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Abstract
Hash functions are ubiquitous in the modern information age. They provide
preimage, second preimage and collision resistance which are needed in a wide
range of applications.

In August 2006, Wang et al. showed efficient attacks against several hash
function designs including MD4, MD5, HAVAL-128 and RIPEMD. With these
results differential cryptanalysis has been shown useful to break collision resistance
in hash functions. Over the years, advanced attacks based on those differential
approaches have been developed.

To find collisions like Wang et al., a cryptanalyst needs to specify a differential
characteristic as starting point, whose differences cancel out in the output. This
starting point has a huge impact on the runtime. Once such a differential charac-
teristic was discovered, in a second step the actual values for those differences are
found yielding an actual hash collision.

Evaluating differential characteristics can be a cumbersome and tedious task.
Dedicated tools can implement search heuristics. Performance shortcuts can be
made by studying the hash algorithm’s differential behavior, etc.

SAT solvers inherently implement a search heuristic and should derive those
shortcuts on their own. In this thesis, we use SAT solvers to solve differential
cryptanalysis problems. We show that SAT solvers are, in general, not able to
derive those shortcuts on their own, but on the other hand we discuss approaches
which significantly improve the runtime. SAT encoding remains an important
topic to improve SAT solving runtimes.

We wrote a library generating CNFs for differential characteristics and option-
ally modify the CNF for certain SAT encodings. Those modifications allowed a
significant runtime improvement helping us to solve full-rounds hash collisions in
MD4 and 24-rounds hash collisions in SHA-256. Finally, we also provide a small
CNF analysis library to compare encoded problems with each other.

Keywords: hash function, differential cryptanalysis, differential characteristic,
MD4, SHA-256, collision resistance, satisfiability, SAT solver
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Chapter 1

Introduction

1.1 Overview

Hash functions are used as cryptographic primitives in many applications and
protocols. They take an arbitrary input message and provide a hash value. Input
message and hash value are considered as byte strings in a particular encoding.
The hash value is of fixed length and satisfies several properties which make it
useful in a variety of applications.

In this thesis, we consider the hash algorithms MD4 and SHA-256. Our goal
is to find hash collisions using differential cryptanalysis. We define differences
between two messages and determine actual bits such that the two messages result
in the same hash value.
This whole equation system will be modelled as a satisfiability problem. A SAT
solver reports satisfiability if and only if the particular differences can be resolved
and an actual hash collision is found. We introduce a bit condition notation which
allows us to visualize such differential states. Verification is done by several SAT
solvers and we compare their runtime. Because the Boolean functions modelled in
a CNF have a major influence on the runtime, we investigate several approaches
and compare them.

Based on experience with these kind of problems with previous heuristic search
tools we aim to apply best practices to a satisfiability setting. We will discuss,
which SAT techniques lead to best performance characteristics for our MD4 and
SHA-256 testcases.

1



CHAPTER 1. INTRODUCTION 2

1.2 Thesis Outline

This thesis is organized as follows:

In Chapter 1, we briefly introduce basic subjects of this thesis. We explain our
high-level goal involving hash functions and SAT solvers.

In Chapter 2, we introduce the MD4 and SHA-256 hash functions. Certain de-
sign decisions imply certain properties which can be used in differential
cryptanalysis. We discuss those decisions in this chapter after a formal
definition of the function itself. Beginning with this chapter we develop a
theoretical notion of our tools.

In Chapter 3, we discuss approaches of differential cryptanalysis. We start with
work done by Wang, et al. and followingly introduce differential notation to
simplify representation of differential states. This way we can easily dump
hash collisions.

In Chapter 4, we discuss SAT solving techniques. We discuss how the problem
needs to be encoded and give a brief overview over used SAT solvers. This
includes a customized lingeling version by Armin Biere for our purposes.

In Chapter 5, we define SAT features which help us to classify SAT problems.
This is a small subproject we did to look at properties of resulting DIMACS
CNF files.

In Chapter 6, we discuss how we represent a problem (i.e. the hash function and
a differential characteristic) as SAT problem. This ultimatively allows us to
solve the problem using a SAT solver.

In Chapter 7, we present the result of our work. Runtimes are the main part of
this chapter, but also results of Chapter 5 are presented.

In Chapter 8, we conclude and discuss future work based on our results.
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Chapter 2

Hash algorithms

In this chapter, we will define hash functions and their desired security properties.
In the following, we look at SHA-256 and MD4 as established hash functions. MD4
unlike SHA-256 is practically broken, but has a comparably small internal state.
It therefore allows a good starting point to devise our attacks. In a next step, we
scaled up to SHA-256 which has an internal state size at least twice as large. In
Chapter 6, we will represent them with Boolean algebra to allow to reason about
states in those hash functions using SAT solvers.

2.1 Preliminaries Redux

Definition 2.1 (Hash function)

A hash function is a mapping ℎ ∶ 𝑋 → 𝑌 with 𝑋 = {0, 1}∗ and 𝑌 = {0, 1}𝑛 for
some fixed 𝑛 ∈ ℕ≥1.

• Let 𝑥 ∈ 𝑋 , then ℎ(𝑥) is called hash value of 𝑥.
• Let ℎ(𝑥) = 𝑦 ∈ 𝑌 , then 𝑥 is called preimage of 𝑦.

Hash functions are considered as cryptographic primitives used as building
blocks in cryptographic protocols. A hash function has to satisfy the following
security requirements:
Definition 2.2 (Preimage resistance)

Given 𝑦 ∈ 𝑌 , a hash function ℎ is preimage resistant iff it is computationally
infeasible to find 𝑥 ∈ 𝑋 such that ℎ(𝑥) = 𝑦.

3



CHAPTER 2. HASH ALGORITHMS 4

Definition 2.3 (Second-preimage resistance)
Given 𝑥 ∈ 𝑋 , a hash function ℎ is second-preimage resistant iff it is compu-
tationally infeasible to find 𝑥2 ∈ 𝑋 with 𝑥 , 𝑥2 such that ℎ(𝑥) = ℎ(𝑥2). 𝑥2 is
called second preimage.

Definition 2.4 (Collision resistance)
A hash function ℎ is collision resistant iff it is computationally infeasible to
find any two 𝑥 ∈ 𝑋 and 𝑥2 ∈ 𝑋 with 𝑥 , 𝑥2 such that ℎ(𝑥) = ℎ(𝑥2). Tuple
(𝑥, 𝑥2) is called collision.

As far as hash functions accept input strings of arbitrary length, but return a
fixed size output string, existence of collisions is unavoidable [31]. However, good
hash functions make it very difficult to find collisions or preimages.

Any digital data can be hashed (i.e. used as input to a hash function) by
considering it in binary representation. The format or encoding is not part of the
hash function’s specification.

2.1.1 Merkle-Damgård designs

The Merkle-Damgård design is a particular design of hash functions providing the
following security guarantee:
Definition 2.5 (Collision resistance inheritance)

Let 𝐹0 be a collision resistant compression function. A hash function in
Merkle-Damgård design is collision resistant if 𝐹0 is collision resistant.

This motivates thorough research of collisions in compression functions. The
design was found independently by Ralph C. Merkle and Ivan B. Damgård. It was
described by Merkle in his PhD thesis [17, p. 13–15] and used in popular hash
functions such as MD4, MD5 and the SHA2 hash function family.

The single-pipe design works as follows:

1. Split the input into blocks of uniform block size. If necessary, apply padding
to the last block to achieve full block size.

2. Compression function 𝐹0 is applied iteratively using the output 𝑦𝑖−1 of the
previous iteration and the next input block 𝑥𝑖, denoted 𝑦𝑖 = 𝐹0(𝑦𝑖−1, 𝑥𝑖).

3. An optional postprocessing function is applied.
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2.1.2 Padding and length extension attacks

Hash functions of single-piped Merkle-Damgård design inherently suffer from
length extension attacks. MD4 and SHA-256 apply padding to their input to
normalize their input size to a multiple of its block size. The compression function
is applied afterwards. This design is vulnerable to length extensions.

Consider some collision (𝑥0, 𝑥1)with 𝐹0(𝑥0) = 𝑦 = 𝐹0(𝑥1)where 𝑥0 and 𝑥1 have
a size of one block. Let 𝑝 be a suffix with size of one block. Then also (𝑥0 ‖ 𝑝, 𝑥1 ‖ 𝑝)
(where ‖ denotes concatenation) represents a collision in single-piped Merkle-
Damgård designs, because it holds that:

𝐹0(𝐹0(𝑥0), 𝑝) = 𝐹0(𝐹0(𝑥1), 𝑝) ⟺ 𝐹0(𝑦, 𝑝) = 𝐹0(𝑦, 𝑝)

Hence (𝑥0 ‖ 𝑝, 𝑥1 ‖ 𝑝) is a collision as well. As far as 𝐹0 is applied recursively to
every block, 𝑝 can be of arbitrary size and (𝑥0, 𝑥1) can be of arbitrary uniform size.

Because of this vulnerability, cryptanalysts focus on finding a collision in
compression functions. In our tests will only consider input of one block and
padding will be neglected due to this vulnerability.

2.1.3 Example usage

The following list describes application examples:

Digital signatures. Digital signatures are schemes to guarantee data and origin
integrity. They are used to verify authenticity of PDF documents, encrypted
emails or software distributions. A digital signature can be verified, showing
that a particular user was involved in the signature process. No third party
can forge a digital signature. Because the document itself might be too large,
only its hash value is signed.

Storing passwords. User account data such as passwords are commonly stored
in databases. Those databases are subject to theft if network breaches take
place. Hashing and salting those passwords with a hash algorithm before
storing them in the database is a working countermeasure.

Commitment schemes. Commitment schemes like Zero-Knowledge Proofs use
hash algorithms to ensure the original message is possessed by a certain party
without revealing the document itself. Coin-flipping or secure computation
also use hash algorithms as cryptographic building blocks.
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2.2 MD4

MD4 is a cryptographic hash function originally described in RFC 1186 [26],
updated in RFC 1320 [27] and declared obsolete by RFC 6150 [34]. It was invented
by Ronald Rivest in 1990 with properties given in Table 2.1. In 1995 [5], successful
full-round attacks have been found to break collision resistance. Three years later,
preimage and second-preimage resistance in MD4 got broken as well. Some of
those attacks are described in [28] and [20]. We derived a Python 3 implementation
based on a Python 2 implementation and made it available on github [24].

block size 512 bits namely variable block in RFC 1320 [27]
digest size 128 bits as per Section 3.5 in RFC 1320 [27]
internal state size 128 bits namely variables 𝐴, 𝐵, 𝐶 and 𝐷
word size 32 bits as per Section 2 in RFC 1320 [27]

Table 2.1: MD4 hash algorithm properties

MD4 uses three auxiliary Boolean functions:
Definition 2.6

The Boolean IF function is defined as follows: If the first argument is true, the
second argument is returned. Otherwise the third argument is returned.

The Boolean MAJ function returns true if the number of arguments with
Boolean value true is in the majority. The Boolean XOR function returns true if
the number of arguments with Boolean value true is odd.

Using the logical operators ∧ (AND), ∨ (OR) and ¬ (NEG) we can define them as
(see Section 4.1 for a thorough discussion of these operators):

IF(𝑋, 𝑌, 𝑍) B (𝑋 ∧ 𝑌) ∨ (¬𝑋 ∧ 𝑍) (2.1)
MAJ(𝑋, 𝑌, 𝑍) B (𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍) ∨ (𝑌 ∧ 𝑍) (2.2)
XOR(𝑋, 𝑌, 𝑍) B (𝑋 ∧ ¬𝑌 ∧ ¬𝑍) ∨ (¬𝑋 ∧ 𝑌 ∧ ¬𝑍)

∨ (¬𝑋 ∧ ¬𝑌 ∧ 𝑍) ∨ (𝑋 ∧ 𝑌 ∧ 𝑍)
B (𝑋 ⊕ 𝑌 ⊕ 𝑍) (2.3)

In the following, a brief overview of MD4 is given.

Padding and length extension. First of all, padding is applied. A single bit 1
is appended to the input. As long as the input does not reach a length
congruent 448 modulo 512, bit 0 is appended. Afterwards, length appending
takes place. Append the first 64 less significant bits of the input length
(without the previous modifications) represented in binary.
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Initialization. Themessage is split into 512-bit blocks (i.e. 16 32-bit words). State
variables 𝐴𝑖 with −4 ≤ 𝑖 < 0 are initialized with these hexadecimal values:

𝐴−4 = 01234567 𝐴−1 = 89abcdef 𝐴−2 = fedcba98 𝐴−3 = 76543210

Round function and state variable updates. The round function is applied in
3 rounds with 16 iterations. In every iteration, values 𝐴−1, 𝐴−2 and 𝐴−3 are
taken as arguments to function 𝐹. Function 𝐹 is IF in round 1, followed
by MAJ for round 2 and XOR for the final round 3. The resulting value is
added to 𝐴−1, current message block 𝑀 and constant 𝑋 . Finally, the 32-bit
sum will be left-rotated by 𝑝 positions. Left rotation is formally defined in
Definition 2.7. We define 𝑋 and 𝑝:
Let 𝑖 be the iteration counter between 1 and 16 and 𝑟 the round between 1
and 3. Then 𝑋 takes the value of the 𝑖-th column and 𝑟-th row of matrix 𝐶.
𝑝 takes the value of row 𝑟 and column 𝑖 𝑚𝑜𝑑 4 of matrix 𝑃.

𝐶 =
⎛
⎜
⎜
⎝

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

⎞
⎟
⎟
⎠

𝑃 =
⎛
⎜
⎜
⎝

3 7 9 11
3 5 9 13
3 9 11 15

⎞
⎟
⎟
⎠

This round function design is visualized in Figure 2.1.

ROTL

F

Ai-4 Ai-1 Ai-2 Ai-3

Ai-3 Ai Ai-1 Ai-2

M

Xi

Figure 2.1: MD4 round function updating state variables
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2.3 SHA-256

SHA-256 is a hash function from the SHA-2 family designed by the National
Security Agency (NSA) and published as FIPS PUB 180-4 (originally 2001) [9]. It
uses a Merkle-Damgård construction with a Davies-Meyer compression function.
The best known preimage attack was found in 2011 and breaks preimage resistance
for 52 rounds [11]. The best known collision attack breaks collision resistance for
31 rounds of SHA-256 [15] and pseudo-collision resistance for 46 rounds [12]. The
best practical attack is a pseudo-collision for 38 steps [16].

block size 512 bits as per Section 1 of the standard [9]
digest size 256 bits mentioned as Message Digest size [9]
internal state size 256 bits as per Section 1 of the standard [9]
word size 32 bits as per Section 1 of the standard [9]

Table 2.2: SHA-256 hash algorithm properties

Definition 2.7 (Shifts, rotations and a notational remark)
Consider a 32-bit word𝑋 with 32 binary values 𝑏𝑖 with 0 ≤ 𝑖 ≤ 31. 𝑏0 refers to
the least significant bit. Shifting (≪ and≫) and rotation (⋘ and⋙) creates a
new 32-bit word 𝑌 with 32 binary values 𝑎𝑖. We define the following notations:

𝑌 B 𝑋 ≪ 𝑛 ⟺ 𝑎𝑖 B 𝑏𝑖−𝑛 if 0 ≤ 𝑖 − 𝑛 < 32 and 0 otherwise
𝑌 B 𝑋 ≫ 𝑛 ⟺ 𝑎𝑖 B 𝑏𝑖+𝑛 if 0 ≤ 𝑖 + 𝑛 < 32 and 0 otherwise
𝑌 B 𝑋 ⋘ 𝑛 ⟺ 𝑎𝑖 B 𝑏𝑖−𝑛 𝑚𝑜𝑑 32 as used in MD4
𝑌 B 𝑋 ⋙ 𝑛 ⟺ 𝑎𝑖 B 𝑏𝑖+𝑛 𝑚𝑜𝑑 32

Besides MD4’s MAJ and IF, another four auxiliary functions are defined. Recognize
that ⊕ denotes the XOR function whereas ⊞ denotes 32-bit addition.

Σ0(𝑋) B (𝑋 ⋙ 2) ⊕ (𝑋 ⋙ 13) ⊕ (𝑋 ⋙ 22)
Σ1(𝑋) B (𝑋 ⋙ 6) ⊕ (𝑋 ⋙ 11) ⊕ (𝑋 ⋙ 25)
𝜎0(𝑋) B (𝑋 ⋙ 7) ⊕ (𝑋 ⋙ 18) ⊕ (𝑋 ≫ 3)
𝜎1(𝑋) B (𝑋 ⋙ 17) ⊕ (𝑋 ⋙ 19) ⊕ (𝑋 ≫ 10)

Padding and length extension. The padding and length extension scheme of
MD4 is used also in SHA-256. Append bit 1, followed by a sequence of bit 0
until the message reaches a length of 448 modulo 512 bits. Afterwards the
first 64 bits of the binary representation of the original input are appended.

Initialization. In a similar manner to MD4, initialization of internal state vari-
ables (called “working variables” in [9, Section 6.2.2]) takes place before
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running the round function. The eight state variables are initialized with
the following hexadecimal values:

𝐴−1 = 6a09e667 𝐴−2 = bb67ae85 𝐴−3 = 3c6ef372 𝐴−4 = a54ff53a
𝐸−1 = 510e527f 𝐸−2 = 9b05688c 𝐸−3 = 1f83d9ab 𝐸−4 = 5be0cd19

Furthermore SHA-256 uses 64 constant values in its round function. We
initialize step constants 𝐾𝑖 for 0 ≤ 𝑖 < 64 with the following hexadecimal
values (which must be read left to right and top to bottom):

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1
923f82a4 ab1c5ed5 d807aa98 12835b01 243185be 550c7dc3
72be5d74 80deb1fe 9bdc06a7 c19bf174 e49b69c1 efbe4786
0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147
06ca6351 14292967 27b70a85 2e1b2138 4d2c6dfc 53380d13
650a7354 766a0abb 81c2c92e 92722c85 a2bfe8a1 a81a664b
c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a
5b9cca4f 682e6ff3 748f82ee 78a5636f 84c87814 8cc70208
90befffa a4506ceb bef9a3f7 c67178f2

Precomputation of W. Let 𝑊𝑖 for 0 ≤ 𝑖 < 16 be the sixteen 32-bit words of the
padded input message. Then compute𝑊𝑖 for 16 ≤ 𝑖 < 64 the following way:

𝑊𝑖 B 𝜎1 (𝑊𝑖−2) + 𝑊𝑖−7 + 𝜎0 (𝑊𝑖−15) + 𝑊𝑖−16

Round function. For every block of 512 bits, the round function is applied. The
eight state variables are updated iteratively for 𝑖 from 0 to 63. 𝑊𝑖 and 𝐾𝑖
refer to the previously initialized values.

𝐸𝑖 B 𝐴𝑖−4 + 𝐸𝑖−4 + Σ1 (𝐸𝑖−1) + IF (𝐸𝑖−1, 𝐸𝑖−2, 𝐸𝑖−3) + 𝐾𝑖 +𝑊𝑖

𝐴𝑖 B 𝐸𝑖 − 𝐴𝑖−4 + Σ0 (𝐴𝑖−1) + MAJ (𝐴𝑖−1, 𝐴𝑖−2, 𝐴𝑖−3)
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Figure 2.2: SHA-256 round function [6]



“Just because it’s automatic doesn’t
mean it works.”

—Daniel J. Bernstein

Chapter 3

Differential cryptanalysis

In Chapter 2, we defined two hash functions. In this chapter, we consider such
functions from a differential perspective. Differential cryptanalysis will turn out
to yield successful collision attacks on hash functions. We introduce a notation to
easily represent differential characteristics.

3.1 Motivation

In August 2004, Wang et al. published results at Crypto’04 [35] which revealed that
MD4, MD5, HAVAL-128 and RIPEMD can be broken practically using differential
cryptanalysis. Their work is based on preliminary work by Hans Dobbertin [5].
On an IBM P690 machine, an MD5 collision can be computed in about one hour
using this approach. Collisions for HAVAL-128, MD4 and RIPEMD were found as
well. Patrick Stach’s md4coll.c program [33] implements Wang’s approach and
can find MD4 collisions in few seconds on my Thinkpad x220 setup specified in
Appendix A.

Let 𝑛 denote the digest size, i.e. the size of the hash value ℎ(𝑥) in bits. Due to
the birthday paradox, a collision attack has a generic complexity of 2𝑛/2 whereas
preimage and second preimage attacks have generic complexities of 2𝑛. In other
words it is computationally easier to find any two colliding hash values than the
preimage or second preimage for a given hash value.

Following results by Wang et al., differential cryptanalysis was shown as
powerful tool for cryptanalysis of hash algorithms. This thesis applies those ideas
to satisfiability approaches.

11
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Message 1
4d7a9c83 d6cb927a 29d5a578 57a7a5ee
de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8
45dc8e31 97e31fe5 2794bf08 b9e8c3e9

Message 2
4d7a9c83 56cb927a b9d5a578 57a7a5ee
de748a3c dcc366b3 b683a020 3b2a5d9f
c69d71b3 f9e99198 d79f805e a63bb2e8
45dd8e31 97e31fe5 2794bf08 b9e8c3e9

Hash value of Message 1 and Message 2
5f5c1a0d 71b36046 1b5435da 9b0d807a

Table 3.1: One of two MD4 hash collisions provided in [35]. A message represents one
block of 512 bits. Values are given in hexadecimal, message words are enumerated from
left to right, top to bottom. Differences are highlighted in bold for illustration purposes.
For comparison the first bits of Message 1 are 11000001… and the last bits are …10011101.

3.2 Fundamentals

Definition 3.1 (Hash collision)
Given a hash function ℎ, a hash collision is a pair (𝑥1, 𝑥2) with 𝑥1 , 𝑥2 such
that ℎ(𝑥1) = ℎ(𝑥2).

Pseudo-collisions are also often considered when attacking hash functions. A
pseudo-collision is given if a hash collision can be found for a given hash function,
but the initial vectors (IV) can be chosen for each message.

Hash algorithms consume input values as blocks of bits. As far as the length
of the input must not conform to the block size, padding is applied. Now consider
such a block of input values and another copy of it. We use those two blocks as
inputs for two hash algorithm instances, but provide slight modifications in few bits.
Differential cryptanalysis is based on the idea to consider those execution states
and trace those differences to learn about the propagation of message differences.
Compare this setup with Figure 3.1.

At the very beginning only the few defined differences are given. But as the
hash algorithm progresses in computation, differences are propagated to more and
more bits. Most likely the final value will differ in many bits, because of a desirable
hash algorithm property called avalanche effect. A small difference in the input
should lead to a significant difference in the output (i.e. visually recognizable).

Visualizing those differences helps the cryptanalyst to find modifications yield-
ing a small number of differences in the evaluation state. Empirical results in
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Figure 3.1: Common attack setting for a collision attack: Hash function 𝑓 is applied to
two inputs 𝑀 and 𝑀∗ which differ by some predefined bits. Δ𝑀 describes the difference
between these values. A hash collision is given if and only if output values 𝐶 and 𝐶∗ show
the same value. In differential cryptanalysis we observe the differences between two
instances applying function 𝑓 to inputs 𝑀 and 𝑀∗.

differential cryptanalysis indicate that sparse characteristics are desirable, because
it is easier to cancel out few differences in the output compared to many differences.
The cryptanalyst consecutively modifies the input values to eventually receive a
collision in the output value (i.e. Δ𝐶 = 0 ⟺ 𝐶 = 𝐶∗).
Definition 3.2

The differential state during a computation is called differential characteristic
(also differential path).

Theorem 3.1
Assuming the number of differences in a differential characteristic is small, this
characteristic is expected to result in a hash collision with higher probability.
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3.3 Differential notation

Differential notation helps us to visualize differential characteristics by defining
so-called generalized bit conditions. It was introduced by Christophe de Cannière
and Christian Rechberger in 2006 [2, Section 3.2], inspired by signed differences by
Wang et al. and is shown in Table 3.2.

(𝑥𝑖, 𝑥∗𝑖 ) (0, 0) (1, 0) (0, 1) (1, 1)
? ✓ ✓ ✓ ✓
- ✓ ✓
x ✓ ✓
0 ✓
u ✓
n ✓
1 ✓
#

(𝑥𝑖, 𝑥∗𝑖 ) (0, 0) (1, 0) (0, 1) (1, 1)
3 ✓ ✓
5 ✓ ✓
7 ✓ ✓ ✓
A ✓ ✓
B ✓ ✓ ✓
C ✓ ✓
D ✓ ✓ ✓
E ✓ ✓ ✓

Table 3.2: Differential notation as introduced in [2]. The left-most column specifies a
symbol called “bit condition” and right-side columns indicate which bit configurations are
possible for two given bits 𝑥𝑖 and 𝑥∗𝑖 .

Consider two hash algorithm instances. Let 𝑥𝑖 be some bit from the first
instance and let 𝑥∗𝑖 be the corresponding bit from the second instance. Differences
are computed using a XOR and commonly denoted as Δ𝑥 = 𝑥𝑖 ⊕ 𝑥∗𝑖 . Bit conditions
allow us to encode possible relations between bits 𝑥𝑖 and 𝑥∗𝑖 .

For example, let us take a look at the original Wang et al. hash collision in
MD4 provided in Table 3.1. We extract all values with differences and represent
them using differential notation. This gives us Table 3.3.

bit hexadecimal binary representation / differential notation
𝑥0 d6cb927a 11010110110010111001001001111010
𝑥1 29d5a578 00101001110101011010010101111000
𝑥2 45dc8e31 01000101110111001000111000110001
𝑥∗0 56cb927a 01010110110010111001001001111010
𝑥∗1 b9d5a578 10111001110101011010010101111000
𝑥∗2 45dd8e31 01000101110111011000111000110001
Δ𝑥 u1010110110010111001001001111010

n01n1001110101011010010101111000
010001011101110n1000111000110001

Table 3.3: The three words different between Message 1 and Message 2 of the original
MD4 hash collision by Wang et al. The last three lines show how differences can be
written down using bit conditions. As far as 4 symbols are not from the set {0, 1} it holds
that the messages differ by 4 bits.
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The following properties hold for bit conditions:

• If 𝑥𝑖 = 𝑥∗𝑖 holds and some value is known, {0, 1} contains its bit condition.
• If 𝑥𝑖 , 𝑥∗𝑖 holds and some value is known, {𝑢, 𝑛} contains its bit condition.
• If 𝑥𝑖 = 𝑥∗𝑖 holds and the values are unknown, its bit condition is -.
• If 𝑥𝑖 , 𝑥∗𝑖 holds and the values are unknown, its bit condition is x.

Applying this notation to hash collisions means that arbitrary bit conditions (except
for #) can be specified for the input values. In one of the intermediate iterations,
we enforce a difference using one of the bit conditions {𝑢, 𝑛, 𝑥}. This excludes
trivial solutions with no differences from the set of possible solutions. And the
final values need to lack differences thus are represented using a dash -.

Δ𝑥 conjunctive normal form Δ𝑥 conjunctive normal form
# (𝑥) ∧ (¬𝑥) 1 (𝑥) ∧ (𝑥∗)
0 (¬𝑥) ∧ (¬𝑥∗) - ¬(𝑥 ⊕ 𝑥∗)
u (𝑥) ∧ (¬𝑥∗) A (𝑥)
3 (¬𝑥∗) B (𝑥 ∨ ¬𝑥∗)
n (¬𝑥) ∧ (𝑥∗) C (𝑥∗)
5 (¬𝑥) D (¬𝑥 ∨ 𝑥∗)
x (𝑥 ⊕ 𝑥∗) E (𝑥 ∨ 𝑥∗)
7 (¬𝑥 ∨ ¬𝑥∗) ?

Table 3.4: All bit conditions represented as CNF using two Boolean variables 𝑥 and 𝑥∗ to
represent two bits.

3.4 A simple addition example

Using this notation, we can now reason about the behavior of functions on differ-
ential values. We start with 1-bit addition as basic exercise to the reader. Consider
a matrix with two input rows and one output row. The values of the first two rows
are added such that the bit difference at the third row is created.

-
-

-
⇒

00
00

00

00
00

11

00
11

00

00
11

11

11
00

00

11
00

11

11
11

00

11
11

11

Figure 3.2: A simple 1-bit addition example: On the left the differential characteristic is
given. Two dashes, by definition, denote a missing difference in both arguments. The
result of the addition must never show a difference. This yields eight possible bit
configurations where two values close to each other denote (𝑀,𝑀∗) of Figure 3.1. Due to
the behavior of addition, we know that configurations 2, 3, 5 and 8 (from left to right) are
invalid.
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Figure 3.2 illustrates this example. Remember that symbols such as - and 0
underlie semantics defined in Table 3.2. It is also interesting to see how propagation
of values can work. In Figure 3.3 we see how an underspecified value ? can be
strengthened once we have checked which values can be taken. Recognize that the
system is constrained by the function in use and the definition of the differential
symbols.

-
-

?
⇒

00
00

00

00
11

11

11
00

11

11
11

00

Figure 3.3: Like Figure 3.2, but any difference value for the result bit is possible. As such
we consider any possible bit configuration, but eventually recognize that only four bit
configurations are consistent with the behavior of addition. Because all resulting
configurations show no bit difference in the output bit, we can strengthen ? by replacing
it with -. This illustrates how knowledge about differential states can be propagated.

Finally, we can extend our testcases to 4 bits and retrieve testcases such as
Figures 3.4 and 3.5.

A: 0011
B: 0101
S: 1000

A: ---x
B: ---x
S: ????

A: ---x
B: ---x
S: ???-

A: ---x
B: ---x
S: x???

A: 0011
B: 0101
S: 0000

A: ---x
B: ---x
S: ???x

A: ----
B: ---x
S: x-??

Figure 3.4: Testcases for 4-bit addition: The upper line shows valid differential
characteristics for 4-bit addition whereas the lower line show invalid ones for 4-bit
addition. The rows are conventionally named using capital letters.

A: ----
S: 0000

A: 7C-3
S: -3u?

A: 0uCD
S: ADC7

A: ---x
S: 0000

A: xxxx
S: 0000

Figure 3.5: Differential characteristics for the SHA-2 Sigma function. The upper line
shows valid states. The lower line shows invalid ones.
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3.5 Differential characteristics in action

In the previous section, we illustrated how propagation with differential values
works and how differential characteristics are written down. It is always important
to keep in mind which function the characteristic illustrates, because this is not
documented with the characteristic.

Now consider MD4 as defined in Section 2.2. MD4 takes some input message
(in our case limited to size of one block), the state variables are initialized and
iteratively new 𝐴𝑖 are computed.

Similarly, SHA-256 takes a message block 𝑀 and initializes eight variables
with an initial vector (IV). The remaining 𝑊𝑖 are computed and iteratively, values
𝐴𝑖 and 𝐸𝑖 are computed.

Those values are structured in differential characteristics illustrated in Fig-
ure 3.6. Those layouts are used to specify our hash collisions we want to evaluate.
Table 3.5 also gives an application of the layout.

-4 A:
-3 A:
-2 A:
-1 A:
 0 A:
 1 A:
 2 A:
 3 A:
 4 A:
 5 A:
 6 A:
 7 A:
 8 A:
 9 A:
10 A:
11 A:
12 A:
13 A:
14 A:
15 A:
16 A:
17 A:
18 A:
19 A:
20 A:
21 A:
22 A:
23 A:
24 A:
25 A:
26 A:
27 A:
28 A:
29 A:
30 A:
31 A:
32 A:
33 A:
34 A:
35 A:
36 A:
37 A:
38 A:
39 A:
40 A:
41 A:
42 A:
43 A:
44 A:
45 A:
46 A:
47 A:

IV
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:
W:

M

Ai

-4 A:
-3 A:
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-1 A:
 0 A:
 1 A:
 2 A:
 3 A:
 4 A:
 5 A:
 6 A:
 7 A:
 8 A:
 9 A:
10 A:
11 A:
12 A:
13 A:
14 A:
15 A:
16 A:
17 A:
18 A:
19 A:
20 A:
21 A:
22 A:
23 A:
24 A:
25 A:
26 A:
27 A:
28 A:
29 A:
30 A:
31 A:
32 A:
33 A:
34 A:
35 A:
36 A:
37 A:
38 A:
39 A:
40 A:
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42 A:
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44 A:
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48 A:
49 A:
50 A:
51 A:
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54 A:
55 A:
56 A:
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58 A:
59 A:
60 A:
61 A:
62 A:
63 A: 

IV
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
E:
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M

Wi

Figure 3.6: Layout of MD4 (left) and SHA-256 (right) differential characteristics
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𝑖 ∇𝑆𝑖,0 ∇𝑆𝑖,1 ∇𝑆𝑖,2
-4 A: 01100111010001010010001100000001
-3 A: 00010000001100100101010001110110
-2 A: 10011000101110101101110011111110
-1 A: 11101111110011011010101110001001
0 A: 01101011110101001110010000010010 W: 01001101011110101001110010000011
1 A: 0111011001001111111011100u110001 W: u1010110110010111001001001111010
2 A: 101010110100000001110u01n1110010 W: n01n1001110101011010010101111000
3 A: 101011u1001111010101001001010001 W: 01010111101001111010010111101110
4 A: 00101100011000110101010111110010 W: 11011110011101001000101000111100
5 A: 000110100110001010u1101000000001 W: 11011100110000110110011010110011
6 A: 0001101100unuu110001000001111010 W: ????????????????????????????????
7 A: 00101011100000010unn011001010000 W: 00111011001010100101110110011111
8 A: ???????????????????????????????? W: 11000110100111010111000110110011
9 A: ???????????????????????????????? W: 11111001111010011001000110011000
10 A: 10n0010010000101?????????????110 W: 11010111100111111000000001011110
11 A: u100011010110110?????????????111 W: 10100110001110111011001011101000
12 A: 001011u00u101011?????????????011 W: 010001011101110n1000111000110001
13 A: 10un1n0100110001?????????????101 W: 10010111111000110001111111100101
14 A: 0000101001010001-------------110 W: 00100111100101001011111100001000
15 A: 0001111010101u01-------------100 W: 10111001111010001100001111101001
16 A: n00n0un011010010-------------111
17 A: 0001111100111010-------------110
18 A: 0101011100001101-------------100
19 A: u1n1000000010111-------------100
20 A: n1un1001111111011101000000110100
21 A: 11110011101100000101111111010100
22 A: 01011101110011010011001100111010
23 A: 01010000111011101100011110001111
24 A: 00000010000100100011011100011010
25 A: 10110000100101100001010011101010
26 A: 00001010100010010111011101000001
27 A: 00000110111011110101101010110011
28 A: 10110110010111010110110000100101
29 A: 10100010000011010100100001101001
30 A: 00101001110101111100011101100011
31 A: 11111100100100101101011110110110
32 A: 01001111110100100110100000101111
33 A: 00111000001111010110111011100100
34 A: 00100000011101011110100000010101
35 A: n0100000001100110000010001110010
36 A: n0000111111010111101111001011001
37 A: 11001000000110100100001100001100
38 A: 10110000011001111110100110101100
39 A: 00010010000010100001101100011100
40 A: 11000000010010000111000110000101
41 A: 00000110100001101111010100100110
42 A: 01001110110111011111111010000110
43 A: 01010000011000111101000001101101
44 A: 11111000000101101111011100001100
45 A: 10001010110110110010110000000100
46 A: 10000010100110010101100011011100
47 A: 10000001111001011011010010111101

⇒

𝑖 ∇𝑆𝑖,0 ∇𝑆𝑖,1 ∇𝑆𝑖,2
-4 A: 01100111010001010010001100000001
-3 A: 00010000001100100101010001110110
-2 A: 10011000101110101101110011111110
-1 A: 11101111110011011010101110001001
0 A: 01101011110101001110010000010010 W: 01001101011110101001110010000011
1 A: 0111011001001111111011100u110001 W: u1010110110010111001001001111010
2 A: 101010110100000001110u01n1110010 W: n01n1001110101011010010101111000
3 A: 101011u1001111010101001001010001 W: 01010111101001111010010111101110
4 A: 00101100011000110101010111110010 W: 11011110011101001000101000111100
5 A: 000110100110001010u1101000000001 W: 11011100110000110110011010110011
6 A: 0001101100unuu110001000001111010 W: 10110110100000111010000000100000
7 A: 00101011100000010unn011001010000 W: 00111011001010100101110110011111
8 A: 011100110010001u1111111110110000 W: 11000110100111010111000110110011
9 A: 101011n01unnu0001111100110011111 W: 11111001111010011001000110011000

10 A: 10n00100100001010100000010101110 W: 11010111100111111000000001011110
11 A: u1000110101101100100101011111111 W: 10100110001110111011001011101000
12 A: 001011u00u1010111111110001111011 W: 010001011101110n1000111000110001
13 A: 10un1n01001100010100000111100101 W: 10010111111000110001111111100101
14 A: 00001010010100011000100011010110 W: 00100111100101001011111100001000
15 A: 0001111010101u010110011011010100 W: 10111001111010001100001111101001
16 A: n00n0un0110100101001101101011111
17 A: 00011111001110100001001000011110
18 A: 01010111000011010000000010010100
19 A: u1n10000000101111001101011000100
20 A: n1un1001111111011101000000110100
21 A: 11110011101100000101111111010100
22 A: 01011101110011010011001100111010
23 A: 01010000111011101100011110001111
24 A: 00000010000100100011011100011010
25 A: 10110000100101100001010011101010
26 A: 00001010100010010111011101000001
27 A: 00000110111011110101101010110011
28 A: 10110110010111010110110000100101
29 A: 10100010000011010100100001101001
30 A: 00101001110101111100011101100011
31 A: 11111100100100101101011110110110
32 A: 01001111110100100110100000101111
33 A: 00111000001111010110111011100100
34 A: 00100000011101011110100000010101
35 A: n0100000001100110000010001110010
36 A: n0000111111010111101111001011001
37 A: 11001000000110100100001100001100
38 A: 10110000011001111110100110101100
39 A: 00010010000010100001101100011100
40 A: 11000000010010000111000110000101
41 A: 00000110100001101111010100100110
42 A: 01001110110111011111111010000110
43 A: 01010000011000111101000001101101
44 A: 11111000000101101111011100001100
45 A: 10001010110110110010110000000100
46 A: 10000010100110010101100011011100
47 A: 10000001111001011011010010111101

Table 3.5: One of the original MD4 collisions by Wang et al, with a few bits
underspecified (left) and propagated values (right). The question marks indicate that any
bit configuration for the two bits are possible. Dashes indicate that the bits have the same
configuration in both instances, but the value itself is unknown. However, it turns out the
description with missing values in iteration 6 (message) and iterations 8–19 is complete
enough such that missing values can be deduced by other values and the description of
the algorithm. A collision is given in the last 4 rounds, because no differences are left as
they cancel out after round 36.



“What idiot called them logic
errors rather than bool shit?”

—Unknown

Chapter 4

Satisfiability

Boolean algebra allows us to describe functions over two-valued variables. Satis-
fiability is the question for an assignment such that a function evaluates to true.
Satisfiability problems are solved by SAT solvers. We discuss the basic theory
behind satisfiability. Because any computation can be represented as satisfiability
problem, we are able to verify whether an algorithm can reach a certain state. In
Chapter 6, we will represent a differential cryptanalysis problem such that it is
solvable iff the corresponding SAT problem is satisfiable.

4.1 Basic notation and definitions

Definition 4.1 (Boolean function)

A Boolean function is a mapping ℎ ∶ 𝑋 → 𝑌 with 𝑋 = {0, 1}𝑛 for 𝑛 ∈N≥1 and
𝑌 = {0, 1}.

Definition 4.2 (Assignment)

A 𝑘-assignment is an element of {0, 1}𝑘.
Let 𝑓 be some 𝑘-ary Boolean function. An assignment for function 𝑓 is any
𝑘-assignment.

Definition 4.3 (Truth table)
Let 𝑓 be some 𝑘-ary Boolean function. The truth table of Boolean function 𝑓
assigns truth value 0 or 1 to any assignment of 𝑓 .

19
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𝑥1 𝑥2 𝑓 (𝑥1, 𝑥2)
1 1 1
1 0 0
0 1 0
0 0 0

(a) AND

𝑥1 𝑥2 𝑓 (𝑥1, 𝑥2)
1 1 1
1 0 1
0 1 1
0 0 0

(b) OR

𝑥 𝑓 (𝑥)
1 0
0 1
(c) NOT

Table 4.1: Truth tables for AND, OR and NOT

Boolean functions are characterized by their corresponding truth table.

Table 4.1 shows example truth tables for the Boolean AND, OR and NOT functions.
A different definition of the three functions is given the following way:
Definition 4.4

Let AND, OR and NOT be three Boolean functions.
• AND maps 𝑋 = {0, 1}2 to 1 if all values of 𝑋 are 1.
• OR maps 𝑋 = {0, 1}2 to 1 if any value of 𝑋 is 1.
• NOT maps 𝑋 = {0, 1}1 to 1 if the single value of 𝑋 is 0.

All functions return 0 in the other case. Those functions are denoted 𝑎0 ∧ 𝑎1,
𝑎0 ∨ 𝑎1 and ¬𝑎0 respectively, for input parameters 𝑎0 and 𝑎1.

It is interesting to observe, that any Boolean function can be represented using
only these three operators. This can be proven by complete induction over the
number of arguments 𝑘 of the function.

Let 𝑘 = 1. Then we consider any possible 2-assignment for one input variable
𝑥1 and one value of 𝑓 (𝑥1). Then four truth tables are possible listed in Table 4.2.
The description shows the corresponding definition of 𝑓 using AND, OR and NOT
only.

Now let 𝑔 be some 𝑘-ary function. Let (𝑎0, 𝑎1, … , 𝑎𝑘) be the 𝑘 input arguments
to 𝑔 and 𝑥1 B 𝑔(𝑎0, 𝑎1, … , 𝑎𝑘). Then we can again look at Table 4.2 to discover that
4 cases are possible: 2 cases where the return value of our new (𝑘+1)-ary function
depends on value 𝑥1 and 2 cases where the return value is constant.

This completes our proof.

𝑥1 𝑓 (𝑥1)
1 1
0 1
(a) 𝑓 ∶ 𝑥 ↦ 1

𝑥1 𝑓 (𝑥1)
1 1
0 0
(b) 𝑓 ∶ 𝑥 ↦ 𝑥

𝑥1 𝑓 (𝑥1)
1 0
0 1

(c) 𝑓 ∶ 𝑥 ↦ ¬𝑥

𝑥1 𝑓 (𝑥1)
1 0
0 0
(d) 𝑓 ∶ 𝑥 ↦ 0

Table 4.2: Unary 𝑓 and its four possible cases
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Boolean functions have an important property which is described in the fol-
lowing definition:
Definition 4.5

A Boolean function 𝑓 is satisfiable iff there exists at least one input 𝑥 ∈ 𝑋 such
that 𝑓 (𝑥) = 1. Every input 𝑥 ∈ 𝑋 satisfying this property is called model.

The corresponding tool to determine satisfiability is defined as follows:
Definition 4.6

A SAT solver is a tool to determine satisfiability (SAT or UNSAT) of a Boolean
function. If satisfiability is given, it returns some model.

4.1.1 Computational considerations

The generic complexity of SAT determination is given by 2𝑛 for 𝑛 Boolean variables.

Let 𝑛 be the number of variables of a Boolean function. No known algorithm
exists to determine satisfiability in polynomial runtime. This means no algorithm
solves the SAT problem with runtime behavior which depends polynomially on the
growth of 𝑛. However, SAT solvers can take advantage of the problem’s description.
For example, consider function 𝑓 :

𝑓 (𝑥0, 𝑥1, 𝑥2) = 𝑥0 ∧ (¬𝑥1 ∨ 𝑥2) (4.1)

Instead of trying all possible 8 cases for 3 Boolean variables, we can immediately
see that 𝑥0 is required to be 1. So we don’t need to test 𝑥0 = 0 and can skip 4 cases.
This particular strategy is called unit propagation.

4.1.2 SAT competitions

SAT research is heavily concerned with finding fast heuristics determining (un)sat-
isfiability. Biyearly, SAT competitions [30] take place to challenge SAT solvers in
a set of benchmarks. The committee evaluates the most successful SAT solvers
defined by solving the most problems within a given time frame.

In 2014, lingeling by Armin Biere has won first prize in the Application bench-
marks track and second prize in the Hard Combinatorial benchmarks track for
SAT and UNSAT instances, respectively. Its parallelized sibling plingeling and
Cube & Conquer sibling treengeling have won prizes in parallel settings. And in
the most recent 2016 competition lingeling has won bronze in the Main track for
SAT+UNSAT instances.

In Chapter 7, we will discuss runtime results shown by (but not limited to)
those SAT solvers.
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4.2 The DIMACS de-facto standard

Definition 4.7
A SAT problem is given in Conjunctive Normal Form (CNF) if the problem is
defined as conjunction of disjunctions of literals.

A conjunction is a sequence of Boolean functions combined using a logical
AND. A disjunction is a sequence of Boolean functions combined using a logical
OR. A literal is a Boolean variable (positive) or its negation (negative).

A simple example for a SAT problem in CNF is the exclusive OR (XOR). It takes
two Boolean values 𝑎 and 𝑏 as arguments and returns true if and only if the two
arguments differ:

(𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ ¬𝑏) (4.2)

It consists of one conjunction (denoted ∧) of two disjunctions (denoted ∨) of
literals (denoted 𝑎 and 𝑏 where prefix ¬ represents negation). This structure
constitutes a CNF.

Analogously, we define a Disjunctive Normal Form (DNF) as disjunction of
conjunctions of literals. The negation of a CNF is in DNF, because literals are
negated and conjunctions become disjunctions, vice versa.
Theorem 4.1

Every Boolean function can be represented as CNF.

Theorem 4.1 is easy to prove. Consider the truth table of an arbitrary Boolean
function 𝑓 with 𝑘 input arguments and 𝑗 rows of output value false. We represent
𝑓 as CNF.

Consider Boolean variables 𝑏𝑖,𝑙 with 0 ≤ 𝑖 ≤ 𝑗 and 0 ≤ 𝑙 ≤ 𝑘. For every row
𝑖 of the truth table with assignment (𝑟𝑖), add one disjunction to the CNF. This
disjunction contains 𝑏𝑖,𝑙 if 𝑟𝑖,𝑙 is false. The disjunction contains 𝑏𝑖,𝑙 if 𝑟𝑖,𝑙 is true.

As far as 𝑓 is an arbitrary 𝑘-ary Boolean function, we have proven that any
Boolean function can be represented as CNF.

SAT problems are usually represented in the DIMACS de-facto standard. Con-
sider a SAT problem in CNF with nbclauses clauses and enumerate all variables
from 1 to nbvars. A DIMACS file is an ASCII text file. Lines starting with “c”
are skipped (comment lines). The first remaining line has to begin with “p cnf”
followed by nbclauses and nbvars separated by spaces (header line). All following
non-comment lines are space-separated indices of Boolean variables optionally
prefixed by a hyphen. Then one line represents one clause and must be terminated
with a zero character after a space. All lines are conjuncted to form a CNF.

Variations of the DIMACS de-facto standard also allow multiline clauses (the



CHAPTER 4. SATISFIABILITY 23

zero character constitutes the end of a clause) or arbitrary whitespace instead
of spaces. Another variant terminates DIMACS files once it encounters a single
percent sign on a line. The syntactical details are individually published on a per
competition basis.

Listing 4.1: CNF of the XOR in Display (4.2)
p cnf 2 2
a b
-a -b

4.3 Terminology

Given a conjunctive structure of disjunctions, we can define terms related to this
structure. Those terms will be used in the SAT features we present in Section 5.4.
Definition 4.8

A clause is a disjunction of literals. A 𝑘-clause is a clause consisting of exactly
𝑘 literals. A unit clause is a 1-clause.

A Horn clause is a clause with at most one positive literal. A definite clause
is a clause with exactly one positive literal. A goal clause is a clause with no
positive literal.

Definition 4.9
Given a literal, its negated literal is the literal with its sign negated. A literal is
positive, if its sign is positive. A literal is negative if its sign is negative.

An existential literal is a literal which occurs exactly once and its negation
does not occur. A used variable is a variable which occurs at least once in the
CNF.

The literal frequency is the number of occurences of a literal in the CNF
divided by the number of clauses declared. Equivalently variable frequency
defines the number of variable occurences divided by the number of clauses
declared.

Definition 4.10
The clause length of a clause is the number of literals contained. A clause is
called tautological if a literal and its negated literal occurs in it.

A few basic properties hold in terms of satisfiability. For example, existential
literals are interesting, because they can be set to true and make one clause
immediately satisfied without influencing other clauses.
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4.4 Basic SAT solving techniques

Definition 4.11
Given two CNFs 𝐴 and 𝐵, they are called equisatisfiable iff 𝐴 is satisfiable iff 𝐵.

4.4.1 Boolean constraint propagation (BCP)

One of the most basic techniques to SAT solving is Boolean Constraint Propagation,
also called unit propagation. It is so fundamental that SATzilla, introduced in
Section 5.2, applies it immediately before looking at SAT features.

Let 𝑙 be the literal of a unit clause in a CNF. Remove any clause containing 𝑙
and replace any occurences of −𝑙 from the CNF. It is easy to see, that the resulting
CNF is equisatisfiable, because due to the unit clause 𝑙 must be true. So any clause
containing 𝑙 is satisfied and −𝑙 yields false, where (𝐴∨ false) is equivalent to (𝐴)
for any Boolean function 𝐴.

4.4.2 Watched Literals

Watched Literals are another fundamental concept in SAT solving. It is very
expensive to check satisfiability of all clauses for every assigned value of a literal.
Watched Literals is a neat technique to reduce the number of checks.

In each clause two unassigned literals are declared to be “watched”. Structurally
it is implemented the other way around: A clauses watch list is maintained per
literal. Now as long as at least two literals are unassigned, the clause cannot
become false (recognize that a clause is false iff all literals are false). Therefore the
clause does not need to be visited as long as at least one unassigned literal exist.
This implies the following decision procedure:

• If all but one literal is false, propagate the remaining literal to be true.

• If all literals are false, report UNSAT.

• If any literal becomes true, watched literals do not change.

• Else replace the literal on the watch list with a remaining unassigned literal.

This empirical approachwas establishedwith the Chaff and zChaff SAT solvers [19]
and has proven useful in various variants.
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4.4.3 Remark

The previous two techniques illustrate basic approaches, but actual SAT solving
research requires decades of development to tune individual SAT solvers. Mem-
ory models and concurrency strategies lead to fundamentally different runtime
behaviors of SAT solvers.

As such, an initial idea to initiate an individual SAT solver specifically de-
signed for solving problems in differential cryptanalysis was dropped, because
development time is expected too long for a master thesis to be fruitful. As such
we focused on popular and established SAT solvers of the SAT community.

4.5 SAT solvers in use

In this thesis, we considered several SAT solvers. They have been selected either
by their popularity or their good results at previous SAT competitions:

• MiniSat 2.2.0

• CryptoMiniSat versions 4.5.3 and 5

• treengeling, lingeling and plingeling, in versions:

– lingeling ats1
– lingeling ats1o1
– lingeling ats1o2
– lingeling ats1o4
– lingeling baz

• glucose version 4.0 and glucose syrup version 4.0

This means the hash collision attacks we implemented have run with these
SAT solvers. The results are discussed in Chapter 7 and a more comprehensive list
is provided in Appendix C.

MiniSat is known as “Swiss army knife of SAT solving” meaning that it includes
many well-established techniques that can be built upon. SAT competitions 2009,
2011, 2013 and 2014 included a special MiniSat “hack track” where participants are
asked to modify MiniSat to prove the best performance with as little change to the
MiniSat codebase as possible. Even though is not one of the fastest SAT solvers
today, it provides a nice codebase to experiment with.

CryptoMiniSat is a derivative of MiniSat, which was originally modified for
cryptographic problems. It features XOR clauses meaning that binary clauses of
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structure 𝑎 ⊕ 𝑏 could be added and will be resolved using Gaussian elimination.
Please recognize that our encoding introduced in Section 6.2 uses equivalence to
model assignment and as such only clauses of structure 𝑟 = 𝑎⊕𝑏 emerge rendering
this feature impractical to use.

Glucose was the gold winner 2011 in the SAT+UNSAT application track. Mod-
ifications of glucose also ranked high throughout the years of SAT competition.
Glucose is a sequential SAT solver whereas glucose syrup is its parallelized version.

Lingeling is SAT solver developed by Armin Biere. Lingeling has been the
winner of several tracks in the SAT competitions 2011 to 2016. For example, it has
won gold in the SAT+UNSAT application track in 2014. Lingeling has two siblings:
plingeling and treengeling. plingeling is a parallelized version of lingeling. As
such it executes in multiple threads and shares units and equivalences between
those instances. treengeling is a Cube & Conquer solver meaning it partitions the
problem into many subproblems and solves them individually.

Lingeling releases ats1o1, ats1o2 and ats1o4 are non-public, experimental re-
leases of lingeling. They have been developed in private communication with
Armin Biere. Our main goal was to achieve a separation between two sets of vari-
ables. First, all variables of the first need to be assigned in the best possible way.
Afterwards, the second set of variables is considered. Specifically variables mod-
elling the differences between the two hash algorithm instances should constitute
the first set as discussed in Chapter 6.

Lingeling ats1o1 implements the strategy to guess difference variables first
(with Boolean value false) and usual heuristics apply for all other variables. Our
intermediate results with incomplete CNF files showed a high number of restarts.
Therefore ats1o2 disables backjumping and therefore skips decisions for important
variables. Finally ats1o4 is not expected to distinguish from ats1o2. It only provides
further debugging information.

The SAT solvers have generally been run without any special options and
several times, except for

• MiniSat was run with pre=once as it is generally recommended to run with
the builtin preprocessor.

• Lingeling has been generally run with phase=0 per default and phase=-1
to prefer false as initial assignment to literals. However, lingeling ats1o1
implements this with a more forceful strategy.

Preprocessing is a difficult topic on its own. Sometimes preprocessing can
provide a speedup, before actually solving the problem, but mostly SAT solvers
implement preprocessing strategies themselves and run them repeatedly when
solving the problem. Chapter 7 presents runtime results for that issue.



“To be usable effectively […] these
features must be related to

instance hardness and relatively
cheap to compute”

—SATzilla

Chapter 5

SAT features

At the very beginning, I was very intrigued by the question “What is an ‘average’
SAT problem?”. Answers to this question can help to optimize SAT solver memory
layouts and find distinctive properties of CNFs. Specifically for this thesis, I wanted
to find out whether our problems distinguish from “average” problems in any way
such that we can use this distinction for runtime optimization.

I came up with 8 questions related to basic properties of SAT problems we will
discuss in depth in this section. We will characterize an average SAT problem in
Section 5.7:

1. Given an arbitrary literal. What is the percentage it is positive?

2. What is the clauses / variables ratio?

3. How many literals occur only once either positive or negative?

4. What is the average and longest clause length among CNF benchmarks?

5. How many Horn clauses exist in a CNF?

6. Are there any tautological clauses?

7. Are there any CNF files with more than one connected variable component?

8. How many variables of a CNF are covered by unit clauses?

We will now define the terms used in those questions.

27
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5.1 Definition

Definition 5.1 (SAT feature)
A SAT feature is a statistical value (named feature value) retrievable from some
given SAT problem.

The most basic example of a SAT feature is the number of variables and clauses
of a given SAT problem. This SAT feature is stored in the CNF header of a SAT
problem encoded in the DIMACS format.

The general goal is to write a tool which evaluates several SAT features at the
same time and retrieves them for comparison with other problems. Therefore it
should be computationally easy to evaluate SAT features of a given SAT problem.
A suggested computational limit is given with polynomial complexity in terms
of number of variables and number of clauses for memory as well as runtime.
Sticking to this convention implies that evaluation of satisfiability must not be
necessary to evaluate a SAT feature as long as no polynomial algorithm to deter-
mine satisfiability can be found. Hence the number of valid models cannot be
a SAT feature as far as satisfiability needs to be determined. But no actual hard
computational limit is defined.

5.2 Related work

The most similar resource I found—looking at SAT features—was the SATzilla
project [22, 36] in 2012. The authors used 91 SAT features categorized in 9 groups,
originally described by Nudelman, et al. [23]. Some features are only evaluated if
they can be evaluated within a given time frame (e.g. 20 seconds).

The following list provides an excerpt of the features:

nvarsOrig number of variables defined in the CNF header

nvars number of active variables

reducedVars nvarsOrig reduced by nvars, divided by nvars

vars-clauses-ratio nvars divided by the number of active clauses

POSNEG-RATIO-CLAUSE-mean clause mean of 2 ⋅ 0.5 − pos/length where
pos is the number of positive literals and length its clause length

POSNEG-RATIO-CLAUSE-entropy like POSNEG-RATIO-CLAUSE-mean but
its Shannon entropy
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TRINARY+ number of clauses with clause length 1, 2 or 3 divided by number of
active clauses

HORNY-VAR-min minimum number of times a variable occurs in a Horn clause

cluster-coeff-mean let neighbors of a clause be all clauses containing any literal
negated and let clauses 𝑐1 and 𝑐2 be conflicting if 𝑐1 contains literal 𝑙 and
𝑐2 contains −𝑙, then return the mean of two times the number of conflict-
ing neighbors of a clause 𝑐 divided by the number of unordered pairs of
neighbors; returned iff computable within 20 seconds for all clauses

Please recognize that active clauses are the unsatisfied clauses after BCP has
been applied. Equivalently active variables are remaining variables after applica-
tion of BCP.

The SAT solvers we use (Section 4.5), also compute features they use when
computing a solution. For example, CryptoMiniSat 4.5.3 prints lines such as:

c [features] numVars 56118, numClauses 358991, var_cl_ratio 0.156,
binary 0.019, trinary 0.520, horn 0.387, horn_mean 0.000, horn_std
0.000, horn_min 0.000, horn_max 0.000, horn_spread 0.000,
vcg_var_mean 0.000, vcg_var_std 0.902, vcg_var_min 0.000,
vcg_var_max 0.000, vcg_var_spread -0.000, vcg_cls_mean 0.000,
...

Even though we will partially use equivalent features (like Horn clauses), many
are actually related to the current state of evaluation like decisions per conflicts.
We consider this as a property of the evaluation and not the SAT problem itself.

Many SAT solvers collect feature values to improve algorithm selection, restart
strategies and estimate problem sizes. Recent trends to apply Machine Learning to
SAT solving imply feature evaluation. SAT features and the resulting satisfiability
runtimes are used as training data for Machine Learning. Another SAT solver
using SAT features heavily for algorithm selection besides SATzilla is ASlib [1].

5.3 Statistical properties

For our SAT features we need to define some basic statistical terminology. Let
𝑥1, 𝑥2, … , 𝑥𝑛 be a sequence of real numbers (𝑛 ∈N).

Arithmetic mean (or mean for short) is defined as

𝑥 =
1
𝑛

𝑛

𝑖=1

𝑥𝑖
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Standard deviation (or sd for short) with mean 𝑥 is defined as

𝜎(𝑥) =


1
𝑛

𝑛

𝑖=1

(𝑥𝑖 − 𝑥)

Median with 𝑥1 ≤ 𝑥2 ≤ … ≤ 𝑥𝑛 (i.e. sorted ascendingly) is defined as

𝑚 =
⎧⎪
⎨⎪⎩

𝑥|mid|+1 if 𝑛 odd
𝑥mid+𝑥mid+1

2 if 𝑛 even
with mid =

𝑛
2

and often considered more “robust” than the arithmetic mean.

Entropy is defined according to Claude Shannon’s information theory:

𝐻(𝑥) = −
𝑛

𝑖=1

𝑥𝑖 ⋅ 𝑙𝑜𝑔2(𝑥𝑖)

where 0 ⋅ 𝑙𝑜𝑔2(0) B 0.

Furthermore count refers to the number of elements 𝑛, largest refers to the
maximum element 𝑚𝑎𝑥1≤𝑖≤𝑛(𝑥𝑖) and smallest refers to the minimum element
𝑚𝑖𝑛1≤𝑖≤𝑛(𝑥𝑖).

5.4 Suggested SAT features

Wewrote a tool called cnf-analysis. The evaluated features are partially inspired by
SATzilla and lingeling. The latter prints basic statistics for every CNF it evaluates.

A summary of our suggested SAT features is given:

clause_variables_sd_mean
mean of sd of variables in a clause

clauses_length_(largest, smallest, mean, median, sd)
statistics related to the clause length

connected_(literal, variable)_components_count
two literals (variables) are connected if they occur in some clause together,
count the number of connected components

definite_clauses_count
number of definite clauses in the CNF

existential_literals_count
number of existential literals in the CNF
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existential_positive_literals_count
number of positive, existential literals in the CNF

(false, true)_trivial
is the CNF satisfied if all variables are claimed to be false (true)?

goal_clauses_count
number of goal clauses in the CNF

literals_count
number of literals in the CNF (i.e. sum of clause lengths)

literals_frequency_𝑘_to_𝑘 + 5
let 𝑛𝑙 be the literal frequency of literal 𝑙, count the number of 𝑛𝑙 satisfying
𝑘

100 ≤ 𝑛𝑙 <
𝑘+5
100 where 𝑘 is a variable in {0, 5, 10, … , 90, 95} and 𝑘 = 95

counts 𝑘
100 ≤ 𝑛𝑙.

literals_frequency_(largest, smallest, mean, median, sd)_entropy
statistics related to literal frequencies

literals_occurence_one_count
number of literals with occurence 1

nbclauses, nbvars number of clauses (variables) as defined in the CNF header

negative_literals_in_clause_(smallest, largest, mean)
statistics related to number of negative literals in clauses

(positive, negative)_unit_clause_count
number of unit clauses with a positive (negative) literal

positive_literals_count
number of positive literals in CNF

positive_literals_in_clause_(largest, smallest, mean, median, sd)
statistics related to number of positive literals in clauses

positive_negative_literals_in_clause_ratio_(mean, entropy)
let 𝑟𝑐 be the number of positive literals divided by clause length of clause 𝑐,
mean and related of all 𝑟𝑐

positive_negative_literals_in_clause_ratio_mean
mean of all 𝑟𝑐

tautological_literals_count
number of clauses which contain a tautological literal

two_literals_clause_count
number of clauses with two literals
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variables_frequency_𝑘_to_𝑘 + 5
same as literals_frequency_𝑘_to_𝑘 + 5 but for variables

variables_frequency_(largest, smallest, mean, median, sd, entropy)
same as literals_frequency but for variables

variables_used_count
number of variables with occurence greater 0

5.5 Evaluation efficiency

The resource requirements of those features have been classified:

Type 1 read the files as bytestring, a DIMACS CNF parser is not necessary, con-
stant memory is used

Type 2 features understand what a clause is, but still need constant memory

Type 3 subquadratic runtime and linear memory

Type 4 unrestricted

Memory and runtime is always considered in comparison with the filesize.

This classification should support computational considerations regarding
feature evaluation tools. The suggested SAT features above have been explicitly
selected to avoid Type 4 implementations to limit the time to compute features.
Furthermore tools evaluating only a subset of features (like Type 2 features) can
achieve better performance characteristics than general-purpose tools. For exam-
ple, we wrote a dedicated tool to evaluate the maximum clause length of CNF files,
which was much faster (175 GB, 1.5 hours).

The Python implementation triggered MemoryErrors on a computer with 4 GB
RAM for a 770 MB CNF file. Followingly a much more efficient Go implemen-
tation was implemented which requires much less memory and is much faster.
bench_573.smt2.cnf (1.6 MB filesize) took 1 second in Go instead of 2 minutes
in Python. However, the data evaluated is less accurate compared to Python in
terms of floating point precision, because Python unlike Go provides a nice imple-
mentation of statistical tools in the standard library. Go algorithms were written
on our own.

In the following section, we define the dataset we consider.
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5.6 CNF dataset

To evaluate CNF features of a representative set of CNF files, it was necessary
to identify equivalent CNF files in the best possible way. Therefore we defined
a hashing algorithm standardizing the CNF input provided to a SHA1 instance.
Every CNF file is identifiable by its “cnfhash 2.0.0” hash value.

In the next step a complete set of CNF files of previous SAT competitions was
collected. The following CNF file collections have been considered:

• SAT Race 2008

• SAT09 Competition

• SAT-Race 2010

• SAT11 Competition

• SAT Challenge 2012

• SAT Competition 2013

• SAT Competition 2014

• SAT-Race 2015

• SAT Competition 2016

• SATlib [8]

The benchmarks are mostly contributed by the participants of the associated
conferences. Others are reused from previous years. Individual projects allow
to generate CNF files for specific problems in a selectable problem size; such as
CNFgen [13] by Massimo Lauria.

Some files turned out to be problematic. In SATlib, 3 gzipped files couldn’t
be decompressed and several files contain empty clauses. Empty clauses are
assumed to immediately falsify the CNF. We removed empty clauses and evaluated
the remaining CNF. I removed trailing zeros in CNFs. Variants of the DIMACS
standard also expect lines with a percent symbol to terminate the CNF. Beside
those minor issues documented as part of the cnf-analysis project, 175 gigabytes
of CNF files have been evaluated with a total of 68,069 CNF files (62,251 unique
CNF files).

5.7 The average SAT problem

Claim 5.1
The set of public benchmarks in SAT competitions between 2008 and 2015
represent average SAT problems

It is important to point out that public benchmark files are specifically chosen
to be evaluated before a conference is held. Hence they are expected to terminate
within a given time frame and are therefore not oversized. On the one hand this
ensures that the problems are feasible, but on the other hand they might be a



CHAPTER 5. SAT FEATURES 34

biased selection. At this point no better data set is available and therefore we
proceeded with this dataset.

According to my results, an average SAT problem consists of:

• 83,542 clauses in average ranging from 21 to 53,616,734 (median = 430, 𝜎 =
848,388)

• The longest clause we found had 61,473 literals, but the longest clause of an
average CNF covers 20 literals.

• The total number of literals in a CNF ranges from 60 up to 150,609,758.

• The clause-variables ratio lies between 1.22 and 27,720 with mean = 9.54 and
𝜎 = 139.

• The average length of a clause is expected to be 3. The largest clause length
mean we found was 19.58 compared to 2.83 as the smallest clause length
mean.

• Surprisingly, in average a CNF file has 205 connected literal components
and 53 connected variable components. However both corresponding me-
dians are 1 meaning that at least have of the problems still have only one
component. Component sizes have not been evaluated.

• In average, 32,787 clauses are definite and 35,094 clauses are goal clauses.

• In average, a literal occurs in 1.4 % of the clauses of the CNF.

• 47 % of literals in a clause are positive.

• The arithmetic mean tells 124 unit clauses per CNF file can be expected, but
the median tells it is mostly 0.

• The largest variable found was 13,842,706 and 13,829,558 variables were used
at most.

• Exactly one CNF file was true-trivial (namely dubois/dubois100.cnf of
SATlib) whereas 13 CNF files were false-trivial (of SAT competition 2014
and SAT-Race 2015).



“There is concensus that encoding
techniqes usually have a dramatic
impact on the efficiency of the SAT

solver”
—Magnus Björk

Chapter 6

Problem encoding

In Chapter 4, we already discussed how SAT solvers work and which input they
take. We also sketched how hash algorithm properties got broken using differential
cryptanalysis (Chapter 3). In this chapter, we combine those subjects and describe
how we run SAT solvers to find hash collisions.

We developed a basic prototype with the STP SMT solver. In the following,
we wanted to tweak the CNF used by the SAT solver and wrote our own library
algotocnf to generate CNFs modelling variable differences and their logic; as illus-
trated in Section 3. In the referred section, we distinguished 5 different approach.
We evaluate the performance of those approaches in Chapter 7.

Every section represents a major approach whereas subsections represent
derivatives of this approach with minor changes.

6.1 Basic approach

Our first approach started with Simple Theorem Prover (STP) [7] initially written
by Vijay Ganesh and David L. Dill. It is currently maintained by Mate Soos.

STP is an SMT solver which allows to declare bitvectors. A bitvector is an
array of Boolean variables providing high-level constructs such as additions or
right-shift through an interface. Writing all clauses individually to model a hash
algorithm is too cumbersome to be done in practice and STP simplifies this process.
STP is recommendable as a tool to model arithmetic and bitwise functions.

35
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First we wrote an implementation using the CVC language to model the MD4
hash algorithm. We provide a bitvector to the hash algorithm instance. When
applying the corresponding bitwise operations we generate expressions such as
ASSERT(y = 0bin00000101) to model the assignment of a constant. Here the
desired constant is assigned variable y, because of equivalence. y is required to
have the constant after this expression as value. Whereas we generate the ASSERT
statement, it is STP’s task to generate the CNF formula and solve it with a SAT
solver.

We take two hash algorithm instances and an additional bitvector diff for
every pair of bitvectors (bv1, bv2) where bv2 represents the corresponding bitvec-
tor of the second hash algorithm instance to bv1. We claim ASSERT(diff =
BVXOR(bv1, bv2)) to ensure that diff represents the difference between bv1 and
bv2. Given the bitconditions for a bitvector from a differential characteristic, we
require diff to enforce those particular differences. This corresponds to the idea
of differential cryptanalysis introduced in Chapter 3.

It is now trivial to consider a differential characteristic of MD4 such as Test-
case A (see Section B.1), where all differences are set, but the individual values in
both instances need to be assigned. We generated the corresponding CVC input
for STP. STP solves this particular problem within a second. Testcase B (compare
with Section B.2) already provides a more complex example taking 40 minutes to
solve, because not all differences are set. We used minisat as SAT solver in the
backend, even though STP allows to replace it for CryptoMiniSat which is a more
modern and versatile SAT solver.

Even though STP allows to come to useful results pretty quickly, it seems
cumbersome to model all hash algorithms in the CVC language. STP provides a
python interface meaning that pure Python implementations of hash algorithms
can be taken with little modifications to model the hash algorithm itself. We
add code to declare the difference bitvectors diff and finally add the constraints
resulting from the differential characteristic.

This interface switch introduces no significant performance difference.

As a next step, we wanted to improve the evaluation performance to tackle
more difficult problems such as SHA-256. We considered this design as a working
prototype of a basic approach to be improved upon.

STP seems not suited for our next goal, because we wanted to modify the
particular CNF generated for the SAT solver and needed good control over the
SAT encoding which we expected to have a major influence on the performance.
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6.2 algotocnf

We implemented our own library algotocnf to achieve greater flexibility in our
SAT encoding.

6.2.1 Two instances and its difference

Similar to STP, algotocnf generates a CNF for a given hash algorithm implemen-
tation. Besides modelling bitvectors, it also implements differential bitvectors
which inherently handle the difference bitvectors diff which contain difference
variables. It can also directly takes differential characteristics (such as Table 3.5,
specified in Chapter 3) as input. Similarly to STP, it implements arithmetic and
bitwise operations.

We think algotocnf mainly differs from other SMT tools like STP, because of
its implementation of differential logic.

To model our CNF algotocnf implements the following strategy:

1. Take a differential characteristic and the hash algorithm as input.

2. Every bit gets represented as a Boolean variable. If you apply addition, oper-
ator overloading in python will ensure that clauses are generated to describe
the addition consisting of XORs and MAJs. Every operation is modelled as
assignment. Hence, an operation using a few Boolean variables is equivalent
to a single variable which represents the result. Similarly other operations
related to integers are implemented as well.

3. Constants used in the implementation are automatically converted to bitvec-
tors with unit clauses.

4. After running the hash algorithmwith bitvectors per instance, all constraints
related to the hash algorithm are added.

5. Afterwards, the differential characteristic is read. Values such as𝐴𝑖 represent
intermediate states of bitvectors. Therefore the corresponding bitvectors
are looked up and equivalences with temporary bitvectors are added. Those
temporary bitvectors are initialized with all constraints resulting from the
bit conditions of this bitvector (please refer to Chapters 2 and 3 for details).
In conclusion, all constraints resulting from the differential characteristic
are added.

6. Finally, the SAT solver is called. The CNF was mostly solved on a cluster
specified in Appendix A.
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7. Afterwards the program is run again to create the exact same problem
instance and the solver’s solution replaces symbolic values with actual
Boolean values. The resulting differential characteristic is parsed backed and
printed as differential characteristic where all bits have been determined (i.e.
a hash collision has been found).

When adding clauses resulting from the differential characteristic as con-
straints, the question arises how those bit conditions are encoded. Essentially, we
have only Boolean values available, but bit conditions tell constraints such as “a
difference is given, but the actual value is unknown”.

It seemed trivial to add a difference variable for every pair of Boolean values
representing a bit in the two instances. Furthermore, the difference variable Δ𝑥 is
connected by a XOR with the variables of the pair (𝑥, 𝑥′).

Δ𝑥 = 𝑥 ⊕ 𝑥′

Therefore, it is trivial for a preprocessor to simplify the formula appropriately.
Hence, we don’t expect runtime differences for the larger amount of variables.

And finally we expect the CNF to inherit a property of hash functions. Inputs
are provided into the hash algorithm and strongly intermingled with other values.
This results in a high diffusion and almost every variable is expected to share a
clause with another variable.

The difference variables design corresponds to diff bit vectors in the STP
and therefore models the difference variables described in Chapter 3. The design
decisions of this encoding are fundamental to the resulting runtime as discussed
in Chapter 7.

6.2.2 Adding the differential description

Using the approach in the previous section, we were able to find actual MD4
collisions using a SAT solver (please refer to Section 7.2.1). We used a reused our
implementation of MD4 for SHA-256 and replaced the hash algorithm implemen-
tation. This implementation obviously presented worse runtime results, because
the internal state of SHA-256 is much larger (by a factor of at least 2). Can we
further improve the runtime of the SAT solver?

Since we work with bitvectors and apply high-level operations like MAJ or
addition, we can additionally implement how differences in those operations
propagate. Magnus Daum’s thesis on “Cryptanalysis of Hash Functions of theMD4-
Family” [4, Table 4.4] discusses how differences propagate in Boolean functions.
Trivially, XORs propagate differences the way they are1. Another example is IF:

1A difference in the arguments of two XOR instances remains the same difference after applying
XOR to each instance
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Let 𝑎, 𝑏 and 𝑐 be difference variables and IF is applied to both corresponding hash
algorithm instances. 𝑟 is the difference variable of the result. Then its differential
behavior states that

(0, 1, 1) ⟹ 1 (0, 0, 0) ⟹ 0

where (IN) ⟹ OUT denotes an input-output relation and in all other cases,
the difference can be either 1 or 0. Because of this behavior we add clauses to
explicitly describe this behavior:

(¬𝑎 ∧ 𝑏 ∧ 𝑐) ⟹ 𝑟 ⟺ 𝑎 ∨ ¬𝑏 ∨ ¬𝑐 ∨ 𝑟

We also model the second behavior:

(¬𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ⟹ ¬𝑟 ⟺ 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ ¬𝑟

This approach explicitly models differentiable behavior, which should be de-
ducible by the SAT solver itself based on the clauses we added before. However,
this lead to a major speedup which can be observed in the runtime results of
Chapter 7.

6.2.3 Difference variables first

In this approach we reduce the number of evaluated differences by guessing
Boolean value false first for difference variables.
Claim 6.1

Deriving difference values first, followed by actual bit values for the two
instances, leads to a speedup.

This proposed principle is fundamental to differential cryptanalysis. A previous
tool at IAIK (TU Graz) implements propagation of hash algorithm values without
a SAT solver and this strategy is essential to good performance. This strategy was
introduced in the very early days of differential cryptanalysis and was also used
by Wang et al. [35] to find their hash collisions.

For our SAT solver, we want to establish the following strategy: Take some
CNF which includes difference variables. We assign a Boolean value to every
difference variable unless a contradiction is found. For all the remaining variables
we try to find a satisfiable assignment. If none can be found, we consecutively
toggle the Boolean value of difference variables to cover all possible assignments
and find a satisfiable one.

It is important to point out that DIMACS does not specify a way to annotate
Boolean variables. As such that SAT solver cannot distinguish between difference
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variables and variables of the instances. Therefore, implementing this approach
requires a custom SAT solver which is given with lingeling ats1o1.

Another claim is important for this approach:
Claim 6.2

Guessing difference values false first, followed by true, should solve hash
collision problems faster.

This claim is justified by the desire to find sparse characteristics with few dif-
ferences in intermediate variables to increase the probability of values cancelling
each other out in the later rounds.

6.2.4 A lightweight approach

In this approach we made a step back and considered the ideas of the previous
section, but neglected the differential description. This approach was interesting
to quantify the effect introduced by adding the differential description.

6.2.5 Influencing the evaluation order

To take the idea to influence the evaluation order to the next level, we enforced
the evaluation order even stronger by applying the following SAT design:

Let Δ𝑥 be the difference variable of pair (𝑥, 𝑥′). We introduce a new Boolean
variable 𝑥∗ called preference variable. We add clause

𝑥∗ = (Δ𝑥 ∧ 𝑥)

and explicitly tell the SAT solver to guess on 𝑥∗ before guessing on Δ𝑥, 𝑥 or 𝑥′.

The SAT solver will assign 𝑥′ = 0 first, because of the evaluation order. So
either Δ𝑥 or 𝑥 must be false. Δ𝑥 is assigned false, because as difference variable it
has a higher priority over 𝑥. Equivalently for 𝑥′ = 1, Δ𝑥 needs to be true. So we
actually achieve an early guess on the difference variable.

In Chapter 7 we evaluated the performance of this approach.



Chapter 7

Results

In Chapter 4, we discussed Boolean algebra; in particular we looked at satisfiability
which is practically covered by SAT solvers. SAT solvers take Boolean functions in
Conjunctive Normal Form and determine satisfiability. In Chapter 3, we discussed
how we can analyze algorithms by observing progression of differences between
algorithm instances. In particular, we looked at hash algorithms introduced in
Chapter 2.

With this background, we designed an attack setting in Chapter 6 which
enables us to verify and also find a hash collision given a differential characteristic
as starting point. Our goal is to find hash collisions in practical time which we
define by 1 day (86,400 seconds). Therefore, we designed several approaches to
improve our runtime results.

In this section, we will evaluate those approaches. Furthermore, we briefly
discuss claims we made about average SAT problems. In Section 5, we defined
SAT features which to some extent characterize a SAT problem.

7.1 Evaluating SAT features

In Chapter 5, we posed 8 questions. In the following, we want to answer them
with the data provided by the cnf-analysis project.

Given an arbitrary literal. What is the percentage it is positive? We look at
every clause and determine the ratio of positive to the total number of liter-
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als. We determine the mean per CNF file and the mean among all CNF files
and retrieve a value of 0.48 meaning that 48 % of the literals are positive.

What is the clauses / variables ratio? In average a CNF file has 12,219 vari-
ables and 89,541 clauses. Its clauses-variables ratio is 7.328.

How many literals occur only once either positive or negative? In average
there are 36 existential literals per CNF file, but its standard deviation of 967
is very large.

What is the average and longest clause length among CNF benchmarks?
The average clause length is 3.04 with a standard deviation of 0.99 and the
longest clause length found was 61,473. Long clauses are typically outliers
excluding specific assignments.

How many Horn clauses exist in a CNF? In average 29,994 goal clauses and
31,315 definite clauses exist with an average number of 83,649 clauses in a
CNF file.

Are there any tautological clauses? In one file, 1679 tautological literals have
been found. However, its mean is 0.07 with a standard deviation of 9.63
meaning that tautological clauses are very rare.

Are there any CNF files with more than one connected variable component?
Indeed, an average CNF file contains 67.07 connected variable components.
However, its median is 1 implying that at least half of the CNF files have
only 1 connected variable component.

How many variables of a CNF are covered by unit clauses? In average 124
variables are covered by unit clauses. This is an insignificant number com-
pared to 12,219 variables in an average CNF.

The clauses/variables ratio was thoroughly studied by the SAT community [23].
A strong correlation between the instance’s hardness and the ratio of number of
clauses to number of variables exists [32] though it is important to point out that
this result holds for randomly generated SAT instances, which our testcases are
not classified as.

Existential literals are interesting to discover, because they allow to remove
a clause immediately. Consider a clause with literals (𝑙1, 𝑙2, … , 𝑙𝑛). If a guarantee
exists such that the variable of any literal 𝑙𝑖 does not occur in any other clause, we
can claim 𝑙𝑖 true rendering the clause satisfied.

Tautological clauses trivially also render clauses satisfied.

Connected variable components are interesting, because they split the SAT
problem into several small independent subproblems which can be solved in
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parallel. Consider two sets of variables 𝐴 and 𝐵. Now consider some clauses using
only variables of 𝐴 and some clauses using only variables of 𝐵. The overall CNF is
satisfiable iff both clause sets are satisfiable. The overall CNF is falsifiable iff any
clause set is falsifiable. Hence, if we know the connected variable components,
we could easily create two parallel SAT solver instances and solve the problems
independently. 4,607 out of 62,251 CNF files contained more than one connected
variable component.

These features represent very fundamental properties of the SAT problem. But
for us the question arises whether we can distinguish our cryptoproblems from
average problems?

• We looked at 36 files classified as cryptographic problems. They are con-
sidered cryptographic, because their file or folder name indicated they are
related to hash functions or general cryptographic applications like AES.
The specific selection can be identified by the crypto tag annotated to these
CNF files as part of the cnf-analysis project.

• In average these problems have 116,398 clauses and 27,407 variables. The
average clauses-variables ratio is 5.58.

• The 36 cryptographic SAT instances give a standard deviation of 0.7 for
clause length meaning that most clause lengths are close to the mean 3.4.

• The number of definite clauses is twice its value for general problems (62,457
versus 31,315) and the number of goal clauses is 26 % of its value for general
problems (7,761 versus 29,994).

• The number of connected variable components is 2,236 in average (𝜎 =
10,060), but the median is 1 again.

No other value has been found to be significantly different from average
problems (or its difference follows immediately by the non-uniform clause length).

The number of connected variable components seems interesting in crypto-
graphic problem, because it might indicate diffusion in cryptographic problems.
Diffusion means that variables strongly interact with many different variables
due to the repetitive structure of cryptographic primitives. And finally the other
differences can be explained by a certain SAT design which reoccurs in these
testcases, because 36 is an exceptionally small number compared to 62,251 unique
CNF problems. It is expected the cryptographic problems were designed by a small
set of authors.

Comparing our average problem with cryptographic problems did not draw
any useful conclusions. Particularly a more thorough discussion of the SAT designs
might be more valuable than our high-level features. We now specifically look at
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a SAT design we are familiar with: Do average SAT problems distinguish from our
CNF testcases?

• For all MD4 testcases we have the same number of variables, because the
internal state of the hash algorithm instances are always the same size.
However, adding the differential description as described in Section 6.2.2
increases the number of clauses by about 47 % (𝜎 = 0.0005) for MD4 in-
stances and by about 43 % (𝜎 = 0.0008) for SHA-256 instances. For SHA-256
problems, this is illustrated in Table 7.5. The preference variable introduced
in Section 6.2.5 increases the number of variables by about 80 % and the
number of clauses by factor 2.

Compared to 83,542 clauses and 12,219 variables for our average SAT prob-
lem, we consider our testcases to be noticeably large. However, it is impor-
tant to point out that the problem size does not necessarily correlate with
the hardness of the SAT problem.

• The variables of clauses of average SAT problems have a standard deviation
of 3,337 in average (𝜎 =1,261, median =3,643). Our average SAT problem has
a standard deviation of 1,004 in average (𝜎 =13,992, median = 22). Hence
variables which got created at every point during the CNF generation are
shared within one clause. The general statement, that variable enumeration
is arbitrary and therefore this standard deviation has no meaning holds,
but we need to consider that practically speaking variables created close to
each other share close variable indices. Under these assumptions a large 𝜎
indicates variables are reused. We assume this is another indicator for high
diffusion in cryptographic algorithms. Values are intermingled over and
over throughout the repetitive structure of hash algorithms.

• Connected variables components are 129 for MD4 problems and 2 for
SHA-256 problems. For SHA-256 problems, a unit clause is given as ex-
istential literal and for MD4 problems, all components except one are of size
3. We did not investigate further, because this number is constant with an
increasing problem size and all other variables are strongly correlated due
to a high diffusion.

• An average literal frequency of 3.5 ⋅ 10−5 for our testcases is much lower
than 0.014 for average problems. We explain this with the larger problem
size. Literal frequency is divided by the number of clauses of the CNF and is
therefore smaller, the larger the problem is.

In general, we were not able to identify features allowing us to solve dif-
ferential cryptanalysis problems more efficiently compared to general-purpose
SAT problems. We concluded writing your own SAT solver dedicated to solving
differential cryptanalysis problems is not worth the effort.
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7.2 Finding hash collisions

In this section, we look at our runtime results of testcases provided in Appendix B.
We make various claims and substantiate them with runtime results. Runtimes
are always provided in seconds. Therefore, smaller runtimes are better. ⊤ denotes
a timeout (solving took more than 1 day) and — denotes unavailable data.

We considered MD4 testcases A, B and C (listed in Table 7.1) and generated
the corresponding CNF files. The SAT solvers mentioned in Section 4.5 were used
to evaluate whether the problem is solvable within the time limit.

algorithm testcase rounds diff. characteristic clauses variables
MD4 A 48 Appendix B.1 254,656 48,704
MD4 B 48 Appendix B.2 254,210 48,704
MD4 C 48 Appendix B.3 253,984 48,704

Table 7.1: MD4 testcases considered

7.2.1 Attacking MD4

Claim 7.1
Testcase A in the encoding described in Section 6.2.1 can be solved within one
minute by all considered SAT solvers.

In our attack setting we started off with Testcase A. It serves rather as a toy
example to verify correctness of our implementation than as an actual benchmark.
Be aware that invalid implementations either result in unsatisfiability for satisfiable
testcases or runtime results are unexpected because the SAT solver could not take
advantage of our SAT design improvements. This particular testcase can be solved
easily with all major SAT solvers as can be seen in Table 7.2. We end up with the
result, that the hash collision given in Testcase C can be solved by the majority of
modern SAT solvers. Of course the cryptanalyst needs to figure out good starting
points for the hash collision and encode them in the differential characteristic, but
this task is still considered practical, because it can be easily automated.

7.2.2 Evaluating simplification

As a next approach, we looked at CNF simplifiers. Those simplifiers consume a
CNF file and transform the CNF file to an equisatisfiable CNF file. Those simplified
CNF files might be subject to performance improvements.
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solver version propagations decisions restarts runtime
MiniSat 2.2.0 3,813,726 250,759 — 3

CryptoMiniSat 4.5.3 140,000 2,441,566 539 26
5 32,163,801 2,178,965 598 29

Lingeling ats1 6,586,770 436,621 980 23
Plingeling ats1 452,630,440 3,275,498 — 88
Treengeling ats1 18,629,811 1,640,289 — 64
Glucose 4.0 14,727,839 990,491 272 8

Glucose Syrup 4.0 37,021,496 629,363 201 14

Table 7.2: Testcase A can be solved within 1 minute by all SAT solvers

Claim 7.2
Simplification reduces the problem size (number of variables and clauses).

Consider for example Testcase C (Appendix B.3) in the basic encoding intro-
duced in Section 6.2.1. Then simplification will reduce the problem size down to
42.9 % or more of its original size (as illustrated in Table 7.3). We verified these
data for all simplified files and got similar results. Therefore, the claim holds
considering the problem size gets reduced to approximately half of its size.

simplification variables percent of none clauses percent of none
none 48,704 100 % 253,984 100 %
cmsat 24,503 50.31 % 111,931 44.07 %

lingeling 48,704 100 % 106,626 41.98 %
minisat 20,895 42.90 % 118,236 46.55 %
satelite 27,495 56.45 % 153,262 60.34 %

Table 7.3: Problem sizes of Testcase C in the encoding of Section 6.2.1 after simplification.
lingeling maintains the same number of variables according to the CNF header.

Claim 7.3
Simplification as preprocessing step does not significantly improve the runtime
of SAT solvers.

We look at Testcase C which is a more difficult MD4 problem compared to Test-
case A. Simplification runtime results depend on the SAT solver, which applies
certain simplifications while trying to solve the CNF, and the simplifier used. A
small number of variables or clauses does not necessarily lead to better perfor-
mance. But an equisatisfiable encoding of the same problem is worth considering.
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Table 7.4 lists runtimes depending on the simplification used.

none refers to the unsimplified CNF

cmsat refers to simplification applied with CryptoMiniSat version 5:
./cryptominisat5 -p1 file.cnf simplified.cnf

lingeling refers to simplification with lingeling version ats1:
./lingeling -s file.cnf -o simplified.cnf

minisat also simplifies CNF file with the following command line:
./minisat file.cnf -dimacs=simplified.cnf

satelite is specifically designed to simplify CNF files:
./satelite file.cnf simplified.cnf

It is worth pointing out that simplification time is not part of the runtime listed.
Simplification can take very long. Especially, simplifications with lingeling have
sometimes taken several hours without result.

In conclusion, simplification leads to a slight improvement of the runtime, but
in general we cannot recommend simplifying every CNF file. Because technically
speaking, SAT solvers internally apply simplification algorithms on their own.

solver version none cmsat lingeling minisat satelite
MiniSat 2.2.0 4,519 7,649 1,337 1,476 1,293

CryptoMiniSat 5 1,064 973 1,201 4,470 3,920
Lingeling ats1 1,492 906 356 860 1,297

Treengeling ats1 1,281 13,401 20,903 13,790 10,840
Plingeling ats1 2,310 1,232 955 1,384 2,030

Table 7.4: Runtimes of Testcase C after CNF files have been simplified

7.2.3 Attacking SHA-256

While the basic approach works well for MD4, hash algorithm SHA-256 encom-
passes a much larger state making the problem significantly more difficult for the
SAT solver. Consider Testcases 18, 21, 23 and 24. Those testcases describe round-
reduced hash collisions on SHA-256 (the testcase number gives the number of
rounds). Our next approach is called differential description as originally described
in Section 6.2.2.
Claim 7.4

A differential description encoding (Section 6.2.2) improves the runtime com-
pared to a missing differential description.
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testcase clauses / variables testcase clauses / variables
18: 590,953 / 107,839 18 diff-desc: 846,487 / 107,839
21: 636,838 / 116,800 21 diff-desc: 911,629 / 116,800
23: 667,438 / 122,774 23 diff-desc: 955,067 / 122,774
24: 682,722 / 125,761 24 diff-desc: 976,770 / 125,761

Table 7.5: Problem sizes of our SHA-256 testcases (clauses / variables)

To testing differential description, we looked at MD4’s Testcase C and com-
pared it with out SHA-256 testcases. Those testcases are described in detail in
Appendices B.4, B.5 and B.6.

Recall that differential description explicitly encodes how differences in arith-
metic and bitwise operations propagate in the CNF. We discussed XOR and IF in
Section 6.2.2. These clauses should be deducible by the SAT solver itself and do
not narrow the search space. Therefore we expected equivalent runtime results
for both cases (with or without differential description). However, the resulting
data indicates the opposite.

In Table 7.6 we picked two SAT solvers lingeling and CryptoMiniSat and we
can clearly see a significant improvement of the runtimes.

CryptoMiniSat 5 lingeling-ats1
testcase w/o dd w/ dd w/o dd w/ dd
MD4, C 1,064 231 798 53

SHA-256, 18 37 37 31 160
SHA-256, 21 ⊤ 7,855 28,621 5,513
SHA-256, 23 ⊤ 26,212 76,196 1,450
SHA-256, 24 ⊤ 37,194 78,017 1,235

Table 7.6: Runtimes for various testcases with or without differential description with
CryptoMiniSat and lingeling. Testcase C has been added for reference. We need to point
out that the timeouts, unlike other testcases, were determined on Thinkpad x220 (compare
Appendix A), because the processes consistently died on our cluster.

We continued by modifying the guessing strategy to reflect differential crypt-
analysis, which generally use the assumption that difference variables are assigned
first. This strategy requires customization of the SAT solver and therefore we only
considered lingeling, which was adapted for our purposes.



CHAPTER 7. RESULTS 49

7.2.4 Modifying the guessing strategy

In differential cryptanalysis the general assumption is made that differences should
be guessed first. Once they are assigned, we can look at the Boolean values in
the two hash algorithm instances. To model this behavior, we looked at options
provided by SAT solvers.
Claim 7.5

Lingeling option --phase=-1 improves its runtime for our testcases.

Option --phase=-1 of lingeling is described as “default phase” set to −1 (negative),
0 (Jeroslow-Wang strategy [10]) or 1 (positive). Per default a strategy engineered
by Jeroslow-Wang [10] is used, but considering Claim 6.2 at page 40 we expect
--phase=-1 to provide better runtime results.

Indeed our results consistently indicate a small improvement. This can be
recognized in Table 7.7.

testcase 18 21 23 24
phase 0 -1 0 -1 0 -1 0 -1

runtime 31 22 28,621 19,717 76,196 71,677 85,774 70,259

Table 7.7: lingeling-ats1 results for SHA-256 comparing --phase=-1 with --phase=0

7.2.5 Evaluating the lightweight approach

Though the results of --phase=-1 was recognizable, we wanted to push it further.
We got in contact with Armin Biere who provided us an extended lingeling imple-
mentation which distinguishes two sets of variables; namely a set of differences
variables which needs to be assigned first.
Claim 7.6

Evaluating difference variables first and with Boolean value false improves the
runtime.

The lightweight approach mentioned in Section 6.2.4 evaluates difference variables
first with Boolean value false, but does not add a differential description. Hence,
differential behavior is not modelled explicitly. This approach is justified by the
assumption that a low number of differences, leading to a sparse differential path,
is more likely to cancel out differences ending in a hash collision.

Table 7.8 reveals a nice improvement (the runtime becomes 0.85 %) of its
original runtime in average.
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testcase C 18 21 23 24
basic approach (ats1) 798 31 28,621 76,196 85,774
diff-first-false (ats1o1) 652 29 27,599 59,312 66,052

Table 7.8: lingeling-ats1o1 and lingeling-ats1 results comparing a difference variables
(with Boolean value false) first approach with the basic approach

7.2.6 Using preference variables

Our last approach uses preference variables mentioned in Section 6.2.5. Under the
assumption that preference variables 𝑥∗ and difference variables Δ𝑥 are assigned
first, an additional clauses provides a decision tree which assigns difference vari-
ables first and once they are all set, values for the two hash algorithm instances
are assigned.
Claim 7.7

Adding preference variables dramatically worsens performance.

Section 6.2.5 introduces preference variables which enforce the idea that difference
variables are evaluated first. Preference variables only add additional clauses, but
do not provide a runtime improvement per se. The larger number of variables and
clauses make the problem potentially harder.

However, evaluating them with false first makes sure that a low number of
differences is propagated. Otherwise the SAT solver would spend much time in
fruitless branches and the number of restarts would be comparably high.

Given an assigned difference variable, differential description ensures that the
value is propagated quickly to other parts of the equation system. This justifies
why our encoding with preference variables should be compared to an instance
with differential description and difference variables first.

Table 7.9 shows results for MD4 and SHA-256 testcases. The data indicates that
for very small runtimes, the runtime improved. Unfortunately, for the SHA-256
testcases runtimes have worsened extraordinary.

testcase A B C 18 21 23 24
CNF with diff-desc 11 133 155 49 2,282 1,314 2,632

preference variables added 8 50 62 ⊤ ⊤ ⊤ ⊤

Table 7.9: lingeling-ats1o1 testcases comparing an approach with differential description
with additional preference variables
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7.3 Summary

In this section we looked at various improvements to improve the runtime, namely

1. CNF simplification

2. differential description

3. Lingeling’s --phase=-1 option

4. Difference variables first with Boolean false

5. Preference variables

We evaluated these approaches with several SAT solvers and found some signifi-
ciant runtime improvements. We successfully found hash collisions for MD4 and
SHA-256, where the latter has been reduced to 18, 21, 23 and 24 steps.



Chapter 8

Summary and Future Work

8.1 Related work

Already in my bachelor thesis [25] we tried to integrate a SAT solver into a
dedicated, automated tool finding collisions in hash functions using differential
cryptanalysis. This approach was not very successful as restarts between hash
algorithm rounds implied that intermediate results by the SAT solver got lost. This
was one motivation for this master thesis: We represent all details in CNF.

Research was already done by Ilya Mironov and Lintao Zhang [18] to apply
SAT solvers to differential cryptanalysis specifically to find hash collisions in MD4.
Their approach corresponds to our basic approach applied to Testcase A (compare
with Section B.1), where all differences are assigned. Therefore, our results in
Table 7.2 within one minute are comparable with their evaluations within ten
minutes. We can clearly see how SAT technology and CPU performance has
progressed over 10 years since publication of this paper.

Finding hash collisions in Testcases B, C, 21, 23 and 24 seems to be a novel
result of this master thesis and has not been found in related work.

8.2 Results

We successfully found full-round hash collisions for MD4 using SAT solvers men-
tioned in Section 4.5. We modified the lingeling SAT solver to improve our runtime
results further and found 24-round hash collisions for SHA-256. Our attack starting
points for MD4 — Testcases B.1, B.2 and B.3 — are based on the work by Yusuke
Naito, Yu Sasaki, Noboru Kunihiro and Kazuo Ohta [29]. Our starting points for
SHA-256 — Testcases B.4, B.5, B.6 and B.7 — are based on the work by Ivica Nikolić
and Alex Biryukov [21].
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8.3 Contributions

To encourage future work, the source code and data resulting from this thesis is
available online. It allows the reader to run the experiments again and verify our
claims. We did our best to describe our hardware setup as accurately as possible.
At the following website, any results part of this project are collected:

http://lukas-prokop.at/proj/megosat/

8.4 Future work

Future work might want to consider our design decisions made in Chapter 6.

In general, it would be interesting to generate our testcase for a broader set of
differential characteristics. Probably we can come up with empirical results show-
ing a relation between the size of unspecified areas in the differential characteristic
and the evaluated runtimes.

Furthermore, many SAT-related effort could be put to thoroughly discuss why
differential description provides such a significant performance improvement. This
necessarily means the SAT solver is generally not capable of deriving the useful
clauses, differential description provides. The resulting numbers of restarts could
also be subject of further research.

Lingeling ats1o1 was experimentally modified to define a separate set of vari-
ables to be evaluated first. This approach seemed promising and should be subject
to future SAT research.

As far as cnf-analysis is concerned, the project aims to extend to a larger set
of SAT features and feedback by SAT solver developers is appreciated. Our main
contribution is a search interface to search for SAT features given the cnfhash of a
CNF file. We hope to get in touch with new SAT feature ideas and SAT benchmark
files.

http://lukas-prokop.at/proj/megosat/
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Appendix A

Hardware setup

We introduce two hardwarde setups used in this master thesis. Thinkpad x220 was
used to simplify CNF files and evaluate SAT features. The cluster was used for
running SAT solvers and retrieving runtime results.

Model type Thinkpad Lenovo x220 tablet, 4299-2P6
Processor Intel i5-2520M, 2.50 GHz, dual-core, Hyperthreaded

RAM 16 GB (extension to common retail setup)
L1–L3 cache sizes 32 KB / 256 KB / 3,072 KB

Table A.1: Thinkpad x220 Tablet specification [14]

Cluster node nehalem192g0 specification [3]
Processor Intel Xeon X5690, 3.47 GHz, 6 cores, Hyperthreaded

RAM 192 GB
L1–L3 cache sizes 32 KB / 256 KB / 12,288 KB

Cluster node nehalem72g0 specification
Processor Intel Xeon X5550, 2.67 GHz, 4 cores, Hyperthreaded

RAM 72 GB
L1–L3 cache sizes 32 KB / 256 KB / 8,192 KB

Cluster node xeon64g* specification
Processor Intel Xeon E5430, 2.66 GHz, 4 cores, Hyperthreaded

RAM 72 GB
L1–L3 cache sizes 32 KB / 6144 KB

Table A.2: One node nehalem192g0, one node nehalem72g0 and four nodes xeon64g*
were used for evaluating runtimes
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Appendix B

Testcases

B.1 MD4 testcase A

Please compare with Figure B.1.
We can clearly see that all difference variables are defined. Either they are true (bit
condition x) or false (bit condition -), but no variable has an undeciable state like
?. At the top we can see bit conditions 0 and 1 encoding the MD4 initial vector
defined by the hash algorithm. The differences x introduce the hash collision
and with round 47 being set of - only, the output is forced to be equal between
both hash algorithm instances. This testcase is a trivial version of the differential
characteristic described in [29].

B.2 MD4 testcase B

Please compare with Figure B.2.
In this testcase we have less knowledge about the state than in testcase A because
many values are encoded with ? meaning that neither their difference nor their
actual values are known. However, of course some x exists to introduce a hash
collision and the last round only consists of dashes to assert no difference in
the output. So unlike testcase A, the SAT solver needs to figure out the dif-
ference variables in rounds 0–11 increasing its overall runtime in all SAT solver
implementations.

B.3 MD4 testcase C

Please compare with Figure B.3.
This testcases introduces a hash collision which is expected to cancel out at round
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32. At the same time no information is provided about the intermediate state of
the hash algorithm in rounds 0–20.

B.4 SHA-256 testcase 18 rounds

Please compare with Figure B.4.
All SHA-256 testcases got derived from a paper by Ivica Nikolić andAlex Biryukov [21].
Recall that message input of one block only fills W0 to W15. W16 or later are
generated based on the previous message words. This differential characteristic
depicts a hash collision introduced in round 3. When solving this differential
characteristic differences will especially occur in the most-significant bit of words
with unspecified difference. Differences cancel out after round 7.

B.5 SHA-256 testcase 21 rounds

Please compare with Figure B.5.
Unlike Testcase B.4 word A5 is underspecified with question marks. This certainly
makes the problem harder for a SAT solver. At the same time differences of the
message words W9 and W10 are specified. This makes the problem easier. At the
same time the whole collision covers 21 rounds, unlike Testcase B.4 with 18 rounds.

B.6 SHA-256 testcase 23 rounds

Please compare with Figure B.6.
Message wordW9 specifies no difference, but the collision is extended to 23 rounds.

B.7 SHA-256 testcase 24 rounds

Please compare with Figure B.7.
No measures were taken to simplify the problem for the SAT solver, but the hash
collision needs to be found for 24 rounds, which makes the problem hard for the
SAT solver because of its increased state size.
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𝑖 A W
-4 A: 01100111010001010010001100000001
-3 A: 00010000001100100101010001110110
-2 A: 10011000101110101101110011111110
-1 A: 11101111110011011010101110001001
0 A: x------------------------------- W: ---x----------------------------
1 A: -------------------------------- W: --------------------------------
2 A: ---------------------x---------- W: x-------------------------------
3 A: xxx----------------------------- W: --------------------------------
4 A: ------------------------------xx W: x-------------------------------
5 A: -------xxxxxxxxxxxxxxxx-x------- W: --------------------------------
6 A: x--------x-----------x-x-xxxx--x W: --------------------------------
7 A: ---------x-----x---------------- W: --------------------------------
8 A: ---------x-------x-x-x---------- W: x-------------------------------
9 A: -----------------x---x---------- W: --------------------------------

10 A: ------x-----x--xxx-xxx---------- W: --------------------------------
11 A: x----------------xxx-x---------- W: --------------------------------
12 A: ---x--x------------------------- W: x-------------------------------
13 A: -------------------------------- W: --------------------------------
14 A: -x------------------------------ W: --------------------------------
15 A: x-x----------x------------------ W: --------------------------------
16 A: -xxx----------------------------
17 A: --------------------------------
18 A: --------------------------------
19 A: x-------------------------------
20 A: x-------------------------------
21 A: --------------------------------
22 A: --------------------------------
23 A: --------------------------------
24 A: --------------------------------
25 A: --------------------------------
26 A: --------------------------------
27 A: --------------------------------
28 A: --------------------------------
29 A: --------------------------------
30 A: --------------------------------
31 A: --------------------------------
32 A: x-------------------------------
33 A: --------------------------------
34 A: --------------------------------
35 A: --------------------------------
36 A: --------------------------------
37 A: --------------------------------
38 A: --------------------------------
39 A: --------------------------------
40 A: --------------------------------
41 A: --------------------------------
42 A: --------------------------------
43 A: --------------------------------
44 A: --------------------------------
45 A: --------------------------------
46 A: --------------------------------
47 A: --------------------------------

Figure B.1: Differential characteristic of MD4 testcase A
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𝑖 A W
-4 A: 01100111010001010010001100000001
-3 A: 00010000001100100101010001110110
-2 A: 10011000101110101101110011111110
-1 A: 11101111110011011010101110001001
0 A: ???????????????????????????????? W: ---x----------------------------
1 A: ???????????????????????????????? W: --------------------------------
2 A: ???????????????????????????????? W: x-------------------------------
3 A: ???????????????????????????????? W: --------------------------------
4 A: ???????????????????????????????? W: x-------------------------------
5 A: ???????????????????????????????? W: --------------------------------
6 A: ???????????????????????????????? W: --------------------------------
7 A: ???????????????????????????????? W: --------------------------------
8 A: ???????????????????????????????? W: x-------------------------------
9 A: ???????????????????????????????? W: --------------------------------

10 A: ???????????????????????????????? W: --------------------------------
11 A: ???????????????????????????????? W: --------------------------------
12 A: ??????????????------------------ W: x-------------------------------
13 A: ??????????????------------------ W: --------------------------------
14 A: ??????????????------------------ W: --------------------------------
15 A: ??????????????------------------ W: --------------------------------
16 A: ???x----------------------------
17 A: ?-------------------------------
18 A: ?-------------------------------
19 A: ?-------------------------------
20 A: x-------------------------------
21 A: --------------------------------
22 A: --------------------------------
23 A: --------------------------------
24 A: --------------------------------
25 A: --------------------------------
26 A: --------------------------------
27 A: --------------------------------
28 A: --------------------------------
29 A: --------------------------------
30 A: --------------------------------
31 A: --------------------------------
32 A: x-------------------------------
33 A: --------------------------------
34 A: --------------------------------
35 A: --------------------------------
36 A: --------------------------------
37 A: --------------------------------
38 A: --------------------------------
39 A: --------------------------------
40 A: --------------------------------
41 A: --------------------------------
42 A: --------------------------------
43 A: --------------------------------
44 A: --------------------------------
45 A: --------------------------------
46 A: --------------------------------
47 A: --------------------------------

Figure B.2: Differential characteristic of MD4 testcase B
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𝑖 A W
-4 A: 01100111010001010010001100000001
-3 A: 00010000001100100101010001110110
-2 A: 10011000101110101101110011111110
-1 A: 11101111110011011010101110001001
0 A: ???????????????????????????????? W: ---x----------------------------
1 A: ???????????????????????????????? W: --------------------------------
2 A: ???????????????????????????????? W: x-------------------------------
3 A: ???????????????????????????????? W: --------------------------------
4 A: ???????????????????????????????? W: x-------------------------------
5 A: ???????????????????????????????? W: --------------------------------
6 A: ???????????????????????????????? W: --------------------------------
7 A: ???????????????????????????????? W: --------------------------------
8 A: ???????????????????????????????? W: x-------------------------------
9 A: ???????????????????????????????? W: --------------------------------

10 A: ???????????????????????????????? W: --------------------------------
11 A: ???????????????????????????????? W: --------------------------------
12 A: ???????????????????????????????? W: x-------------------------------
13 A: ???????????????????????????????? W: --------------------------------
14 A: ???????????????????????????????? W: --------------------------------
15 A: ???????????????????????????????? W: --------------------------------
16 A: ????????????????????????????????
17 A: ????????????????????????????????
18 A: ????????????????????????????????
19 A: ????????????????????????????????
20 A: ????????????????????????????????
21 A: --------------------------------
22 A: --------------------------------
23 A: --------------------------------
24 A: --------------------------------
25 A: --------------------------------
26 A: --------------------------------
27 A: --------------------------------
28 A: --------------------------------
29 A: --------------------------------
30 A: --------------------------------
31 A: --------------------------------
32 A: x-------------------------------
33 A: --------------------------------
34 A: --------------------------------
35 A: --------------------------------
36 A: --------------------------------
37 A: --------------------------------
38 A: --------------------------------
39 A: --------------------------------
40 A: --------------------------------
41 A: --------------------------------
42 A: --------------------------------
43 A: --------------------------------
44 A: --------------------------------
45 A: --------------------------------
46 A: --------------------------------
47 A: --------------------------------

Figure B.3: Differential characteristic of MD4 testcase C
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𝑖 A E W
-4 A: -------------------------------- E: --------------------------------
-3 A: -------------------------------- E: --------------------------------
-2 A: -------------------------------- E: --------------------------------
-1 A: -------------------------------- E: --------------------------------
0 A: -------------------------------- E: -------------------------------- W: --------------------------------
1 A: -------------------------------- E: -------------------------------- W: --------------------------------
2 A: -------------------------------- E: -------------------------------- W: --------------------------------
3 A: x------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
4 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
5 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
6 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
7 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
8 A: -------------------------------- E: -------------------------------- W: ????????????????????????????????
9 A: -------------------------------- E: -------------------------------- W: --------------------------------
10 A: -------------------------------- E: -------------------------------- W: --------------------------------
11 A: -------------------------------- E: -------------------------------- W: ????????????????????????????????
12 A: -------------------------------- E: -------------------------------- W: --------------------------------
13 A: -------------------------------- E: -------------------------------- W: --------------------------------
14 A: -------------------------------- E: -------------------------------- W: --------------------------------
15 A: -------------------------------- E: -------------------------------- W: --------------------------------
16 A: -------------------------------- E: -------------------------------- W: --------------------------------
17 A: -------------------------------- E: -------------------------------- W: --------------------------------

Figure B.4: SHA256 hash collision over 18 rounds

𝑖 A E W
-4 A: -------------------------------- E: --------------------------------
-3 A: -------------------------------- E: --------------------------------
-2 A: -------------------------------- E: --------------------------------
-1 A: -------------------------------- E: --------------------------------
0 A: -------------------------------- E: -------------------------------- W: --------------------------------
1 A: -------------------------------- E: -------------------------------- W: --------------------------------
2 A: -------------------------------- E: -------------------------------- W: --------------------------------
3 A: -------------------------------- E: -------------------------------- W: --------------------------------
4 A: -------------------------------- E: -------------------------------- W: --------------------------------
5 A: x??????????????????????????????? E: ???????????????????????????????? W: ????????????????????????????????
6 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
7 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
8 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
9 A: -------------------------------- E: ???????????????????????????????? W: --------------------------------
10 A: -------------------------------- E: -------------------------------- W: --------------------------------
11 A: -------------------------------- E: -------------------------------- W: --------------------------------
12 A: -------------------------------- E: -------------------------------- W: --------------------------------
13 A: -------------------------------- E: -------------------------------- W: ????????????????????????????????
14 A: -------------------------------- E: -------------------------------- W: --------------------------------
15 A: -------------------------------- E: -------------------------------- W: --------------------------------
16 A: -------------------------------- E: -------------------------------- W: --------------------------------
17 A: -------------------------------- E: -------------------------------- W: --------------------------------
18 A: -------------------------------- E: -------------------------------- W: --------------------------------
19 A: -------------------------------- E: -------------------------------- W: --------------------------------
20 A: -------------------------------- E: -------------------------------- W: --------------------------------

Figure B.5: SHA-256 hash collision over 21 rounds
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𝑖 A E W
-4 A: -------------------------------- E: --------------------------------
-3 A: -------------------------------- E: --------------------------------
-2 A: -------------------------------- E: --------------------------------
-1 A: -------------------------------- E: --------------------------------
0 A: -------------------------------- E: -------------------------------- W: --------------------------------
1 A: -------------------------------- E: -------------------------------- W: --------------------------------
2 A: -------------------------------- E: -------------------------------- W: --------------------------------
3 A: -------------------------------- E: -------------------------------- W: --------------------------------
4 A: -------------------------------- E: -------------------------------- W: --------------------------------
5 A: -------------------------------- E: -------------------------------- W: --------------------------------
6 A: -------------------------------- E: -------------------------------- W: --------------------------------
7 A: x??????????????????????????????? E: ???????????????????????????????? W: ????????????????????????????????
8 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
9 A: -------------------------------- E: ???????????????????????????????? W: --------------------------------
10 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
11 A: -------------------------------- E: ???????????????????????????????? W: --------------------------------
12 A: -------------------------------- E: -------------------------------- W: --------------------------------
13 A: -------------------------------- E: -------------------------------- W: --------------------------------
14 A: -------------------------------- E: -------------------------------- W: --------------------------------
15 A: -------------------------------- E: -------------------------------- W: ????????????????????????????????
16 A: -------------------------------- E: -------------------------------- W: --------------------------------
17 A: -------------------------------- E: -------------------------------- W: --------------------------------
18 A: -------------------------------- E: -------------------------------- W: --------------------------------
19 A: -------------------------------- E: -------------------------------- W: --------------------------------
20 A: -------------------------------- E: -------------------------------- W: --------------------------------
21 A: -------------------------------- E: -------------------------------- W: --------------------------------
22 A: -------------------------------- E: -------------------------------- W: --------------------------------

Figure B.6: SHA-256 hash collision over 23 rounds

𝑖 A E W
-4 A: -------------------------------- E: --------------------------------
-3 A: -------------------------------- E: --------------------------------
-2 A: -------------------------------- E: --------------------------------
-1 A: -------------------------------- E: --------------------------------
0 A: -------------------------------- E: -------------------------------- W: --------------------------------
1 A: -------------------------------- E: -------------------------------- W: --------------------------------
2 A: -------------------------------- E: -------------------------------- W: --------------------------------
3 A: -------------------------------- E: -------------------------------- W: --------------------------------
4 A: -------------------------------- E: -------------------------------- W: --------------------------------
5 A: -------------------------------- E: -------------------------------- W: --------------------------------
6 A: -------------------------------- E: -------------------------------- W: --------------------------------
7 A: x??????????????????????????????? E: ???????????????????????????????? W: ????????????????????????????????
8 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
9 A: -------------------------------- E: ???????????????????????????????? W: --------------------------------
10 A: -------------------------------- E: ???????????????????????????????? W: ????????????????????????????????
11 A: -------------------------------- E: ???????????????????????????????? W: --------------------------------
12 A: -------------------------------- E: -------------------------------- W: --------------------------------
13 A: -------------------------------- E: -------------------------------- W: --------------------------------
14 A: -------------------------------- E: -------------------------------- W: --------------------------------
15 A: -------------------------------- E: -------------------------------- W: ????????????????????????????????
16 A: -------------------------------- E: -------------------------------- W: --------------------------------
17 A: -------------------------------- E: -------------------------------- W: --------------------------------
18 A: -------------------------------- E: -------------------------------- W: --------------------------------
19 A: -------------------------------- E: -------------------------------- W: --------------------------------
20 A: -------------------------------- E: -------------------------------- W: --------------------------------
21 A: -------------------------------- E: -------------------------------- W: --------------------------------
22 A: -------------------------------- E: -------------------------------- W: --------------------------------
23 A: -------------------------------- E: -------------------------------- W: --------------------------------

Figure B.7: SHA-256 hash collision over 24 rounds



Appendix C

Runtimes retrieved

In this appendix, we present runtime results for Testcase 21. This selection gives a
reasonable amount of testcases to present and other results are available in the
exhaustive list referred to at

http://lukas-prokop.at/proj/megosat

Runtimes have been retrieved for various CNF files with various SAT solver
configurations. All following results have been determined using the cluster setup
described in Appendix A. Testcases were run at most 1 day. Other testcases have
also been run, but some have failed (not included in the table) during the run.

solver & version SAT solver name and version number

testcase Testcase identifier, always 21, because this is the complete of results for
Testcase B.5

simplified CNF simplification used beforehand (or “none”)

diff-desc Has the differential description been added?

phase Has Lingeling option --phase=-1 been set?

pref Have preference variables been added?

ocnf Have difference variables been declared as set of variables to be evaluated
first?

nbvars The number of variables considered according to the SAT solver

nbclauses The number of clauses considered according to the SAT solver

runtime The evaluated runtime in seconds
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solver version testcase simplified diff-desc phase pref ocnf nbvars nbclauses runtime
cmsat 4.5.3 21 none yes no no no 116,800 911,629 29,424
cmsat 4.5.3 21 cmsat yes no no no 59,528 318,049 27,359
cmsat 4.5.3 21 lingeling yes no no no 116,800 404,126 25,272
cmsat 4.5.3 21 minisat yes no no no 81,650 534,965 47,023
cmsat 4.5.3 21 satelite yes no no no 90,236 720,755 20,296
cmsat 5.0.0 21 none yes no no no 116,800 911,629 7,855
cmsat 5.0.0 21 cmsat yes no no no 59,528 318,049 4,457
cmsat 5.0.0 21 lingeling yes no no no 116,800 404,126 7,257
cmsat 5.0.0 21 minisat yes no no no 81,650 534,965 3,327
cmsat 5.0.0 21 satelite yes no no no 90,236 720,755 909

glucose 4.0 21 cmsat yes no no no 59,528 318,049 17,967
glucose 4.0 21 lingeling yes no no no 104,860 404,126 10,388
glucose 4.0 21 minisat yes no no no 81,650 534,965 19,210
glucose 4.0 21 satelite yes no no no 90,236 720,755 16,278

glucose-syrup 4.0 21 none yes no no no 116,800 894,072 25,909
glucose-syrup 4.0 21 cmsat yes no no no 59,528 318,049 13,281
glucose-syrup 4.0 21 lingeling yes no no no 104,860 404,126 12,123
glucose-syrup 4.0 21 minisat yes no no no 81,650 534,965 15,501
glucose-syrup 4.0 21 satelite yes no no no 90,236 720,755 27,215

lingeling ats1 21 none no no no 116,800 636,838 28,621
lingeling ats1 21 none no yes no 116,800 636,838 19,717
lingeling ats1 21 none yes no no no 116,800 911,629 5,513
lingeling ats1 21 none yes yes no no 116,800 911,629 1,140
lingeling ats1 21 minisat yes no no no 81,650 534,965 1,110
lingeling ats1 21 minisat yes yes no no 81,650 534,965 1,145
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lingeling ats1o1 21 none no no no 116,800 636,838 27,599
lingeling ats1o1 21 none no yes no 116,800 636,838 19,247
lingeling ats1o1 21 cmsat no no no 63,555 358,308 32,099
lingeling ats1o1 21 cmsat no yes no 63,555 358,308 30,244
lingeling ats1o1 21 minisat no no no 65,572 414,470 30,205
lingeling ats1o1 21 minisat no yes no 65,572 414,470 20,193
lingeling ats1o1 21 satelite no no no 74,562 486,714 44,494
lingeling ats1o1 21 satelite no yes no 74,562 486,714 29,234
lingeling ats1o1 21 none yes no no no 116,800 911,629 2,282
lingeling ats1o1 21 none yes yes no no 116,800 911,629 1,172
lingeling ats1o1 21 cmsat yes no no no 59,528 318,049 892
lingeling ats1o1 21 cmsat yes yes no no 59,528 318,049 537
lingeling ats1o1 21 lingeling yes no no no 104,860 404,126 1,502
lingeling ats1o1 21 lingeling yes yes no no 104,860 404,126 1,231
lingeling ats1o1 21 minisat yes no no no 81,650 534,965 596
lingeling ats1o1 21 minisat yes yes no no 81,650 534,965 1,240
lingeling ats1o1 21 satelite yes no no no 90,236 720,755 791
lingeling ats1o1 21 satelite yes yes no no 90,236 720,755 1,124
lingeling ats1o2 21 none no no no 116,800 636,838 35,305
lingeling ats1o2 21 satelite no no no 74,562 486,714 69,722
lingeling ats1o2 21 lingeling yes no no no 104,860 404,126 3,323
lingeling ats1o2 21 satelite yes no no no 90,236 720,755 3,678
lingeling ats1o4 21 cmsat no no no 63,555 358,308 45,547
lingeling ats1o4 21 satelite no no no 74,562 486,714 55,627
lingeling ats1o4 21 none yes no no no 116,800 911,629 3,110
lingeling ats1o4 21 cmsat yes no no no 59,528 318,049 1,533
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lingeling ats1o4 21 lingeling yes no no no 104,860 404,126 3,631
minisat 4.0 21 none yes no no no 116,800 894,072 62,327
minisat 4.0 21 cmsat yes no no no 59,528 318,049 2,288
minisat 4.0 21 lingeling yes no no no 104,860 404,126 7,096
minisat 4.0 21 minisat yes no no no 81,650 534,965 17,990
minisat 4.0 21 satelite yes no no no 90,236 720,755 23,399

minisat-core 4.0 21 cmsat no no no 63,555 358,308 60,458
minisat-core 4.0 21 none yes no no no 116,800 894,072 38,376
minisat-core 4.0 21 cmsat yes no no no 59,528 318,049 10,776
minisat-core 4.0 21 lingeling yes no no no 104,860 404,126 14,440
minisat-core 4.0 21 minisat yes no no no 81,650 534,965 18,914
minisat-core 4.0 21 satelite yes no no no 90,236 720,755 9,626

plingeling ats1o1 21 none no no no 116,800 636,838 42,025
plingeling ats1o1 21 minisat no no no 65,572 414,470 67,220
plingeling ats1o1 21 satelite no no no 74,562 486,714 47,064
plingeling ats1o1 21 none yes no no no 116,800 911,629 2,545
plingeling ats1o1 21 cmsat yes no no no 59,528 318,049 1,928
plingeling ats1o1 21 minisat yes no no no 81,650 534,965 2,553
plingeling ats1o1 21 satelite yes no no no 90,236 720,755 3,204

treengeling ats1o1 21 none yes no no no 116,800 911,629 6,419
treengeling ats1o1 21 cmsat yes no no no 59,528 318,049 5,118
treengeling ats1o1 21 minisat yes no no no 81,650 534,965 27,567
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