
Sandra Fruhmann, BSc

Bounded Assume-Guarantee Synthesis

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Ph.D. Roderick Bloem

Institute for Applied Information Processing and Communications

 Diplom-Ingenieurin

Supervisor

Graz, May 2016

2

Abstract (English)

Synthesis is the derivation of a system from a given specification. Consequently, the developer is not
required to specify how the system should be implemented but what the system should be capable of.

Especially the area of concurrent systems is very error-prone, as it is very likely to create faulty imple-
mentations due to deadlocks and race-conditions. Synthesis ensures that these errors do not occur in the
synthesized system.

Unlike other synthesis approaches, assume-guarantee synthesis does not only provide correct but also robust
systems. This methodology allows to reuse generated processes from other synthesis tasks. Thus the overall
computation can be reduced without sacrificing the correctness of the system.

In this work we propose an algorithm to synthesize processes according to their high-level specification, by
means of assume-guarantee synthesis. This algorithm is based on the bounded cooperative co-synthesis
approach for distributed and asynchronous systems.

For comparison, we implemented a prototype for our bounded assume-guarantee synthesis approach and the
bounded cooperative co-synthesis approach for distributed systems. Using this prototype, we compare these
approaches by means of robustness of the synthesized processes, total runtime and statistical values from
the used SMT solver. This experimental comparison shows that the processes of cooperative co-synthesis
are not necessary robust and that the assurance of robustness leads to a runtime overhead.

Keywords: Reactive Systems, Bounded Synthesis, Assume-Guarantee Synthesis

i

ii

Abstract (German)

Synthese ist die automatische Erstellung eines Systems anhand einer gegeben Spezifikation. Somit muss
der Entwickler nicht mehr spezifizieren wie ein System implementiert wird, sondern nur noch, was dieses
erfüllen muss.

Speziell der Bereich der verteilten Systeme ist sehr fehleranfällig, da die Gefahr einer fehlerhaften Im-
plementierung aufgrund von Deadlocks und Race-Conditions sehr hoch ist. Diese Fehler können durch
die Anwendung von Synthese verhindert werden. Im Gegensatz zu anderen Synthesemethoden liefert
assume-guarantee synthesis nicht nur korrekte, sondern auch robuste Systeme. Dadurch können bereits
synthetisierte Prozesse in neuen Systemen wieder eingesetzt werden. Somit kann die Gesamtlaufzeit des
Synthetisierens verringert werden, ohne die Korrektheit des Systems zu gefährden.

In dieser Arbeit stellen wir einen Algorithmus vor, der Prozesse anhand deren Spezifikation mit der Methode
”assume-guarantee synthesis” erstellt. Dieser Algorithmus basiert auf dem Ansatz ”bounded cooperative
co-synthesis” für verteilte Systeme. Um assume-guarantee synthesis und Bounded Cooperative Co-Synthesis
miteinander zu vergleichen haben wir einen Prototyp implementiert. Mit diesem Prototyp vergleichen wir
die Ansätze anhand der Robustheit der synthetisierten Prozesse, deren Laufzeit, statistischen Werten des
SMT solvers und dem benötigtem Speicher.

Dieser experimentelle Vergleich zeigt, dass die synthetisierten Prozesse von Bounded Cooperative Co-
Synthesis nicht notwendigerweise robust sind und dass die Garantie der Robustheit zu einem Anstieg der
Laufzeit und des Speicherverbrauches führt.

Keywords: Reaktive Systeme, Bounded Synthesis, Assume-Guarantee Synthesis

iii

iv

Acknowledgement

I would like to express my gratitude to all people supporting me during this journey of writing my master’s
thesis.

Foremost, I want to express my appreciation to my advisor Roderick Bloem. He has not only guided and
assisted me throughout the thesis, but also aroused my fascination for computer science many years ago.

Secondly, I would like to thank Robert Könighofer. Without his guidance, assistance and patience, this
thesis would have been never finished. I am very thankful for his ideas and our discussions during the
implementation and writing.

I am also grateful for the support, patience and motivational speeches of my supervisors Manfred Aigner,
Thomas Popp and Stefan Tillich.

Last but not least, I would like to thank my friends and family for supporting me throughout the time.
Special thanks are addressed to my parents Ottilia and Emmerich Fruhmann, who gave me the possibility to
study and supported me mentally and financially.

Sandra Fruhmann
Graz, 2016

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally or
by content from the used sources. The text document uploaded to TUGRAZonline is identical to the present
master’s thesis.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen
Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der
vorliegenden Masterarbeit identisch.

Graz, am

Datum Unterschrift

vi

Contents

List of Figures xi

List of Tables xiii

1. Introduction 1

1.1. Background and Motivation . 1
1.2. Problems Addressed in this Thesis . 3
1.3. Outline of the Solution . 3
1.4. Related Work . 4
1.5. Structure of this Document . 4

2. Preliminaries 5

2.1. Logic . 5
2.1.1. Linear Temporal Logic . 5
2.1.2. Propositional logic . 6

2.1.2.1. Conjunctive Normal Form . 7
2.1.2.2. Decidability . 7

2.1.3. First-order logic . 8
2.1.3.1. Syntax . 8
2.1.3.2. Semantics . 9
2.1.3.3. Decidability . 9
2.1.3.4. Satisfiable modulo theories (SMT) . 10
2.1.3.5. Quantifier-free linear integer arithmetic logic 10

2.2. Automata . 10
2.2.1. Finite ω-Automata . 10
2.2.2. Büchi Automata . 11

2.3. Synthesis . 11
2.3.1. Definitions . 12

2.3.1.1. Variables, Valuations, Traces . 12
2.3.1.2. Process . 12
2.3.1.3. Process Description . 13

vii

Contents

2.3.1.4. System . 13

2.3.1.5. Scheduler . 13

2.3.1.6. Specification . 14

2.3.2. Co-Synthesis . 14

2.3.2.1. Cooperative co-synthesis . 15

2.3.2.2. Competitive co-synthesis . 15

2.3.2.3. Assume-guarantee synthesis . 16

2.3.3. Constraint-Based Bounded Synthesis . 16

3. Bounded Assume-Guarantee Synthesis 19

3.1. Constraint based AGS . 19

3.2. Conditions . 21

3.2.1. First condition . 21

3.2.2. Second condition . 23

3.2.3. Third constraint . 26

3.3. Program construction . 28

4. Implementation 33

4.1. Overview . 33

4.1.1. Program flow . 33

4.2. Input . 34

4.3. Software Design . 35

5. Experiments 39

5.1. Examples . 39

5.1.1. Arbiter Examples . 39

5.1.1.1. Global Grant . 39

5.1.1.2. Global Request and Grant . 40

5.1.1.3. Global Request and Grant in the following Execution Step 41

5.1.1.4. Global request and Grant only in the following Execution Step 42

5.1.1.5. Global Request and Private Grant . 43

5.1.1.6. Implicit Memory Variable . 43

5.1.1.7. Global Request, Private Grant in the Next Execution Step and Referring
to the Scheduler . 44

5.1.1.8. Private Request, private Grant in the next Execution Step and referring to
Scheduler . 46

5.1.1.9. Private Grants without Requests . 46

5.1.2. Memory examples . 47

5.1.2.1. Memory defined . 47

5.1.2.2. Memory not defined . 48

5.1.3. Readers-Writers problems . 49

5.1.3.1. Exclusive access . 49

5.2. Performance Evaluation . 51

viii

Contents

6. Conclusion and Future Work 55

6.1. Summary . 55
6.2. Conclusion . 55
6.3. Future Work . 56

Bibliography 57

A. co-Büchi Automata 61

ix

x

List of Figures

3.1. AGS overview . 20
3.2. Simplified universal co-Büchi automaton of the first AGS-constraint for Example 2 22
3.3. Simplified universal co-Büchi automaton of the second AGS-constraint for Example 2 . . 24
3.4. Simplified universal co-Büchi automaton of the third AGS-constraint for Example 2 27
3.5. Graphical model for the transition function τ1. Only the red nodes are reachable by the system. 29
3.6. Graphical model for the transition function τ2. Only the red nodes are reachable by the system. 30

4.1. Class diagram of the prototype . 36

5.1. Execution graph for the Read-Write problem. The execution of the first process is visualized
using dotted edges. The execution of the second process is visualized using solid edges. . . 50

5.2. Total time consumed by the prototype . 52
5.3. Time consumed by the Z3 SMT solver . 52
5.4. Number of decision . 53
5.5. Number of conflicts . 53
5.6. Consumed memory . 54

A.1. co-Büchi automaton of the first AGS-condition . 61
A.2. co-Büchi automaton of the second AGS-condition . 62
A.3. co-Büchi automaton of the second AGS-condition . 63

xi

xii

List of Tables

2.1. Truth table for the formula a^b . 7

3.1. Trace of example 1 . 20

5.1. Possible execution trace . 48
5.2. Performance of the examples with cooperative co-synthesis 51
5.3. Performance of the examples with AGS . 51

xiii

xiv

Chapter 1
Introduction

1.1. Background and Motivation

During the last decades, the influence of computer systems on our day to day life became higher and higher.
Consequently, the reliability of these systems became more important. Malfunctions do not only lead to
inconveniences but can be very dangerous and life-threatening. For example, on 4 June 1996, a software
bug [25] caused the explosion of the Ariane 5 launcher about 37 seconds after liftoff. The material damage
amounted to about 370 million US dollar. In another incident, a race condition in an alarm systems was the
reason that a manageable local blackout cascaded into the Northeast blackout, in 2003 [20]. Because of this
blackout, about 50 million people lost power for about two days. The costs ware estimated between $ 4 and
$ 10 billion US dollar.

Such incidents are not only cost-expensive, but can also lead to a bad image for companies. So the area
of producing correct and safe code is very important in research and in the industry. There are various
methods to ensure better code. Informal methods, like testing, are widely used but cannot ensure the
correctness of the code. To guarantee this correctness, there are two different approaches: Formally verifying
an implementation according to its specification (verification) and deriving a correct-by-construction
implementation from its formal specification automatically (synthesis). While verification is already largely
researched and used in the industry [18], synthesis is, although already mentioned by Alonzo Church in 1962
[9], not yet mature enough to be widely used. This thesis contributes towards improving the applicability of
synthesis in the context of distributed systems.

The advantage of synthesis is that it is not applied on existing code but only on the specification. So the
developer only needs to specify what the system should be capable of but not how the system should be
implemented. The implementation is then constructed automatically.

As stated above, Church [9] was the first who mentioned this problem and so it is often referred to as
Church’s problem. In his paper, Church asked for a procedure to build an automaton or a set of recursion
equivalences according to a specification relating an infinite input-string and an infinite output-string. If
such an automaton cannot be built, this procedure has to signal that the synthesis requirement is impossible.
The specification is assumed to be a Monadic second-order (MSO) formula, where it is only possible to

1

Chapter 1. Introduction

quantify over unary relations. Let ϕpI,Oq be a MSO-specification where I defines the input and O the output.
Church’s problem asks to determine if there exists an operator F which satisfies the relation ϕpI,FpIqq

according to the specification for all inputs I. If such an operator exists, it should be defined how it is
constructed.

McNaughton [24] was the first who proposed to treat Church’s problem as an infinite game with two players,
where player 1 defines the input and player 2 the output. The game is played for an infinite number of
rounds. Player 1 starts the round by defining the input. Afterwards, player 2 defines output according to the
input. Player 2 wins the game if it can produce a correct output sequence. If player 2 is not able to produce
such output, player 1 wins.

Büchi and Landweber [7] used this idea and provided the first solution based on infinite games. Some years,
later Rabin [29] solved Church’s problem using tree automata.

During the next years, the synthesis problem was studied for single-process systems. In 1977, Pnueli [27]
adopted a fragment of tense logic and proposed it as a verification tool for concurrent programs. In particular,
he introduced the temporal operator G for invariances and the temporal operator F to describe eventualities.

Emerson and Clark [14] as well as Manna and Wolper [23] used temporal logic specification to synthesize
synchronization parts for concurrent programs. The drawback of these solutions was that the system to be
synthesized has to be entire or closed, which means that it is not possible for the system to interact with an
environment.

Pnueli and Rosner [28] solved the synthesis problem for reactive systems in the context of Linear Temporal
Logic (LTL) specifications. In such systems, the implementation has to react on external inputs. Pnueli
and Rosner considered this synthesis problem as a two-player game where player 1 is the environment and
player 2 (the system) has to find a winning strategy for all possible input-scenarios given by the environment.
The algorithm to solve this problem has an double-exponential worst case complexity.

Furthermore, Pnueli and Rosner [26] reduced the synthesis problem for distributed reactive systems for
certain architectures to the halting problem. Therefore, they showed that the synthesis problem for distributed
reactive systems is undecidable in general. However, they also proved that hierarchical architectures are
non-elementarily decidable.

Schewe and Finkbeiner showed [16] in 2005 that the distributed synthesis problem for LTL specifications is
decidable if the architecture does not contain information forks (like pipline architectures). The architecture
contains an information fork if the environment provides information to an individual black-box process
and this information cannot be completely deduced by other processes. Two years later, in 2007, the same
authors provided a procedure to semi-decide the synthesis problem for systems with information forks [31].
They showed that it is possible to decide this problem if the number of states in the system is restricted.
Furthermore, they showed that this bounded synthesis problem can be reduced to a satisfiability (SAT)
problem.

One challenge in synthesis of distributed systems is that the systems should be robust against changes of
individual processes, to provide a modular system. Chatterjee and Henziger [8] showed, in 2007, that it
is possible to build robust systems by computing secure-equilibrium strategies. They solved this assume-
guarantee synthesis (AGS) problem using a 3-player game graph. The advantage of AGS is that parts of the
system can be replaced without resynthesizing or verifying the rest of the system.

2

1.2. Problems Addressed in this Thesis

1.2. Problems Addressed in this Thesis

As stated above, Chatterjee and Henziger [8] introduced AGS and provided a game-theoretical solution for
the distributed synthesis problem. However, this solution has never been implemented and is only applicable
for distributed systems in a perfect information setting. Consequently, all processes have to be aware of all
variables and inputs in the system and it is not possible for a process to use private variables, which is very
unrealistic for distributed systems.

1.3. Outline of the Solution

In this work, we are going to present an algorithm to semi-decide the assume-guarantee synthesis problem for
given LTL-specifications of two processes A and B, where the processes may only have partial information
about inputs or each other’s states. To solve the AGS problem it is necessary to fulfil three conditions
containing the specifications of the processes. The first condition ensures the correctness of the system. The
system is correct if the specifications of all processes are fulfilled. The other two conditions ensure that
the processes are robust. A process is called robust if the other process can be exchanged with an arbitrary
process as long as the new process still fulfils the specification of the exchanged process.

Our algorithm accomplishes the AGS conditions by extending the bounded synthesis approach for coopera-
tive co-synthesis by Schewe and Finkbeiner [31].

The first step of our algorithm is to describe the AGS conditions as LTL formulas. These formulas are
afterwards translated into universal co-Büchi automata.

These produced universal co-Büchi automata are later used to build a constraint system which describes the
behaviour of the transition relations of three different state spaces. Two of these state spaces describe the
processes and the third one describes the composition of the other state spaces.

If this constraint system is satisfiable, the model of the solution provides the requested robust system where
the processes can be exchanged easily, without resynthesizing or verifying the whole system.

However, if the constraint system is not satisfiable, the system is not realisable with these process-
specifications. Similar to the bounded synthesis approach, we allow the system designer to increase
the bound by increasing the number of possible states. In our algorithm this is realized by adding fresh
memory variables that are not restricted by the specifications. As these memory variables can be fully
controlled by the algorithm, they allow the algorithm more possibilities to find a suitable transition relation.

By increasing the number of these memory variables iteratively, the algorithm can be used as a procedure to
semi-decide unbounded AGS problems.

Unlike the solution proposed by Chatterjee and Henziger [8], our algorithm allows the designer to distinguish
between local and global variables. Therefore, it is possible to define local and global process variables as
well as global an local input variables. Consequently, a perfect information setting in the specification is no
longer required.

3

Chapter 1. Introduction

1.4. Related Work

Our solution is based on the bounded synthesis approach by Schewe and Finkbeiner [31]. They did not only
propose the constraint-based bounded synthesis approach in [31] but also an automata-theoretic approach.
In this approach they are reducing the synthesis problem to an emptiness check on safety automata.

Filiot, Jin and Raskin [15] provided in 2011 an alternative algorithms to synthesize systems from LTL
specifications. Like Schewe and Finkbeiner, they translate the specification into a co-Büchi automaton. But
instead of using SMT-constraints and bounding the number of states in the implementation, they are using
antichains and bound the number of visits of rejecting states in the co-Büchi automaton.

In 2010, Fisman, Kupferman and Lustig [17] proposed rational synthesis. In rational synthesis, the
environment is not seen as an opponent, but as a set of rational components. This approches does not only
provide a synthesized system but also strategies for the components of the environment. The correctness of
the system can be guaranteed as long as the components follow the proposed strategy. Compared to AGS it
is not possible to exchange processes without resynthesizing or verifying the whole system, even if the new
processes would implement their local specifications.

Bloem, Chatterjee, Jacobs and Könighofer provided, in 2015, a solution of AGS problems for sketched
systems, where parts of the implementation are already given, including systems with partial information
[5]. Furthermore they analysed the complexity and decidability in different settings. This work is also based
on bounded synthesis. However, while this work focuses on sketched programs, our solution is about the
synthesis of complete distributed systems from scratch.

1.5. Structure of this Document

The rest of the thesis starts by giving an overview of the used theoretical background and by establishing
notation. In particular, Chapter 2 gives an overview about Linear Temporal Logic and synthesis approaches.
It also establishes notation for processes, process descriptions, scheduler and specifications.

We use this notations in Chapter 3 to introduce our algorithm to solve AGS problems. This chapter shows,
how the bounded synthesis approach of Schewe and Finkbeiner [31] can be used to construct a system based
on LTL-specifications that solves the AGS problem.

The next chapter (Chapter 4) gives an overview of the implementation of the prototype tool that solves
the AGS problem. In particular, it defines the used input format and the structure of the synthesized
implementation.

Chapter 5 discusses the performance of our AGS algorithm and compares it to the co-synthesis approach
that does not involve robustness.

We conclude this thesis in Chapter 6 by giving an short conclusion and a discussion of future work.

4

Chapter 2
Preliminaries

In this section, we introduce the background of LTL, ω-automata (specifically Büchi automata) and synthesis.
Furthermore, we introduce the notation for variables, valuations, traces, processes, process descriptions,
schedulers and specifications.

2.1. Logic

2.1.1. Linear Temporal Logic

Temporal Logic was used since ancient times. For example, Aristotle used it in his famous sea-battle analogy
to discuss the problem of future contingents [1, 22]. The problem is about the assignment of truth-values
for statements involving future contingents. Aristotle stated that it is not possible to assign determinately
truth-values to statements like ”Tomorrow there will be a sea-battle”.

The first one who formalized temporal logic was Prior in 1957 [2]. He referred to it as ”Tense-logic”.
Nowadays the most important and popular types are Linear Time Logics (e.g. Linear Temporal Logic) and
Branching Time Logics (e.g. Computation Tree Logic). Linear Temporal Logic (LTL), was first proposed
by Pnueli [27] in 1977 as a possibility to describe programs, as it allows designers to formalize invariants
and temporal implications. LTL formulas are constructed from a set of atomic propositions Prop using the
Boolean Operators and _ and the temporal operators U (”until”) and X (”next”). Additionally, the
Boolean operators ^,Ñ,Ø, the constants ”true” and ”false” and the temporal operators G (”globally”),
R (”Release”) and F (”eventually”) can be derived. The syntax of LTL can be formally defined in the

following way [34]:

• An atomic proposition p P Prop is an LTL formula and

• if ϕ and ψ are LTL formulas then ϕ, ϕ_ψ,ϕ U ψ and X ϕ are also LTL formuals.

An LTL formula is evaluated over the truth assignments of an infinite trace ω � ω0ω1 . . . , where each
ωi � Prop is a set of atomic propositions that are true at step i P N. For a trace ω and a point i P N,ωi |ù ϕ

5

Chapter 2. Preliminaries

indicates that the formula ϕ holds in the point i of the trace ω. The semantics of the operators can be formally
defined as follows:

• ωi |ù p for p P Prop iff p P ωi,

• ωi |ù ϕ iff ωi * ϕ,

• ωi |ù ϕ_ψ iff ωi |ù ϕ or ωi |ù ψ,

• ωi |ù X ϕ iff ωi�1 |ù ϕ , and

• ωi |ù ϕ U ψ iff there exists j ¥ i where ω j |ù ψ and forall j ¡ k ¥ i the condition ωi |ù ϕ holds.

The additional operators and constants can be defined in the following way:

• ϕ^ψ� p ϕ_ ψq,

• ϕÑ ψ� ϕ_ψ,

• ϕØ ψ� pϕÑ ψq^pψÑ ϕq,

• true � ϕ_ ϕ,

• false � true,

• F ϕ� true U ϕ,

• G ϕ� F ϕ, and

• ϕ R ψ� p ψ U ϕq.

2.1.2. Propositional logic

Propositional logic is used to formalize statements and to reason about them. The syntax can be formally
defined as follows:

• An atomic proposition p P Prop is a propositional formula and

• if ϕ and ψ are propositional formulas then ϕ,ϕ_ψ,ϕ^ψ and ϕ Ñ ψ are also propositional
formulas.

The truth-value of a formula ϕ is evaluated over its interpretation function I. I assigns to any propositional
formula φ a truth value Ipφq P ttrue, falseu

In the following, we are going to describe the semantics using the interpretation function. However, instead
of writing Ipϕq � true, we will write I |ù ϕ (the interpretation function models φ):

• I |ù φ iff I * φ,

• I |ù φ^ψ iff I |ù φ and I |ù ψ,

• I |ù φ_ψ iff I |ù φ or I |ù ψ,

• I |ù φÑ ψ iff I |ù φ or I |ù ψ,

6

2.1. Logic

a b a^b
false false false
false true false
true false false
true true true

Table 2.1.: Truth table for the formula a^b

2.1.2.1. Conjunctive Normal Form

A formula is in conjunctive normal form if its clauses (disjunctions of literals) are conjuncted, where literals
are atomic propositions or their negation: ©

i

ª
j

li j

2.1.2.2. Decidability

Propositional logic is NP-complete and therefore decidable. Consequently, there exist decision procedures
to determine if propositional formulas are satisfiable. An example for such a procedure is the truth table.
The truth table shows the logical value of a formula by assigning all possible combinations of truth-values to
the literals and computing the truth value of the formula using these assignments. An example can be found
in Table 2.1. Another decision procedure is the DPLL algorithm, described in the following paragraph.

Davis–Putnam–Logemann–Loveland (DPLL) algorithm The DPLL algorithm was invented 1962 [11]
by Davis, Putnam, Logemann and Loveland. It is a recursive backtracking algorithm to decide the satisfia-
bility of CNF formulas. Listing 2.1 shows a pseudocode of the algorithm.

The algorithm starts by checking if the formula is already satisfied. If the formula is satisfied (all clauses
evaluate to true), the algorithm returns true. Otherwise, the algorithm checks if there exists a conflict in
the formula and returns false if such a conflict can be found. If the formula is not already satisfied and
does not contain a conflict, the algorithm tries to identify pure literals and unit clauses to reduce the search
space. A pure literal is a literal that has only one polarity throughout the whole formula. Therefore, the
truth-value can be directly assigned and the clauses containing this literal are true and the rest of the formula
is going to be checked recursively. A unit clause is a clause consisting of only a single unassigned literal
and can be therefore only satisfied by assigning the according truth-value to this unassigned literal. Also
here, the rest of the formula is checked recursively with this assignment. If the current formula does neither
contain a pure literal nor an unit clause, the algorithm selects a literal, guesses the truth-value, assigns it to
the literal and propagates the formula with this assignment. If the formula is satisfiable with this assignment,
the algorithm returns true, otherwise the algorithm assign the other truth-value and returns the outcome of
this propagation.

This algorithm was improved throughout the last decades by, for example, using and improving branching
heuristics and conflict driven learning techniques [35] [19].

Listing 2.1: DPLL algorithm

1 input: CNF-formula ϕ

7

Chapter 2. Preliminaries

2
3 function DPLL(ϕ):

4 if(satisfied(ϕ))

5 return true;

6
7 if(conflict(ϕ))

8 return false;

9
10 {l, value} <- findPureLiteral(ϕ)

11 if({l, value} is not empty)

12 return DPLL(ϕ[l|value]);

13
14 {l, value} <- findUnitClause(ϕ)

15 if({l, value} is not empty)

16 return DPLL(ϕ[l|value]);

17
18 {l, value} <- selectLiteral(ϕ)

19 if(DPLL(ϕ[l|value])

20 return true;

21
22 return DPLL(ϕ[l| value]);

2.1.3. First-order logic

First-order logic extends propositional logic by variables, functions, predicates and quantifiers. Predicates
and functions can be used to describe properties and relations. The arguments of predicate and functions are
called terms. Using quantifiers and variables it is possible to describe more general statements. For example,
in propositional logic, the Epimedes paradox [30] ”All Cretans are liars” can only be expressed as a single
term p. Using predicate logic, this statement can be coded more detailed by defining the predicates C for
Cretans and L for liar. With these predicates and the forall quantifier (@), we can formalize the following
statement: @x.Cpxq Ñ Lpxq.

2.1.3.1. Syntax

First-order logic can be formally described by terms and formulas:

Terms

• Every variable is a term

• If f P F is a 0-ary function then f is a term

• If t1, t2, . . . , tn are terms and f P F n-ary function with n¡ 0, then f pt1, . . . , tnq is a term.

8

2.1. Logic

Formulas

• If P P P is an n-ary predicate symbol and t1, . . . , tn are terms, then Ppt1, . . . , tnq is a formula

• If ϕ and ψ are formulas, then so are ϕ, ϕ^ψ, ϕ_ψ and ϕÑ ψ.

• If ϕ is a formula and x is a variable then Dx.ϕ and @x.ϕ are also formulas.

2.1.3.2. Semantics

Like in Section 2.1.2, the truth-value of a formula ϕ is evaluated over its interpretation function I. Therefore,
φ is true if Ipφq is true.

The interpretation function consists of:

• A non-emtpy set of objects (D),

• an assignment of each function symbol f of arity n to an object. Ip f q : Dn Ñ D and

• an assignment of each predicate symbol P of arity n to an truth value. IpPq : Dn Ñ ttrue, falseu.

In the following, we are going to describe the semantics using the interpretation function. However, instead
of writing Ipϕq � true, we will write I |ù ϕ (the interpretations functions models φ):

• I |ù Ppt1, � � � , tnq iff IpPq applied to Ipt1q, . . . , Iptnq ¡ is true,

• I |ù t1 � t2 iff Ipt1q � Ipt2q,

• I |ù φ iff I * φ,

• I |ù φ^ψ iff I |ù φ and I |ù ψ,

• I |ù φ_ψ iff I |ù φ or I |ù ψ,

• I |ù φÑ ψ iff I |ù φ or I |ù ψ,

• I |ù @x.φpxq iff I |ù φpdq for all d P D,

• I |ù Dx.φpxq iff I |ù φpdq for at least one d P D.

A logical formula φ is satisfiable if there exists an interpretation function I such that I |ù φ. It is valid if φ is
true for all interpretation functions.

2.1.3.3. Decidability

First-order logic is in general undecidable. This can be proved by reducing the Halting Problem to the
SAT problem for FOL formulas. The reduction is done by encoding the instructions and the tape of the
Turing-machine into FOL formulas. The tape is described as a successor-function s (the first cell is encoded
as sp0q, the cell right of the first cell is encoded as spsp0qq ...). As it is not possible to go left if the head
is situated at the first cell, a constraint has to be added that the Turing-machine will stay at the leftmost
cell. The instructions are encoded as transition functions describing movement between the cells. The
Turing-machine halts if, given an arbitrary starting value, the leftmost state is reached. In FOL this question
translates to: Does there exists a timestamp t where the position is 0.

9

Chapter 2. Preliminaries

2.1.3.4. Satisfiable modulo theories (SMT)

SMT extends first-order logic by additional theories. These extensions provide the possibility to add
additional interpretations to function or predicate symbols. SMT formulas can be solved by combining the
DPLL algorithm with additional algorithms to solve the theories. Simplified, the DPLL algorithm provides
the skeleton to solve the formulas and the theory solver checks if the current assignment is valid.

To minimize the runtime, the theory solver returns the reason if a formula is not satisfiable. This reason can
be used to make better decisions and therefore to decrease the runtime.

Example 2.1. We have the following formula: x¡ 0^ x 0_ x� 0. This formula can be satisfied if x is
equal to zero. In the first step, the DPLL algorithm tries to set x¡ 0 and x 0 to true and x� 0 to false. The
theory solver checks this assignment and returns that x¡ 0^ x 0 is not consistent. The DPLL algorithm
uses this information and finally finds a valid assignment by setting the term x � 0 to true and the other
terms to false.

2.1.3.5. Quantifier-free linear integer arithmetic logic

A quantifier-free linear integer arithmetic formula is a first-order logic formula describing equalities,
inequalities and disequalities. The atoms are in the form of r1x1� r2x2� �� � ' b where ri are rational
numbers and xi represent integer variables. The symbol ' represents either an equality operator (=) or an
inequality operator (¡, ,¤,¥ or �).

Such formulas are commonly solved by extending the DPLL algorithm with the Simplex-algorithm. The
simplex algorithm originates from the field of mathematical optimization and is used to solve linear
optimization problems. The tableau-table of the simplex algorithm is used by the backtracking mechanism
of DPLL. The first algorithms updated the tableau inclemently, which lead to a costly overhead during the
backtracking. Newer algorithms avoid these costly updates to reduce this overhead. [12]

2.2. Automata

2.2.1. Finite ω-Automata

An ω-automaton [33] can be defined as a 5-tuple A� pQ,2Prop,∆,Q0,Accq whose components are:

• A finite set Q, which defines the states,

• the finite input alphabet 2Prop,

• the transition relation ∆� Q�2Prop�Q,

• a finite set of initial states Q0 � Q, and

• the acceptance condition Acc� Qω.

10

2.3. Synthesis

A finite ω-automaton is called deterministic if for every state and input letter there exists only one target
state. Formally the automaton is deterministic iff its transition relation is deterministic [13]:

@q P Q,ω P 2Prop.|tq1 P Q|pq,ω,q1q P ∆u| ¤ 1

A run on a given infinite input-string ω�ω0ω1... P p2Propqω is an infinite sequence r� r0r1... PQω of states
such that:

• r0 = q0 and

• pri,ωi,ri�1q P ∆ for all i P N

For a deterministic automaton, a string is accepted if its run r fulfils the acceptance condition: r P Acc. For
an non-deterministic automaton A, a string ω is accepted by A if there exists a run r of A on ω that fulfils the
acceptance condition r P Acc. We will use another kind of automata, which are called universal automata. A
universal automaton accepts a string if all runs fulfil the acceptance conditions.

Depending on the acceptance conditions, there exist various types of ω-automata. Popular types are Büchi
automata, Muller automata, Rabin automata and Streett automata. In this thesis we only consider universal
co-Büchi automata.

2.2.2. Büchi Automata

A Büchi automaton is an ω-automaton. Büchi invented this automata in 1960 as a decision method in
restricted second order arithmetic [6].

To define the acceptance condition, a new set of accepting states (F) is introduced. A run r is accepted if at
least one accepting state occurs infinitely often in this run. Let infprq be the set of all states which occur
infinitely often in the run. Then the acceptance condition can be formulated [33] as

Acc� tr P Qω| infprqXF �Hu

co-Büchi automaton A co-Büchi automaton only differs from the Büchi automaton in the acceptance
condition. While it is enough for the Büchi acceptance condition that at least one accepting state occurs
infinitely often in the run, for the co-Büchi acceptance condition there has to exist a point i in the run, where
the following states are only accepting states. This condition can be formalized in the following way:

Acc� tr P Qω| infprqXpQzFq �Hu

That is, non-accepting (rejecting) states must be visited only finitely often and therefore, there exists a point
in the run where the following states are only visited finitely often.

2.3. Synthesis

Synthesis is the automatic construction of a system according to its formal specification. Due to the
automatic construction, the system is correct-by-construction and does not need any further verification or

11

Chapter 2. Preliminaries

testing.

During the last decades, synthesis has been studied for distributed and non-distributed systems, reactive and
non-reactive systems, synchronous and asynchronous systems.

In distributed systems, the goal is to synthesize two or more processes to fulfil the requirements. Every
process has its own state space and may interact with other processes in the system. Therefore, the synthesis
method does not only have to model one state space representing the system but also the state space of each
process.

Reactive systems react on external events, which are handled by the system as inputs. These events can
be real inputs from users or actions from other processes. An often used input is the scheduler, which is
relevant for distributed asynchronous systems. These systems are harder to synthesize then non-reactive
systems, as the constructed system has to react on all possible inputs given by the environment.

In asynchronous systems the processes are not scheduled at the same time. A possibility to model this
behaviour is to add the scheduler to the environment. In this way, it is possible to handle a scheduler as
an input and the system has to react on its decisions. However, synthesis for asynchronous systems is
undecidable [32] if the implementation of at least two processes is unknown.

In this thesis we focus on reactive, distributed, asynchronous systems consisting of two processes. The used
language for the specification is LTL.

2.3.1. Definitions

2.3.1.1. Variables, Valuations, Traces

Let X be a finite set of Boolean variables. A valuation is a function v, which maps each x P X to a Boolean
value v : xÑ ttrue, falseu. We use the notation V � 2X to describe the set of valuations of X . Let X 1 be a
subset of X , we define v æX 1 as the restriction of the valuation of v to the variables of X 1. We distinguish
between global, local and memory variables. Global variables can be set by all processes and local and
memory variables can only be set by one process. While global and local variables occur within the
specification, memory variables are used to extend the possible state space of the process.

A trace π of X is an infinite sequence π� v0v1 � � � PV ω of valuations. Using π æX 1� v0 æX 1 v1 æX 1 . . . PV ω

we can also restrict the valuations of the variables in the trace.

2.3.1.2. Process

For i P t1,2u a Process i is a tuple P1
i � pSi,si0 , Ii,τiq consisting of the following components:

• Si � LiY� GiY� Mi is a finite set of state variables, where Li defines the set of local variables, G the set
of global variables and Mi the set of memory variables,

• si0 P 2Si is the initial state,

• Ii is a finite set of local and global input variables and disjoint from Si, and

• τi is a transition function that maps the current state and the input variables to the next state: 2Si�2Ii Ñ

2Si

12

2.3. Synthesis

Given an input trace X � x0x1x1 . . . P p2Iiqω the execution trace of a process P1
i is defined as tpX ,P1

i q � ω�

ω0ω1ω2ω3 . . . P 2pSiY� Iiqω

where ω� x jY� si j and si j � τipsi j�1,x jq.

A process P1
i satisfies an LTL specification φ if and only if @x P p2Iiqω : tpX ,P1

i q |ù φ.

2.3.1.3. Process Description

A process description Pi � pSi,si0 , Iiq is a process without the transition function τi, therefore it is much
more general then the process itself, and Si can be updated not-deterministically. We write P1

i ¨ Pi to define
that a process P1

i is an implementation of the process description Pi.

2.3.1.4. System

A system is a tuple U � pP1
1,P

1
2,Cq consisting of the following components:

• P1
1 representing the first process,

• P1
2 representing the second process and

• C representing the scheduler

2.3.1.5. Scheduler

A scheduler chooses for each computation step, which process can update its variables. If one process Pi is
selected, the local variables and memory of the other process remain unchanged in the next state. Given a
finite trace π�, it can formally be defined as a function C : π�Ñ t1,2u. A scheduler is a fair scheduler if
it selects both processes infinitely often, i.e., for all possible traces π� v0v1 � � � PV ω there exist infinitely
many j ¥ 0 and infinitely many k ¥ 0 such that Cpv0, . . . ,v jq � 1 and Cpv0, . . . ,vkq � 2.

In the following we describe the sets of possible traces depending on processes, process descriptions and the
scheduler. While the valuations of the variables depend on the transition relation of a process if a process
was scheduled, the valuations of the variables is not restricted if a process description is scheduled:

Given the process descriptions P1 and P2, the combined state space S� S1YS2 and the scheduler C, the set
of possible traces can be defined as

rrP1||P2||Css �

$''&
''%

v0v1 � � � PV ω

��������

@ j ¥ 0.Cpv0v1 . . .v jq � i P t1,2u

v j æpSzSiq� v j�i æpSzSiq

v0 æS1� s10 ^ v0 æS2� s20

,//.
//-

Given the process description P1 and the process P1
2 ¨ P2 and the scheduler C, the set of possible traces can

be defined as

13

Chapter 2. Preliminaries

rrP1||P1
2||Css �

$'''''&
'''''%

v0v1 � � � PV ω

�����������

@ j ¥ 0.Cpv0v1 . . .v jq � i P t1,2u

v j æpSzSiq� v j�i æpSzSiq

Dx P 2Ii : v j�1 æSi� τipv j æSi ,xq iff i� 2

v0 æS1� s10 ^ v0 æS2� s20

,/////.
/////-
.

Given the process P1
1 ¨ P1 and the process description P2 and the scheduler C , the set of possible traces can

be defined as

rrP1
1||P2||Css �

$'''''&
'''''%

v0v1 � � � PV ω

�����������

@ j ¥ 0.Cpv0v1 . . .v jq � i P t1,2u

v j æpSzSiq� v j�i æpSzSiq

Dx P 2Ii : v j�1 æSi� τipv j æSi ,xq iff i� 1

v0 æS1� s10 ^ v0 æS2� s20

,/////.
/////-
.

Given the processes P1
1 ¨ P1 and P1

2 ¨ P2 and the scheduler C, the set of possible traces can be defined as

rrP1
1||P

1
2||Css �

$'''''&
'''''%

v0v1 � � � PV ω

�����������

@ j ¥ 0.Cpv0v1 . . .v jq � i P t1,2u

v j æpSzSiq� v j�i æpSzSiq

Dx P 2Ii : v j�1 æSi� τipv j æSi ,xq

v0 æS1� s10 ^ v0 æS2� s20

,/////.
/////-
.

2.3.1.6. Specification

A specification φ is used by a program designer to specify the requirements of a system. In synthesis, this
specification is eventually used to automatically construct the processes, which fulfils these requirements.
As a specification language we use LTL.

2.3.2. Co-Synthesis

As stated above, the classical synthesis problem asks for the construction of a single process which fulfils its
specification. The distributed synthesis problem extends this requirement such that the specification has to
be fulfilled 2 constructed processes.

In the co-synthesis problem, there not only exists a specification for the system, but every process has its
own specification, which has to be fulfilled. There are two classical approaches on how the processes should
interact which each other in such an system: cooperative or competitive. The cooperative approach corre-
sponds to the distributed synthesis problem. Here, the processes are cooperating to fulfil all specifications
in the system. In contrast to this behaviour, the only objective for each of the processes in the competitive
approach is to fulfil its own specification independent of the behaviour of other processes. This competitive
behaviour can easily lead to unrealisable systems if resources are shared, while such system would be
possible if the processes were to cooperate instead.

14

2.3. Synthesis

For instance, consider two processes P1 and P2. Let the specification of P1 be that a shared bit a has to be set
at minimum every second tick, and let the specification of P2 be that a has to be set always. If the processes
are cooperative, a possible system would be that P1 and P2 are always setting a. However, if the behaviour
of these processes is competitive, such a system cannot be constructed, as process P2 can assign false to a in
every second step.

As you can see in this example, a drawback of the cooperative approach is that the constructed system is
not robust in the sense that individual processes can be exchanged with another processes, even though
this other process would fulfil the specification. Consequently, processes cannot be exchanged without any
further verification of the correctness of the system. This drawback does not occur if the processes behave
competitive. However, specifications with shared resources become easily unrealisable.

Chatterjeee and Henzinger [8] defined another approach, called assume-guarantee synthesis. This approach
states that the processes do not have to be strictly competitive to construct a robust system. In assume-
guarantee synthesis, a process only needs to fulfil its specification if the other process also fulfils its
specification. As a result, the processes can be exchanged easily for processes that fulfil the specification but
the objectives are not so complementary as in the competitive synthesis approach.

Below, you can find a more detailed description of these synthesis approaches. For all co-synthesis problems,
we consider the two process descriptions P1 and P2 with Pi � pSi,s0, Iiq, two processes P1

1 and P1
2 with

Pi � pSi,s0, Ii,τiq and P1
i ¨ Pi, their specifications φ1 for P1 and φ2 for P2.

2.3.2.1. Cooperative co-synthesis

As stated above, the objective of cooperative co-synthesis is to find a pair of processes that fulfil all
specifications in the system. As a process is not responsible for the realisability of a specific specification, it
is not possible to exchange a process with another process, without any further verification of the system.
Furthermore the synthesized system should be valid for all fair schedulers.

The cooperative co-synthesis problem can be formally defined as follows: Do there exist two processes for
the process descriptions P1

1 ¨ P1 and P1
2 ¨ P2, such that the following condition holds for all fair schedulers

C:
rrP1

1||P
1
2||Css æ pSY Iq |ù φ1^φ2?

2.3.2.2. Competitive co-synthesis

In contrast to cooperative co-synthesis, the objective of the processes in the competitive co-synthesis
approach is not to fulfil all specifications in the system, but only to fulfil its own specification. Consequently,
a process can be replaced by another one which fulfils its specification. As a process cannot rely on the
transition function of the other process but only on the process description, the co-synthesis problem becomes
easily unrealisable if the processes access shared resources. However, like in cooperative co-synthesis, the
synthesized processes should be valid for all fair schedulers.

Formally the competitive co-synthesis problem is defined as follows: Do there exist two processes for the

15

Chapter 2. Preliminaries

process descriptions P1
1 ¨ P1 and P1

2 ¨ P2, such that the following conditions hold for all fair schedulers C:

piq rrP1
1||P2||Css æ pSY Iq |ù φ1 and

piiq rrP1||P1
2||Css æ pSY Iq |ù φ2

2.3.2.3. Assume-guarantee synthesis

The assume-guarantee synthesis approach is a compromise between the cooperative and the competitive
approach. The synthesized system should be robust, but it should not be as strict as competitive co-synthesis,
so that it is possible to synthesize more systems with shared resources. The idea is to take the specification of
the other process into account and to assume that the other process is primarily going to fulfil its specification
and thus does not behave strictly competitive. Therefore, the the synthesis procedure has only to find a
strategy for the behaviours of the other process if this process fulfils its specification. Another objective for
the processes is that they have to fulfil, like in the cooperative approach, all specifications in the system.

These objectives can be formally defined as follows: Do there exist two processes for the process descriptions
P1

1 ¨ P1 and P1
2 ¨ P2, such that the following conditions hold for all fair schedulers C:

piq rrP1
1||P

1
2||Css æ pSY Iq |ù φ1^φ2,

piiq rrP1
1||P2||Css æ pSY Iq |ù φ2 Ñ φ1 and

piiiq rrP1||P1
2||Css æ pSY Iq |ù φ1 Ñ φ2?

2.3.3. Constraint-Based Bounded Synthesis

Schewe and Finkbeiner [31] defined in 2007 a constraint-based method to semi-decide the synthesis problem
for reactive systems with LTL specifications. They described, based on the universal co-Büchi automata of
the LTL-specification, a constraint-based transition system which is represented by uninterpreted functions.

To translate the LTL-specification into a universal co-Büchi automaton, the specification φ is first negated.
Afterwards, φ is translated into a non-deterministic Büchi automaton A1 � pQ,2Prop,∆,Q0,Fq. This
constructed Büchi automaton is interpreted as a universal co-Büchi automaton A2 � pQ,2Prop,∆,Q0,QzFq by
interpreting the final states of Ai as rejecting states and the non-final states as accepting states. Consequently,
to fulfil the acceptance condition, the final states must not be visited infinitely often.

The transition relation ∆ of the universal co-Büchi automaton is used to construct the constraint system. For
this construction we define the SMT-encoding function SMTpS, I,τ,∆q that takes the following arguments:

• S is a set of states of the system. A state is defined by the valuation of the global, local and memory
variables of the process

• I is a set of input variables

• τ is an uninterpreted transition function: 2S�2I Ñ 2S

• ∆� Q�2SYI�Q is the transition relation of the universal co-Büchi automaton

16

2.3. Synthesis

Additionally we define the uninterpreted functions

• λB : 2Q�2S Ñ B, which maps a pair of states to true iff the state in the universal co-Büchi automaton
corresponds to the state in the process and

• λ7 : 2Q�2S Ñ N, which assigns a natural number to a pair.

Furthermore we are using the � operator as a placeholder, which stands for ”¡ ” if the endstate (q1) of the
transition in the universal co-Büchi automaton is rejecting and ”¥ ” if the endstate is accepting.

Using these functions, components and the �-operator, it is possible to define the SMT-encoding function
SMTpS, I,τ,∆q in the following way: SMTpS, I,τ,∆q �

λBpq0,s0q^
©

pq,cond,q1qP∆

©
sP2S

©
iP2I

λBpq,sq^ i^ s^ condÑ λBpq1,τps, iqq^λ#pq1,τps, iqq � λ#pq,sq

Intuitively, the SMT-encoding assigns the states of the universal co-Büchi automaton to the states of the
processes. The enumeration of the process-states ensures that each state a rejecting state of the universals
co-Büchi automaton is assigned to, is not visited infinitely often during an execution of the process. It is
only possible to visit a state infinitely often during an execution if the transition relation contains a cycle
that contains this state. The ¡-operator ensures that such a cycle is not possible.

17

18

Chapter 3
Bounded Assume-Guarantee Synthesis

This chapter describes how the the AGS problem is solved using bounded synthesis.

3.1. Constraint based AGS

As described in Section 2.3.2.3 the AGS-problem is defined as following: Do there exist two processes for
the given process descriptions P1

1 ¨ P1 and P1
2 ¨ P2, such that the following conditions are valid for all fair

schedulers:

piq rrP1
1||P

1
2||Css æpSYIq|ù φ1^φ2,

piiq rrP1
1||P2||Css æpSYIq|ù φ2 Ñ φ1 and

piiiq rrP1||P1
2||Css æpSYIq|ù φ1 Ñ φ2

Our constraint-based approach to solve the AGS-problem is based on the bounded synthesis encoding
described in Section 2.3.3. As shown in Figure 3.1, we firstly negate the AGS conditions. These conditions
are afterwards translated into universal co-Büchi automata.

These automata are afterwards SMT-encoded using the SMT-encoding function of the bounded synthesis
approach. As this approach only handles systems containing a single process, we extend the algorithm
by redefining the state space, the inputs and the τ-function to handle two processes and the scheduler.
Furthermore, this refinement allows us to define private inputs and variables as well as global inputs and
variables.

Consequently, the encoding of the AGS-constraints argues about three different state spaces: Two state
spaces represent the synthesized process and the other state space represents the combined state space of the
two processes. This state space defines the whole system given the two synthesized processes. Consistency
throughout the various state spaces is maintained by utilizing the transition functions of each state space.

19

Chapter 3. Bounded Assume-Guarantee Synthesis

Negate AGS
condition formulas

Construct universal
co-Büchi automata

Build con-
straint system Solvable? Construct program

Add new mem-
ory variables

Maximum num-
ber of memory

variables?

Specification is
not realisable with
the given bound

yes

no

no yes

Figure 3.1.: AGS overview

The transition functions of each individual process describes the state-transitions for this process. The
transition functions of the combined processes are, however, more elaborate. This function takes process
scheduling into consideration: For each state within the combined process, transitions are defined for each
possible scheduler decision.

If the resulting constraint system is satisfiable, a model of this solution can be used to construct automatically
the code of the processes. In particular, the model of the transition function can be used to model the process
logic.

However, if the resulting constraint system is not satisfiable, it is possible to add memory variables. These
memory variables cause the extension of the state space but are not used in the process specification of
the system designer. Because of the additional variables, the transition function can use these variables
freely and can for example define counter variables. In contrast to cooperative co-synthesis, these memory
variables have to be private for each process, as the specification does not argue about these variables.
Therefore, the processes can set these variables freely and the other process cannot rely on the valuation of
the variable.

Example 1. As an example to show the usage of the memory variables, consider the case where the
specifications of both processes state that a bit has to be flipped in every second tick and stay the same
otherwise. This system is only realisable if memory variables are added. A possibility to construct the
system is to use a memory bit as a counter that only counts to 1. If the memory bit is 1, the other bit can be
flipped at the next tick, otherwise the bit stays the same. A possible trace would be:

global variable 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 ...
memory variable 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...

Table 3.1.: Trace of example 1

The following section describes the redefined synthesizing method for each AGS condition in detail.

Example 2. As a running example, consider the following specification of a system: Let r be the global
input, g the global output, m the private variable of the first process and p the private variable of the second
process.

The specification of the first process is to eventually set the global variable g permanently to true if the
system receives a request r.

20

3.2. Conditions

In contrast to the global variable g, the private variable m of the first process is independent of the request.
Eventually, this variable has to be set to false permanently.

The specification of the second process defines the global variable like the first process. Additionally, it
specifies the private variable p that has also to be always true after a certain point in the execution if the
system receives a request r.

The two process-specification are formulated with LTL as follows:

• Specification for the first process: GpprÑ FpGgqq^FpG mqq

• Specification for the second process: GprÑ pFpGpg^ pqqqq

Additionally, the scheduler is defined as an input variable c that is true if the first process is scheduled and
false if the the second process is scheduled. The fairness condition to ensure that every process is scheduled
infinitely often can be described in LTL as GpFc^F cq. Furthermore all variables are initialized to false.

3.2. Conditions

3.2.1. First condition

The first condition prrP1
1||P

1
2||Css æpSYIq|ù φ1^ φ2q defines that the synthesized processes have to fulfil

the given LTL specifications. This condition also defines the cooperative co-synthesis problem for this
specification.

However, to construct the constraint system for this condition, we firstly have to translate the condition into
a universal co-Büchi automaton. Since LTL-formulas can be translated into universal co-Büchi automata,
we define the following formula, where φi defines the specifications of the processes and f the specification
of the fair scheduler:

f Ñ pφ1^φ2q

This LTL-formula is translated into a universal co-Büchi automaton, which rejects a run if there exists a
point in the execution of the automaton where at least one specification of a process is not fulfilled, even
though the scheduler is fair.

Figure 3.2 shows the universal co-Büchi automaton for Example 2. As the fairness condition blows up the
universal co-Büchi automaton without adding necessary information to understand the example, Figure 3.2
does not contain the fairness condition. The automaton that contains the fairness condition can be found in
the Appendix in Figure A.1.

The left branch of the minimized automaton defines the behaviour of the variables which are influenced by
the input, whereas the right branch defines the behaviour of the private variable of the first process, which is
independent from the input. The automaton accepts an execution if the system never receives a request and
m is set accordingly. If the system receives a request also the private variable p and the global variable g
have to be eventually set to true, to fulfil the specification. The construction of the system is possible if the
rejecting states in the universal co-Büchi automaton are not visited infinitely often. As it is not possible for

21

Chapter 3. Bounded Assume-Guarantee Synthesis

1start

2 3

4 5

r

true

true

g^ p

 g_pg^ pq

 m

m

 g_pg^ pq

g^ p

m

 m

Figure 3.2.: Simplified universal co-Büchi automaton of the first AGS-constraint for Example 2

the system to influence the input variables or the scheduler, the private and global variables have to be set
accordingly.

To translate the universal co-Büchi automaton into the constraint system we use the SMT-encoding function
SMTpS1YS2,pIg, I1, I2,Cq,τ1121 ,∆1q of the bounded synthesis approach and define the arguments accord-
ingly:

• S is the compound state space and S1 and S2 are the state spaces of the processes. A state is defined
by the valuation of the global variables G, the local variables Li and the memory variables Mi of each
process.

• Ig is a set of global input variables and I1 and I2 are sets of private process-input variables, i.e.
Si � GYLiYMi

• c is the scheduler variable, which is seen by the system as an input variable but is handled in the
transition function separately.

• τ1121 is an uninterpreted function which defines the transition function of the system. Based on the
scheduler and the current valuation of the input variables, it defines for each state the subsequent
states: 2S1YS2�2I�2C Ñ 2S1YS2 . To define these states, the function uses the uninterpreted functions
τ1 and τ2, which define the transition relation of the processes of P1

1 and P1
2. The function is defined as

follows:

τ1121ps,pig, i1, i2,cqq �

$&
%

τ1ps æGYL1YM1 , igY i1qYps æL2YM2q if c� 1

τ2ps æGYL2YM2 , igY i2qYps æL1YM1q if c� 2

Intuitively this function updates the global variables, the private variables and the memory variables of
P1 and copies the private and memory variables of the second process if the first process is scheduled,
and vice versa if the second process is scheduled.

22

3.2. Conditions

• ∆1 is the transition relation of the universal co-Büchi automaton for f Ñ pφ1^φ2q

The combined state space in Example 2 is defined by the valuation of the variables p, m and g. The state
space of the first process is defined by the valuation of the global variable g and the private variable m. The
valuations of the global variable g and the private variable p define the state space of the second process.
The input is defined by the variable r and the scheduler variable c.

Listing 3.1 shows the constraints for the this AGS condition for the minimized Example 2. The first line
specifies a set of all possible valuations of the global input. The next line describes the combined state space
of the system. The state spaces of the processes are implicitly defined by their transition functions. The
third line defines the start evaluation. The lines 4 to 14 are the SMT-encoded transitions of the universal
co-Büchi automaton.

Listing 3.1: Constraint-system of the first minimized universal co-Büchi automaton of Example 2

1 Ig � tr, r̄u
2 S� tgmp, ḡmp,gm̄p,gmp̄, ḡm̄p,gm̄p̄, ḡmp̄, ḡm̄p̄u
3 λBpq1, ḡm̄p̄q
4 @s P S.@i P Ig. λBpq1,sq ÑλBpq1,τ1121 ps,pi,1qqq^λ#pq1,τ1121 ps,pi,1qqq ¥ λ#pq1,sq^

λBpq1,τ1121 ps,pi,2qqq^λ#pq1,τ1121 ps,pi,2qqq ¥ λ#pq1,sq

5 @s P S.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq2,τ1121 ps,pi,1qqq^λ#pq2,τ1121 ps,pi,1qqq ¡ λ#pq1,sq^

λBpq2,τ1121 ps,pi,2qqq^λ#pq2,τ1121 ps,pi,2qqq ¡ λ#pq1,sq

6 @s P S.@i P Ig. λBpq1,sq ÑλBpq3,τ1121 ps,pi,1qqq^λ#pq3,τ1121 ps,pi,1qqq ¡ λ#pq1,sq^

λBpq3,τ1121 ps,pi,2qqq^λ#pq3,τ1121 ps,pi,2qqq ¡ λ#pq1,sq

7 @s P S.@i P Ig. λBpq2,sq^ s^ i^p g_pg^ pqq ÑλBpq2,τ1121 ps,pi,1qqq^λ#pq2,τ1121 ps,pi,1qqq ¡ λ#pq2,sq^

λBpq2,τ1121 ps,pi,2qqq^λ#pq2,τ1121 ps,pi,2qqq ¡ λ#pq2,sq

8 @s P S.@i P Ig. λBpq2,sq^ s^ i^pg^ pqq ÑλBpq4,τ1121 ps,pi,1qqq^λ#pq4,τ1121 ps,pi,1qqq ¥ λ#pq2,sq^

λBpq4,τ1121 ps,pi,2qqq^λ#pq4,τ1121 ps,pi,2qqq ¥ λ#pq2,sq

9 @s P S.@i P Ig. λBpq3,sq^ s^ i^mÑλBpq3,τ1121 ps,pi,1qqq^λ#pq3,τ1121 ps,pi,1qqq ¡ λ#pq3,sq^

λBpq3,τ1121 ps,pi,2qqq^λ#pq3,τ1121 ps,pi,2qqq ¡ λ#pq3,sq

10 @s P S.@i P Ig. λBpq3,sq^ s^ i^ mÑλBpq5,τ1121 ps,pi,1qqq^λ#pq5,τ1121 ps,pi,1qqq ¥ λ#pq3,sq^

λBpq5,τ1121 ps,pi,2qqq^λ#pq5,τ1121 ps,pi,2qqq ¥ λ#pq3,sq

11 @s P S.@i P Ig. λBpq4,sq^ s^ i^pg^ pq ÑλBpq4,τ1121 ps,pi,1qqq^λ#pq4,τ1121 ps,pi,1qqq ¥ λ#pq4,sq^

λBpq4,τ1121 ps,pi,2qqq^λ#pq4,τ1121 ps,pi,2qqq ¥ λ#pq4,sq

12 @s P S.@i P Ig. λBpq4,sq^ s^ i^p g_pg^ pqq ÑλBpq2,τ1121 ps,pi,1qqq^λ#pq2,τ1121 ps,pi,1qqq ¡ λ#pq4,sq^

λBpq2,τ1121 ps,pi,2qqq^λ#pq2,τ1121 ps,pi,2qqq ¡ λ#pq4,sq

13 @s P S.@i P Ig. λBpq5,sq^ s^ i^ mÑλBpq5,τ1121 ps,pi,1qqq^λ#pq5,τ1121 ps,pi,1qqq ¥ λ#pq5,sq^

λBpq5,τ1121 ps,pi,2qqq^λ#pq5,τ1121 ps,pi,2qqq ¥ λ#pq5,sq

14 @s P S.@i P Ig. λBpq5,sq^ s^ i^mÑλBpq3,τ1121 ps,pi,1qqq^λ#pq3,τ1121 ps,pi,1qqq ¡ λ#pq5,sq^

λBpq3,τ1121 ps,pi,2qqq^λ#pq3,τ1121 ps,pi,2qqq ¡ λ#pq5,sq

3.2.2. Second condition

The second constraint prrP1
1||P2||Css æpSYIq|ù φ2 Ñ φ1q ensures that P1

1 is robust and is therefore able to
react on all possible processes which fulfil the specification for the second process. This is ensured as the
constraint does not argue about the second process itself but about the process description. Therefore the
transition relation is not fixed and P1

1 has to be able to react on all possible behaviours of the second process

23

Chapter 3. Bounded Assume-Guarantee Synthesis

1start 2

3

45

6

7

 r

 r

r

 r^m

 r^ m

r^ m
r^m

 r^m

r^m
r^ m

 r^ m

m
 m

g^m^ p

true

g^ p

g^ m^ p

g^m^ p

g^m^ p

g^ m^ p

Figure 3.3.: Simplified universal co-Büchi automaton of the second AGS-constraint for Example 2

that fulfil its specification. This restriction is caused by the implication which ensures that the constraint is
valid if the specification φ2 is not fulfilled even though P1

1 may not fulfil its specification. This condition
allows the designer to exchange the second process in the system with another process that also fulfils the
specification φ2.

Like for the first condition, we translate the LTL specification into a universal co-Büchi automaton. Here, φi

also defines the specifications of the processes and f defines the fair scheduler. The resulting LTL-formula is
encoded as follows:

f Ñ pφ2 Ñ φ1q

Figure 3.3 shows the universal co-Büchi automaton for example 2 of this second constraint. Like above,
to keep the figure simple, the universal co-Büchi automaton does not consider the fairness condition. A
universal co-Büchi automaton including the fairness condition can be found in the Appendix in Figure A.2

As both processes have the same specification for the global variable, the universal co-Büchi automaton

24

3.2. Conditions

mainly argues about the private variable m. State 2 rejects a run if the system does not send a request and
the private variable m is eventually not permanently set to false. The other rejecting state is state 6. Here the
automaton rejects a run if the system receives a request and sets the variables g and p accordingly but the
variable m is not eventually set permanently to false. Please note that due to the implication there does not
exist a rejecting state where m is set correctly but g or p are not set accordingly.

To encode the universal co-Büchi automaton, we are also using the SMT-encoding function
SMTpS,pIg, I1,S12,Cq,τ112,∆2q of the bounded synthesis approach. The components S, Ig, I1 and C are defined
as above. ∆2 is the transition relation of the universal co-Büchi automaton for the formula f Ñ pφ1 Ñ φ2q.
S12 are inputs defining the new values of the state variables of P2. The function τ112, also defines for each
state the subsequent state: 2S1YS2 � 2IgYI1YS1

2YC Ñ 2S1YS2 . Using the uninterpreted function τ1 it can be
defined in the following way:

τ112ps,pig, i1,s
1,cqq �

$&
%

τ1ps æGYL1YM1 , igY i1qY s æL2YM2 if c� 1

s æL1YM1 Ys1 æGYL2YM2 if c� 2
.

Like the function of the first constraint, τ112 updates the global variables and the local variables of the first
process if this process was scheduled. But in contrast to the τ1121 of the first constraint, the variables of the
second process are not updated according to the transition system of the second process. Instead they are
updated with fresh input variables. Therefore, the first process has to react on all possible valuations of s1 if
the valuation does not contradict the specification of the second process.

Listing 3.2 shows the SMT-encoding of the universal co-Büchi automaton in Figure 3.3. As in Listing 3.1,
the first two lines specify all possible valuations of the input and the combined state space. The third line
defines the fresh input variables for the transition function τ112. Line four defines the start valuation. The
other lines are the SMT-encoded transitions of the universal co-Büchi automaton.

Listing 3.2: Constraint-system of the simplified universal co-Büchi automaton of Figure 3.3

1 Ig � tr, r̄u
2 S� tgmp, ḡmp,gm̄p,gmp̄, ḡm̄p,gm̄p̄, ḡmp̄, ḡm̄p̄u
3 S1 � tgp, ḡp,gp̄, ḡ p̄u
4 λBpq1, ḡm̄p̄q
5 @s P S.@s1 P S1.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq1,τ112ps,pi,s

1,1qqq^λ#pq1,τ112ps,pi,s
1,1qq ¥ λ#pq1,sq^

λBpq1,τ112ps,pi,s
1,2qqq^λ#pq1,τ112ps,pi,s

1,2qq ¥ λ#pq1,sq

6 @s P S.@s1 P S1.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq2,τ112ps,pi,s
1,1qqq^λ#pq2,τ112ps,pi,s

1,1qq ¡ λ#pq1,sq^

λBpq2,τ112ps,pi,s
1,2qqq^λ#pq2,τ112ps,pi,s

1,2qq ¡ λ#pq1,sq

7 @s P S.@s1 P S1.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq5,τ112ps,pi,s
1,1qqq^λ#pq5,τ112ps,pi,s

1,1qq ¥ λ#pq1,sq^

λBpq5,τ112ps,pi,s
1,2qqq^λ#pq5,τ112ps,pi,s

1,2qq ¥ λ#pq1,sq

8 @s P S.@s1 P S1.@i P Ig. λBpq2,sq^ s^ i^p r^mq ÑλBpq2,τ112ps,pi,s
1,1qqq^λ#pq2,τ112ps,pi,s

1,1qq ¡ λ#pq2,sq^

λBpq2,τ112ps,pi,s
1,2qqq^λ#pq2,τ112ps,pi,s

1,2qq ¡ λ#pq2,sq

9 @s P S.@s1 P S1.@i P Ig. λBpq2,sq^ s^ i^p r^ mq ÑλBpq3,τ112ps,pi,s
1,1qqq^λ#pq3,τ112ps,pi,s

1,1qq ¥ λ#pq2,sq^

λBpq3,τ112ps,pi,s
1,2qqq^λ#pq3,τ112ps,pi,s

1,2qq ¥ λ#pq2,sq

10 @s P S.@s1 P S1.@i P Ig. λBpq2,sq^ s^ i^pr^ mq ÑλBpq4,τ112ps,pi,s
1,1qqq^λ#pq4,τ112ps,pi,s

1,1qq ¥ λ#pq2,sq^

λBpq4,τ112ps,pi,s
1,2qqq^λ#pq4,τ112ps,pi,s

1,2qq ¥ λ#pq2,sq

25

Chapter 3. Bounded Assume-Guarantee Synthesis

11 @s P S.@s1 P S1.@i P Ig. λBpq2,sq^ s^ i^pr^mq ÑλBpq5,τ112ps,pi,s
1,1qqq^λ#pq5,τ112ps,pi,s

1,1qq ¥ λ#pq2,sq^

λBpq5,τ112ps,pi,s
1,2qqq^λ#pq5,τ112ps,pi,s

1,2qq ¥ λ#pq2,sq

12 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^p r^ mq ÑλBpq3,τ112ps,pi,s
1,1qqq^λ#pq3,τ112ps,pi,s

1,1qq ¥ λ#pq3,sq^

λBpq3,τ112ps,pi,s
1,2qqq^λ#pq3,τ112ps,pi,s

1,2qq ¥ λ#pq3,sq

13 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^p r^mq ÑλBpq2,τ112ps,pi,s
1,1qqq^λ#pq2,τ112ps,pi,s

1,1qq ¡ λ#pq3,sq^

λBpq2,τ112ps,pi,s
1,2qqq^λ#pq2,τ112ps,pi,s

1,2qq ¡ λ#pq3,sq

14 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^pr^ mq ÑλBpq4,τ112ps,pi,s
1,1qqq^λ#pq4,τ112ps,pi,s

1,1qq ¥ λ#pq3,sq^

λBpq4,τ112ps,pi,s
1,2qqq^λ#pq4,τ112ps,pi,s

1,2qq ¥ λ#pq3,sq

15 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^pr^mq ÑλBpq5,τ112ps,pi,s
1,1qqq^λ#pq5,τ112ps,pi,s

1,1qq ¥ λ#pq3,sq^

λBpq5,τ112ps,pi,s
1,2qqq^λ#pq5,τ112ps,pi,s

1,2qq ¥ λ#pq3,sq

16 @s P S.@s1 P S1.@i P Ig. λBpq4,sq^ s^ i^ mÑλBpq4,τ112ps,pi,s
1,1qqq^λ#pq4,τ112ps,pi,s

1,1qq ¥ λ#pq4,sq^

λBpq4,τ112ps,pi,s
1,2qqq^λ#pq4,τ112ps,pi,s

1,2qq ¥ λ#pq4,sq

17 @s P S.@s1 P S1.@i P Ig. λBpq4,sq^ s^ i^mÑλBpq5,τ112ps,pi,s
1,1qqq^λ#pq5,τ112ps,pi,s

1,1qq ¥ λ#pq4,sq^

λBpq5,τ112ps,pi,s
1,2qqq^λ#pq5,τ112ps,pi,s

1,2qq ¥ λ#pq4,sq

18 @s P S.@s1 P S1.@i P Ig. λBpq4,sq^ s^ i^pg^m^ pq ÑλBpq6,τ112ps,pi,s
1,1qqq^λ#pq6,τ112ps,pi,s

1,1qq ¡ λ#pq4,sq^

λBpq6,τ112ps,pi,s
1,2qqq^λ#pq6,τ112ps,pi,s

1,2qq ¡ λ#pq4,sq

19 @s P S.@s1 P S1.@i P Ig. λBpq5,sq ÑλBpq5,τ112ps,pi,s
1,1qqq^λ#pq5,τ112ps,pi,s

1,1qq ¥ λ#pq5,sq^

λBpq5,τ112ps,pi,s
1,2qqq^λ#pq5,τ112ps,pi,s

1,2qq ¥ λ#pq5,sq

20 @s P S.@s1 P S1.@i P Ig. λBpq5,sq^ s^ i^pg^ pq ÑλBpq6,τ112ps,pi,s
1,1qqq^λ#pq6,τ112ps,pi,s

1,1qq ¡ λ#pq5,sq^

λBpq6,τ112ps,pi,s
1,2qqq^λ#pq6,τ112ps,pi,s

1,2qq ¡ λ#pq5,sq

21 @s P S.@s1 P S1.@i P Ig. λBpq6,sq^ s^ i^pg^m^ pq ÑλBpq6,τ112ps,pi,s
1,1qqq^λ#pq6,τ112ps,pi,s

1,1qq ¡ λ#pq6,sq^

λBpq6,τ112ps,pi,s
1,2qqq^λ#pq6,τ112ps,pi,s

1,2qq ¡ λ#pq6,sq

22 @s P S.@s1 P S1.@i P Ig. λBpq6,sq^ s^ i^pg^ m^ pq ÑλBpq7,τ112ps,pi,s
1,1qqq^λ#pq7,τ112ps,pi,s

1,1qq ¥ λ#pq6,sq^

λBpq7,τ112ps,pi,s
1,2qqq^λ#pq7,τ112ps,pi,s

1,2qq ¥ λ#pq6,sq

23 @s P S.@s1 P S1.@i P Ig. λBpq7,sq^ s^ i^pg^ m^ pq ÑλBpq7,τ112ps,pi,s
1,1qqq^λ#pq7,τ112ps,pi,s

1,1qq ¥ λ#pq7,sq^

λBpq7,τ112ps,pi,s
1,2qqq^λ#pq7,τ112ps,pi,s

1,2qq ¥ λ#pq7,sq

24 @s P S.@s1 P S1.@i P Ig. λBpq7,sq^ s^ i^pg^m^ pq ÑλBpq6,τ112ps,pi,s
1,1qqq^λ#pq6,τ112ps,pi,s

1,1qq ¡ λ#pq7,sq^

λBpq6,τ112ps,pi,s
1,2qqq^λ#pq6,τ112ps,pi,s

1,2qq ¡ λ#pq7,sq

3.2.3. Third constraint

The third constraint rrP1||P1
2||Css æ pSY Iq |ù φ1 Ñ φ2 ensures the robustness of P1

2 like the second constraint
for P1

1. Also here the process description is used to ensure the robustness and the implication restricts the
freedom of the valuations.

As above, the LTL specification is translated into a universal co-Büchi automaton. Like before, f defines the
fair scheduler and φi defines the specification of process i. Therefore, the LTL-formula can be defined as
follows:

f Ñ pφ1 Ñ φ2q

Figure 3.4 shows the universal co-Büchi automaton for this constraint of example 2. Also here, we neglect
the fairness condition to keep the automaton simple. The whole automaton can be found in the Appendix in
Figure A.3.

26

3.2. Conditions

1start

2

3

4

 r

r

true

g^ m

g^ p^ m

g^ p^ m

g^ p^ m

g^ p^ m

Figure 3.4.: Simplified universal co-Büchi automaton of the third AGS-constraint for Example 2

The simplified automaton only rejects a run if the private variable p is not set accordingly. Because of the
implication, an invalid valuations of the global variable g and the private variable m do not lead to failing
runs. Therefore the only rejecting state is state three, where all variables but the private variable p are set
correctly.

Like the transition functions of the first and second constraint, the transition function τ121 updates the
variables in the combined state space by defining the relation.

τ121ps,pig, i2,s1,cqq �

$&
%
ps1 æGYL1YM1qYps æL2YM2q if c� 1

ps æL1YM1qY τ2ps æGYL2YM2 , igY i2q if c� 2

Intuitively this function updates the state space according to the transition function of the second process if
this process was scheduled. Otherwise the variables of the second process stay the same and the variables of
the first process and the global variables are set to the value of fresh input variables s1, as long as they do not
contradict the specification of the first process.

Using this function the transitions can be encoded using the SMT-encoding function SMTpS12, IgY I2YCY

S11,τ121 ,∆3q, where S12 is the combined state space, Ig is defined as the global input and I2 is the input of
the second process, S11 contains fresh inputs defining the new state of the first process and ∆3 is a set of
transitions of the current universal co-Büchi automaton.

The SMT-encoding of the simplified automaton can be found in Listing 3.3. As above, the first four sates
define all possible valuations of the global input variable, the combined state space, all valuations of the
fresh input variables and the start valuation. Compared to the listing above, the fresh input variables
represent arbitrary valuations for the global variables and the private variable of the first process. Line 5 - 12

27

Chapter 3. Bounded Assume-Guarantee Synthesis

represent the SMT-encoding of the transitions of the universal co-Büchi automaton in Figure 3.4. As the
forall-quantifier only argue about finite sets of assignments, the formula is decidable.

Listing 3.3: Constraint-system of the simplified universal co-Büchi automaton of Figure 3.4

1 Ig � tr, r̄u
2 S� tgmp, ḡmp,gm̄p,gmp̄, ḡm̄p,gm̄p̄, ḡmp̄, ḡm̄p̄u
3 S1 � tgm, ḡm,gm̄, ḡm̄u
4 λBpq1, ḡm̄p̄q
5 @s P S.@s1 P S1.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq1,τ121 ps,pi,s1,1qqq^λ#pq1,τ121 ps,pi,s1,1qq ¥ λ#pq1,sq^

λBpq1,τ121 ps,pi,s1,2qqq^λ#pq1,τ121 ps,pi,s1,2qq ¥ λ#pq1,sq

6 @s P S.@s1 P S1.@i P Ig. λBpq1,sq^ s^ i^ rÑλBpq2,τ121 ps,pi,s1,1qqq^λ#pq2,τ121 ps,pi,s1,1qq ¥ λ#pq1,sq^

λBpq2,τ121 ps,pi,s1,2qqq^λ#pq2,τ121 ps,pi,s1,2qq ¥ λ#pq1,sq

7 @s P S.@s1 P S1.@i P Ig. λBpq2,sq ÑλBpq2,τ121 ps,pi,s1,1qqq^λ#pq2,τ121 ps,pi,s1,1qq ¥ λ#pq2,sq^

λBpq2,τ121 ps,pi,s1,2qqq^λ#pq2,τ121 ps,pi,s1,2qq ¥ λ#pq2,sq

8 @s P S.@s1 P S1.@i P Ig. λBpq2,sq^ s^ i^pg^ mq ÑλBpq3,τ121 ps,pi,s1,1qqq^λ#pq3,τ121 ps,pi,s1,1qq ¡ λ#pq2,sq^

λBpq3,τ121 ps,pi,s1,2qqq^λ#pq3,τ121 ps,pi,s1,2qq ¡ λ#pq2,sq

9 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^pg^ p^ mq ÑλBpq3,τ121 ps,pi,s1,1qqq^λ#pq3,τ121 ps,pi,s1,1qq ¡ λ#pq3,sq^

λBpq3,τ121 ps,pi,s1,2qqq^λ#pq3,τ121 ps,pi,s1,2qq ¡ λ#pq3,sq

10 @s P S.@s1 P S1.@i P Ig. λBpq3,sq^ s^ i^pg^ p^ mq ÑλBpq4,τ121 ps,pi,s1,1qqq^λ#pq4,τ121 ps,pi,s1,1qq ¥ λ#pq3,sq^

λBpq4,τ121 ps,pi,s1,2qqq^λ#pq4,τ121 ps,pi,s1,2qq ¥ λ#pq3,sq

11 @s P S.@s1 P S1.@i P Ig. λBpq4,sq^ s^ i^pg^ p^ mq ÑλBpq4,τ121 ps,pi,s1,1qqq^λ#pq4,τ121 ps,pi,s1,1qq ¥ λ#pq4,sq^

λBpq4,τ121 ps,pi,s1,2qqq^λ#pq4,τ121 ps,pi,s1,2qq ¥ λ#pq4,sq

12 @s P S.@s1 P S1.@i P Ig. λBpq4,sq^ s^ i^pg^ p^ mq ÑλBpq3,τ121 ps,pi,s1,1qqq^λ#pq3,τ121 ps,pi,s1,1qq ¡ λ#pq4,sq^

λBpq3,τ121 ps,pi,s1,2qqq^λ#pq3,τ121 ps,pi,s1,2qq ¡ λ#pq4,sq

3.3. Program construction

If the SMT solver is able find a model for the transition relations that fulfil the specification of the processes,
this model can be used to construct the program. The transition function τ1121 can be used to construct
the whole system at once. The more relevant transition functions are τ1 and τ2, as these functions define
the transitions for the processes. Therefore, these transition functions can be translated into an arbitrary
language.

Listing 3.4 shows a model and Figure 3.5 shows a graphical model for the transition function τ1 of Example
2 in SMT-LIB format 2.0 [4]. Here the define-function routine defines the function named tau p1 which
takes the current state of the state space of process 1, the current valuation of the global input variables and
the current valuation of the private input variables as parameters. As the specification defines no private
input, the value for x!3 is empty in every case. The function mkStateP1 constructs a state with the valuations
of the global variable g an the private variable p.

Intuitively the SMT-solver constructs a model where the private variable m is set to false in every case.
Furthermore, it sets the global variable g to false if g is false in the current state and the system did not
receive a request. As our initial specification was GpprÑ FpGpgqqq^FpGp mqqq this model fulfils this
specification. Another possible model would be, if g is set, independent from the request, to true and m is
always set to false.

28

3.3. Program construction

gm

 gm

g m

 g m

true

 r

r

true

 r

r

Figure 3.5.: Graphical model for the transition function τ1. Only the red nodes are reachable by the system.

Listing 3.4: Model for the transition function τ1

1 (def ine�fun t a u p 1 ((x !1 S t a t e P 1) (x !2 G l o b a l I n p u t) (x !3 P 1 I n p u t)) S t a t e P 1
2 (i t e (and (= x !1 (mkSta teP1 (g t r u e) (m t r u e)))
3 (= x !2 (r t r u e))
4 (= x !3 ()))
5 (mkSta teP1 (g t r u e) (m f a l s e))
6 (i t e (and (= x !1 (mkSta teP1 (g t r u e) (m t r u e)))
7 (= x !2 (r f a l s e))
8 (= x !3 ()))
9 (mkSta teP1 (g t r u e) (m f a l s e))

10 (i t e (and (= x !1 (mkSta teP1 (g f a l s e) (m t r u e)))
11 (= x !2 (r t r u e))
12 (= x !3 ()))
13 (mkSta teP1 (g t r u e) (m t r u e))
14 (i t e (and (= x !1 (mkSta teP1 (g f a l s e) (m t r u e)))
15 (= x !2 (r f a l s e))
16 (= x !3 ()))
17 (mkSta teP1 (g f a l s e) (m f a l s e))
18 (i t e (and (= x !1 (mkSta teP1 (g t r u e) (m f a l s e)))
19 (= x !2 (r t r u e))
20 (= x !3 ()))
21 (mkSta teP1 (g t r u e) (m f a l s e))
22 (i t e (and (= x !1 (mkSta teP1 (g t r u e) (m f a l s e)))
23 (= x !2 (r f a l s e))
24 (= x !3 ()))
25 (mkSta teP1 (g t r u e) (m f a l s e))
26 (i t e (and (= x !1
27 (mkSta teP1 (g f a l s e) (m f a l s e)))
28 (= x !2 (r t r u e))
29 (= x !3 ()))
30 (mkSta teP1 (g t r u e) (m f a l s e))
31 (i t e (and (= x !1
32 (mkSta teP1 (g f a l s e) (m f a l s e)))
33 (= x !2 (r f a l s e))
34 (= x !3 ()))
35 (mkSta teP1 (g f a l s e) (m f a l s e))
36 (mkSta teP1 (g t r u e) (m f a l s e)))))))))))
37)

Listing 3.5 shows a model and Figure 3.6 shows a graphical model for the transition function of the second
process. This process should fulfil the specification GprÑ pFpGpg^ pqqqq.

29

Chapter 3. Bounded Assume-Guarantee Synthesis

 gp

 g p

gp

g p

true

true

true

true

Figure 3.6.: Graphical model for the transition function τ2. Only the red nodes are reachable by the system.

While the model for the first process is straightforward, this model is more interesting. Intuitively, the model
sets the global variable g and the local variable p always to true except for two cases: If the global variable
is false, the local variable is true and the system

• receives or

• does not receive

a request. If either the variables are set to true, or if the system does not receives a request, the specification
is fulfilled directly by the model. The case that sets the private variable to true and the global variable to
false if the system receives a request and the current global variable is set to false and the current local
variable is set to true, does not fulfil the specification by its own. However, if we consider the specified start
valuation, the specification of the other process and the remaining model of this process, this state can never
be reached.

Listing 3.5: Model for the transition function τ2

1 (def ine�fun t a u p 2 ((x !1 S t a t e P 2) (x !2 G l o b a l I n p u t) (x !3 P 2 I n p u t)) S t a t e P 2
2 (i t e (and (= x !1 (mkSta teP2 (g f a l s e) (p t r u e)))
3 (= x !2 (r t r u e))
4 (= x !3 ()))
5 (mkSta teP2 (g f a l s e) (p t r u e))
6 (i t e (and (= x !1 (mkSta teP2 (g f a l s e) (p t r u e)))
7 (= x !2 (r f a l s e))
8 (= x !3 ()))
9 (mkSta teP2 (g f a l s e) (p t r u e))

10 (i t e (and (= x !1 (mkSta teP2 (g t r u e) (p t r u e)))
11 (= x !2 (r t r u e))
12 (= x !3 ()))
13 (mkSta teP2 (g t r u e) (p t r u e))
14 (i t e (and (= x !1 (mkSta teP2 (g t r u e) (p t r u e)))
15 (= x !2 (r f a l s e))
16 (= x !3 ()))
17 (mkSta teP2 (g t r u e) (p t r u e))
18 (i t e (and (= x !1 (mkSta teP2 (g t r u e) (p f a l s e)))
19 (= x !2 (r f a l s e))
20 (= x !3 ()))
21 (mkSta teP2 (g t r u e) (p t r u e))
22 (i t e (and (= x !1 (mkSta teP2 (g t r u e) (p f a l s e)))
23 (= x !2 (r t r u e))
24 (= x !3 ()))

30

3.3. Program construction

25 (mkSta teP2 (g t r u e) (p t r u e))
26 (i t e (and (= x !1
27 (mkSta teP2 (g f a l s e) (p f a l s e)))
28 (= x !2 (r t r u e))
29 (= x !3 ()))
30 (mkSta teP2 (g t r u e) (p t r u e))
31 (i t e (and (= x !1
32 (mkSta teP2 (g f a l s e) (p f a l s e)))
33 (= x !2 (r f a l s e))
34 (= x !3 ()))
35 (mkSta teP2 (g t r u e) (p t r u e))
36 (mkSta teP2 (g t r u e) (p t r u e)))))))))))

The Listings 3.6 and 3.7 show the deduced pseudo-code of the models above. The transition functions
are used to construct the program logic of the processes and the mkState functions are used to define the
assignments.

31

Chapter 3. Bounded Assume-Guarantee Synthesis

Listing 3.6: Model for the transition function τ1

1 do{
2 i f (g && m && r) {
3 g = t r u e ;
4 m = f a l s e ;
5 } e l s e i f (g && m && ! r) {
6 g = t r u e ;
7 m = f a l s e ;
8 } e l s e i f (! g && m && r) {
9 g = t r u e ;

10 m = f a l s e ;
11 } e l s e i f (! g && m && ! r) {
12 g = f a l s e ;
13 m = f a l s e ;
14 } e l s e i f (g && !m && r) {
15 g = t r u e ;
16 m = f a l s e ;
17 } e l s e i f (g && !m && ! r) {
18 g = t r u e ;
19 m = f a l s e ;
20 } e l s e i f (! g && !m && r) {
21 g = t r u e ;
22 m = f a l s e ;
23 } e l s e i f (! g && !m && ! r) {
24 g = f a l s e ;
25 m = f a l s e ;
26 } e l s e {
27 g = t r u e ;
28 m = f a l s e ;
29 }
30 } whi le (t r u e)

Listing 3.7: Model for the transition function τ2

1 do{
2 i f (! g && p && r) {
3 g = f a l s e ;
4 p = t r u e ;
5 } e l s e i f (! g && p && ! r) {
6 g = f a l s e ;
7 p = t r u e ;
8 } e l s e i f (g && p && r) {
9 g = t r u e ;

10 p = t r u e ;
11 } e l s e i f (g && p && ! r) {
12 g = t r u e ;
13 p = t r u e ;
14 } e l s e i f (g && ! p && ! r) {
15 g = t r u e ;
16 p = t r u e ;
17 } e l s e i f (g && ! p && r) {
18 g = t r u e ;
19 p = t r u e ;
20 } e l s e i f (! g && ! p && r) {
21 g = t r u e ;
22 p = t r u e ;
23 } e l s e i f (! g && ! p && ! r) {
24 g = t r u e ;
25 p = t r u e ;
26 } e l s e {
27 g = t r u e ;
28 p = t r u e ;
29 }
30 } whi le (t r u e)

32

Chapter 4
Implementation

This section describes our implemented prototype to solve assume-guarantee synthesis problems for LTL
specifications with partial information.

4.1. Overview

The prototype is a commandline tool that synthesizes a pseudocode based on the input file defined by the
system designer. The architecture of the prototype is modular and therefore the prototype can be easily
extended with other synthesis approaches, input formats or output formats. A detailed description of the
design can be found in chapter 4.3.

At the moment, the prototype offers implementations for assume-guarantee synthesis and cooperative
co-synthesis. The user indicates the desired algorithm within the input file. Moreover, this input file is also
used to specify the specifications of the processes and system parameters. The format of the input file is
specified in detail in chapter 4.2.

4.1.1. Program flow

The program starts with analysing and processing the input file. The specifications of the processes are
extracted and the contained information is used to built the co-Büchi automata for the assume-guarantee or
cooperative co-synthesis approach. To construct these automata, the LTL3BA [3] [21] tool is used. LTL3BA
uses the LTL specification as an input and returns the states and transitions of the built automaton as an
output. These states and transitions are afterwards translated into constraint systems. The constraint system
is written in an extended version of the SMT-LIB v2 [4], which can be solved by the Z3 SMT-ü solver. If Z3
is able to find a satisfying model for the constraint system, this model is used to construct a pseudocode of
the processes.

Additional to the pseudocode, the prototype returns statistical information like the runtime of the prototype,
the runtime of Z3, the number of decisions, the number of conflicts and the used memory. These values can
be used to compare the synthesis approaches.

33

Chapter 4. Implementation

4.2. Input

The input file consists of the following two parts:

• The program configuration and the

• the system specification.

Program configuration. The program configuration is used to specify the path to the LTL3BA tool, Z3-
solver and the paths and names for the output files. The LTL3BA tool is used to convert the AGS-conditions
into Büchi automata. The resulting automata are translated by the prototype to a constraint system that is
solved by the Z3 theory solver . The output of Z3 is then parsed and based on its outpu,t example-processes
in pseudocode are produced.

The following mandatory tags are used by the program to specify the values for the program configuration.

• ”-ltl3ba”: path to the LTL3BA application,

• ”-z3”: path to the Z3 theorem solver,

• ”-syn”: synthesis approach to be executed (either ”BoundedSyntesis” or ”AssumeGuaranteeSynthe-
sis”),

• ”-cons”: path of the produced constraint system,

• ”-ba”: path of the produced Büchi automata,

• ”-p1”: output-file for the pseudocode of the first process and

• ”-p2”: output-file for the pseudocode of the second process

System specification. The system specification defines the processes and the inputs of the system to be
synthesized. By specifying the global, local and memory variables, the maximal possible states of the state
space are fixed. To increase the number of possible states it is possible to add new memory variables.

The following parameters are used to describe the processes in the configuration file.

• ”-spec1”: LTL specification of the first process,

• ”-spec2”: LTL specification of the second process,

• ”-glob”: global system-variables with their start values,

• ”-l1”: local variables of the first process and their start values,

• ”-l2”: local variables of the second process and their start values,

• ”-mg”: number of global memory variables,

• ”-m1”: number of memory variables used by the first process,

• ”-m2”: number of memory variables used by the second process,

• ”-ig”: global input variables of the system,

34

4.3. Software Design

• ”-i1”: local input variables of the first process and

• ”-i2”: local input variables of the second process.

The configuration file of example 2 would be:

-ltl3ba "path//ltl3ba.exe"

-z3 "path//z3.exe"

-syn BoundedSynthesis

-cons "path//cons.smt2"

-ba "path//automaton.dot"

-p1 "path//process1"

-p2 "path//process2"

-spec1 (r->F(G(g)))&&F(!m)

-spec2 r->(F(G(g))&&(F(G(p))))

-glob g:false

-l1 m:false

-l2 p:false

-ig r

4.3. Software Design

The prototype is written in C#. The design is modular and therefore allows the programmer to easily add
new features and algorithms. Figure 4.1 shows a class diagram describing the structure of the program. In
order to keep the diagram simple, only the most relevant classes and public methods are included. Moreover,
class-attributes and subordinate helper classes are not displayed.

Config package The purpose of the config package is to parse the input file and to prepare the data. These
tasks are executed by the two classes Parser and Config. The parser reads the input file and sets the
appropriate attributes in the Config class. The Config file is implemented as singleton to be accessible
throughout all classes. It is used to provide information like program paths or specification details for the
other classes.

Automata package The automata package handles the co-Büchi automata. The class UCTAutomaton

prepares, in particular negates, the provided specification formula and calls the LTL3BA application.
Afterwards, the class parses the resulting automaton. The automaton is represented as a list containing the
transitions as UCTTransistion. Furthermore, the UCTAutomaton class also provides methods to write the
automaton and to create a DOT representation.

Synthesis The synthesis package comprises the program logic. In the prototype, this package contains
the algorithms for assume-guarantee and cooperative co-synthesis. The synthesis algorithms implement
the Synthesis interface. Consequently, it is possible to add new synthesis algorithms easily. The methods

35

Chapter 4. Implementation

Synthesis

+ synthesize(config): void
+ getStateSpaces(): List<StateSpace>

CooperativeCoSynthesis

+ CooperativeCoSynthesis()

AssumeGuaranteeSynthesis

+ AssumeGuaranteeSynthesis()

UCTAutomaton

+ states : List<String>
+ transitions: List<UCTTransition>

+ UCTAutomaton(formula: String)
+ getInitState(): String
+ showTransitions(): void

UCTTransition

+ condition: String
+ endState: String
+ reject: Boolean
+ startState: String

+ Transition(startState: String, endState:
String, condition: String, reject: Boolean)
+ printLine()

StateSpace

+ getTransitionSystems(): StateSpace

State

+ addInput(input: String, value: Booelan)
+ addOutput(output: String, value: Booelan)
+ addTransition(condition: String, endstate: String)
+ State(name: String)

PseudoCode

+ PseudoCode(states: StateSpace)
+ writePseudoCode(): void

Config

+ bound_p1: Integer
+ bound_p2: Integer
+ input: ReadFrom
+ global_inputs: List<String>
+ global_variables: List<String>
+ inputs_p1: List<String>
+ inputs_p2: List<String>
+ mem_p1: List<String>
+ mem_p2: List<String>
+ priv_var_p1: List<String>
+ priv_var_p2: List<String>
+ scheduler: String

Parser

- parseConfig(file: String): void

<<use>>

<<uses>>

<<use>>

<<use>>

<<use>>

Figure 4.1.: Class diagram of the prototype

36

4.3. Software Design

to implement are synthesize and getTransitionSystems. The synthesize method uses the Automata
package to build the co-Büchi automata, translates them into the constraint system, calls the Z3 tool to solve
the constraint system and parses the result. The method getTransitionSystems returns this result.

Currently, the Synthesis interface is implemented by the classes AssumeGuaranteeSynthesis and
CooperativeCoSynthesis.

The AssumeGuaranteeSynthesis class provides an implementation for the AGS algorithm. Therefore,
it uses the specification of the two processes and converts them into the three AGS conditions. These
conditions are afterwards transformed into universal co-Büchi automata. For this transformation the class
UCTAutomaton is used. This class returns the transition relation of the automata. These conditions are then
converted, as described in Section 3.2, into SMT constraints, using the input format of the Z3 theorem solver.
The input format is an extended version of the SMT-LIB 2.0 [4] standard. The advantage of the approach in
contrast of using the Z3 API is that the solver can be exchanged easily.

As the states are defined by the valuation of the global, local and memory variables we are using the datatype
objects of Z3 to represent this. Another approach would be to define the variables within the transition
function, as it was proposed in [31].

If Z3 is able to solve the constraint system, the class parses the model returned by the solver. In particular, it
extracts the model for the transition functions τ1 and τ2 and uses the StateSpace class to construct models
of the processes. These models can be received afterwards by the getTransitionSystems method, which
returns the state spaces of the processes.

The class CooperativeCoSynthesis does the same for the cooperative co-synthesis approach. In particular,
only the first AGS condition is used to construct the constraint system. The prototype uses the cooperative
co-synthesis approach to compare the performance of AGS to cooperative co-synthesis.

States The States package is used to represent the state spaces of the processes. For this representation
the class StateSpace is used, which contains the states and the transitions of the processes. To do so, it uses
the a list of State-objects to construct the transition system. This state space can be later used to implement
the processes in various programming languages.

Implementation The Implementation package uses the States package to implement the processes.
Currently, the only class available is the PseudoCode class, which transfers the state spaces of the processes
into a pseudocode. Other classes that produce output in languages such as C or Verilog can easily be added.

37

38

Chapter 5
Experiments

This chapter shows the assum- guarantee synthesis approach for some examples. The first part describes the
used examples. The second part analyses the performance of the assume guarantee synthesis and cooperative
co-synthesis approach and compares them. The performance is measured by the runtime of the prototype,
the time consumed by the Z3 solver, the number of occurred conflicts, the number of taken decisions and
the needed memory.

In the following experiments we are going to show the impact of the additional constraints needed for
assume-guarantee synthesis compared to cooperative co-synthesis. Additionally, we show that the processes
synthesized with cooperative co-synthesis are in contrast to assume guarantee synthesis, not robust.

5.1. Examples

In this section, we introduce the examples. The examples are grouped into three types: arbiter examples,
memory examples and reader-writer problems.

5.1.1. Arbiter Examples

The first type of examples are arbiter examples. An arbiter is used to control the access to shared resources.
For example, a memory arbiter is used to decide which CPU is allowed to access the shared memory.

In our examples, the system receives requests to access critical resources and the processes provide grants,
depending on the specification.

5.1.1.1. Global Grant

Our first architecture describes a simple 2-process arbiter. The processes shall grant access infinitely often,
by setting the global variables g1 and g2 to true.

39

Chapter 5. Experiments

1 g = f a l s e ;
2
3 / / p r o c e s s P1
4 do{
5 i f (g1 && g2) {
6 g1 = t r u e ;
7 g2 = f a l s e ;
8 } e l s e i f (! g1 && g2) {
9 g1 = t r u e ;

10 g2 = f a l s e ;
11 } e l s e i f (g1 && ! g2) {
12 g1 = f a l s e ;
13 g2 = t r u e ;
14 } e l s e i f (! g1 && ! g2) {
15 g1 = t r u e ;
16 g2 = f a l s e ;
17 } e l s e {
18 g1 = t r u e ;
19 g2 = f a l s e ;
20 }
21 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 do{
3 i f (! g1 && g2) {
4 g1 = f a l s e ;
5 g2 = t r u e ;
6 } e l s e i f (g1 && ! g2) {
7 g1 = f a l s e ;
8 g2 = t r u e ;
9 } e l s e i f (g1 && g2) {

10 g1 = t r u e ;
11 g2 = f a l s e ;
12 } e l s e i f (! g1 && ! g2) {
13 g1 = f a l s e ;
14 g2 = t r u e ;
15 } e l s e {
16 g1 = f a l s e ;
17 g2 = t r u e ;
18 }
19 } whi le (t r u e) ;

Code Listing 5.1: Solution with Cooperative Co-Synthesis

Specification. The LTL-specification for the first process is as follows: GpFg1q and the specification
of the second process analogously: GpFg2q Both variables g1 and g2 are defined globally and their start
valuation is false.

Result. As shown in Code Listing 5.1 the assume-guarantee synthesis approach delivered two robust
processes. Whereas the second process grants access every time it is scheduled, the first process only grants
access if it was not granted in the last step or g2 was true.

Comparison with Cooperative Co-Synthesis. Code Listing 5.2 shows the pseudocode produced by our
prototype for the cooperative co-synthesis approach. As it can be seen, the second process synthesized
with cooperative co-synthesis is not robust. If the processes would be scheduled alternately and the global
variables are set to false, the second process is setting g1 to true and g2 to false. If the first process is replaced
with another process that fulfils its specification and sets both variables to false if g1 is true and g2 is false,
the second process would not be able to fulfil its specification, as g2 would be never set to true.

5.1.1.2. Global Request and Grant

Our second architecture describes a simple 2-process arbiter. If the system receives a request (r), a process
grants the access by eventually setting the global variable g to true.

Specification. Both processes are specified by GprÑ Fgq. This specification ensures that the access is
granted, independent of the scheduling. The request r and the grant g are globally defined and are therefore
accessible by both processes. The start valuation of the global variable g is false.

40

5.1. Examples

1 g = f a l s e ;
2
3 / / p r o c e s s P1
4 do{
5 i f (g1 && g2) {
6 g1 = t r u e ;
7 g2 = f a l s e ;
8 } e l s e i f (! g1 && g2) {
9 g1 = t r u e ;

10 g2 = f a l s e ;
11 } e l s e i f (g1 && ! g2) {
12 g1 = t r u e ;
13 g2 = f a l s e ;
14 } e l s e i f (! g1 && ! g2) {
15 g1 = t r u e ;
16 g2 = f a l s e ;
17 } e l s e {
18 g1 = t r u e ;
19 g2 = f a l s e ;
20 }
21 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 do{
3 i f (! g1 && g2) {
4 g1 = t r u e ;
5 g2 = f a l s e ;
6 } e l s e i f (g1 && ! g2) {
7 g1 = f a l s e ;
8 g2 = t r u e ;
9 } e l s e i f (g1 && g2) {

10 g1 = t r u e ;
11 g2 = f a l s e ;
12 } e l s e i f (! g1 && ! g2) {
13 g1 = t r u e ;
14 g2 = f a l s e ;
15 } e l s e {
16 g1 = t r u e ;
17 g2 = f a l s e ;
18 }
19 } whi le (t r u e) ;

Code Listing 5.2: Solution with Cooperative Co-Synthesis

1 g = f a l s e ;
2
3 / / p r o c e s s P1
4 do{
5 i f (g && r) {
6 g = f a l s e ;
7 } e l s e i f (g && ! r) {
8 g = f a l s e ;
9 } e l s e i f (! g && r) {

10 g = t r u e ;
11 } e l s e i f (! g && ! r) {
12 g = t r u e ;
13 } e l s e {
14 g = f a l s e ;
15 }
16 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 do{
3 i f (! g && r) {
4 g = t r u e ;
5 } e l s e i f (! g && ! r) {
6 g = f a l s e ;
7 } e l s e i f (g && r) {
8 g = f a l s e ;
9 } e l s e i f (! g && r) {

10 g = f a l s e ;
11 } e l s e {
12 g = f a l s e ;
13 }
14 } whi le (t r u e) ;

Code Listing 5.3: Solution with AGS

Result. Code Listing 5.3 shows the solution produced by our prototype. Even though the processes are
specified in the same way, the SMT solver produces different process implementations. The first process
sets g to true if g was false in the previous execution step and vice versa. The second process sets g only to
true if g was false in the previous execution step and the system receives a request.

As both processes have the same specification, the AGS approach does not add any additional constraints
compared to the bounded synthesis approach for cooperative co-synthesis. This is caused by the implications
in the second (rrP1

1||P2||Css æpSYIq|ù φ2 Ñ φ1) and third (rrP1||P1
2||Css æpSYIq|ù φ1 Ñ φ2) AGS-condition.

As φ1 is equal to φ2, the implications and therefore the conditions are always fulfilled.

5.1.1.3. Global Request and Grant in the following Execution Step

This example describes a stricter arbiter. As in the previous example, a 2-process arbiter is specified. Here
access has to be granted in the next step.

41

Chapter 5. Experiments

1 g = f a l s e ;
2
3 / / p r o c e s s P1
4 do{
5 i f (g && r) {
6 g = t r u e ;
7 } e l s e i f (g && ! r) {
8 g = f a l s e ;
9 } e l s e i f (! g && r) {

10 g = t r u e ;
11 } e l s e i f (! g && ! r) {
12 g = f a l s e ;
13 } e l s e {
14 g = t r u e ;
15 }
16 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 do{
3 i f (g && r) {
4 g = t r u e ;
5 } e l s e i f (g && ! r) {
6 g = f a l s e ;
7 } e l s e i f (! g && r) {
8 g = t r u e ;
9 } e l s e i f (! g && ! r) {

10 g = f a l s e ;
11 } e l s e {
12 g = t r u e ;
13 }
14 } whi le (t r u e) ;

Code Listing 5.4: Solution with AGS

Specification. The LTL specification for both processes is: Gpr Ñ Xgq. It ensures that the access is
granted in the next execution step. As above, the input variable r and the process variable g are defined
public. Furthermore, the start valuation of g is false.

Result. As this specification is stricter than the previous one, the implementation of the previous example
does not fulfil it, whereas this implementation fulfils the requirement for the previous example. Code Listing
5.4 shows the process-implementation produced by our prototype. In this case, our prototype produced the
same implementation for both processes, where the processes set g to true if the system receives a request
and to false otherwise. Another possible solution would be to set g always to true.

5.1.1.4. Global request and Grant only in the following Execution Step

In this example, the arbiter is even more restricted, in the sense that a grant is only allowed if the system
receives a request in the next execution step.

Specification. As above, the processes have the same specification. The LTL-specification for both
processes is: Gppr Ñ Xgq^ p r Ñ X gqq. The first part of the specification ensures that if the system
receives a request, a grant is given at the next execution step. On the other hand, the second part of the
specification states that the system must not give a grant if it does not receive a request.

Result. Even though this specification is stricter than the previous one, the previous implementation of the
processes, as shown in Code Listing 5.4, also fulfils this specification. Our prototype already coincidentally
provided an solution that is also valid even though this specification adds more restrictions. However, the
other mentioned solution of the previous example, in which g is true in every case, does not fulfil this
restricted specification.

42

5.1. Examples

1
2 / / p r o c e s s P1
3 g1 = f a l s e ;
4
5 do{
6 i f (g1 && r) {
7 g1 = t r u e ;
8 } e l s e i f (g1 && ! r) {
9 g1 = t r u e ;

10 } e l s e i f (! g1 && r) {
11 g1 = t r u e ;
12 } e l s e i f (! g1 && ! r) {
13 g1 = f a l s e ;
14 } e l s e {
15 g1 = t r u e ;
16 }
17 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 g2 = f a l s e ;
3 do{
4 i f (g2 && r) {
5 g2 = t r u e ;
6 } e l s e i f (g2 && ! r) {
7 g2 = t r u e ;
8 } e l s e i f (! g2 && r) {
9 g2 = t r u e ;

10 } e l s e i f (! g2 && ! r) {
11 g2 = t r u e ;
12 } e l s e {
13 g2 = t r u e ;
14 }
15 } whi le (t r u e) ;

Code Listing 5.5: Solution with AGS

5.1.1.5. Global Request and Private Grant

In this architecture, every process has its own private variable (g1 and g2) to grant the access if the system
receives a global request r.

Specification. The LTL-specification for the first process is as follows: GprÑ Fg1q. The first process
has to grant access by setting g1 eventually to true if the system receives a request r. The second process
is specified analogously: GprÑ Fg2q. Like the first process, if the system receives a request, the second
process has to set the private variable g2 eventually to true.

Result. As only one process is scheduled in each execution step, the processes cannot be sure if the
system has received a request or not. Therefore the private variables of the processes have to be set infinitely
often to true. Code Listing 5.5 shows the solution of our prototype. Here both variables are always set to
true. Another possible solution is to flip the private variables whenever the process is scheduled.

If we add the restriction that a grant is only allowed if the system received a request before, the system would
not be realisable with AGS without any adaptations. The LTL-specifications with this modification would
be ppr R g1q^Gpr Ñ Fg1qq for the first process and ppr R g2q^Gpr Ñ Fg2qq for the second process.
The second part of the specification is as above. The first part guarantees that the system does not grant
access as long as it does not receive a request.

However, such a system would be realisable with cooperative co-synthesis. For example, a global memory
variable could be introduced to mark if the system received a request or not. As a memory variable can be
set freely, without any restrictions by the specification, it is still unrealisable for AGS.

5.1.1.6. Implicit Memory Variable

As mentioned in the last example, a global memory variable is rarely useful in AGS as its behaviour is not
specified and therefore the processes cannot rely on the behaviour of the other processes. However, it is
possible to explicitly define the behaviour of this ”memory” variable.

43

Chapter 5. Experiments

In this example, we explicitly define a global variable to mark if the system has received a request or not.

Specification. Let g1 and g2 be the private variable of process 1 and 2, r the global input variable that
signals if the system receives a request or not, and the global variable a that indicates if the system has
received a request or not. The LTL-specification for the processes are defined as follows:

• First process: pr R aq^GprÑ XpGaqq^GpaÑ Fg1q^paR g1q

• Second process: pr R aq^GprÑ XpGaqq^GpaÑ Fg2q^paR g2q

The subformula pr R aq ensures that a is false as long as the system does not receive a request. The next
subformula GprÑ XpGaqq states that the global variable a has to be set always after the system receives a
request. Therefore, under the assumption that the scheduler is fair, both processes know if the system has
received a request. That both processes grant access only after the system receives a request is ensured by
the subformuals GpaÑ Fg1q^paR g1q and GpaÑ Fg2q^paR g2q.

Result. The synthesized pseudocode for this specification is shown in Code Listing 5.6. The first process
sets a to true if a was true in the last execution step or the system receives a request r. The private variable
g1 is set to true the first time the process is scheduled after the system receives a request. Afterwards, g1 is
flipped every time the first process is scheduled. The second process also sets the global variable a to true
after the system receives a request for the first time and if a was true in the last execution step. Like the first
process, the second process sets its private variable g2 to true the first time the process is scheduled after a

was set to true, and flips it afterwards every time the process is scheduled.

5.1.1.7. Global Request, Private Grant in the Next Execution Step and Referring to the Scheduler

The last examples contained workarounds to handle the scheduling of the process. Another way to treat the
scheduler is to explicitly specify that the invariants should only hold if the according process was scheduled.

In this example, access should be granted if the process is scheduled and the system receives a request. If
the system does not receive a request and a process is scheduled, this process should not grant access.

Specification. Let r be the global output variable, g1 and g2 the private input variables and c the scheduler
variable. The scheduler variable is treated as an input and is true if the first process is scheduled and false if
the second process is scheduled. The processes are specified as follows:

• First process: Gpppc^ rq Ñ Xg1q^ppc^ rq Ñ X g1qq

• Second process: Gppp c^ rq Ñ Xg2q^pp c^ rq Ñ X g2qq

Result. Code Listing 5.7 shows the pseudocode produced by our prototype. As expected, g1 and g2 are
only set to true if the system receives a request and the process is scheduled.

44

5.1. Examples

1 a = f a l s e ;
2 / / p r o c e s s P1
3 g1 = f a l s e ;
4
5 do{
6 i f (r && a && g1) {
7 a = t r u e ;
8 g1 = f a l s e ;
9 } e l s e i f (! r && a && g1) {

10 a = t r u e ;
11 g1 = f a l s e ;
12 } e l s e i f (r && ! a && ! g1) {
13 a = t r u e
14 g1 = f a l s e ;
15 } e l s e i f (! r && ! a && ! g1) {
16 a = f a l s e ;
17 g1 = f a l s e ;
18 } e l s e i f (r && a && ! g1) {
19 a = t r u e ;
20 g1 = t r u e ;
21 } e l s e i f (! r && a && ! g1) {
22 a = t r u e ;
23 g1 = t r u e ;
24 } e l s e i f (r && ! a && g1) {
25 a = t r u e ;
26 g1 = t r u e ;
27 } e l s e i f (! r && ! a && g1) {
28 a = f a l s e ;
29 g1 = f a l s e ;
30 } e l s e {
31 a = t r u e ;
32 g1 = f a l s e ;
33 }
34 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 g2 = f a l s e ;
3 do{
4 i f (r && a && g2) {
5 a = t r u e ;
6 g2 = f a l s e ;
7 } e l s e i f (! r && a && g2) {
8 a = t r u e ;
9 g2 = f a l s e ;

10 } e l s e i f (r && a && ! g2) {
11 a = t r u e ;
12 g2 = t r u e ;
13 } e l s e i f (! r && a && ! g2) {
14 a = t r u e ;
15 g2 = t r u e ;
16 } e l s e i f (! r && ! a && g2) {
17 a = f a l s e ;
18 g2 = f a l s e ;
19 } e l s e i f (! r && ! a && ! g2) {
20 a = f a l s e ;
21 g2 = f a l s e ;
22 } e l s e i f (r && ! a && g2) {
23 a = f a l s e ;
24 g2 = f a l s e ;
25 } e l s e i f (r && ! a && ! g2) {
26 a = t r u e ;
27 g2 = f a l s e ;
28 } e l s e {
29 a = f a l s e ;
30 g2 = f a l s e ;
31 }
32 } whi le (t r u e) ;

Code Listing 5.6: Solution with AGS

1
2 / / p r o c e s s P1
3 g1 = f a l s e ;
4
5 do{
6 i f (g1 && r) {
7 g1 = t r u e ;
8 } e l s e i f (g1 && ! r) {
9 g1 = f a l s e ;

10 } e l s e i f (! g1 && r) {
11 g1 = t r u e ;
12 } e l s e i f (! g1 && ! r) {
13 g1 = f a l s e ;
14 } e l s e {
15 g1 = t r u e ;
16 }
17 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 g2 = f a l s e ;
3 do{
4 i f (g2 && r) {
5 g2 = t r u e ;
6 } e l s e i f (g2 && ! r) {
7 g2 = f a l s e ;
8 } e l s e i f (! g2 && r) {
9 g2 = t r u e ;

10 } e l s e i f (! g2 && ! r) {
11 g2 = f a l s e ;
12 } e l s e {
13 g2 = t r u e ;
14 }
15 } whi le (t r u e) ;

Code Listing 5.7: Solution with AGS

45

Chapter 5. Experiments

1
2 / / p r o c e s s P1
3 g1 = f a l s e ;
4
5 do{
6 i f (g1 && r1) {
7 g1 = t r u e ;
8 } e l s e i f (g1 && ! r1) {
9 g1 = f a l s e ;

10 } e l s e i f (! g1 && r1) {
11 g1 = t r u e ;
12 } e l s e i f (! g1 && ! r1) {
13 g1 = f a l s e ;
14 } e l s e {
15 g1 = t r u e ;
16 }
17 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 g2 = f a l s e ;
3 do{
4 i f (g2 && r2) {
5 g2 = t r u e ;
6 } e l s e i f (g2 && ! r2) {
7 g2 = f a l s e ;
8 } e l s e i f (! g2 && r2) {
9 g2 = t r u e ;

10 } e l s e i f (! g2 && ! r2) {
11 g2 = f a l s e ;
12 } e l s e {
13 g2 = t r u e ;
14 }
15 } whi le (t r u e) ;

Code Listing 5.8: Solution with AGS

5.1.1.8. Private Request, private Grant in the next Execution Step and referring to Scheduler

All previous examples used a global input variable. This example shows the usage of private input variables.
Here, the process should only grant access if the system receives a private request for the process currently
scheduled.

Specification. Let r1 and r2 be the private input variables and g1 and g2 the private variables of the first
and second process. The LTL specification is as follows:

• First process: Gpppc^ r1q Ñ Xg1q^ppc^ r1q Ñ X g1qq

• Second process: Gppp c^ r2q Ñ Xg2q^pp c^ r2q Ñ X g2qq

Result. According to the specification the first process sets its private variable g1 to true if it receives a
request r1 and sets g1 to false if it does not receive a request r1. Similarly, the second process grants access
by setting g2 to true if the process receives a private request.

5.1.1.9. Private Grants without Requests

This example describes an arbiter in which the processes should infinitely often grant access for the first
and second resource without any request. Additionally, the access to both resources must not be granted
simultaneously. A simple LTL-specification for the two processes would be Gpp g1_ g2q^pFgiqq for
i P t1,2u, where g1 and g2 are global variables. This specification is realisable, for example if the first
process always sets the global variable g1 to true and g2 to false. Vice versa, the second process sets the
global variable g2 always to true and g1 always to false. A disadvantage of this solution is that both processes
have access to both variables. A solution could be to set both variables to private and to add a global variable
as flag that indicates if g1 is set or not. Such a system is realisable with cooperative co-synthesis but not
with AGS as a valid implementation for the first process is to always set g1 to true. Therefore the second
process does not have the possibility to fulfil its specification by eventually setting g2 to true. Thus, for AGS
to succeed, a condition saying that g1 and g2 are not always true needs to be added.

46

5.1. Examples

1 a = f a l s e ;
2 / / p r o c e s s P1
3 g1 = f a l s e ;
4
5 do{
6 i f (! a && ! g1) {
7 a = f a l s e ;
8 g1 = f a l s e ;
9 } e l s e i f (a && g1) {

10 a = f a l s e ;
11 g1 = f a l s e ;
12 } e l s e i f (! a && g1) {
13 a = f a l s e ;
14 g1 = f a l s e ;
15 } e l s e i f (a && ! g1) {
16 a = t r u e ;
17 g1 = t r u e ;
18 } e l s e {
19 a = f a l s e ;
20 g1 = t r u e ;
21 }
22 } whi le (t r u e) ;

1 / / p r o c e s s P2
2 g2 = f a l s e ;
3 do{
4 i f (a && g2) {
5 a = t r u e ;
6 g2 = f a l s e ;
7 } e l s e i f (! a && g2) {
8 a = t r u e ;
9 g2 = f a l s e ;

10 } e l s e i f (! a && ! g2) {
11 a = f a l s e ;
12 g2 = t r u e ;
13 } e l s e i f (a && ! g2) {
14 a = t r u e ;
15 g2 = f a l s e ;
16 } e l s e {
17 a = t r u e ;
18 g2 = f a l s e ;
19 }
20 } whi le (t r u e) ;

Code Listing 5.9: Solution with AGS

Specification. Let g1 and g2 be private variables and a a global variable. The LTL-specification for the
processes is defined as follows:

• First process: Gpp g1_aq^Fg1^F a^pg1 Ñ aq^p aÑ g1qq

• Second process: Gpp g2_ aq^Fg2^Fa^pg2 Ñ aq^paÑ g2qq

The first clause guarantees that the processes do not grant the access simultaneously. That the process grants
access to the own client is guaranteed by the second clause. The remaining clauses ensure that the grant is
given correctly and the other process has the possibility the grant access to its client.

Result. The pseudocode produced by our prototype is shown in Code Listing 5.9. Both processes grant
and deny access as fast as possible.

5.1.2. Memory examples

The second type of examples are memory examples. These examples show the usage of memory variables.
In general, memory variables are used to extend the state space of the processes if it is not possible to
construct a program with the given specification.

5.1.2.1. Memory defined

In this example, the public variable b should be flipped in every second execution step. Additionally we
define the global variable a, which is flipped in every execution step. This variable can be used as a counter
to indicate when b has to be flipped.

47

Chapter 5. Experiments

1 a = f a l s e ;
2 b = f a l s e ;
3 / / p r o c e s s P1
4
5 do{
6 i f (a && b) {
7 a = f a l s e ;
8 b = f a l s e ;
9 } e l s e i f (! a && b) {

10 a = t r u e ;
11 b = t r u e ;
12 } e l s e i f (a && ! b) {
13 a = f a l s e ;
14 b = t r u e ;
15 } e l s e i f (! a && ! b) {
16 a = t r u e ;
17 b = f a l s e ;
18 } e l s e {
19 a = f a l s e ;
20 b = f a l s e ;
21 }
22 } whi le (t r u e) ;

1
2 do{
3 i f (a && b) {
4 a = f a l s e ;
5 b = f a l s e ;
6 } e l s e i f (a && ! b) {
7 a = f a l s e ;
8 b = t r u e ;
9 } e l s e i f (! a && b) {

10 a = t r u e ;
11 b = t r u e ;
12 } e l s e i f (! a && ! b) {
13 a = t r u e ;
14 b = f a l s e ;
15 } e l s e {
16 a = f a l s e ;
17 b = f a l s e ;
18 }
19 } whi le (t r u e) ;

Code Listing 5.10: Solution with AGS

Specification. The specification for both processes is GppaØ X aq^pbØ XpX bqqq. The first part
specifies that a has to be flipped in every execution step, the second part specifies the flipping behaviour of
the global variable b.

Result. The implementation produced by our prototype is shown in Code Listing 5.10. Our prototype
produced the same implementation for both processes. The public variable a is flipped every time and the
public variable b is flipped if a and b have different truth-values in the last execution step. Below you can
find a possible execution trace for this implementation.

scheduled process 1 2 2 2 1 2 1 1 2 2 1 1 2 1 2 1 1 1 2 ...
a 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...
b 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 ...

Table 5.1.: Possible execution trace

5.1.2.2. Memory not defined

In this example, we do not specify the counter directly. Therefore, we only specify the global variable b. As
above, the global variable b should be flipped in every second execution step. Additionally, we add a global
memory variable m, which is not mentioned by the specification.

Specification. The LTL specification for both processes is GpaØ XpX bqq. It specifies that b has to be
flipped in every third execution step.

Result. Our prototype produced the same implementation as in the last example but the global variable is
changed into a global memory variable.

48

5.1. Examples

5.1.3. Readers-Writers problems

The Readers-Writers problems were introduced by Courtois, Heyman and Parnas [10] as practically sig-
nificant problems related to the mutual exclusion problem. They defined two classes of wishing to use
the shared resource. The first class is the readers class and the second one is the writers class. While the
processes of the writers class must have an exclusive access to the resource, the processes of the readers
class may share the resources with other readers.

5.1.3.1. Exclusive access

This example is a modified version of the Readers-Writers problem. In our example, the processes should
write/read infinitely often without asking for it. Furthermore, at every execution step, only one process is
allowed to access the shared resource.

Specification. The processes have the following specification:

GpFw1^Fr1^Fr2^Fw2^pw1 Ñ p w2^ r2^ r1qq^pw2 Ñ p w1^ r2^ r1qq^pr2 Ñ p w1^

 w2^ r1qq^pr1 Ñ p w1^ w2^ r2qqq.

All variables are defined globally. The first four subformulas ensure that every variable is set eventually to
true. The rest of the formula specifies that only one process is allowed to access the shared resource.

Result. Too keep it simple, Code Listing 5.11 shows only the necessary conditions for the processes. As
shown in Figure 5.1, the first process starts by setting w1 to true. After w1 the first process sets w2 to true,
followed by r1. The last variable in the cycle is r2. Afterwards, the first process sets all variables to false.

The second process behaves slightly different. Like the first process, the second process sets the variable w1

to true if all variables were set to false in the previous execution set. If w1 or r1 is true, the second process
does not change the valuations of the variables. Unlike the first process, the second process does not set all
variables to false after r2 was set to true but sets directly w1 to true.

As you can see, the second process does not fulfil the specification by itself but relies on the first process.
As the specifications of the processes are the same, the robustness conditions do not add any additional
constraints.

49

Chapter 5. Experiments

1 r1 = f a l s e ;
2 r2 = f a l s e ;
3 w1 = f a l s e ;
4 w2 = f a l s e ;
5
6 / / p r o c e s s P1
7
8 do{
9 i f (r1 && ! r2 && ! w1 && ! w2) {

10 r1 = f a l s e ;
11 r2 = t r u e ;
12 w1 = f a l s e ;
13 w2 = f a l s e ;
14 } e l s e i f (! r1 && r2 && ! w1 && ! w2) {
15 r1 = f a l s e ;
16 r2 = f a l s e ;
17 w1 = f a l s e ;
18 w2 = f a l s e ;
19 } e l s e i f (! r1 && ! r2 && w1 && ! w2) {
20 r1 = f a l s e ;
21 r2 = f a l s e ;
22 w1 = f a l s e ;
23 w2 = t r u e ;
24 } e l s e i f (! r1 && ! r2 && ! w1 && w2) {
25 r1 = t r u e ;
26 r2 = f a l s e ;
27 w1 = f a l s e ;
28 w2 = f a l s e ;
29 } e l s e i f (! r1 && ! r2 && ! w1 && ! w2) {
30 r1 = f a l s e ;
31 r2 = f a l s e ;
32 w1 = t r u e ;
33 w2 = f a l s e ;
34 } e l s e {
35 r1 = f a l s e ;
36 r2 = f a l s e ;
37 w1 = f a l s e ;
38 w2 = f a l s e ;
39 }
40 } whi le (t r u e) ;

1
2 / / p r o c e s s P2
3
4 do{
5 i f (r1 && ! r2 && ! w1 && ! w2) {
6 r1 = t r u e ;
7 r2 = f a l s e ;
8 w1 = f a l s e ;
9 w2 = f a l s e ;

10 } e l s e i f (! r1 && r2 && ! w1 && ! w2) {
11 r1 = f a l s e ;
12 r2 = f a l s e ;
13 w1 = t r u e ;
14 w2 = f a l s e ;
15 } e l s e i f (! r1 && ! r2 && w1 && ! w2) {
16 r1 = f a l s e ;
17 r2 = f a l s e ;
18 w1 = t r u e ;
19 w2 = f a l s e ;
20 } e l s e i f (! r1 && ! r2 && ! w1 && w2) {
21 r1 = t r u e ;
22 r2 = f a l s e ;
23 w1 = f a l s e ;
24 w2 = f a l s e ;
25 } e l s e i f (! r1 && ! r2 && ! w1 && ! w2) {
26 r1 = f a l s e ;
27 r2 = f a l s e ;
28 w1 = t r u e ;
29 w2 = f a l s e ;
30 } e l s e {
31 r1 = f a l s e ;
32 r2 = f a l s e ;
33 w1 = f a l s e ;
34 w2 = f a l s e ;
35 }
36 } whi le (t r u e) ;

Code Listing 5.11: Simplified solution with AGS

r1 r2

Kstart

w1w2

Figure 5.1.: Execution graph for the Read-Write problem. The execution of the first process is visualized
using dotted edges. The execution of the second process is visualized using solid edges.

50

5.2. Performance Evaluation

5.2. Performance Evaluation

All our experiments were preformed on a ordinary notebook equipped with a Intel R© CoreTM 2 Duo CPU
T9550 @ 2.66GHz, 4 GB RAM. Windows 8.1 served as operating system. To generate the universal
co-Büchi automata, we used ltl3ba version 1.1.2. To solve the SMT constraints, the SMT solver Z3 version
4.3.2 was used.

Example Total Time (sec) Time Z3 (sec) # Decisions # Conflicts Memory Z3 (MB)
Arbiter

5.1.1.1 0.58 0.25 101 8 4.52
5.1.1.2 0.46 0.13 28 3 4.28
5.1.1.3 0.43 0.14 120 33 4.34
5.1.1.4 0.40 0.18 137 14 4.44
5.1.1.5 0.50 0.26 118 8 4.64
5.1.1.6 2.03 1.67 8,419 895 11.04
5.1.1.7 0.59 0.34 416 44 5.02
5.1.1.8 0.55 0.30 340 50 5.06
5.1.1.9 0.99 0.71 1,746 272 6.61

Memory
5.1.2.1 1.56 0.93 1,349 334 5.46
5.1.2.2 0.47 0.26 976 147 4.54

R/W Problem
5.1.3.1 2.9 2.56 58,772 4,080 19.83

Table 5.2.: Performance of the examples with cooperative co-synthesis

Example Total Time (sec) Time Z3 (sec) # Decisions # Conflicts Memory Z3 (MB)
Arbiter

5.1.1.1 2.38 1.75 219 10 6.48
5.1.1.2 0.43 0.12 28 3 4.28
5.1.1.3 0.44 0.15 120 33 4.34
5.1.1.4 0.48 0.18 139 39 4.44
5.1.1.5 2.03 1.54 147 10 9.27
5.1.1.6 220.69 219.88 23,277 491 19.39
5.1.1.7 21.06 20.54 891 32 9.20
5.1.1.8 63.57 63.10 1,117 33 9.49
5.1.1.9 49.52 48.91 514 40 10.37

Memory
5.1.2.1 1.49 0.53 1139 195 4.97
5.1.2.2 0.67 0.29 1026 178 4.57

R/W Problem
5.1.3.1 2.77 1.74 32,216 2,594 16.19

Table 5.3.: Performance of the examples with AGS

We compared our assume-guarantee synthesis approach to the cooperative co-synthesis. Table 5.2 shows the
result for the cooperative co-synthesis approach and Table 5.3 shows the results for the assume-guarantee
approach. The first column shows the runtime of the our prototype. As the performance heavily depends on
the SMT solver, columns 2-4 show Z3 specific data. The second column shows the time Z3 needs to solve
the constraint system. The number of decisions made by Z3 is shown in the third column and the number of
conflicts is shown in the fourth column. The fifth column shows the memory consumed by Z3.

51

Chapter 5. Experiments

5.1
.1.

1

5.1
.1.

2

5.1
.1.

3

5.1
.1.

4

5.1
.1.

5

5.1
.1.

6

5.1
.1.

7

5.1
.1.

8

5.1
.1.

9

5.1
.2.

1

5.1
.2.

20

40

80

120

160

200

240
Se

co
nd

s

cooperative co-synthesis
assume-guarantee synthesis

Figure 5.2.: Total time consumed by the prototype

5.1
.1.

1

5.1
.1.

2

5.1
.1.

3

5.1
.1.

4

5.1
.1.

5

5.1
.1.

6

5.1
.1.

7

5.1
.1.

8

5.1
.1.

9

5.1
.2.

1

5.1
.2.

20

40

80

120

160

200

240

Se
co

nd
s

cooperative co-synthesis
assume-guarantee synthesis

Figure 5.3.: Time consumed by the Z3 SMT solver

Figure 5.2 and Figure 5.3 illustrate the total runtime and the time spent by Z3 graphically. As it can be seen,
in most our examples, the robustness conditions of AGS lead t plo a significant overhead. Whereas the time
needed to realize the system is almost equal if the processes are defined equally, AGS consumes a lot more
time to realize the specification. This is caused by the robustness conditions. If the specifications of the
processes are equal, the robustness conditions are always true and consequently, the robustness conditions
do not add any additional constraints.

52

5.2. Performance Evaluation

5.1
.1.

1

5.1
.1.

2

5.1
.1.

3

5.1
.1.

4

5.1
.1.

5

5.1
.1.

6

5.1
.1.

7

5.1
.1.

8

5.1
.1.

9

5.1
.2.

1

5.1
.2.

20

1

2

3

4

5

6
�104

D
ec

is
io

ns

cooperative co-synthesis
assume-guarantee synthesis

Figure 5.4.: Number of decision

5.1
.1.

1

5.1
.1.

2

5.1
.1.

3

5.1
.1.

4

5.1
.1.

5

5.1
.1.

6

5.1
.1.

7

5.1
.1.

8

5.1
.1.

9

5.1
.2.

1

5.1
.2.

20

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

C
on

fli
ct

s

cooperative co-synthesis
assume-guarantee synthesis

Figure 5.5.: Number of conflicts

53

Chapter 5. Experiments

5.1
.1.

1

5.1
.1.

2

5.1
.1.

3

5.1
.1.

4

5.1
.1.

5

5.1
.1.

6

5.1
.1.

7

5.1
.1.

8

5.1
.1.

9

5.1
.2.

1

5.1
.2.

20

5

10

15

20
M

em
or

y
(i

n
M

B
)

cooperative co-synthesis
assume-guarantee synthesis

Figure 5.6.: Consumed memory

Figure 5.6 illustrates that the increase in memory consumption is quite moderate.

In some cases the robustness conditions gives the theory solver more information so that the solver converges
faster and needs less time to find a model. This can be seen in example 5.1.3.1. Here the cooperative
co-synthesis approach need 2.9 seconds, whereas AGS needs 2.77 seconds. Although the time saved is not
a lot, the decrease in the number of decisions and conflicts are noticeable. AGS need about 20,000 fewer
decisions and produces about 1,500 lesser conflicts than cooperative co-synthesis.

54

Chapter 6
Conclusion and Future Work

6.1. Summary

In this thesis, we presented an approach to solve assume-guarantee synthesis problem for two processes
described by their LTL specifications. Furthermore, we described the implementation of our prototype and
finally provided experimental results.

We extend the bounded synthesis approach by Schewe and Finkbeiner [31] to be able to construct a robust
system that fulfils the three AGS conditions. Our approach starts by defining the AGS conditions based on
the LTL specifications of the processes. These conditions are converted into universal co-Büchi automata.
Afterwards, these automata are used to construct a constraint system. The constraint system defines the
unknown transition functions of the processes. If an SMT solver is able to solve this constraint system the
model of the transition functions can be used to implement the processes.

If the SMT solver is not able to find a solution, the system designer can increase the possible state space by
adding memory variables that are not restricted by the specification. By increasing the state space, the SMT
solver has more possibilities to find a transition function. If the number of memory variables is increased
iteratively, our approach can be used to semi-decide the unbounded AGS problem.

Additionally, our approach supports partial information. This allows the processes to define private variables
which cannot be read or altered by the other processes.

6.2. Conclusion

Our approach provides a system designer with a method to automatically construct correct and robust
systems consisting of two processes based on their LTL specification.

Robustness has the advantage that it gives implementations that require less assumptions about the other
processes and therefore the processes can be exchanged with other processes that fulfil the specification and
the robustness conditions.

55

Chapter 6. Conclusion and Future Work

The support of partial information lead to a more flexible system as the processes can be decoupled form
each other.

However, the experiments showed that the robustness condition of AGS lead, compared to cooperative
co-synthesis, to a significant overhead. Additionally there are also less specifications realisable as the
robustness conditions are very strict. This is especially true if additional memory variables need to be
introduced because these variables are not constrained by the specification and can thus be set arbitrarily by
an adversarial process.

6.3. Future Work

In this thesis, we defined an approach that handles exactly two processes and their LTL specifications. A
future topic would be to eliminate the restrictions on the number of allowed processes to increase the number
of possible applications of assume-guarantee synthesis.

Another restriction in our approach is the specification language. An interesting topic would be to adapt this
approach for other formal specification languages.

In our work, the states are defined by the global, local and memory variables and the transitions are defined
through the valuation of the inputs or the state has only one specific successor. Another possibility would be
to enumerate the possible states and to label the transitions with the process and input variables.

Another topic concerning the variables would be to introduce variables that can be written by a single
process and read by all processes. In our approach, this behaviour can be reached by defining a global
variable and explicitly specifying that this variable should not be changed by the other process. However,
this new type would simplify the specification and possibly decrease the runtime.

As the most time consuming part is the solving of the constraint system, another interesting topic would be
to evaluate the performance of different SMT solvers for AGS problems. Another possibility would be to
transfer the constraint system into a logical programming language.

56

Bibliography

[1] ARISTOTLE. De interpretatione. (Cited on page 5.)

[2] ARTHUR, N. 1957. Prior. time and modality. (Cited on page 5.)

[3] BABIAK, T., KŘETÍNSKỲ, M., ŘEHÁK, V., AND STREJČEK, J. 2012. Ltl to büchi automata translation:
Fast and more deterministic. In Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 95–109. (Cited on page 33.)

[4] BARRETT, C., STUMP, A., AND TINELLI, C. 2010. The SMT-LIB Standard: Version 2.0. Tech. rep.,
Department of Computer Science, The University of Iowa. Available at www.SMT-LIB.org. (Cited on
pages 28, 33, and 37.)

[5] BLOEM, R., CHATTERJEE, K., JACOBS, S., AND KÖNIGHOFER, R. 2015. Assume-guarantee synthesis
for concurrent reactive programs with partial information. In Tools and Algorithms for the Construction

and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.

Proceedings. 517–532. (Cited on page 4.)

[6] BÜCHI, J. R. 1960. On a decision method in restricted second order arithmetic. na. (Cited on page 11.)

[7] BUCHI, J. R. AND LANDWEBER, L. H. 1990. Solving sequential conditions by finite-state strategies.
Springer. (Cited on page 2.)

[8] CHATTERJEE, K. AND HENZINGER, T. A. 2007. Assume-guarantee synthesis. In Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 261–275. (Cited on pages 2, 3, and 15.)

[9] CHURCH, A. 1962. Logic, arithmetic and automata. In Proceedings of the international congress of

mathematicians. 23–35. (Cited on page 1.)

[10] COURTOIS, P.-J., HEYMANS, F., AND PARNAS, D. L. 1971. Concurrent control with “readers” and
“writers”. Communications of the ACM 14, 10, 667–668. (Cited on page 49.)

[11] DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving.
Communications of the ACM 5, 7, 394–397. (Cited on page 7.)

[12] DUTERTRE, B. AND DE MOURA, L. 2006. A fast linear-arithmetic solver for DPLL (T). In Computer

Aided Verification. Springer, 81–94. (Cited on page 10.)

57

Bibliography

[13] EILENBERG, S. AND TILSON, B. 1974. Automata, languages, and machines. Vol. 76. Academic
press New York. (Cited on page 11.)

[14] EMERSON, E. A. AND CLARKE, E. M. 1982. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer programming 2, 3, 241–266. (Cited on page 2.)

[15] FILIOT, E., JIN, N., AND RASKIN, J.-F. 2011. Antichains and compositional algorithms for LTL
synthesis. Formal Methods in System Design 39, 3, 261–296. (Cited on page 4.)

[16] FINKBEINER, B. AND SCHEWE, S. 2005. Uniform distributed synthesis. In Logic in Computer

Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on. IEEE, 321–330. (Cited on
page 2.)

[17] FISMAN, D., KUPFERMAN, O., AND LUSTIG, Y. 2010. Rational synthesis. In Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 190–204. (Cited on page 4.)

[18] KAIVOLA, R., GHUGHAL, R., NARASIMHAN, N., TELFER, A., WHITTEMORE, J., PANDAV, S.,
SLOBODOVÁ, A., TAYLOR, C., FROLOV, V., REEBER, E., ET AL. 2009. Replacing testing with
formal verification in Intel R© CoreTM i7 Processor Execution Engine Validation. In Computer Aided

Verification. Springer, 414–429. (Cited on page 1.)

[19] LAGOUDAKIS, M. G. AND LITTMAN, M. L. 2001. Learning to select branching rules in the dpll
procedure for satisfiability. Electronic Notes in Discrete Mathematics 9, 344–359. (Cited on page 7.)

[20] LISCOUSKI, B. AND ELLIOT, W. 2004. Final report on the august 14, 2003 blackout in the united
states and canada: Causes and recommendations. A report to US Department of Energy 40, 4. (Cited on
page 1.)

[21] LLC, M. 1999. MS Windows NT kernel description. (Cited on page 33.)

[22] MACFARLANE, J. 2003. Future contingents and relative truth. The philosophical quarterly 53, 212,
321–336. (Cited on page 5.)

[23] MANNA, Z. AND WOLPER, P. 1984. Synthesis of communicating processes from temporal logic
specifications. ACM Transactions on Programming Languages and Systems (TOPLAS) 6, 1, 68–93.
(Cited on page 2.)

[24] MCNAUGHTON, R. 1965. Finite-state infinite games. Project MAC Rep. (Cited on page 2.)

[25] NUSEIBEH, B. 1997. Ariane 5: who dunnit? IEEE Software 3, 15–16. (Cited on page 1.)

[26] PNEULI, A. AND ROSNER, R. 1990. Distributed reactive systems are hard to synthesize. In Founda-

tions of Computer Science, 1990. Proceedings., 31st Annual Symposium on. IEEE, 746–757. (Cited on
page 2.)

[27] PNUELI, A. 1977. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th

Annual Symposium on. IEEE, 46–57. (Cited on pages 2 and 5.)

[28] PNUELI, A. AND ROSNER, R. 1989. On the synthesis of a reactive module. In Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 179–190.
(Cited on page 2.)

[29] RABIN, M. O. 1972. Automata on infinite objects and Church’s problem. Vol. 13. American
Mathematical Soc. (Cited on page 2.)

58

Bibliography

[30] RUSSELL, B. 1908. Mathematical logic as based on the theory of types. American journal of

mathematics 30, 3, 222–262. (Cited on page 8.)

[31] SCHEWE, S. AND FINKBEINER, B. 2007a. Bounded synthesis. In Automated Technology for

Verification and Analysis. Springer, 474–488. (Cited on pages 2, 3, 4, 16, 37, and 55.)

[32] SCHEWE, S. AND FINKBEINER, B. 2007b. Synthesis of asynchronous systems. In Logic-Based

Program Synthesis and Transformation. Springer, 127–142. (Cited on page 12.)

[33] THOMAS, W. 1997. Languages, automata, and logic. Springer. (Cited on pages 10 and 11.)

[34] VARDI, M. Y. 2008. From church and prior to psl. In 25 years of model checking. Springer, 150–171.
(Cited on page 5.)

[35] ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. H., AND MALIK, S. 2001. Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM international conference

on Computer-aided design. IEEE Press, 279–285. (Cited on page 7.)

59

60

Appendix A
co-Büchi Automata

accept_S4

T0_S1

g && p

T4_S2

!g && !c || g && !p && !c

T3_S3

!g && c || g && !p && c

accept_S8

T1_S5

!m

T4_S6

m && !c

T3_S7

m && c

T0_init

r 1

1

g && p

!g && !c || g && !p && !c

!g && c || g && !p && c c

!c

!c

c

!m

m && !c

m && c c

!c

!c

c

Figure A.1.: co-Büchi automaton of the first AGS-condition

61

Appendix A. co-Büchi Automata

accept_S3

T4_S4

!r && m && !c

T4_S7

r && m && !c

T1_S1

!r && !m

T1_S2

r && !m

T3_S5

!r && m && c

T3_S12

r && m && c

accept_S9

T1_S8

g && !m && p

T4_S10

g && m && !c && p

T3_S11

g && m && c && p

T0_init !r

!r && !c

r && !c T2_S13

r

!r && c

!r && !c

r && !c

T5_S6

r && c

g && c && p

!c

c

!c

1

!r && m && !c

r && m && !c

!r && !m

r && !m !r && m && c

r && m && c

m && !c

!m

m && c !r && !c

r && !c

!r && c

r && c

!c

c

g && p

1

g && !m && p

g && m && !c && p

g && m && c && p g && c && p

g && !c && p

g && !c && p

g && c && p

Figure A.2.: co-Büchi automaton of the second AGS-condition

62

accept_S5

T4_S2

g && !p && !c && !m

T2_S3

g && !p && c && !m T0_S4

g && p && !m

T0_init !r

T3_S1

r && !c

T2_S7

r && c T1_S8

r

g && c && !m

1

T5_S6

c && !m

!c

c r && !c

r && c

1

g && !m

!m

g && c && !m

g && !c && !m

g && !c && !m

g && c && !m g && !p && !c && !m

g && !p && c && !m

g && p && !m

Figure A.3.: co-Büchi automaton of the second AGS-condition
63

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Problems Addressed in this Thesis
	1.3 Outline of the Solution
	1.4 Related Work
	1.5 Structure of this Document

	2 Preliminaries
	2.1 Logic
	2.1.1 Linear Temporal Logic
	2.1.2 Propositional logic
	2.1.2.1 Conjunctive Normal Form
	2.1.2.2 Decidability

	2.1.3 First-order logic
	2.1.3.1 Syntax
	2.1.3.2 Semantics
	2.1.3.3 Decidability
	2.1.3.4 Satisfiable modulo theories (SMT)
	2.1.3.5 Quantifier-free linear integer arithmetic logic

	2.2 Automata
	2.2.1 Finite -Automata
	2.2.2 Büchi Automata

	2.3 Synthesis
	2.3.1 Definitions
	2.3.1.1 Variables, Valuations, Traces
	2.3.1.2 Process
	2.3.1.3 Process Description
	2.3.1.4 System
	2.3.1.5 Scheduler
	2.3.1.6 Specification

	2.3.2 Co-Synthesis
	2.3.2.1 Cooperative co-synthesis
	2.3.2.2 Competitive co-synthesis
	2.3.2.3 Assume-guarantee synthesis

	2.3.3 Constraint-Based Bounded Synthesis

	3 Bounded Assume-Guarantee Synthesis
	3.1 Constraint based AGS
	3.2 Conditions
	3.2.1 First condition
	3.2.2 Second condition
	3.2.3 Third constraint

	3.3 Program construction

	4 Implementation
	4.1 Overview
	4.1.1 Program flow

	4.2 Input
	4.3 Software Design

	5 Experiments
	5.1 Examples
	5.1.1 Arbiter Examples
	5.1.1.1 Global Grant
	5.1.1.2 Global Request and Grant
	5.1.1.3 Global Request and Grant in the following Execution Step
	5.1.1.4 Global request and Grant only in the following Execution Step
	5.1.1.5 Global Request and Private Grant
	5.1.1.6 Implicit Memory Variable
	5.1.1.7 Global Request, Private Grant in the Next Execution Step and Referring to the Scheduler
	5.1.1.8 Private Request, private Grant in the next Execution Step and referring to Scheduler
	5.1.1.9 Private Grants without Requests

	5.1.2 Memory examples
	5.1.2.1 Memory defined
	5.1.2.2 Memory not defined

	5.1.3 Readers-Writers problems
	5.1.3.1 Exclusive access

	5.2 Performance Evaluation

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Conclusion
	6.3 Future Work

	Bibliography
	A co-Büchi Automata

