of the item sets to use. It can be seen that,
except inbound and initialization of items, all of the implemented actions
have approximately the same execution time for the same amount of items.
Only initialization and inbound take much longer. These two actions are
different to the others, as with these actions new EPCs must be calculated
and added to the database, which means more workload than changing
already existing data, as for the newly created EPCs it must also be checked
if the same EPC already exists. The graphic also shows that especially the
inbound takes more than twice as long as the initialization process for the
same amount of items. Looking back to the description of a typical inbound
process in Section 3.1.1, this action is also announced before the actual
intake of the items is performed. The additional creation of the delivery
note in a somewhat randomized way explains the longest execution time of
all actions.

66

5.3. Application

Figure 5.10.: Average execution time for each action in a database with medium size
(approximately 5,000 items).

Compared to the manual creation of data to apply particular test cases, both
models proved to be faster. The process of preparing only one inbound
manually (see example in Section 5.1) would take at least 5 minutes alone,
regardless of the size of the system’s database. In that time, both models
would be able to execute a sequence of at least 100 actions in a large database.
However, there might be reasons when a manual execution is preferred,
even when the execution of one of the models would be significantly faster.
This would be in case very specialized data is needed which cannot be
covered by the data generated with the model framework, for example
when particular EPCs are needed.

5.3. Application

In this section, the data created by the models is discussed. The models will
be applied to both use cases explained in Section 2.3.1, to fill the system
with needed data as well as for various performance tests on the supply

67

5. Empirical Analysis and Usability

chain management system. The models will be evaluated regarding the
quality as well as their suitability for performance tests.

In the following, both models will be applied to the system for the following
tests:

Data quality: We will compare the generated data to the analysis of the two
previously presented data sets and evaluate the quality and drawbacks
of test data generation using the models.

Performance tests: The system will be confronted with both a large database
size as well as long sequence sizes to simulate large workloads to find
out the limits of the system and the data generation framework. This
also covers the execution of multiple instances of the implemented
framework on the system to examine the web service’s and database’s
responses.

Coverage: The achievable path coverage of both models will be discussed.

5.3.1. Data Quality

To compare the data generated by the models to the realistic training set,
on both models experiments under the same conditions were applied. For
this analysis, the stochastic supply chain model was trained with training
set 1. As training set 2 with 12 sequences showed nearly the same results
regarding the action distribution, the number of experiments was set to 12

experiments each in a medium-sized test database. The sequence length
was generated automatically by the stochastic model based on the Poisson
distribution for the sequence length, that is, the average lies around 255

actions per sequence, but varied between 200 and 270 actions. The number
was recorded and the same sequence lengths were used for the sequential
model, giving an overall number of approximately 2,700 actions to be
executed for each model. In addition, the number needed to initialize in
each experiment was set to 100 items for the sequential model.

Figure 5.11 shows the distributions of the executed actions during the
experiments, compared to training set 1. Training set 2 is not shown in
the chart for an easier interpretation, as training set 1 and 2 proved to be
very similar (see Figure 5.5). It can be seen that the results of the sequential

68

5.3. Application

model are different to the presented training sets. This was to be expected
and can easily be explained as assumptions were made for the actions based
on a single item’s lifecycle and not on a realistic workflow regarding a full
stock. We can see that the mostly performed action is a relocation, followed
by stock takes and exactly 12 initialization actions. When looking back at
the abstract workflow in Figure 3.2, it can be explained that relocation has
four and stock take two vertices instead of only one with sale and return
and is therefore expected to be performed more often. Write off, inbound
and outbound are executed zero times as these actions are not included
in the sequential model. The number of initializations corresponds to the
number of sequences executed, as an initialization is always only the first
action in the sequential model.

Some experiments while using the stochastic model not depicted showed
surprising results - with the model being trained with data set 1, it was
expected that action distribution would be similar to the chart of Figure
5.1. However, this was not the case and the experiments with the stochastic
model showed a nearly equal amount of stock takes, sales and especially
inbounds. To find the reason for that, a closer look at the trained initial
vector and transition matrix was taken. The initial vector showed a rather
high probability of about 32% for inbound and 31% for relocation as a start
state for the model - this means that especially inbounds and relocations
were the first actions in the sequences of the training sets. Additionally, in
the transition matrix it becomes visible that in the training set, a few selected
actions are executed after one another very often and therefore are weighted
with a higher percentage. Especially for inbound the probability to perform
another one in the next step as well is over 80%. Another example is the
stock take, with the probability to perform another one on any location
is in sum even over 90%. This explained the unexpected behavior, as the
model is very likely to stay in the same state for the whole sequence. One
possible reason why this happened is that the training set consists of a very
limited number of sequences, where one sequence could be all actions over
one day. Some actions are probably happening only at a certain time, for
example any number of inbounds is often the first thing performed in the
morning.

To overcome this problem the initial vector was modified to test how the
results vary when noise is added to distort the probability distributions. For

69

5. Empirical Analysis and Usability

that, in the initial vector the probability of the actions responsible for the
unexpected results, such as inbounds, were decreased and the probability
of frequent actions, such as sales, increased. With these changes applied, the
better results presented in Figure 5.11 can be achieved, as the probability of
of the model being stuck in a loop of the same action or limited action set
is decreased. With this modification, the action distribution is very similar
to the training set. This also shows that adding noise really is an easy and
quick way to change the model parameters for a wider range of use cases.

For the future this means that the set to train the stochastic supply chain
model must be selected even more carefully instead of only taking it from
the database of a deployed system and adding a reasonable amount of noise.
Possibly some sensible alterations have to be made as well to prevent the
stochastic model from being stuck in these loops with extraordinarily high
probabilities for the same action following each other if selected as initial
state. In addition it could also be helpful to train the stochastic model with
a much larger training set, as 115 sequences are probably not expressive
enough to get a meaningful and realistic model.

Figure 5.12 shows the average number of items per action in the sequential
and the stochastic model. While the results of the stochastic supply chain
model are fitting very well to the item numbers of training set 1 (see Figure
5.2), the item distribution of the sequential model shows a completely
different result. This is again due to the reason that the percentages used
for this model are predefined - they do not fit to the results of the training
sets, but they are correct according to the defined boundaries. For example,
a stock take on a location detects between 70% and 100% of all items on
a location. As this was a database of medium size (approximately 5,000

items), we can assume that on sales floor and back room are approximately
2,500 items each. The results were pretty close to that and the same applies
to the other actions as well.

5.3.2. Performance Tests

As already discussed in Section 2.3.1, with the models it should be able to
execute various performance tests on the system under test. With the model,
we concentrated on two types types of tests: endurance tests and load tests.

70

5.3. Application

Figure 5.11.: Comparison of the relative number of actions executed. The chart shows
that, for a well defined transition matrix and initial vector in the stochastic
model, the action distribution is very similar to a realistic data set. Due to the
structure of the sequential model, the obtained results are very different to
training set 1 and the stochastic model.

71

5. Empirical Analysis and Usability

Figure 5.12.: Comparison of the average number of items used in both models for each
action for a medium store.

The third discussed performance test type, stress tests, are also performed
implicitly with the other two tests. In the following, the preparation and
results of the performance tests are presented. Basically, with the test setup
described in the following, statements about all three system properties can
be made. As the goal was to find the limits and bottlenecks of the system,
the idea was to confront the test system with data sets as large as possible
and to find out what happens when the data generation models are applied.
To find these limits, two approaches were used.

The first approach was to instantiate a database of a much larger size than
the defined large store with around 10,000 items and then try to perform a
sequence much larger than the calculated average of 255 of the stochastic
model for training set 1, namely a sequence length of 5,000. Starting with
a database size of 40,000 items, both the sequential and the stochastic
model quickly reached a limit when confronted with timeouts from the
test system’s database, as such a high percentage of items could not be
handled within the defined timeout interval of the system. As an example,
in the sequential model, a stock take should have been performed with
approximately 19,000 items, and this request could not be fully executed in

72

5.3. Application

the defined timeout interval of one minute. While with the stochastic supply
chain model the average amount of items was usually smaller, at some point,
especially when already calculation-heavy actions such as inbounds should
be performed with an unusually high amount of items, the web service’s
requests to the database still returned timeout exceptions. From the 5,000

sequence steps, the execution usually had to be stopped after a maximum
of 100 steps in the sequential model and around 1,000 steps in the stochastic
supply chain model.

From this point on, the data sets were halved until at least one of the
models could execute a sequence of length 5,000. With a database size of
15,000 items at most the stochastic model brought reasonable results - the
5,000 consecutive actions could be finished in approximately 150 minutes.
However, for the sequential model with stock takes of at least 70% of the
stock’s items this database size was too large for the web service/database
to get a reasonable performance.

The second approach was to create at least two instances of the model
framework and run them simultaneously. The test system used for these
experiments was a database of medium size with approximately 5,000

items in stock. However, a few experiments with this setup, using both
the stochastic and the sequential model, were not very successful. While a
consecutive execution with only one action for the web service at a time was
successful up to some point for a large data set, the maximum of actions in a
sequence that could be executed consecutively was between 10-12 actions. At
that point the response from the web service was again a timeout exception
when it tried to access the underlying database. This was due to the reason
that while the service could schedule the actions quite well, simultaneous
requests to get data from the database led to performance problems and the
actions could not be performed in a reasonable amount of time. However,
adding wait times of a few seconds during the execution of each sequence
brought improvements as in a realistic scenario it would be unlikely that
in such a short amount of time, this means in a range of milliseconds to
seconds, so many different actions would be performed in a deployed RFID
system.

Looking at the results from both performance test approaches, it can be said
that the stochastic supply chain model as well as the sequential model can

73

5. Empirical Analysis and Usability

handle large amounts of data quite well. While the duration of over 2 hours
may sound like a long time, it needs to be said that a manual execution
of 5,000 different actions would never be possible in that time. More so,
this would probably need days. In addition, setting up a test environment
for this type of tests would be very tedious and time-consuming when
RFID-specific issues, such as tag preparation or the setup of applications on
multiple devices need to be considered.

5.3.3. Coverage

During the evaluation of the model framework a few aspects on coverage
were considered, namely if sensible measurements of coverage are possible
when running the models on the system under test. After research on
different coverage criteria, such as graph coverage, statement coverage [2] or
coverage regarding lines of executed code, it became clear that testing the
code coverage of the SUT would be of little use because of two reasons. First,
the system under test acts as a black box and other than the interfaces, we
have no information about the underlying code. Second, with the evaluation
only a limited action set on one level of a supply chain management system
is considered - even with code available to test for coverage, it would be
difficult to make a qualitative statement about coverage.

This is why a different approach was taken. One possible criterion for
coverage tests was identified as path coverage regarding the actions executed
in the model. This means the models are analyzed regarding their ability to
cover all theoretically possible action paths in a given number of executed
actions. We can define the number of possible action permutations as nk,
where n defines the size of the action set and k the path length, meaning
the number of actually executed actions.

Consider a simple example with two actions a1 and a2, which for example
could be two action× location pairs in the stochastic model. For a path of
length k = 3 this would give the following 23 = 8 path permutations:

1. a1 → a1 → a1
2. a1 → a1 → a2
3. a1 → a2 → a1

74

5.3. Application

4. a1 → a2 → a2
5. a2 → a1 → a1
6. a2 → a1 → a2
7. a2 → a2 → a1
8. a2 → a2 → a2

Of course, this example case could be extended to any amount of transitions
and path lengths as well as testing the paths leading to a defined action.
The coverage goal with the models would be to pass through all these paths
with as few experiments as possible to ensure that also unlikely or even
impossible paths are considered and tested on the SUT to evaluate if the
system can handle such cases correctly. Based on this information, the two
models can be compared regarding their achievable coverages.

Sequential model: The sequential models executes actions in a consecutive
order. The order in which these actions can happen is predefined based
on specific system knowledge, whether this is achieved from specifi-
cations or other knowledge about the application domain. However,
specifications often only cover “allowed” system states and transitions
between this system state. Therefore, when defining and applying this
sequential model, it is highly possible that not all paths in the system
can be tracked, regardless of the number of performed experiments.
This limits the achievable coverage, as some states in the path might
not be reachable as, by definition due to the workflow specification,
certain paths are not allowed and hence not shown as possible actions
in the sequential model. Extending the model to cover these cases
would be a tedious and complex task.

Stochastic supply chain model: In contrast to the sequential model, the
stochastic model learns state transitions from given data sets, con-
sidering all possible action orders. Theoretically, with a sufficiently
large number of experiments, a path coverage of 100% is possible for a
finite path length, assuming the transition matrix consists of non-zero
values. Based on the training data set it is likely that the transition
matrix contains zero-values or values nearly zero with the effect that
the stochastic model is not able to reach certain states and perform
particular transitions. However, with the structure given due to the def-
inition of the stochastic supply chain model, it can be easily adapted

75

5. Empirical Analysis and Usability

to meet the requirements for path coverage with respect to unlikely
or impossible transitions by adding noise to the transition matrix, the
initial vector, or even both. With the added noise, unlikely paths get a
higher probability to be passed and impossible state transitions will
be reachable, which reduces the amount of experiments for high path
coverage.

Summarized, coverage testing with the sequential model is highly depend-
able on the specifications from which the model is created. Extending it to
cover cases not specified is a time-consuming, complex task which is not
always possible. Contrary to that, the stochastic model provides a flexible
structure to consider unlikely or impossible paths as well by modifying
the transition probabilities between states. Therefore, with this model it
is possible to reach a reasonable coverage with a sufficiently large set of
executed experiments.

5.4. Usability and Limits

In the previous sections results of the data generated with the model frame-
work and the two models were presented. With the previous statements it
is possible to compare the models to each other and to the manual process
of generating test data for various test types. The presented model frame-
work with the implementation of both the sequential and the stochastic
model proved to be an easy and quick way to generate test data to fill the
underlying system with working data to perform various test cases. In the
following, the usability of the two models will be described.

5.4.1. Sequential Model

With application of the sequential model to the system under test, it is
possible to fill its database with data very quickly. With a few clicks to
set how many actions should be executed, data is generated according to
the presented action flow of Figure 3.2. For this limited set of actions, the
model generates data following the presented abstract action graph on the

76

5.4. Usability and Limits

various locations, based on preset values for the number of items to use.
In addition, these defined values (percentages) are easy to change for a
different outcome after the execution. This model turns out to be effective
in case only a particular amount of random data is sufficient to complete
test cases. For the following example test case, no realistic data would be
needed to verify the functionality.

Example test case: For a report in the web application, table filters exist. To
test these filters, a random amount of data is needed to test if they work
accordingly and filter out the correct data. A possible filter criteria could be
that only items of a piece of clothing with size M is displayed in the report.
However, the filters should still work if a large amount is present in the
reports.

While this model turned out to be very simple to use, it also faces some
drawbacks, mainly regarding the versatility of test cases it can be used for.
In the following, the main problems of this model encountered during usage
can be listed as:

Adaptability and extensibility: With the sequential model, only a strict con-
secutive execution of the given actions is possible. For each new action
or location that should be added, new nodes and vertices have to be
added manually in the workflow. Here the main problem is that prob-
abilities for new actions, the locations on which actions are performed
and the number of items used for these actions need to be assumed
based on domain knowledge and added to the workflow by hand. In
addition, knowledge about the system specification is needed to get a
qualitative data generation model. This is not maintainable for larger
workflows.

Workflow does not reflect realistic behavior: As this model does not make use of
realistic data to simulate the process steps or estimate the stock size, it
is difficult to make assumptions about the correctness of the generated
data for test cases which aim to test the coverage of the modules or
system components. For a realistic representation, the model must be
changed according to the use cases each time. In addition, this model
does not cover any time management. The actions are registered in the
test system’s database with the execution time - in a realistic scenario,

77

5. Empirical Analysis and Usability

actions are performed throughout a whole day, not a large amount at
nearly the same time.

Missing flexibility: As already mentioned, the sequential model is not flexible
enough for different use cases. It is difficult to create test data for one
specialized use case, for example when only relocation data is needed.
Either the model workflow is changed in the source code or only so
many steps are executed manually until the desired amount of data is
present. The sequential model is suitable for simple use cases when
any amount of random data is needed, but applying changes to the
model for different use cases or high path coverage is tedious and
not flexible enough. This is due to the reason that the workflow only
allows the execution of actions following each other as set, but for
example a sale action is not necessarily followed by a return in every
case. Adding more variations to this model is time-consuming and
error-prone.

5.4.2. Stochastic Supply Chain Model

With the stochastic model, data is generated in a more sophisticated and
flexible way. After interfaces for more actions are added, these new actions
only need to be added to the codebook for easy inclusion into the stochastic
supply chain model and then they are automatically considered in the
training process and the following data generation. By adapting the training
data set to the needs of the tester, the data generation model provides a
realistic amount of test data, scaled to the size of the test system. When other
components of the test system should be tested with data as realistic as
possible, only a sufficiently large sequence of actions needs to be executed
to have realistic, but yet more flexible test data than a simple database
backup. In addition, the stochastic model can easily be adapted in case only
a subset of the actions is needed by only reducing the available actions in
the codebook.

However, while this model seems to be suitable for a wider range of use
cases than the sequential model, a few problems and limits can be listed:

Actions are location-dependent: Due to the design of the action × location
pairs for the initial vector and the transition matrix of the stochastic

78

5.4. Usability and Limits

supply chain model, all actions are assumed to be executed on or for a
certain location. However, this is probably not applicable for all actions
of a supply chain and therefore exceptions have to be considered when
calculating the Markov model’s parameters. A simple workaround
would be to add a location to the action nonetheless when analyzing
the training data and to ignore it when the action should be executed.
It would be desirable to find a better way to handle these in a better
way than by defining a set of exceptional rules.

“Stationary states”: If the training data set is not analyzed carefully enough
before using it to train the stochastic model, it can happen that the
model is not likely to “leave” a certain state or in a loop of only a
few states with a very high selection probability compared to all other
states. As shown in Section 5.3, this can lead to results which are not
conform to the expected data based on the used training set. One
future goal would be to find better metrics for the training step of the
model instead of adding noise to prevent these cases.

Constrained training data: To get expressive test data corresponding to a
realistic data set, it was not enough to just take data from a deployed
system and to limit it to only the actions covered by the model frame-
work. This led to the problem of the stochastic supply chain model
staying in a loop of consecutively executing the same action again and
again. Therefore, it is not always sufficient to only train the stochastic
model with the set. Some thoughts need to be spared to fit the training
set to the tester’s need to prevent this from happening, as in this field
of application it might not always possible to get a very large set of
training data for the model.

Missing temporal behavior: As already mentioned for the sequential model,
the stochastic model does not support realistic temporal behavior
as well, as this was considered out of this work’s scope. Therefore,
also with the stochastic model framework executions are only added
with the execution time as timestamp. While the current execution
behavior of the action sequences generated with the stochastic model
is sufficient for the discussed test cases, an RFID system cannot be
simulated realistically without the corresponding temporal behavior.
For example, goods could be delivered twice a week in the morning.
After that, an inbound is performed on the arrived goods. In future
work, better metrics for temporal behavior should be considered.

79

6. Conclusion

This work described the challenges of distributed systems, like heterogeneity,
concurrency or scalability, with a special focus on testing in the field of
RFID systems for supply chain management, one prime example for such a
demanding test environment. When discussing the structure and properties
of RFID systems, it became clear that in this environment a wide range of
test cases cannot be performed in a meaningful way without corresponding
test data.

As manual test data generation usually is time-consuming and error-prone,
the goal of this work was to find a model suitable for test data generation
for a selected range of test cases in supply chain management systems:
to fill the system with realistic data to bring it into a particular state for
tests on various system components, as well as for the generation of large
amounts of data for performance tests. To model the processes of a supply
chain, two approaches were selected after research on already existing
frameworks, evolutionary algorithms and various probabilistic models: a
sequential model and a stochastic model.

The first model, the sequential model, is an abstract data generation model
using the lifecycle of a single item mapped to a sequence of actions for
sets of items. This is for use cases where just a random amount of the
most important data is needed to test particular parts of a supply chain
system. The second model, the stochastic supply chain model, is one kind
of probabilistic model which analyzes data from deployed supply chain
managements to calculate realistic action and item distributions for data
generation.

In addition to the design, both models were implemented as a C# framework
to be applied to a deployed test system to evaluate the quality and usability
according to the defined use cases. As a comparison, a data set was taken

81

6. Conclusion

from a deployed supply chain management running in a fashion store was
taken to compare the generated data to it. It was shown that the sequential
model does not produce very realistic data, but can still be used for certain
test cases without the need for that. One main advantage was the easy and
quick application to get results. Before running the stochastic supply chain
model, preparations need to be made to create a data set to train the model.
As a result of that, this model performed better when the generated data is
compared to the store data set. However, a few problems were encountered
due to the selected training data set, sequences with only a limited set of
actions were created according to very high transition probabilities back to
the same state in the transition matrix. Overall, the stochastic model still
showed a better runtime, coverage and a higher versatility for functional
and performance tests, since no parameters had to be set based on expert
knowledge.

While both models performed quite well for a few selected cases of ap-
plication, possible future work can be discussed. As the sequential model
follows a very strict structure of a single item’s lifecycle, it would be very
difficult to extend it to more realistic scenarios. However, the stochastic
model provides much space for improvements to extend the data generation
process for a wider range of use cases, for example by extending it to cover
all possible actions in the supply chain system. By providing one model for
each node in the system, such as manufacturers, distribution centers and
stores, each with their own specific action set and communicating with each
other, the complete supply chain could be simulated. Additionally, future
work should also cover the inclusion of realistic temporal behavior to get a
test system as close as possible to the later use cases as well as better metrics
to test for the presented coverage tests.

Concluding it can be said that test data generation is a very challenging
factor in the software development process, especially when the procedure
should be automated and data should be applicable to a wide range of use
cases. Model-based test data generation is one way to approach this topic,
however, goals and use cases must be specified precisely to be able to create
an appropriate data model fitting to the tester’s needs.

82

Appendix

83

A. Method Summary

A.1. General

AddRandomEpcsToList: EPC lists are needed to tell the system which items
should be used for a store process. This method is used to add a
given number of EPCs existing in the database to a list. The EPCs are
selected from either one specified locations or all registered items in
the database. By defining a random number with its maximum being
the number of items on a location or in the store with C#’s Random

method, the EPCs are selected until the desired amount is reached.
GenerateSGtin: This method is mainly used in case that new EPCs should be

added to the store, for example with an inbound or initialization pro-
cess. In RFID store management systems, each EPC is calculated from a
GTIN, a unique identification number for articles. The GenerateSGtin

method takes two input parameters, a string containing a GTIN (which,
in this case, must exist in the test database as product masterdata) and
an integer representing the serial number the generated EPC should
have. The calculation of the EPC is done according to [23].

SaveModelParameters: Each time a training of the Markov model is com-
pleted, the trained parameters, meaning the model’s initial vector and
matrices as well as the Poisson distributions for the sequence length
and number of items for each action are stored in three files, which
are saved in the Model Data folder of the application.

GetActions: This method is used to get a list of all actions with the possible
locations supported by the Markov model and is used in the model
implementation to easily define the codebook (described in Section
4.4) used for handling the actions in the model and to define the
dimensions of vectors and matrices.

85

A. Method Summary

InitializeStore: initializes a given number of items in the database to create
a store environment with items on each location.

A.2. Service Interface

StockTaking: Send a stock take action of n EPCs on a location Lk to the
system.

Relocation: Send a relocation action of n EPCs to a location Lk to the system.
WriteOff : Send a write off action for n EPCs to the system.
Initialize: Send an initialization request for a list of n new EPCs to the

system.
Inbound: Sending an inbound to the system consists of two steps:

• Preparing the inbound and registering it in the system. Items
which are meant to be delivered to a store are advised as incom-
ing.
• When the items arrive, they are added to the store’s stock. The two

possible scenarios here are that the inbound is either complete
(all of the advised items are added) or incomplete (not all of the
advised items added).

Outbound: Send an outbound with n EPCs to the system.
Sale: Send a sale action of n EPCs to the system.
Return: Send a return action of n sold EPCs to the system.

A.3. Data Interface

EpcInDatabase: Checks if a given EPC already exists in the test database.
GetGtinsInDatabase: Gets a list of the test database’s GTINs / products.
GetEpcsInDatabase: Gets a list of all EPCs in the test store’s stock.
GetEpcsOnLocation: Gets a list of all EPCs on a given location.
GetEPcsWithProductData: Gets a list of all items with the corresponding

product data.
GetGtin: Gets the product GTIN of a given item.

86

A.4. Store Functionality

GetNumberOfItemsInStock: gets the stock size, meaning the number of items
in stock.

GetSoldEpcs: Gets all EPCs which are marked as sold in the test database.
GetLocations: Gets a list of all locations of the test store.
GetBusinessSteps: Gets a list of all actions which can be performed in the

store system.
IsBusinessStepInDatabase: Is true if a certain action is possible in the test

system and false otherwise. This is important as training data can
contain more actions than can be handled by the test system and these
need to be filtered out.

GetRandomSupplier: Gets a random supplier from the test system. This
method is needed for the outbound process, as the supplier where
items are sent back to needs to be defined.

GetRandomGtin: When a number of items need to be created, they need to
have product data. This method gets a random GTIN registered in the
database.

A.4. Store Functionality

PerformInbound: Generates a list of n EPCs with their corresponding GTINs
in the database and performs an inbound of these items on a given
location.

PerformOutbound: Gets a number of n random items in the database via the
AddRandomEpcsToList method described in Section A.1 and performs
an outbound with these items.

PerformSale: Gets a number of n random items from a sales floor location
and calls the corresponding web service interface method.

PerformReturn: Gets a number of n random items which are marked as sold
in the test system and calls the corresponding web service interface
method to return these items.

PerformRelocation: Gets a number of n random items from the stock and
performs a relocation to a given location.

PerformInventory: Gets a number of n random items from a given location.
If n > #items on the location, the difference n− #items is taken from

87

A. Method Summary

the other locations in the store. On the n selected items, a stock take is
performed.

PerformWriteOff : Gets a number of n items on a given location and performs
a Write Off.

CreateInitialEpcList: Creates a list with n EPCs not in the test system’s
database, but with correct product data which can be handled by the
test system.

InitializeItems: Calls the previous method to create a list of n new EPCs and
performs an initialization.

A.5. Stochastic Supply Chain Model

CreateTrainedMarkovModel: In this method, the Markov model is trained
based on given store data. In the first step, the sequence distribution
and item distributions are calculated from the training sequences’
lengths and number of items used for each action× location pair in
the input file.
After the calculation of the distributions important for a realistic
simulation, the data contained in the sequence file must be translated
according to the previously mentioned codebook so that the Markov
model can be trained. As Accord.NET provides a class called Codebook

for exactly this purpose, after the initial declaration, we only need to
translate the sequence with the codebook.Translate(data) command.
As described previously, we define the not needed emission matrix
B as the identity matrix. Then A and ν are calculated based on the
Algorithms 1 and 2. Then the model is initialized with the two matrices
A and B and the vector ν.
At last, the currently trained data (Markov model and distributions) is
exported to the application’s Model Data folder for future usage.
The most important methods of this class are:

TrainTransitionMatrix: This method gets the training data as input and
creates the transition matrix A according to Algorithm 1.

UpdateInitialVector: This method updates the initial vector ν based on the
transition matrix A according to Algorithm 2.

88

A.6. Distribution Classes

ImportModelParameters: This method is used to create a Markov model
without training if data is already at hand from a previously training.
Instead of training, data contained in this file will only be passed to
the model and can be used instantly. However, this method has no
metrics to fit the imported training data to a test store size different
than the trained one. This means if the test store is not of an equal size
compared to the imported training data, wrong system behavior or
inconsistencies can occur.

GetSequence: This method generates a sequence of actions from the trained
model, either of a sequence length based on the Poisson distribution
or of manual length.

ExecuteActions: This method represents a dictionary for the execution in-
structions depending on the action× location input string. An example
would be the input state Relocation× L3, then the called method would
be PerformRelocation on the location L3. Naturally, this method only
contains actions covered by the Markov model.

ExecuteSequence: This method gets the sequence generated by the GetSequence
method and executes the contained actions consecutively based on the
dictionary from the previous method.

A.6. Distribution Classes

CalculateAverageSequenceLength: Gets passed the training sequences, counts
the length of each and calculates the Poisson distribution from these
values.

GenerateObs: Calculates a random integer value based on the underlying
distribution.

CalculateItemDistributions: For each action× location pair, this method cal-
culates the Poisson distribution’s λ.

FitDistToStoreSize: As the test store’s size can be different, the distribution
is calculated relatively to the test store size.

89

List of Abbreviations

CSV comma-separated values
DC Distribution Center
DTMC Discrete Time Markov Chain
EA Evolutionary Algorithm
EM Expectation Maximization
EPC Electronic Product Code
ERP Enterprise Resource Planning
GTIN Global Trade Item Number
GUI Graphical User Interface
HMM Hidden Markov Model
HTTP Hypertext Transfer Protocol
RFID Radio Frequency Identification
SUT System Under Test
UML Unified Modeling Language
WCF Windows Communication Foundation
WPF Windows Presentation Foundation

91

Bibliography

[1] Accord.NET Framework. http://accord-framework.net/. last accessed
29th April 2016 (cit. on p. 51).

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008. isbn: 9780521880381 (cit. on p. 74).

[3] D. Ashlock. Evolutionary Computation for Modeling and Optimization.
Springer Publishing Company, 2006. isbn: 9780387221960 (cit. on
p. 29).

[4] M. Beyer, W. Dulz, and F. Zhen. “Automated TTCN-3 Test Case Gen-
eration by means of UML Sequence Diagrams and Markov Chains.”
In: 12th Asian Test Symposium. IEEE, Nov. 2003, pp. 102–105 (cit. on
p. 28).

[5] N. Blumhardt. Stateless .NET State Machine Framework. https : / /

github.com/dotnet-state-machine/stateless. last accessed 29th
April 2016 (cit. on p. 50).

[6] Doungsa-ard C., K. Dahal, A. Hossain, and T. Suwannasart. “Test
Data Generation from UML State Machine Diagrams using GAs.” In:
vol. 4909. International Conference on Software Engineering Advances.
IEEE, Aug. 2007 (cit. on p. 27).

[7] L. Cacciari and O. Rafiq. “Controllability and observability in dis-
tributed testing.” In: Information and Software Technology 41(10-11)
(1999), pp. 767–780 (cit. on p. 17).

[8] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design. 4th ed. Addison Wesley, 2005. isbn: 0321263545 (cit.
on pp. 9, 10).

[9] T.M. Cover and J.A. Thomas. Elements of Information Theory. 2nd ed.
John Wiley & Sons, 2006. isbn: 9780471241959 (cit. on p. 34).

93

http://accord-framework.net/
https://github.com/dotnet-state-machine/stateless
https://github.com/dotnet-state-machine/stateless

Bibliography

[10] A. Deepak and P. Samuel. “An evolutionary multi population ap-
proach for test data generation.” In: World Congress on Nature &
Biologically Inspired Computing. IEEE, Dec. 2009, pp. 1451–1456 (cit.
on p. 29).

[11] S. Dustdar and S. Haslinger. “Testing of Service Oriented Architec-
tures - A Practical Approach.” In: Object-Oriented and Internet-based
Technologies. Lecture Notes in Computer Science Vol. 3263. 2004, pp. 97–
109 (cit. on p. 1).

[12] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Conc-
tactless Smart Cards, Radio Frequency Identification and Near-Field Commu-
nication. 3rd ed. John Wiley & Sons, 2010. isbn: 9780470695067 (cit. on
pp. 11, 13).

[13] Apache Software Foundation. Apache log4net. https : / / logging .

apache.org/log4net/. last accessed 29th April 2016 (cit. on p. 49).

[14] S.J. Galler and B.K. Aichernig. “Survey on test data generation tools.”
In: International Journal on Software Tools for Technology Transfer 16 (2014),
pp. 727–751 (cit. on p. 27).

[15] S.J. Galler, M. Weiglhofer, and F. Wotawa. “Synthesize it: from Design
by ContractTM to Meaningful Test Input Data.” In: 8th IEEE Inter-
national Conference on Software Engineering and Formal Methods
(SEFM). IEEE, Sept. 2010, pp. 286–295 (cit. on p. 15).

[16] J. Gao. Component Testability and Component Testing Challenges. http:
//www.engr.sjsu.edu/gaojerry/report/testabilities.pdf. last
accessed 4th May 2016. 2000 (cit. on p. 17).

[17] Enso Detego GmbH. Detego Suite. http://www.detego.com/en/
products/detego-suite.html. last accessed 29th April 2016 (cit. on
pp. 5, 44).

[18] M. Goller. “Probabilistic Modeling in RFID Systems.” PhD thesis.
Graz University of Technology, 2013 (cit. on p. 2).

[19] O. Henninger, M. Lu, and H. Ural. “Automatic Generation of Test
Purposes for Testing Distributed Systems.” In: Formal Approaches to
Software Testing. Vol. 2931. Lecture Notes in Computer Science. 2004,
pp. 178–191 (cit. on p. 28).

94

https://logging.apache.org/log4net/
https://logging.apache.org/log4net/
http://www.engr.sjsu.edu/gaojerry/report/testabilities.pdf
http://www.engr.sjsu.edu/gaojerry/report/testabilities.pdf
http://www.detego.com/en/products/detego-suite.html
http://www.detego.com/en/products/detego-suite.html

Bibliography

[20] N. Henze. Stochastik für Einsteiger. 8th ed. Vieweg+Teubner, 2010. isbn:
9783834808158 (cit. on p. 40).

[21] R.M. Hierons. “Testing a distributed system: generating minimal
synchronised test sequences that detect output-shifting faults.” In:
Information and Software Technology 43(9) (2001), pp. 551–560 (cit. on
p. 28).

[22] R.M. Hierons and H. Ural. “Overcoming controllability problems
with fewest channels between testers.” In: Computer Networks: The
International Journal of Computer and Telecommunications Networking 53.5
(2009), pp. 680–690 (cit. on p. 17).

[23] BAR CODE GRAPHICS INC. EPC-RFID INFO. http://www.epc-
rfid.info/sgtin. last accessed 29th April 2016 (cit. on p. 85).

[24] W. Khreich, E. Granger, A. Miri, and R. Sabourin. “A Survey of Tech-
niques for incremental Learning of HMM Parameters.” In: Information
Sciences 197 (2012), pp. 105–130 (cit. on pp. 29, 35).

[25] M. Kuperberg. “Markov Models.” In: Dependability Metrics. Vol. 4909.
Lecture Notes in Computer Science. 2008, pp. 48–55 (cit. on p. 34).

[26] S. Lahiri. RFID Sourcebook. IBM Press, 2005. isbn: 0131851373 (cit. on
pp. 12, 13).

[27] G.I. Laţiu, O.A. Creţ, and L. Văcariu. “Automatic Test Data Genera-
tion for Software Path Testing using Evolutionary Algorithms.” In:
Third International Conference on Emerging Intelligent Data and Web
Technologies (EIDWT). IEEE, Sept. 2012 (cit. on p. 29).

[28] Microsoft. Windows Communication Foundation. https://msdn.microsoft.
com/en-us/library/dd456779.aspx. last accessed 29th April 2016

(cit. on p. 43).

[29] Microsoft. Windows Presentation Foundation. https://msdn.microsoft.
com/en-us/library/ms754130.aspx. last accessed 29th April 2016

(cit. on p. 46).

[30] G.J Myers. The Art of Software Testing. 2nd ed. John Wiley & Sons, 2004.
isbn: 0471469122 (cit. on pp. 14–16).

[31] C. Pichler. “Software Test Automation in the Field of RFID.” MA
thesis. Graz University of Technology, 2015 (cit. on p. 3).

95

http://www.epc-rfid.info/sgtin
http://www.epc-rfid.info/sgtin
https://msdn.microsoft.com/en-us/library/dd456779.aspx
https://msdn.microsoft.com/en-us/library/dd456779.aspx
https://msdn.microsoft.com/en-us/library/ms754130.aspx
https://msdn.microsoft.com/en-us/library/ms754130.aspx

Bibliography

[32] L.R. Rabiner. “A tutorial on hidden Markov models and selected
applications in speech recognition.” In: Proceedings of the IEEE. Vol. 77.
2. IEEE, 1989, pp. 257–286 (cit. on pp. 29, 34, 51).

[33] L.R. Rabiner and B.H. Juang. “An introduction to hidden Markov
models.” In: ASSP Magazine, IEEE 3.1 (1986), pp. 4–16 (cit. on pp. 29,
35).

[34] K Sigman. Simulating Markov Chains. Lecture Notes. 2007 (cit. on p. 35).

[35] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. 2nd ed. Prentice-Hall, Inc., 2006. isbn: 0132392275 (cit. on
p. 9).

[36] H. Ural and D. Whittier. “Distributed testing without encountering
controllability and observability problems.” In: Information Processing
Letters 88(3) (2003), pp. 133–141 (cit. on pp. 17, 18).

[37] K. Wiegers and J. Beatty. Software Requirements. 3rd ed. Microsoft
Press, 2013. isbn: 9780735679665 (cit. on p. 18).

[38] W. Zhang, D. Gong, X. Yao, and Y. Zhang. “Evolutionary generation of
test data for many paths coverage.” In: Chinese Control and Decision
Conference (CCDC). IEEE, May 2010, pp. 230–235 (cit. on p. 29).

[39] Y. Zhang, D. Gong, and Y. Luo. “Evolutionary Generation of Test
Data for Path Coverage with Faults Detection.” In: vol. 4. Seventh
International Conference on Natural Computation (ICNC). IEEE, July
2011 (cit. on p. 29).

[40] K. Zhou, X. Wang, G. Hou, J. Wang, and S. Ai. “Software Reliability
Test Based on Markov Usage Model.” In: Journal of Software 7(9) (2012),
pp. 2061–2068 (cit. on p. 28).

96

	Abstract
	Contents
	List of Figures
	Introduction
	Motivation
	Problem Definition
	Overview

	Prerequisites
	Distributed Systems
	RFID Systems
	Model Requirements
	Functional Requirements
	Controllability and Observability
	Performance and Scalability
	Usability, Adaptability and Extensibility

	Modeling
	Process Model
	Exemplary Process Steps

	Related Work
	Existing Tools
	State Machines
	Probabilistic Models
	Evolutionary Algorithms

	Sequential Model
	Stochastic Supply Chain Model
	Transition Model
	Time and Item Set Characteristics

	Implementation
	System Overview
	Implementation Details
	Graphical Interface
	Classes
	Logging

	Sequential Approach
	Usage

	Stochastic Supply Chain Model
	Usage

	Empirical Analysis and Usability
	System under Test
	Execution Times
	Application
	Data Quality
	Performance Tests
	Coverage

	Usability and Limits
	Sequential Model
	Stochastic Supply Chain Model

	Conclusion
	Method Summary
	General
	Service Interface
	Data Interface
	Store Functionality
	Stochastic Supply Chain Model
	Distribution Classes

	List of Abbreviations
	Bibliography

