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Abstract 

In this thesis, a novel method for computer aided surgery planning of facial defects by using 

models of purchasable MedArtis Modus 2.0 miniplates is proposed. Implants of this kind are 

commonly used for treating defects in the facial area. By placing them perpendicular on the 

defect the miniplates are fixed on the healthy bone and bent with respect to the surface in 

order to stabilize the defected area. The software package developed in the course of this 

thesis is able to fit a selection of the most common implant models on the surgeon’s desired 

position in a 3D computer model. To gain an appropriate result, this happens with respect to 

the local surface curvature, always including the possibility of adjusting both the direction 

and the position in any desired way. State of the art contributions show methods that require 

a high amount of time and money. Using Computed Tomography (CT) scans, many of them 

generate stereolithic (STL) models serving as bending template for the implants or using a 

bending tool during the surgery where the implant has to be readjusted several times, leading 

to undesirable expenses in time. By using the  proposed software, surgeons are able to pre-

plan the outcoming implant with the aid of a computer-visualized model within just a few 

minutes. Another advantage is that the resulting model can be stored in STL file format, the 

commonly used format for 3D printing. Using this technology, surgeons are able to print the 

generated implant, or to use it for generating a bending tool, leading to an exactly bent 

miniplate that fits perfectly to the desired position and requires a minimum amount of money 

and time. 

Keywords: Computer Graphics,  Facial Surgery,  MeVisLab, Miniplates 

 

Kurzfassung 

In dieser Arbeit wird ein neuartiges Verfahren zur computerunterstützten OP-Planung von 

Gesichtsdefekten durch die Verwendung von kommerziell erhältlichen Medartis Modus 2.0 

Miniplatten präsentiert. Die Implantate werden senkrecht zum Defekt auf dem gesunden 

Knochen fixiert, um unter Einbezug der Oberflächenkrümmung die betroffene Region zu 

stabilisieren. Das während dieser Arbeit entwickelte Softwarepaket ist in der Lage, eine 

Auswahl der am häufigsten verwendeten Implantatmodelle auf eine vom Chirurgen 

gewünschte Position in einem 3D-Computermodell anzupassen. Um ein zufriedenstellendes 

Ergebnis zu erzielen, geschieht dies in Bezug auf die lokale Oberflächenkrümmung, wobei es 

möglich ist, Position und Ausrichtung nach Belieben zu adjustieren. Im Gegensatz dazu 

weisen aktuelle Methoden nicht nur einen höheren Zeitaufwand, sondern auch einen höheren 

Kostenaufwand auf. Mit Hilfe von Computertomographie (CT) Aufnahmen werden in den 

meisten Methoden sterolithografische (STL) Modelle erstellt, die als Biegevorlage dienen. 

Eine andere sehr zeitaufwendige Methode verwendet ein Biegewerkzeug, mit welchem das 

Implantat während des Eingriffs durch mehrfaches Biegen in Form gebracht wird. Durch die 

Verwendung der vorgestellten Software sind Chirurgen in der Lage, die Implantate innerhalb 

weniger Minuten anhand eines Computermodelles vorab zu planen. Ein weiterer Vorteil 

besteht darin, dass das resultierende Modell in das STL Dateiformat exportiert werden kann, 

das allgemein verwendete Format in der 3D-Druck Technologie. Mit dieser Technologie 

können Chirurgen das geplante Implantat binnen kurzer Zeit drucken und einsetzen oder es 

verwenden um ein Biegewerkzeug zu erzeugen. Beide Fälle führen zu einer exakt gebogenen 

Miniplatte, die perfekt auf die gewünschte Position passt und dabei den zeitlichen Aufwand 

minimiert. 

Schlagworte: Computergrafik, Gesichtschirurgie, MeVisLab, Miniplatten 
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1 Introduction

Reconstructing facial deformations due to bone fractures or born deforma-
tions, is the daily business of a Surgeon’s routine. More precisely, he has
to fix all kinds of bone fractures which are results of applied outer forces,
like happening due to an car accident, results of removed tumors or results
from deformation treatment [36]. All those operations have in common, that
the use of so called miniplates [24] is essential, independent of the defected
location.

These miniplates in their raw form are straight titanium plates consisting,
depending on the type, of at least two finishing ring sections at both ends,
where screws for implant-bone fixation are drilled connected by a bridge sec-
tion. The raw implant is available in countless different variations, consisting
of further middle-ring sections, orthogonal bendings or circular ring section
arrangements. Whereby in this work, I focused on the most frequently used
ones, recommended by the surgeons of the MedUni (medizinische Universität)
Graz, the MedArtis [7] Modus 2.0 series. With the purpose of stabilizing the
defect, the implants are fixed perpendicular to the fracture on both fracture
sites. The miniplates in their raw form are stiff and straight, why it is neces-
sary to bend them along the fractured surface using a bending tool. Not only,
that lots of time is lost during surgery, since the bending process happens on
the opened patient, also the need of readjusting the bent sites to gain an ac-
ceptable and accurate implant, is further time consuming. Another Method
is to generate a stereolithographic model out of the Computed Tomography
(CT) scan data and pre-bending the implant on those. Needles to say, that
this method takes even more time, especially in the preoperative phase, also
leading to higher expenses in overall costs.

Therefore, this thesis proposes a novel method for computer aided plan-
ning of facial surgeries using the medical image processing platform MeVis-
Lab [10] [27] and C++. By using this software, the surgeon has the possibility
to plan the implant independent of the facial location without any expenses
on a 3D computer model. Further, the planning time improves to only a few
minutes being possible to readjust without any material costs. Finally, the
implant model can be 3D printed, since it is stored in STL-file format, usable
as bending tool or even final implant.

After CT scanning the patient, which is a mandatory task to each person suf-
fering from facial bone fracture, the resulting file is provided in STL-format
and already usable as input for the software tool. The user now, already sees
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the loaded file represented in 3D. Next, the user chooses an implant type and
selects any location on the surface of the facial model to place the implants
center point. Using the center as a seed point, the baseline curvature is calcu-
lated by casting rays along the baseline and checking for surface intersection
positions. Using the resulting curved baseline, the implant shape is generated
by placing the ring sections, which are precomputed polygonal meshes gen-
erated in Autodesk’s Inventor [1], at the locations along the curved baseline
corresponding to the implant’s dimensions. Each ring element of the implant
is oriented to be aligned with the surface tangent plane at the chosen location,
so that a perfect fit is guaranteed. Finally, the straight sections bridging the
rings are generated by forming a template mesh with rectangular footprint.
The final implant is then saved in the output directory, again in STL-file
format, a common file format for any 3D printing device. Anyway, setting
the initial point, the user first gains an implant showing in an arbitrary direc-
tion. However, by turning the mouse wheel, the direction of the implant can
be changed until the user observes a satisfying outcome. Further, runtime is
optimized by limiting computations to the region of interest (ROI) around
the seed point.
The software was tested with real patient CT data provided by the Clini-
cal Department of Oral and Maxillofacial Surgery of MedUni (medizinische
Universität) Graz. The outcome shows very well aligned and with respect to
the surface well bent miniplates, allowing the surgeons to get a good under-
standing of what a post-intervention will look like.

The thesis I propose, may help surgeons to minimize the expended time and
costs by providing a flexible planning software. At this stage, the software is
more a type of an visual planning tool using already pre-built, on the market
available, implant types. Even though, the result is able to be 3D printed
and used for further integration in the operative process, a future outlook
includes an extension of the software to generate an even higher span of im-
plant variations and may provide the possibility of generating customized
and patient specific plates.

2 Medical Background

2.1 Facial Injuries

Facial injuries are results caused by various different influences where too
much pressure is applied from the outside onto facial areas causing soft tissue
damage or bone fractures. Independent if the applied force is the outcome
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of a sports accident like mountain biking, football, surfing, resulting from
daily life accidents or even violence. However, one major cause in Austria
and other regions where winter sports are frequently practiced is skiing and
snowboarding [47]. These two sports account for most of the facial injuries
overall, since wearing a helmet is not mandatory thus resulting in a high per-
centage of practizioners not euqipped with the head protection even though,
in this type of sports one reaches high velocities not able to be absorbed by
the skull in case of collision. According to Gassner et al. [46] in the article
Incidence of Oral and Maxillofacial Skiing Injuries due to Different Injury
Mechanisms, the average year of people transferred to the department of oral
and maxillofacial surgery with facial injuries lies by 26 years with 50% be-
tween age 16 and 38. The group with the highest rate of injuries is the one of
children between 7 and 12 years. Further, the statistics show a high variation
between the groups of men and woman suffering from soft tissue damage or
bone fractures in the facial area due to skiing accidents, stating that men
account for 65.3% of the cases whereas females show a number of 34.7% in-
jured patients. More, the types of injuries range from facial bone fractures
to dentoalveolar traumas and soft tissue injuries. The statistics also show
a bride range of different mechanisms including simple falls, collisions with
others or objects, a struck by equipment, lift accidents and various more.
For a better understanding of these data, Table 1 gives an detailed overview
of these statistics.

Having a look at Table 2 which shows the number and percentage of the
different bone fractures caused by skiing accidents, it is clearly observable
that fractures in the orbital area are the most common ones where the zygoma
(outer, right orbit bone) and the orbital floor (inside bottom orbital bone)
show the highest percentage, followed by mandible fractures.

2.2 Treatment of Oral and Maxillo Facial Injuries

The following two sections are based on the chapter Basics of Traumatology
from the book Traumatologie des Mund-, Kiefer-, Gesichtsbereichs [41] and
discuss how an accident in the facial area is treated generally, starting from
first aid interventions until the very end, followed by the second section
describing how fractures are treated in detail.

2.2.1 Stages of Treatment

A patient suffering from facial damages due to an accident, independent
if those harm soft tissues or cause bone fractures, has to undergo different
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Variable 579 Skiers/882 Incidents

Age
Mean 28.35
Standard Deviation 15.78
Min 2
Median 26
Max 81

Gender
Male 378
Female 201

Injury Type
Facial bone fracture 310
Soft tissue injuries 336
Dentoalveolar trauma 236

Mechanism of Injury
Falls 263
Collision with others 135
Collision with object 46
Struck by equipment 70
Lift accidents 34
Others 31

Table 1: The table shows the statistics of the collected data in Innsbruck,
Austria of oral and maxillofacial injuries caused by ski accidents.

stages of diagnosis and treatments executed by the surgeons. In the following
lines those are listed along with a short description:

Pre-clinical evaluation - As the first stage in the diagnoses chain the most
important vital parameters are measured to gain medical evaluation
scores and check for poly trauma.

Trauma room I (minute 0-20) - The evaluated scores from the pre-clinical
evaluation define the algorithm for this phase. Mandatory for this
phase is the determination of the accident’s circumstances and situa-
tion. Further, the information of the already taken interventions has to
be transferred to specialists together with eventually occurred compli-
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cations. The patient gets stabilized and monitoring includes measuring
the blood pressure, pulsoximetry and ECG measure.

Basic diagnoses and therapy - If the patient is unstable, instant opera-
tions are following or the transfer to the intensive care unit. Otherwise
the patient undergoes a full body CT scan and the first Trauma-Room-
Conference is hold (minutes 20-35). Next, in a first stage of operations,
live-sustaining measures have highest priority after transfer to the in-
tensive care unit.

Trauma room II (minute 35-50) - In the case no emergency operations
have to be done, diagnoses and therapeutic measures are completed.
In a second Trauma-Room-Conference the specialists discuss about the
transfer to the intensive care unit and further treatment.

Primal surgical intervention - This phase is executed after all emergency
operations are taken care off and the patient is stable. In the first day
the priority lies on fractures concerning heavily damaged soft tissue
traumas, bleeding, complex fractures and fractures in combination with
the eyes.

Secondary surgical intervention - The focus of the following days lies
on fractures of facial bones including reconstructive osteosynthesis and
corrections of soft tissue issues, eventually in cooperation with neuro-
surgeons.

2.2.2 General Fracture Treatment

Together with bone fractures, frequently soft tissues are damaged too, which
have to be treated in the right manner as well. However, this thesis is fo-
cused on the reconstruction of the bony structures why the healing process
of soft tissue injuries is not of big importance, thus not further discussed.
Moreover, in the area of general fractures, it is differentiated between the
methods of closed reductions and opened reductions described in the
following sections.

Closed reductions describe the application of splints to regain the correct
position of the jaw. Therefore, the patient has not to be cut open by ap-
plying these splints from the outside in three main types. One is the wired
splint applied to the teeth, thus stabilizing the position with a wire around
the teeth. Another one is the plastic as reduction element where the patient
gets a plastic splint restoring the natural positioning. The third one is a con-
struction where screws attached with hooks are drilled in the mandibular and
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maxilla to connect those hooks with a wire thus stabilizing the jaw. Further,
also the application of extern fixation (fixateur externe), where for example
a broken mandibular bone is fixed with a frame applied from the outside,
is used in some cases. Moreover there exist other techniques used for closed
reductions which are from minor importance and rather unconventional, thus
not explained in detail.

Again, this thesis focuses on bone fractures in the facial area whereby those
with open reduction are from the highest priority since the developed soft-
ware supports surgeons in planning implants which are only applicable on
the open cut patient. This method shows many advantages in the healing
processes by increasing the quality level, lowering the time of treatment and
also decreasing the patient’s stress level. Osteosynthesis means the reduc-
tion and internal fixation of bony structures suffering from a fracture by
using implants for fixation, such as miniplates. The most common methods
of fixations are the wired osteosynthesis, the drill-wire-fixation and the screw
and plate osteosynthesis. Further, one can distinguish between rigid and non
rigid osteosynthesis.

Rigid ones describe a non moving fixation where both bones of the frac-
ture sites are fixated in a way they can not move and have no or a small gap
between each other. In this case, the bone recreates himself by gaining tissue
to connect both sites. This process needs the application of rigid implants
like metal plates with up to 2 mm thickness commonly referred to as mini-
plates. Using different systems, consisting of a variation of plates and screws,
this method can transfer the naturally applied forces on the implants, thus
allowing optimal condition for bone healing.

Non-rigid osteosynthesis describes the mobility of fracture affected parts
by applying forces. Miniplates, applied to the fractured mandible is an ex-
ample for this kind of osteosynthesis, allowing chewing movements. Also
systems with wired osteosynthesis come to application in this case. Further,
if the movement happens directly on the fracture site, which is also possible,
the healing process is from secondary nature by first building cartilage which
transforms itself to bony tissue afterwards.

Anyway, the applied system’s purpose in each case is the handling of the
load, naturally applied to the affected bones. As a result of fracture, these
biological structures are capable of bearing this loads why the forces have to
be redirected onto the implanted parts. There are big catalogs of implants in
different forms and characteristics available. The following lines give a short
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introduction on the function of a selection:

Compression plates are preferably used in the mandible, frequently with
4-wells where those wells are modified in a way, that the screws move to the
center of fracture when tightened, thus causing compression of the bones,
Figure 1. As one can see in this figure, a second plate is applied which is

Figure 1: Standart fixation of a mandibular fracture where a compression
plate (lower, golden rectangle), with the central screws (grey, crossed circles)
glide to the fracture center due to the special form of the wells when drilling
in the neutral screws (outer), thus enabling compression. A stabilizing plate
(upper, golden rectangle), with normal wells and screws, against gaping in
the dental area, is applied for support. The red line marks the fracture of
the mandible bone. Adopted from [41].

not of compression type but of stabilization type, called stabilizing plates.
This plate supports the near teeth area and is used to prevent gaping in this
area. Further, to eliminate the possibility of lingual gaping the compression
plate is bent in a manner that the plate-bone gap is approximately 1-2 mm
in the center, Figure 2. By tighting the screws, a compression also on the
lingual site is achieved. Moreover these plates can be reduced in most of the
cases to so called miniplates also using monocortical screws with a diam-
eter of 2 mm. However, in comparison to the mandible, where the implant
positioning is more complicated due to the mobility of the jaw, in mid facial
fractures miniplates give always sufficient hold. Using different thicknesses
of the plates according to the local tissue, like thinner ones in soft tissue
areas like the nose, in combination with different screw sizes, a broad band
on different systems has evolved.

Fixed angle plates, like shown in Figure 3, are systems where the screw
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Figure 2: Applying of compression plate (golden) to prevent lingual gaping
of a fractured bone (light grey, three layered structure). A bone fracture (red
area) with a gap on the lingual side (lower side) of the bone, is compressed by
bending the plate in a manner, so that the bone-plate distance has a value of
1-2mm in the center, thus two screws (dark grey) apply compressional forces
of the lingual gaping side. Adopted from [41].

is fixated with the implant through threads or other mechanisms, thus im-
plicating a few advantages. First, the plate shows a longer lasting fixation
since conventional screws can get lose due to resorption at the contact points.
Further, especially by using thicker plates, bone material gets displaced by
tightening the screws which requires exact bending which is very hard to
achieve but not necessary when using fixed angle plates since the displace-
ment does not take place in this case. More, the stabilization of so called
debris zones, which are areas where the fracture holds many small pieces of
bone structures, is higher with this system type. However, this systems are
not state of the art at the moment, since the theoretical advantages are still
beaten by the lower price of the conventional miniplates. Complications
The rate of complications is stated with 2.5 to 3.5%. Failure in plate fixation
does not only lead to aesthetic imperfections but also can harm the function-
ality and healing process which further causes even bigger damage. More,
the risk of infections is not to underestimate and is especially increased in
the case of

• immunosupression;

• after radiation therapy;

• under cytostatic therapy;

• by osteoporosis;

15



Figure 3: This figure shows the treatment of a bone fracture causing a debris
zone, where the bone broke in lots of small pieces (red). Also the use of a
fixed angle plate (gold) is shown which is tightened with screws (dark grey)
having threads at the head section for implant screw fixation, thus allowing
better fixation. Adopted from [41].

• bisphosphonatal therapy;

• or diabetes mellitus.

Further complications are also possible due to nerve or dental root damage.

2.3 Special Traumatology

In this section, special and often occurring cases of facial fractures are shown,
since the proposed software is tailored for the treatment planning of these
fracture types. The entire selection of cases and their treatment as described
in the following sections are based on the work of Rasse’s chapter Spezielle
Traumatologie [42].

2.3.1 Osteosynthesis of LeFort-I Fracture

The typical fracture line LeFort-I, described by the equally named scientist,
runs above the tooth root extending from the piriform aperture to the roots of
the maxillary tuberosity and the fossa pterygopalatina in a mirrored manner
on both sites. Four miniplates are fixated, each perpendicular on the nose
and cheeckbone pillars forming the osteosyntehsis. Optimal placement of the
miniplates is observable in Figure 4.

2.3.2 Osteosynthesis of LeFort-II Fracture

The fracture runs from the Suture nasofrontalis on Suture frontomaxillary
by the Lacrimal bone or dorsal of the orbital floor and thus the maxilla, from
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Figure 4: Osteosynthesis of a skull suffering from LeFort-I fracture (red).
The fracture extends from the piriform aperture to the roots of the maxillary
tuberosity and the fossa pterygopalatina in a mirrored manner on both sites
where four miniplates (yellow) are fixated, each perpendicular on the nose
and cheeckbone pillars. Adopted from [42].

here the infraorbital rim and on the facial antral wall and Crista zygomati-
coalveolaris in the plane of LeFort-I fracture. Further extending around the
Tuber maxilla in the Processus pterygoid, around the perpendicular plate of
the palatine bone and the medial antral wall and reaches via the Ethmoid as-
cending to the medial orbital nose. From there, the fracture extends through
the Septum nasi to posteroinferior and ends at the posterior edge vomer.
The osteosynthesis are placed at the Crista zygomaticoalveolaris and the in-
fraorbital rim, optionally together with a nasofrontal located miniplate. The
standard application of osteosynthesis of the LeFort-I fracture is possible to
be observed in Figure 5.

2.3.3 Osteosynthesis of LeFort-III Fracture

In the case of this fracture type, the facial skeleton is blasted out of the
cranium. From the suture nasofrontalis on, the fracture runs on the medial
orbital wall and orbital floor to the fissure inferior orbital. The zygomatic
bones remain together with the blown off maxilla, so that the fracture of
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Figure 5: Osteosynthesis of a skull suffering from LeFort-II fracture (red).
The fracture runs from the Suture nasofrontalis on Suture frontomaxillary
by the Lacrimal bone or dorsal of the orbital floor and thus the maxilla, from
here the infraorbital rim and on the facial antral wall and Crista zygomati-
coalveolaris in the plane of LeFort-I fracture. It moves around the Tuber
maxilla in the Processus pterygoid , around it by the perpendicular plate
of the palatine bone and the medial antral wall and reaches via the Eth-
moid ascending to the medial orbital nose. From there, the fracture extends
through the Septum nasi to posteroinferior and ends at the posterior edge
vomer. The osteosynthesis (yellow) are placed at the Crista zygomaticoalve-
olaris (lower pair) and the infraorbital rim (upper pair), optionally together
with a nasofrontal located miniplate (middle, x-shaped). Adopted from [42].

the inferior orbital fissure to the lateral orbital wall to the Suture zygomati-
cofrontal runs superiorly and the zygomatic arches are fractured. From the
suture nasofrontalis it reaches the inside by the Ethmoid and the perpen-
dicular plate of the palatine bone, the pterygopalatine fossa. The Processus
pterygoidei may be aborted too. The nasal septum is equally involved as
in the LeFort-II fracture. The cribriform plate can as a result of Ethmoidal
fractures be involved in the types LeFort-II and III. Osteosynthesis in this
type of fracture is more challenging than in the others, since the face skull on
the Sutures zygomaticofrontales and nasofrontales has to be fixated again on
the neurocranium. Eyebrow cuts and glasses cuts are a possibility to perform
osteosynthesis to these regions. However, osteosynthesis in this case results
in many different variations of placement, since frequently, other fractures
are present as well. Anyway, in Figure 6 a commonly used osteosynthesis is
shown.
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Figure 6: Osteosynthesis of a skull suffering from LeFort-III fracture (red).
From the suture nasofrontalis on, the fracture runs on the medial orbital
wall and orbital floor to the fissure inferior orbital. The zygomatic bones
remain together with the blown off maxilla, so that the fracture of the infe-
rior orbital fissure to the lateral orbital wall to the suture zygomaticofrontal
runs superiorly and the zygomatic arches are fractured. From the suture na-
sofrontalis it reaches the inside by the ethmoid and the perpendicular plate
of the palatine bone, the pterygopalatine fossa. The processus pterygoidei
may be aborted too. The nasal septum is equally involved as in the LeFort-II
fracture. Adopted from [42].

2.3.4 Osteosynthesis of Mandibular Fractures

By application of too much force to the mandibular bone, fractures occur
mostly on the same spots, where the bone shows it’s weakest structure. Thus,
this section discusses the most common mandibular traumas together with
their osteosynthetic treatment.

Mandibular media fracture is a fracture of the frontal, middle section
of the mandibular bone. Generally, the apllication of two miniplates, one
subapical and one caudal is sufficient. More difficult cases, where more com-
pression is used, need a caudas fixed compression plate and a stabilizing sub-
apical miniplate, where also lingual compression should be applied. Figure 7
shows a standard treatment with two miniplates. Fracture in edentulous
atrophic mandible are fractures in the mandible bone where no teeth are
locally surrounded, almost always appearing in a pair-wise, symmetrical to
the median, fracture. Commonly used are load bearing plates for osteosyn-
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Figure 7: Osteosynthesis of a mandibular media fracture (red). In the stan-
dard treatment, the application of two miniplates (gold), one subapical and
one caudal, is sufficient. Adopted from [42].

thesis which are fixed sufficiently in the side sections thus enabling optimal
stabilization. Figure 8 shows such a case of a fracture. However, in bone
transplantation more stable plates are used. Alternatively, if the patient is
not able to undergo a bone spending surgery, prosthesis of plastic or other
fabrics are applied. Mandibular angle fracture is a one sided fracture of

Figure 8: Osteosynthesis of a edentulous atrophic mandibular fracture (red).
In the standard treatment, the application of one load bearing plate (gold)
is used. Adopted from [42]

the mandible bone in the angle section. The treatment of mandibular angle
fractures includes in all variations two implant plates, where one is aligned
to the Linea obliqua and the other on the caudal edge. One possibility and
the most preferred one is the usage of two miniplates. However, in some
cases for example when the wisdom tooth is removed, the better option is
to use a stronger plate. To avoid gaping the use of compression plates is a
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good choice. Figure 9 shows a standard treatment using two miniplates for
fixation.

Figure 9: Osteosynthesis of a mandibular angle fracture (red). Using two
plates (gold), one aligned to the Linea obliqua (light grey) and the other on
the caudal edge. Depending on the stability and the need of compression
miniplates and, or a combination of thicker compression plates may be the
right choice in this case. Adopted from [42].

3 Technical Backgrounds

3.1 Mathematical Background

3.1.1 Ray-Surface Intersection

One important task in this thesis is the position allocation of ray-triangle
intersections. Using this operation in a cascade manner, the baseline, repre-
senting the implant’s centerline [23], of the surface curvature is determined.
Therefore, Möller and Trumbore [37] proposed an ray-triangle intersection
method, which is fast and low in storage costs, explained in the following
lines.

Holding the triangle of interest, defined by its vertices V 1, V 2 and V 3, an
Ray R(t) is defined by it’s origin O and normalized direction D:

R(t) = O + tD (1)

where t is the distance from the ray origin O, in direction D to the
intersecting coordinates (u, v) of the triangle. Further, any point T (u, v) on

21



the triangle is defined by

T (u, v) = (1− u− v) ∗ V0 + u ∗ V1 + v ∗ V2 (2)

The barycentric coordinates (u, v) must fulfil the following criteria:

• u ≥ 0

• v ≥ 0

• u+ v ≤ 1

Furthermore, the intersection of the ray R(t) and the triangle T (u, v) is given
by the equating R(t) = T (u, v):

O + tD = (1− u− v) ∗ V0 + U ∗ V1 + u ∗ V2 (3)

leading to

[

−D, V1 − V0, V2 − V0

]





t
u
v



 = O − V0 (4)

By solving the linear system, the coordinates (u, v) and the distance t to the
intersection point can be computed. Expressed in a geometrical manner, this
calculation can be seen as a translation of the triangle to the origin followed
by a transformation to unit size where the ray direction is aligned with the
third axis. Figure 10 visualizes this relation. Applying Cramer’s rule of
matrices [18], and rewriting C1 = V1 − V0, C2 = V2 − V0 and T = O − V0 the
solution of equation 4 is:





t
u
v



 =
1

| −D,C1, C2|





| T, C1, C2|
| −D, T, C2|
| −D, C1, T |



 (5)

This equation is rewritten by using the scalar triple product (box product)

|A,B,C| = −(A× C) ∗B = −(C × B) ∗ A (6)

to obtain




t
u
v



 =
1

(D × C2) ∗ C1





(T × C1) ∗ C2

(D × C2) ∗ T
(T × C1) ∗D



 =
1

P × C1





Q ∗ C2

P ∗ T
Q ∗D



 (7)

where Q and P factors are used to speed up computational time.
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Figure 10: Calculation of the ray-triangle intersection. Starting with a trans-
lation to the origin and transformation to a unit triangle where the ray aligns
to the third axis and M1×3 equals the first matrix (row-vector) in equation
4. Adopted from [37]

3.1.2 Quaternion Rotation

Quaternion rotation is commonly used in Computer Graphics [28] showing
some important advantages compared to the better known Eulerian Rota-
tion. Quaternions themselves are a number system extending the range of
complex numbers where some of the mathematical laws, known from the real
numbers, are not applicable. Anyway, through the introduction of quater-
nions, an elegant description of the Eucledean Space, especially concerning
rotation, is possible.

Quaternions
They consist of real numbers and add three new ones describes with i, j and
k as units in the complex-imaginary space. Thus building a 4-dimensional
number system described with one real part and one imaginary part, where
the real part is formed through a real component and the imaginary part is
formed of three components, also named vector part. Further, each quater-
nion is possible to be written in the form

xo + x1i+ x2j + x3k

with real numbers x. Therefore, the elements (1,i,j,k) form the standard
basis of the quaternions over R. Moreover, the numbers are connected with
each other by the rule of Hamilton to:

i2 = j2 = k2 = ijk = −1
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Moreover, the scalar multiplication R x H → H allows to extend from the
basis to all quaternions. Thus, the multiplication is associative, fulfills both
distributive laws and forms the quaternions to a ring, but is not commutative
which means for two quaternions x and y that the products of xy and yx are
not the same [31].

Rotation
Further, any rotation in the 3-dimensional space can be described according
to Euler’s rotation theorem: therefore any rotation about any fixed point of
a coordinate system or rigid body can be written as rotation around a fixed
axis (the rotation axis which runs through the fixed point) and an rotation
angle θ. By definition, the rotation axis is represented by a unit vector u.
As a result, any rotation can be described as a combination of the vector u
and a scalar θ in the 3-dimensional space. By introducing quaternions which
encode this axis-angle representation in four numbers in a simple way, they
give a position vector to a point, relative to the origin, which corresponds to
the applied rotation.

With i,j,k representing the Cartesian coordinate system, a vector (ax, ay, az)
can be written as

axi+ ayj+ azk

Any rotation around an axis defined by the unit vector

u = (ux, uy, uz) = uxi+ uyj+ uzk (8)

is able to be represented by quaternion notation extending Euler’s formula

q = e
θ
2
(uxi+uyj+uzk) = cos

θ

2
+ (uxi+ uyj+ uzk) sin

θ

2
(9)

In addition, it can be shown that the rotation is able to be used with any
three dimensional vector

p = (px, py, pz) = pxi+ pyj+ pzk (10)

By evaluating the conjugation of p by q

p′ = qpq−1 (11)

p forms a quaternion with real coordinate equal to zero. In equation 11 the
Hamilton product was applied and p′ is the new position vector after execu-
tion of rotation.
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q is a unit quaternion and

q−1 = e−
θ
2
(uxi+uyj+uzk) = cos

θ

2
− (uxi+ uyj+ uzk) sin

θ

2
(12)

As a result the conjugation by the product of two quaternions is the compo-
sition of conjugations by these quaternions. Where follows that the rotation
by pq is

pq~v(pq)−1 = pq~vq−1p−1 = p(q~vq−1)p−1 (13)

(with p and q as unit quaternions) showing the same result if rotating first
q and afterwards p with a scalar component being zero necessarily.

Further, characteristics show that the inverse of a rotation is the opposite
rotation, because q−1(q~vq−1)q = ~v. Moreover, rotating by twice the angle
around the same axes corresponds to a square of a quaternion rotation which
can be continued for any n ∈ R where qn equals a rotation n-times around
the same axis as q. Also, the combination of two quaternion rotations to one
rotation, according to the same rotations, can be done by

q′ = q2q1 (14)

where follows, that any number of rotations can be combined to a single
one [29].

Advantages
One advantage lies in the compactness of the notation by just four numbers,
compared to the bigger Eulerian matrix representation. Additionally, it is
possible to directly determine the rotation axis and angle with this notation,
which is not the case in matrix representation, where it is normally very
hard to observe those two parameters. Moreover it is the quaternion rota-
tion which allows a smooth rotation in video games and other applications
rather than a one step rotation. Most important, the phenomenon of the
so called gimbal lock where one degree of freedom is lost, is avoided by the
use of quaternions. However, one big disadvantage shows, that this method
is only possible to perform rotations, which is a problem when other trans-
form operations than rotations, like translations, are executed. A conversion
from a matrix to quaternions requires only a square root and three divi-
sions plus some additions in a worst case, thus being not very expensive in
computational costs. On the other hand, a back transformation costs nine
multiplications and 15 adds, which already states a more expensive transfor-
mation. [45]
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3.2 Geometrical Background

3.2.1 Triangulation

Triangulation is a method that forms a triangle mesh using a cloud of ver-
tices. Furthermore, this method is called a Delaunay-Triangulation [30] (in
2D) if the inner circle criterion is fulfilled. Therefore, the generated trian-
gle’s inner circle does not include other vertices than the edge vertices of
the generated triangle. Thus, the smallest inner angle is maximized over all
triangles, which is a preferred characteristic in Computer Graphics, since it
minimizes the rounding error.

Generally spoken, the triangulated mesh is generated by connecting single
vertices to triangles. In Figure 11 this process is visualized by performing
a Delaunay-Triangulation with the use of random ordered vertices. This

Figure 11: Triangulation process using a cloud of vertices (left) to generate
a mesh consisting of triangles (right)

method provides an easy and precise way to form a mesh with surface infor-
mation like used in winged edge meshes (described in the following section)
by just using predefined points in the 3D space. An easy example is the
formation of a cube model by just knowing the location of the four corner
points. However, triangulating an unordered cloud of points has not only
one unique solution rather then various different. Bern et al. [20] state in
Computing in Euclidean Geometry. chapter 2.2 Optimal Triangulation the
following characteristics of the triangles as quality measure for optimal tri-
angulation:

• maximizing the minimum angle;

• no large angles;

• maximize the minimum height;

• conforming Delaunay-Triangulation.
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3.2.2 Winged Edge Mesh - WEM

The winged edge mesh is a commonly used method to represent geometri-
cal data in Computer Graphics based on the contribution of Baumgart in A
polyhedron representation for computer vision [13]. Compared to other spec-
ifications of polygonal meshes like a node and element list, this one shows
important improvements in accessing data.
WEMs consist of three different elements: vertices, edges and faces. Vertices
are the node points where edges meet. Faces are surrounded by their edges,
building the actual surface element. Therefore, depending on the mesh type
a face holds various vertices and edges. Using a triangle mesh, for exam-
ple, one face holds three edges and three nodes. Figure 12 gives a better
understanding of this model. The theory of winged edge data structure is

+
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+ +

+
+

+

++
+ +

Vertices Edges Faces WEM

Figure 12: The Elements of the Winged Edge Mesh (WEM) data structure.

applicable when two or more faces come together sharing the same edge.
Therefore, an edge table is generated, holding the following features of each
edge:

• edge name;

• start and end vertex;

• left and right surface;

• left and right traverse.

Figure 13 together with Table 3 shows an general example.
Moreover, this data structures uses two more tables. The vertex table

holding one entry for each vertex together with and edge incident on this
one. Similar, the face table holding one entry for each face together with an
boundary edge.
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Type Number %

Lefort-I 4 0.7
LeFort-II 11 2.0
LeFort-III 9 1.7
Right zygoma 62 11.0
Left zygoma 60 10.9
Zygomatic arch, right 14 2.7
Zygomatic arch, left 11 2.0
Right orbital floor 60 10.9
Left orbital floor 70 13.1
Right orbit 8 1.6
Left orbit 9 1.8
Right upper jaw 13 2.5
Left upper jaw 11 2.1
Right upper alveolar 7 1.4
Left upper alveolar 9 1.8
Nose 32 6.1
Mandible symphyses 11 2.1
Right mandible 38 7.0
Left mandible 39 7.0
Right condylar neck 21 4.1
Left condylar neck 18 3.3
Right lower alveolar 9 1.8
Left lower alveolar 9 1.8
Condyle 5 0.8
Total 540 100

Table 2: The table shows the statistics of the collected data in Innsbruck,
Austria of facial bone fractures caused by ski accidents.

Edge Vertex Face Left-Traverse Right-Traverse
Name Start End Left Right Pred. Suc. Pred. Suc.

a 1 2 L R b d e c

Table 3: Example entry of edge table according to figure 13
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Figure 13: Two faces L and R sharing the same edge a building a winged
edge.

Providing all this information, it is an easy task to access the desired elements
of the data set. Further important for this contribution, is the introduction
of normal vectors and face centroids. Figure 14 shows a single face, where
N, the vector normal to the face’s surface with it’s origin C the face’s central
point (centroid), thus describing further characteristics used in my thesis. It
is important to note, that mathematically, a face, like described here, has
two normal vectors, one pointing outwards and the other one pointing in-
wards. However, the face is part of a model’s outer surface, thus allowing to
dismiss the vector pointing to the inside of the model, since it does not add
useful information. Another part worth to mention and frequently used in
this thesis, is the concept of patches. Under MeVisLab the WEM objects are
represented in a special structure why it is important to introduce the WEM
patch object. Therefore, a WEM object does not consist only of edges, faces
and nodes, more this geometrics are first assigned to a patch. Further, one
WEM object can hold several WEM patches. As a result, the hierarchical
order is represented as follows:

object→ patch→ face→ edge→ node

3.3 STL-File Format and 3D Printing

This section is about the file format STL which stands for StandardTeselation
Language and is commonly used in CAD-systems for rapid prototyping, com-
puter aided manufacturing and 3D printing [33].
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Figure 14: A WEM triangle face showing the centroid and surface’s normal
vector.

This format does not use any representation of texture, color or other at-
tributes used in CAD formats. Further, it just describes the surface geometry
represented through unstructured triangulated surfaces consisting of vertices
of those triangles in a three-dimensional Cartesian coordinate system. Also,
the STL file can be specified in two different ways, ASCII and binary format.
Due to higher compactness, the second one is the more common one.

The 3D printing technology has gained lots of importance in the last years
and still is fast developing. Since the STL-file format is a commonly used
one in this still evolving technology, also the proposed methods are optimized
for gaining a STL-file ouput data. More, there are three main steps in the
process of gaining a final 3D physical model. Figure 15 shows those followed
by a brief description [48].

Image Acquisition - This step is very important to the final quality of
the resulting model, since the quality of the gained images influences
directly the output quality. Many different imaging techniques like
magnetic resonance imaging (MRI), CT, cone-beam CT, ultrasound
(US), positron emission tomography (PET) or single-photon emission
computed tomography (SPECT) are appropriate at this stage depend-
ing on the tissue of interest and it’s location. The resulting images are
frequently stored in DICOM (Digital Imaging and Communications in
Medicine) [21] format.

Post-Processing - The 2D images serve as basis for this step, from which
complex 3D models are generated using high performance computers
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Figure 15: The figure shows the main steps in 3D printing together with
an example each. Image Acquisition, for example by a CT scan, produces
cross-section images in 2D (left). By further post-processing, a 3D computer
model can be constructed (middle). Finally, the model is printed to gain the
physical model (right).

and algorithms including segmentation, registration and visualization.
The final model is saved in CAD format, whereby it is transformed to
STL-file format to be able to be processed with a 3D printer. If this
contribution should be categorized, it would fit best in the phase of
post-processing since the 2D slices of the CT-scan are already provided
but a 3D-printed, physical model is the next step.

3D Print - The final goal is to gain a physical 3D model based on the work
gained in the post-processing step on the computer. Therefore, a range
of different techniques have been developed, where additive fabrication
is the most common one. By adding layer per layer, according to the
model, the physical model is constructed piecewise. 3D printing has
gained it’s importance in the medical area [40] [39] due to the possibility
of constructing nearly every geometry, even the most complex ones,
very detailed and fast. This is why surgeons are very interested in
developing this technology until it is usable in the daily routine thus
reducing financial and time costs.

3.4 Computed Tomography

Nowadays, computed tomography is one of the most common methods used
in medical imaging by showing increasing numbers of application in the last
two decades in most of the countries [19]. By taking many x-ray absorption
measures from different angles on one axes of the patient, these images are
further processed forming the final cross-sectional image in 2D. The image

31



aquisition happens by rotating a ray-sensor system around the patient who
is fixed in the center of the rotation axes. A thrust in one direction of the pa-
tient allows to construct cross section images at different locations, referred
to as the so called slices. By further combining a large series of slices, a 3D
image of the patient, or parts, is possible to be reconstructed [22].

In CT images, the ray-sensor system casts a ray through the center of the
rotation, spreading also through the patient to be able to be detected from
the sensor placed on the opposite site. The sensor experiences diminution of
the ray which is used for gray value calculation of each point. Further, each
pixel is assigned to a gray value according to the tissue’s specific ray attenua-
tion. Using the so called Houndsfield Units (HU) [16] each tissue is assigned
a gray value relative to the one of water (HUwater = 0). Therefore, being eas-
ier to compare. CT is everywhere applicable where the patient suffers from
an issue causing deformations of the body structure. It is safely used by
detecting bone fractures, issues with blood vessels, inflammation or bleeding
detection. Another advantage is the relatively fast imaging procedure. By
suffering from issues concerning soft tissue structures, MRI is preferred, even
though the application costs are higher than the ones from CT the important
advantage is the radiation free examination.

Even though, CT scans are very trustfully, they suffer from artifacts like
beam hardening, motion artifacts, streak artifacts, partial volume effect or
noise, to name a few [25]. However, increasing the ionization dose of the ray
leads also to a better reconstruction of the inner body structure, why the
most important issue is to lower the amount of radiation a patient is exposed
to, by increasing or at least holding the image quality at the same time. Not
only that high doses increase adverse side effects, also the risk of radiation
induced cancer is elevated. Following there are listed some methods of how
the radiation exposure can be reduced easily during CT scan examination
wihtout noticeable loss of quality [12]:

• using new software technologies can decrease the exposure significantly;

• adapting the radiation dose to the tissue of interest;

• evaluate the most suitable examination method, e.g. full body scans
are in most of the cases inappropriate.
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3.5 MedArtis Miniplates

The implant models used in this thesis are so called miniplates rather than
normal implant plates. Miniplates are reduced in their size and thus show
several advantages. One of those is the effect of being easily bent due to the
delicate shape of the plate allowing optimal adoption to the fractured bone’s
surface. Further, the use of cortical screws, able to be applied with this type
of implant, ensures that nerve damage nearly never occurs. Of course, re-
duced forms like these, show some disadvantages like material damage due
to too much bending in different directions or the loss of compression in in-
terfragmental areas.

However, miniplates are commonly used, especially by the surgeons of the
Oral and Maxillofacial departmant of MedUni Graz. Therefore, this thesis
focuses on the three most implanted models by these surgeons, observable,
in Figure 16. The three figures show the most used miniplates of MedUni

Figure 16: The three figures show the most used miniplates of MedUni Graz’s
Oral and Maxillofacial department. All models are of the Trauma 2.0 series
and available in the MedArtis product catalog. The most left one with article
number M-4138 showing an overall length of 23 mm consisting of two end ring
elements and two middle ring elements. The model in the middle with article
number M-4320, with the same properties as the left one but an extended
bar of 9 mm and thus extended to 29 mm in overall length. Last, the most
right one, with article number M-4322, with two additional ring elements
and an overall length of 35 mm.

Graz’s Oral and Maxillofacial department. All models are of the Trauma
2.0 series and available in the MedArtis product catalog [8]. The most left
one with article number M-4138 showing an overall length of 23 mm con-
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sisting of two end ring elements and two middle ring elements. The model
in the middle with article number M-4320, holds the same properties as the
previous one but has an extended bar of 9 mm, consequently enlarging to
29 mm in overall length. The most right miniplate with is categorized with
article number M-4322, added with two more ring elements and thus gaining
an overall length of 35 mm. The implants also show the same properties in
their plate thickness with a value of 1 mm for the whole series. For a full
description of the implant, Figure 17 shows the miniplates’ general dimen-
sions.

Figure 17: General dimensioning of miniplates of the MedArtis’ Trauma 2.0
series [6].

Further, all the miniplates are made of pure titanium (ASTM F67, ISO 5832-
2) which shows not only very good mechanical characteristics, but is also bio
compatible.

3.6 MeVisLab

3.6.1 General

This section describes the medical imaging platform MeVisLab (Medical Vi-
sualization Laboratory) which’s software development kit (SDK) is used for
implementing the proposed methods. The information provided in this sec-
tion is a recap of the most important chapters of MeVislab’s Getting Started
Tutorial [9] and Reference Manual [11]. MeVisLab provides basic and ad-
vanced algorithms for medical image processing and visualization where also

34



an environment for individual module generation under C++ is included as
well as an environment for implementing a user interface with MDL-script
(MeVis Description Language). It is possible to construct networks using
modules of different types for processing images.

3.6.2 Development

Under MeVisLab it is possible to develop under three different levels. First,
via visual level programming by using pre-installed modules, individual im-
age processing and visualization is able to be combined to complex networks
using the graphical user interface. Another possibility is the usage of the
scripting level making use of the python scripting language. Via the C++
programming level, it is possible to update or reprogram existing algorithms
or even generate new ones in individually designed modules using the plat-
form independent C++ class library. Additionally, with MDL script it is pos-
sible to design user interfaces hiding the underlying complexity thus avoiding
confusion of the medical user and providing an easy to use surface for inter-
action. Figure 18 shows a very low level network with a minimum amount
of modules by providing a module for loading the image data, the algorithm
module, which applies a threshold function in this example, and the viewer
module for visualization.

Figure 18: Basic module processing pipeline showing a network of three
modules, an image source for loading the data set into the network, the
algorithm module to process the data and finally a viewer module which
enables visualization of the processed image.
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3.6.3 Modules

In MeVisLab the network concept is based on a graphical representation
of modules with their specific functions for image data processing. In the
environment, three different types of modules are integrated, observable in
Figure 19. The basic module types are ML modules (blue) which are page/-

Figure 19: The basic module types are ML modules (blue) which are page/-
patch based and demand-driven, Open Inventor modules (green), providing
scene graphs in 3D, and Macro modules (brown), consisting of a combination
of other modules.

patch based and demand-driven processing modules, Open Inventor modules
(green), providing scene graphs in 3D, and Macro modules (brown), consist-
ing of a combination of other modules. Further, not all but most modules,
have connectors which are indicated either by a half circle, a triangle or a
rectangle on the bottom (input) and the top (output) of a module. The three

Figure 20: The three types define a connection for ML images (triangle), a
base object connection indicating pointers to data structures (rectangle) and
an inventor scene connection (half circle).

types define connections for ML images (triangle), a base object connection
indicating pointers to data structures (rectangle) and an inventor scene con-
nection (half circle). By connecting these connectors, the data transmission
between modules is enabled. This connections are represented by a blue line
between the modules, like shown in Figure 18. Beside this data connection
a parameter connection is also defined enabling to connect single parameters
between modules, indicated by a two sided arrow.
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Type Description
.mlab network file holding all information about it’s modules
.def Module definition file
.script MDL script file, includes the user interface
.mhelp description of all used fields
.py python file used for scripting
.dcm DCM part of the DICOM file (if used)
.tiff TIFF part of the DICOM file (if used)
.mlimage 6D image with DICOM tags (if used)
.gvr Precomputed octree file for direct volume rendering

Table 4: The table shows the most important files used in the MeVisLab
environment.

3.6.4 Important Files

Table 4 gives an overview of important files and their content used with the
MeVisLab SDK.

3.6.5 Example Setup of a Module

In this section I show how to setup a module like used twice in the proposed
methods. Therefore the integrated Project Wizard is used.

First, the wizard is started by selecting Run Project Wizard in the MeVis-
Lab’s file menu. If not yet created a new package has to be created, where
the following generated modules are organized. Next, the WEM Module link
for generating a WEM module is selected. The panel presented is shown in
Figure 21. The wizard asks you to enter a unique name, as listed later in the
database, an author name, an already created package and a project name
which are mandatory before continuing the setup. Remaining fields are rec-
ommended to enter as well, since they will provide additional information for
other parties to get a better understanding of the underlying process. After
providing the required information, the Next button is enabled, leading to a
panel where the module type has to be chosen. The WEM generator provides
only one output since it’s objective is to generate a new WEM using other
types of inputs. Choosing the WEM processor, like done in this thesis, the
input WEM is processed to form the output WEM, thus providing one input
and one output. WEM inspector modules analyze properties of the input
WEM, leading to only on input field. The following panel allows to include
additional fields, which I prefer to setup directly in the C++ files, which is
also explained in this section. By creating the module, the necessary files
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Figure 21: This figure shows the project wizard’s panel for setting up the
modules properties.

are generated and included folders are shown to the user. Most important
is the Visual Studio project file. But before opening that one, we have to
make some adoptions to the .pro file. The line where the used projects are
included has to be adjusted to

CONFIG+=dll ML MLBase MLWEM

to be able to use necessary commands for WEM processing. By running the
.bat file the package is updated. The continuing step, is to open the Visual
Studio project file (.vxcproj) to adjust the included files. The generated
header file, for a module named test, is shown in the following code example
Listing1.

1 #pragma once
2

3 // Local i n c l ud e s
4 #inc lude ” WEMtestSystem . h”
5 #inc lude <WEMBase/WEM. h>
6 #inc lude <WEMBase/WEMModuleBase/WEMProcessor . h>
7
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8 // ML in c l ud e s
9 #inc lude <mlModuleIncludes . h>

10

11 ML_START_NAMESPACE

12

13 // !
14 c l a s s _WEMTEST_EXPORT test : pub l i c WEMProcessor

15 {
16 // ! Implements i n t e r f a c e f o r the runtime type system o f the ←֓

ML.
17 ML_MODULE_CLASS_HEADER ( test )
18

19 pub l i c :
20

21 // ! Constructor .
22 test ( std : : string type=” t e s t ” ) ;
23

24 protec t ed :
25

26 // ! Dest ructor .
27 v i r t u a l ˜test ( ) ;
28

29 // ! I n i t i a l i z e module a f t e r l oad ing .
30 v i r t u a l void activateAttachments ( ) ;
31

32 // ! Handle f i e l d changes o f the f i e l d \c f i e l d .
33 v i r t u a l void handleNotification ( Field∗ field ) ;
34

35 // ! p r o c e s s ( )−r ou t in e f o r c o r r e c t p r o c e s s i ng .
36 v i r t u a l void _process ( ) ;
37

38 pr i va t e :
39

40 // ! The main p ro c e s s i ng rou t in e . Here , the own mesh algor i thm←֓
can be implemented .

41 void myAlgorithm ( ) ;
42 } ;
43

44 ML_END_NAMESPACE

Listing 1: Initial header file for test module.

The wizards sets up the header file already using the necessary includes, the
constructor, the destructor, a method to initialize the module, the handleNo-
tification method, a process routine and the myAlgorithm method.

Constructor This is where all the parameters and in-/output fields are
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initialized when opening a network.

activateAttachments This method is not used in this thesis, therefore it
is deleted in all implementations.

handleNotification In this method, it is checked weather the processing
method(s) are executed or not. Since most of the modules start their
process on field changes, here it is checked if a field has changed.

process This method is called if the process is executed and guarantees
correct processing.

myAlgorithm Called by the process method, the code developer imple-
ments his code in this section.

Since we defined a WEM processor module, one WEM input and one
WEM ouput are already defined and accessible via the variables inWEM and
outWEM as a WEMPtr variable thus pointing to a WEM object. Adding
new inputs or outputs requires a definition of the appropriate fields in the
header. If additional parameters want to be added to the module as well,
also these have to be declared in the header first. The next code example
Listing2 shows how this is done by adding an additional input for a marker
list ( inMarkerFld) and an additional parameter for toggling a button on/off
as a boolean ( OnOffFld).

1 .
2 .
3 .
4 pr i va t e :
5

6 // ! F i e ld f o r add i t i o na l parameters
7 BoolField∗ _OnOffFld ;
8

9 // ! F i e ld add i t i o na l input marker l i s t s
10 BaseField∗ _inMarkerFld ;
11 .
12 .
13 .

Listing 2: Declaration of in-/outputs and parameters.

As the variables are now declared, they have to be initialized by the con-
structor. The third code example Listing 3 shows how an initialization is
performed using the declared variables from the previous example.
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1 test : : test ( std : : string type ) : WEMProcessor ( type )
2 {
3 // Suppress c a l l s o f h and l eNo t i f i c a t i on on f i e l d changes to
4 // avoid s i d e e f f e c t s dur ing i n i t i a l i z a t i o n phase .
5 handleNotificationOff ( ) ;
6

7 // Add in−/output f i e l d s to the module and s e t t h e i r va lue s .
8 _inMarkerFld = addBase ( ” inMarkerList ” , NULL ) ;
9 _inMarkerFld−>addAllowedType<XMarkerList>() ;

10

11 // Add parameter f i e l d s to the module and s e t t h e i r va lue s .
12 _OnOffFld = addBool ( ”On/Off ” , f a l s e ) ;
13

14 // React ivate c a l l s o f h and l eNo t i f i c a t i on on f i e l d changes .
15 handleNotificationOn ( ) ;
16 }

Listing 3: Variable initialization in the constructor.

First the method for handling the notifications is turned off during the
execution of the constructor to avoid side effects by calling the method han-
dleNotificationOff(). Finally the handling of notifications is activated again
by using the handleNotificationOn() method. To the input marker list field
inMarkerFld a base is added by forwarding a name (inMarkerList) and a
value (NULL) by the addBase method. Also the allowed connection is set,
which is of a XMarkerList type. For the parameter variables only the defini-
tion of a name and an initial value has to be done, since no inputs nor outputs
are included in such a variable type. As a result, the variables are now set
up, initialized correctly and able to be used in further implementation.

4 Related Work

Surgeries of oral and maxillofacial defects use different pre-planning processes
since on one hand, there are various fracture sites requiring different kinds
of treatments and on the other hand there is a range of different treatment
methods possible to use. However, centerline detections can be categorized
in two main types. First, there are those using rapid prototyping to gain pre-
bent implants and second, those using computer-aided pre planning software
resulting in patient specific implants. However, the partners from MedUni
Graz, and therefore I assume that also other medical institutions, do not use
any of those two pre planning methods but bend the implant in a conven-
tional way on the open cut patient which increases some risk factors like the
longer lasting surgery due to frequent adjustments of the implant by bend-
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ing. Anyway, this chapter gives a brief review on the two methods using the
pre planning step, in comparison to the proposed one.

4.0.1 Pre-bent Implants using Rapid Prototyping

According to Bell [15] in his article Computer Planning and Intraoperative
Navigation in Cranio-Maxillofacial Surgery, rapid prototyping (also named
stereolithographic modeling) is a useful method to plan implants for complex
facial reconstructions. Therefore, based on a CT-scan, a 3D physical model is
generated, which serves as a bending guide for the implant or as a template
for constructing a patient specific one [14]. This treatment also uses ad-
vanced software tools like Materialize’s MIMICS [4] being able to reposition
fractured bones to model the final outcome in a 3D computer and physical
model [50]. Further, this method is also used in combination with a so called
transfer key [34]. This key, serves as a guide for optimal implant positioning
and is constructed to fit the healthy bone perfectly, thus allowing optimal
placement of the actual, load bearing, implant, relative to the key. Even
though this method is very precise, it holds disadvantages concerning finan-
cial and time expenses [50]. The used software is of commercial nature and
also the training and application of the software is time consuming, thus ex-
penses rise. Further, in some cases the generated models need to be adjusted
during surgery, since the repositioning could not be performed the same way
it was performed in the computer model due to inaccuracy or surrounding
soft tissue, making the planned placement more complicated. The method
proposed in my thesis is both, less time and cost consuming. By providing a
software which is easy to handle and understand, the surgeons will not have
the problem of spending lots of time on generating the implant. The CT-scan
data, which is mandatory to derive for facial surgeries, can easily be loaded
into the application and by additionally providing an easy to use and clear
graphical user interface, the surgeon has to perform just a few clicks until
gaining the desired, perfectly fitting implant. From here on, the 3D printer is
setting the time limits, but resulting in less time consumption than the con-
vencional method anyway since the printing process of the miniplate is less
time consuming due to minor size than the big full skull prints. Additional,
this properties, namely the use of less material and less consummated time,
affect financial expenses directly. Another very important advantage of the
method proposed in this thesis lies in the mechanical properties. Using a 3D
physical model as a guidance, harms the implant’s structure since the raw
and straight material has to be bent for an optimal fitting shape [17]. Even
though, this deforming process does not lead to difficulties in most of the
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cases, the bending holds a potential of failure which is avoided by directly
generating the already bent implant. However, in both methods additional
adjustments may have to be applied during surgery, since neither a physi-
cal nor a computer generated model catches the real life perfectly. Anyway,
due to this fact, adjustments of directly printed implants need less absolute
deformation, since the step of pre-bending is skipped.

4.0.2 Computer-aided Pre-planning

Like already mentioned in the previous section, there exists quiet a range
on software tools for oral and maxillofacial surgery applications. Most of
them focused on the repositioning of fractured bone tissue rather than im-
plant generation like proposed in the article A New System for Computer-
Aided Preoperative Planning and Intraoperative Navigation During Correc-
tive Jaw Surgery proposed by Chapuis [32]. Further, a very powerful soft-
ware tool is provided by Materialise [3] which has a broad range on appli-
cation fields concerning software and services for medical 3D printing. The
software tool PROPLAN CMF allows, like mentioned above, to reposition
hard tissue parts and calculate the resulting outcome including soft tissue
stresses due to the applied deformations, for surgical pre-planning (web-
site: http://hospital.materialise.com/mimics-care-suite-cranio-maxillofacial-
surgeons, last accessed on May, 2016 [4]). Additionally, the OBL software
provides a tool for patient specific titanium mesh implant generation. Even
though, with this packages a professional and comprehensive software kit
is provided it lacks a few disadvantages. First, the commercial available
software has to be purchased which leads to an elevation of financial costs.
Second, surgeons, for example those of the LKH Graz, use miniplates like pro-
vided by MedArtis rather than personalized titanium mesh implants. There-
fore, the software described in my thesis, is fitting better for the use of
miniplates and reconstruction plates, since it is adopted for generating and
placing MedArtis miniplates in an optimal manner. Upgrading to other types
of implants is a question of not even one day of work, depending on the ex-
pertise level of the developer. Generally, commercial software is not able
to be extended at all or does not provide interfaces for extensions. Again,
the software provided in this thesis shows advantages, by being able to be
rebuild using MeVisLab on a free available version for scientific research.
Also, it enables the creation of customized extensions for anybody’s needs,
thus allowing for example the generation of other implant types or adding
the additional feature of bone repositioning. Even better, that the software
provided is editable by everyone to fit one’s needs, independent if it is an
update for new types of implants or even another area of application like

43



vertebral disk or spine fixation.

5 Methods

5.1 Overview

This section gives the reader an introduction of how the proposed software is
used to gain a general understanding and an basic idea of what the software
is capable of and how underlying ideas are set into practice. Therefore, in
Figure 22 the user interface is shown to be able to link a picture to the later
mentioned interactions, calculations and objects, followed by Figure 23 show-
ing the flow chart diagram illustrating the software’s work flow to gain the
desired outcome. Briefly summarized, the user first has to load the dataset
into the application to be able to set an initial point defining the implant’s
center position, followed by setting up the direction and choosing the appro-
priate implant model necessary for calculating the baseline, which serves as
an simplified implant model allowing to save computational time but still
gives the user a clear and accurate response. If satisfaction is reached, the
user visualizes the implant which is now able to be saved for parallel implant
generation or exported for locally and permanently storage. Again, this sec-
tion just shows an overview of the application but detailed information on
the underlying processes including details concerning the user interface are
provided in later sections referred to in the following more detailed lines.
Data Set Selection - orange
First thing to do, after opening the application, is to load the patient’s data
set by choosing a path to the locally stored WEM file by clicking on the
browse button of the Loadfile field in the user interface. Having a look at
Section 5.2, shows detailed information on this topic. The result of this user
interaction already is visualized by the viewer. The viewer also has imple-
mented some controls like options for zooming and rotating the camera.

Implant Setup - grey
Second, again it is the user who has to set up the implants properties. There-
fore, he has to choose the center point of the implant by setting the initial
point on the skull. This is done by just holding the ALT key and clicking on
the desired position. The Baseline Calculation algorithm (detailed described
in Section 5.5) will now start calculating the Baseline (green line) in an initial
position depending on the mouse wheel value and the initially set point. This
line shows the location, direction and the approximated length of the later
generated implant including the underlying curvature and should serve as a



Figure 22: User interface, separated in Controls and Viewer boxes. The
Controls box holds the implant model selection (currently three types avail-
able), a further box for controls like the ON/Off button for visualization,
Save for saving the current implant and Export for saving the generated im-
plants locally, together with the wheel step field for adjusting the accuracy
of the mouse wheel. The two fields on the bottom of the Controls box let
the user choose the path of the patients data set location (Loadfile) and
the path for saving the outcome (Savefile) by using the export button. The
Viewer box shows the data set (white skull) attached with a miniplate (gold)
and the baseline (green) with further controls for a flexible and user friendly
visualization.

simplified version of the resulting implant, thus giving an idea on how the
implant will look like later. In Figure 22, which shows the user interface, the
green dotted line is possible to be observed as well, placed on the patient’s
forehead. The length of this line depends on the selection of the implant
model, by marking one of the radio buttons in the user interface’s control
box, since they vary in length, different models set the baseline’s length to a
different value according to the model’s dimensions. Additionally, by turn-
ing the mouse wheel, the implant is able be rotated, thus the direction of
the baseline is able to be altered to match the user’s desired placement and
orientation. The field wheel step lets the user choose the accuracy of this
rotation for high precision positioning. Also the initial point, and thus the
implant itself, can be readjusted by holding the ALT key (activates pick
mode and deactivates view mode as long as held) and clicking on the new
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Figure 23: Overview of the implant generation. In the orange section, the
user loads the patient’s data set which is then visualized by the viewer block.
Followed by the implant set up (grey section) where the user sets the initial
point (implant center). Next,the baseline is to calculated which shows the
user the current position and direction of the implant, depending on the
mouse wheel value, the selected implant model and the initial set point is
also visualized by the viewer. In the apricot section the implant is calculated
(Implant Generation Block) by activating the Visualize ON/Off button. For
the implant generation also the implants ring sections, middle and end parts,
are required. The final implant is then visualized together with the baseline
and the patient’s data set. By using the block Implant Save, the user saves
the current implant(s) for this session and starts setting up new ones. By
exporting, the current visualized implants are stored as a STL file on a local
path. 46



position on the data set’s surface at any time. The step of first only visual-
izing the baseline rather than showing the implant directly is used to gain
a more comfortable user experience since generating the model takes a few
seconds to calculate, resulting in latency time which has to be avoided. As
a result the compromise of adjusting the baseline in a fast manner followed
by a latency time just during the finishing generation process of the implant,
leads to a far better experience.

Implant Generation - apricot
After setting up the implant’s position, direction and model type, the user
has to click on the ON/OFF button in the user interface, which accords to
the green, diamond shaped block in the overview graphic, named Visualize
ON/OFF. Toggling this button, results in visualizing, or not visualizing, the
current implant, depending on the baseline, performed by the Implant Gen-
eration algorithm. In addition to the properties of the baseline like position,
direction and implant model, this algorithm also uses the implants ring sec-
tions, namely the end and middle elements for constructing the final implant.
More details are provided in Section 5.6. Depending on the implant model’s
dimensions the positions and orientations of each ring element are than cal-
culated followed by further generating the bridge sections, also according to
the model’s specifications. Important to mention is, that the ring elements
have been constructed in Autodesk’s Inventor and are permanently loaded
into the application. Finally, the implant (gold) is visualized as shown in
the user interface, Figure 22. Currently, for the proof of concept, the catalog
of available implants is limited to three different models from the Medartis
Modus 2.0 series which are characterized in section 3.5. Despite the fact
that the implant’s setup can be altered during every step, it has to kept in
mind, that rotating the implant or adjusting the position in visualizing mode
takes a lot of computational afford and thus may result in latencies. For op-
timal usage, it is therefore recommended to adjust these characteristics only
during inactivated visualization. In the case of observing a satisfying result,
the user can save the implant to continue setting up another implant while
visualizing the previous generated and saved ones. This is done by using
the Save button. Using this button does save the implant for this session
only, thus allowing the generation of multiple implants being visualized next
to each other. In other words, with this function it is possible to visualize
more than one implants at the same time, e.g. for medical cases that require
several implants like the LeFort fractures. Also, it is important to know the
difference between the Save and Export buttons. Second, does export all
implants, including the current (may not be saved yet) and all saved ones
to the path, given in the Savefile field, as STL file. Again, export actually
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also means to save, but saves the implants locally on the computer in STL
format and permanently, rather then the Save button which does save the
currently processed implant for this session to the other already saved im-
plants. Meaning, that as long as an implant is not saved, it is possible to be
readjust.

Another option which is permanently able to be used, as long as the baseline
is already generated, is to change the baseline’s marker points in any arbi-
trary direction by just changing it’s position by drag and drop. Since a three
dimensional space is represented on a two dimensional plane (screen), it is
sometimes not an easy task to perform.

5.2 Data sets

My thesis is optimized for working on real patient data why it is crucial to
use data sets like those occurring in the surgeon’s daily routine, suffering
from different facial defects like LeFort fractures, mandible breaks or similar.
Therefore a set including data of more than ten subjects is provided by the
partners of MedUni Graz of the Oral- and Maxillofacial department and my
supervisor Jan Egger of the Institute for Computer Graphics of the Graz
University of Technology in DICOM or nrrd format.

As the software is built for STL-file input, it is necessary to convert the
provided files first, for example by using the MeVisLab network shown in
Figure 24. The Figure shows an example of converting the provided nrrd-
files into STL-files by using a network constructed in MeVisLab. The lowest
block named itkImageFileReader handles the loading of the image file, fol-
lowed by the block for the actual conversion (middle, WEMIsoSurface) and
finishing with the optional block for saving the generated WEM/STL-file
named WEMSave. It is also possible to skip the saving process and link this
network directly to the main network, thus, instead of inter saving the file and
loading it again, one can spare the step of generating a new file. Moreover, it
is important to choose the right parameter settings for the WEMIsoSurface
module where the most important ones are described briefly in Figure 25.
This figure shows an example set up for converting the provided nrrd-files
into STL-files. The upper box sets up the used grey level values using the
minimum and maximum levels of the provided file or using manually added
ones. It is recommended to use the image’s maximum value but manually
choose the minimum value. The lower box provides an option for voxel sam-
pling, differentiating between Voxel Sampling where voxels according to the
shown number are sampled to one voxel, equal to the Cell Extension option
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Figure 24: Example of converting the provided nrrd-files into STL-files by
using a network constructed in MeVisLab. Lowest block handles the loading
of the image file, followed by the block for the actual conversion (middle) and
finishing with the optional block for saving the generated WEM/STL-file. It
is also possible to skip the saving block and link this network directly to the
main network instead of inter saving the file and loading it again in the main
network.

Figure 25: Example set up for converting the provided nrrd-files into STL-
files. The upper box sets up the used grey level values using the minimum
and maximum levels of the provided file or using manually added ones. The
lower box provides an option for voxel sampling differentiating between Voxel
Sampling where voxels according to the shown number are sampled to one
voxel. This also equals the Cell Extension option with three similar param-
eters for x, y and z
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Figure 26: Dataset of healthy patient where no fractures are able to be
observed, after conversion from nrrd to STL format.

with three similar parameters for x, y and z.

In the following Figures 26 and 27 two used datasets are shown, where the
upper one suffers from a zygomatic bone fracture marked with a red circle
and the second, lower one showing a healthy patient, without any fractures
possible to observe.

5.3 Network

Opening the developed software, first the user interface pops up. By mini-
mizing or closing this window one will only see the macro module as shown
in Figure 28. The solution of providing only the macro module holds several
benefits: First, this method enables the implementation of a user interface
which is able to be linked easily with all underlying modules from the internal
network. Also the wrapping of the network to only one module, gives pro-
tection to unintended interactions by the user, for example surgeons which
are using the software, may click accidentally on a module’s node resulting
in disconnecting a link leading to failures, probably not able to be reme-
died by themselves. Consequently, this method provides a two level failure
protection since the surgeon has to open first the internal network, which
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Figure 27: Dataset of patient suffering from zygomatic fracture on the right
side, after conversion from nrrd to STL format.

Figure 28: The macro module which is observable after minimizing or closing
the user interface, holding the underlying main network to protect it from
unintentional user interaction.

is only accessible through the module’s menu, until being able to harm the
software. The main network is able to be accessed by right clicking on the
macro module and choosing Show internal network in the menu. Afterwards,
a new tab opens, presenting the internal structure as shown in Figure 29. The
process of generating implants, starts first by loading the patient’s dataset
with the use of the WEMLoad module, permanently being rendered by the
SoWEMRenderer1 module and visualized in the viewAll- SoCustomExam-
inerViewer block. Next step is to choose the location of the initial point,
marking the implants center, by clicking on the skulls surface during pressing
the ALT key, for activating the pick mode. This interaction is detected and
stored by the So3DMarkerEditor. It is also this module which provides the
first set marker to the CurvatureCulc block, thus enabling the calculation of
the baseline which determines the implant’s curvature by using the patient’s
skull. As well the initially set point and the baseline are able to be visualized
with the use of So3DMarkerEditor for the initial set point visualization and
So3DMarkerEditor1 for the handling of the baseline points. Afterwards, the
baseline information is sent to the ImplantGen module which generates the
implant, dependent on this information and further WEM files permanently
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Figure 29: The main network observable by showing the internal network of
the macro module.

stored in WEMLoad1, WEMLoad2 and WEMLoad3. This three blocks hold
the different ring elements of the final implant, where WEMLoad1 holds the
end elements, WEMLoad2 the middle elements and WEMLoad3 angle el-
ements for implementing implants with a 90 degree angle. The generated
implant is then able to be rendered with the SoWEMRenderer2 module and
visualized afterwards. Also, the final outcome is able to be stored perma-
nently on the local drive by making use of the WEMSave module. The
additional modules increase the handling and user experience, like the So-
MouseGrabber enables rotating the basleline, and therefore the implant as
well, by just turning the mouse wheel. Further, the SoOrientationInset and
SoOrientationModel let the user choose from a range of different models vi-
sualized in the lower right corner of the viewer panel, serving as orientation
help when rotating the viewer’s camera.

5.4 Used Modules and Intermodular Linking

Following, each of the included modules is described more in detail to under-
stand the function and the inter modular linking. This happens bottom up
according to Figure 29 where modules with the same algorithm are grouped
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Figure 30: Shows the panel of the WEMLoad module. The path gives the
location of the patient’s dataset. All other options are set to default.

together in one section since they fulfil the same task but with different
connectors.

5.4.1 The WEMLoad Module

As the name already states, this module loads the initial WEM-file holding
the patient’s data which is also the module’s only output in WEM-format.
Figur 30 shows the panel of this module. The path able to be chosen in the
panel marks the location of the patient’s dataset. This field is linked with
the user interface’s Loadfile field. All other options are set to default.

Inputs: None
Outputs: WEM-file → CurvatureCalc, SoWEMRenderer1

Beside the WEMLoad module there exist three more of equal type named
WEMLoad1, WEMLoad2 and WEMLoad3 providing the ring elements for
generating the implant. This modules have the same setup as the WEMLoad
module but differ in the files path location according to the implant element.
Figure 31 shows the stored WEM-files for each of those three additional
blocks.
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Figure 31: Shows the three ring elements of the implant provided by WEM-
Load1 (left, end parts), WEMLoad2 (middle, center parts) and WEMLoad3
(right, angled part)

5.4.2 The SoWEMRenderer Module

This module is a standard one used in every network where WEM-objects
have to be visualized, as the geometrical data needs to be rendered. This
type of module is used twice in the main network using default settings.

SoWEMRenderer1
SoWEMRenderer1 renders the patient’s input data, thus allowing it to be
visualized. Further, it provides the skull surface for selecting the initial point
using the connected marker editor module.

Inputs: WEM-file ← WEMLoad
Outputs: SoNode → viewAll, So3DMarkerEditor

SoWEMRenderer2
This render module processes the geometrical data of the generated implant
to be able to be visualized. Additionally, in the modules settings the diffuse
color is set to titanium gold, leading to an implant representation according
to it’s real appearance.

Inputs: WEM-file ← ImplantGen
Outputs: SoNode → viewAll

5.4.3 The So3DMarkerEditor Module

This module enables to add, select and edit markers. Therefore it needs a
surface, serving as an input on which those markers can be placed on. Other-
wise it would be difficult for the user to set a marker on the desired location,
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Figure 32: Shows the panel tabs of the So3DMarkerEditor. In the left tab
it is possible to change the markers geometries like size and draw mode.
The second (middle) one, enables appearance adjustments like changing the
color. The right tab defines how markers are able to be edited like selecting,
deleting, adding and so on.

since a three dimensional space is represented in two dimensions (screen).
Linking with the viewAll module is mandatory for all of those modules to
allow the user to set a marker based on the visualizing viewer panel. Figure
32 shows the panel tabs allowing to change appearances like size, color, draw
mode and so on. Also, it is possible to change the editing behavior in the
last tab.

So3DMarkerEditor1
This marker editor module handles the markers resulting from the baseline
calculation. The settings are permanent and should not be altered by the
users. Figure 32 shows the set up for this module where all options are set
to default except those mentioned in the following lines. In the General tab
only the scale is altered to a value of one, resulting in a better looking repre-
sentation of the baseline. Setting the global color to green in the Appearance
tab leads to a better distinction of baseline and other objects. Most im-
portant to mention is the Editing tab, since in default mode all options are
unchecked. Following options have been chosen:

• Vector edit mode - enables editing of each marker by showing the
normalized vectors of the main axis

• Draw Markers

• Enable editing

• Enable selection
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• Add on click - this option is not necessary since the add on click
option is used by the other marker editor module

• Edit 3D - for enabling editing in three dimensions

Inputs: XMarkerList ← CurvatureCalc
Outputs: SoNode → viewAll

So3DMarkerEditor
This module handles the initially set marker, representing the center of the
implant. Therefore, the surface structure on which the marker should be
placed needs to be linked as well as the visualization panel to catch the user’s
interaction. The stored marker is further provided to the CurvatureCalc
module. Since I did not want this single point to be shown in the user
interface, the scaling was set to zero in the General tab. More, the color in
the Appearance tab was set to default since it is not visualized anyway. In
the Editing tab the following options have been chosen:

• Vector edit mode - enables editing of each marker by showing the
normalized vectors of the main axis

• Draw Markers

• Enable editing

• Enable selection

• Add on click - this option is not necessary since the add on click
option is used by the other marker editor module

All other settings where set to default.

Inputs: SoNode ← SoWEMRenderer1
Outputs: SoNode → viewAll

XMarker(List) → CurvatureCalc

5.4.4 The WEMSave Module

This module saves the generated implant to a given path in the given file
format. A list of options is available where the ASCII Standart Tessellation
Language with the ending .stl is the recommended one for further use with
3D print technology. Figure 33 shows the module’s panel including the list
of file types.
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Figure 33: Shows the panel of the WEMSave module. The path of the
Filename field gives the location where the resulting implant should be stored
using the file type defined by the File Type field. A list of available options is
shown, anyway the ASCII Standart Tessellation Language (.stl) is preferably
used.

The Filename field is linked to the user interface with the field named Save-
file thus enabling to change the saving path without accessing the internal
network. Further, the Save button is linked with the user interface’s Export
button.

Inputs: WEM-file ← ImplantGen
Outputs: None

5.4.5 The CurvatureCalc Module

The module shown in Figure 34 is implemented by myself using C++. For a
detailed description I recommend to have a look at Section 5.5 Baseline Cal-
culation. It uses the initially set marker together with the surface geometry
of the patient’s skull to calculate, based on the input marker which represents
the center, the baseline already including the skull’s surface curvature. This
is necessary to perfectly align the resulting implant on the patient’s skull cur-
vature for a perfect fit of the implant. The resulting baseline is represented as
an array of markers, according to the chosen implant model. The additional
output marker list stores the normal vectors for each corresponding marker
of the baseline, used for further calculations in the ImplantGen module.

This thesis provides three different types of implants, possible to observe
in Section 3.5, where the CurvatureCalc module adjusts the calculation ac-
cording to the chosen implant. The parameter article, as an integer number
ranging from zero to two, represents this three available implant models. In
the user interface, one can select the implant type by checking the according
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Figure 34: Shows the self implemented module named CurvatureCalc repre-
senting two inputs (left one for the initially set marker representing the cen-
ter, right one for the surface geometry) and three outputs (left is for cutting
plane visualization used for debugging, middle for the markers representing
the baseline and right for the normal vectors of each baseline marker).

radio button. As also the module ImplantGen needs the information of the
selected implant model, an additional connection of this parameter to the
implant generating module is set up. Another connection is made between
the mouse wheel value of the SoMouseGrabber module and the RotationAn-
gle parameter of this module, thus enabling rotating the baseline by just
turning the mouse wheel.

Inputs: WEM-file ← WEMLoad
XMarker(List) ← So3DMarkerEditor

Outputs: XMarkerList → ImplantGen
→ So3DMarkerEditor1

XMarkerList → ImplantGen
Connections: RotationAngle ← Wheel (SoMouseGrabber)

article → article (ImplantGen)

5.4.6 The ImplantGen Module

This module, shown in Figure 35, is also implemented by myself using C++.
For a detailed description Section 5.6 Implant Generation provides further
information. Based on the baseline markers and the corresponding normal
vectors provided by CurvatureCalc, this module generates the final implants.
According to the selected type of implant and its dimensions, the module
first searches for the positions where the ring elements have to be placed to
align them correctly with respect to the surface’s shape. This is done for
each ring element followed by generating the bridge sections according to
Delaunay’s triangulation theorem based on the curvature of the baseline and
it’s normal vectors to gain a well fitting implant which is finally visualized
or saved by providing one single WEM output.

Since this thesis offers a selection of three different implant types, also this
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Figure 35: Shows the self implemented module named ImplantGen repre-
senting five inputs (first three ones provide the ring elements, fourth one
provides the marker list representing the baseline and the most right one the
corresponding normal vectors) and one output holding the generated implant
in WEM-format.

module needs a parameter for the according selection. Therefore, a con-
nection from the CurvatureCalc module’s article parameter is established.
Remember, that this parameter is linked to the user interface’s radio but-
tons. Additional, it is the ImplantGen module providing an On/Off check
box for switching on or off the visualization of the generated implant, thus
increasing the user experience by decreasing latency times. This box is also
linked to the user interface’s button named On/Off.

Inputs: XMarkerList (Baseline) ← CurvatureCalc
XMarkerList (normal vectors) ← So3DMarkerEditor
WEM-file (ring end element) ← WEMLoad1
WEM-file (ring middle element) ← WEMLoad2
WEM-file (ring angle element) ← WEMLoad3

Outputs: WEM-file → SoWEMRenderer2
→ WEMSave

Connections: article ← article (CurvatureCalc)

5.4.7 The SoMouseGrabber Module

This module enables the user to gain a better experience of higher value
since the module provides options for linking every interaction field of the
computer mouse to a field in the MeVislab environment. I used this feature
for linking the mouse wheel to the CurvatureCalc’s rotation angle, which
defines the direction where the baseline is aligned to. In other words, this
link enables to rotate the implant around the normal vector of the implant’s
central point by only turning the mouse wheel. In Figure 36 the set up, like
used in this thesis, is shown. As already mentioned the mouse wheel is linked
to the Wheel field in the modules panel. Additionally, the Wheel Step field
is further linked to the equally named field in the user interface resulting in
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Figure 36: Shows the panel of the SoMouseGrabber module with the tab
for mouse wheel settings. In the Wheel field the current value for the mouse
wheel position is shown. In the lower box the maximum and minimum values
are defined together with the Wheel Step, defining the accuracy.

increased flexibility.

Inputs: None
Outputs: SoNode → viewAll

5.4.8 The SoOrientationInset and SoOrientationModel Modules

These two modules are used in combination with each other. By visualizing a
model showing the axes’ directions, on a desired location in the viewer panel,
the user gains orientation support when rotating the viewers camera. The
model can be chosen from a list where a cube (used in this thesis), a man,
a skull, a torso or a skeleton is available. Further, the size and location, like
upper-left corner are able to be chosen.

5.5 Baseline Calculation

5.5.1 Introduction

The baseline which is visualized as a very basic structure in form of markers,
is calculated in the CurvatureCalc module of the network. The idea behind
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generating first a baseline instead of directly generating the final model, is to
optimize calculation time resulting in a better user experience. Therefore the
baseline is a simplified model of the final implant but already showing the
most important characteristics like position, direction and curvature. Since
the calculation of the baseline is less consuming in computational costs, the
generation and adjustment of the baseline happens much faster than direct
visualization. More, this method does not lack any characteristics a fully
generated implant model would provide, as the baseline holds all the neces-
sary information for optimal placement of the miniplates. In the following
lines the idea behind the calculation process is described followed by a de-
tailed explanation on how this idea was put into practice by implementing
the CurvatureCalc module using the module wizard provided by MeVisLab.

First, I want to recall the calculation method of the ray-triangle intersec-
tion, according to Chapter 3.1.1 where the intersection location of a ray, cast
from origin O in direction D, with a triangle is calculated. This method is
used to determine the baseline where not only one ray but a cascade of par-
allel rays are cast, like shown in Figure 37. The object’s surface, representing

Figure 37: Illustration of the determination of the baseline. The direction-
vector D (green) was set up parallel to the initial point’s (red star) direction
vector (green). The direction vector is normal to the initial point’s normal
vector (purple). The origins of the cast rays (brown) are translated along
the direction vector and checked for intersection.

the patient’s skull, is represented by the light blue triangulated mesh. The
red star in the figure illustrates the initially set point as a starting value.
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From this point, first the normal vector N (purple) according to the nearest
triangle, is elicited. Next, the direction vector D1 is determined by calculat-
ing by using the cross product of the normal vector N (which is the same for
the implant and the baseline position) and the baselines direction vector D,
which are not necessarily perpendicular to each other. The origin of D2 is
then calculated according to the implant model’s measures, parallel to D1.
Starting from this vector’s origin, a cascade of rays is cast along vector D2’s
direction which means that the origins of the rays, used for ray-triangle in-
tersection, are located along vector D2. Next step is to cast rays from the
mentioned origins in direction of the negative normal vector -N. Where now,
according to Chapter 3.1.1 the ray-triangle intersections are able to be lo-
cated to set marker at those points (light blue stars), representing the final
baseline. Important to mention is, that direction vector D2 in this sketch
describes the direction of the line along which the single rays, for ray-triangle
intersection are cast, different from the direction vector D described initially
for a single ray-triangle intersection, which describes the direction of the cast
ray for intersection.

5.5.2 Input and Output Setup

Turning this idea into a module is done according to chapter 3.6, by using
the module wizard from MeVisLab resulting in a C++ header and source
file where only one output, a constructor, a destructor, the handlenotifica-
tion method and an empty process method are defined. Since for generation
of this module the option of a WEM-generator module was chosen, a single
WEM output was already declared by the equally named class possible to
be accessed by the outWEM variable. The defined variables in the header
file including their type can be observed in Table 5. Declared are two inputs,
consisting of one WEM and one marker list connection, and three outputs,
consisting of two marker lists and one WEM output. Further, WEMPtr de-
fines a pointer to a WEM object and BaseField* a pointer to an in- or output
field. Basefields for one WEM input ( inWEMFld) and one marker list input
( inPCAMarkerListFld, holding the initially set marker) are defined where
a WEMPtr object ( inWEM) is defined to use the input WEM for internal
operations. The ouput WEM ( outWEM) is defined by the WEM-gernerator
class and not connected in the final version of this thesis since it just serves for
debugging tasks. Two output marker lists are included, outputXMarkerList
(baseline markers) and outputXMarkerListNorm (baseline normal vectors),
where both need a XMarkerList for internal operations.
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Type Name Description
BaseField* inPCAMarkerListFld; marker input field
BaseField* inWEMFld WEM input field
WEMPtr inWEM Pointer to in-basefield
WEMPtr outWEM WEM output

BaseField* outputXMarkerListFld; baseline outputfield
XMarkerList outputXMarkerList internal list for operations

Basefield* outputXMarkerListNormFld marker output field
XMarkerList outputXMarkerListNorm internal list for operations

Table 5: The table shows the declarations of the in- and outputs used for the
CurvatureCalc module. WEMPtr defines a pointer to a WEM object and
BaseField* a pointer to an in- or output field. Basefields for one WEM input
( inWEMFld) and one marker list input ( inPCAMarkerListFld) are defined
where a WEMPtr object ( inWEM) is defined to use the input WEM for
internal operations. The ouput WEM ( outWEM) is defined by the WEM-
gernerator class. Two output marker lists are included, outputXMarkerList
(baseline markers) and outputXMarkerListNorm (baseline normal vectors),
where both need to be assigned to an XMarkerList for internal operations.

5.5.3 Algorithm

After setting up the module’s inputs, outputs and parameters, the actual
algorithm is implemented. An overview is given in the flow chart shown by
Figure 38. Inputs and Notification Handling
Starting with the XMarkerList, holding the initially set marker, and the
WEM, holding the patient’s skull geometries, connected to the input, first
the handleNotification method is applied. This method monitors weather
one of the connected inputs or the defined module parameters have changed.
If so, the algorithm continues in the process method with a check for valid-
ity, otherwise nothing happens.

Validity Check
The validity check includes a verification of the connected components by
checking for a permissible type of connection and an individual examination
weather the WEM input holds at least one patch with at least one node, and
if the marker list holds the initial marker, or not. If this survey is passed,
pre-processing is applied.

Pre-Processing
First, this step includes the determination of the region of interest, which
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Figure 38: Flow chart of the baseline calculation algorithm. First, the input
is checked for change with the handleNotification method. If so, the input
WEM and marker list are checked for validity followed by a pre-processing
step, if true. Finally, the baseline generation loop is applied which saves
the markers (ray-triangle intersections) into a marker list together with the
initial marker. 64



leads to runtime optimization during the generation loop, since the number
of nodes to be checked are minimized within this step. Therefore, the dis-
tance between each face’s centroid of the WEM object and the initial marker
is checked for the distance to be smaller than a model dependent pre-defined
value. If so, the face is stored in the faces vector used for further calculations.
The distance is calculated using the L2-norm according to Formula 15, where
d describes the Euclidean distance between M the initial marker’s position
and cn, the centroids of the WEM-patche’s faces:

d =

√

√

√

√

N
∑

n=1

(M − cn)2 (15)

The pre-processing also includes the calculation of the initial marker’s
normal vector. This is done by searching for the closest, in the WEM ob-
ject stored, node, again by using the L2-norm shown in Equation 15. Since
the nodes of the surface geometry already include a normal vector, the clos-
est node’s vector is used for the initial marker’s one. The position of the
initial set marker and it’s normal vector are stored to position zero in the
XMarkerLists. To outputXMarkerList for the position in the 3D space and
to outputXMarkerListNorm for the corresponding normal vector.

Calculating the vector on which the single rays are cast from, is the next
task of this intermediate step, where the direction and the origin have to be
determined. Starting with the direction of this vector, which is computed
by building the cross product of the initial set point’s normal vector and
the unit vector along the z axis, resulting in a vector, perpendicular to the
normal vector of the initial marker thus describing the direction vector. For
this purpose a macro is implemented computing the cross product shown in
the following code example Listing 4.

1 #de f i n e CROSS(p , v1 , v2 ) \
2 p [ 0 ] = v1 [ 1 ] ∗ v2 [ 2 ] − v1 [ 2 ] ∗ v2 [ 1 ] ; \
3 p [ 1 ] = v1 [ 2 ] ∗ v2 [ 0 ] − v1 [ 0 ] ∗ v2 [ 2 ] ; \
4 p [ 2 ] = v1 [ 0 ] ∗ v2 [ 1 ] − v1 [ 1 ] ∗ v2 [ 0 ] ;

Listing 4: Macro for cross product calculation.

P denotes the outcome vector as a three dimensional vector using the
three dimensional input vectors v1 and v2 of which the cross product is cal-
culated. With this elements it is now possible to determine the origin of the
ray casting ray in the code defined as rayOrigin. In order to do this, start-
ing at the position of the initial marker, a value of 100 in direction of the
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normal vector is added, to further add an implant model dependent value in
the negative direction of the direction vector. This value is built using the
number of rays and their accuracy, which are also specified individually for
each model type. Accuracy in this case is defined as the distance between
each of the origins of the rays which are checked for intersection with the
surface geometry. The value of this parameter is set to a value of 1 mm
in standard settings. As a result the direction vector is translated along the
normal vector and is cast perpendicular from it’s origin to this normal vector.

Baseline Generation and Storage
With this set up it is possible to cast a defined number of rays (numRay),
which are checked for intersection with the triangles, having their origins
along the set up direction vector with defined distances (accuracy) between
each other. The rays are cast one after another and first checked for inter-
section before casting the next one. The area, tested for intersection covers
the full length of the implant including a few counters for certainty. For the
ray-triangle intersection, each cast ray is tested against each face stored in
the region of interest list. For the calculation of the intersection position,
according to Section 3.1.1, all three nodes of the tested triangle as well as
the origin of the current ray and it’s direction (which is negative to the initial
markers normal vector) are necessary. If the intersection is true, the exact
position is calculated by determining the distance, along the ray, from the
origin to the intersection point. Finally, the marker with the position of the
intersection is stored in the marker list outputXMarkerList and the current
faces normal vector to the marker list outputXMarkerListNorm. Intersection
is tested with all triangles in the region of interest by each ray. If more than
one triangle is intersected by the same ray, the one with the closest distance
to the origin is stored, since the other ones are part of some not visible, inner
surface geometries rather than outer ones. After one ray is tested against
all triangles, the following one is checked for intersection until the predefined
number of rays is reached. Since in this calculation the vector operations of
building the cross and dot product as well as the substitution of two vectors
is used frequently, those three operations are implemented as a macro, shown
in listing 4 and 5, to improve performance.

1 #de f i n e DOT(v1 , v2 ) ( v1 [ 0 ] ∗ v2 [0 ]+ v1 [ 1 ] ∗ v2 [1 ]+ v1 [ 2 ] ∗ v2 [ 2 ] )
2 #de f i n e SUB( r , v1 , v2 ) \
3 r [ 0 ] = v1 [ 0 ] − v2 [ 0 ] ; \
4 r [ 1 ] = v1 [ 1 ] − v2 [ 1 ] ; \
5 r [ 2 ] = v1 [ 2 ] − v2 [ 2 ] ;
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Listing 5: Macros for dot product and substitution calculation

The dot product does not use a variable for storing the result since the
return value of the macro is the calculated result. On the other hand, the
substitution calculation needs a variable r as a three dimensional vector where
the result is stored to.

5.6 Implant Generation

5.6.1 Introduction

The task of generating the final implant(s) is processed in the ImplantGen
module. Using five inputs, the baseline, it’s normal vectors and the three dif-
ferent ring elements of the miniplate, this module generates the final output
implant(s) in a piecewise manner where first two ring sections are brought
into position followed by building the connecting bridge rather than building
the first bridge element after the first ring element. The generation process is
executed with respect to the baseline and it’s normal vectors, where the im-
plant model specific distance from the center (initial marker position) along
the baseline is calculated for exact placement of the ring element. This point
serves then as starting point where the first ring is set to. Following ring
sections are placed again along the baseline but in opposing direction where
the previous set element is used as starting point for distance calculation.
Correct alignment of orientation and direction of each section is ensured by
using the normal vector marker list, where the ring element’s normal vector
N is adjusted to align the baseline’s normal vectorN at the position of place-
ment. Additionally, the direction vectors D of both, the ring element and
the current baseline position are aligned. The direction vector of the base-
line shows the direction to the next marker. The implant’s direction vector
describes the connecting end of the ring. Figure 39 illustrates this processes
by showing the baseline (green) on the patient’s skull, together with a ring
element and described vectors N and D.

5.6.2 Input and Output Setup

Again, MeVisLab’s module wizard was an appropriate choice to set up a
module of the type WEM processor, resulting in a C++ header and source
file, where one WEM input, accessible by the inWEM variable, a WEM
output, represented by the outWEM variable, a constructor, a destructor,
the handleNotification method and an empty method named process are de-
fined. The handleNotification method is skipped in this thesis since implant
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Figure 39: The patient’s skull (white) with an applied baseline (green) are
shown on the left side, where the normal vector N and the direction vector D
are shown for the ring elements point of placement. The ring element itself
is shown in the right figure, where the normal vector N and direction vector
D (red), which have to be aligned with the vectors from the baseline, are
illustrated.

generation should happen by enabling the corresponding button. As this
module has to process the data provided by the baseline calculation mod-
ule and also has to include the ring elements as a WEM file for generating
the final implant, some additional inputs have to be declared in the header,
shown in Table 6.

Summarized, the module uses two inputs of the type XMarkerList for-
warded from the baseline calculation module, which are declared by the in-
put basefields inMarkerFld and inNormalsFld, where first holds the marker
positions in the three dimensional space representing the baseline and sec-
ond the corresponding normal vectors. More, three inputs for the different
ring elements (end, middle and angle parts) are necessary to be loaded into
the module for implant generation. Consequently, to the already set up
WEM input inWEM, declared by the WEM processor class two input fields
( inWEM2Fld and inWEM3Fld) are defined. inWEM3Fld is not used in
this thesis but serves for future software updates including a broader band
of implant models. The variables defined as WEMPtr point to the appro-
priate WEM input basefield for internal computations. As a result, the final
implant is stored in the outWEM variable.
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Type Name Description
BaseField* inMarkerFld Baseline input field
BaseField* inNormalsFld Normals input field
WEMPtr inWEM Pointer to first input WEM

BaseField* inWEM2Fld Second WEM input field
BaseField* inWEM3Fld Third WEM input field
WEMPtr inWEM2 Pointer to second input WEM
WEMPtr inWEM3 Pointer to third inputWEM
WEMPtr outWEM Pointer to ouput WEM

Table 6: The table shows the declarations of the in- and outputs used for
the ImplantGen module. WEMPtr defines a pointer to a WEM object and
BaseField* a pointer to an input field. inWEM and outWEM are de-
clared by the WEM processor class. Additional inputs for processing the
marker lists of the CurvatureCalc module are defined, inMarkerFld and
inNormField as well as two more input fields for the additional ring elements,
inWEM2Fld and inWEM3Fld with the corresponding pointer inWEM2
and inWEM3 for internal operation.

5.6.3 Algorithm

Finishing the set up of inputs, outputs and additional parameters the imple-
mentation of the algorithm is ready to be started. First, Figure 40 gives the
reader an overview of how the implant is generated, followed by a detailed
description of each part.

Input and Visualization Button
Important to know is, that by setting up a module of the type WEM pro-
cessor, a WEM input as well as an output are already defined, where the
object from the input is piped to the output. In other words, this means,
that the input and the output WEM are the same where changes are made
on the input WEM to gain the desired output. However, this characteristic
is not desired in this work why it is necessary to add the lines shown in code
example Listing 6 leading to a break of this pipeline.

1 _copyInputWEMsFld−>setBoolValue ( f a l s e ) ;
2 _useInputWEMToCreateOutputWEMFld−>setBoolValue ( f a l s e ) ;

Listing 6: C++ Code for unpiped in- output.

As already mentioned the handleNotification method is skipped since the
generation of the implant depends on the status of the On/Off button
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Figure 40: Flow chart of the implant generation algorithm. First, check of
active visualization button is performed before piping the input to the validity
check. This method checks the validity of the input WEMs and marker
lists. If valid inputs are confirmed, the implant is generated depending on
the chosen model by positioning end and middle ring elements linked by
generated bridge sections. As a result the final implant is stored in the
output WEM.
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( OnOffFld) from the user interface. In inactive mode, the algorithm is
not applied by removing all patches of the outWEM. Otherwise, in active
state, the generator() method is called starting with a check for valid input
data.

Validity Check
First, the check includes the verification of connected components, thus all
inputs have to be connected. Second, the WEM connections are only valid,
if they hold just one patch with more than one node, since the application is
not designed for files with multiple patches. Finally, the marker list inputs
are checked for holding any markers, since calculations with empty lists do
not lead to satisfying results. If valid inputs are confirmed, the following sec-
tion generates the implant, while corrupted input data leads to cancellation
of the generating process.

Implant Generation
Since three different implant models are possible to be chosen, first the user’s
selection is determined with the article variable. The name article is based
on the fact that the MeVisLab catalogue defines the different models by ar-
ticle numbers. According to the model, the implant is generated sequentially
like shown in Figure 40 in the Implant Generation block. It is important to
keep in mind, that before the first bridge element is generated, two ring sec-
tions are positioned. Also, each placement of a ring section happens equally
to the others, by first determining the position where the element has to be
places, followed by translating all nodes to the correct position and finally
rotating the ring accordingly for correct orientation, described in detail in
the following lines.

First, the ring element’s position on the baseline is determined by using
the position method. To work properly, the implant model (article) and
the current ring element (type) are forwarded to the method. The current
ring element is described by integer numbers starting by zero. With this
information, the algorithm selects the model specific measurements on which
the further calculation is based on. Starting at the position of the initially set
marker, using the known distance from this central point to the point where
the first element has to be placed, the algorithm runs from marker to marker,
in one direction, along the baseline summing up the distances until reach-
ing the final position. In most cases, this position is located between two
markers. For exact placement, the direction vector between those markers
is stored to add the missing length along this vector. Thus allowing to de-
termine the exact position. For a better understand, Figure 41 illustrates an
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example of the described position determining process. Finally the direction

Figure 41: This Example shows how the ring element is placed exactly. The
specific distance from the center (purple point) to the center of the ring on
a straight line is given by a value of 9 in this example. What the algorithm
does now, is to sum up the values along the baseline (green points) in one
direction until gaining a Value higher or equal to the desired distance, in this
case a value of 10 is achieved. Since the final point (red star) is located in
most of the cases between two markers, the direction vector D (black arrow)
between those two markers is used to add the correct value of two to the
before added marker along the correct direction. Resulting in a properly
determined distance of 9 along the baseline for this example

vector, the final marker position and the reference point are used for further
calculation enabled by forwarding these variables by reference, to the method.

As with this step the element’s final position is known, translation is per-
formed by accessing each node of the WEM object’s first patch, representing
the ring element, and translating it by exactly this position’s value, resulting
in the correct position, since initially the object centres are located at the
coordinate’s origin thus enabling an easy calculation.

However, the implant is not aligned perfectly to the surface yet, since only
positioning has been performed but the implant remained in its initial orien-
tation with the normal vector aligned to the y axis. Therefore, the rotation
method is accessed where the center of the implant, the reference position,
the current WEM patch, the direction along the baseline form the implants
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center and the implants normal vector are forwarded. In this method, first
the implant’s normal and direction vector are defined, which always point in
the same directions, y-axes for the normal and -z for the direction vector,
with a value of one. Together with the normal and direction vector form the
center of the determined position, all vectors used for this calculation, like
shown in Figure 39, are defined. Next, using quaternion rotation, described in
Chapter 3.1.2, the normal vectors are aligned resulting in an implant already
placed perfectly on the surface, but still with the side for bridge connection
not being adjusted correctly yet. Now it is important to understand, that the
normal vector at the determined position is not necessarily perpendicular to
it’s direction vector of the baseline, but the implant’s vectors are. To achieve
a correct orientation, the idea of spanning a plane by each normal vector and
the corresponding direction vector of the ring and the baseline position, and
using theirs normal vector for alignment, is used. The planes normal vectors
are calculated by determining the cross product of each normal and direc-
tion vector, thus obtaining the perpendicular, to the spanned planes normal,
vectors, resulting by two vectors in the same plane, which is perpendicular
two the previous ones. In the following step, the rotation to align these two
plane normals is applied on the implant to determine the correct orientation.
Since this thoughts are not easy to understand by describing this issue only
in words, Figure 42 illustrates this method. Knowing the correct rotation,
the implant is rotated a second time. Due to this method the first rotation,
which aligned the normal vectors, is not altered and the normal vectors still
point in the same direction, perpendicular to the surface.

Finishing this tasks, which is equal to all ring sections, independent of the
type and position, the element is now positioned and oriented perfectly with
respect to the surface’s shape and the chosen model type. However, the
bridge sections are still missing, but described in the following section.

Having a look at the flow chart of Figure 40, again, one can observe, that
before generating a bridge element, first two of the ring elements have to be
generated which is equally implemented in the algorithm. Anyway, build-
ing these connections is identical by generating a connection consisting of at
least two, triangulated blocks, connected to each other by their four corners.
Thus, the diameter shows a rectangular shape: First, the method bridge
is called and attributes describing the two ring elements, between which the
bridge has to be built, are forwarded. It is now another method, named
connection determining the four corner positions of where the bridge el-
ement has to be connected to. Since the ring’s geometries are known, it is
sufficient to forward the rings center position as well as normal and direc-
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Figure 42: Method of orientation adjustment. The normal vectors N are
already aligned. Di is the implant’s and Db the baselines directions vector
(left and middle-left), where the ring vectors are perpendicular which is not
given for the baseline’s vectors N and Db. Two planes and their normal
vectors Ni and Nb are constructed each (middle-right), which appear in one
plane as well, to be further at Nb’s position (right). Resulting in Di and Db
in the same plane, giving the correct direction, where Di is still perpendicular
to N but adjusted according to Db.

tion vector each. The correct position of these nodes is found by distance
measurements, using again the L2-norm, like described in Equation 15. By
applying this method twice, the four corners are stored in two WEMNode ar-
rays, first describing the array from where the bridge element is starting, and
last describing the end of the generated element. Next, at each baseline point
between those two rectangles, an additional rectangle is constructed based on
the normal vector’s direction. As a result the basis for finalizing the bridge
element using triangulation is built, Figure 43 shows the current status. In a
next step, the starting, ending and the corner positions of the rectangles are
used for the triangulation task. To do so, first, a surface consisting of four
nodes has to be defined. As an example one uses two neighbouring nodes
from the starting rectangle (red crosses) and the opposing ones of the first
constructed rectangle. In the implemented code, all those nodes are stored in
different lists, thus allowing an easy separation of the different objects. Next,
a triangle is defined between three of the chosen points to finish the task by
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Figure 43: Basis for bridge building with triangulation. Red crosses mark
the corner of the starting position, green crosses mark the corners of the
ending position. To each baseline point (green points) a rectangle (light blue
lines) is constructed using the normal vector, resulting in building the basis
for generating a triangulated mesh with rectangle corners.

adding a face to this triangle. This is also done a second time with the other
triangle, possible to be constructed with these four nodes. As a result, one
gains rectangles, triangulated by two triangles. The step of generating the
triangulated surface is illustrated in Figure 44 for an example on one surface
part. This step is then repeated four times for each pair of rectangles until
one rectangle is the one including the corners marking the end on the ring
element. Finally, if the last bridge element is generated between the forelast
and the last ring element, the generation of a perfectly aligned and orien-
tated miniplate, depending on the surface geometries, the initial set point
and the chosen implant model can be observed. However, the proposed soft-
ware includes the additional feature of generating multiple implants in the
same session, which’s implementation is not of a trivial kind. Consequently,
some explanation has to be done:

As the generator method is finished the process method continues where
the handling of the output is now executed. This means in detail, if the first
implant was generated, without saving any other before in this session, and
the save button is disabled, only the current implant is forwarded to the
output and the generation is finalized. In case, the save button returns a
true value ( saveFld->getBoolValue == TRUE)), for the first time, the cur-
rent generated implant is stored to the variable named finalImplants which
holds all the saved implants. Also in this case, a flag is set, remembering
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Figure 44: Example of generating the triangulation on a rectangle spanned
by the two starting nodes (N1 and N2) and two opposing nodes on the first
constructed rectangle (N3 and N4). Node N1, N3 and N4 build a triangle
T2, and Nodes N1, N2 and N3 build the second triangle T1.

that at least one implant is already saved. In case of saving an implant to al-
ready existing ones, this is done by adding the current one to finalImplants.
Summarized, this means, that by saving the current implant, it is added
to finalImplants storing all previous saved implants, whereby the output of
this module consists of only one WEM patch, including all saved implants
together with the currently generated one.

5.7 User Interface

Even though the user interface is already mentioned various times in previous
sections, in this one I give in this section a more detailed but still compact
description of the interaction possibilities, which objects are included and
how the implementation works. Therefore, the panel is initially shown and
elucidated with all including fields, boxes and buttons together with an ex-
planation on how those are linked to the network. Then, the MDL script,
working in the background is explained.
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5.7.1 Panel, Components and their Function

The full user interface is already shown in Figure 22 of Section 5.1 Overview.
As one can see, the interface is separated in two main parts, the Viewers
box, possible to observe in Figure 45, and the Controls box shown in Figure
46. Both assign an appropriate name to each of the included elements thus
possible to be described properly in the following lines:

Viewer Box Visualizing the outcome, like the finally generated implant,

Figure 45: The user interface’s Viewer box with name assignments to each
element. This box visualizes the outcome and several intermediate data. It
also includes interaction elements for a user friendly surface enabling flexible
visualization commands.

and intermediate steps, like the baseline or the skull, is very crucial for a
good user experience since this is the part where the result and it’s relative
position to the defect can be observed. Also, with this element it is possible
to let the user perform interactions on the object’s surface using the mouse
pointer. Additionally, commands included as buttons and wheels further
enhance the handling and flexibility. Following the elements are listed and
briefly explained.

Object - Representing the patient’s skull, this element is one of the most

77



important ones since it represents the basic informations used for this
tool.

Baseline - This geometrical objects is represented by a line of dots and
serves as a guideline for the user by representing the implants orienta-
tion and curvature. Using the users first interaction by clicking on a
surface location, marking the baseline’s center with this step, this line
is generated automatically. Depending on the selected implant model
the length is adjusted automatically as well. By further turning the
mouse wheel, the direction of the baseline may be changed.

Implant - The final outcome, based on the baseline’s setup. The possibility
of generating and visualizing more than one implant is given.

Orientation Model - Fixed to the lower-right corner, this variable model
gives the user a orientation of the object by providing visual guidance
of the current camera position, since it is possible to lose orientation
especially when using a high zoom.

Pick Mode - Alternatively this mode is able to be selected by pressing and
holding the ALT key, thus allowing to set a marker by clicking on a
surface indicated by a cross shaped cursor. If inactive, View Mode is
active.

View Mode - If active, the cursor appears shaped as a hand thus allowing
to rotate the geometries in any desired direction.

View All - Sets the frame of the visualized field in a way all objects are
included using the camera’s current line of sight.

View Axial - Sets the camera to view the axial side.

View Sagittal - Sets the camera to view the sagittal side.

View Coronal - Sets the camera to view the coronal side.

View Opposite - This option changes the camera position to the opposing
one, thus visualizing the object from the other side.

Rotate X - By turning this wheel, using the mouse’s cursor, the camera is
rotated around the x-axes.

Rotate Y - By turning this wheel, using the mouse’s cursor, the camera is
rotated around the y-axes.
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Zoom - This wheel allows to zoom in and out along the camera’s current
line of sight.

Further, this panel provides user interactions using the mouse cursor.
Therefore, one has to distinguish between the Pick Mode and View Mode
like described above. First, by clicking on the skull’s surface a user can set
the initial point. By clicking an additional time, the before set point is re-
moved and the new position is marked as center for the baseline. This change
of position can be executed any time thus changing the position of all de-
pendent geometries which means in specific, that this interaction alters the
position of the initially set point, the baseline (if at least one marker was set
before) and the generated implant (if already visualized). However, implants
which are saved by using the save button are not altered in their position.
In View Mode the mouse cursor is able to rotate the visualized geometries
in any direction by clicking and holding the left mouse button followed by
sliding the mouse in the desired direction. Also the rotation and zooming
wheels are accessed with the click and slide operation.

All the mentioned elements including the tasks involving the mouse are al-
ready implemented by using the So3DExamineViewer which only has to be
linked with the user interface via the scripting file.

Controls Box Including the Controls box enables the user interface to gain
it’s full power by providing all control elements necessary for planning a fa-
cial surgery using miniplates. Following, the single elements are explained
according to the flow chart shown in the overview Section 5.1 in Figure 23.

Dataset Location - First thing to do, is to load the patient’s dataset into
the system, by clicking on the browse button next to the Loadfile field,
named Dataset Location Field. Another window opens where the path
to the patient’s CT-scan has to be inserted.

Model Selection - Second, the desired implant model has to be selected by
marking one of the proposed figures’ radio button. The model’s num-
ber, according to the MedArtis product catalog, is located to the right.
This thesis includes the three most used implants in facial surgeries.

Wheel Accuracy - With this field, the accuracy of the mouse wheel is able
to be adjusted, thus enabling precise orientation adjustment of the base-
line and the implant. In other words, the user experience is increased
by having an adjustable accuracy. By using a high starting value the
implant can be placed roughly and fast. By further diminishing the
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Figure 46: The user interface’s Controls box with name assignments to each
element. This box holds all the important elements for calculating, generat-
ing, saving and exporting the desired implant.

mouse wheel value the implant is able to be placed very accurate using
the desired orientation.

Visualization - After the user is satisfied with the placement and the ori-
entation of the implant’s baseline, he can visualize the miniplate by
clicking the On/Off button, also named Visualization button in the
demonstrating figure. As a result, the final implant is generated and
visualized in the Viewer box, using the chosen setup.

Save - The generated implant can still be altered in position, orientation and
even in it’s model type until the Save button is applied, resulting in
saving the currently processed implant on it’s position for the current
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session. Pressing this button, the current implant is not able to be
altered anymore but a new one may be set up afterwards.

Export Location - To finally store the generated implant(s), first the lo-
cation path of where the final outcome should be stored, has to be
provided. This is done by clicking on the browse button next to the
Export Location Field leading to open a new window where the export-
ing path is able to be inserted.

Export - The final step in the pre-planning process is to save the generated
implants locally on the user’s computer. By pressing the export button,
all implants, including the currently processed one (which may be not
be saved in the current session yet), are stored locally according to
the Savefile field’s path in STL-file format, thus enabling to use the
outcome for further processing like 3D printing.

5.7.2 Scripting

This subsection gives the reader a detailed understanding on how the user
interface’s elements are generated and linked. Therefore, I give an example
implementation including all important requirements and set ups followed
by a description of the code used for the main user interface of the macro
module.

Example Implementation of the On/Off Visualization Button

The On/Off button’s function is already described in the previous Section
5.7.1 under Controls Box and is implemented in the ImplantGen module.

First, the desired button has to be defined in the module’s header file. This
is done by typing:

Boolfield * OnOffFld;

The field is now defined as boolean variable, thus having just two states, an
active and an inactive one. Next thing to do, is to assign a name and an
initial value to the defined variable. This is done by entering the following
line (line 53, mlImplantGen.cpp) in the module’s constructor.

OnOffFld ≡ addBool(”On/Off”, false);
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where the method addBool sets up the defined variable OnOffFld using the
given name (red) and the value (blue). As a result, in the module’s parame-
ter panel one can now observe a new parameter named On/Off as a boolean
value initially set to false.

The variable is now possible to be used in the further C++ code referred to
as OnOffFld and is also able to be accessed, by using the module’s parame-
ter panel. Additionally, the variable can be altered by clicking the according
button in the user interface. To gain this function the script file of the macro
module has to be adjusted correctly by defining a button and adding de-
sired parameter options. Since this part’s focus lies on giving an example
of setting up a button, having a look at Listing 7 is sufficient for a general
understanding.

1 Button implantGen . On/Off {
2 x = 0
3 y = 2
4 border = On

5 alignX = Center

6 title = On/Off
7 }

Listing 7: ON/OFF button script implementation.

The MDL code example shows how a button, for the usage in the user inter-
face, is implemented. First, the object type has to be set up by defining the
Button in line one. Since the variable type assigned to this element is boolean,
the choice of a button is appropriate. In the same line, the linkage between
the object and the module’s parameter is set up (implantGen.On/Off ). The
x and y parameter define the alignment in the used grid where depending
on the used variables x defines the position in horizontal direction and y the
position in vertical direction. Border adds a border to the button object, for
a better differentiation between background and object. AlignX describes
the position in the defined grid block, where in this example the button is
centred. The title parameter defines the title of the button, whereby the
default value is the one of the linked parameter like used in the module’s
parameter list.

Many other options may be added to the button for altering the design,
thus enabling a flexible design to fit the needs of the application. Even color
schemes can be designed which are able to be selected by the end user.
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Script File Structure

This part explains the structure of the script file used for generating the
user interface. Therefore a simplified version of the code is shown in Listing
8 to get a better understanding.

1 Window {
2 maximized = True

3 style {
4 colors {
5 fg = #00A2E8
6 bg = black

7 button = #00A2E8
8 buttonText = white

9 light = white

10 midlight = #00A2E8
11 . . .
12 }
13 }
14 horizontal {
15 Box Controls {
16 h = 900
17 layout = Grid

18 . . .
19 RadioButtonGroup CurvatureCalc . article{
20 orientation = Vertical

21 x = 0
22 y = 0
23 . . .
24 items {
25 item 0 {image = $ ( LOCAL ) /images/M4318 . PNG}
26 item 1 { . . . }
27 item 2 { . . . }
28 }
29 }
30 Box {
31 . . .
32 Button implantGen . On/Off { . . . }
33 Button implantGen . save { . . . }
34 Button WEMSave . apply { . . . }
35 Field SoMouseGrabber . wheelStep { . . . }
36 }
37 Empty { . . . }
38 Box { . . .
39 Field WEMSave . filename {
40 title = ” Sa v e f i l e ”
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41 browseMode = save

42 browseButton = ON

43 . . .
44 }
45 Field WEMLoad . filename { . . . }
46 }
47 }
48 Box Viewer {
49 expandX = True

50 expandY = True

51 Viewer viewAll . self {}
52 }
53 }
54 }

Listing 8: Script structure of the user interface.

The code example shows a simplified version of the code generated in
the script file. Thus, three dots represent object parameter settings already
mentioned before, like the definition of colors, positions, expanding options
or even the binding of a figure.

Since there are no inputs nor outputs used, the interface definition is skipped.
That is why the example starts by defining the window in line one and adding
the parameter maximized = true, thus expanding the user interface to full
size when opened. The frequently used parameters for color, which uses a
so called style environment, defines the colors for different elements by using
the hex color code or pre defined words. In line 14 the horizontal alignment
of the following elements is defined, forcing the boxes named Controls and
Viewer to be aligned beside each other rather than being aligned to one’s top
or bottom. Boxes are able to be applied with a height h and a layout type.
In this code, the layout type is set to grid, enabling to align each defined
object to a position in the grid using the parameters x and y like in line 22
and 23. Also boxes are possible to be adjusted in color and other option
indicated by three dots in line 19. To set up the implant model selection, a
radio button group is defined and linked with the corresponding parameter
article of the CurvatureCalc module. Additionally, the positioning on the
grid position zero-zero is defined causing the group to be aligned in the up-
per left part. By defining further items, the options for selecting the implant
models are generated, including an image for a better overview and design.
The following lines define another box which includes the buttons for the user
interaction. Again, the dots replace possible parameter setting like already
used in upper parts. The conclusive box, holding the fields for path selection,
is separated from the box above by an empty space. Closing the brake in
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line 48, enables to define the second, horizontally aligned Viewer box.

6 Results and Evaluation

The results presented in this section are accomplished on a system with an
Intel c©Core i7 CPU at 2.80 GHz and a memory (RAM) of 24.0 GB running
on Windows 8.1 Enterprise 64-bit. Additional, the system is equipped with
a NVIDIA GeForce GT 630 graphics card with 2GB VRAM.

Since the focus of this thesis lies in pre planning the positioning of mini-
plates for facial reconstructions, in the following, the results during the most
important intermediate stages are shown. Starting by opening the network,
consisting of only one macro module, the user interface expanses itself to full
screen with the initial state as shown in Figure 47. Since no loading path

Figure 47: The figure shows the user interface at it’s initial state where no
data set has been selected, resulting in an empty viewer box.

is pointing to a dataset, the Viewers box is empty. The Save, Visualization
and Export button are inactive and have not been activated yet. The Wheel
step is initially set to a value of 0.1 and the selected miniplate model is set
to M4318.

Next, a data set of the type WEM or STL is added by clicking on the browse
button next to the Loadfile field, resulting in Figure 48. The figure shows the
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Figure 48: The figure shows the user interface where a dataset has been
selected already. Due to swiping over the Viewer box in view mode, the
camera is translated. The red arrow indicates the selection of the view mode.

loaded data set which is translated by rotating the camera due to swiping
over the box and holding the left mouse button. Initially the panel is set to
View mode, indicated by the red arrow. To set the skull to the center of the
box, the View all button has to be activated, thus adjusting the camera’s
field of view to focus on the visualized model. Figure 49 shows the result of
this step where the red arrow points to the View all button.

It is now possible to rotate, zoom or change the camera position with the
help of the wheels and buttons in the Viewer box to gain a perfect sight on
the area of interest. If one has reached a satisfying field of view, next step
is to set the baseline. Therefore, the mode is changed from View to Pick
mode, by either pressing the Pick mode button, or toggling between those
two modes by holding the ALT key. Now the initial point is selected by click-
ing on the skull’s surface followed instantly by the calculation of the baseline,
shown in Figure 50, where the green line indicates the baseline and the red
arrow the button for activating Pick mode. By using the mouse wheel the
baseline now is possible to be rotated to gain the desired orientation. Also
by selecting another initial point, the center of the baseline is translated to
the new position. When satisfaction is reached, the model is able to be gen-
erated by a click on the button named On/Off, thus toggling between active
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Figure 49: The figure shows the user interface where a dataset has been
selected and already centred by clicking on the View all button, indicated by
the red arrow.

Figure 50: The figure shows the user interface where the initial point has
been set and the baseline (green) has been calculated. The red arrow shows
the button for active Pick mode.
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and inactive visualization mode of the selected miniplate (active state is in-
dicated by a grey background color). Figure 51 shows the outcome of this
process. Important to mention is, that implant adjustments should be exe-

Figure 51: The figure shows the user interface where the miniplate model
M4138 has been placed on the zygomatic upper bone with active visualiza-
tion.

cuted only in inactive visualization mode (indicated by blue On/Off button),
thus decreasing latency times and increasing the user experience. Anyway,
adjustments of all kinds, are able to be performed at any time, until the
implant is saved.

It is also possible to toggle between the implants, where, depending on the
state of the visualization mode, the generated implant or the baseline are
adjusted. Figure 52 shows the same user interface as shown in the previous
figure, but changed the selected model from M4138 to model M4300. Ob-
servable is, that not only the generated implant changed, also the baseline
adjusted it’s length. To store the implant for this session, the Save button
has to be activated, resulting in storing the generated implant in it’s current
state for this session. Thus, adjustments are not possible to be done any
more, but a second implant may be generated by setting a new initial point.
Figure 53 shows a second baseline, placed on the lower zygomatic bone, with
a previously saved implant.

As already performed in a previous step, the implant is again generated
by activating the visualization button leading to a second implant observable
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Figure 52: The figure shows the user interface where the miniplate model
M4300 has been placed on the zygomatic upper bone with active visualiza-
tion.

Figure 53: The figure shows the user interface where the saved miniplate
model M4300 has been placed on the zygomatic upper bone and a baseline
for a second implant generation is placed on the zygomatic lower bone.
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in Figure 54, where the models M4138 and M4300 are visualized next to each
other. To finish the generation process, the generated implants are able to

Figure 54: The figure shows the user interface where the saved miniplate
model M4300 has been placed on the zygomatic upper bone and M4138
miniplate is placed on the zygomatic lower bone.

be exported, which means in other words to save them on the system’s local
drive. Therefore, the current implant does not have to be saved, since all
implants visualized in the Viewer box are exported. Consequently, it is nec-
essary to define a Savefile location, by clicking on the field’s browse button.
Followed by performing an activation of the Export button, the implants are
saved on the local drive in STL file format. The exported STL file is possi-
ble to be viewed either by another network constructed in MeVisLab or by
choosing it as a dataset. Even though the tool is not developed for visual-
izing the generated implants seperated from the skull, it is possible to do
so for controlling purposes like shown in Figure 55. The exported implants
are represented in gray rather then in their titanium color since in this case
only for representation purposes, the implants are visualized as a dataset,
where the diffuse color in the renderer module is set to grey. For rendering
an implant, the renderer’s diffuse color is set to titanium in the network.
Generating additional implants is done in the same way as described by this
example set up of two miniplates in the zygomatic bone area.

Before showing results of the baseline and the generated implants, Figure
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Figure 55: The figure shows the user interface with exported miniplate model
M4300 and M4138 without visualization of the skull or baseline.

56 shows the region of interest for the model M4138. All face centroids,
included in the ROI, are marked with a green dot and the initial set point
is represented by the purple cross. As a result, only faces inside the green
doted region are utilized for the calculations.

Following results focus on the outcome, first on the baseline adoption,
and second on the final miniplate outcome, rather than on the work flow of
the generation by using the user interface. Hence, Figure 57 compares the
baselines of the three different models. The centres of the model’s different
baselines are found at the same position, only the length between each of
them varies depending on the model’s dimensions.

Moreover, the baselines are designed to capture the curvature of the skull’s
surface independent of the surface form. Figure 58 shows, that the baseline
does adjust itself even on the most difficult surfaces like a wave form or 90
degree angles.

In Figure 59 an example result containing all three available implants,
each located on a position where they generally are applied (left). For better
illustration, the single implants are extended portrayed on the right as well.

Additional, Figure 60 shows the same outcome from it’s sagittal and coro-
nal perspective. Beside the presented results, an evaluation has been per-
formed to check the proposed software for weaknesses and to get ideas which
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Figure 56: The figure shows the region of interest for the model M4138. All
face centroids, included in the ROI, are marked with a green dot and the
initial set point is represented by the purple cross.

characteristics are important to the end user who’s expertise will generally be
of a surgeon of the oral and maxillofacial area. Consequently, two surgeons, of
the Oral and Maxillofacial department of MedUni Graz are used as subjects
in addition with one PHD student and a master student from the Institute
for Computer Graphics and Visions (ICG) who work on medical data, to get
a rating from another perspective as well, thus determining weaknesses from
the developing point of view. No one of them had any experience with the
presented software so far, which was first introduced by showing them all
functions and possibilities followed by an short example performed by my-
self. Afterwards, it was their turn to fulfil a predefined exercise, euqally to
all subjects and similar to a case occurring in the daily routine of a surgeon.
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Figure 57: The figure shows the baseline for each of the three selectable
models, where the center and the orientation of the line equal each other.

Figure 58: The figure shows the baseline (green) for difficult surfaces. On
the left image a wave like surface is shown, and on the right side the baseline
adjusts to a 90 degree angel.
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Figure 59: The Figure shows an example result containing all three available
implants each located on a position where they generally are applied (left).
For better illustration, the single implants are extended portrayed as well on
the right.

During working on this exercise the time was measured to get an idea of
how long it does take a person to fulfil this task. Subsequently, the testers
are asked to answer a questionnaire containing 11 questions which were to
answer on a six point Likert-scale but one (question 11) has to be answered
with yes or no. The questions are listed in table 7 and are adopted from the
software evaluation questionnaire of ISO Norm 9241/110 [2].

The exercise to be accomplished is given as:

Load the data set given for Patient 4 and perform the placement of a
mandibular media fracture (imagine the fracture in the center) using at

least two implants of different models and export the data to the desktop, if
satisfaction is reached.

The result of this questionnaire is shown in Figure 61. The x axes repre-
sents the questions from one to eleven (Q1 - Q11) and the measured time T.
The y axes represents the median score for Q1 to Q10. Also the median value
for Q11 is shown but represents a yes or no answer, where yes equals a value
of six points and no equals a value of zero points. The time is represented in
minutes. To all data the superimposed standard error is represented by the
white lines. In Table 8 the underlying data is represented, where subject two
and three represent the surgeons’ results. The table shows the resulting data
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Figure 60: The Figure shows the result from Figure 59 from it’s sagital (left)
and coronal (right) perspective.

Nr. Question
Q1: The software does not need a lot of training time.
Q2: The software is adjusted well to achieve a satisfying result.
Q3: The software provides all necessary functions to achieve the goal.
Q4: The software is not complicated to use.
Q5: How satisfied are you with the UI surface? (arrangement, style, clarity)
Q6: How accurate was the placement of the implant?
Q7: How satisfied are you with the presented result?
Q8: Was it easy to adjust the implant? (position, orientation, model,...)
Q9: How satisfied have you been with the time consumed? (no training)
Q10: How is your overall impression?
Q11: Would you use the software in a daily routine?

(assumed that the 3D printed implant
would fit with just a few adjustments)

Table 7: The table shows the questions asked after fulfilling a predefined
task.
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Figure 61: The x axes represents the questions from one to eleven (Q1 - Q11)
and the measured time T. The y axes represents the median score for Q1 to
Q10. Also the median value for Q11 is shown but represents a yes or no
answer, where yes equals a value of six points and no equals a value of zero
points. The time is represented in minutes. To all data the superimposed
standard error is represented by the white lines.

from the evaluation questionnaire for each subject. Subject one and four do
not have their expertise in the medical are, where subject two’s and three’s
is. Median is the median value of the four subjects and error describes the
superimposed standard error. Q1 to Q11 are possible to be answered with
the use of a six point Likert-scale but Q11 is a yes or no question where no
equals a value of zero and yes equals a value of 6. The time T is measured
in minutes.

More, some initial results have already been presented and discussed as a
late breaking research poster at the 38th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC) in Orlando
(Florida, USA). However, at the EMBC I present only a one page summarized
description of the methods together with a poster, possible to be observed in
the Appendix section A. Additionally a paper at the SPIE medical imaging
conference in Orlando (Florida, USA) was submitted followed by the idea of
writing a journal article.
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Subject
Nr. 1 2 3 4 Median Error
Q1: 6 6 6 6 6,00 0
Q2: 6 6 6 6 6.00 0
Q3: 6 5 6 6 5.75 0.21
Q4: 4 6 6 6 5.50 0.43
Q5: 6 6 6 6 6.00 0
Q6: 6 6 6 6 6.00 0
Q7: 6 6 6 6 6.00 0.25
Q8: 5 6 6 5 5.50 0
Q9: 6 6 6 6 6.00 0
Q10: 6 6 6 6 6.00 0
Q11: 6 6 6 6 6.00 0
T: 4 5.5 3.5 4.2 4.00 4.3

Table 8: The table shows the resulting data from the evaluation questionnaire
for each subject using a six point Likert rating. Median is the median value
of the four subjects and error describes the superimposed standard error.
Q11 is a yes no question where no equals a value of zero and yes equals a
value of 6. The time T is measured in minutes.

7 Discussion and Future Outlook

In the proposed work, a software tool for surgery planning of facial recon-
structions using miniplates was implemented to support surgeons in their
daily routine. Therefore, with the medical imaging platform MeVisLab a
modular network was constructed able to load a patient’s CT data set and
plan the positioning of the three most used miniplates. To fit the surface
perfectly, it was necessary to generate two modules using C++ with the pro-
vided wizard for module generation.

First one was implemented to catch the surface curvature depending on an
initially set point by calculating a baseline which serves as a simplified im-
plant model, showing the user all necessary properties to adjust the implant
properly. The calculation of this baseline is represented by a list of markers,
where each marker describes the position of a ray-triangle intersection, where
the triangles are those from the data set surface geometry and the rays are
cast along a defined line, dependent on the initial set point and it’s normal
vector.

The second module uses the marker list, representing the baseline, another
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list holding the corresponding normal vectors to each baseline point and the
pre-built ring sections as a WEM or STL object. With this inputs, the
module is able to generate, depending on the selected implant model, the
final outcome. To do so, the ring sections have to be aligned with the cor-
responding point on the baseline, possible to be determined by the model’s
dimensions. Next, the ring elements were oriented, by aligning the ring’s
and the baseline point’s position normal and direction vectors. This was
done with all ring sections equally. To gain a final implant, the bridge ele-
ments were generated as well by building them step by step, from one ring
end to the other, by setting up a rectangular skeleton at each baseline point
which are then triangulated, according to Delaunay, in the following step,
thus building the final implant in STL format, possible to be stored on the
local drive and also possible to be printed in 3D.

As described in the results section, the generating process is easy to han-
dle and since just a few user interactions are mandatory, it is not of a big
difficulty to remember these steps. Analyzing the evaluation results shows,
that subject one was not perfectly satisfied with question four, asking if the
software is complicated to use where the subject stated, that the use of the
visualization button and an additional export button, made it feel compli-
cated to him. Also, I recognized, that especially the surgeons had difficulties
using the viewer panel first. However, this difficulties disappear after getting
to know a visualization tool like this, since the handling is new, once com-
fortable with using it, it is an easy task.

More, the tool is very flexible, concerning implant position and number of
implants possible to be applied, since there are no limitations from the cod-
ing part. However, it depends on the system used for running the proposed
software, since the implants are generated with very high quality, the working
memory reaches it’s limitations fast. With the tested system of 24Gb RAM
it is possible to generate up to four implants of the M4322 model, which is
the most expensive one.

As also shown in the results section, a region of interest optimizer was im-
plemented which is an easy way to decrease computational costs but does
not influence the visualized result in any way, since the end user will observe
the same outcome. The advantage lies in actually including only the faces of
the ROI for calculations, thus reducing the data size significantly, resulting
in faster computations but still being able to present the full skull to the user.

Having a closer look on the results of the baseline, one can clearly see, that
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it fits perfectly on any surface curvature. Anyway, it is necessary to choose
a dataset and a position where the surface is closed, since the generation of
the baseline will stop, if one ray is cast through a hole and intersecting with
another surface, very distant from the other points. More, in Figure 58, the
baseline on a 90 degree surface is shown. In a case like this it is important to
set the center of the baseline on the edge, since baseline calculation is based
on this point’s normal vector. Otherwise, cast rays will not intersect at both
sides (upper and lower from the center point) with the surface, as a result
of parallel cast rays to the surface. Figure 62 illustrates this case. However,

Figure 62: On the left side the initial point is not set directly on the edge,
resulting in a normal vector N nearly parallel to the upper part of the edge.
Thus, the cast ray R do not intersect with the surface properly. Therefore
this is an example of how the initial point should not be selected. The right
example is how it should be done by setting the initial point exactly on the
edge, resulting in intersection of all cast rays.

cases like this are not common in facial surgeries since implants will not be
bend by an angle of this value. Anyway, this case needs to be considered
if this work is used as a basis for additional implementations, were it might
gain on importance.

The results section also shows some examples of generated implants which
align very well to the surface curvature. For the use in a surgeons daily
routine, however, it is necessary to work on a data set, were repositioning
of the fractured bones already was performed using a software like described
in [35], [4] and [26]. Compared to other software tools, commercial available,
this software is developed for the positioning of miniplates available on the
market rather than generating individual implants like provided by Materi-
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alise’s patient specific cranio maxillofacial implants [5].

More, the evaluation questionnaire shows that the software is an appropriate
tool, reaching high satisfaction by the end users, for pre planning facial recon-
struction surgeries. In detail, the users were deeply contented with the very
short training time and rated it with a perfect score. Even though, depending
on the expertise, the usage of the visualizing panel has to be explained more
in detail for the surgeons and the medical background more to the computer
engineers, the overall training time is less than five minutes. Further, the
subjects were also very satisfied with the provided functions and the adjust-
ment of the software to achieve a satisfying goal. Even though the tool is
easy to be extended and thus usable for other working areas, like cartilage
surgeries, the software is developed based on the proposed purpose, thus the
high rating in this section was predictable. The user interface also reached
the maximum score since it impresses with an appealing and professional
design, where the objects are arranged properly to provide clearness and a
good overview of the included functions and possibilities. Subjects also rated
the resulting outcome very high. Not only the accuracy of placing them but
also the representation and final position, including the curvature, is very
pleasing. A big factor of the proposed thesis is the time factor, since the idea
was to implement a software which should also decrease time consumption.
This goal is definitely reached, since the average subject took around five
minutes until gaining a satisfying result and also rated the consumed time,
excluding time spent on training, very high, with maximum score. The over-
all time consumption including training time, therefore results in very low
time consumption since also the training, as mentioned before was rated very
good, with a maximum of ten minutes spent. This is the result of a generally
automatic work flow, where the user interactions are decreased to just a few
ones. Finally, the more interesting ratings are those with a lower value, as for
example, the already mentioned difficulty of usage. Also lower rated, with a
score of five points, was the adjustment of the implant. Since rotating the
baseline in the desired orientation followed by it’s repositioning results in a
baseline not orientated in the before adjusted direction, the adjustment of
the implants was experienced not as an very easy task. Anyway, these two
lower ratings still gained a high value but give ideas for improvement. To-
gether with the very high rated overall impression, all of the subjects would
use the software in a daily bases if assumed that the resulting implant like
visualized in the tool would fit with just a few adjustments, for application
on the patient, in it’s 3D printed version.
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7.1 Future Outlook

The proposed software provides a selection of three implant models from the
MedArtis Trauma 2.0 series, which are the most used ones by the medical
partners. However, it is not possible to attend all cranial and maxillofacial
fractures with the models provided by the software tool and also surgeons
from other institutions use different miniplates from this series or even differ-
ent implant types, why ideas for future implementation include the involve-
ment of a broader range of implant models, thus reaching more end users
due to higher flexibility. Also the provided functions should be improved for
gaining a better user experience like discussed in the previous section. The
mode of individual placement of the single baseline points by dragging them
to the desired position on the surface is part of future improvements as well,
since this function is included though it is not very user friendly designed yet.
Additional, flexibility could be increased by providing a generation mode of
patient specific implants like it is provided in other works where [43] and [49]
have to be mentioned. These papers propose the generation of patient indi-
vidual designs which are also saved in STL format and thus being able to be
print with the 3D print technology, allowing surgeons to generate the implant
within a few minutes, thus possible to be used even during surgery.

Beside improvements of already existing functions, ideas worth to be im-
plemented in the future, include the extension of the software tool with new
features. A very important one, is a method for bone repositioning. Since a
fracture can cause bones to be displaced, shifting them back to it’s original
place is generally mandatory. The current state of the software needs this
function to be outsourced to another software, thus the implementation of
being able to reposition fractured bones is very important to include. More,
by adding the option of photo realistic reconstructions or visualizations [44]
of overlying soft tissue gives the surgeon an even better idea of what the final
result, on the closed patient, will look like. Future improvements will then
be possible to visualize a result where also the soft tissues are modeled to
have an idea of how the set implant influences the aesthetics of a patient.

Even though the application is developed for facial reconstructions, it is easy
to adopt or extend the underlying processes to be used in other body areas,
like for example in the vertebral disk. Based on the work of Schwarzenberg in
Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped
Divergences [38] and Zukic in Robust Detection and Segmentation for Diag-
nosis of Vertebral Diseases using Routine MR Images [51] where vertebral
disks are segmented, future work could also include the generation of im-
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plants for similar body parts.

As a final proposal for future works, it is very important to test the generated
implants in the surgical process, to determine how precise the implants are
fitting on the patients defected surface and to determine which areas have to
be improved for a better introduction of the software in the surgeon’s daily
routine. Also it is very important to compare the visualized 3D computer
model with the real world outcome and how different they really are. The
idea for the far future shows a system, which generates a perfect fitting im-
plant based on the CT scan as single input. By ensuring a broad range on
implant generation modes, including individual implants and also those com-
mercial available, the software should be very flexible and easy adjustable to
the end user’s needs. Independent of the applied area, 3D printing provides
a fast and precise solution for implant generation of any type. With all this
functions the final system may be used in the surgeons daily life, enhancing
precision and flexibility, by lowering cost and time affords at the same time.

A Appendix
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Abstract—In this contribution, a novel method for computer- 

aided planning of facial surgery using miniplates is proposed. 

The planning software is able to fit the most common miniplates, 

to the desired position in a 3D facial model. The placement 

respects the local surface curvature. The implants can be 

manufactured with 3D printing technology.  

I. INTRODUCTION 

Facial reconstruction after bone fractures is an important 
application of computer-aided surgery [1]. A common method 
uses so-called miniplates [2], straight titanium plates with at 
least two finishing ring sections at their ends, where screws for 
implant-bone fixation are drilled. The implants are available 
in countless different variations, with additional ring sections 
in the middle, in bent or loop shapes. In this contribution, we 
propose a novel method for computer-aided planning of facial 
surgeries using miniplates.  

II. METHODS 

First, the user chooses an implant type and selects any 
location on the surface of the facial model to place the 
implant’s center point. Using the center as a seed point, the 
baseline curvature is calculated by casting rays along the 
baseline and checking for surface intersection positions. 
Using the resulting curved baseline, the implant shape is 
generated by placing precomputed polygonal meshes at the 
locations along the curved baseline corresponding to the 
implant’s dimensions. Each ring element of the implant is 
oriented to be aligned with the surface tangent plane at the 
chosen location, so that a perfect fit is guaranteed. Finally, the 
straight sections bridging the rings are generated by 
deforming a template mesh with rectangular footprint. 
Runtime is optimized by limiting computations to the region 
of interest around the seed point. 

III. RESULTS 

The proposed interactive planning software has been 
implemented in C++ with the medical prototyping platform 
MeVisLab [3]. Computation runs in real-time on a standard 
desktop computer (Intel Core i7–930 CPU, 4×2.80 GHz, 6 
GB RAM, Windows 8.1), allowing for interactive feedback. 
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Figure 1 shows the result of miniplate placement at a variety of 
positions. 

 
Fig.1: Result of miniplate placement in various directions and locations. 

IV. CONCLUSIONS 

The software was tested with real patient CT data provided 
by the Clinical Department of oral and maxillofacial surgery 
of MedUni (medizinische Universität) Graz. The outcome 
shows very well aligned and with respect to the surface well 
bent miniplates, allowing the surgeons to get a good 
understanding of what a post-intervention will look like. 
Further, the implant models are stored in STL-file format, 
which is a common format used in the 3D-print technology. 
Therefore, surgeons have the opportunity to use the generated 
implant with 3D printing as a bending tool, for precise 
bending of the miniplates, or using it as a miniplate itself in the 
surgical process. Moreover, the physicians describe the 
handling as very user-friendly and accurate. By selecting the 
placement point on the patient’s surface, the surgeons are able 
to place the implant at any desired position with the option of 
further change in position as well as changes in the implant’s 
pointing direction and implant type. In summary, the 
developed software provides a tool for surgeons, operating in 
the facial area which is comfortable to use and accurate at the 
same time. 

There are several areas for future work, like offering more 
complex implants to the user and a comparison and evaluation 
with commercial software products. 
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Figure 1 – Overview of the implant generation. In the orange section, the user loads the patient's data set which is then visualized 

by the viewer block. Followed by the implant set up (grey section) where the user sets the initial point (implant center). Next, the 

baseline  is to calculated which shows the user the current position and direction of the implant, depending on the mouse wheel 

value, the selected implant model and the initial set point is also visualized by the viewer. In the apricot section the implant is 

calculated Implant Generation Block) by activating the Visualize ON/Off button. For the implant generation also the implants ring 

sections, middle and end parts, are required. The final implant is then visualized together with the baseline and the patient's data 

set. By using the block Implant Save, the user saves the current implant(s) for this session and starts setting up new ones. By 

exporting, the current visualized implants are stored as a STL file on a local path. 

Purpose 
Facial reconstruction after bone fractures is an important application of computer-aided surgery1. A common method of osteosynthesis are adaptive miniplates2, 

titanium made metal plates placed with at least two ring sections per fracture fragment. For plate fixation on the bone special fixation screws are drilled. The implants 

are available in different sizes and dimensions and are usually bent intraoperativly to adapt them on the underlying bone. In this contribution, we propose a novel 

method for computer-aided planning and the creation of individually designed patient implants in facial reconstruction using miniplate osteosynthesis.  

Methods 

Results 

Conclusion 

The software was used on patient CT data provided from the clinical routine by the Clinical Department of Oral and Maxillofacial Surgery of Medical University Graz. 
Bone plates were well adapted with respect to the underlying surface and anatomical structures, providing an perfectly fitting osteosynthesis material for an  ideal 
postoperative result in a reduced operation time. Further, the generated implant models can be stored in STL-file format, which is a common format used in 3D-
printing. Therefore, surgeons have the opportunity to create the individually designed implant with a 3D printer, anstead of time consuming intraoperative bending of 
osteosynthesis materials. Moreover, the physicians describe the handling as very user-friendly and accurate. By selecting the placement point on the patient’s 
surface, the surgeons are able to place the implant at any desired position with the option of further change in position as well as changes in the implant’s pointing 
direction and implant type. In summary, the developed software provides a tool for surgeons, to design and in a second step produce individually created patient 

implants for osteosythesis of facial defects in cranio maxillo facial, within the clinical center but without using any monetary services provided by the industry. 
Additionally this tool can be easily be tested and further developed by other groups without, since the software is based on an open-source platform.  

There are several areas for future work, like offering more complex implants to the user and a comparison and evaluation with commercial software products. 
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CT-datasets from the clinical routine were used in a prospective study for the creation of individual designed 

osteosynthesis materials. An interactive planning software has been implemented in C++ with the medical prototyping 

platform MeVisLab3. Computation runs in real-time on a standard desktop computer (Intel Core i7–930 CPU, 4×2.80 

GHz, 6 GB RAM, Windows 8.1), allowing for interactive feedback. On the workstation the user chooses an implant 

type and selects any location on the surface of the facial model to place the implant’s center point. Using the center as 

a seed point, the baseline curvature is calculated by casting rays along the baseline and checking for surface 

intersection positions. Using the resulting curved baseline, the implant shape is generated by placing precomputed 

polygonal meshes at the locations along the curved baseline corresponding to the implant’s dimensions. Each ring 

element of the implant is oriented to be aligned with the surface tangent plane so that the plate fits perfectly to the 

underlying bone structure. Finally, the straight sections bridging the rings are generated by deforming a template mesh 

with rectangular footprint. Runtime is optimized by limiting computations to the region of interest around the seed 

point. Finally plate positions and adaption was independently assessed by two specialists for maxillofacial surgery by 

completing given tasks by the system. Figure 1 gives an overview of the workflow.  

Computer-aided bone plate adaption was able for every type of minplate that was used with the software. Virtual plate adaption. provided correct positioning and 

satisfying results at any position on the facial bones. Medical specialists did neither require any further training time to use the software’s functions, nor they fail in 

completing any given task by the system. Figure 2 shows the result of adaptive miniplate placements at a variety of positions and Figure 3 shows the user interface 

including a loaded data object, baseline and individually generated implant.  

Figure 2 – Result of 

computer aided adaptive 

miniplate placements in 

various directions and 

locations. 
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Figure 3 – User interface 

including object, baseline 

and generated implant. 
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