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1 Summary 
Due to the structural change the field of generation and transmission of electrical energy went 

through in the last decade as well as the high penetration of fluctuating renewable energies into the 

electrical power systems the need has risen for new system security assessment approaches 

accounting for the newly introduced uncertainties. On the one hand uncertainties come from 

renewable energy, but also the implementation of markets for electrical energy allowing intra-day 

trades added uncertainties. Classical methods have a deterministic nature, take point forecasts into 

account and screen the system for a more or less detailed list of contingencies. These security 

assessment methods give an easy to understand result – either there are any limits violated as a 

consequence of an active contingency or not. 

The security assessment method proposed in this thesis is accounting for the stochastic nature of 

loads and infeeds by approximating historical nodal data with parametric probability distribution 

functions based on normal distributions. The implemented probabilistic load flow technique is able 

to take into account correlations of infeeds, loads, or both of them. This parametric approach allows 

a fast security assessment compared to conventional Monte-Carlo based approaches enabling the 

use of it in a daily security assessment process of TSOs. The core of the method is a state based 

recursive algorithm which links probability density functions of branch utilizations to likely system 

states originating out of a given system state. The output of the method is on the one hand an overall 

risk measure and on the other hand detailed measures for each first order contingency, which so can 

be ranked based on the risk they hold. 

Analyses regarding the accuracy of the method were performed on a 118-bus test system. The 

proposed method was compared in a comprehensive case study to an AC-, a DC- and a simplified AC-

Monte-Carlo Simulation. 

The applicability of the proposed method for large scale transmission power systems was proven 

using a 1354-bus system. The study shows, that the performance of the security assessment method 

suits TSOs’ needs. 
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2 Introduction 

 General 2.1
For the previous decade the way transmission power systems are organized, utilized and operated 

has changed fundamentally. 

Organizationally, the field of generation and transportation of electrical energy went through a basic 

structural change. The three European Union’s Energy Packages basically led to a separation of 

energy generation and energy transmission – the so called unbundling – to flatten the way for a Pan-

European market for electrical energy. This market allows the providers of electrical energy in terms 

of power plant operators, brokers or agents to trade beyond the borders of their local transmission 

system on time horizons down to intra day market activities. Meanwhile different approaches of the 

implementation of unbundling exist. The widest spread of them are the ownership unbundling and 

the installation of an Independent System Operator (ISO). In the first option, the system operator is a 

completely independent company owning and operating the power system, which is the common 

option for central Europe, while for the second option the power system owner can be an active 

player in trading electrical energy, but the system has to be operated by an independent entity. Due 

to the fact, that electrical power systems form a natural monopoly regulatory instances for 

transmission system operators as well as ISOs are necessary [1].  

The utilization of transmission systems in terms of physical load flows changed due to the reason, 

that the generation structure of electrical energy switched in the last years from fossil and nuclear 

power to renewable energy sources. On the example of Germany the phasing out of the nuclear 

energy after the incident of Fukushima in March 2011 led to a subsequent speed up of the energy 

revolution. The energy revolution’s major goal is the shift from fossil and nuclear primary energy 

sources to a sustainable energy generation from renewable primary energy sources. The speed up of 

the energy revolution, led to a fast and extensive penetration of RES into the German power system. 

This turn from large scale thermal power plants, in terms of fossil and nuclear primary energy, to 

distributed energy generation in wind and photovoltaic farms led to a change in physical load flows. 

The power systems we have right now were designed to transport energy from generation nodes, 

were large scale power plants are located at, to load centers like cities, what is called a centralized 

generation structure. Due to the shift in primary energy sources the energy production changed to 

be more decentralized so the infeed of RES is distributed over multiple power system nodes as it is 

the case for large scale wind farms or in the subordinate system levels like it is the case for 

photovoltaics. Due to the fact, that the TSOs’ power systems can’t be adjusted to adapt the new 

physical load flow situation in time with the changeover from conventional power sources to RES 

TSOs are facing new challenges to maintain the system security, e.g. by the installation and operation 

of Load Flow Controlling Components (LFCC) like PSTs or FACTS as well as preventive or corrective 

redispatch actions. Both kinds of remedial measures are necessary due to the fact, that physical 

limits of equipment in terms of maximum ratings in power are not accounted for by the optimal 

market solution. The optimum found at the market can be either modified to meet the physical 

constraints by a costly redispatch arranged by the particular TSO or by modifying the set point of 

LFCCs. 

The shift from need-based to supply-dependent primary energy sources also influenced the way 

power systems are operated. The volatile nature of RES introduced some new tasks to the daily work 
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load of TSOs like generation forecasting especially for wind and photovoltaics and new security 

assessment methods accounting for the volatility in market actions as well as the intermittent 

infeeds from RES.  

Nowadays security assessment methods used by the TSOs are usually based on point forecasts, 

which are a composition of historic load patterns, power plant schedules for large generation units 

and weather based infeed forecasts for RES. All of these input parameters are uncertainty afflicted 

and show a more or less volatile nature introducing the need for power system security analysis 

methods accounting for the stochastic characteristics of the same. 

The aim of this thesis is to develop a security assessment method which is capable of handling 

uncertainty afflicted input parameters and allows a comparison of different utilization cases and an 

identification of potentially vulnerabilities. This thesis is structured as follows. In Chapter 1 gives a 

short summary of the thesis. Chapter 2 holds a general overview about the motivation and the aim of 

the. Chapter 3 holds a comprehensive review of existing approaches. In Chapter 4 the proposed 

method is described in detail. Multiple analysis regarding the method are presented in Chapter 5. In 

Chapter 6 results are given for different exemplary power systems of different scales. A conclusion is 

given in Chapter 7. 

 On the Need for Risk-Based Power System Security Assessment 2.2
Due to the virtue of electrical energy for out society, maintaining the reliability of electrical power 

systems and the security of supply are the major goals of TSOs. Because of the exposed position of 

some parts of power systems like overhead lines or open air substations they are very vulnerable to 

attacks [2]. The increasing amount of digital appliances in remote monitor and control systems like 

the large scale penetration of smart metering devices in the low-voltage grid or the digitalization of 

substations in high- and medium-voltage grids depends on communication networks, which again 

potentially offer intruders new ways to gain anonymously access to the heart of a power system [3]. 

But not only attacks and manipulations can lead to a malfunction of a power system. Some historical 

events, which are the topic of subchapter 2.3, show, that the interconnected European power 

transmission system coordinated by the ENTSO-E can also be jeopardized by internal issues like line 

outages as consequences of an insufficient maintenance of transmission line routes, or 

misunderstandings in the common operation of cooperated power systems. In the worst case, such 

incidents can lead to a total blackout of the interconnected power system, what can have 

tremendous effects on the whole society as well as on the economy of affected countries. The 

success of the novel “Blackout” [4] as a work of popular literature and the fact, that the topic of 

power system security can be found in daily news papers show, that large scale outages are seen as a 

potential threat in the general public. Due to the meshed structure of the interconnected European 

power system an instant blackout of the same after losing one element is not very likely, but a single 

outage can trigger a cascade which finally ends up in a wide area outage or even in a blackout. A 

cascade is a series of chronologically phased branch outages as a result of subsequent overload 

caused protection device actions, which either can stop at a certain system state, where no further 

overloads are present, causing nearly no or a small number of lost nodes, or end up in a total 

blackout. To avoid potential system states leading to any kind of cascading events the N-1 criterion 

was introduced. It states, in its original form, a system as N-1-secure, if no overloads are present 

after each possible single-element first order contingency. Whether a system state of interest is N-1-

secure or not can be determined by performing a complete contingency analysis. 
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The N-1 criterion based contingency analysis is well suited for deterministic point forecasts of power 

system data like nodal infeeds or the demand of loads, but the rising amount of uncertainties can’t 

be considered. To be able to account for the stochastic nature of uncertainties coming from wind and 

photovoltaics forecasts as well as fluctuating load demand and market actions, a changeover from 

deterministic to a risk-based security assessment methods is necessary.  

 Historical Incidents 2.3
Due to the fact, that blackouts and major problems in interconnected power systems are rare events 

there are only a few incidents to mention in modern, well-maintained grids like the Italian blackout 

and the NY-blackout of 2003 and the system incident of 2006 of the ENTSO-E-area. Indeed there are 

power systems in a worldwide scope which do not show the reliability of European or North-

American ones due to a lack in power generation units or weak designed resp. weak maintained 

power systems. This work is focusing on the probability and severity of incidents as well as the 

outage mechanics in modern, well-maintained state of the art power systems. In all three 

documented cases, cascading tripping led to severe network states and finally partially blackout. 

2.3.1 System Disturbance on the 28th of September 2003 

The incident of September 28, 2003 was triggered by a line outage due to line sag and led to a 

disconnection of the Italian power system from the European power system. 

In the morning hours of September 28, 2003 a 380 kV line of the former UCTE power system 

connecting Mettlen in Switzerland and Lavorgo in Italy was outaged by the particular protection 

device due to tree flashovers. The Swiss and the Italian TSO unsuccessfully tried to reconnect the line 

to the power system. As an effect of the outage the loading situation of the line connecting Sils (CH) 

and Soazza (I) being a parallel path to the one outaged increased and was even overloaded. This line 

permits a short time overload for 15 minutes in terms of a TATL. Facing the fact, that the energy 

planned exchange power between Switzerland and Italy was exceeded and Italy imported too much 

power the Swiss-TSO asked the Italian-TSO to activate remedial measures to decrease the cross-

border flows. At the same time while Italy decreased their imports the Swiss-TSO also activated 

remedial actions to prevent the line from tripping. The heavy overload of the line led again to an 

increased line sag resulting in tree flashovers and a protection device triggered tripping of the line 

about 20 minutes after the first incident. Subsequently after the first two line outages the load flow 

relocated to other lines resulting in multiple overloaded lines. According to the investigation report 

of this incident [5] the remaining lines online were didn’t allow a stable power system operation 

ending up in voltage angle instabilities in Italy and nearly simultaneous cascading line trippings on the 

Italian border. 
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Figure 2-1.  Post incident system state [5]. 

After the separation of the Italian power system from the Central European one, immediately a drop 

in frequency below 49 Hz was recorded in the Italian system. The power system was stabilized by the 

primary frequency control and load shedding procedures for two and a half minutes. Due to the 

unintentional tripping of several generation units after the stabilization of the power system it came 

to a rapid decrease of the frequency which could not be stopped by additional load shedding until 

the system frequency fell below 47.5 Hz where all participants of the grid were disconnected by 

under-frequency-relays ending in an Italian-wide blackout. The Central European part of the UCTE 

system showed a small positive frequency deviation which was limited by the function of the primary 

frequency control. 

2.3.2 System Disturbance on the 4th of November 2006 

On November 4, 2006 in the late night hours, an incident originating from the northern German 

power system happened, leading to about 15 million unsupplied households and a split of the 

synchronous area of the former UCTE power system into three sub networks. In the final report 

concerning the incident, the investigation committee gives an exhaustive report on the details of this 

disturbance [6] and its most important points are summarized in the following section. 

The origin of the disturbance happened in the transmission system of E.ON Netz. A shipyard planned 

to transport a ship through the Ems River. To be able to pass the river the line of the transmission 

system connecting Conneforde and Diele has to be switched off. It was planned to transport the ship 

in the early morning hours of November 5, 2006 and the procedure was announced by the shipyard 

in the mid of September 2006. To be sure that the power system is not endangered by the outage of 

the line a security analysis was executed internally in E.ON Netz showing a secure system state. The 

power system was already weakened by some planned outages due to maintenance or construction 

work in the surrounding area of the line. Due to the fact, that the security analysis judged the system 

state as secure the permission to transport the ship was granted for November 5, 2006 at 01:00. The 

information was spread to the neighboring TSOs TenneT (NL) and RWE TSO (DE) which adopted the 
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change in topology into their security analysis tools. All the analysis of the system operators showed 

a highly loaded, but in a secure state corresponding the forecasted power-flow situation. To relieve 

the highly loaded power system the exchange program between the Netherlands and Germany was 

reduced for the planned time span.  

The day before the incident the shipyard requested an advance of the outage by three hours. E.On 

Netz performed the obligatory security calculations for the requested date leading to the result, that 

the predicted system state is secure according to the N-1 criterion. This security analysis was 

performed only for the network area of E.ON Netz, but not for the neighboring TSOs due to the fact, 

that they were not informed about the advance in time. Due to the late announcement of the 

shipyard regarding the advance legal regimentations made an adaption of the exchange program 

between Germany and The Netherlands impossible, because the market rules forbid a change in 

exchange program from 08:00 on for the day ahead. 

During the usual exchange procedure of forecast datasets between TSOs of the former UCTE, E.ON 

Netz provided on November 3, 2006 at 18:00 24 datasets concerning the next day. These files are 

collected and distributed to all system operators for a more comprehensive security analysis. 

However, this dataset didn’t include the planned outage of the line. On November 4, 2006 E.ON Netz 

informed the two neighboring TSOs about the advance of the planned outage. To relax the system 

situation the TSOs on changing the set point of a shifting transformer. After this measure was taken 

TenneT and RWE TSO agreed to the switching action of the line. Before opening the circuit breakers 

of the line, a power-flow computation was performed by E.ON Netz showed no overloads and an 

empirical evaluation lead to the result, that the power system is N-1 secure. However, no N-1 

contingency analysis was performed. At the same time RWE TSO executed power-flow computations 

and contingency analysis leading to the result, that their system is secure, but heavily loaded.  

The two circuits of the Conneforde-Diele line were disconnected one after the other leading to a 

heavy loaded power-flow situation in the particular parts of the European power system. 

Subsequently the power-flow over the line Landesbergen-Wehrendorf, which connects the TSOs 

E.ON Netz and RWE TSO, increased. Due to significantly deviant flow limits in terms of alarm levels 

and protection device settings of this line between the two TSOs, RWE TSO – having the lower limits 

– received messages from the SCADA system notifying about flows, exceeding the alarm limit. RWE 

TSO requested E.ON Netz to take remedial measures to relax the power-flow situation on the 

particular line. As a consequence the stuff at E.ON Netz performed a switching action coupling the 

separated busbars in Landesbergen. This measure was expected to lower the line’s power-flow and 

keep the system secure, but exactly the opposite happened. The line’s power-flow increased and the 

overcurrent protection device of the line triggered an outage of it, what led to a cascading event 

through the whole European power system. Subsequent HVAC-line trippings occurred in the German, 

Austrian, Hungarian and Croatian parts of the power system leading to three separated grid areas. 

Due to the abrupt occurrence of imbalances in the separated areas action to stabilize the frequency 

were performed like an exhaustive use of primary frequency control as well as frequency dependent 

load shedding and so all the three separated areas stayed stable. 

This incident mainly happened due to the lack in coordination of protection settings and the 

application of predefined remedial measures on a modified topology. 
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2.3.3 NY Blackout 

On Thursday August 14, 2003 the central and north eastern part power system, and especially 

NYISO’s grid area faced a major incident ending up in two islands, one in operation and one showing 

a blackout with an overall amount of lost load of approximately 23 GW of power according to the 

comprehensive investigation published in the NYISO’s final report [7]. It took the involved 

Transmission Owners (TO) and their particular Independent System Operators (ISO) approximately 

one and a half day to restore the whole power system. 

The incident originated from a severe system situation in the power systems of Indiana and Ohio 

western from New York at midday leading to a violation of the minimum values in voltage magnitude 

on multiple nodes in the particular extra-high voltage grid. During the early afternoon the utilization 

of the power system even increased. As initial event one generation unit in Ohio and consecutive 

three EHV lines tripped between Ohio and New York, but due to a fault in the monitoring system of 

the particular system operator it was not recognized. The cause for the line tripping were tree-

flashovers as a consequence of the increased line sag due to the high utilization. The loss of this lines 

led to an increase in utilization of the regional high voltage power system which’s lines were not able 

to take all the load flow ending up in a cascading event also affecting the extra-high voltage system. 

This cascading event caused an increase in the parallel EHV lines from the PJM area to the Ontario 

(IMO) area of about 100 MW. Afterwards overloaded circuits connecting the northern and southern 

part of Ohio tripped as well and a huge shift in power through PJM, NYISO, IMO and Michigan was 

the result to supply the northern part of Ohio. Additional subsequent outages in the power system 

area of Michigan effectively split the southern part of Michigan which was still connected to the 

northern part of Ohio and also connected to the system of Ontario. The load flows shifted to the 

transmission system of NYISO adding a transit of 3500 MW.  

 
Figure 2-2.  Post incident state of the NY-transmission system. 

The high transit flows led to a tense situation at the tie lines between the PJM and NYISO are ending 

up in several tripping actions of lines connecting this two areas in one cascading event. Subsequently 

the tie lines between New-England and NYISO tripped leading to an immediate decrease in the NY, 

IMO, southern Michigan and northern Ohio island due to the lack in generation. In the separated 

New-England Island (Figure 2-2) the nominal frequency was recovered. The eastern part and the 
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western part of the NYISO system split up in two islands due to a “out-of-step” condition of the 

eastern part of the system. This eastern part split from the remaining bigger western island and 

showed a significant deficit in generation power leading to a nearly instantaneous blackout due to 

the low frequency and low voltage levels in the eastern NY island. After this total separation of the 

eastern NY power system, the IMO area and the NYISO area split resulting in a western NYISO and 

south eastern Ontario island showing a surplus in generation. 

A re-closing of connection lines between the generation rich western NY island and the generation 

poor south west Ontario system led again to a power swing, a decay in frequency and so to the 

activation of load shedding schemes in the western NY area, ending in the tripping of the previously 

re-closed connection lines and about 3.5 GW of shed load in the western NY island. After the second 

tripping of those connection lines the frequency in the western NY island restored to a normal 

operation level.  

The normal system configuration could be fully restored 33 hours and 30 minutes after the beginning 

of the incident. 
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3 State of Research and Research Questions 
This subchapter gives an overview about the currently available scientific literature on forecasting 

methods, deterministic as well as risk-based security assessment methods and an example for a 

typical TSO practice on forecasting and security assessment. 

3.1.1 Load Forecasting Methods 

Since the very first attempts of interconnected grids, forecasting of the demand of load’s connected 

to the particular transmission system has been an important topic to ensure the availability of power 

plants in terms of power plant schedules and also to anticipate congestions in power systems in 

terms of security assessment. Due to the virtue of this topic, numerous approaches on different 

focuses can be found in literature. An overview about the existing methods is given hereafter. 

3.1.1.1 Univariate and Multivariate Models 

Load prediction models can be categorized in univariate models, accounting for a single input 

variable (e.g. historic load data), or multivariate models, which are more sophisticated than 

univariate approaches and take a number of external parameters (e.g. weather data, time and date) 

into account. For the use in very short term load forecasting and short term load forecasting the 

influence of external factors is generally said to not have an effect on the accuracy of results and so 

univariate models perform according to the conclusions of naïve approach studies [8], [9] better e.g. 

for short term forecast horizons than complex weather accounting multivariate models which 

perform better on long forecasting horizons. Long term forecasting methods model multiple causes 

influencing the load behavior where the most affecting ones are the time in terms of seasonal 

characteristics like winter-summer, day-night, weekday-weekend, vacation and special days, the 

weather in terms of temperature, the degree of cloud covering, the wind speed and the humidity as 

well as the electricity price and the economic performance. Especially in regions, where electrical 

heating systems are widespread the influence of the wind on the load has to be considered because 

of its cooling effect underlying the effect of inertia [10]. Thermal inertia leads to a shift in time and so 

a cold or windy day does not directly cause an increase in energy demand because buildings have a 

thermal time constant. Every prediction result is always uncertainty afflicted, what is modelled as a 

term of randomness reflecting exceptional events like non-predictable natural and civil events. 

3.1.1.2 Additive- and Multiplicative Models 

Mathematical predictive methods can be separated into additive and multiplicative models [11]. 

                       (3-1) 
Eq. (3-1) shows an example for an additive implementation, where   denotes the total predicted 

load,    the load according to a standardized load profile,    the weather dependent part,    is a 

term for special events leading to a deviation of the usual load behavior and    is a random term. 

                (3-2) 
In eq. (3-2) an example for a multiplicative approach is given. The acronyms are the same as for the 

additive model with the difference that they denote factors instead of summative terms. It can also 

be thought of additional factors like electricity pricing or a coefficient accounting for the increase of 

load over time to be integrated into the formula. 
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3.1.1.3 Long- and medium-term load forecasting approaches 

To predict the energy demand long time (e.g. one year in advance), there exist basically two kind of 

approaches. End-use models and econometric models are used to predict load demand on long term 

horizon. End-use approaches are based on extensive knowledge on installed appliances. Customer's 

showing similar behaviors are categorized into groups to simplify the data handling. This approach is 

very sensitive regarding the quantity of information about the demand characteristics and their 

quality. Long term forecasting with end-use models is requires nearly no historical data, but on the 

other hand a lot of information about customers and their appliances is needed. The second popular 

approach for long term load forecasting are econometric models, which are based on statistics and 

economic theory. Econometric models are based on an estimation of a function between the load 

behavior and the weather and/or other influences. To reduce the effort loads can be grouped in 

characteristic collectives. The advantage of this approach is, that there are no detailed information 

needed on the appliances of customers, but a disadvantage is the necessity of long term historical 

data. Approaches combining end-use- and econometric-models are said to increase the accuracy of 

forecasts, but they require a long term history of load data as well as detailed information about the 

end-user-load-structure [11]. 

3.1.1.4 Popular Approaches 

One of the most intuitive prediction approaches is the linear regression. Due to its simplicity it is 

widely use especially for load prediction. It can be implemented in a univariate or multivariate way. 

For deterministic influences like special days, weather and other external influences can be 

accounted by introducing additional variables. Linear refers to the characteristic of the parameters 

but not the shape of response surface. It is usual to implement a linear trend using regression 

models, but this approach is not able to account for business events like recession and booming due 

to the monotony of the trends on the whole investigation interval. Also short term prediction 

regarding the weather can be approximated using linear regression. 

Another method called the similar day approach makes use of historical data to estimate the future 

not by trying to extrapolate the measure of interest e.g. the energy demand but by looking for days 

with nearly the same characteristics in the historical data set. Properties for identification of the 

similar day are the weather, the day of the week and the date. Implementing a trend, the data from a 

similar day in the past can be up-scaled to the desired forecast date. The accuracy of this approach 

can be optimized by looking for more than only one similar day in the historical data and joining 

them creating a linear combination of them. 

Fuzzy logic is able to describe human expressions in a logical way and allows to implement them in 

mathematical models. Especially when it comes to load forecasting methods based on fuzzy logic 

outperform linear models [12]. An approach based on fuzzy logic allows to described the active load 

demand as a function of time and date, temperature and the day- or week-ahead energy 

consumption. When it comes to extreme events, well developed fuzzy logic approaches reach a good 

accuracy and outperform most of the statistic theory based methods. 

Neuronal networks are a common method for prediction tasks. Especially when it comes to load 

forecasting they are used for different lag times in various realizations. E.g. a 15 minute short term 

load forecasting method with a resolution of approximately one minute is proposed in [13] using 

multiple underlying neuronal networks controlled by an upper neural network, which dynamically 

controls the weights of each network. The work presented in [9] outlines the data pre-recession as 



   

11 
 

indispensable to enable neural networks to do their work properly. The paper deals with load 

prediction based on weather ensembles coming to the conclusion that the prediction accuracy of the 

forecast can be improved by the use of weather ensembles. 

A combined approach of neuronal networks and chaos theory is presented in [14]. It is based on the 

setup of a multi-dimensional chaotic time series in phase space. Further the neural network structure 

is determined by trial and error in an network optimization process, where the initially randomly set 

neural network weighting factors are optimized by training the network with historical data.  

Principal component analysis is based on the reduction of the dimension of a multivariate data set to 

a set of orthogonal variables. So the original original variables are linear combinations of the 

orthogonal set. This method is very similar to modelling every appliance of a aggregated load pattern 

with the difference, that the number of different models is minimized by the exploitation of similar 

pattern in them. In paper [15] an approach for a univariate model is given, using day-of-the-week 

dummies and a quadratic trend a regression based solution of this problem is presented. Cross 

validation in combination with the method of minimum least squares is used in the mentioned paper 

for optimization purposes. The results have to be converted back from the space of principal 

components to the space of the input data. Also weather data can be implemented, extending the 

model to a multivariate one. 

A widely spread approach for load forecasting is the method of  exponential smoothing. Basically 

there are numerous ways how exponential smoothing methods can be implemented [16]. The most 

simple one is the first order exponential smoothing which is basically a weighted mean sum of a 

predefined number of historical values. A first order approach can be extended to a second order 

exponential smoothing method by taking a trend into account. A linear trend basically goes 

increasing or decreasing over the number of time steps. Exponential smoothing methods are always 

trained using past values of the time series to predict. By e.g. evaluating the second-order 

exponential smoothing based on available test data the forecast error can be determined. To 

optimize the accuracy of the model usually the method parameters are trained formulating an 

optimization problem with the objective to minimize the forecast error. 

The exponential smoothing is not limited to linear trends only but it can be extended to nth-order 

exponential smoothing leading to a nth polynomial behavior instead of the linear. A special 

implementation of exponential smoothing method is the Holt-Winters seasonal exponential 

smoothing, allowing to account for one or even multiple different seasonalities (day, week, month, 

year) [17]. 

A special implementation of exponential smoothing models is the intraday cycle approach, which is 

principally based on one cycle for every day in the lag time. So it is not possible to model any weekly 

seasonality. This problem can be solved by modelling various intra-day cycles for differently shaped 

load profiles per day type. In paper [18], different intra-day profiles were designed for Monday, 

Friday, Saturday and Sunday. The remaining days where modelled by one IC due to the similar profile 

of these days. The accuracy can be improved by including an autoregressive term to this approach.  

The Auto Regression Integrated Moving Average (ARIMA) procedure is a popular method for building 

statistical models and models forecasting purposes which was developed by Box and Jenkins. The 

underlying method of the ARIMA model is the ARMA algorithm. It consists of an AR part which is the 

autoregressive one and a MA moving average part. The AR model aggregates values from the past 
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weighted by a factor and takes a shock into account as a normal distributed random function. ARIMA 

models can be extended to SARIMA (seasonal ARIMA) models taking one or multiple seasonalities in 

to account [17], [18], [19]. 

Wavelet theory approaches are categorized under the hybrid models. In a first step the input data 

are transformed into different resolution spaces, then the sub-input data are processed by selected 

forecasting methods like ARIMA separately. The sub-results of the particular subsystems are 

combined by an inverse transformation. E.g. [20] this is done by a lifting scheme. In [20] the 

prediction on basis of this series is done by an ARIMA model, whose results are post-processed using 

an inverse lifting scheme proofing, that the LS-ARIMA-LS-1 method performs better than an ARIMA 

model for day-ahead (d-1) forecasts. 

A second approach of hybrid models is the implementation of a trous algorithm [21]. First the input 

data is decomposed in different resolution levels followed by the calculation of the generated 

subsystems. The calculation results for the independent subsystems show different coefficients 

representing an approximation of the input data in the particular resolution level. Finally the 

subsystem’s results are reconstructed forming the forecast values. This is done by combining the 

coefficients of the different base wavelets. The subsystems can be seen as independent chaotic time 

series. Studies show, that approaches implementing hybrid models perform well compared to naive 

methods for long term prediction tasks. 

Expert systems are a heuristic approach, which require the expertise of a human being involved in 

the investigated process like a system operator and try to model their knowledge in a mathematical 

way. It must be possible to express the operator’s knowledge in a way that programmers are able to 

implement it in software. In [11] expert system makes use of 11 different day profiles, weather data 

and load data of the previous five years. This developed method out-performed a conventional Box-

Jenkins method in STLF. Another mentioned implementation in [11] of expert systems is a site 

independent set of rules, which was already tested on several different organizations in the US. The 

parameterization and rules where created without any site specific knowledge, but the forecast 

accuracy could be improved implementing site specific parameters. The investigation horizon of 

expert systems is limited by the horizon of the implemented expert rules. 

The technique of support vector machines (SVM) is closely related to the method of neural networks, 

where non-linear functions are searched to model complex dependencies of variables. In SVM the 

non-linear functions are converted by a so called kernel into a more dimensional space, where it is 

possible to express them in linear equations and boundaries. The challenge to find a proper 

architecture for a neural network is replaced using SVM by the need of the optimal matching kernel. 

Some SVM approaches were already implemented resulting in a better performance compared to an 

autoregressive method [11] on a short term forecasting horizon. 

In [9] a method for predicting the forecast error variance is proposed based on forecasting methods 

using weather ensemble predictions. Three methods have been investigated for comparison namely 

a naive approach, an exponential smoothing method and a neural network. Exponential smoothing 

turned out to perform best for short lags and the rescaled variance methods for long lags. Generally 

most of the literature concerning prediction is about forecasting and only some few publications are 

about modelling the forecasting uncertainty. When it comes to method comparisons the forecast 

error is a widely used measure to visualize the method accuracy. 
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3.1.2 Security Assessment Approaches 

The aim of the security assessment in general is the evaluation of a system state with the focus to 

identify events, harming the supply of load ending up in a blackout in the worst case. Large blackouts 

originate in general out of complex chains of outages and events so called cascading events. A 

cascade can consist of many single line outages that are both, dependent or independent from 

foregone events. Tripping of lines and transformers with possible islanding, loss of generation, load 

shedding, as well as automatic and manual redispatch might take place during a cascade. Often a 

cascade is triggered by load flow independent events like earth faults caused by falling trees, direct 

and indirect lightning strokes. As a consequence, tripping due to overcurrent relays, undervoltage 

relays, or earth faults due to increased line sag can happen subsequently. These causes cover a part 

of the complex blackout mechanics. In addition to element outage cascades, wide area outages and 

blackouts can also be triggered by voltage collapse due to lack of reactive power [22], or due to 

voltage oscillations and transient instability [23]. Also the loss of system observability or 

controllability can lead to cascading outages e.g. when problems with the SCADA system occur and a 

system operator is not able to control the grid anymore due to the lack of information about it [24]. 

Most of the TSOs perform a deterministic security assessment to minimize occurrence probability of 

a blackout [25]. Usually lines with more than only one circuit are taken into account in form of a list 

of common mode failures according to the expert knowledge. The main statement of this criterion is, 

that the operated grid can withstand the occurrence of each listed contingency. The N-1 criterion is 

defined as necessary for a secure grid operation. Also the need for a set of remedial actions to be 

able to recover the N-1 compliance is mentioned. A violation of this rule is accepted during switching 

sequences, when consequences are restricted to a particular TSO’s grid area and during remedial 

actions recovering the N-1 compliance. Several problems are arising with the use of the deterministic 

criterion. Although the N-1 criterion is simple to understand, it gives no information about the actual 

dispatch’s risk. Hence, different N-1 secure system states cannot be compared in terms of the risk 

they hold. Neither the probability of the outage is known or its risk. Today’s industry practice using 

the N-1 security criterion for security assessment is stated to be obsolete [24], because it was 

designed to coordinate a grid’s security in a small-scale network and tie lines were designed for 

emergency reasons but not for trading and transit activities. Nowadays, the situation in energy 

transmission and energy trading has changed, but the security limits didn’t evolve with the way the 

grid is used. With the number of considered line outages the probability for simultaneous element 

outages increases [26]. However, the effect of outages is not as threatening in a meshed grid as in 

conventional ones. Although the likelihood of a single element outage increases with more lines in a 

network, but the impact on the network customers associated with it decreases.  

Due to the necessary consideration of multiple line outages, the N-1 criterion has to be rethought 

[27]. But an extension of this deterministic limitation in grid operation seems to be not feasible due 

to the fact that a   element outage contingency analysis leads to nk calculations and is 

computationally exhaustive on a day-ahead basis. Ref. [28] sees the N-1 methodology to be useable 

in general but argues that outages harming only small loads should be tolerated to reduce the 

computation time. To keep the number of calculations at a feasible level, a tradeoff between 

accuracy and computation time has to be found. The method currently being used by the European 

TSOs is the calculation of all possible single line outages and by experts selected multiple line outages 

(N-2, N-3) enabling the consideration of the loss of multi-circuit overhead lines. According to [29], it 

is not reasonable to take preventive actions like it is usually done for the N-1 contingency cases for 

higher order cases, due to the fact that they happen very rarely compared to single element outages. 



   

14 
 

3.1.2.1 Probabilistic And Risk Based Security Assessment 

In the previous subchapter it was outlined, that the N-1 criterion is not that well suited for nowadays 

power systems due to structural effects and the missing statement of N-1 contingencies about the 

severity of an event. Usually, for a reasonable dispatch of a power system a cascading event shows a 

very low probability but a high severity while outage events show a low severity and a comparably 

high probability. To combine events with high severity but low probability and events with high 

probability but with a low threatening potential in one measure the risk is the measure of choice, 

which is the product of probability and severity. 

In literature various different severity measures are presented. In a technical view it can be defined 

in technical terms like “energy not served”, “lost load” as well as in technical threshold violations, or 

in economic terms like “outage costs”. The blackout size, the power shed, the energy not served, the 

number of customers disconnected, the duration and the number of lines tripped [27] are technical 

measures often used as a severity measure, but the also exist economical measures like the outage 

costs. This enables an economic analysis in terms of investment costs vs. the outage costs. The costs 

are calculated as a function of power not supplied and the outage duration following [30] and [31]. 

There are also other disciplines in which cascading events or similar procedures occur exist in [27] 

and risk based approaches are used for like in this case to determine the evolution of forest fires. 

Due to the multiple complex outage mechanics it is not feasible to model all effects leading to 

blackouts [32]. It’s more common to model only the effects of interest or those having the highest 

impact. All methods assume trade-offs for the sake of simplicity or feasibility. Most of the methods 

do not analyze the full set of cascading causes but a subset of it. Another simplification is to focus on 

steady-state assumptions more than on dynamic investigations according to the review paper in [24]. 

An important topic in developing probabilistic security assessment methods is the visualization of the 

mostly complex information in a way which allows the operator to react fast on critical events. In [33] 

and [34] the simulation results coming from a probability risk assessment were visualized in form of a 

risk plot, along with the conventional N-1 limits as well as special selected N-k cases. To get to know 

this information [34] proposes the use of a Monte-Carlo simulation performing load flow calculations 

for a generated set of congested grid scenarios giving the amount of outaged load as well as the 

outage probability which enables the calculation of the risk. So the operating personnel has the 

operation relevant deterministic criterion as well as a risk indicator for the current system state 

giving more information than the simple statement “single outage secure” or “not-secure” without 

any additional information like limit margins. 

3.1.2.1.1 Branching Process Based Methods 

There is a lot of literature available on the topic of estimating the likelihood of a large scale outage, 

either based on real world data, or on outage simulations. Generally outages are said to follow an 

exponentially distribution in outages. New studies e.g. [35] show, that the probability of large events 

is not exponentially distributed like expected, but that they show a power-law distributed tail, which 

leads to the conclusion that the expected exponential distribution underestimates the occurrence of 

outages with a high value of lost load. So, a big outage in terms of energy and even a blackout is 

more likely than assumed. A sensitivity analysis performed in [36] leads to the conclusion that the 

discovered power-law tail is only present, when critical system states are investigated. System states 

operating far away from the limits show an exponentially distributed tail what is also mentioned by 

the authors of [31]. 
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Many research papers [31], [37] and [38] make use of so called branching process models which 

allow the simulation of cascades with stage dependent propagation factors and different underlying 

offspring distribution functions like the negative binomial distribution, the Poisson distribution, or 

the exponential distribution.  

The data used in [37] originate from the NERC’s transmission availability data system, which is a list 

of time stamped outages occurred over a ten-year time period. These data are grouped into cascades 

and stages of cascades as part of the data preprocessing splitting the events into initial and higher 

level tripping. Both the initial as well as the offspring outages are assumed to follow a Poisson 

distribution. The propagation factor is calculated for each stage, and for simulations it is assumed 

that the first stages act as determined from data and the following stages show a propagation factor 

of the average value. The generating function of the branching process is a Poisson distribution. It is 

proposed to generate a system state with an initial outage who’s cascading outage probability can be 

estimated through the recorded data. It is also assumed that the reference data set can be much 

smaller than the one used for this method. 

In [22] outage data of an academic simulation model (OPA) as well as an output of the commercial 

software TRELSS is used to estimate the distribution of rare event cascading outages on the example 

of IEEE 300 and 118 bus networks. The OPA model uses a DC-load flow calculation method and also 

reflects the long-term dynamics of a grid by the line data evolving behavior. It is shown that the 

propagation factor defined as the Harris estimator increases by the load level. Two branching 

processes were investigated, the Galton-Watson branching process and the continuous state 

branching process. The Galton-Watson method shows a good match in estimating likely events, but 

the probability of rare events at the tail are underestimated. The continuous state branching process 

investigation led to a probability density function which is similar to the real value distribution, but is 

not very close to it. However, it could be improved by choosing a different offspring distribution 

(here the gamma distribution was used). It is assumed that the amount of calculated cascades for 

parameter estimation of the distribution can be lowered by a more precise knowledge of the 

distribution of the initial cascades. As a further result the Galton-Watson branching process was 

identified to be simpler to implement and more accurate. 

Based on the rare number of cascading events in the past in [29], their probability density function is 

determined by introducing the likelihood of outage energy amounts in a discrete way. It proposes a 

new method for distribution fitting, the so-called EAC denoting the exponentially accelerated 

cascading. In [11] the maximum likelihood estimator (MLE) is used to find the best matching 

parameters of the investigated density functions. The results of each distribution fit in matching the 

input data were performed with a chi-squared test resulting in the better fit of the EAC model than a 

generalized Poisson distribution or negative binomial distribution. Also the numbers for the initial 

outage probability – the mean value for first element outages is found for the investigated data, as 

well as the propagation factor meaning the relation of next generation outage probability to the 

outage probability of the actual step. 

In [34] a probabilistic model to predict the likelihood of cascading line outages following a primary 

line outage is given based on a logistic function with the post contingency line flow as well as the 

difference in line flow as input parameter. By the already mentioned logistic function, the outage 

probability is determined. To find the constant factors of the function, a calibration was performed 
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based on the outage data of three large- scale cascading events. The method consists of a load flow 

calculation for each step of the cascade leading to the knowledge before and after line outages.  

3.1.2.1.2 Monte-Carlo and Ensemble Based Methods 

The method presented in [36] focuses on the sensitivity analysis regarding the likelihood of hidden 

failures, spinning reserve capacity, and the control strategy. The method is based on the DC-load flow 

method for the sake of computation speed and takes into account hidden failures by implementing a 

load dependent outage probability function. It is assumed that cascade’s outages do not likely 

happen at exactly the same time and so they are calculated step by step one outage at one step. The 

method is also capable of islanding by forking the calculation into sub-grids. The initially outaged line 

is selected randomly and then existing overloads are calculated. When no overloads are present 

hidden failure probabilities are determined. To keep the island steady-state-stable, load is shed until 

the equilibrium point. At the end of a cascade – so if a collapse is detected or there are no more lines 

above the limit and the hidden failure probability is below a certain limit - the total load lost, the line 

outage sequence and the path probability are logged. The whole procedure is for single cascade 

identification and repeated over an ensemble of lines. To ensure a balance between generation and 

load a DC-OPF is performed during the outage simulation. To keep the method realistic the DC-OPF is 

only enabled every three line outages to model TSO behavior. Due to the fact that large events are 

very rare numerous outage combinations have to be calculated to account for them. To identify 

these cases in a more computational economic way, rare event sampling is performed, which 

increases the likelihood of rare events to occur more frequently. The performed sensitivity analysis in 

this study led to the conclusion, that a low loading leads to low values in lost load while high loading 

close to the maximum rating causes a cascade in each possible case. Higher line loading also causes 

in relaxed system states the exponentially distributed tails to change into power-law distributed 

ones. Also, the spinning reserve amount has the same effect. A grid with a large amount of spinning 

reserve shows exponentially distributed tails while a grid with a small amount in rotating masses 

shows the power-law tail. When decreasing the hidden failure probability, power tails become 

steeper leading to lesser failures and a lower vulnerability but the power-law tail does not disappear. 

The method presented in [35] shows the difference of taking cascading effects into account. TSO 

behavior like a manual re-dispatch is modeled by the implementation of a DC-OPF having line limits 

integrated in the objective to avoid line trips by overloads. This OPF is performed every third step of 

cascading events, modeling the reaction time of the system operator on congestions and critical line 

loadings. To enable the integration of load and generation units’ frequency dependency on the one 

hand each generators droop and on the other hands each loads self-regulation factor was 

implemented. By this it is possible to calculate the remaining frequency deviation in terms of primary 

control as well as frequency dependent shedding mechanisms of loads at under-frequency and 

generation units at over-frequency. To also pay attention to security relay related line outages, either 

triggered by malfunction or by line overload, the basic outage probability depending on the line 

length is extended by an outage probability increasing with the amount of overload. As a hard limit 

for line flow 1.4 of the line limit was chosen. At this limit the line’s outage probability is one. So the 

model integrating cascading outages is able to simulate two outage causes, the outage of overloaded 

lines and the outage of lines caused by protection system’s hidden failures.  
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Figure 3-1.  Visualization of the severity and the probability of outage events accounting and not 
accounting for cascading events [35]. 

Figure 3-1 shows the difference of taking into account only N-1 outages in contrast to taking into 

account possible cascades concluding that the consideration of only first order outages gives only a 

small part of the risk detected by the cascading method. 

In [30] the difference in deterministic security formulation and probabilistic security criteria is shown. 

The N-1 security criterion doesn’t reflect at all the risk of the actual system state, so there is an easy 

to understand yes or no decision in the form of an unacceptable risk or a secure system state. There 

is no information in the criterion about the clearance to any security limit. The implemented risk 

measure is outage costs which are determined out of the load lost and the outage duration. To be 

able to visualize N-1 secure coordinated system states in contour plots, a Monte-Carlo simulation 

was performed to find the N-1 related security limits. 

 
Figure 3-2.  Contour plot with N-1 criterion limits [30]. 
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Figure 3-2 shows those limits and visualizes the fact that N-1 secure states do not necessarily have 

equal risk. The upper centered boarder of N-1 security e.g. shows a risk of 1.5 while the lower right 

edge of the N-1 secure region shows nearly 20 times the risk.  

The in [31] mentioned OPA model is a Monte-Carlo based system assessment tool allowing the 

simulation of an evolving grid. The outputs are the energy not supplied and each outage case’s 

likelihood. The author of [31] states that a mitigation of likely outages of a small amount of load 

influences the occurrence of rare events. It is not easy to determine interdependencies of different 

remedial actions which can also worsen the problem directly or in form of evolving mechanisms. The 

success of the remedial action is directly linked to the system dynamics referring to a forest fire 

model [36]. Based on the assumptions that an operator can prevent the first 10 lines from tripping 

outages were enabled after a certain number of line overloads. The investigation shows that the 

outage costs of lesser than ten lines decreased to 40% while the costs of rare events increased to 

110%. It was also shown, that a change in power system planning can affect the grids security over 

the long term. To express the impact of an outage the risk is formulated as the product of the outage 

probability and the outage value. The value of the outage is calculated as IEAR times the energy not 

served. The IEAR is the interrupted energy assessment rate. Another valid measure for the outage 

risk is mentioned to be the costs per customer times the customers so also the overall costs can be 

determined. In [31] the outage frequency is found to be power-law distributed following the 

available data from the OPA model. 

The method presented in [28] utilizes the Markov process to model cascading outages. The outage 

probability is adopted at each step of the cascade to meet the changing facts during cascades. The 

method is Monte-Carlo based calculating all possible outages of the current stage followed by the 

enumeration of all possible states. These steps are continuously repeated until the load flow 

calculation converges no more or the termination conditions are fulfilled. The amount of lost load 

was not recorded during the cascade, but the probability density function showed an exponential tail 

for multi outage cascades. 

In [23] the OPA model was modified to evolve either with the N-1 deterministic criterion or as a 

response on cascading outages. The first lines are upgraded if an N-1 calculation identifies a 

congestion, in contrast to the second criterion responding directly to cascading outages. The outage 

cascade is triggered by randomly tripping each line at an outage probability above 0.1%. The random 

variable is chosen to be standard-normal distributed. Also a redispatch by the use of an optimization 

is implemented to find the optimal system state. Load shedding is allowed, but a high cost factor in 

the objective leads to the avoidance of its utilization. The load grow is set to be 1.8% and is randomly 

distributed on the loads. The OPA model is top down to enable tractability and to keep simplicity. 

There are also some tradeoffs in the model like protection system failures, dynamics and human 

factors, which were not taken into account. The integration of cascading effects and the evolving grid 

leads to new possibilities in slow but complex dynamics in the grid. The N-1 criterion based evolution 

model shows a lower risk than the direct response on cascading outages, but the nominal 

transmission power capability of the lines is in the direct response somewhat like 15 times the 

nominal and in the N-1 case 150 times the nominal maximal power. 

In [39] the authors show the impact of correlated uncertainties in terms of nodal infeeds in TSO 

networks based on a detailed AC-Monte-Carlo simulation accounting for outages due to under or 

over voltage events as well as overloads of branches. 
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3.1.2.1.3 Remedial Actions For Cascading Event Avoidance 

Remedial actions can be categorized in preventive and corrective measures while the former are 

used to prevent the grid from reaching critical states while the latter are used to get the system back 

into a secure state. 

3.1.2.1.3.1 Preventive Measures 

Preventive actions can be the determination of a low risk system state by formulating a risk-based 

OPF or by switching operations to avoid outages and minimize the impact of outages on the system. 

Usually Remedial Action Schemes (RAS) are used, which are predefined procedures to mitigate 

congestions and remove problems in transmission grids [24]. On the one hand RAS can enhance the 

security of power systems, but when a malfunction in the procedure occurs due to stuck breaker RA-

schemes can also causing cascading outages. If two RA-schemes overlap while both are requested, 

the possibility exists, that they influence each other in a way worsening the situation.  

Generally, OPF based methods find the optimal solution for an optimization problem, minimizing an 

objective (e.g. generation cost) subject to various limits (e.g. transmission and generation capacity) 

[11], [26] and [40]. There are methods based on the optimization of the system state also with 

multiple objectives like the voltage profile, line loadings, and generation limits. The method proposed 

in [40] includes the system risk as part of the objective function, and determines the risk index as a 

sum of all sub risks. The risks are determined as the product of the estimated probability and the 

severity. The probability-estimate is calculated in dependence of the investigated line’s length and 

the weather as well as the voltage level and geographical coordinates to determine an increased risk 

by lightning activities. The severity is estimated as a function of line load which reaches a maximum 

of 1 at nominal loading or a bus voltage below 0.9 p.u. Due to the computation effort in solving 

numerous AC-load flow problems only the first outages are calculated that way and the problems of 

the next cascade stages are solved by the sensitivities of the nearest foregone calculation. So the 

new system state’s solution is found at trough the linearization at the parent’s state. The benefit of 

such a Risk Based Multi Objective-optimization is, that in contrast to a DC-OPF it minimizes system 

stress not only on overloaded lines but also on the ones that are under nominal load. The results of 

the study where verified by a cascade simulation. 

A method taking into account the uncertainty of nodal power injections in terms of RES infeeds is 

presented in [41]. An OPF is extended to account for uncertainty afflicted inputs while the method 

takes a maximum risk level as an input which leads to optimal dispatches showing a risk lower than 

the given limit. Due to the DC formulation of the OPF the method focuses on overload related 

outages. 

3.1.2.1.3.2 Corrective Measures 

An OPF can be used to find optimal corrective actions by redispatching the power infeed. Also the 

utilization of power from demand side management, i.e., load tripping, or the use of FACTS and tap-

change transformers can be used to relax a critical grid situation. Implemented methods in [35], [36] 

use an OPF to simulate corrective TSO actions. Also for the reaction time of a TSO was accounted by 

limiting the corrective activities to each third outage only [36]. 

3.1.3 TSO Forecast Procedure 

To guarantee a as secure as possible grid operation TSOs use forecasting procedures to assume the 

grid utilization of the future. Especially for the time horizon of operational planning exact predictions 
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of nodal loads and infeeds, or more general of nodal power injections, in the high and extra-high 

voltage grid are needed to enable a security analysis. Usually TSOs get aggregated schedules of 

balancing groups which don’t hold any information about at which TSO node power is consumed and 

in which one it is fed in. TSOs also get planned schedules of large scale power plants connected to 

the TSO’s power system directly or in an indirect way the underlying power systems of DSOs. 

Facing the problem, that the vertical load is only observable in the form of an aggregated nodal load 

value for the TSO the vertical load can only be estimated. Based on available datasets from the past 

an expert chooses the - experience judged - best one as a basis for the prognosis process. From this 

reference day the TSO has the aggregated nodal power injection (    ) available, as well as the latest 

forecast of the power plant schedules denoted by     , the power in generation on the reference 

time step  . Due to the fact, that usually only large scale power plants are directly connected to the 

transmission system, the TSO estimates sensitivity factors reflecting the participation of each 

particular power plant, connected to the DSO network, in the nodal power injection of the TSO’s grid. 

By weighting the power plants’ infeeds using these sensitivity factors, what is mathematically a 

matrix multiplication, the nodal infeeds of the reference time step can be determined. The desired 

data - the extracted vertical grid load      of the reference day - is the difference between the 

realized nodal power injections’ values and the nodal infeeds. 

 
Figure 3-3.  A common TSO forecast procedure. 

Data available for the time step to forecast are power plant schedules     , power plant sensitivity 

factors       and the control zone balance prognosis     . By multiplying the prognosis infeed vector 

     by the sensitivity matrix, according to the forecasted power system topology, the per TSO node 

infeed values      can be determined. Due to the fact, that the forecasted value for the control zone 

power balance      is given the deviation     of the sum of power in generation and the previously 

extracted load data from the reference day from the actual forecast value can be calculated. This 

deviation. This deviation gives the absolute amount the extracted load has to be increased to meet 

the prognosis value. This is done by a linear scaling factor      for the load data. Applying this scaling 

factor on the extracted reference time step’s load data      gives the nodal load forecast     . The 

sum of the nodal infeed forecast      and the nodal load forecast      give the nodal power forecast 

    . The overall formula is given in eq. (3-3), where                      is the extracted vertical 

grid load. 
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                (  
∑               

∑    
)       (3-3) 

The here described TSO forecasting procedure doesn’t explicitly account for decentralized infeeds in 

terms of renewable energy sources due to a comparable low penetration of them. TSOs with a 

significant amount of renewable energy sources like wind or photovoltaic handled them the same 

way as power plants in the example above. Regional forecasts for the particular primary energy 

source are used to estimate the infeeds into the power systems and distribution factors are used to 

account for their influence on the nodal power injection at the TSO’s system.  

3.1.3.1 Challenges in Data Mining 

When it comes to modern approaches concerning the risk assessment of power systems the data 

need increases significantly by the necessary historical information either concerning the forecast 

error or measurements of nodal power injections. Due to the fact, that it’s quite common, that the 

models for forecasting and the models for system monitoring at TSO site were developed 

independently from each other the nomenclature and also the depth of details widely diverge. This 

problem makes it almost impossible to extract the needed information of the forecast error. The only 

way to overcome this issue is to harmonize forecasting and monitoring models to allows a simple and 

straight forward calculation of the forecast error. Harmonized models would allow an easy 

identification of potentially avoidable errors in the forecasting process, without making use of 

estimating procedures, like it is actually the case introducing new effort and uncertainties which has 

to be accounted for in the framework of a risk assessment. 

The aggregation of load and generation values, or more generally of different nodal power injections, 

on a nodal level introduces problems to security assessment procedures when the method is based 

on the identification of sources of uncertainties. A separation of the nodal power injection at a basis 

of at least load an generation units or better for loads and for each underlying generation facility 

would introduce the possibility to model uncertainties according to their particular source accounting 

for characteristics like minimum and maximum boundaries in terms of generation units or specific 

forecast error distributions for different technologies. 

3.1.4 ENTSO-E 

In Europe, the European Network of Transmission System Operators (ENTSO-E) is representing 41 

TSOs from 34 countries and originates from the former UCTE. The ENTSO-E operational handbook 

holds rules which members of the ENTSO-E have to comply with. The operational security of TSOs’ 

grids is processed in Policy 3 of the UCTE Operational Handbook [42] being in force at the moment. A 

new network code on operational security [25] specifying the process of the TSO security assessment 

in a more concrete and detailed way is finalized, published by ENTSO-E and also recommended by 

the Agency for the Cooperation of Energy Regulators (ACER). 

According to the network code on operational security [25] each TSO has to define a contingency list 

consisting of internal and external contingencies which are potentially threatening the particular 

TSO’s system. To identify active contingencies for a given system state beforehand each TSO shall 

perform security analysis on an operational planning and real time horizon. Remedial actions 

relieving the congestions identified by the contingency analysis are to be taken. If the effect of a 

contingency is limited locally and the TSO practices foresees it, the decisions can be made to avoid 

costly remedial actions. Each N-1 situation of the TSOs contingency lists has to be solved by remedial 

actions taken by the particular effected TSOs. After applying the actions, the former N-1 case gets the 



   

22 
 

N-0 case and so a contingency analysis has to be performed by the TSOs again to maintain the 

required system security. 

Contingencies are classified in three types, namely ordinary, exceptional and out-of-range. In usual 

system operations only the set of ordinary contingencies needs to be assessed. Based on risk 

estimations of TSOs regarding the probability of exceptional and out-of-range contingencies due to a 

severe system state the particular contingencies are also taken into account. The particular TSO has 

to determine adequate remedial actions for the case of an exceptional or out-of-range situation. The 

simulations have to be performed on an up-to-date simulation model reflecting the actual topology 

of the grid. Changes in topology or generally the power system (e.g. restructuration or 

connection/disconnection of large scale generation units affecting the contingencies) have to be 

taken into account in the contingency analysis and so the lists of contingencies have to be adopted. 

The selection of contingencies of any category is up to the risk analysis of each TSO, but each of them 

should contribute on a harmonization of the decision making in nominating potential contingencies. 

Summarized, TSOs have to be able to keep their particular system and the overall system in a secure 

operation state even in exceptional and out-of-range situations. This is ensured by contingency 

analysis in the time horizon of operational planning to real time operation. TSOs can solve 

contingencies by applying remedial measures predefined during system contingency analysis. 

Contingencies having only a regionally limited effect don’t need to be resolved if it is the common 

practice of by the particular TSO. In terms of cooperation TSOs have to at least coordinate their 

contingency analysis with the TSOs in their observability area which are usually neighboring 

countries. 

3.1.5 NERC 

In the US, the North American Electric Reliability Corporation (NERC) is the reliability cooperation 

regarding transmission systems. It defines four categories reflecting system states and the effects 

given contingencies are allowed to have on the power system [43]. This studies are to performed on 

an annually basis as well as for an operation horizon of five years and a planning horizon of five to 

ten years The system states are categorized as follows: 

 Category A: No Contingencies N-0 

 Category B: Loss of a single element N-1 

 Category C: Loss of multiple elements N-k 

 Category D: Events resulting in cascading outages 

The standard for operation planning foresees a at least a N-1 secure contingency planning [44] to be 

able to handle unscheduled changes in the power system. 

3.1.6 System Security Cooperations 

3.1.6.1 TSC – TSO Security Cooperation 

The TSO Security Cooperation (TSC) consist of 27 TSOs in 24 countries and offers a platform where 

TSOs perform a joint security assessment for day-ahead operational planning called Common Tool 

for Data Exchange and Security Assessment (CTDS). The CTDS follows a decentralized approach with 

a centralized exchange center. The participating TSOs generate a forecast dataset individually on 

their own different forecast methods and upload it to the TSC, where all the datasets are merged and 

a security analysis is performed for all given time steps, which are usually on an hourly basis. The 

security assessment method is a N-1 contingency screening based on a AC-load flow algorithm. After 
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the merging and assessment procedure the system is reduced again to the particular areas of the 

TSOs and sent back to them. The TSOs then are obliged to find preventive measures to cope with 

given N-1 violations. Corrective measures can also be evaluated based on the dataset, but are not 

incorporated into the forecast dataset. After the integration of preventive measures, the modified 

forecast datasets are again uploaded to the TSC, where they are again merged, assessed, reduced 

and sent back. At the end of the TSC-process a daily telephone conference is organized, where 

remaining violations of the N-1 secure system state are processed and corrective measures are 

discussed as well as multilateral remedial actions for severe congestion cases are coordinated. 

 
Figure 3-4.  Participating TSOs in the Transmission System Operator Security Cooperation [45]. 

3.1.6.2 Coreso 

Coordination of Electricity System Operators (Coreso) is a cooperation of TSOs in central Europe 

exchanging forecast datasets on different time horizons to provide the particular TSO information of 

the interconnected grid and so complementing their regional information. Coreso incorporates data 

aggregation and management, different functionalities on multiple time horizons and their 

visualization in a centralized tool.  

On a two-day-ahead basis Coreso determines the cross-boarder-capacities and remedial actions in 

terms of phase-shifting-transformer set points for Central Western Europe. A development for 

optimization of cross-border-flows and an enhancement of the network security is actually in 

progress for Central Southern Europe.  

 
Figure 3-5.  Participating TSOs in CORESO [46]. 
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On a basis of day-ahead forecasts Coreso provides a security assessment platform in terms of 

contingency screening of N-1 and selected N-k events. This procedure consists of a merging of day-

ahead (D-1) forecast data to a common grid model, the security assessment and a visualization of the 

results. The participating TSOs are able to apply remedial measures on their particular grid model 

and simulate the effects of these measures. A telephone conference and a report close the daily 

process.  

The services performed on the Western European Grid intra-day cover forecast reviewing based on 

snapshot data and security assessment based on intraday congestion forecasts (IDCF) performed and 

delivered by TSOs as well as an analysis of the validity of remedial measures in terms of corrective 

actions recommended during the day-ahead congestion management. 
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3.1.7 Analysis of Real World Load Forecast Errors 

In this subchapter forecast data for the time span of one year are analyzed in terms of statistical 

measures and compared for two European TSOs’ power systems. This analysis is an essence of the 

work presented in [47]. 

3.1.7.1 Vertical Grid Load  

One of the main challenges when forecasting transmission system loads in terms of active power is, 

that the actual load is observable for the TSO only in an aggregated manner. Underlying generation 

as renewable energy sources like wind farms and photovoltaics as well as conventional generation 

units like hydro or thermal power plants add up to the actual load in terms of end customers 

demanding power and so the load behavior itself can only be monitored directly by the TSO where 

no power plants are connected to. Additionally to the mentioned effects there is also the possibility 

of transit flows through distribution power systems if they are connected to two or more nodes of 

the transmission system and active power losses of the underlying power system. The particular 

infeeds and the actual load as well as the DSO transits and losses add up to the vertical grid load    

according to eq. (3-4). 

                                         (3-4) 

Due to the fact, that the actual load demand can only be directly or approximately observed at 

nodes, where no underlying conventional and renewable infeeds are present, suitable nodes were 

manually selected from a data basis of two European TSOs using expert knowledge. Basically, based 

on the knowledge of the power infeeds from conventional underlying generation as well as 

embedded RES, their participation information regarding transmission system node loads and the 

monitored vertical grid load at a particular transmission system node, the actual load could be 

approximated for all nodes, but due to a lack in information this extraction was not possible. 

3.1.7.2 Available Data and Preprocessing 

The forecast errors of load dominated transmission grid nodes of two different TSOs (referred as 

TSO1 and TSO2) were evaluated on the basis of hourly values available for each hour at minute 30. 

The determination of the forecast uncertainty was done by the subtraction of the monitored data 

from forecasted data. 

3.1.7.3 Missing data handling 

Due to measurement errors and measurement device failures there were time steps in the time 

series of the nodal power demand without any valid data. Nodal time series containing too much non 

valid data were removed from the data set. Any remaining time steps containing non valid data 

points were removed hereafter to enable the analysis of the data. 

3.1.7.4 Normalization 

To be able to comparison the data among each other, a suitable normalization was found. To avoid 

zero as a normalization reference as well as extreme values (maximum or minimum values) the mean 

as well as the minimum or maximum values were disregarded as a suitable reference. The 95%-5% 

inter-quantile of the monitored data (     - Inter Quantile Power Spread) was found to be a good 

basis for normalization, so extreme values of the upper and lower 5% were neglected. 

3.1.7.5 Analysis of Statistical Measures 

In Figure 3-6 the mean and standard deviation of the active power forecast error are visualized for 

the nodes of TSO1. The data are plotted against the      in active power. The standard deviation is 
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increasing with an increase of the power spread except for the violet and red marked nodes 

representing two exceptional nodes in the TSO’s area feeding the capital city whereas the other 

nodes supply mainly a mix of urban and rural customer areas. The mean values seem to be non-

related to the inter quantile power spread. 

In Figure 3-7 the distribution parameters μFCE and σFCE for the grid area of TSO2 are visualized. The 

expectation values of the forecast error time series tend to zero and do not show a dependency 

based on the inter quantile power spread. The standard deviation of the data increases with the inter 

quantile power spread almost linearly.  

 
Figure 3-6.  Distribution parameters (TSO1). 

 
Figure 3-7.  Distribution parameters (TSO2). 

The normalized      and      values of the forecast error are presented in Figure 3-8 for both TSOs. 

The stochastic measures are given in Table 8-4 and Table 8-5 in Appendix B. The expectation value 

can be assumed to be zero for all nodes of TSO2 and increases with the      value in the case of 

TSO1. The average normalized standard deviation of the forecast error is 26% in the case of TSO1 and 

18% in the TSO2.  

 
Figure 3-8.  Weighted distribution parameters (TSO1-red, TSO2-blue). 
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3.1.7.6 Correlation of forecast errors between nodes 

Besides the distribution parameters of the forecast errors for individual nodes also the correlation 

among them is important, when it comes to risk based security assessment. The corresponding 

correlations are analyzed below. The correlation coefficients of the forecast error for the grid area of 

TSO1 are visualized in Figure 3-9. Only the nodes 5 and 6 are slightly correlated. 

 
Figure 3-9.  Nodal uncertainty correlation concerning the active power. 

The visualization of the forecast error correlation coefficient is given in Figure 3-10 for the grid area 

of TSO2. The load nodes show a higher correlation value for more nodes than it is the case for the 

small power system of TSO1. 

 
Figure 3-10.  Nodal uncertainty correlation concerning the active power. 

Concluding the statement is valid, that for both cases there are only a few nodes showing a negative 

correlation, what would mean, that the load of one node is reduced when the load increases at the 

particular negatively correlated node. In the grid of TSO1 only two nodes show a slight correlation, 

while nearly all loads of TSO2 are positively correlated. Negative correlation can be caused e.g. by 

switching actions and positive correlation can either be caused by similar load characteristics or a by 

an underlying DSO power system, which is connected to the transmission system at two or more 

loads.  
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 Research Questions 3.2
Based on the new challenges in transmission system security risk assessment due to the still ongoing 

structural change in the field of generation and transmission of electrical energy and the survey of 

existing methods the following requirements for a new risk based approach were identified. 

The method should be able to  

 assesses and model forecast uncertainties. 

 account for overload related outages. 

 account for random outages. 

 integrate significant parameters for tripping and system blackout, which are to be identified 

beforehand. 

 handle a huge amount of system states. 

 give an overall risk measure, which should be evaluated beforehand. 

 give a range of uncertainty for the result. 

 be applied on large scale power systems and deliver results in a limited time. Therefore 

different load flow methods should be compared regarding accuracy and computational 

burden. 
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4 Probability Guided Security Risk Assessment 

 Introduction and Specific Problem Definition  4.1
The new challenges rising from a Pan-European energy market and the rising penetration of 

renewable energy sources (RES) are, that they both bring uncertainty to the forecasting process. In 

former times, the operator of an integrated power system was able to dispatch the owned power 

plants to enable a secure grid operation. This means that the operator was able to react on a short 

time horizon to a load behavior in terms of active power demand which differs from the forecasted 

values. Today, high penalties in terms of redispatch costs are paid to the market players.  

The actual security assessment methods used on a day-ahead time horizon by the members of the 

ENTSO-E is based on point forecasts and is not able to take uncertainties or trading actions into 

account. Depending on the particular TSO, up to 24 datasets are provided per day in the day-ahead 

congestion forecast process. At least four datasets for specified points in time have to be provided by 

every member TSO. 

An enhanced method for the day-ahead contingency forecast process of TSOs should be able to 

handle the stochastic characteristics of power system loads and generation infeeds on the basis of 

historical data as well as the correlation of uncertainties It shall show a robust behavior, be 

applicable on large scale power systems in a limited simulation time and give a risk based measure as 

an output to allow a ranking of different system states and provide additional information to the 

classical contingency analysis. 

 Method Overview 4.2
The method presented in this thesis was designed to be applied on a typical time horizon of a day-

ahead forecast horizon. It is able to handle forecast uncertainties like they arise from energy market 

activities, the large scale introduction of infeeds from renewable energies like wind and solar power. 

The forecast uncertainties are gained from historical datasets of the power system. To overcome the 

challenge in simulating all various scenarios which arise from all those historical data a parametric 

approach is used. The forecast uncertainty is simplified to be reflected by statistical measures as they 

are the expectation value and the variance of uncertainties. Due to the fact, that there are spatial 

correlations of forecast errors as well as correlations in time it is necessary to consider the 

correlation between them. The method of the parametric load flow allows to account for the effect 

of the uncertainties of infeeds and loads on the expected load flows respectively the variance of the 

power system’s branches. To be able to compare the proposed parametric load flow to conventional 

Monte-Carlo based load flow methods different realizations of load flow methods are implemented 

and described in detail in chapter 4.3.1. All the probabilistic load flow implementations have in 

common, that their output are either stochastic measures, or density functions, reflecting the 

probability distribution of branch loading. To link the stochastic information about branch flows and 

the tripping probability of branches a heuristic function is used. This tripping heuristic accounts for 

protection relay intentional operation, unpredictable, load flow independent outages like avalanches 

or lightning strokes as well as load flow dependent outage causes like flashovers caused by line sag 

due to a heavy utilization and voltage related branch tripping. The output of this heuristic is one 

single cumulated measure per branch reflecting the probability of losing the particular branch. 
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The knowledge of estimates for the branch tripping probability enables the simulation and screening 

of numerous outage combinations.  An overview about the different modules is given in Figure 4-1.  

As an input data the method uses a forecast dataset, like it is already generated by TSOs for the day-

ahead congestion management, historic data coming from periodically observations – the so called 

snapshots, statistical reliability data for each element of the power system and additional 

information concerning the primary frequency control. The input data is aggregated and referred to 

as input state. 

The two major modules “Next Stage” and “Actual Stage” form the recursive loop which is essential 

for the screening of multiple system states. The module “Next Stage” evaluates an input system 

states regarding islanding, primary control actions, or frequency related immediate blackout, 

performs the probabilistic load flow computation, applies the tripping heuristic, determines the 

system state probability and filters tripping candidates. For each filtered branch to trip a new system 

state, based on the evaluated one, is generated and modified that way, that the filtered branch is 

tripped. This modified system state is then passed to the second major module “Actual Stage”. 

The module “Actual Stage” mainly identifies system states based on the passed one in the same 

simulation stage. This means, that “Actual Stage” scans system states coming from simultaneous 

branch trippings. If a state exceeds the predefined limit in tripping probability the newly generated 

state is passed to the module “Next Stage”.  

When there are no more system states exceeding the predefined limit in state probability the 

method returns to the module calling the current one. The simulation is finalized if there are no more 

system states exceeding the lower limit in system state. 
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Figure 4-1.  Method Flow Chart. 
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 Probabilistic Load Flow 4.3
The probabilistic load flow was implemented in four different ways in this thesis to allow a 

comparison between the load flow methods. The implemented methods are three different Monte-

Carlo simulation methods based on the AC-load flow, AC-PTDF and DC-PTDF and the DC-PTDF based 

parametric load flow (DC-PLF). 

The proposed load flow method in this thesis is the parametric load flow which is able to handle 

uncertainty afflicted inputs in terms of nodal power injections (infeeds as well as load demands) and 

is a fast method due to the fact, that it is based on the iteration free DC-PTDFs.  

4.3.1 Power System Modelling 

The elements of a power system can be categorized in two groups which are shunt elements and 

series elements also named branches. Nodal elements represent loads and generation units as well 

as voltage controlling devices like SVCs and STATCOMs or shunt compensation devices. The 

terminology branch means lines, transformers, FACTS which connect two nodes like the TCSC series 

compensation units and HVDC-lines. 

4.3.1.1 Conversion to per unit 

It is common to convert the power system equation into per unit values. This simplifies the process 

of building the bus admittance matrix, because there is no need to introduce a reference voltage 

level and will lead the iterative solution process to a faster convergence or enable even convergence 

in limit conditions. There is only a need to provide normalization values in for power measures. 

Following eq. (4-1) apparent, active as well as reactive power values can be converted to per unit. 

They are normalized regarding      ,        and       which is the same predefined value showing 

the particular unit (              ). 

      
 

     
       

 

     
       

 

     
 (4-1) 

Voltage measures are converted into the per unit format by normalizing them to the particular 

node’s nominal line voltage. 

      
 

  
 (4-2) 

All reference values can be determined out of the two given above. The reference for the per unit 

conversion of impedances, reactances and resistances can be determined as given in eq. (4-3).  
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Especially when it comes to the conversion of transformer resistances and reactances it is necessary 

to know for which node of the branch the given value is valid. 

The normalization basis for current values is determined according eq. (4-4). 
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 (4-4) 

The turns ratio can be converted into per unit following eq. (4-5). 
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(4-5) 

The results of the load flow calculation can be transformed to absolute values by multiplying the per 

unit value with the particular normalization value as stated in eq.  exemplarily for the nodal apparent 

power.  

            (4-6) 
It is common practice to omit the index      The subsequent quantities are      values. 

4.3.1.2 Power System Equations 

To describe a power system in a mathematically way it is common to use the admittance matrix. It 

enables to take all aforementioned (branches as well as nodal elements) elements into account. 

Branches can be modelled as an element connecting two nodes and define the topology of the 

system. The load flow of a branch element represented in Figure 4-2 by a series impedance    can be 

expressed in a mathematical way as follows. 

 
Figure 4-2.  Branch Modelling. 

By the knowledge of the nodal phase voltages    and    the branch current    can be calculated 

according to eq. (4-7). 

   
   

  
 

     

  
    (     ) (4-7) 

In power systems nodes usually are connected by multiple branches.  

 
Figure 4-3.  Meshed Grid Node i. 

For this example eq. (4-8) is valid, assuming that nodal loads are defined as positive and it can be 

generalized according eq. (4-9). 
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                 (4-8) 

   ∑   

   

 (4-9) 

This generalized equation is valid for one node of a power system. To model this relation for all 

nodes the admittance matrix      is used. This matrix is calculated by using the branch membership 

matrix     describing, where a branch begins, and where it ends. It has number of branches lines and 

number of busses columns and holds the value 1 at the particular column – reflecting the start node 

– where branch b begins and -1 where at the particular column where branch b’s end is connected 

to. The system admittance matrix can now be calculated by a simple matrix multiplication according 

to eq. (4-10), where    is a column vector holding all branch admittances. 

              (  )      (4-10) 

4.3.1.3 Taking into account off nominal turn ratios and phase shifts 

When it comes to transformers or series equivalents connecting two nodes with different nominal 

voltages the voltage ratio and the shift angle have to be taken into account. 

The turns ratio of a transformer can be calculated by the quotient of the number of turns on the 

secondary side of the transformer and the primary side according to eq. (4-11). 

  
  

  
 (4-11) 

Due to the fact that three phase transformers also can introduce a phase shift according to the way 

primary respectively secondary windings are connected among each other the complex turn ratio   is 

defined as given in eq. (4-12), where    is the angle which the secondary voltage    lags the primary 

voltage   . 

  
  

  
        (4-12) 

Due to the fact, that the voltage of the secondary node is given by the multiplication of the complex 

turn ratio   and the voltage of the primary node eq. (4-13)holds. 

                    (4-13) 

The secondary winding’s current is determined by multiplying the primary current with the reciprocal 

value of the turn ratio in terms of absolute values. Due to the fact that both, the current as well as 

the voltage experience a phase shift by –   the calculation of the complex value of the secondary 

winding’s current is performed by dividing the current of the primary winding by the conjugate 

complex turn ratio. 

      
      

  
        

 

 
        (4-14) 

The power system equations for two nodes i and j connected by a transformer or a series equivalent 

with different nominal voltages as shown in Figure 4-4 can be determined by taking the complex turn 

ratio into account. 
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Figure 4-4.  Branch Modelling. 

In eq. (4-15) and (4-16) the current equations for branches with turns ratios and phase shifts are 

given. 

      
     

 

  
 

  

  
 

 

  
 
  

 
 (4-15) 
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 (4-16) 

For a power system consisting of numerous nodes and branches the following generalized expression 

is valid for modelling a branch element  , connecting the nodes   and   and showing a complex turns 

ratio  . The branch’s impedance is given for the nominal voltage of node  . 

    
 

  
 (4-17) 

     
 

    
 (4-18) 

     
 

     
 (4-19) 

    
 

     
 (4-20) 

4.3.1.4 Taking into account parallel losses and capacitances 

In the case of lines, transformers and series equivalents, it’s quite common to model the particular 

voltage dependent losses respectively the parallel capacitance as shown in Figure 4-5. 

 
Figure 4-5.  Modelling of Parallel Losses and Capacitances. 
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The parallel elements   ⁄  and   ⁄  are directly connected to the node   respectively   and they can 

be seen as an additional current injection in the particular node. This current injection is solely 

voltage dependent and can be calculated for the node   according to eq. (4-21) and (4-22) and 

analogous for node   accounting for turns rations if applicable. 

       
 

 
 (4-21) 

       
     

 
 

(4-22) 

Generalized the loss related current of branch   at the primary node   it is connected to can be 

expressed as given in eq. (4-23) for node   and analogous for the secondary node  .     denotes the 

total parallel admittance of branch   reflecting losses. 

                 
       

 
     

   

 
 (4-23) 

This current equation can be integrated into the bus admittance matrix following eq. (4-24) by adding 

the particular parallel admittance to the main diagonal of the bus matrix for node   and analougous 

for node   accounting for turns ratios if necessary. 

                
   

 
 (4-24) 

4.3.1.5 From Current Flow to Load Flow 

According to Ohm’s law eq. (4-25)leads to the vector    of nodal current injections, where    is the 

vector of the nodal voltages. 

           (4-25) 
When performing load flow computations, the given measure usually is a set of nodal power 

injections in terms of apparent power than nodal current injections. The nodal apparent power    

can be calculated as the product of the diagonal matrix of the bus voltages and the conjugate of the 

nodal current vector   . 

       (  )    
      (  )      

    
  (4-26) 

Due to the circumstance that this equation system is not linear, it is not trivial to make the bus 

voltage vector U explicit. There are two ways to overcome this problem. Either, the application of an 

iterative solver or the simplification of the equation system. First, one leads to the common 

implementation of AC-load flow computation methods, the latter leads to the DC-load flow. 

4.3.1.6 Load Flow Implementation of PFCCs 

This section is about implementing PFCCs into the presented method. The selected PFCCs are HVDC 

lines, phase shifting transformers and as a FACTS device the TCSC. They all have the same effect on 

load flows in terms of steady state computation. They all have an effect on the active load flow, but 

they are modelled in different ways and so have a different influence on the risk of the power 

system. 
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4.3.1.6.1 HVDC lines  

4.3.1.6.1.1 Integration of HVDC lines in the load flow calculation 

HVDC lines are modelled in this work as active power injections. To account for the losses in active 

power they are modelled according to eq. (4-27) consisting of load flow independent losses reflected 

by    and load flow dependent ones modelled by the parameter    as proposed in [48]. 

                |       |         (4-27) 

The HVDC lines power injections are added to the systems nodal power vector    as given in 

eq. (4-28) resp.(4-29): 

                 , 
(4-28) 

                 . (4-29) 

The parameterization of the dataset is exactly the same as defined in the MATPOWER format [49]. 

4.3.1.6.1.2 Outage probability modelling of HVDC lines 

HVDC lines consist of power electronics and conventional lines, so the outage probability of HVDC 

lines differs significantly from HVAC lines. This is taken into account by formulating the “HVDC 

branch-loading to branch-tripping-probability function” consisting of  an offset value reflecting the 

outage probability of the line (   in eq. (4-30)) and a load dependent increasing part in tripping 

probability reflecting the power electronics part (   in eq. (4-30)). Facing the fact that the utilization 

of HVDC lines is modelled here as deterministic values (the mean value is the set point of the HVDC 

and there is no variance in HVDC line loading) the outage probability is simply calculated by 

eq. (4-30). 

            
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               . (4-30) 

4.3.1.6.2 Phase shifting transformers 

Phase shifting transformers (PSTs) are used to control mainly the active load flow in a line they are 

connected to and as a consequence of meshed grids also the lines surrounding it. Due to the 

increased transits in the pan European transmission system numerous PSTs were installed to on 

control load flows and so to account for the security of the overall power system. PSTs have become 

an important degree of freedom in today’s transmission system operation. 

4.3.1.6.2.1 Variants of Shifting Transformers 

There are different kinds of phase shifting transformers, namely symmetrical and asymmetrical 

shifting transformers [50]. Their voltage phasor diagrams are shown in Figure 4-6 resp. Figure 4-7. 

The main difference between these two kinds of shifting transformers is that the magnitude of the 

primary and secondary terminal voltage is not equal. So the symmetrical phase shifting transformer 

introduces solely a shift in voltage angle, but the asymmetrical one affects also the voltage 

magnitude. Assuming e.g., a perfect high voltage grid with reactive elements only the symmetrical 

shifting transformer would add an additional active load flow to the line it is connected to but the 

asymmetrical one would also cause a reactive one. 
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Figure 4-6.  Asymmetrical shifting 
transformer with Θ = 90° [50]. 

Figure 4-7.  Symmetrical shifting transformer 
[50]. 

In the case of asymmetrical PSTs there are not exclusively those adding an additional voltage with a 

phase angle of 90° but also ones differing from 90°. The voltage phasors are visualized in Figure 4-8, 

showing the additional voltage with an angle      . For all variants the statement that the angle 

shift is influenced by the magnitude of the additional voltage is valid. 

 
Figure 4-8.  Asymmetrical shifting transformer with Θ ≠  90° [50]. 

4.3.1.6.2.2 PST modelling  

As already mentioned in the foregone section PSTs introduce an additional voltage angle spread and 

in some cases also influence the voltage magnitude. Due to the properties of the – in this method 

used – DC-load flow formulation it is not accounting for voltage levels so the only parameter of 

interest is the phase shift angle α of a particular PST.  

The input data needed is stored according to the Matpower format given in [49]. The only input 

value needed is the shift angle α. 

In Figure 4-9 the way how a PST in series to a line is modeled in the presented method is illustrated 

following to the work published in [51]. The first schematic shows a line modelled in DC-load flow 

simply by its reactance. In the second one a PST is placed in series to the line introducing an angle 



   

39 
 

shift of     . Due to the DC-load flow formulation this voltage angle shift can be expressed as a 

parallel active power source. The set-point of the equivalent parallel power source    is given by 

eq. (4-31). 

   
    

   
  (4-31) 

Facing the fact that constant parallel power sources are hard to model it is replaced by nodal power 

injections on the beginning and the end of the line the PST is connected to which can be 

implemented in the equations of the DC-load flow by adding the injected power at the “from” node 

of the particular line and subtracting it at the “to” node of it.  

              (4-32) 

              (4-33) 

In the “Simplification” subfigure in Figure 4-9 it is obvious, that the injected power adds up to the 

load flow of the PST so the real load flow can be calculated by subtracting the injected power from 

the particular branch’s load flow. 

 
Figure 4-9.  PST modelling [51]. 

The PST influenced load flow over the line can be determined according to eq. (4-34): 

               (4-34) 

4.3.1.6.3 FACTS 

There are various types Flexible AC-Transmission Systems (FACTS) introducing controllability into 

transmission systems, either in terms of active or reactive load flows and in consequence in terms of 

voltage angles and magnitudes. [52] gives a detailed view on each of the FACTS devices. The most 

important FACTS elements in real world power system operation are static compensators like e.g., 

SVC and STATCOM. They are able to provide or demand reactive power in the node they are 

connected to and change their set-points very quickly. So they are ideal to locally compensate 

fluctuating demand in reactive power and account for the node voltage magnitude. In contrast to 

this the Thyristor Controlled Series Compensator (TCSC) introduces controllability in meshed grids by 

influencing the branch’s impedance they are connected in series with. They generally consist of a 

thyristor controlled capacitor parallel to an inductor. Optionally there can be a fixed compensation 

by another capacitor in series. So a TCSC is able to change its reactance during power system 

operation and so influence the load flow of the line it is in series to and as a consequence parallel 

ones also. By lowering the reactance of the TCSC the load flow can be attracted, and by increasing 

the reactance it can be suppressed. FACTS-devices also to be mentioned are the Unified Load Flow 
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Controllers (UPFC) or the Static Synchronous Series Compensators (SSSCs) providing additional 

flexibility to the TSOs daily business. 

Due to the limited relevance in pan European power systems in this work solely the TCSC FACTS 

element was selected for implementations, which can be modelled as a series reactance to the 

branch it is connected to according to the work done in [53]. The parameters of the TCSC element 

are a set-point       and the maximum      
    and minimum      

    limits of the device which are 

used as constraints during an upstream optimization. During the cascading risk assessment, the set-

point of the FACTs device is not changed but it’s tested on plausibility by performing a check 

concerning the provided limits. 

     
               

     (4-35) 
For each branch of the given power system a TCSC is connected to (     ) the branch reactance    is 

modified according to eq.(4-35). 

                      (4-36) 

4.3.1.6.4 Monte-Carlo Simulation based Methods 

4.3.1.6.4.1 AC-Load Flow Method (Newton-Raphson) 

There are multiple implementations known to solve the non-linear power system equations. The 

most popular of them are the Newton-Raphson or the Gauß-Seidl both having their advantages and 

drawbacks in terms of convergence and the number of iterations needed to gain a desired pre-

defined accuracy. 

4.3.1.6.4.2 DC-Load Flow Method 

The DC-Load Flow method is based on the following assumptions leading to a linear equation system 

enabling an iteration free calculation.  

1. Bus voltages are assumed to be 1 p.u. 

2. Reactive power is neglected 

3. The power system’s branches are assumed to have a fully reactive characteristic 

4. The system is lossless 

5. Voltage angles are rather small  

Assumption 3 mainly affects the system admittance matrix, which gets the system susceptance 

matrix as stated in eq. (4-37). 

        
      (       )      (4-37) 
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Due to the fact, that the reactive power is neglected the term for the active power can be extracted 

according to eq. (4-39). 

     
         (    )   

  ∑             (          )

 

   
   

 

 

(4-39) 

The assumptions that each voltage magnitude is 1 p.u. and the impedance of branches is reactive 

leads to eq. (4-40). Due to the assumption, that branches have an inductive characteristic the 

impedance of a branch could be expressed as                       and the admittance 

could be expressed as          
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(4-40) 

If the voltage angle differences are rather small the value of the sinus function is approximately the 

function argument. 
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(4-41) 

 

            
 

(4-42) 

The bus susceptance matrix is singular so a reference bus has to be defined and the lines and 

columns related to it have to be omitted. This matrix is denoted by     (         )
 . 

  (    )
    (    (         )

)    (    )
 (4-43) 

 

4.3.1.6.5 DC-Based Parametric Load Flow (DC-PLF) 

The probabilistic load flow is based on the assumption that the input variables are normally or close 

to normally distributed. This assumption allows to simplify load flow computations for uncertainty 

afflicted, which would usually require the use of Monte-Carlo simulation techniques, to determine 

the probability distribution of branch loadings in two calculation steps. Due to the fact that a 

normally distributed random variable can be fully described by the expectation value and the 

variance and the fact that the sum of normally distributed random variables again lead to a normally 

distributed variable. To be able to use this advantage in load flow calculations some simplifications 

have to be made. Due to the fact that the power system’s branch loadings have to be directly 

expressible as a linear function of nodal powers the load flow equations need to be linearized. That 

directly leads to the use of power transfer distribution factors (PTDFs). They can either be computed 

based on the Jacobian matrix of an initial AC-load flow simulation or directly by the use of DC-load 

flow. 
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4.3.1.6.5.1 The Expectation Value 

The expectation value of historical observations in the shape of a column vector X holding N 

observations where    is the    element oft he vector can be calculated according eq. (4-44). This 

value reflects the sum of the elements of X weighted by their probabilities of occurrence. Due to the 

fact that all observations in a time series have the same probability the expectation value is simply 

the mean value of a variables observations. 

 [ ]  ∑      
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     (4-44) 

If the analyzed data is e.g. reflecting a forecast error an expectation value different from zero leads 

to the conclusion that the forecast method shows a systematic deviation. 

4.3.1.6.5.2 Variance and Standard Deviation 

The variance of the data in vector X can be calculated according eq. (4-45) and gives the expectation 

value of the squared deviation of the expectation value of the data in X. It is a measure for the spread 

of the data given in X. Often the standard deviation is used which is the square root of the variance. 

   ( )   [(   ) ]   [(   [ ]) ]   [  ]  ( [ ])        
  (4-45) 

If the data in X reflects a forecast error a higher variance indicates a higher uncertainty. 

4.3.1.6.5.3 Covariance and Correlation of Random Variables 

Assuming Z to be a dataset of observations of multiple variables over time in form of a matrix with 

number of observations rows and number of variables columns the expectation value as well as the 

variance of each variable can be calculated separately. These two measures reflect only properties of 

the particular variable, but don’t give any information about the interdependence of the variables 

among each other. To account for this interdependence of two or more random variables the 

covariance is used. The covariance reflects the variance of the joint variable of two variables. 

The covariance can be calculated according eq. (4-46), where X and Y are variables of the observation 

set Z. 

   (   )   [(   [ ])  (   [ ])]      (4-46) 

The covariance is a measure which is quite common in statistics, but in data analysis often the 

correlation coefficient of variables is used more often, because of it’s straight forward interpretability 

without the need of taking account of the variance of the particular variables and because it is 

bounded to lie between +1 and -1. It describes the relation of the joint variance of the two variables, 

relatively to the product of the standard deviation of each of them. E.g. perfect positive correlation 

reflects, that positive deviations of the mean values occur in the same observation points leading to a 

correlation coefficient of 1. On the other hand, if one variable has always it’s highest values, when 

the other one shows it’s lowest and vice versa the correlation coefficient would be -1. 

By the knowledge of the covariance and the variances of the variables X and Y the correlation 

coefficient can be determined following eq. (4-47) for each combination of variables in Z. 
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 (4-47) 

Assuming that the correlation coefficient and the variance per variable are given as input parameters 

the covariance matrix can be calculated according eq. (4-48). 
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] (4-48) 

If the correlation matrix is given the matrix of correlation coefficients can be calculated according to 

eq. (4-49), where     ( ) denotes the matrix of main diagonal of the covariance matrix  . 
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  (4-49) 

4.3.1.6.5.4 Expectation Value of Branch Loadings 

The foregone evaluated AC- as well as DC-PTDF matrices can be used to determine the expectation 

value of the branch loadings by performing a matrix multiplication. The vector      holds the 

expectation values of the nodal power injections . This is valid for generators as well as loads when 

their particular nodal power injection is aggregated at the proper node. 

              (    )  (4-50) 

4.3.1.6.5.5 Variance of Branch Loadings 

By the knowledge of the covariance matrix of the nodal power injections and the AC- respective DC-

PTDF matrix the variance of all branch loadings can be determined, where         is the ith row of 

the PTDF matrix and     ( ) is the standard deviation in nodal active power injection of node  . 

    ( )  ∑∑                    ( )      ( )

  

   

  

   

 (4-51) 

The equivalent operation is given as a matrix operation in eq. (4-52), where      is the full covariance 

matrix of the nodal active power injections and     is a column vector of the size equal to number of 

busses. 

      (     (         )))      (4-52) 

4.3.1.6.5.6 AC-Power Transfer Distribution Factors 

AC-Power Transfer Distribution Factors (AC-PTDFs) are a simplified approach to determine branch 

flows when performing a probabilistic load flow. Just one AC-load flow computation is needed to 

determine the Jacobian of the power system of interest in a given linearization point. The Jacobian 

consist of four different quadrants reflecting the linearized dependency between the change in active 

and reactive nodal powers and the nodal voltage magnitudes and angles according to eq. (4-51). 
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 (4-53) 

Facing the fact that the effect of a change in nodal power on the voltage angle and magnitude is 

needed the matrix has to be inverted. To be able to invert the system’s Jacobian the reference node 

has to be omitted due to the fact, that the unreduced Jacobian matrix is singular. 
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     [
   (         )

   (         )

   (         )
   (         )

] (4-54) 

The inverted Jacobian (eq. (4-55)) matrix gives the gradients of active and reactive power with 

respect to the voltage angle and magnitude. 
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] (4-55) 

In general, the apparent load flow of a branch from node   to node   can be calculated following 

eq. (4-56). 
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(4-56) 

For the active load flow from node   to node   eq. (4-57) is valid. 

        
         (    )                (         ) (4-57) 

 

    

   
               (         ) 

     (     
     

 ) 
(4-58) 

 

    

   
                 (         ) 

       (     
     

 ) 

(4-59) 

 

    

   
              (    )            (         ) 

     (  |  |     
 )      (

  

|  |
   

     
 ) 

(4-60) 

 

    

   
             (         ) 

      (   
  

 

|  |
    

 ) 

(4-61) 



   

45 
 

These four partial derivatives can be calculated according to eq. (4-58) to (4-61) and each of the 

results is a column vector with the size of number of branches. To be able to perform the further 

mathematics in terms of matrix operations those vectors have to be reshaped following eq. (4-62) 

and (4-63). 
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 (4-63) 

Due to the fact that the reference bus doesn’t show a change in voltage magnitude or angle the rows 

related to it can again be omitted according to eq. (4-64) respective (4-65). 
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 (4-64) 
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After reducing the network’s reference bus one is able to determine the AC-PTDF matrix for the 

change in voltage angles as well as for the change in magnitude. 
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        (4-67) 

The sum of those two matrices is the actual AC-PTDF linking changes in nodal active powers to 

changes in active line flows. 

                        (4-68) 

 

4.3.1.6.5.7 DC-Power Transfer Distribution Factors 

Based on the branch load flow equation given in eq. (4-69) and the assumptions made the line flow 

of a branch can be computed according to eq. (4-70). 

           (   )          (        )         (     ) (4-69) 

Assumption 5 again allows to approximate the value of the sinus function by it’s argument. 

        (     ) (4-70) 

By using the     matrix and the branch susceptance vector         eq. (4-70) can be generalized for 

all branches in the system leading to eq. (4-71). 

       (       )        (4-71) 
This matrix gives the effect of a change in the nodal voltage angle matrix on the active branch flows. 

Due to the fact, that in this study the voltage angle is neither an input nor an output parameter 

eq. (4-70) and (4-71) can be joined to the DC-PTDF matrix.  
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       (       )     (    )
    (    (         )

)    (    )
          (    )  (4-72) 

This PTDF matrix allows to directly determine the branch load flow from the active nodal power 

injections. 

4.3.1.6.5.8 Method Expandability 

It can be thought of various expansions potentially enhancing the accuracy of results on different 

points of the method. Due to the fact that reactive load forecasting and the analysis of reactive load 

flows is not a topic of interest of the currently implemented forecasting and congestion frameworks 

of the TSOs the focus during the evaluation of the presented method was set on active power 

forecasts and flows. Given, that the forecast datasets quality concerning reactive power forecasting 

increases it could be thought of extending the load flow computation method by the implementation 

of a fast decoupled load flow [54] also taking into nodal reactive power injections and allowing a 

more accurate evaluation of branch flows. 

To enable a fast risk analysis for a limited time horizon the Probabilistic Load Flow method was used 

instead of the in risk based security analysis popular Monte-Carlo simulation. This method causes the 

need for approximating historical forecast uncertainties with Gaussian distributions. To overcome 

the inherent limitations of this load flow implementation Gaussian mixture models [55] or Gram 

Charlier Expansions and as a special form Edgeworth Series [56] seem to lead to a significant 

enhancement of the method performance. 

 From Branch Loading to a Branch Outage Probability 4.4
To enable an outage simulation of the power system of interest the probability that a certain branch 

trips has to be quantified. A function that gives a link between the probability, that a branch is 

outaged, and the branch flow is presented in the publications [35] and [36]. These findings are based 

on the work published in [57] giving a link between the likelihood of a tripping of a branch and a 

system outage due to hidden failures in protection relays. In Figure 4-10 the function developed in 

[36] is presented. It describes the probability of a branch tripping as a function of the normalized 

branch flow, assuming that there are three ranges. The first one covers the branch flow from zero to 

the actual branch limit and it shows a probability   that a hidden failure will occur. The second range 

is from 100% to 140% of the branch limit value reflecting the over current protection relay limit. Here 

the probability of a hidden failure is assumed to rise linearly. The third range is above the over 

current protection device’s set point leading to a definitive outage of the branch. 

 
Figure 4-10.  Relation between loading and outage probability [36]. 

Due to the lack in data concerning the probability of a hidden failure of a protection device this 

function was reworked to reflect the load flow dependent branch outage probability in a way, that it 
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can be parameterized using data which is available. The modified branch loading to tripping 

probability function is shown in Figure 4-11. The function consist of three different parts as follows.  

 
Figure 4-11.  Branch tripping probability as a function of the branch loading. 

The base tripping probability       is reflecting branch tripping as a consequence of stochastic 

external causes like lightning strokes, falling trees, avalanches as well as internal causes like 

insulation failures and false protection relay tripping is highlighted in green and covers a loading 

range from 0% to 100% of the line limit       . In the case of e.g. a tower line in a threatened area 

were the likelihood of an avalanche is high, detailed outage statistics of the particular TSO would 

reflect this increased tripping potential and enable an appropriate consideration of this circumstance 

during the simulation. However if those values are not available the work published in [58] gives an 

evaluation of branch outage statistics categorized by voltage levels and branch types like 

transformers, lines and cables as well as outage statistics for busbars and switching units. A sub 

category of this evaluation gives measures for independent outages of branch elements and reflects 

the outage frequency   which is the number of outages per year and kilometer. By evaluating the 

outage frequency for the duration of the investigated time horizon      and the length of the branch 

of interest    the base tripping probability      (        ) of a branch can be determined. 

     (        )            (4-73) 

The tripping probability for highly overloaded branches, where the loading   exceeds the protection 

device limit       reflects, that branches are protected by over current protection relays, which 

prohibit a thermal damage of the element due to a heavy overload situation. The actual settings of 

the over current protection relays depend on the protection philosophy of the TSO. Usually the ratio 

between the over current protection setting and the long term thermal limit of the branch lies 

between 105% for conservative protection and 150% for TSOs making use of the thermal inertia of 

branches in terms of the TATL (temporary admissible transmission loadings) limits for corrective 

remedial actions as the report of the incident of 2006 shows. In eq. (4-73) it’s assumed, that the 

overcurrent protection relay is working correctly every time the limit is exceeded by tripping the 

respective branch, but due to malfunction, it can happen in some rare cases, that the relay won’t trip 

the branch. The occurrence probability of a malfunction of protection devices can be integrated into 

this function by reducing the value of the probability for a branch tripping in the red area by the 

according probability of a protection device malfunction (            ). 

     (       )                 (4-74) 
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For a branch loading between the thermal limit and the protection device limit      (             ) 

(yellow area) it is not that straight forward to formulate a dependency of the tripping probability 

from the utilization. On the one hand, the base tripping probability is still present due to the fact that 

external effects are not load flow dependent. So a lightning stroke, or an avalanche and other 

phenomenon which are hard to or even impossible to predict is as likely for a heavily loaded line as 

for a line which is not in operation. The second reason which is modelled here is the rising likelihood 

of a flashover due to line sag when the loading of overhead lines exceeds the thermal limit like it was 

the case for the Italian blackout in 2003 according to the final report [5].  

There are many other causes leading to a branch tripping, but the detailed modelling of outage 

mechanics is not the goal of this thesis. Additional causes for protection device triggered branch 

trippings could be distance protection relay actions as a result of high loading situations 

characterized by comparably low bus voltages and high branch currents or voltage protection relay 

actions due to undervoltage, again as a result of a severe loading situation. Due to the fact, that 

different TSOs use different protection device technologies with different settings and have varying 

protection strategies, the function in this range might differ from one TSO to the other. For this work, 

an assumption for the parameterization of the heuristic function was made. It is out of this work’s 

scope to assess an exact model of the tripping behavior in this range. 

 State Based Approach 4.5
The approach presented in this thesis is state based one. The opposite would be an event based 

approach, which would select branches to trip by their particular outage probability regardless the 

probability of the system to stay in a certain topological configuration, here referred as system state. 

The probability to stay in the initial stage defined by the topology configuration given by the forecast 

dataset is identically to the probability, that none of the branches in operation would trip, here 

referred to as the counter tripping probability of a state. Let         be the tripping probability of 

branch   and   the set of all branches in the system, the probability pstate,1 to stay in the initial state   

is given by eq. (4-75). 

         ∏(         )

 

   

 (4-75) 

In a more general way the probability of state   defined by a set of branches to outage   and a set of 

branches staying in operation   is given eq. (4-76) in a recursive formulation, where            

denotes the probability of the foregone simulation stage. In the case of the initial stage            

would be equal to one. 

                    ∏       
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 (4-76) 

4.5.1 System State Filtering 

Due to the fact, that a pre-evaluation of all possible system state probabilities is computationally 

infeasible for medium and large scale power systems, an approach was implemented allowing a 

probability based filtering during the simulation. A simplified method flowchart is given in Figure 

4-12. In the module “Next Stage” the actual branch tripping probabilities as well as the system state 

probability of the given system state are evaluated. A filter criterion based on a predefined minimum 
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value in state probability      is used on the one hand to select tripping candidates and on the other 

hand to decide either if the actual system state is evaluated or not. 

The module “Current Stage” takes the information branch tripping probability and system state 

probability from the module “Next Stage”. If the module “Current Stage” detects a branch who’s 

product of the tripping probability and the actual simulation step’s probability exceeds the lower 

limit in state probability, the branch is set offline and the module “Current Stage” is executed in a 

recursive way. The actual simulation step’s probability is determined by taking the product of the 

system state probability of the previous system state and the tripping probabilities of branches 

tripped since then. This procedure allows to abort a particular sub-simulation loop of the recursive 

algorithm when the actual simulation step’s probability is below the predefined limit without the 

need of evaluating the particular resulting system stage. 

If the module “Actual Stage” detects a system state exceeding the given lower limit in system state 

the module “Next Stage” is executed in a recursive way. 

 
Figure 4-12.  Recursive state approach. 

This recursive loop is stopped, when there are no more system states or branches showing a system 

state probability or actual simulation step’s probability exceeding the predefined lower limit     . A 

simple example for this procedure is given in a graphical way in Figure 4-13. Given, that state   is the 

initial state in the actual simulation stage there is a state probability          that the system remains 

in the same state. If this state probability exceeds the predefined limit      this state is evaluated 

regarding the risk it holds. If, any branches’ tripping probability exceed the predefined lower limit a 

outage simulation is performed for the particular branches. In the given example one of these sub-

simulations leads to state   who’s state probability exceeds the limit or to state   who’s state 

probability is below the limit, but there is a candidate in terms of a branch to outage, in this case 

branch  , with a tripping probability         beyond the limit which leads to a system state   showing 

again a system state probability lying over the limit.  
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Figure 4-13.  Skipping of unlikely system states. 

To avoid the repetitive scan of identical system states starting from one initial case a masking 

method was used. E.g. an exemplary three branch network would lead to a complete system state 

graph as shown in Figure 4-14 for the initial state  . It can be thought of 16 possible tripping 

combinations of the exemplary power systems’ branches a, b and c leading to new system states, 

where some combinations would lead to identical states due to the fact, that for simultaneous 

outages the order is irrelevant. In this example, there are six possible combinations, when accounting 

for the order, leading effectively to the same state where all branches are tripped. Also an outage 

combination of any two of the branches e.g. a and b would lead to the same state by two different 

ways to get there. Due to the fact that there is no need to account for the order of tripping events, 

because the branches selected here are simultaneous outages , a simple “branch to trip candidate” 

filtering process can be used to avoid this issue. 

 
Figure 4-14.  Nomination of intermediate states. 

The filtering of branch outage candidates is realized by giving the branch trip candidates unique 

numerical values and selecting tripping candidates showing an index higher than the index of the 

forgone tripped branch of the same outage stage. This approach is visualized in Figure 4-15. For the 

given example this would mean, that after an outage of branch   with an equivalent numerical index 

of 3 no further outages in the current simulation stage would be allowed, whereas after tripping 

branch   from the stage’s initial state   with a numeric equivalent of 1 branches   (numerical index 

2) as well as   (numerical index 3) are allowed to be tripped, given, that the tripping probability 

exceeds the lower limit. Given the case, that starting from initial state   followed by a tripping of the 

branches   and  , while the tripping probability of branch   is not exceeding the predefined limit, 

State   would by filtered out and so not be reached by the simulation. 
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Figure 4-15.  Potential system states after applying the proposed filtering method. 

4.5.2 Other System State Filtering Strategies 

Facing the circumstance, that the time available to perform a security analysis of a power system on 

the time horizon of operational planning is limited and ,anyhow a full screening of each and every 

contingency and also of combinations of contingencies is not feasible, a criterion has to be 

formulated, which filters system states of interest from those which are neglected.  

4.5.2.1 Basic Filtering Strategies 

The simplest way to limit simulation time is to stop after a pre-defined number of simulation steps, 

which are analogous to the number of system states discovered. This directly leads to the problem, 

that only the first contingencies would be scanned in detail and the other ones remain unvisited, 

because of the recursive characteristics of the presented method. This kind of filter criterion is simple 

to comprehend and to implement but does not lead to results of the desired quality concerning the 

uncertainty. In Figure 4-16 a generalized example is given for a simulation where the number of 

simulation steps is limited. The number or the variable in the circle reflects the actual simulation 

stage and the grayed out states are never reached by this approach. It can be seen, that a depth scan 

for the first outage candidates can be realized by using this criterion. 

 
Figure 4-16.  System stage visualization for a maximum simulation step limit. 

A slightly more precise result can be reached by limiting the simulation steps after each single- and 

multi-element first order contingency. Facing the fact, that this filtering approach treats all first order 
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contingencies in the same way, without accounting for the potential risk the outages hold, numerous 

simulations are performed only marginally refining the result. A sub-simulation stops after a pre-

defined number of post-first order contingency simulations leading to a depth scan of the first 

outage candidates for each post-contingency situation and their combinations, whilst the remaining 

ones are neglected even if they are holding a high potential risk. This approach ensures in contrast to 

the previously presented one that all fist order contingencies are guaranteed to be scanned. In Figure 

4-17 system states – scanned states in black and neglected states in grey – are visualized showing, 

that this approach also leads to a depth search but in this implementation for each first order 

contingency. 

 
Figure 4-17.  System stage visualization for a post first order contingency simulation step limit. 

A similar approach to identify system states to be scanned during the simulation is to limit the depth 

of the scan performed during the security analysis. A pre-defined number reflecting the “maximum 

number of branches” is provided as an input for the proposed method. A sub-simulation is stopped 

each time a system state is visited, where this limit is reached. This approach is visualized in Figure 

4-18, where it is obvious, that all sub-simulations stop when the stage   is reached. The usefulness of 

this state filtering method is limited to small values for the upper system stage limit   due to the fact, 

that the number of system states to scan follows a combinatory problem leading to a significant 

increase in computational effort. 

 
Figure 4-18.  System stage visualization for a simulation stage limit  . 

4.5.2.2 Load Flow Based Filtering 

The presented method focuses on load flow related contingencies in high and extra high voltage 

power systems, so a categorization of system states to scan can be thought of by taking the change in 

load flow of a certain line after a contingency as a criterion. LODFs (Line Outage Distribution Factors) 
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in combination with the pre-contingency load flows of the system under investigation can be used to 

determine the influence of a tripping of one or more branches of a power system on the branches 

remaining in the system [59]. The post contingency load flow of branches which remain in the power 

system – denoted by the set of branches   – can be calculated according formula (4-77), where 

        is the LODF matrix as given in eq. (4-78), reflecting the changes in load flows of a set of 

outaged branches   on the load flow of the set of branches remaining in operation  .   
  is the pre-

contingency load flow of the set of branches on outage  . 

   
            

  (4-77) 

In eq. (4-78)            is the PTDF matrix for branches reflecting the influence of a nodal 

power injection of 1 p.u. at the node, where the branch starts at and a demand of 1 p.u. at the end 

node of the particular branch on the power systems branches.     is the branch membership 

function described in detail in chapter 4.3.1.1. 
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(4-78) 

A filter criterion can be implemented according to formula (4-79), where       is a predefined limit 

in absolute line flow change in MW. 

|   
 |              (4-79) 

Another, more distinctive criterion formulation is given in eq.(4-80), where       is the predefined 

minimum change in relative branch flow’s absolute value. 

|   
 |

    
             (4-80) 

For both variants branches fulfilling the particular post-contingency filter criterion are selected for 

the subsequent outage simulation.  

 Stage Evaluation 4.6
If a system state is selected as a intermediate state by the filtering criterion the state is evaluated. 

This evaluation consist of an islanding detection, an estimation of primary frequency control actions, 

a criterion regarding large scale generation outages and a frequency estimation. 

4.6.1 Islanding 

To be able to detect a splitting of the power system under investigation in two or more islands, the 

following method was developed. In Figure 4-19 the flowchart for the approach is given, where   and 

  are vectors with the size equal to number of branches. The particular branch   starts at bus f( ) 

and ends at bus  ( ). The output of the method is the vector            with a size equal to the 

number of branches, holding a number reflecting the island, which the particular node is a member 

of. 
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Figure 4-19.  Islanding detection approach. 

If a split of a power system into islands is detected a slack bus is added to the new island to ensure 

computational feasibility 

4.6.2 Primary Frequency Control 

The primary frequency control is an essential functionality of a interconnected power system 

consisting of multiple generation units. It accounts for the power balance, which is tightly coupled to 

the frequency. A loss of generation power in a system would lead without the presence of the 

primary frequency control and the self-regulation effect of the load to a blackout immediately. The 

self-regulation effect of the load describes the fact, that loads of transmission systems show a 

dependence of the frequency in terms of power consumption. This dependency is a positive one, 

which means that a decreasing system frequency causes a decrease in power consumption [60]. 

The primary control of generation units is characterized by the droop denoted by  , which is defined 

according eq. (4-81), where    is the change in power infeed and    is the set-point of the unit,    is 

the change in frequency and    is the nominal system frequency. A common range for the droop is 

2%-6% and depends on the primary energy.  
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 (4-81) 

In Figure 4-20 the power-frequency diagram is shown for two different droop values. The droop of 

configuration a is lower than the droop of b, so the full reserve denoted by      is allocated at a 

lower frequency deviation in the case a than in case b. The primary frequency control is not limited 

only to negative but also positive frequency deviation. 

The following key facts give an overview about the primary frequency control. 

 The primary frequency control is spread over all the inter-connected system 

 Limited amount in power 

 Stationary frequency deviation differs from the stationary 

 Coordinated by the ENTSO-E 

 Spread via contribution coefficients of control zones 

 
Figure 4-20.  Definition of droop [60]. 

When it comes to power systems the primary control is usually not defined by giving the droop any 

more, but by the network power characteristics  . According to eq. (4-82) its defined as the ratio of 

the change in power and the change in system frequency and is valid for static system states only. 

  
  

  
 (4-82) 

In Figure 4-21 three time courses of the frequency response on an incident are given. Case B1 and B2 

show typical frequency responses after two different incidents, whereas case A reflects the worst 

case. So while the steady state frequency deviation is limited to          the dynamic frequency 

deviation exceeds this value. Case A is based on a reference outage of         leading to a 

stationary frequency deviation of          and worst case to a dynamic deviation of         . 
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Figure 4-21.  Frequency response after outages in the synchronous area [60]. 

The primary frequency control action and the stationary frequency response is modelled as the self-

regulation effect of loads and the droops of power plants taking part in this control scheme. The 

droop σ is given in % and recalculated to MW/Hz according to formula (4-83) where     denotes the 

nominal power of a generation unit and f the frequency. 

  
  

  
  

  

    
 (4-83) 

The self-regulation effect (  ) is assumed according to [12] to be 1%. So the overall grid frequency 

response on an imbalance in the system can be approximated by eq. (4-84). 
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 (4-84) 

The change in power as a response on the frequency deviation can be determined by simply 

multiplying the gradients of the generation units, or the loads self-regulation coefficient by the 

deviation in frequency according to eq. (4-85) and (4-86). 

                   (4-85) 

 

      
    

    
           (4-86) 

For the dynamic frequency response shown in Figure 4-21 is accounted by scaling the stationary 

frequency deviation by a predefined factor. 
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4.6.3 Lost Generation Criterion  

To avoid computationally exhaustive evaluations of system states leading de facto to a blackout, a 

criterion was introduced, stating, that a loss of at least 10% of the overall generation power will end 

up in a blackout [61]. 

 Output Measures 4.7
During the recursive simulation every detail of each scanned system state is stored and fed back to 

the initial simulation stage, so a comprehensive evaluation of sub-results concerning different 

measures of interest is possible. The most relevant output variables of the simulation’s results set are 

presented in the following subchapters. 

Data used in examples are generated on basis of the modified IEEE 118-bus network consisting of 

186 branches and showing an overall load demand of 5090 MW. 

4.7.1 State Probabilities 

Due to the fact, that the main criterion if system states are accounted for or not is the state 

probability which reflects the likelihood of a particular set of line trips to emerge. For well-planned 

power systems the probability to leave the initial system state is rather low and the state probability 

of the initial system state is usually significantly exceeding 95% according to the numerous different 

simulations performed during the studies to this thesis. 

A quite straight forward limitation in the overall system state probability      is, that it has to be 

exactly one if the power system use case of interest was scanned completely. For an incomplete 

analysis like it is the case for this method, the overall state probability is bounded between zero and 

one. The overall system state probability is defined as given in eq.(4-87), where    is the occurrence 

probability of state   and   is the set of scanned system states during the recursive simulation. The 

overall system state probability is a measure for the completeness of the simulation. Due to the fact, 

that the system state probability is the main exit criterion for the simulation a lower limit leads to a 

higher number of states scanned and also to a higher value in the overall state probability.  

     ∑  

   

   (4-87) 

In the case of an incomplete simulation there is a non-zero complementary probability       

according to formula (4-88), which is equivalent to the residual probability      reflecting the sum of 

state probabilities    of all system states not scanned denoted by   and is therefore a measure for 

the incompleteness of the simulation. 

                  ∑   

   

 (4-88) 

As mentioned in section 4.5.1 , the exit criterion for the simulation process is the system state 

probability    of each state exceeding a given limit      . States not scanned ( ) are fulfilling the 

inequality (4-89) and all scanned states’   eq. (4-90).  

              (4-89) 

              (4-90) 

As a conclusion regarding probability measures as output values only the overall state probability is a 

reasonable candidate, because it reflects the amount of states scanned in a probabilistic view and 

gives an estimate for the completeness of the simulation. 



   

58 
 

4.7.2 Risk 

In general, the risk   is defined as the product of the severity   and the occurrence probability   of a 

single event. 

      (4-91) 
The risk can be determined based on various severity measures like the “power not supplied” and its 

duration weighted equivalent “energy not supplied” or the “number of lost nodes”. Even the “system 

frequency deviation” or the “primary frequency control activated power” could be used as a severity 

measure. Due to the fact, that it’s a multiplicative quantity, low probability events showing a high 

severity and high probability events holding a low severity are judged equally. The given generally 

valid formula in eq. (4-91) can be refined to a system state based interpretation as given in eq. (4-92), 

where the index   denotes a particular system state. 

         (4-92) 

The risk value of one single system state doesn’t hold a lot of information per se. It can be compared 

to the value of other system states, but it has to be seen in a wider view concerning the simulation. 

Additionally to the maximum state risk the information about the remaining uncertainty is needed to 

ensure a valid interpretation. 

Determining the residual potential risk is not trivial due to a lack in available information about non-

scanned system states. Therefore, the overall system risk of the screened power system’s use case, 

which basically is the sum of all state risks, is determined. The lower limit of the overall risk is zero, 

meaning, that the power system under investigation holds absolutely no risk to fail, and the upper 

limit is the maximum value of the severity measure. For a power system with the amount of lost load 

as a severity measure the maximum system risk value could take the value of the overall power 

demand, which corresponds to a blackout with an occurrence probability of 100%. When it comes to 

well-planned power systems usually the probability of large disturbances is very low and the severity 

of likely events is quite low. Mathematically, the calculation of the overall risk      is simply the sum 

of the risks    of all stages   scanned during the simulation as given in eq. (4-93). 

     ∑  

   

 (4-93) 

Due to the fact, that most power systems can’t be scanned completely in a reasonable time span the 

simulation is incomplete, leading to an uncertainty afflicted result. The discovered risk during the 

simulation  ̃    and the residual risk, which is held in not scanned system states      give the actual 

risk value according to eq.(4-94).      can’t be determined based on information available with a 

reasonable effort. 

     ∑  

   

       ̃         (4-94) 

To decide about combinations which are scanned or not scanned, the state probability is the 

criterion of choice in this thesis, but in general it can be also thought of other filter criteria. The 

probability based criterion limits the computational effort and also controls the uncertainty affliction 

of the result. A lower limit in probability leads to a more detailed simulation. Because of the 

unknown number of outage combinations not scanned and the missing knowledge of the exact 

probabilities a direct computation of the residual risk is not possible based on the available 

information. To avoid giving a result in terms of one single number for a system risk without any 
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additional information about the quality of the statement a complementary approach was used to 

determine the uncertainty of the result. Based on the knowledge of each state’s severity    and the 

maximum the severity      the complementary value can be determined. The complementary 

measure of “power not supplied” is the “power supplied”. According to eq. (4-95) the chance value 

   of each state   is defined to be the product of the complementary severity value and the 

particular occurrence probability. 

   (       )      (4-95) 
Based on the state chance values, which can be evaluated straight forward from the data available as 

a result of the simulation the overall system chance can be calculated following eq.(4-96) for a 

complete simulation and eq.(4-97) for an incomplete one, where      is the overall chance, and  ̃    

is the aggregated chance of all scanned states and      is the chance all not scanned states hold, 

which is an information not being available based on the simulation results. 

     ∑  

   

 (4-96) 

     ∑  

   

       ̃         (4-97) 

In case of an incomplete simulation there is a resulting unknown component in terms of risk as well 

as in chance. Eq.(4-98) holds for a complete simulation, where both, the risk and the chance value 

are fully determined with no remaining uncertainty. 

                    (4-98) 

Due to the fact, that the risk and the chance values are not fully determined there is some risk or 

chance undetermined – the residual uncertainty           as given in eq.(4-99). 

           ̃     ̃              (4-99) 

Due to the complementarity of the risk and the chance measure a visualization based on these 

quantities is not a good choice, but the stage chances can be converted to a maximum risk value. This 

is done by applying eq.(4-100) where        is the upper limit or also the worst case risk value at 

each simulation stage  . 

             ∑  

 

   

 (4-100) 

This can be explained stepwise for the initial stage for the following example. In the initial stage, 

without any computations neither a single risk value    nor a chance value    is known. So for the 

best case the risk is zero and for the worst case the risk is exactly the maximum severity measure 

according to eq. (4-100). Assuming the power system under investigation is well planned the 

probability to leave the initial stage due to branch outages would be very low and in contradiction 

the probability to stay in it is high. The severity is zero for the initial stage and as a consequence the 

risk    is zero. The chance    can be determined as given before and the maximum risk value 

decreases by   . For every additional simulation stage the minimum risk rises by    and the 

maximum risk decreases by   . It is obvious, that more simulation steps refine the result and lower 

the residual uncertainty. 
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Figure 4-22.  Cumulative risk and chance evaluation during the simulation. 

The remaining potential risk is the difference between the maximum and the minimum risk value in 

Figure 4-22. A detailed illustration regarding this residual uncertainty is given in Figure 4-23. 

 
Figure 4-23.  Cumulative risk and chance evaluation during the simulation (Detail). 

For the purpose of comparing different power systems, or different use cases of one power system 

based on the risk, this kind of evaluation is meeting the needs, but when it comes to the detailed 

analysis of particular contingencies of one dispatch, or to the identification of threatened system 

elements this kind of evaluation doesn’t provide any information. 

4.7.3 Per State Results 

As mentioned previously single state risk values are not very valuable without additional information 

about the simulation performed and the composition of each particular risk value in terms of state 

probability and severity. A visualization combining all relevant information is the severity-probability 

plot, which is usually extended by one or more iso-risk curves. In Figure 4-24 an example is illustrated 

showing risk values of simulated system states (red dots) and the according iso-risk curve of the 

maximum risk value. On the iso-risk curve the risk is the same for all probability-severity-

combinations. It is limited by the maximum severity on the severity axis. This kind of presentation 

enables an analysis regarding the probability and severity of each particular state risk value. 

Additionally the lower limit in state probability      – the simulation exit criterion – is visualized 

allowing a judgment about the quality of simulation results. If the lower limit in state probability lies 

on the left side of the iso-risk curve, reflecting the maximum risk value discovered there is no 

possibility that a not-simulated system state holds a higher risk than the discovered one. On the 

other hand, if the lower limit in state probability and the iso-risk curve show an intersection the 

simulation has to be refined to enhance the quality of the results due to the fact, that there could 
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exist a state showing a higher risk as discovered by the simulation in the set of not scanned system 

states. 

 
Figure 4-24.  Iso-risk curve. 

4.7.4 Per Branch Results 

4.7.4.1 Aggregated Measures 

To be able to rank and analyze contingencies the output data of the simulation is categorized in three 

groups, namely the contingency free state, post-first order contingency states and post multi-order-

contingency states. The first one is simply reflecting how likely it is that the power system of interest 

stays in the initial state, the second states are grouped per first order contingency to reflect the risk 

the particular outage event holds and the third group holds all other system states which occur in 

succession to a multi-element first order contingency. By this classification mainly the above 

presented measures risk, chance and uncertainty are assigned to one of the groups “no 

contingency”, “single element first order contingency” and “multi element first order contingency” in 

terms of system states. An example is shown in Figure 4-24, the first order contingencies of the 

particular branches are given in the left plot while the right plot holds the aggregated share in risk, 

chance and uncertainty for all multi-element first order contingencies. 

 
Figure 4-24.  Risk, chance and uncertainty measure for every possible first order contingency. The 
results in the left plot are for single-element and those in the right is for all multi-element first 
order contingencies. 
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It is obvious, that this kind of presentation of results is mainly dominated by the chance measure due 

to the fact, that in general power systems are designed to have an adequate security margin and so 

the risk measure is comparably low. Usually the chance measure isn’t in focus when it comes to risk 

assessment. To account for this Figure 4-25 holds the risk value and the uncertainty value, but not 

the chance measure, to allow the identification of contingencies holding a high uncertainty in the 

evaluated risk measure. Again the first 186 entries represent post-single-element and the 187th post-

multi-element first order contingency system states. 

 
Figure 4-25.  Contingency-wise aggregated risk and uncertainty measures. 

The results shown in Figure 4-25 lead to the conclusion, that there are a few branches hiding high risk 

values while some other branches and also the aggregated multi-element contingency states show 

an even higher uncertainty value. To obtain better results the lower limit in state probability could be 

set to lower limits which also leads to an elongated simulation time. 

4.7.5 Maximum Measures 

Facing the fact, that the simulation is covering a tremendous amount of system states a power 

system could end up starting from a given initial state it can always only end up in one particular 

state. So an aggregated risk or chance measure is well suited as a performance indicator of the 

simulation and for a comparison of the overall system risk a power system’s use case under 

investigation holds, but it doesn’t really reflect the actual worst case situation. E.g. the overall system 

risk of a well-designed power system except for one single feeder showing a high loading possibly is 

similar to the one of a power system with structural deficits showing a moderate loading. This is due 

to the fact, that for the first case the high loaded branch shows a high outage probability and would 

lead to an amount of lost load of the load connected to the tap line. On the other hand for the latter 

case the outage probabilities of the branches would be quite low, but due to the structural deficits 

there would be numerous combinations leading to large area outages being equivalent to a high 

amount of lost load. Summarized the first case would show a low number of system states with a low 

amount of lost load and the latter one would show numerous states with comparable low outage 

probabilities but large amounts in lost load. These basically totally different cases could end up 

showing the same overall risk, but the maximum risk values would be quite different. 

To determine the maximum values per single-element- and multi-element-first order contingency 

the result data of the simulation is categorized in post-single-element-first order contingencies per 

branch and in a category for all remaining post-multi-element first order contingencies. Based on the 

categorized results the particular maximum value is identified and used for the subsequent 

evaluation. The determination of the maximum risk per category is straight forward, whereas it is not 

trivial for the uncertainty. Based on the results of a simulation the maximal possible remaining risk, a 



   

63 
 

state which was not scanned during the simulation can hold, is limited. This limitation can be 

evaluated following eq. (4-101) by multiplying the maximal value concerning the severity measure 

      by the simulations lower limit in state probability     . 

                (4-101) 

On the other hand by the knowledge of the aggregated risk as well as the aggregated chance value 

per single-element first order contingency the maximum possible uncertainty per initial single branch 

outage can be determined. According to eq.(4-101) the maximum possible risk hidden behind the 

single-element first order contingency        of branch   can be found by taking the product of the 

maximum severity and the particular first order contingency’s occurrence probability. During the 

simulation, system states   were reached from this first order contingency state   and scanned for 

the particular risk    and chance    they hold. So the sum of this risks and chances reduces the 

remaining uncertainty       . Potentially, but not very likely the whole remaining uncertainty could 

be the risk value of one single system state. This is only valid, if the value does not exceed the 

maximum possible remaining risk      which is otherwise the maximum potential risk value of the 

particular category. 

              ∑(     ) 

   

                ∑(     ) 

   

 (4-102) 

Summarized the uncertainty per contingency is either given by the residual uncertainty of a 

contingency or the maximal possible remaining risk, depending which value is lower. If the maximum 

risk value exceeds the potential uncertainty in risk there is no possibility, that the system holds a 

higher, in the uncertainty hidden risk (after a first order contingency) than the one already found like 

it is the case for the branches 7 and 9 in Figure 4-26 and so the uncertainty affliction of the particular 

category is identically to zero. Additionally, the maximum possible remaining risk      as well as the 

potential remaining risk are illustrated  

 
Figure 4-26.  Contingency-wise maximum risk and uncertainty measures. 

This kind of evaluation is useful for the ranking of n-1 contingencies in terms of the risk they hold. So, 

if there is a n-1 violation in a TSO’s conventional deterministic system security analysis this type of 

output interpretation could be used in terms of decision support to judge about relaxations of n-1 

constraints. 
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5 Analysis Regarding the Proposed Load Flow Method 

 Applicability of DC-Load Flow  5.1
The focus of the presented method is put on the application to transmission systems. According to 

the planning principles of TSOs the large distance transportation of reactive power has to be 

minimized to technically reasonable values. According to the planning directives of the German TSOs 

[62] the exchange of reactive power between control zones has to be as low as technically 

reasonable. Also the “Reactive Support and Control Whitepaper” of NERC [63] states, that the 

demand in reactive power of a transmission system’s node has to be covered locally. All these 

requirements lead to presumption, that the DC-load flow method is able to perform well enough to 

use it in system security assessment approaches in transmission systems. To verify, that the deviation 

of results compared to AC load flow is in an acceptable range, the following analyses were 

performed. The first one is about the evaluation of deviations regarding a test system and artificially 

generated data and in the second one real world data is analyzed regarding usual power factors of 

power system branches. 

5.1.1 Test System Based Analysis 

In this subchapter the DC- and the AC-load flow computation methods are compared regarding the 

applicability on the IEEE 118 bus test system. A sensitivity analysis is performed for a change in active 

as well as in reactive power consumption of loads and as a direct consequence of power generation 

units. By modifying a dataset of 1000 artificially generated load flow utilization cases, sub datasets 

are produced. This is done by changing the active and reactive power consumption of loads. The 

active power consumption is varied in three steps from 1.0 p.u. to 2 p.u. and the power factor 

between 0.9 and 1.0 leading to 9 scenarios to investigate. The results of this analysis are visualized in 

Figure 5-1 in the form of a two dimensional histogram for branch loading and result deviation per 

scenario and in Figure 5-2 in the form of statistical measure plots respectively. 

The top-left histogram given in Figure 5-1 shows, that most of the branches in the initial scenario are 

barely loaded and also show a low absolute deviation from -8% to +4% in branch loading, where 90% 

of the values show a deviation of -2.3% to 1.4%. With an increase in loads’ active power demands 

(increase of the active power scaling factor p) also the deviations of the DC- to the AC- load flow 

results increase but stay in a range of 10% (-5.9% to +3.4%) around the actual value for 90% of all 

cases. The larger deviations in underestimation of the branch flow occurs for branches, showing a 

low to moderate loading, whereby the DC-method’s deviation for high utilized branches, which are 

important for the presented method, are lesser and positive meaning a slight overestimation. 
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Figure 5-1.  Two dimensional histograms regarding the frequency of occurrence of the branch 
loadings in % as a result of an AC-Monte-Carlo simulation and the deviation of the simplified DC-
load flow pendent in % loading. 

An increase in reactive power demand of loads is realized by generally decreasing the power factor 

     for all loads in the test system leading to a deviation of the DC load flow method between  

-8.1% to 1.7% for a power factor of 0.95 lagging and from -10.1% to 1.4% for a power factor of 0.9 

lagging for 90% of the result values in terms of branch flows. 

In the bottom right histogram the results of the analysis of the test system with an increase in active 

load demand of 160% and a power factor of     =0.9 lagging are visualized. Branches showing a low 

and moderate utilization show the largest deviations of the load flow calculation results compared to 

the AC-Monte-Carlo simulation, whilst the accuracy increases for highly loaded branches. 90% of the 

deviation values are located between -18.4% and +4.3%, whereby positive deviations tend to occur 

for high branch utilizations and negative deviations for low and moderate loaded ones. 
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In the boxplot in Figure 5-2 common statistical measures of the evaluation regarding the deviation of 

DC- compared to AC-Monte-Carlo simulation results are given. The median value for the evaluation 

of the particular scenario is represented as a red line, the 5% to 95% interquantile as a blue box and 

extreme values as black whiskers. 

 
Figure 5-2.  Statistical measures for different utilization scenarios with an X/R ratio of 10. 

The visualization shows, that the accuracy of the DC-load flow method decreases with an increase in 

system loading (p) even for scenarios concerning the power factor, what is due to an increase in 

reactive power demand of the power system’s lines with higher system utilization and an increased 

need of reactive power generation and transportation to maintain the nodal voltages in a flat profile 

in the benchmark method. Generally for all scenarios, the statements are valid, that negative 

deviations and positive deviations are nearly equally likely due to the fact, that the median values are 

close to zero, and as a second statement, that negative deviations show a higher magnitude than 

positive ones, which is due to neglecting reactive load flows in DC-based methods which always add 

up to the active load flow and so are a systematic source of deviation in load flow results, while the 

positive and the smaller negative deviations are due to simplifications regarding the interdependency 

of active and reactive power transportation leading to over- as well as underestimation of the actual 

utilization of a particular branch when using a DC-based load flow method. 

To assess the sensitivity of the implemented DC load flow method, the same data was used to 

evaluate load flow results while neglecting the resistance of the branches. The according results are 

presented in Figure 5-3, again in the form of common statistical measures. Generally, it can be said, 

that the results of the DC load flow are closer to the benchmark due to the smaller 90% inter-

quantile values in the latter study, while outliers still remain nearly equally for both evaluations. The 

mean value of the load flow deviation is identically either if the resistance of branches is taken into 

account or not. Unlike it’s the case for the results when taking account for the resistance an increase 

in system utilization leads to an increase in underestimation of load flows in terms of the magnitude. 
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Figure 5-3.  Statistical measures for different utilization scenarios with an R/X ratio of zero. 

Analogous to the analysis regarding the accuracy and the applicability of the DC load flow for security 

assessment purposes AC-PTDFs were used to compare their performance in respect to the 

benchmark. The results of the comparison are given In Figure 5-4 in terms of statistical measures as 

mentioned in detail before. 

 
Figure 5-4.  Statistical error measures for different utilization scenarios regarding the AC-PTDF 
MCS method. (X/R=10). 

The results lead to the statement, that the AC-PTDF method is not well suited for the purpose of 

modelling high uncertainty (         ) afflicted and is outperformed by the DC-PTDF MCS for this 

example. Studies performed in addition showed, that the AC-PTDF MCS approach outperforms the 

DC-PTDF MCS for uncertainties in loads beneath 5% (          ).  
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5.1.2 Analysis of Measured Data 

To verify the assumption, that in severe loading situations the reactive load flow can be neglected for 

the purpose of a fast security assessment, data of a real world power system was analyzed regarding 

active and reactive load flows and the particular deviation of branch utilization when accounting for 

active instead of apparent load flows. The investigated power system consists of 836 busses, 383 

branches and data are available for one year. In Figure 5-5 the power factor and the normalized 

apparent power are visualized. The figure shows, that the power factor increases for higher values in 

branch utilization tending to a value of one.  

 
Figure 5-5.  Branch flow power factor and and according apparent power in p.u. 
Due to the fact that the scatter plot in Figure 5-5 doesn’t hold any information about the population 

density, a bivariate histogram regarding branch utilization and branch flow power factor is given in 

Figure 5-6. 

 
Figure 5-6.  Histogram of observed branch load flows and the according power factors. 
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Based on this analysis the assumption, that the load flow of highly loaded branches is mainly 

dominated by the active load flow component is validated and thus the applicability of a DC-load 

flow based method is reasonable. 

The conclusion can be drawn that high loadings correlate with an increase of the power factor. 

 Comparison of an AC-MCS, DC-MCS and DC-PLF Method 5.2
In this subchapter, different probabilistic load flow implementations in terms of simplification levels 

of load flow calculation are applied on exemplary use cases to determine the limits of the proposed 

method in terms of accuracy and to show the advantages and disadvantages of the presented 

method. As test power system a modified version of the IEEE 118-bus network according to the data 

as given in Appendix A was used. The modifications were necessary to ensure that the characteristics 

of the power system reflect those of a real world transmission system. Therefore the branch 

resistances were modified to show a X/R-ratio of 5 to 10 and their capacitances were set to zero. 

Reactive power compensation units, as well as switching transformers were neglected to exclude 

their influence in this part of the analysis. 

Based on the results of the analysis presented in chapter 3.1.7, the uncertainty in power demand of 

transmission system nodes can be approximated by a Gaussian distribution with a mean value of 

zero and a standard deviation between 10% to 20% of the particular forecast value varying from 

node to node. Furthermore based on this assumption the distribution of the node’s load can be 

represented by a Gaussian distribution with the mean value equal to the forecasted one and a 

standard deviation according to the standard deviation of the particular uncertainty distribution. 

To be able to perform a comparison between Gaussian and non-Gaussian distributed uncertainties in 

active power generation different approaches were used described in detail in chapter 5.2.2 and 

5.2.3 either based on weighted assignment of uncertainties to generation units for the Gaussian case 

and by a cost optimal dispatch using DC-OPF in the case of non-Gaussian ones. 

5.2.1 Reactive Power Dispatch 

To be able to compare AC-load flow solutions and DC-load flow solutions on a given basis of an active 

power dispatch of loads and generation units, reasonable assumptions have to be made in terms of 

reactive power infeed to account for an acceptable voltage profile. To achieve on the one hand a 

voltage profile between given limits and also as low as possible active power losses, which reflects 

the actual goals of a TSO when it comes to reactive power dispatching, an optimization problem is 

formulated. The objective function is given in eq. (5-1) and mainly holds the costs of active power 

losses (     ), which are covered by the slack generator and so are directly a function of the slack 

generator (      ). The cost of the active power losses is modelled as a linear function of the active 

power losses with the factor     giving the costs per MW. Due to the fact, that the costs of the 

losses are the only part of the objective function the particular value of the specific loss costs don’t 

influence the result, as long as the sign is positive to achieve a minimization. 

   
      

     (      ) (5-1) 

                 (5-2) 

The optimization space is limited by the given dispatch    in active power of each generator not 

being a slack generator  , by the limits in reactive power infeed      and      of each generation 



   

70 
 

unit, by the particular node’s voltage limit      and     , as well as by the branch limits     . The 

mathematical formulation of the additional constraints to a standard OPF is given in eq. (5-3) to (5-7). 

                 (5-3) 
                       (5-4) 

                      (5-5) 
                        (5-6) 

|  |                (5-7) 

The result of solving this optimization problem for a given active power dispatch is an active and 

reactive power dispatch, which is at least N-0 secure, within the voltage limits and states a local 

optimum in terms of active power losses. 

5.2.2 Gaussian Uncertainty Data 

This subchapter gives a comparison between different load flow methods regarding the branch 

outage risk when the typically Gaussian uncertainty of the loads of the power system under 

investigation is covered by the generation units also with a Gaussian distributed uncertainty. This is 

realized with eq. (5-8) for determining the active power infeed of generation unit   and sample  .     

represents the uncertainty in load of the sample   and    is the participation of generation unit g in 

the overall generation of the forecast dispatch. 

     (∑   
   

 ∑     

   

)   
  

∑      
              (5-8) 

Due to the assumption, that transmission system load uncertainties typically show a Gaussian 

distribution in uncertainty also the overall system load uncertainty shows a Gaussian uncertainty 

distribution since the sum of Gaussian distributed values again is Gaussian distributed [64]. By 

weighting the uncertainty to be balanced by the planned operation point of each generator, the 

overall uncertainty is simply a linear combination of each generators’ uncertainty. As a consequence, 

the generation unit uncertainties also show a Gaussian distribution. 

In the following figures the results of three different probabilistic load flow methods (as described in 

chapter 0) are given in terms of statistical measure plots as already described in detail in subchapter 

5.1.1. The results of the DC-PLF method are given in Figure 5-7, of the DC-PTDF MCS in Figure 5-10 

and the results of the ACPTF-MCS in Figure 5-11 for different power system utilization scenarios, 

where the system utilization factor   in terms of active load scaling and the power factor      were 

altered per scenario.  
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Figure 5-7.  Statistical measures regarding branch tripping probability for the DC-PLF approach. 

The plot in Figure 5-7 leads to the statement, that the accuracy of the DC-PLF method in terms of 

branch tripping probability decreases with increasing power system utilization. For a power factor of 

one the DC-PLF method tends to overestimate the outage probability, whereas a decrease in the load 

power factor leads to a more precise result for the high utilization case       in terms of the 90% 

interquantile, but also to an underestimation of the tripping probability for 5% of the branches. The 

actual branch tripping probabilities per load flow method implementation are given in Figure 5-8 for 

a high utilization and no reactive power demand scenario , where the blue bar gives the benchmark 

in terms of the AC-MCS solution. The AC-PTDF based MCS shows a poor performance compared to 

the benchmark and is outperformed for nearly all branches by the DC-PTDF method. The DC-PLF is 

tending to overestimate the outage probability in this example, what is due to the fact, that the 

branch loading to tripping probability function is implemented continuously for the MCS based 

methods and in the form of a stepwise approximation (Figure 4-11) for the DC-PLF. 

 
Figure 5-8.  Branch tripping probabilities per branch and approach for the high utilization and no 
reactive demand scenario. 

The branch outage probabilities for a high system load scenario showing a load power factor of 

         for all four approaches are given in Figure 5-9. Compared to the results for the scenario 

showing no reactive power demand in terms of loads the tripping probabilities increase to the 

additional load flow in terms of reactive power. Due to the fact, that the DC-based methods do not 

account for reactive power nodal injections of branch branch flows the results are the same for both 

scenarios. In the case of the AC-PTDF MCS approach the evaluated branch tripping probabilities 
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change with a different reactive power dispatch due to the fact, that the AC-PTDF matrix is generated 

based on the Jacobean matrix which is a result of an initial AC-load flow computation. 

 
Figure 5-9.  Branch tripping probabilities per branch and approach for the high utilization and high 
reactive demand scenario. 

An evaluation of the performance of the DC-PTDF MCS is given in Figure 5-10. For the low utilization 

cases the performance is equal to the benchmark for all three reactive power scenarios. Compared 

to the DC-PLF approach the DC-PTDF MCS shows a better accuracy for the medium and high 

utilization test cases. However, the interquantile is zero for all scenarios so at least 90% of the branch 

tripping probabilities do not deviate from the benchmark. 

 
Figure 5-10.  Statistical measures regarding branch tripping probability for the DC-MCS approach. 

The statistical measures given in Figure 5-11 show, that the AC-PTDF MCS approach shows a good 

accuracy in terms of branch tripping probability compared to the benchmark for the low and the 

medium utilization cases regardless the reactive power consumption of loads, whereas it shows the 

poorest performance of the compared methods for the high utilization cases in terms of the maxima 

of absolute error.  
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Figure 5-11.  Statistical measures regarding branch tripping probability for the AC-MCS approach. 

The conclusions which can be drawn from these evaluations are, that the AC-PTDF MCS approach is 

showing the worst performance of the compared methods regarding the determination of branch 

tripping probabilities for uncertainty afflicted loads covered in by generation units showing a 

Gaussian power distribution. Theoretically the output measures of the DC-PLF and DC-PTDF MCS 

methods should be identically, but do to the different implementations of the branch loading to 

tripping probability function the results deviate from each other. Especially high overloads near to 

the protection device limit are overestimated by the weighting function in the case of the DC-PLF 

approach. A remedy could be found by increasing the number of steps which would lead to an 

increase in computational effort and would elongate the methods runtime. For the performed 

studies the DC-PLF tends to overestimate the branch tripping probability, while the DC-PTDF MCS 

gives the best results of all compared approaches. 

5.2.3 Non-Gaussian Uncertainty Data 

This subchapter gives a comparison between different load flow methods regarding the accuracy in 

terms of branch loading as well as the branch outage risk when the typically Gaussian uncertainty of 

the loads of the power system under investigation is covered by generation units, showing a non-

Gaussian distributed uncertainty. The non Gaussian distribution of the generation units is achieved 

by solving an optimization problem. The objective is the generation dispatch showing the lowest 

costs per sample and the solution space is constrained by generation unit active power limits and 

branch flow limits. If no contingencies are active for all samples in the synthetic load dataset one 

generation unit – the cheapest one – would cover the overall load of each sample and due to the 

fact, that the overall load is assumed show a Gaussian distribution this cheapest generator would 

also show a Gaussian distribution in active power infeed. The limitations in transfer capacity of 

branches and the operational limits of generation units cause, that not only the generation unit 

showing the lowest prices but also other ones cover the load. An exemplary dispatch distribution is 

given in the histograms depicted in Figure 5-12 for generation units, showing varying output power 

per sample.  
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Figure 5-12.  Active power histograms of uncertainty afflicted generation units in the test system. 

The comparison regarding non-Gaussian generation unit active power infeed consists of an AC-, an 
AC-PTDF-, and a DC-PTDF-Monte-Carlo Simulation as well as a DC-PLF implementation. The AC-MCS 
solution is the benchmark for the analysis, which is performed for several test cases. Each test case is 
specified by a loading factor for linear load scaling, allowing the increase or decrease of the system’s 
utilization, and the uncertainty in load given by a value for the standard deviation in percent of the 
actual scaled active power of each load in the system. 

The following figures hold the results of the evaluations performed using non-Gaussian distributed 

power plant infeeds. In Figure 5-13 the results for the DC-MCS approach are visualized in terms of 

common statistical measures. For low and medium utilization scenarios the accuracy of the DC-PTDF 

MCS is equal to the performance of the benchmark method. For the high utilization scenarios the 

90% of the evaluated branch tripping probabilities do not deviate from the benchmark solution. For 

the scenario without reactive power demand of the power system’s loads 5% of the branch tripping 

probabilities are overestimated, whereas an increase in reactive power demand leads to an decrease 

in overestimation and an increase in the number of underestimations due to the fact, that for 

reactive load flows is not accounted for by the DC-PTDF MCS and so the branch utilization is 

systematically underestimated. 

 
Figure 5-13.  Statistical measures regarding branch tripping probability for the DC-PTDF MCS 
approach. 
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The evaluated branch outage probability values for all 186 branches of the underlying test system are 

visualized in Figure 5-14 for a high system utilization scenario without any demand of the loads in 

reactive power. 

 
Figure 5-14.  Branch tripping probabilities per branch and approach for the high utilization and no 
reactive demand scenario. 

In Figure 5-14 the evaluated branch tripping probabilities are given for a high system utilization 

scenario with a demand of the loads in reactive power according to a power factor of          . 

 
Figure 5-15.  Branch tripping probabilities per branch and approach for the high utilization and high 
reactive demand scenario. 

A comparison of Figure 5-14 and Figure 5-15 leads to the conclusion, that the AC-PTDF MCS is 

outperformed by the DC based methods for both test system scenarios and is tending to highly 

overestimate the actual benchmark. The DC-PLF approach shows, as it is the case for Gaussian 

uncertainty data a good accuracy for the low and medium-loaded scenarios, while it tends to 

overestimate the actual benchmark results for highly loaded scenarios. Comparing the statistical 

measures in Figure 5-13 for the DC-MCS and Figure 5-14 for the DC-PLF approach, the for Gaussian 

load data mentioned effect was also noticeable for non-Gaussian uncertainty data, that the accuracy 

in results is better for highly loaded system scenarios with reactive power demand of the load in 

terms of the 90% inter-quantile. This effect can be attributed to the discretization of the branch 

utilization to branch outage probability, due to the fact, that the effect can be observed for both, 

Gaussian and non-Gaussian uncertainty data.  
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Figure 5-16.  Statistical measures regarding branch tripping probability for the DC-PLF approach. 

Comparing the statistical measures regarding branch tripping probability of the DC-PLF in Figure 5-16 

for non-Gaussian and Figure 5-7 for Gaussian uncertainty data in terms of power plant dispatches the 

results are similar and deviate from each other in details. E.g. the maximum deviation of the medium 

utilization scenario showing a power factor of 9.95 takes a higher value for Gaussian uncertainty data 

than for non-Gaussian while the 90% inter-quantile of the high utilization and high reactive power 

demand scenario is higher for the non Gaussian uncertainty data. 

 
Figure 5-17.  Statistical measures regarding branch tripping probability for the AC-PTDF MCS 
approach. 

The AC-PTDF MCS shows a similar performance for the Gaussian and non-Gaussian uncertainty 

variants, but is clearly outperformed by the DC load flow based methods. 

Concluding this subchapter leads to the statement, that the accuracy of the DC-PLF is comparable for 

both, Gaussian and non-Gaussian power plant uncertainty data. The AC-PTDF MCS is clearly 

outperformed by both DC-load flow based approaches for uncertainty data showing a standard 

deviation of 0.2 based on the actual scenarios active power setting. Additional reactive load flows 

lead - for the DC-load flow based methods – to an offset of the uncertainty, the uncertainty margin, 

the difference between the maximum and minimum value remain approximately similar.  
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6 System Case Studies 
This subchapter holds risk based security evaluations of the IEEE 118-bus test system and the 

Pengase 1354-bus test system [65]. Investigations concerning the sensitivity of the result from 

different parameters were performed and the capabilities of the proposed method were presented. 

The sensitivity analysis was performed for the below listed parameters: 

 Effect of the approximation of the tripping heuristic 

 Gaussian vs. non-Gaussian uncertainty data 

 System Loading 

 Uncertainty margin 

 Correlation of uncertainties 

 Analysis Regarding the Tripping Heuristic 6.1
One of the central elements of the presented approach is the tripping heuristic described in detail in 

chapter 4.4. Due to the fact, that different implementations (continuous exponential function or step 

wise approximation as given in Figure 6-1) of this heuristic lead to different results in terms of risk 

measure this influence is the topic of interest in this subchapter.  

 
Figure 6-1.  Different implementations of the branch loading to tripping function. 

The risk measure for a dispatch is analyzed by the use of a DC-MCS implementation with the 

stepwise approach and one with the continuous exponential function. The simulations were 

performed for the modified IEEE 118-bus network with a Gaussian load uncertainty, showing a 

standard deviation of 20% of the particular load’s active power consumption, and also a Gaussian 

uncertainty in terms of power plant infeeds. 
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Figure 6-2.  Overall system risk evolution during the simulation for the DC-MCS approach with 
different implementations of the tripping heuristic. 

In Figure 6-2 the overall system risk evolution of one exemplary system use case is given for different 

method implementations. For this comparison the more detailed implementation, namely the DC-

MCS approach, were the tripping heuristic is implemented in a continuous way, serves as benchmark. 

In contrary to the benchmark the tripping heuristic is implemented in the form of a stepwise 

approximation, for the scenario referred to in the figure as “MCS”. The evaluation leads to the 

statement, that the approach implemented on the basis of the approximated heuristic overestimates 

the system risk compared to the benchmark, what is due to the way the heuristic was approximated. 

The numerical values for each implementation are given in Table 6-1 in terms of the maximum and 

minimum bound of the overall system risk and in terms of the maximum risk value a system state 

showed during the particular simulation. 

Table 6-1.  Risk measures. 

                              

MCS Cont. 17.54 19.48 7.67 

MCS 147.34 145.25 67.25 

 

 Comparison Based on Non-Gaussian Uncertainty Data 6.2
The evaluation presented in this subchapter compares the parametric load flow to a DC-MCS. In both 

cases the heuristic is implemented in an approximated way. Non-Gaussian Uncertainty Data was 

used for generation units active power. The results are visualized in Figure 6-3 in terms of the overall 

system risk evolution. The DC-PLF solution leads to an overestimation of the overall system risk 

compared to the DC-MCS.  
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Figure 6-3.  Overall system risk evolution during the simulation for the DC-PLF and DC-MCS 
approaches with different implementations of tripping heuristic for non-Gaussian uncertainty data. 

However, the overall system risk is not the only measure of interest of a risk based security 

assessment. Also the maximum in state risk is of interest when comparing system states. In Table 6-2 

the results are given in the form of aggregated measures in terms of maximum and minimum 

boundaries of the overall system risk and the maximum state risk. The results show, that the 

maximum state risk is the same, for both of the approaches. These results are in line with the results 

of the analysis regarding the use of DC-based load flow methods for the proposed approach given in 

chapter 5.2.3, where the statement was, that the results of the DC-PLF method are very close to the 

results of the DC-MCS even for non-Gaussian uncertainty data. 

Table 6-2.  Risk measures. 

                              

MCS 123.65 125.72 57.12 

DC-PLF 143.82 145.9179 57.12 

 Comparison of Different Utilization Cases 6.3
This subchapter holds a comparison of different N-0 secure utilization cases of the same test system 

as already used in the previous chapter. The upper and lower boundaries of the evaluated overall 

system risk are visualized in Figure 6-4 for utilization scenarios reaching from an active load scaling 

factor of 1.2 to 1.6. The results show, that the system risk increases with increasing utilization of the 

power system, what is due to the tripping heuristic which leads to higher tripping probabilities of 

highly loaded branches, which again directly influence a state’s probability, which again is part of the 

overall system risk. 
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Figure 6-4.  Overall system risk evolution during the simulation for the DC-PLF with a step wise 
tripping heuristic for non-Gaussian uncertainty data for different dispatches. 

In Table 6-3 the results are presented numerically in the form of the upper and lower boundary of 

the evaluated system risk and the maximum state risk. 

Table 6-3.  Power system risk measures. 

                              

p=1.2 143.82 145.91 66.5 

p=1.4 165.22 167.46 78.59 

p=1.6 188.41 190.85 89.88 

This evaluation leads to the fact, that higher utilized power systems hold higher risks in terms of 

energy not supplied. In this case also the maximum state risk is rising for higher utilization cases, but 

this statement can not be generalized due to the fact, that it is topology and dispatch dependent. 

In Figure 6-5 the evaluated upper and lower overall system boundaries are presented. The 

conclusions previously drawn for the DC-PLF approach are also valid for the DC-MCS approach with a 

continuous tripping heuristic.  
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Figure 6-5.  Overall system risk evolution during the simulation for the DC-MCS approach with a 
continuous implementation of the tripping heuristic for non-Gaussian uncertainty data and 
different dispatches. 

The particular results are given numerically for the upper and lower boundary of the system risk and 

the maximum state risk in Table 6-4 for each analyzed utilization case. Both, the maximum state risk 

and the overall system risk are increasing with increasing utilization. 

Table 6-4.  Risk measures. 

                              

p=1.2 29.92 31.82 13.62 

p=1.4 34.76 36.94 15.92 

p=1.6 39.42 41.88 18.20 

The conclusion of the comparison is, that for both methods, the DC-MCS including continuous branch 

outage heuristics and a DC-PLF approach with an approximated implementation of the same 

function, the evaluation leads to the findings that the risk a power system holds increases with the 

utilization. The two methods show different risk measures in a quantitative view, but in a qualitative 

view both approaches lead to the same ranking of system states. 
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 Comparison of Different Uncertainty Margins 6.4
This comparison consists of a set of simulations with the focus on different load and generation 

uncertainty margin. The uncertainty is expressed by the standard deviation of the power systems 

loads based on the set value from a dispatch. The power system under investigation is the modified 

IEEE 118-bus network with an active load scaling factor of      . 

 
Figure 6-6.  Overall system risk evolution during the simulation for the DC-PLF approach with step 
wise approximated implementation of the tripping heuristic for Gaussian uncertainty data and 
different uncertainty margins. 

In Figure 6-6 the risk evolution during a risk based security assessment of one dispatch with different 

uncertainty margins are given for the DC-PLF approach and in Figure 6-7 for the DC-MCS approach 

with a continuous implementation of the tripping heuristic. 

 
Figure 6-7.  Overall system risk evolution during the simulation for the DC-MCS approach with a 
continuous implementation of the tripping heuristic for Gaussian uncertainty data and different 
uncertainty margins 
Comparing the two different evaluations leads to the statement, that both the two methods differ in 

a quantitate way in terms of the overall system risk, but give the same ranking in terms of system 
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utilization cases. The results are presented in Table 6-5 in a numerical form for both approaches in 

terms of the system risk boundaries and the maximum state risk. 

Table 6-5.  Risk measures. 

 DC-PLF DC-MCS (cont.) 

                                                          

σ=0.00 7.57 10.84 1.72 3.57 5.86 0.94 

σ=0.05 248.32 251.59 117.41 19.88 22.24 8.85 

σ=0.30 266.53 272.81 115.95 26.89 29.23 12.22 

Concluding this subchapter leads to the finding, that the uncertainty margin of power system loads 

and infeeds is highly connected to the risk a particular dispatch holds. 

 Correlation of Uncertainties 6.5
The effect of correlation of forecast uncertainties in a power system of interest on the system and 

maximum state risk is evaluated in this subsection. For these studies, one utilization case showing 

perfect correlation of all loads and also perfect correlation of all infeeds was compared to a 

utilization case showing neither a correlation for infeeds nor for loads. Only the overall load 

uncertainty was set to be fully negatively correlated to the overall load uncertainty, accounting for 

the power balance in terms of uncertainties. In Figure 6-8 the system risk evolutions during the 

simulations are given for two system utilization cases showing different uncertainty margins. For 

both of the cases one simulation accounting for and one neglecting the correlation of uncertainties 

was performed. 

 
Figure 6-8.  Overall system risk evolution during the simulation for the DC-PLF approach with 
correlated as well as uncorrelated (suffix NC) Gaussian uncertainty data for different uncertainty 
margins. 
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Studies were performed for multiple utilization cases of the IEEE 118-bus test system with different 

uncertainty margins for both scenarios – accounting or neglecting the correlation of uncertainties – 

leading to the statement, that a correlation of loads respectively infeeds leads to slightly higher 

overall system risk measures compared to uncorrelated uncertainty data. Compared to the outcomes 

of the previously presented studies analyzing the sensitivity of the risk subject to the utilization of a 

power system, or also the sensitivity analysis regarding the uncertainty margin the effect the 

correlation has on the power system risk is comparably low. 

 Large Scale System Simulation  6.6
To verify the applicability of the proposed method on real world transmission system simulations 

were performed for a real-world-alike test system consisting of 1354 busses, 1991 branches and 260 

generation. The test system reflects the complexity of the European extra high voltage grid [65]. The 

evolution of the upper and lower risk boundaries are visualized in Figure 6-9. 

 
Figure 6-9.  Overall system risk evolution during the simulation for the DC-PLF and DC-MCS 
approach with Gaussian uncertainty data for different uncertainty margins and a large scale test 
system. 

In Table 6-6 the results of the four simulations are presented numerically in terms of the upper and 

lower boundary of the system risk, the maximum state risk. Additionally simulation related data as 

they are computation time and the number of system states scanned are given. 

Table 6-6.  Method measures and simulation results 

 
Computation 

time in h 
System 
States 

                             

PLF σ=0.05 0.13 1816 28.99 332.16 3.13 

MCS σ=0.05 0.27 1643 28.68 334.50 3.31 

PLF σ=0.30 2.30 39606 2143.00 2763.34 678.94 

MCS σ=0.30 2.74 18625 1145.95 1557.68 497.71 

Comparing the DC-PLF and the DC-MCS solution leads to the statement, that the DC-PLF outperforms 

the DC-MCS computation in the case of the 1354-bus test system with artificial historical data of 

1000 time steps in terms of computation time. Due to the fact, that the implementation of the 

branch loading to tripping probability is implemented in a stepwise approximation for the DC-PLF it 
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tends, referring to the findings of the foregone evaluations, to overestimate tripping probabilities 

and so there are more system states to scan for the DC-PLF implementation for both uncertainty 

scenarios. Simulations were performed for multiple scenarios in terms of uncertainty affliction 

leading an identical ranking in scenarios for both, the DC-PLF and the MCS approach. 

6.6.1 Detailed State Risk Analysis 

Facing the fact, that the simulation is an incomplete one, due to feasibility reasons in terms of 

computational time, the result is uncertainty afflicted as previously described in chapter 4.5. The 

following section gives a detailed analysis of the uncertainty affliction and the distribution of the 

remaining uncertainty over all the branches of the power system. In Figure 6-10 the risk measure and 

the chance measure as well as the remaining uncertainty are given for the dispatch under 

investigation for every single element first order contingency. The remaining multi-element first 

order contingencies are added as line number 1992 in an aggregated way. Summing up all the risks, 

chances and uncertainties leads to the overall system load. 

 
Figure 6-10.  Detailed single-element first order contingency risk measures and aggregated multi-
element first order contingency risk, chance and uncertainty measures for a given dispatch 
(σ=0.05) evaluated using the DC-PLF approach. 

Focusing on the actual risk measure leads to Figure 6-11 in which the risk measure per first order 

contingency and the remaining uncertainty in risk is visualized. 

 
Figure 6-11.  Detailed single-element first order contingency risk measures and aggregated multi-
element first order contingency risk and uncertainty measures for a given dispatch (σ=0.05) 
evaluated using the DC-PLF approach. 

In Figure 6-11 risks and uncertainties per first order contingencies are given in terms of overall 

measures summing up the risk measures hidden after a given contingency. For a risk assessment 

usually the worst case sets the actual risk value of the given dispatch, which is equal to the system 
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state showing the highest value in risk. In Figure 6-12 the maximum system state risks after a first 

order contingency are given. 

 
Figure 6-12.  Detailed single-element first order contingency maximum risk measures for a given 
dispatch (σ=0.05) evaluated using the DC-PLF approach. 

A detail view of Figure 6-12 is presented in Figure 6-13 with the scope on the remaining uncertainty 

in maximum state risk. As mentioned on a theoretically basis in chapter 4.7.2 the remaining is risk is 

related to the lower limit in system state probability available as an simulation input. In this example 

the limit was set to           and the system load is 73,060 MW leading to a uncertainty of 

approximately 7.3 kW in terms of risk. So in a worst case a system state not scanned during the 

simulation could hold at most 7.3 kW risk. 

 
Figure 6-13.  Detailed single-element first order contingency maximum risk measures for a given 
dispatch (σ=0.05) evaluated using the DC-PLF approach in the scope of remaining risk. 

The maximum risk value is clearly set for the given power system and dispatch by branch 208 with 

3.13 MW. Based on these results the classical N-1 cases can be ranked according to the risk they 

hold.  
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Figure 6-14.  Iso-risk curve with evaluated system state risk and the lower limit in system state 
probability for a given dispatch (σ=0.05) evaluated using the DC-PLF approach. 

This subchapter can be concluded by the statements, that the proposed method can be applied to 

real world problems in the scale of the central European interconnected network giving results in a 

reasonable time. A second finding is, that the results valid for the IEEE 118-bus network are also valid 

for the 1354-bus system. The ranking of system states is identical for both implementations, the DC-

PLF and the DC-MCS approach, but the absolute risk values differ significantly. So a qualitative 

evaluation and comparison of power system utilization cases is possible, but not a quantitative one. 

The detailed analysis of first order contingencies allows a ranking of N-1 cases based on the risk they 

hold.  
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7 Conclusions 
The risk based security assessment method presented in this thesis is able to assess the outage risk 

of a given power system of interest with uncertainty afflicted nodal power forecasts. 

It is based on a recursive system state based approach leading to numerous possible states to be 

scanned during the simulation. Due to the computational effort the simulation of numerous system 

states holds, a filter criterion was introduced, to reduce the number of system states and so directly 

the computational burden. This filter leads to the fact, that the simulation is incomplete leading to an 

uncertainty afflicted result. 

The main results the method provides are a lower and a n upper boundary for the overall system risk. 

By adjusting the filter criterion the number of scanned system states is effected and so directly the 

uncertainty affliction of the result. More scanned system states lead to a longer simulation time, but 

enhance the quality of the result. 

An additional output of the method is a risk measure per first order contingency allowing a risk based 

ranking of the same, which could be used in the day-ahead processes of TSOs. 

The method accounts for the loading dependency of branch tripping probability as well as for 

random outages. Therefore a tripping heuristic was developed. 

A criterion was introduced based on available literature linking lost power as a significant system 

parameter to a direct blackout of the system. 

The method was tested on a large scale power system and was proven to deliver results in a very 

limited time span. 

Multiple sensitivity analyses regarding the proposed method show, that the results are not in the 

same range as the results of a DC-MCS based benchmark in a quantity, but the ranking of system 

states is identical, for the proposed method as well as the benchmark. The quantitative deviation of 

the results is manly due to the approximated implementation of the tripping heuristic in the 

proposed method. 
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Appendix A Modified IEEE 118-Bus Test System 
Table 8-1: Bus data of the modified 118-bus test system. 

Bus 
Number 

Bus 
Type 

Active 
Power 

Demand 

Reactive 
Power 

Demand 

Nominal 
Voltage 

Bus 
Number 

Bus 
Type 

Active 
Power 

Demand 

Reactive 
Power 

Demand 

Nominal 
Voltage 

    MW MVAr kV     MW MVAr kV 
1 PV 76,5 27 220 60 PQ 117 3 220 

2 PQ 30 9 220 61 PV 0 0 220 

3 PQ 58,5 10 220 62 PV 115,5 14 220 

4 PV 58,5 12 220 63 PQ 0 0 380 

5 PQ 0 0 220 64 PQ 0 0 380 

6 PV 78 22 220 65 PV 0 0 380 

7 PQ 28,5 2 220 66 PV 58,5 18 220 

8 PV 42 0 380 67 PQ 42 7 220 

9 PQ 0 0 380 68 PQ 0 0 380 

10 PV 0 0 380 69 SL 0 0 220 

11 PQ 105 23 220 70 PV 99 20 220 

12 PV 70,5 10 220 71 PQ 0 0 220 

13 PQ 51 16 220 72 PV 18 0 220 

14 PQ 21 1 220 73 PV 9 0 220 

15 PV 135 30 220 74 PV 102 27 220 

16 PQ 37,5 10 220 75 PQ 70,5 11 220 

17 PQ 16,5 3 220 76 PV 102 36 220 

18 PV 90 34 220 77 PV 91,5 28 220 

19 PV 67,5 25 220 78 PQ 106,5 26 220 

20 PQ 27 3 220 79 PQ 58,5 32 220 

21 PQ 21 8 220 80 PV 195 26 220 

22 PQ 15 5 220 81 PQ 0 0 380 

23 PQ 10,5 3 220 82 PQ 81 27 220 

24 PV 19,5 0 220 83 PQ 30 10 220 

25 PV 0 0 220 84 PQ 16,5 7 220 

26 PV 0 0 380 85 PV 36 15 220 

27 PV 106,5 13 220 86 PQ 31,5 10 220 

28 PQ 25,5 7 220 87 PV 0 0 220 

29 PQ 36 4 220 88 PQ 72 10 220 

30 PQ 0 0 380 89 PV 0 0 220 

31 PV 64,5 27 220 90 PV 244,5 42 220 

32 PV 88,5 23 220 91 PV 15 0 220 

33 PQ 34,5 9 220 92 PV 97,5 10 220 

34 PV 88,5 26 220 93 PQ 18 7 220 

35 PQ 49,5 9 220 94 PQ 45 16 220 

36 PV 46,5 17 220 95 PQ 63 31 220 

37 PQ 0 0 220 96 PQ 57 15 220 

38 PQ 0 0 380 97 PQ 22,5 9 220 

39 PQ 40,5 11 220 98 PQ 51 8 220 

40 PV 99 23 220 99 PV 63 0 220 

41 PQ 55,5 10 220 100 PV 55,5 18 220 

42 PV 144 23 220 101 PQ 33 15 220 

43 PQ 27 7 220 102 PQ 7,5 3 220 

44 PQ 24 8 220 103 PV 34,5 16 220 

45 PQ 79,5 22 220 104 PV 57 25 220 

46 PV 42 10 220 105 PV 46,5 26 220 

47 PQ 51 0 220 106 PQ 64,5 16 220 

48 PQ 30 11 220 107 PV 75 12 220 

49 PV 130,5 30 220 108 PQ 3 1 220 

50 PQ 25,5 4 220 109 PQ 12 3 220 

51 PQ 25,5 8 220 110 PV 58,5 30 220 

52 PQ 27 5 220 111 PV 0 0 220 

53 PQ 34,5 11 220 112 PV 102 13 220 

54 PV 169,5 32 220 113 PV 9 0 220 

55 PV 94,5 22 220 114 PQ 12 3 220 

56 PV 126 18 220 115 PQ 33 7 220 

57 PQ 18 3 220 116 PV 276 0 220 

58 PQ 18 3 220 117 PQ 30 8 220 

59 PV 415,5 113 220 118 PQ 49,5 15 220 
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Table 8-2: Generation unit data of the modified 118-bus test system. 

Bus 
Number 

Maximum 
Reactive 
Power 

Minimum 
Reactive 
Power 

Maximum 
Active 
Power 

Minimum 
Active 
Power 

Bus 
Number 

Maximum 
Reactive 
Power 

Minimum 
Reactive 
Power 

Maximum 
Active 
Power 

Minimum 
Active 
Power 

 
MVAr MVAr MW MW 

 
MVAr MVAr MW MW 

1 15 -5 100 0 65 200 -67 491 0 

4 300 -300 100 0 66 200 -67 492 0 

6 50 -13 100 0 69 300 -300 805,2 0 

8 300 -300 100 0 70 32 -10 100 0 

10 200 -147 550 0 72 100 -100 100 0 

12 120 -35 185 0 73 100 -100 100 0 

15 30 -10 100 0 74 9 -6 100 0 

18 50 -16 100 0 76 23 -8 100 0 

19 24 -8 100 0 77 70 -20 100 0 

24 300 -300 100 0 80 280 -165 577 0 

25 140 -47 320 0 85 23 -8 100 0 

26 1000 -1000 414 0 87 1000 -100 104 0 

27 300 -300 100 0 89 300 -210 707 0 

31 300 -300 107 0 90 300 -300 100 0 

32 42 -14 100 0 91 100 -100 100 0 

34 24 -8 100 0 92 9 -3 100 0 

36 24 -8 100 0 99 100 -100 100 0 

40 300 -300 100 0 100 155 -50 352 0 

42 300 -300 100 0 103 40 -15 140 0 

46 100 -100 119 0 104 23 -8 100 0 

49 210 -85 304 0 105 23 -8 100 0 

54 300 -300 148 0 107 200 -200 100 0 

55 23 -8 100 0 110 23 -8 100 0 

56 15 -8 100 0 111 1000 -100 136 0 

59 180 -60 255 0 112 1000 -100 100 0 

61 300 -100 260 0 113 200 -100 100 0 

62 20 -20 100 0 116 1000 -1000 100 0 
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Table 8-3: Branch data of the modified 118-bus test system. 
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1 2 3,93 39,31 0 228,63 72,47 39 40 2,38 23,81 0 228,63 43,89 

1 3 1,67 16,68 0 228,63 30,76 40 41 1,92 19,16 0 228,63 35,33 

4 5 0,31 3,14 0 228,63 5,79 40 42 7,20 72,01 0 228,63 132,75 

3 5 4,25 42,49 0 228,63 78,35 41 42 5,31 53,12 0 228,63 97,93 

5 6 2,12 21,25 0 228,63 39,17 43 44 9,66 96,56 0 228,63 178,02 

6 7 0,82 8,18 0 228,63 15,09 34 43 6,61 66,14 0 228,63 121,94 

8 9 2,51 25,14 0 394,91 138,28 44 45 3,55 35,45 0 228,63 65,36 

8 5 2,20 22,01 0 394,91 9,71 45 46 5,34 53,35 0 228,63 98,37 

9 10 2,65 26,54 0 394,91 145,99 46 47 5,00 49,97 0 228,63 92,13 

4 11 2,71 27,07 0 228,63 49,91 46 48 7,44 74,37 0 228,63 137,10 

5 11 2,68 26,83 0 228,63 49,47 47 49 2,46 24,59 0 228,63 45,34 

11 12 0,77 7,71 0 228,63 14,22 42 49 12,71 127,09 0 228,63 234,31 

2 12 2,42 24,24 0 228,63 44,69 42 49 12,71 127,09 0 228,63 234,31 

3 12 6,30 62,96 0 228,63 116,07 45 49 7,32 73,19 0 228,63 134,93 

7 12 1,34 13,38 0 228,63 24,66 48 49 1,99 19,87 0 228,63 36,63 

11 13 2,88 28,76 0 228,63 53,03 49 50 2,96 29,59 0 228,63 54,55 

12 14 2,78 27,82 0 228,63 51,29 49 51 5,39 53,91 0 228,63 99,38 

13 15 9,62 96,16 0 228,63 177,29 51 52 2,31 23,14 0 228,63 42,65 

14 15 7,67 76,73 0 228,63 141,46 52 53 6,43 64,33 0 228,63 118,61 

12 16 3,28 32,82 0 228,63 60,50 53 54 4,80 48,00 0 228,63 88,50 

15 17 1,72 17,19 0 228,63 31,70 49 54 11,37 113,71 0 228,63 209,65 

16 17 7,09 70,86 0 228,63 130,65 49 54 11,45 114,50 0 228,63 211,10 

17 18 1,99 19,87 0 228,63 36,63 54 55 2,78 27,82 0 228,63 51,29 

18 19 1,94 19,40 0 228,63 35,76 54 56 0,38 3,76 0 228,63 6,93 

19 20 4,60 46,04 0 228,63 84,87 55 56 0,59 5,94 0 228,63 10,95 

15 19 1,55 15,50 0 228,63 28,58 56 57 3,80 38,01 0 228,63 70,08 

20 21 3,34 33,41 0 228,63 61,59 50 57 5,27 52,73 0 228,63 97,21 

21 22 3,82 38,17 0 228,63 70,37 56 58 3,80 38,01 0 228,63 70,08 

22 23 6,26 62,56 0 228,63 115,34 51 58 2,83 28,29 0 228,63 52,16 

23 24 1,94 19,36 0 228,63 35,69 54 59 9,02 90,22 0 228,63 166,34 

23 25 3,15 31,48 0 228,63 58,03 56 59 9,88 98,76 0 228,63 182,08 

26 25 3,15 31,49 0 394,91 9,71 56 59 9,40 94,04 0 228,63 173,38 

25 27 6,41 64,14 0 228,63 118,24 55 59 8,49 84,91 0 228,63 156,55 

27 28 3,36 33,64 0 228,63 62,02 59 60 5,71 57,05 0 228,63 105,19 

28 29 3,71 37,10 0 228,63 68,41 59 61 5,90 59,02 0 228,63 108,81 

30 17 3,20 31,98 0 394,91 9,71 60 61 0,53 5,31 0 228,63 9,79 

8 30 4,15 41,54 0 394,91 228,51 60 62 2,21 22,07 0 228,63 40,70 

26 30 7,09 70,89 0 394,91 389,91 61 62 1,48 14,79 0 228,63 27,28 

17 31 6,15 61,50 0 228,63 113,38 63 59 3,18 31,82 0 394,91 9,71 

29 31 1,30 13,02 0 228,63 24,01 63 64 1,65 16,49 0 394,91 90,68 

23 32 4,54 45,37 0 228,63 83,64 64 61 2,21 22,09 0 394,91 9,71 

31 32 3,88 38,76 0 228,63 71,45 38 65 8,13 81,27 0 394,91 447,04 

27 32 2,97 29,71 0 228,63 54,77 64 65 2,49 24,89 0 394,91 136,92 

15 33 4,89 48,95 0 228,63 90,24 49 66 3,62 36,16 0 228,63 66,67 

19 34 9,72 97,19 0 228,63 179,18 49 66 3,62 36,16 0 228,63 66,67 

35 36 0,40 4,01 0 228,63 7,40 62 66 8,58 85,78 0 228,63 158,14 

35 37 1,96 19,56 0 228,63 36,05 62 67 4,60 46,04 0 228,63 84,87 

33 37 5,59 55,87 0 228,63 103,01 65 66 3,05 30,50 0 394,91 9,71 

34 36 1,05 10,55 0 228,63 19,44 66 67 3,99 39,94 0 228,63 73,63 

34 37 0,37 3,70 0 228,63 6,82 65 68 1,32 13,19 0 394,91 72,54 

38 37 3,09 30,91 0 394,91 9,71 47 69 10,93 109,31 0 228,63 201,52 

37 39 4,17 41,71 0 228,63 76,89 49 69 12,75 127,48 0 228,63 235,04 

37 40 6,61 66,10 0 228,63 121,87 68 69 3,05 30,50 0 394,91 9,71 

30 38 4,45 44,51 0 394,91 244,83 69 70 5,00 49,97 0 228,63 92,13 
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24 70 16,19 161,91 0 228,63 298,51 99 96 7,16 71,61 0 228,63 132,03 

70 71 1,40 13,97 0 228,63 25,75 101 96 2,09 20,85 0 228,63 38,45 

24 72 7,71 77,12 0 228,63 142,18 102 96 3,42 34,19 0 228,63 63,04 

71 72 7,08 70,82 0 228,63 130,58 103 97 3,68 36,75 0 228,63 67,75 

71 73 1,79 17,86 0 228,63 32,93 104 98 4,25 42,49 0 228,63 78,35 

70 74 5,21 52,06 0 228,63 95,97 105 99 8,11 81,06 0 228,63 149,44 

70 75 5,55 55,48 0 228,63 102,28 106 100 11,61 116,07 0 228,63 214,00 

69 75 4,80 48,00 0 228,63 88,50 107 100 2,28 22,82 0 228,63 42,07 

74 75 1,60 15,97 0 228,63 29,45 108 96 2,15 21,52 0 228,63 39,68 

76 77 5,82 58,23 0 228,63 107,36 109 97 3,48 34,82 0 228,63 64,20 

69 77 3,97 39,74 0 228,63 73,27 110 100 7,04 70,43 0 228,63 129,85 

75 77 7,87 78,65 0 228,63 145,01 111 100 3,20 31,99 0 228,63 58,98 

77 78 0,49 4,88 0 228,63 9,00 112 101 4,97 49,66 0 228,63 91,55 

78 79 0,96 9,60 0 228,63 17,70 92 102 2,20 22,00 0 228,63 40,55 

77 80 1,91 19,08 0 228,63 35,18 101 102 4,41 44,07 0 228,63 81,25 

77 80 4,13 41,31 0 228,63 76,17 100 103 2,07 20,66 0 228,63 38,08 

79 80 2,77 27,70 0 228,63 51,07 100 104 8,03 80,27 0 228,63 147,99 

68 81 1,67 16,65 0 394,91 91,58 103 104 6,23 62,33 0 228,63 114,91 

81 80 3,05 30,50 0 394,91 9,71 103 105 6,39 63,94 0 228,63 117,88 

77 82 3,36 33,56 0 228,63 61,88 100 106 9,01 90,10 0 228,63 166,12 

82 83 1,44 14,42 0 228,63 26,59 104 105 1,49 14,87 0 228,63 27,42 

83 84 5,19 51,94 0 228,63 95,76 105 106 2,15 21,52 0 228,63 39,68 

83 85 5,82 58,23 0 228,63 107,36 105 107 7,20 72,01 0 228,63 132,75 

84 85 2,52 25,22 0 228,63 46,50 105 108 2,77 27,66 0 228,63 51,00 

85 86 4,84 48,40 0 228,63 89,23 106 107 7,20 72,01 0 228,63 132,75 

86 87 8,16 81,61 0 228,63 150,45 108 109 1,13 11,33 0 228,63 20,89 

85 88 4,01 40,13 0 228,63 73,99 103 110 7,13 71,34 0 228,63 131,52 

85 89 6,81 68,07 0 228,63 125,50 109 110 3,00 29,98 0 228,63 55,28 

88 89 2,80 28,02 0 228,63 51,65 110 111 2,97 29,71 0 228,63 54,77 

89 90 7,40 73,97 0 228,63 136,38 110 112 2,52 25,18 0 228,63 46,43 

89 90 3,92 39,23 0 228,63 72,32 17 113 1,18 11,84 0 228,63 21,84 

90 91 3,29 32,89 0 228,63 60,65 32 113 7,99 79,87 0 228,63 147,26 

89 92 1,99 19,87 0 228,63 36,63 32 114 2,41 24,08 0 228,63 44,40 

89 92 6,22 62,21 0 228,63 114,69 27 115 2,92 29,16 0 228,63 53,75 

91 92 5,00 50,05 0 228,63 92,27 114 115 0,41 4,09 0 228,63 7,54 

92 93 3,34 33,37 0 228,63 61,52 68 116 0,33 3,34 0 394,91 9,71 

92 94 6,22 62,17 0 228,63 114,62 12 117 5,51 55,09 0 228,63 101,56 

97 94 2,88 28,80 0 228,63 53,10 75 118 1,89 18,93 0 228,63 34,89 

98 95 1,71 17,08 0 228,63 31,48 76 118 2,14 21,40 0 228,63 39,46 
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 Statistical Data Regarding the Analysis of Power Appendix B

System Load Nodes 
Table 8-4: Normal distribution parameters of the active power DACF and forecast error (TSO1). 

Node 
Number 

DACF Forecast Error 

Iqps µFCE iqps µFCE iqps 

in MW in MW in MW in MW in MW 
1 171 -25.31 65.26 -14.80 38.16 

2 340 -54.71 66.97 -16.09 19.70 

3 261 11.74 55.79 4.50 21.38 

4 220 7.60 39.18 3.45 17.81 

5 138 7.06 28.80 5.12 20.87 

6 159 -22.48 68.29 -14.14 42.95 

Table 8-5: Normal distribution parameters of the active power DACF and forecast error (TSO2). 

Node 
Number 

DACF Forecast Error 

iqps µFCE σFCE µFCE/iqps σFCE/iqps 

in MW in MW in MW in % in % 
1 79 -0.86 13.95 -1.09 17.66 

2 71 -1.21 10.30 -1.70 14.51 

3 97 -1.45 13.73 -1.49 14.16 

4 94 -3.18 25.26 -3.38 26.87 

5 151 -3.20 19.76 -2.12 13.09 

6 185 -4.83 27.07 -2.61 14.63 

7 76 -1.71 12.15 -2.25 15.98 

8 73 0.90 15.80 1.23 21.64 

9 162 -2.58 27.35 -1.59 16.88 

10 200 -3.03 28.71 -1.51 14.36 

11 75 -1.63 8.54 -2.18 11.39 

12 153 -1.02 26.83 -0.67 17.54 

13 97 -1.53 18.15 -1.58 18.71 

14 166 -1.66 29.25 -1.00 17.62 

15 99 -1.12 22.33 -1.13 22.55 

16 157 -7.91 38.62 -5.04 24.60 

17 180 -4.20 24.44 -2.34 13.58 

18 176 -2.91 24.47 -1.65 13.91 

19 71 5.13 15.19 7.22 21.39 

20 103 -4.89 17.12 -4.75 16.62 

21 89 -0.55 19.31 -0.61 21.70 

22 249 -4.01 73.94 -1.61 29.70 
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