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Abstract

In this thesis partial differential equations (PDEs) on manifolds (curves and surfaces) are considered.
Such PDEs appear in a variety of problems and applications in fluid dynamics, material science, solid
mechanics, biology and image processing.

The curves and surfaces are embedded in the Euclidean space and implicitly defined by level-set
functions. The meshes for the numerical approach are generated automatically using a higher-order
remeshing schemes, which is called reconstruction [5]. The resulting meshes are not necessarily
well-shaped, but it is confirmed that optimal approximation properties are achieved.

In contrast to the conventional approach our formulation of the PDEs is based on the concept of the
differential tangential calculus, which avoids concepts of the differential geometry such as Christoffel
symbols and the discrete system can be established in a Euclidean coordinate system. For the
numerical approach the finite element method (FEM) is used. The formulation of the weak form is
based on the classical Bubnov-Galerkin method.

As applications the Laplace-Beltrami operator and the in-stationary transport problem are considered
herein. Convergence analyses are performed with conventional and reconstructed meshes. It is seen
that for both mesh types optimal convergence rates are achieved with respect to the theoretical a
priori error estimates.

Zusammenfassung

In dieser Masterarbeit werden partielle Differentialgleichungen (PDEs) auf Mannigfaltigkeiten (Kur-
ven und Oberflächen) betrachtet. Diese Gruppe von PDEs sind von großem Interesse, da diese in
vielen Anwendungen im Bereich der Strömungsdynamik, Materialwissenschaften, Strukurmechanik,
Biologie und in der Bilderverarbeitung auftreten.

Die Kurven und Oberflächen sind im euklidischen Raum eingebettet und werden über implizite
Level-set Funktionen definiert. Die Netze für das numerische Lösungsverfahren werden automatisch,
unter Verwendung von konformen Vernetzungs-Algorithmen, generiert. Die Netzgenerierung wird
als Rekonstruktion benannt und derartige Netze können, trotz möglichem, nicht optimalen Element-
größenverhältnissen, optimale Approximationseigenschaften aufweisen [5].

Im Gegensatz zur klassischen Vorgehensweise basiert die Formulierung der PDEs auf dem sogenan-
nten „differential tangential calculus“, wobei auf einige typische Konzepte der Differentialgeometrie
verzichtet werden kann, wie etwa die explizite Verwendung von Christoffel-Symbolen. Das diskrete
System kann dann vereinfacht in einem euklidischen Koordinatensystem assembliert werden. Als
numerisches Verfahren wird die Finite Elemente Methode (FEM) verwendet und die schwache Form
wird mit Hilfe des klassischen Bubnov-Galerkin Verfahren formuliert.

Die Vorgehensweise wird exemplarisch am Laplace-Beltrami Operator und am instationären Trans-
portproblem gezeigt. Für die Testfälle wird eine Konvergenzanalyse mit konventionellen und den
automatisch rekonstruierten Netzen durchgeführt. Die numerischen Ergebnisse stimmen für beide
Netztypen mit den a priori Fehlerabschätzungen überein.
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Notation

a Scalar
g Vector, matrix or tensor
vi,j Derivative of vi in respect to j
a · b Dot product
∇ · v Divergence of a vector field
∇u Gradient of a scalar field
∇Σu Surface gradient of a scalar field
∆u Laplace operator of a scalar field := ∇ · ∇u
f ◦ g Composition of the functions f and g

Ω̂ Reference space
Ω Real domain
Σ Manifold
ΓD Dirichlet boundary
ΓN Neumann boundary
‖v‖ Euclidean norm of v
‖u‖0,2,Σ L2 norm of u in Σ
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1 Introduction

Partial differential equations (PDEs) on curves and surfaces appear in a variety of problems and
applications in fluid dynamics, material science, solid mechanics, biology and image processing. In
general, when the geometry of the domain of interest can be considered as “thin” in one or two
directions, one may often simplify the model using a formulation that involves PDEs on a lower
dimensional geometry, i.e. on a curve or a surface [9]. Common examples are shells, curved beams
or transport problems on interfaces or thin structures.

The curves and surfaces are manifolds embedded in the physical space and in this thesis the hyper-
surfaces are defined implicitly by the level set method. That is, a scalar function, called “level-set
function”, is defined everywhere in the physical space and its zero-level set defines the manifold
where a PDE is to be solved. Based on this implicit representation higher-order remeshing schemes
such as those presented in [3], [4] can be used in order to generate manifold meshes automatically.
These methods identify the position of the zero-level set and approximate it by manifold (line and
surface) elements. This process is called reconstruction. The resulting meshes typically feature
awkward element shapes and apsect ratios. However, it is shown herein that this still allows the
approximation of PDEs with optimal accuracy.

In order to solve a PDE on a manifold, the conventional approach is to heavily employ concepts
from differential geometry such as Christoffel symbols [2]. However, the approach discussed herein is
based on the differential tangential calculus, which simplifies the notation significantly [9], [6]. The
finite element method is used for the approximation of the Laplace-Beltrami operator and transport
equations on the manifolds. A classical Bubnov-Galerkin approach for the formulation of the weak
form is chosen herein [7]. The mathematical analysis of this approach for higher-order elements is
described in [11].
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2 Preliminaries

In this section implicitly defined curves and surfaces (manifolds) and their discretization is considered.
The representation of a manifold by the level-set method is described. Furthermore polynomial,
reference elements for the numerical approach are defined.

2.1 Implicitly defined manifolds

The implicit representation of a n-dimensional manifold Σ takes the form

Σ =
{
x ∈ Rn+1 : φ(x = 0)

}
(2.1)

so that x ∈ Σ is a point on the manifold implicitly defined by the function φ : Rn+1 → R. There are
three different cases for the level-set function φ:

φ(x) > 0, x is on the one side of the manifold
φ(x) < 0, x is on the other side of the manifold
φ(x) = 0, x is exactly on the manifold

For example, a unit sphere can be written as

φ(x) = ‖x‖2 − 1 , where ‖x‖2 = x2 + y2 + z2 .

Further information about the implicit definition of a manifold is given in [9]. In this thesis, the
manifolds which are considered herein, are lines in R2 and surfaces in R3. These geometrical objects
may have a boundary or not. If there is a boundary the manifolds are considered as “open” and if
not the manifolds are called “closed”. In Fig. 2.1 an open and closed manifold embedded in R2 is
illustrated.
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y

(b) Closed
Fig. 2.1: Manifolds embedded in R2
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2 Preliminaries

2.2 Discretization

The finite element method (FEM) is used to determine a numerical solution of the given PDE.
Therefore the domain, in our case the manifold Σ, has to be discretized by a mesh, i.e. a set of
elements. The procedure of the mesh generation is described in Chapter 3, but at first the reference
elements T̂ and the mapping from the reference space Ω̂ to the real domain Ω is defined.

2.2.1 1D-Reference element

The 1D-reference element T̂ ∈ [−1, 1] is based on polynomials and is defined in a 1D reference space
Ω̂. The element is divided into m equidistant intervals with m+1 nodes. For each node a polynomial
(base function), which satisfies Nβ(ξα) = δαβ can be obtained as

Nβ(ξ) =
m+1∏
α=1
α 6=β

ξ − ξα
ξβ − ξα

, β = 1, 2, . . . , m+ 1 . (2.2)

This class of polynomials is called Lagrange polynomials [7, Chapter 3] and, hence, the corresponding
element is called Lagrange element. A more general definition, which can easily be extended to higher
dimensions is

Nβ(ξ) = aαξ
α−1 α = 1, 2, . . . , m+ 1 (2.3)

Nβ(ξα) = δαβ .

The coefficients ai can be determined by solving the system of linear equations:
Aa = δ

Ai,j = ξji , i = α , j = α− 1
a = {ai}
δ = {δiβ}

(2.4)

The subscript i indicates the node number and the superscript j the exponent of ξ. Fig. 2.2 shows
the reference element and the base functions of a 2nd-order line element.

N1(ξ) = 1
2
(
ξ2 − ξ

)
N2(ξ) = 1− ξ2

N3(ξ) = 1
2
(
ξ2 + ξ

)

−1.5 −1 −0.5 0 0.5 1 1.5

−0.2

0

0.2
1 2 3

ξ

(a) Reference element

−1 0 1

0

0.5

1

ξ

N1

N2

N3

(b) Base functions
Fig. 2.2: 2nd-order 1D-Lagrange element
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2.2 Discretization

2.2.2 2D-Reference element

For the description of surfaces triangular and quadrilateral elements are used. The definition of the
reference elements T̂ is shown for the example of a 2nd-order (p = 2) quadrilateral Lagrange element.
The base functions can be defined with a polynomial base

ϕβ(ξ, η) =
n=(p+1)2∑

i=1
ai ξ

jηk , j, k = 0, 1, 2 (2.5)

Nβ(ξα, ηα) = δαβ

and by solving the system of linear equations similar to Eq. 2.4 the coefficients can be determined:

N1(ξ) = n1m1 N4(ξ)= n1m2 N7(ξ) = n1m3

N2(ξ) = n2m1 N5(ξ)= n2m2 N8(ξ) = n2m3

N3(ξ) = n3m1 N6(ξ)= n3m2 N9(ξ) = n3m3

n1(ξ) = 1
2ξ (1− ξ) m1(η) = −1

2η (1− η)

n2(ξ) = 1− ξ2 m2(η) = 1− η2

n3(ξ) = 1
2ξ (1 + ξ) m3(η) = 1

2η (1 + η)

In Fig. 2.3 the reference element and the corresponding base functions are visualized.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

1 2 3

4 5 6

7 8 9

ξ

η

(a) Reference element (b) Base functions
Fig. 2.3: 2nd-order 2D-Lagrange element

2.2.3 Mapping & Derivatives

As usual in the finite element method, the isoparametric concept is used to map the reference element
to the physical element in the mesh. Here, the mesh is composed by manifold elements so that this
mapping is Rn → Rn+1. It is defined as χ(ξ) := Ni(ξ)xi (summing is implied by repetitive indices
herein). The points xi ∈ Rn+1 denote the coordinates of the element nodes in the real domain. In

Laplace-Beltrami operator on implicitly defined manifolds 9



2 Preliminaries

Fig. 2.4 the mapping of a 2nd order Lagrange element from the reference space Ω̂ to the real domain
Ω is illustrated.

ξ

η

y

z

x

χ(ξ)

1 2 3

4 5 6

7 8 9

Fig. 2.4: Illustration of a mapping from Ω̂→ Ω

Thereby a point of the manifold, in global coordinates, can be expressed in terms of coordinates in
the reference space:

x(ξ) = Ni(ξ)xi (2.6)

The Jacobi matrix J is defined by the partial derivatives of the mapping function χ(ξ) with respect
to the reference coordinates.

J = ∂xk
∂ξj

=

x,ξ x,η
y,ξ y,η
z,ξ z,η

 (2.7)

The global derivatives of N can be determined by rearranging

[
Ni,ξ

Ni,η

]
=
[
x,ξ y,ξ z,ξ
x,η y,η z,η

]
·

Ni,x

Ni,y

Ni,z

 = JT ·Ni,x (2.8)

to

Ni,x = J ·
(
JT · J

)−1
·Ni,ξ

∇ΣN(x) =
[
J · g−1 · ∇Ω̂N(ξ)

]
◦ χ−1(ξ).

(2.9)

Here, g is the Gram matrix of the Jacobi matrix. In terms of classical differential geometry g is the
metric tensor and the inverse of g is the contra-variant form. The operators ∇Ω̂N(ξ) denotes the
gradient in the reference space and ∇Σ is the surface gradient, which is defined as the projection
of the physical space gradient of an extension of the function onto the tangent space of the surface.
The mathematical derivation of the surface gradient is given in [9, Chapter 2.4] and is based on the
differential tangential calculus.

10 Laplace-Beltrami operator on implicitly defined manifolds



3 Mesh generation

In general, there are several possibilities to define a manifold and generate a mesh. For instance one
may start with a planar mesh and apply any map to R3 to obtain a surface mesh being a manifold.

Our approach is to generate a manifold mesh using a higher-order re-meshing scheme. A direct
consequence of this approach is, that an arbitrary manifold mesh can be generated automatically.
Therefore a background mesh is introduced and the zero-level set is meshed by manifold (line or
surface) elements. This procedure is called reconstruction and is described in detail in [3], [4].

In this section an overview of the reconstruction procedure, the requirements of the background mesh
and the manifolds mesh extraction is given. Finally, in Section 3.3 the computational costs of the
whole manifold mesh generation are considered.

3.1 Reconstruction

As mentioned above the aim of the reconstruction is to approximate the zero-level set with line or
surface elements. The procedure of the reconstruction is shown for the example of a curve embedded
in the 2D physical space.

At first a background mesh composed by higher-order Lagrange elements is introduced and the cut
elements have to be determined. Therefore a simple grid, with a user defined resolution, is applied
to each element and at each grid point the level set function is evaluated. If a sign change within the
element is detected, the element is considered as cut. In Fig. 3.1 the zero-level set cuts two edges of
the background element. In the sub-figures the sign of the level set function (a) and a sample grid
(b) is illustrated.

0 0.2 0.4 0.6 0.8 1
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0.4

0.6
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(a) Sign of the level set function

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

3

x

y

(b) Sample grid
Fig. 3.1: Detection of a cut, triangular element

Note that in general just the nodal values of the element are not sufficient for a successful detection,
see [3, Section 3.1] for further information.
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3 Mesh generation

If the level set function is more complex, many different cut scenarios may occur. For instance
one edge is cut twice or all three edges are cut. Therefore a limitation to the cut scenarios might
be necessary for an efficient implementation. In Fig. 3.2 “valid” cut scenarios for triangular and
tetrahedral elements are illustrated.

(a) Triangular element (b) Tetrahedral element, case 1 (c) Tetrahedral element, case 2
Fig. 3.2: Topological cut scenarios of a background element. (a) for the triangular element a valid cut

scenario is if just two edges are cut. (b) and (c) for the tetrahedral element, depending on the signs
of the level set function on the corners, the shape of the zero-level set may be triangular or
quadrilateral [4, Section 3].

With this restriction invalid cut scenarios can occur and further steps for a successful reconstruction
are necessary. These steps are discussed in Section 3.1.1.

After a successful detection of a cut element the zero-level set will be approximated by a manifold
element. The nodes of the element are defined by a Newton-Raphson procedure with prescribed search
path. As mentioned and investigated in [4] the node distribution is crucial for the approximation
properties of the resulting manifold element. In this thesis, for line elements, the gradient of the
level-set function is used for the search path. In Fig. 3.3 the procedure is visualized for a 4-th
order line element. The gray arrows indicate the search path for the Newton-Raphson algorithm
and the numbered nodes are the reconstructed line element nodes. The reconstruction starts with

0 0.2 0.4 0.6 0.8 1
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1
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(a) Corner nodes
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(b) Inner nodes
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x

y

(c) Line element
Fig. 3.3: Reconstruction procedure. (a) Reconstruction of the corner nodes along the edges of the

background element. (b) Determination of the inner nodes with the gradient as search path. (c)
Reconstructed line element.

the determination of the corner nodes, see Fig. 3.3(a). In Fig. 3.3(b) the start values (2̂, 3̂, 4̂) are
distributed equidistantly between the two corner nodes. The search paths (gray arrows) are the
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3.1 Reconstruction

gradients of the level set function at the start points. Finally, in Fig. 3.3(c) the whole line element
is reconstructed.

For surface elements the reconstruction is analogous. At first the edges are reconstructed and with
a certain mapping start values at the inner nodes are determined. Search directions are defined and
the inner element nodes of the surface element are found iteratively. Note that if the mapping is not
smooth enough, suboptimal convergence rates may occur. Further information is given in [3], [4].

In contrast to the procedure in [3], [4], where the level-set data is transfered to the reference space,
herein the whole procedure takes place on the level of the physical element. This leads to a restriction
to the background mesh, because the corner nodes of a manifold element are determined by a Newton-
Raphson iteration along the edges of the cut element, see Fig. 3.3(a). Therefore straight edges of the
background mesh are a crucial requirement. Anyway, a linear background mesh is sufficient to define
a manifold mesh composed by elements of higher-order.

3.1.1 Shape and manipulation of the background mesh

In general there are many possibilities to define a background mesh, but as mentioned above the
properties of the mesh influence the resulting reconstruction. In this thesis just simplex elements in
2d (triangular) and 3d (tetrahedral) shall be used for the background mesh although a higher-order
manifold mesh is reconstructed.

Herein, the background meshes are based on universal meshes [10], [8] as illustrated in Fig. 3.4. These
kind of meshes have, in our context, two important properties: (1) They are very regular so that
nodes may be moved quite flexible. (2) They feature non-smooth boundaries, which is an issue when
open manifolds are considered. For a closed manifold these class of background meshes is used in all
cases. However, for the case of open manifolds, the background mesh does have the additional task

−1 0 1
−1

−0.5

0

0.5

1

x

y

(a) 2d (b) 3d
Fig. 3.4: Universal mesh

to imply the boundary of the manifold. It is then quite unlikely that a universal mesh generates the
desired boundary. Then, it may be more useful to use background meshes with straight boundaries,
e.g. union-jack like meshes as shown in Fig. 3.5.

Laplace-Beltrami operator on implicitly defined manifolds 13



3 Mesh generation

0 2 4
0

2

4

x

y

(a) 2d (b) 3d
Fig. 3.5: Union-jack mesh

For a successful reconstruction of manifold elements in every cut background element, it is necessary
to avoid special cases where the topology of the cut situation is not valid as discussed above. We
found that a movement of some of the nodes in the background mesh is highly useful to “guarantee”
valid cut situations whenver the resolution of the background mesh is reasonable with respect to
the complexity of the zero-level sets. This approach moves the nodes of the background elements,
which are close to the zero-level set, away to a moderate distance and tries to avoid invalid cut
scenarios as much as possible. Furthermore this algorithm also ensures a more balanced element
size ratio. In Fig. 3.6 a circle with a conventional triangular(left) and a universal mesh(right) is
reconstructed. Moreover in the left figure the mesh manipulation is disabled and in the right figure
enabled. The number of background elements in Fig. 3.6(a) is 56 and in Fig. 3.6(b) 54. The blue
line is the manifold and the red crosses indicate the element corners. In Fig. 3.6(a) the ratio between
hmax/hmin ≈ 2.38× 105 and in Fig. 3.6(b) hmax/hmin ≈ 4.07, which is way better than the ratio of
the conventional mesh without node manipulations. With the implemented mesh manipulation it is
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(a) Variant 1
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0.5

1

x

y

(b) Variant 2
Fig. 3.6: Reconstructed circle, r = 1, (a) Conventional mesh with disabled mesh manipulation, (b) Universal

mesh with enabled mesh manipulation

possible that all nodes of the background mesh are moved to another position, but if we consider
an open manifold and the mesh manipulation is enabled, the shape of the boundary is changed. In
order to avoid this situation the boundary of the background mesh can be forced back to the original
location. Unfortunately, this may again lead to bad element size ratios for both types of meshes
(conventional and universal) again. In Section 5.1.7 and Section 5.1.8 the impact of this constraint
is demonstrated.

Another approach to define the boundary of an open manifold is to define additional level-set func-
tions [5]. Note that these approach is not implemented yet, herein. In this thesis open manifolds
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3.2 Manifold mesh extraction

are reconstructed with universal meshes if the boundary is through the smooth edges. If not, a con-
ventional block-mesh with union-jack element pattern is used. The mesh manipulation is enabled in
all cases and the phenomena of the slightly changed boundary will be ignored and in the numerical
examples the Dirichlet-boundary condition will be evaluated at the reconstructed boundary.

Another possibility to increase the robustness of the algorithm is a recursive refinement of the invalid
background element until just valid cut scenarios occur [4, Section 3.5]. Despite of the fact that
recursive refinement is a powerful tool, this approach is not an option herein because this would
naturally lead to hanging nodes which we wish to avoid. For details about this constraint, see
Section 3.2.

3.2 Manifold mesh extraction

The result of the reconstruction is a set of elements, each defined by the coordinates of the element
nodes. There is not yet a concept of nodes which can be associated to degrees of freedoms in a finite
element context. That is, nodes with identical coordinates have to be identified. A node number is
associated to each unique node position and a connectivity matrix has to be set up. Thereafter, a
finite element simulation may be carried out in the standard way. In this section the mesh generation
is explained in detail. The whole mesh extraction can be divided into two major steps and in general
this procedure is similar for lines and surfaces:

1. Reconstruction and storing of all manifold elements

2. Identification and removal of duplicate nodes:

a) Determining the topological relationships of the cut background elements

b) Updating the connectivity matrix

In the first step the coordinates of the generated manifold elements are stored and a “brute force”
connectivity matrix is assembled. Each new element is just added by new node numbers. Therefore
on shared edges or corners duplicate nodes occur. This can not be avoided, because the topological
relation of the cut background elements and the location and number of the manifold elements is
not known before the reconstruction procedure starts. Therefore the topological relationships are
neglected by assembling the “brute force” connectivity matrix.

In step two the duplicate nodes are removed. In general there are many algorithms to identify and
remove identical nodes and most of them are based on comparing the coordinates with tolerances.
For instance in Fig. 3.6(a) the element size might be indefinite small. If such a small element occurs,
it can happen that nodes of the same element or the whole element collapse to one node. Fig. 3.7
shows a path with quadratic line elements. The inner node 5 of element 2 is also in the range of the
tolerance, due to the small element size. Therefore the nodes 3, 4, 5 and 6, 7 would be merged to
node 3 and 6, but we just want to merge the nodes 3, 4 and 6, 7. Note that the points 3, 4 and 6,
7 are identical, due to a better visualization these nodes are moved apart slightly. Therefore these
kind of algorithms do not satisfy the requirements especially when the elements may be unboundedly
small.

ele
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elem. 2

ele
m
. 3

to
l

2 3 4

5
6 7

8

Fig. 3.7: Node collapse
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3 Mesh generation

Our approach is to merge the nodes 3, 4 and 6, 7 using the topological relationships. After the
reconstruction it is known, which background element is cut and based on this information the
neighbor relationships of the cut background elements can be determined. It is evident that, if the
neighbor situation of the cut background elements is available, the topological relationships of the
manifold mesh is determined too. With the cut scenarios and the neighbor information, identical
nodes may be merged without comparing coordinates. In Section 3.2.1 and Section 3.2.2 these
algorithms for line and surfaces meshes are explained in detail.

3.2.1 Line mesh in a 2D background mesh

As mentioned above, at first the topological relationships have to be determined and with this
information the duplicate nodes can be identified and removed efficiently. The procedure is shown
on a s-shaped manifold. The manifold is defined by a parameter x ∈ [0, 1]

Σ =
[
x

f(x)

]
=
[

x
x3

2 + sin(π(1− x)) sin5 (π
2 (1− x)

)
− 1

4

]
(3.1)

and the level-set function can be obtained as

φ(x) = f(x)− y . (3.2)

Topological relationships

As mentioned before, a 2D background mesh is composed by linear triangular elements. Therefore
each element can have a maximum of three neighbors. The topological relationships are stored in
an integer matrix with the dimension nElem × 3. The first index indicates the element number and
second index indicates the reference edge number. If there is a neighbor, the corresponding element
number will be placed at this position, otherwise an edge is on the boundary and a zero is placed.

In order to reduce the computational costs only the cut background elements, which is equal to
the number of line elements, are considered. In Fig. 3.8(a) the cut (yellow) and non-cut (shaded)
background elements are plotted. The blue line is the zero-level set of the level-set function. In
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(a) Background mesh and zero-level set
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Fig. 3.8: Reduction of the background mesh. (a) cut background elements and zero-level set are highlighted,

(b) increment of background and line elements

Fig. 3.8(b) the growth of the background and line element number is plotted. It is seen that, the
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3.2 Manifold mesh extraction

background mesh element number increases with O(n2) and the number of line elements grows
with O(n1). Therefore the reduction to only considering cut background elements decreases the
computational costs dramatically.

Remove duplicate nodes in the connectivity matrix

For a line mesh just the corner nodes of the line elements may be shared. In order to identify the
duplicate nodes, a loop over the manifold elements is performed and for each element the neighbor
situation is used to check if a neighboring line element exists. If there is a neighboring element, which
is already added in the updated connectivity matrix, with the cut scenarios the shared nodes are
identified and the node numbers are stored accordingly.

Therefore four different situations during the update of the connectivity matrix can appear. In
Fig. 3.9 these situations are illustrated. The elements, which are drawn in green are the current
elements. The blue elements are already added in the updated connectivity matrix.
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(d) Element 15, neighbor elements: 11, 14
Fig. 3.9: Update situations

In the first situation, see Fig. 3.9(a), element 1 is added. This element is at the boundary and therefore
just one neighbor exits, but the neighboring element is not added yet. Therefore for element 1 changes
in the connectivity matrix are not necessary.

In Fig. 3.9(b) element 2 is added. We can see that the current element shares the lower, left node
with element 1. With the case cut scenario the orientation of the element can be determined and
consequently the duplicate node is defined and the shared node number from element 1 can be placed
in the connectivity matrix.

In Fig. 3.9(c) element 5 is added. Due to the fact that the reconstruction is not along the level set
function, the current neighbor elements are not added yet and therefore this case is similar to the
first situation.
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3 Mesh generation

In Fig. 3.9(d) both neighbors of element 15 are already added. Therefore the first and last node of
the element is shared and the connectivity matrix needs to be updated at both corners.

After the update of the connectivity matrix the node numbering is not consistent due to the dupli-
cate nodes. Therefore the remaining nodes are renumbered and the corresponding coordinates are
reordered. Finally, the line mesh is generated, see Fig. 3.10. The blue points indicate the element
nodes and the red dots are element borders.
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Fig. 3.10: Reconstructed 3rd order line mesh

3.2.2 Surface mesh in a 3D background mesh

In general the procedure for a surface mesh is similar to the algorithm which is shown above, but
the topological relationship is more complex. Furthermore the reconstructed surface mesh contains
triangular and quadrilateral elements. For the visualizations a sphere with radius r = 1 and the
center in the origin is chosen. The level set function is defined by:

φ(x) = ‖x‖ − r (3.3)

Topological relationships

As mentioned in Section 3.1.1 tetrahedral elements are used. For a 3d background mesh two classes
of topological relationships: Face-neighbors and single-edge-neighbors have to be determined.

The algorithm for the face-neighbors is analogous to the edge neighbors of the 2d background mesh,
see Section 3.2.1. The topological relationships are stored in an integer matrix with the dimension
nElem × 4 and the second index indicates the reference face number. The single-edge-neighbor algo-
rithm is based on the methods from the triangle edge neighbors relationship in 3d, which is the same
concept like before. Furthermore the already computed face-neighbor information is used to separate
the single-edge- from the face-neighbors, otherwise single and multi-edges-neighbors are determined.
In contrast to the face-relationship the number of single-edge-neighbors per element is not bounded.
Therefore the information will be stored in an array with the dimension nElem × 6 and the second
index indicates the reference edge number. The entries are a vector with the dimension n̂Elem × 1.
n̂Elem is the number of the single-edge-neighbors per edge, which is not limited.

Again the topological relationships are just determined for the cut background elements in order to
decrease the computational costs. Fig. 3.11(a) shows the cut background elements and the zero-level
set. The non-cut elements are neglected due to a better visibility.
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3.2 Manifold mesh extraction

(a) Background mesh and zero-level set

100 101 102 103
102

103

104

105

106

107

108

1

3

1

2

background elements per dimesion

e
le
m
e
n
t
n
u
m
b
e
r

surface elem.

background elem.

(b) Total element number
Fig. 3.11: Reduction of the background mesh. (a) cut background elements and zero-level set of a sphere,

(b) increment of background and surface elements

In Fig. 3.11(b) the element number of the background and surface mesh grows with O(n3) and
O(n2), respectively. Therefore the reduction to only considering cut background elements decreases
the computational costs dramatically.

Remove duplicate nodes in the connectivity matrix

For surface meshes due to the more complex topological relationships and cut scenarios the update
of the connectivity matrix is more challenging than for a line mesh. As is shown in Fig. 3.2 the
generated surface mesh contains triangular and quadrilateral elements. In general the identification
of the duplicate nodes is similar to the algorithm for a line mesh. A loop over the reconstructed
surface elements is performed and with the neighbor relationships the connectivity matrix is updated
and renumbered at the end.

Additionally to the four update situations in Fig. 3.9, the neighboring elements may share an edge
(case 1) or just one corner (case 2). The first case can be identified with the face-neighbor relationship
and second case with the single-edge-neighbor relationship. Furthermore if a shared edge occurs, the
direction of the reference node-numbering has to be considered too. With the constraint that the
sense of rotation, which can be described by the normal vector, must be the same for each element,
it can be said that the reference node numbering between two elements is always opposite.

In Fig. 3.12(a) element 1 and 2, which share one edge and their sense of rotation is plotted. Fur-
thermore the reference node numbering for the shared edge is shown. The shaded elements are not
yet added. It is seen that the global orientation of the corresponding edges is opposite. Before the
global node numbers are placed in the updated connectivity matrix the shared edge nodes have to
be flipped.
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Fig. 3.12: Neighbor situations for a reconstructed surface mesh

In Fig. 3.12(b) element 3 is added to the updated connectivity matrix. In this case element 3
shares one corner node with the elements 1 and 2. After updating and renumbering of the whole
connectivity matrix the surface mesh is generated. In Fig. 3.13 a sphere is reconstructed with third
order elements.

Fig. 3.13: Surface mesh of a sphere
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3.3 Computational Costs

3.3 Computational Costs

After the verification of the implemented algorithms, also the complexity is investigated. Especially
for the surface mesh extraction the complexity is important for the architecture of the implemented
algorithms.

The following figure shows the computational time subjected to the background elements per di-
mension in logarithmic scale. Note that for this survey one CPU core is used. In order to get an
overview of each step (reconstruction, topological relationships, node removal) the computational
time is plotted separately.
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(a) Circle in a 2d background mesh
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Fig. 3.14: Computational costs

In Fig. 3.14(a) a circle with the background-mesh-scale-factor n̂ = 2a, a = 1, 2, . . . , 13 and third
order elements is reconstructed. The algorithms for the topological relationships and the node re-
moval shows a optimal, linear complexity, within the investigated interval. The reconstruction scales
quadratic, because the identification algorithm for the cut elements has to be applied to the whole
background mesh O(n̂2), which is dominating the procedure. The total computational time for
5.55× 105 line elements is ≈ 6.88× 104 s.

In Fig. 3.14(b) a sphere with the background-mesh-scale-factor n̂ = 2a, a = 2, 3, . . . , 7 and third
order elements is reconstructed. The reconstruction algorithm scales with a cubic complexity in
the tested interval. The reason is the identification algorithm again, because the total background
element number scales with O(n̂3). The topological relationships and the node removal shows a
optimal, quadratic complexity with different constants. The total computational time for 2.28× 105

surface elements is ≈ 8.32× 103 s.
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4 FEM-Simulations on manifolds

In general, analytic solutions of PDEs on manifolds are just in special cases available. With the finite
element method (FEM), one may obtain numerical solutions, which converge asymptotically to the
exact solution. Therefore the variational or weak form of the PDEs is under consideration. In this
thesis the Bubnov-Galerkin method is used to determine the weak form [7, Section 4.4].

4.1 General definitions

Before we start with the derivation of the weak form, two important function spaces L2(Σ), H1(Σ)
have to be defined.

L2(Σ) =

u : ∃
∫
Σ

(u(x))2 ds <∞

 (4.1)

H1(Σ) =
{
u ∈ L2(Σ) : ∃ weak derivitave ∂u

∂xi
∈ L2(Σ) , i = 1, . . . , n

}
(4.2)

Weak derivative by Sobolev:

The integrable function w(x) = ∂u
∂xi

is a weak derivative of u in respect to xi, if∫
Σ

u(x) ∂ϕ
∂xi

ds = −
∫
Σ

w(x)ϕ(x) ds (4.3)

is valid ∀ ϕ ∈
◦
C1(Σ). The function space

◦
C1(Σ) contains all once continuously differentiable

functions ϕ with ϕ|Γ = 0, [7, Cha. 4.2].

4.2 Weak form of the Laplace-Beltrami operator

The procedure of the derivation of the weak form of a PDE on manifolds is shown by the inho-
mogeneous Laplace-Beltrami operator. In [9, Section 2.5] the derivation is given with homogeneous
boundary conditions. The strong form of the Laplace-Beltrami operator on a manifold is similar to
the Poisson problem in a domain Ω ∈ Rn+1. With a given source function f ∈ L2(Σ) find u : Σ→ R
such that:

−∆Σu = f on Σ, (4.4a)
u|ΓD = g1 on ΓD, (4.4b)

nΓ · ∇Σu = 0 on ΓN, (4.4c)

where nΓ is the unit normal vector on the boundary. For a closed manifold, without boundary, we
need an additional condition for the problem to be well-posed. The reason is that we can choose
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4 FEM-Simulations on manifolds

u = const., which makes the left hand side of Eq. 4.4a to vanish. Since the null space of the
Laplace-Beltrami operator on a closed manifold is the space of constant functions, we need to add
an additional constraint to only allow the zero function. This zero mean constraint is∫

Σ

uds = 0 . (4.5)

Multiplying the strong form (see Eq. 4.4a) with a test function v ∈ V0, where V0 is a suitable function
space and integrate in respect to ds we get

−
∫
Σ

∆Σu v ds =
∫
Σ

v f ds . (4.6)

Using the Green’s formula for tangential operators [9, Section 2.5] the variational form can be obtained
as:

−
∫
Σ

∆Σu v ds =
∫
Σ

∇Σv · ∇Σuds−
∫

ΓD

nΓ · ∇Σu v ds−
∫

ΓN

nΓ · ∇Σu v ds =
∫
Σ

v · f ds (4.7)

Due to the choice of the test function space and the homogeneous Neumann condition the integrals
over ΓD and ΓN are zero. In particular, the weak form of the Laplace-Beltrami operator is:

Find u ∈ Vg1 , such that

a(u, v) = 〈F, v〉 ∀v ∈ V0 (4.8)

where

a(u, v) =
∫
Σ

∇Σv · ∇Σuds

〈F, v〉 =
∫
Σ

f v ds

Vg1 =
{
u ∈ H1(Σ) : u|ΓD = g1

}
For manifolds with boundary:

V0 =
{
v ∈ H1(Σ) : v|ΓD = 0

}
For closed manifolds:

V0 =

v ∈ H1(Σ) :
∫
Σ

v ds = 0


Here, a(u, v) is the bilinear form and 〈F, v〉 is the linear form of the inhomogeneous boundary value
problem. For theoretical investigations it is common to consider a homogeneous boundary value
problems. With the procedure of the homogenization an inhomogeneous boundary value problem
can be reduced to a substituted boundary value problem with homogeneous boundary conditions.
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4.2 Weak form of the Laplace-Beltrami operator

The procedure is shown in [7, Section 4.3] and is applied to Eq. 4.8. Extend g1 ∈ H1(ΓD) properly
to g̃1 ∈ H1(Σ) and with the properties of the bilinear form we can replace u by

u = w + g̃1 (4.9)

and solve the substituted boundary value problem from Eq. 4.8:

Find w ∈ V0 , such that

a(w, v) =
〈
F̃ , v

〉
∀v ∈ V0

where

a(w, v) =
∫
Σ

∇Σv · ∇Σw ds

〈
F̃ , v

〉
=
∫
Σ

v · f ds− a(g̃1, v)

The existence and uniqueness of the solution is guaranteed by the Lax-Milgram lemma and proven
in [9, Section 2.5].

4.2.1 Discrete weak form

Using the iso-parametric concept we choose the element functions N as ansatz for the solution u and
test functions v to

u ≈ uh = ûkNk(x(ξ)) , v ≈ vh = vjNj(x(ξ)) , (4.10)

where, ûk denotes the approximative solution at the element nodes k and vj = δkj . Therefore the
weak form (Eq. 4.8) leads into the discrete weak form:∫

Σ

Nj,iNk,i ds ûk =
∫
Σ

Njf ds

∫
Σ

NT
,i ·N ,i ds û =

∫
Σ

Nf ds

Kû = b

(4.11)

Here,K is the stiffness matrix and b is the load vector. Note that the test functions vh, for manifolds
with a boundary, satisfy vh ∈ V0 after the insertion of the boundary conditions.

As mentioned above, for closed manifolds the introduction of the zero-constraint is necessary. For
the implementation the Lagrange multiplier µ is used [9, Section 3.2].∫

Σ

uds ≈
∫
Σ

uh ds =
∫
Σ

NT ds · û = CT · û = 0 (4.12)

[
K C

CT 0

] [
û
µ

]
=
[
b
0

]
(4.13)

With this modification vh ∈ V0.
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4.2.2 Error estimation

In [7, Section 3.8] an a-priori error estimation in the L2-norm is given:

‖u− uh‖0,2,Σ =
√√√√∫

Σ

(u(x)− uh(x))2 ds

‖u− uh‖0,2,Σ ≤ c1h
p+1 (4.14)

Note that c1 is a positive constant and is a function of u, but not from the discretization parameter
h. p is the order of the element functions. Especially for p-FEM it is important to reach the p + 1
convergence order for an arbitrary element order.

4.3 Weak form of the in-stationary transport problem

Again, starting with the inhomogeneous strong form in the Euclidean space Rn+1 [7, Section 2.2]:

cρ u,t + âi u,i + (λiu,i),i = f on Σ

Assuming cρ = 1, λi = λ the strong form can be simplified to:

u,t + âΣ · ∇Σu+ λ∆Σu = f on Σ, (4.15a)
u|ΓD = g1 on ΓD, (4.15b)

nΓ · ∇Σu = 0 on ΓN, (4.15c)
u(x, 0) = u0(x) at t = 0, and ∀x ∈ Σ (4.15d)

The parameter âΣ is the tangential convection term. Applying the procedure from Section 4.2 on
Eq. 4.15a the semi-discrete weak form can be written in terms of [7, Section 7.1]:

Find uh ∈ Vg1h
with uh,t ∈ L2(Σ) , such that

(uh,t, vh)0 + a(t;uh, vh) = 〈F (t), v〉 ∀v ∈ V0h (4.16)

where

(uh,t, vh)0 =
∫
Σ

uh,t vh ds

a(t;uh, vh) = âΣ ·
∫
Σ

vh∇Σuh ds+ λ

∫
Σ

∇Σvh · ∇Σuh ds

〈F (t), vh〉 =
∫
Σ

f(x, t) vh ds

for almost all t ∈ (0,T) and

(uh(x, 0), vh)0 = (u0, vh)0 ∀v ∈ V0h

satisfies.
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4.3 Weak form of the in-stationary transport problem

Here,

Vg1h = {uh(x, t) : uh(x, t) = ûi(t)Ni(x) + g1(xj , t)Nj(x)} ⊂ Vg1

V0h = {vh(x) : vh = viNi(x)} ⊂ V0

Integrating in respect to the space the semi-discrete weak form yields to:

Mû,t(t) +Kû(t) = b (4.17)

Where

M =
∫
Σ

NT ·N ds

K = âi

∫
Σ

NT ·N ,i ds+ λ

∫
Σ

NT
,i ·N ,i ds

The solution on the element nodes û(t) is still a function of the time. Therefore a numerical time
integration in order to get the full-discrete weak form is introduced. In this thesis the Crank-
Nicolson method (σ = 1/2) is used [7, Section 7.1]. The continuous time space (0,T) is divided into
0 = t0 < t1 < tm < . . . tmT = T discrete time layers with τ = tm+1− tm. The full-discrete weak form
can be obtained as:

(M + στK) û(m+1) = [M − (1− σ)τK] û(m) + τ [σb(tm+1) + (1− σ)b(tm)] (4.18)

Note that, if the time step τ = const. the matrices on the left and right hand side are constant for
all time steps.

4.3.1 Error estimation

For time dependent PDEs the total error is depend of the error of the space discretization and
the error of the numerical time integration. If both errors converge with the same order, optimal
convergence orders can be archived.

The stability and error measurement for a numerical time integration is considered in [7, Section 8].
The Crank-Nicolson is unconditionally stable and has a consistence order of O(τ2) if the error of the
space discretization is not dominating.
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5 Numerical results

In this section the Laplace-Beltrami operator and the in-stationary transport problem are solved
on several manifolds. Herein, we use the method of manufactured solutions Section 5.1.1 to obtain
analytic solutions for the convergence studies. The following examples are solved with a regular
mesh, in order to validate the implemented source code and with the reconstructed meshes, from
Chapter 3, in order to investigate the properties of these meshes.

5.1 Laplace-Beltrami operator

The derivation of the discrete variational form of the Laplace-Beltrami operator is shown in Sec-
tion 4.2. The analytic solutions are constructed by the method of manufactured solution, which is
shown in Section 5.1.1. For each example a convergence analysis is performed. The error is measured
in the relative L2-norm. Furthermore the condition number of the stiffness matrix and the ratio of
the element sizes is investigated too.

5.1.1 Manufactured solution

In order to construct an example with analytic solution for an arbitrary manifold, a solution u(x)
is assumed and the Laplace-Beltrami operator is applied on this function. This yields to the source
function, which is used in the numerical approach as source term at the right hand side of the linear
system of equations. Therefore the Laplace-Beltrami operator is written in local coordinates [2]:

− 1√
|det g|

∂

∂xi

(
gij
√
|det g| ∂u

∂xj

)
= f, (5.1)

where g = JT · J is the first fundamental form in the differential geometry and gij are the contra-
variant entries of the metric tensor. For manifolds (curves) Σ ∈ R1 Eq. 5.1 yields into:

−∆u = f = JT
,1 · Jg−2

11 u,1 − g
−1
11 u,11 (5.2)

For manifolds (surfaces) Σ ∈ R2 with the form

x(r) =

xy
z

 =

 r
s

F (r, s)

 (5.3)

the Laplace-Beltrami operator (Eq. 5.1) leads to:

−∆u = f = − g11u,11 − 2g12u,12 − g22u,22

− u,1
[1
κ

(
κ,1g

11 + κ,2g
12
)

+ g11
,1 + g12

,2

]
− u,2

[1
κ

(
κ,1g

12 + κ,2g
22
)

+ g12
,1 + g22

,2

] (5.4)
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With:
κ =

√
|det g| =

√
F 2
,r + F 2

,s + 1 → det g > 0 ∀ r, s ∈ R

5.1.2 Example 1 - Circle

At first, the Laplace-Beltrami opterator is solved on a circle. Using polar coordinates (r, ϕ) the
metric tensor yields to

g =
[
1 0
0 r2

]
. (5.5)

The solution in polar coordinates is chosen as in [9] to

u(r, ϕ) = 12 sin 3ϕ (5.6)

and the source term from Eq. 5.2 yields to

f = 108
r2 sin 3ϕ . (5.7)

In Fig. 5.1 the numerical and analytic solution is illustrated. The numerical approach seems to be
quite accurate.
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Fig. 5.1: Numerical uap and analytical uex solution for a circle

In the Fig. 5.2 - Fig. 5.4 the convergence analysis is performed with the following set of parameters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [4, 8, 16, 32, 64, 128, 256, 512]
Element scale factor (reconstructed mesh) n̂E = [4, 8, 16, 32, 64, 128, 256, 512]

30 Laplace-Beltrami operator on implicitly defined manifolds



5.1 Laplace-Beltrami operator

In the left column the analysis is calculated with regular meshes1 and in the right column meshes
from the reconstruction procedure are used. The x-axis of each plot indicates the element size factor
hj = 1/nj.
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Fig. 5.2: L2 error analysis

Fig. 5.2 shows the relative L2 error subjected to the element scale factor h in logarithmic scale and
p is the order of the element functions. The dotted lines are the theoretical, optimal convergence
orders O(p+ 1) [7]. Both types of meshes show optimal convergence rates.

10−2 10−1

101

103

105

107

109

Element size h (background mesh)

e
st
.
c
o
n
d
.
n
u
m
b
e
r

p=1

p=2

p=3

p=4

p=5

p=6

(a) Regular mesh

10−2 10−1

101

103

105

107

109

Element size h (background mesh)

e
st
.
c
o
n
d
.
n
u
m
b
e
r

p=1

p=2

p=3

p=4

p=5

p=6

(b) Reconstructed mesh
Fig. 5.3: Estimated condition Number

In Fig. 5.3 the estimated condition number of the stiffness matrix K is plotted. It is seen that the
characteristic of the curves in Fig. 5.3(a) and Fig. 5.3(b) is similar, but for the reconstructed meshes
the condition numbers are higher by the factor ≈ 1× 102.

1These are tailored meshes for the circle where all elements feature the same size.
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Fig. 5.4: Ratio between hmax/hmin surface mesh

In Fig. 5.4 the ratio between the largest and smallest element of the surface mesh is plotted. Here
the ratio in Fig. 5.4(b) is converging to a constant factor < 4.

5.1.3 Example 2 - Flower

In this example the Laplace-Beltrami operator is solved on a flower shaped manifold. The manifold
is defined with the parameter s ∈ [0, 2π]

x(s) =
[
r0 + 1

10 sin(Ωs)
]

cos s

y(s) =
[
r0 + 1

10 sin(Ωs)
]

sin s
(5.8)

With:
s = arctan

(
y

x

)
, r0 = 1

2 , Ω = 8

The analytic solution u is chosen to:

u(s) = 12 sin 3s (5.9)

Inserting this relations in Eq. 5.2 a source term can be generated. In Fig. 5.5 the numerical and
analytic solution is presented. The numerical approach seems to be quite accurate.
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Fig. 5.5: Numerical uap and analytical uex solution for a flower-shaped manifold

In the Fig. 5.6 - Fig. 5.8 a convergence analysis is performed with the following set of parameters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [4, 8, 16, 32, 64, 128, 256, 512]
Element scale factor (reconstructed mesh) n̂E = [32, 64, 128, 256, 512, 1024, 2048]

The increase of the element scale factor n̂E is due to the high curvature of the zero-level set, because
for low n̂E invalid cut scenarios and the Runge-phenomena may occur.
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Fig. 5.6: L2 error analysis
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Again optimal convergence rates O(p + 1) can be observed, but the pre-asymptotic range is larger
compared to the range of the example with the circle.
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Fig. 5.7: Estimated condition Number

In Fig. 5.3 the estimated condition number of the stiffness matrix K is plotted. The difference at
each level is approximately the factor 1× 103.
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Fig. 5.8: Ratio between hmax/hmin

In Fig. 5.4 the ratio between the largest and smallest element of the surface mesh is plotted and in
Fig. 5.8(b) after the first levels the ratio is almost constant and converges again to a limited value
< 4.
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5.1.4 Example 3 - S-shaped manifold

In this example an “arbitrary” manifold with boundaries is considered. The shape of the manifold
and corresponding level-set function is defined in Section 3.2.1. The analytic solution is chosen to:

u(x) = exp (2x) (5.10)

Inserting Eq. 3.1 and the analytic solution u in Eq. 5.2 a source term f can be generated. The
Dirichlet boundary condition uDir is evaluated on the boundaries. In Fig. 5.9 the numerical and
exact solution are presented.
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Fig. 5.9: Numerical uap and analytical uex solution for a curved manifold.

In the Fig. 5.10 - Fig. 5.12 the convergence analysis is performed with the following set of parame-
ters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [4, 8, 16, 32, 64, 128, 256, 512]
Element scale factor (reconstructed mesh) n̂E = [8, 16, 32, 64, 128, 256, 512]
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Fig. 5.10: L2 error analysis

Fig. 5.10 shows the relative L2 error subjected to the element scale factor h. Both types of meshes
achieve optimal convergence orders O(p + 1). Furthermore the reconstructed meshes show a super-
convergent behavior.
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Fig. 5.11: Estimated condition Number

In Fig. 5.11 the estimated condition number of the stiffness matrix K is plotted. The difference at
each level is approximately the factor 1× 101. The small difference might be due to the almost same
element size ratio.
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Fig. 5.12: Ration between hmax/hmin

In Fig. 5.12(b) the ratio between the largest and smallest element of the manifold mesh is plotted
and similar to the examples before.
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5.1.5 Example 4 - Quarter Cylinder

Here, the Laplace-Beltrami operator is solved on a surface of a quarter cylinder with the radius r = 1
and height L = 4. The analytical solution in cylindrical coordinates (r, ϕ, z) is given in [9] with the
following parameters and functions:

gϕ,1(ϕ) = (1− cosϕ) (1− sinϕ) , (5.11)
gϕ,2(ϕ) = (cosϕ+ sinϕ− 4 sinϕ cosϕ) , (5.12)

gz(z) = sin απz
L

, (5.13)

α = 3 , β = 1
3
2 −
√

2
. (5.14)

The analytic solution is defined by

u(r, ϕ, z) = βgϕ,1(ϕ)gz(z) . (5.15)

Using cylindrical coordinates the metric tensor yields to

g =

1 0 0
0 r2 0
0 0 1

 (5.16)

and Eq. 5.1 reduces to

−1
r

(r u,r),r −
1
r2u,ϕϕ −

1
r
u,zz = f . (5.17)

Applying the Laplace-Beltrami operator on the given solution, the source function is obtained as:

uϕϕ = βgz(z) [cosϕ(1− sinϕ) + sinϕ(1− cosϕ)− 2 sinϕ cosϕ]

uzz = −βgϕ,1(ϕ)
(
απ

L

)2
sin
(
απz

L

)
f = βgz(z)

[(
απ

L

)2
gϕ,1(ϕ)− gϕ,2(ϕ)

]
(5.18)

The Dirichlet boundary condition is u|ΓD = 0. In the following figure the numerical and exact solution
can be compared. The colors on the surface represent the solution of the problem.

(a) Numerical solution (b) Exact solution
Fig. 5.13: Laplace-Beltrami operator on a quarter cylinder
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In the Fig. 5.14 - Fig. 5.16 the convergence analysis is performed with the following set of parame-
ters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [2, 4, 8, 16, 32, 64, 128, 256]
Element scale factor (reconstructed mesh) n̂E = [4, 8, 16, 32, 64, 128]
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Fig. 5.14: L2 error analysis

In Fig. 5.14 for both types of meshes optimal convergence orders O(p+ 1) [7] can be observed.
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Fig. 5.15: Estimated condition Number
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Fig. 5.15 shows the estimated condition number of the stiffness matrix K. The difference at each
level is approximately the factor 1× 101.
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Fig. 5.16: Ration between hmax/hmin

In Fig. 5.16 the ratio between the largest and smallest element of the surface mesh is plotted. In
Fig. 5.16(b) after the first level the element ratio is converging to a constant value around 20.
Therefore a significant influence for higher levels on the condition number can not be observed.

5.1.6 Example 5 - Sphere

Here, we consider a sphere with the radius r = 1. Using spherical coordinates (r, ϕ, θ) the metric
tensor yields to

g =

1 0 0
0 1 0
0 0 sin2 θ

 (5.19)

and Eq. 5.1 reduces to

−u,rr −
2
r
u,r −

1
r2u,θ + cot θ

r2 u,θθ −
1

r2 sin2 θ
u,ϕϕ = f . (5.20)

An exact solution u(r, ϕ, θ), which fulfills the condition from Eq. 4.5 is defined by:

u(r, ϕ, θ) = sin(3θ) (cosϕ− sinϕ) (5.21)

Applying the Laplace-Beltrami operator on the given solution, the source function is obtained as:

f = − 2
√

2
sin(θ) cos

(
π

4 + ϕ

) (
24 cos4 θ − 29 cos2 θ + 5

)
(5.22)

In the following figure the numeric and exact solution is presented.
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(a) Numerical solution (b) Exact solution
Fig. 5.17: Laplace-Beltrami operator on a sphere

In the Fig. 5.18 - Fig. 5.20 the convergence analysis is performed with the following set of parame-
ters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [1, 2, 4, 8, 16, 32]
Element scale factor (reconstructed mesh) n̂E = [4, 8, 16, 32, 64, 128]
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Fig. 5.18: L2 error analysis

In Fig. 5.18 for both types of meshes optimal convergence orders O(p+ 1) [7] can be observed.
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Fig. 5.19: Estimated condition Number

Fig. 5.19 shows the estimated condition number of the stiffness matrix K. The difference at each
level is approximately the factor 3× 101.
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Fig. 5.20: Ration between hmax/hmin

In Fig. 5.20 the ratio between the largest and smallest element of the surface mesh is plotted. The
ratio in the reconstructed meshes converges to a constant around 45.

42 Laplace-Beltrami operator on implicitly defined manifolds



5.1 Laplace-Beltrami operator

5.1.7 Example 6a - Hyperbolic paraboloid with bumps

In this example the Laplace-Beltrami operator is solved on a hyperbolic paraboloid with bumps. In
this variant the mesh manipulation from Section 3.1.1 is enabled and there is no constraint to the
boundary nodes. The manifold is defined by:

x(r, s) = r

y(r, s) = s

z(r, s) = 1
2
(
r2 − s2

)
+ 3

20 sin (2πr) sin (2πs) .

(5.23)

The analytic solution u is chosen to:

u(r, s) = sin
[
π

(
r − 1

2

)]
sin
[
π

(
s− 1

2

)]
(5.24)

Inserting the defined functions in Eq. 5.4 a source term can be generated. In Fig. 5.21 the solution
of the numerical and analytic approach is illustrated.

(a) Numerical solution (b) Exact solution
Fig. 5.21: Laplace-Beltrami operator on a hyperbolic paraboloid with bumps

In the Fig. 5.22 - Fig. 5.24 the convergence analysis is performed with the following set of parame-
ters:

Element order p ∈ [1, . . . , 6]
Element scale factor (regular mesh) nE = [4, 8, 16, 32, 64, 128, 256]
Element scale factor (reconstructed mesh) n̂E = [8, 16, 32, 64, 128]
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Fig. 5.22: L2 error analysis

In Fig. 5.22 for both types of meshes optimal convergence orders O(p+ 1) [7] can be observed.
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Fig. 5.23: Estimated condition Number

Fig. 5.23 shows the estimated condition number of the stiffness matrix K. The difference at each
level is approximately the factor 1× 101.
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Fig. 5.24: Ratio between hmax/hmin

In Fig. 5.24 the ratio between the largest and smallest element of the surface mesh is plotted. After
the second level the ratio in Fig. 5.24(b) is decreasing to ≈ 16.

5.1.8 Example 6b - Hyperbolic paraboloid with bumps with fixed nodes

Here, in this variant of example 6a the boundary nodes of the background mesh are forced back to
their original position after the mesh manipulation. As in Section 3.1.1 mentioned this constraint
may lead to bad element size ratios. In Fig. 5.25 and Fig. 5.26 the consequence of this constraint is
illustrated. In the two columns the variants A and B can be compared.
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Fig. 5.25: Estimated condition Number
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Fig. 5.26: Ratio between hmax/hmin

The element size ratios differ by the (factor ≈ 6× 1022) and the estimated condition numbers by
(factor ≈ 4× 106). Therefore it can be concluded that, if the boundary nodes are forced back, the
mesh manipulation is not able to balance the element sizes anymore and the same problem without
mesh manipulation occur again.
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5.2 In-stationary transport problem

5.2 In-stationary transport problem

In this section the in-stationary transport problem is solved. The full-discrete weak form is derived
in Section 4.3. In the first two examples the implemented numerical time integration is verified.
Therefore on a closed manifold the diffusion term is set to zero and the initial state is “moving”
along the manifold without any changes of the shape. In this special case and for simple velocity
fields a analytic solution can be constructed. The relative L2 error is measured at a certain time
layer tm. In order to investigate the error of the time integration, the error of the space discretization
should converge with a higher order. Analogous to the Laplace-Beltrami operator the problems
are solved on both types of meshes. In the other examples the in-stationary transport problem is
illustrated on more complicated manifolds.

5.2.1 Verification in 1d

The in-stationary transport problem is solved on a circle r = 1 with the following set of parameters:

â = 5 (tangential convection)
λ = 0

tmT = 1.00 s

The initial state is set to

u(x, 0) = exp
(
−4ϕ(x)2

)
, ϕ ∈ [−π, π] . (5.25)

The exact solution is obtained as a shift of the angle ϕm = ϕ0 + â tm. In Fig. 5.27 the solution at
t = [0.00, 0.19, 1.00] s is illustrated.
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Fig. 5.27: Solution of in-stationary transport problem on a circle without diffusion

It is seen that the shape of the solution is not changing. The convergence analysis for the time
integration is performed with the following set of parameters:

Element order p = 6
Element scale factor (regular mesh) nE = 128
Element scale factor (reconstructed mesh) n̂E = 128
Time steps mT = [8, 16, 32, 64, 128, 256, 512, 1024]
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Fig. 5.28: L2 error analysis
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Fig. 5.29: Estimated condition Number

For both types of meshes the optimal convergence order of O(τ2) can be achieved after the pre-
asymptotic range. The condition numbers show the same characteristic and difference is approxi-
mately the factor 1× 101.
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5.2 In-stationary transport problem

5.2.2 Verification in 2d

The in-stationary transport problem is solved on a sphere r = 1 with the following set of parame-
ters:

â = −1.75 (tangential convection in the xz plane)
λ = 0

tmT = 1.00 s

The initial state is set to

u(x, 0) = exp
(
−4θ(x)2

)
, θ ∈ [0, π] . (5.26)

Analogous to the example before the exact solution is obtained as a shift of the θ and the cor-
responding coordinates. In Fig. 5.30 and Fig. 5.31 the numerical and analytical solution at t =
[0.00, 0.49, 1.00] s is illustrated.

(a) Inital state (b) State at t = 0.49 s (c) State at t = 1.00 s
Fig. 5.30: Numerical solution of in-stationary transport problem on a sphere without diffusion

(a) Inital state (b) State at t = 0.49 s (c) State at t = 1.00 s
Fig. 5.31: Exact solution of in-stationary transport problem on a sphere without diffusion

The convergence analysis is performed and the results are analogous to the example before. Both
types of meshes achieved optimal convergence orders and the condition numbers show the same
behavior.
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Fig. 5.32: L2 error analysis
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Fig. 5.33: Estimated condition Number
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5.2 In-stationary transport problem

5.2.3 Example 1 - S-shaped manifold

Here, the in-stationary transport problem is solved on a s-shaped manifold. The manifold is defined
in Section 5.1.4. The parameters are set to:

â = 1.00 n̂E = 32
λ = 0.15 p = 4

tmT = 1.00 s mT = 100

The inital state is set to zero in the whole domain and as Dirichlet-boundary condition the right node
is set to 1. In Fig. 5.34 we can see that the distribution is growing from the right boundary to the
left boundary. After enough time steps the whole distribution would be one in the whole domain.
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Fig. 5.34: Solution of an in-stationary transport problem

5.2.4 Example 2 - Hyperbolic paraboloid with bumps

Here, a initial distribution u(x, 0), which is diffusing and flowing in the global y-direction is assumed.
The manifold is defined in Section 5.1.7 and the parameters and initial state are set to:

â = 1.50 n̂E = 32
λ = 0.01 p = 4

tmT = 1.00 s mT = 100

u(x, 0) = 1
2 exp

[
−10

(
x2 + y2

)]
.

(a) Inital state (b) State at t = 0.49 s (c) State at t = 1.00 s
Fig. 5.35: Solution of an in-stationary transport problem
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6 Conclusion & Future prospects

With the described meshing strategies, it is possible to generate higher-order meshes automatically.
The resulting meshes may feature awkward element size ratios, but with the implemented background
mesh manipulation (node movements) this property can be controlled and optimal approximation
properties are achieved. To sum up, in order to determine an arbitrary higher-order manifold mesh
it is sufficient just to define an implicit level-set function and the corresponding background mesh.

In the context of simulations the convergence rates are optimal and coincide with the theoretical
error estimates. When appropriately manipulating the background meshes, the element ratios remain
bounded and the condition numbers are comparable to those obtained with classical meshes, however,
shifted by a certain factor. An alternative to manipulating the background mesh is to employ
stabilization approaches such as in [11], [1]. As mentioned before, the exact description of boundaries
of open manifolds is still an issue. A solution for this problem is the definition of additional level-set
functions which imply the boundaries.

In the future we will apply the described meshing strategies to a number of further applications in
engineering, including the analysis of shells on implicitly defined manifolds.
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