
Lisa Deckert, BSc

Medical Entity Recognition and 
Semantic Type Classification from 

Clinical Discharge Letters

MASTER'S THESIS

to achieve the university degree of 

Master of Science

Individual Master's degree programme:
Bioinformatics and Medical Informatics

submitted to

Graz University of Technology

Supervisor

Dip.-Ing. Dr.techn. Univ.-Doz. Christian Gütl

Institute of Information Systems and Computer Media

Graz, August 2016





In cooperation with

The University of Western Australia

35 Stirling Highway

Crawley, WA 6009

Australia

Co-Supervisor

Dr. Wei Liu

School of Computer Science and Software Engineering





Lisa Deckert, BSc

Medizinische Begriffserkennung und 
Klassifizierung semantischer Typen 
anhand von klinischen Arztbriefen

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

Individuelles Masterstudium Biomedical Engineering:
Bioinformatik und Medizinische Informatik

eingereicht an der

Technischen Universität Graz

Betreuer

Dip.-Ing. Dr.techn. Univ.-Doz. Christian Gütl

Institut für Informationssysteme und Computer Medien

Graz, August 2016





In Kooperation mit

The University of Western Australia

35 Stirling Highway

Crawley, WA 6009

Australia

Co-Betreuerin

Dr. Wei Liu

School of Computer Science and Software Engineering





Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis dissertation.

Graz,
Date Signature

Eidesstattliche Erklärung
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Abstract

The automatic extraction of valuable information from clinical documents is
a main goal of medical Natural Language Processing (NLP). Identifying and
classifying medical terms in unstructured text plays a fundamental role in this
information extraction process.

This thesis presents a medical entity recognition and semantic type classification
system. Based on the insights gained form a background study and a literature
research, supervised learning and active learning approaches using Conditional
Random Fields (CRF) and Inside Outside Beginning (IOB) format labels are
introduced. The supervised classifier is implemented in three different ways:
Classifier Version 1 (CV1) uses a single-step approach, Classifier Version 2
(CV2) adds an extra candidate phrase extraction step, and Classifier Version 3
(CV3) performs the identification of the medical entity and the semantic type
classification in two separate stages. The active learning approach builds on
CV1 and uses uncertainty-based sampling for query selection.

The most successful supervised approach was CV2 with a F1-score of 0.98.
CV1 reached very similar performance although being more time consuming
than the other approaches. Overall, the simpler approaches (CV1 and CV2)
outperformed the stepwise model (CV3). The active learning approach using
uncertainty-based sampling considerably outperformed a random baseline and
was able to achieve a F1-score of 0.95 within 200 iteration. The active learning
system was able to reach a desirable performance, while requiring significantly
less training data than the supervised approaches. Future work could include
extending the used feature set with semantic features or word representations,
or employing alternative query sampling methods for active learning, such as
diversity-based methods.
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Kurzfassung

Das automatische Extrahieren von wertvollen Informationen aus klinischen
Dokumenten ist ein Hauptziel des medizinischen Natural Language Processing
(NLP). Die Identifizierung und Klassifizierung von medizinischen Begriffen in
unstrukturiertem Text spielt eine fundamentale Rolle in diesem Prozess der
Informationsextraktion.

Diese Arbeit präsentiert ein System zur medizinischen Begriffserkennung und
Klassifizierung semantischer Typen. Auf Grundlage der gewonnenen Erkennt-
nisse der Hintergrundstudie und der Literaturrecherche wurde ein überwachtes
und ein aktives Lernmodell zusammen mit Conditional Random Fields (CRF)
und Inside Outside Beginning (IOB) Format vorgestellt. Überwachte Klassi-
fizierung wird in drei Varianten umgesetzt: Classifier Version 1 (CV1) führt
medizinische Begriffserkennung mittels eines einzelnen Schrittes durch, Classi-
fier Version 2 (CV2) durch Hinzufügen eines zusätzlichen Extraktionsschritt
von Kandidatenphrasen, und Classifier Version 3 (CV3) durch Ausführen der
Identifikation der medizinischen Begriffe und der Klassifizierung der semantis-
chen Typen in zwei getrennten Stufen. Der aktive Lernansatz baut auf CV1
auf und wählt die Trainingssätze basierend auf Unsicherheit aus.

Der erfolgreichste überwachte Ansatz war CV2 mit einer F1-Score von 0.98. CV1
erreichte eine sehr ähnliche Leistung, hatte jedoch einen höheren Zeitaufwand
als die anderen Ansätze. Insgesamt übertrafen die einfacheren Ansätze (CV1
und CV2) das Mehrstufenmodell (CV3). Der aktive Lernansatz mit Auswahl
der Trainingsdaten basierend auf Unsicherheit schnitt deutlich besser ab als
eine zufällige Auswahl und konnte eine F1-Score von 0.95 innerhalb von 200
Iteration erzielen. Das aktive Lernsystem konnte eine gewünschte Leistung
erreichen, während deutlich weniger Trainingsdaten erforderlich waren als für
die überwachten Ansätze. Zukünftige Forschung könnte unter anderem die Er-
weiterung des Feature Sets durch semantische Informationen oder Wortdarstel-
lungen, oder auch die Verwendung andere Methoden der Trainingsdatenauswahl
beim aktiven Lernansatz beinhalten.
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1 Introduction

Hiding within those mounds of data is knowledge that could
change the life of a patient, or change the world.
-
Atul Butte, Stanford (Goldman, 2012)

This quote appeared in an online article of the Stanford Medicine Magazine
from 2012 about big data analysis in medicine1 (Goldman, 2012). The major
hypothesis is that various important medical questions can be solved by analyz-
ing the already existing medical data. According to Atul Butte in the article by
Goldman (2012), many insightful answers may be concealed in the vast amount
of unstructured data. The great question is: How can we access this hidden
knowledge?

1.1 Motivation and Background

The amount of available medical data is growing constantly. In 2014 there were
around 2.800.000 inpatient hospital stays in Austria2, which is a third of the
total population. This number has been growing constantly over the past 25
years, as shown in Figure 1.1. On top of patients who have been treated in
hospitals there have been even more people searching the services of general
practitioners, dentists, or some type of specialists. In Austria and in other
European countries as well, the number of practising physician is steadily

1King of the Mountain, Stanford Medicine Magazine: http://sm.stanford.edu/archive/
stanmed/2012summer/article3.html

2Statistik Austria: http://www.statistik.at/
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1 Introduction

growing according to Eurostat3, which can be seen in Figure 1.2. Each of these
patient-doctor-interactions produces large quantities of data which is usually
stored in unstructured text. Most medical data is highly informative and could
be useful for many applications, however the underlying information needs to
be made accessible by computers. Humans are able to process plain text easily,
but are not suited to handle the vast amount of textual data created in the
medical domain every day. This challenge is the motivational foundation of the
computer science field of Natural Language Processing (NLP).

Figure 1.1: Number of hospital discharges in Austria from 1989 to 2014 according to Statistik
Austria

The main ambition of NLP is to create systems for automatically handling and
understanding human language. A key step in this process is the identification of
certain concepts in text (Liu, Chung, Wang, Ng, & Morlet, 2015). In the medical
domain, concepts such as diseases or symptoms are highly interesting to identify.
This identification and classification task is called medical entity recognition
and is also referred to as medical named entity recognition or even as named
entity recognition in the medical domain (Abacha & Zweigenbaum, 2011).
Medical entity recognition still faces many challenges due to the peculiarities

3Eurostat: http://ec.europa.eu/eurostat

2
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1.1 Motivation and Background

Figure 1.2: Practising physicians in European countries per 100 000 inhabitants in the years
2004, 2009, and 2014 according to Eurostat

of medical language and the poor availability of medical document collections
for research (Y. Xu, Hong, Tsujii, & Chang, 2012; Cohen, 2005; Friedman,
Rindflesch, & Corn, 2013).

To get a better picture of the advantages and possible applications of a medical
entity recognition system, consider the following questions about patient history,
decision support, and potential concept dependencies:

• Which medication did the patient receive the last time these symptoms
were presented?

• How was the course of action for other patients of a similar age exhibiting
similar symptoms?

• Can a certain disease combined with a specific symptom or treatment
lead to another disease?

NLP can help find answers to these questions and yet more. With the data
in a structured format, practical information can be gained and used for
many possible applications ranging from search queries to data analysis or
recommendation systems. Without doubt, there is a high demand for reliable
medical entity recognition systems.

3
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1.2 Problem Definition

According to Tao, Song, Sharma, and Chute (2013) more than 80% of the
existing biomedical data is in plain text format. The valuable information
encoded in these natural language texts has to be extracted using advanced tools
and algorithms. The goal of this thesis is to create a system for automatically
extracting medical terms and classifying the identified terms as one of a pre-
defined semantic type. The system aims to effectively deal with the peculiarities
of medical natural language in a specific domain, while still being adaptable
to other fields. Basic and more elaborate machine learning approaches for
this problem will be explored. After an extensive literature study, the best
suited methods will be implemented, including supervised methods and less
popular alternatives. This work will then conclude by presenting the findings
and compare the various implemented approaches.

1.3 Outline of this Thesis

At first, Chapter 2 gives insights into theoretical concepts which form the
basis of this thesis. After an introduction to NLP in general, medical entity
recognition methods are described. Elementary NLP techniques are presented
as well as the different machine learning approaches.

Then, the current state-of-the-art in medical entity recognition is reviewed in
Chapter 3. Relevant publications and similar approaches are discussed. The
insights into related work provide guidance for selecting the best suited methods
for the given task.

Chapter 4 describes the methodology of this thesis which builds on the findings
of the previous chapter. After explaining the fundamental design decisions, the
conceptual architecture is depicted to give an overview of the idea. Then, the
used tools and libraries are described.

The experimental setup is presented in more detail in Chapter 5. A data set
of the medical domain is used to evaluate the implemented system. Common
performance measures are calculated and the results are discussed.

4



1.3 Outline of this Thesis

This work then concludes by summarizing the most important findings in
Chapter 6. At last, the difficulties and encountered problems are pointed out
and further research ideas are given as an outlook.

5





2 Background

The goal of this thesis is creating a system for medical entity recognition and
semantic type classification. In order to tackle this challenge, knowledge and
expertise from various research fields have to be combined. The developed
system should be based on state-of-the-art machine learning methods and
well established NLP techniques. In this section the theoretical foundations of
this research area are explained. The basic concepts as well as more specific
approaches are described at this point. The theories and concepts presented
in this chapter are later put into practice when the medical entity recognition
system is designed.

2.1 Natural Language Processing

The field of NLP aims to automatically understand and manipulate human
language by using intelligent computer systems. Advances in this field go
back to the 1960’s when the first simple NLP systems were published, e.g.
ELIZA (Weizenbaum, 1966). The foundations of this research area are computer
science, artificial intelligence and linguistics. Possible applications for NLP are
machine translations, human-computer interaction, and information retrieval
(Chowdhury, 2005).

Even though NLP may seem simple at a first glance, it is in fact a rather
difficult task. Humans usually do not realize how much knowledge is needed
for understanding natural language, but even babies first have to learn it after
they are born. Challenges in understanding natural language are given by its
great variety, expressiveness, ambiguity and vagueness (Friedman & Hripcsak,
1999).

7



2 Background

There are several components of natural language. The syntactic information
consists of the structure of the sentence, including the Part-of-Speech (POS) of
the words. The semantic component contains information about the meaning
of words and sentences and the order in which words are combined to form
certain phrases. Another important component is the domain knowledge, which
is basically information about the subject itself, e.g. specific terms of a certain
medical domain (Friedman & Hripcsak, 1999).

The main aspect of this work is information extraction through NLP. Auto-
matically extracting and annotating useful information from a collection of
documents or other information sources is the major goal. An overview of the
general NLP process is shown in Figure 2.1, according to Friedman et al. (2013).
The right side shows the operational parts of NLP. These may involve methods
and tools for classification, feature selection, or labelling formats as well as a
complete system to combine various parts. On the left side, the figure shows
the resources needed for a NLP system. A sample data set is commonly used
for training the model. Feature engineering as well as the design of the model
usually build on domain knowledge and linguistic knowledge. A successful
NLP system produces a structured output which can then be used for further
applications (Friedman et al., 2013).

Figure 2.1: Overview of the general NLP process. Image adapted from Friedman, Rindflesch,
and Corn (2013).

8



2.2 Medical Natural Language Processing

2.2 Medical Natural Language Processing

Twenty years ago medical NLP was considered as one of the most challenging
tasks in medical information retrieval. Most of the medical information today is
in the form of free text, e.g. doctors letters, discharge letters. Even though the
advantages of storing information in a structured form such as databases are
obvious, the larger amount of medical documentation remains in plain natural
language text. A straightforward explanation would be that natural language
is simply the easiest way to communicate complex information (Spyns, 1996).
However, it increases the difficulty of automatically accessing the important
underlying information. NLP tries to tackle exactly this problem and a crucial
aspect is the entity extraction and recognition step.

2.3 Named Entity Recognition and
Disambiguation

The task of Named Entity Recognition (NER), which is an important subtask of
NLP (Doan, Collier, Xu, Pham, & Tu, 2012), was first introduced in 1996 at the
Message Understanding Conference-6 (MUC-6) (Grishman & Sundheim, 1996).
Named entities are terms of a specific type, i.e. names of things. Most studied
types of named entities are persons, locations, and organizations (Nadeau &
Sekine, 2007). The basic goal of NER is to identify all occurrences of named
entities within a collection of documents (Cohen, 2005).

According to Ratinov and Roth (2009) the fundamental parts of designing
a NER system are (1) finding a representation of text chunks, (2) choosing
an inference algorithm, (3) modelling non-local dependencies, and (4) using
external knowledge sources.

The general approaches of NER are the following (Abacha & Zweigenbaum,
2011; Cohen, 2005):

• knowledge-based
– based on lexicons or dictionaries
– based on expert rules

9
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• linguistic-based
– based on syntactic or lexical rules

• statistical
– methods such as graph-based models, deep learning etc.

• hybrid
– any combination of the above

Knowledge-based and linguistic-based can both be considered rule-based meth-
ods. The main advantages of these methods are that there is no learning or
preprocessing step needed and the results are easily reproducible. However they
both depend on prior knowledge, since they either rely on a construction of a
knowledge base or a prior construction of carefully hand-crafted rules, which
is both time consuming. Statistical machine learning methods on the other
hand need a large amount of training data, but do not demand a knowledge
base or any other prior knowledge sources (Abacha & Zweigenbaum, 2011).
Hybrid approaches are relatively new and try to combine the advantages of
machine learning and rule-based methods. Many modern systems belong to
this category.

The goal of a NER system is to predict the type of a word or phrase, thus
the usual output is a set of tags, which assign the types of named entities to
the terms (Cohen, 2005). A simple example for NER is shown in Figure 2.2.
This image was created with the Stanford NER online tool1, which uses linear
chain Conditional Random Fields (CRF) sequence models (Finkel, Grenager,
& Manning, 2005).

2.3.1 Named Entity Disambiguation

The goal of Named Entity Disambiguation (NED) is to assign the identified
entities in the text to the concepts in a knowledge base or ontology (Y. Li
et al., 2013). The ambiguity of terms presents the major challenge for this
task. A proper name may refer to more than one named entity, e.g. different
people may have the same name (Bunescu & Pasca, 2006). To tackle this task

1Stanford Named Entity Tagger: http://nlp.stanford.edu:8080/ner/
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2.3 Named Entity Recognition and Disambiguation

Figure 2.2: Basic example of NER using the Stanford NER tool

contextual clues and prior background knowledge can be very useful. Take the
sentence “Anna went to Columbia.” for example. The mention of “Columbia”
could have multiple meanings. It could be the capital city of South Carolina,
Columbia University, or even the commonly misspelled country Colombia. On
the other hand, consider the sentence “Anna is studying at Columbia.”. In this
case it is clear through the context and the knowledge that one studies at a
university that the mentioned entity is Columbia University.

NED is an interesting and challenging field. For this thesis however, it does
not have much importance because this work deals only with data from a very
specific medical domain.

2.3.2 Multilingual Named Entity Recognition

While English is the most common language, NLP is also interesting for other
languages. An important factor for multilingual NER is to include language-
specific knowledge in the system. However, a general problem for this task is
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the low amount of labeled data. According to Faruqui and Padó (2010) the
only available annotated data set in German is the data from the Conference
on Natural Language Learning 2003 (CoNLL-2003) shared task. Nevertheless,
Wikipedia is a well-known resource for multilingual approaches, because it
contains editions in about 200 languages, is fast growing and dynamic (Bunescu
& Pasca, 2006). Another popular data set for multilingual NLP are the pro-
ceedings of the European Parliament. The Europarl corpus is freely available
and contains parallel texts in 11 different languages including German (Faruqui
& Padó, 2010; Koehn, 2005).

2.4 Medical Entity Recognition and Semantic
Type Classification

In the medical field many automatic applications could be developed using
clinical information. However, most of the available data is in the form of un-
structured text. To be able to use the textual data and access the information
in a reliable way, it is essential to convert it to structured information. Medical
entity recognition plays an important role here. The goal is to identify and
classify medical entities in text. In the literature it is sometimes also mentioned
as medical concept identification or concept mapping (S. Zhang & Elhadad,
2013). The main tasks of medical entity recognition and semantic type classi-
fication are (1) the identification of the entity and its boundaries within the
sentence, and (2) the type classification of the located entity usually using a set
of pre-defined categories (Abacha & Zweigenbaum, 2011; S. Zhang & Elhadad,
2013). Examples are given in Table 2.1 to show how these two steps are applied
to plain sentences. Identification and classification of medical terms, can either
be performed consecutively or simultaneously.

Previously, the dominating problem with medical information used to be the
collection of sufficient data. Today however, the amount of medical data, such
as clinical letters or patient records is immense, thus leading to the challenge of
making use of this mostly unstructured data. As a consequence, the demand for
systems which can process this data into useful information is high (Liu et al.,
2015). Due to the sensitivity of medical data, accessibility of data is another
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Example 1
Sentence Today her visual acuity was improved up to 6/6 in each eye

and I ordered her some new glasses at her request.
Term identification Today her [visual acuity] was improved up to 6/6 in each eye

and I ordered her some new [glasses] at her request.
Term classification Today her [visual acuity]measurement was improved up to 6/6

in each eye and I ordered her some new [glasses]treatment at
her request.

Example 2
Sentence His eye movements were much more free, and he suffers less

diplopia now.
Term identification His [eye movements] were much more free, and he suffers less

[diplopia] now.
Term classification His [eye movements]sign were much more free, and he suffers

less [diplopia]symptom now.

Table 2.1: Examples of medical entity recognition. Sentences are taken from the ophthalmol-
ogy data set, which was provided for this thesis.

obstacle. For future research in this field an important aim is to provide greater
accessability to full text collections Cohen (2005).

While NER may be considered as solved in many domains, medical entity
recognition is still a challenging task as a result of the irregularities and
ambiguities of medical terms (Gong, Yang, Feng, & Yang, 2015). The problem
of boundary detection for medical concepts also increases the complexity
(Uzuner, South, Shen, & DuVall, 2011). Further difficulties for medical entity
recognition and type classification include different terminological variations,
abbreviations, and multi-word names (Abacha & Zweigenbaum, 2011).

2.4.1 Nested biomedical entities

A common problem with NER and especially medical entity recognition are
multi-word terms and nested entity terms, e.g. “inferior retinal vein occlusion”.
These terms might include one or more other medical entities. A general starting
point for entity recognition is to only process the term with the most words
without addressing the problem of nested terms (Gong et al., 2015). However,
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this might result in overlooking some interesting patterns or relationships
between entities. In a study on the Informatics for Integrating Biology and the
Bedside (i2b2)/VA 2010 Pittsburgh corpus which contains clinical notes and
entities of the categories Problems, Test, and Treatments the authors found
that 31% of the medical terms are nested terms (S. Zhang & Elhadad, 2013).

For instance, consider the medical term “inferior retinal vein occlusion”. The
full term, all its components and their semantic types can be seen in Table 2.2.
This example is taken from a corpus of clinical letters which is explained in
more detail in Section 5.2. An interesting observation which can be drawn from
this example is that the whole term is of type diagnosis, but the compounds
are of type anatomy followed by type diagnosis. This could possibly be a
re-occurring pattern which would not have been detected if nested entities were
ignored. Extra care has to be taken with this approach as to not count all of
these entities as separate occurrence. This would lead to incorrect statistical
measures, since the term still occurred only once in the document.

Medical Term Category
vein Anatomy
inferior retinal Anatomy
retinal vein Anatomy
vein occlusion Diagnosis
retinal vein occlusion Diagnosis
inferior retinal vein occlusion Diagnosis

Table 2.2: Entities extracted from the term inferior retinal vein occlusion

2.4.2 Tagging format

The Inside Outside Beginning (IOB) format, sometimes also named BIO format,
was first introduced by Ramshaw and Marcus (1995) for the application of
Noun Phrase Chunking (NP-chunking). A Noun Phrase (NP) is a group of
words with a noun as a head word and NP-chunking refers to identifying NPs
in a sentence. By adding IOB labels to the NPs the authors transformed the
chunking problem into a classification problem. With this format words are
labelled B if at the beginning of an entity, I if they are inside, and O if they

14



2.5 Feature Space

are outside some entity. These IOB labels are added to the real label of the
word.

Different variations or extensions of this format have been proposed. One of
the most popular ones being the Beginning Inside Last Outside Unit (BILOU)
format, which is applied for labelling in a similar fashion as the IOB format
(Ratinov & Roth, 2009). The BILOU format is occasionally referred to as BIESO,
which stands for beginning, inside, end, single, and outside. For explanatory
purpose, consider at the sentence “Tom has a black cat.”. The following example
shows and how the IOB and the BILOU format can be used for NP-chunking:

chunked: [(NP) Tom] has [(NP) a black cat] .
IOB tagged: Tom/B-NP has/O a/B-NP black/I-NP cat/I-NP .
BILOU tagged: Tom/U-NP has/O a/B-NP black/I-NP cat/L-NP .

2.5 Feature Space

In NLP the textual data is usually represented by features. A feature, in
the context of entity recognition, is an attribute which describes a certain
property of a word or phrase. Features can be numeric, boolean, or categorical.
During feature engineering each word in the text is represented by a number of
meaningful features, called a feature vector. The extracted features of the word
are then used as input for the entity recognition algorithm. Different types of
features are significant for NLP. According to Nadeau and Sekine (2007) and
Suakkaphong, Zhang, and Chen (2011) features can be generally divided into
lexical, syntactic, semantic, and document- and corpus-based features. Some
examples for these feature categories are given in Table 2.3.

Lexical features both relate to word-level information and represent the charac-
teristics and appearance of terms. Syntactic features are concerned with the
structural properties of the words. They contain more information and are
more difficult to model. Semantic features represent the meaning of the word
or the affiliation to a certain pre-defined category. While these features are
highly informative, the dictionaries, gazetteers, lexicons or lookup lists are very
difficult to create and maintain. The lists are usually not complete and some
categories might overlap. Further, semantic features are domain specific and
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Types of Features Examples
lexical features word itself

lowercase
uppercase
punctuation
hyphens
digits
lexical patterns
suffixes
prefixes

syntactic features POS-tags
noun phrases
bigrams
n-grams

semantic features semantic category
list lookup
dictionary matching

document and corpus features term frequency
tf-idf
meta information
position in document

Table 2.3: Examples of general feature categories
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not easily transferable to other domains. Document and corpus based features
go beyond the word level, as they are defined over the whole document or
collection of documents, i.e. corpus. Depending on the classification task at
hand, these features can contain valuable information (Nadeau & Sekine, 2007;
Suakkaphong et al., 2011).

The features, or data representation, have a key influence on the performance
and quality of the entity recognition model (Abacha & Zweigenbaum, 2011).
A common risk is to select more features than necessary or features that are
too complicated, which is referred to as overfitting. It can lead to increasing
complexity without any benefits or even to worse performance by adding
irrelevant features. Another downside of overfitting to a given data set is low
portability to other domains (Hawkins, 2004). Thus, the overall goal of feature
design is to chose highly informative features without overfitting.

2.6 Performance Measures

In order to conduct an organized experiment meaningful evaluation is a key
element. The most common measures for evaluation are precision and recall,
and the combination of the two, the F1-score (Cohen, 2005). The precision
measure is the percentage of selected items that are correct, while the recall is
the percentage of correct items that are selected. To calculate these measures
the True Positive (TP), False Positive (FP), False Negative (FN) and True
Negative (TN) values are needed. These can be seen in Table 2.4.

correct incorrect
selected TP FP
not selected FN TN

Table 2.4: Contingency table

The precision and the recall are computed with Equation 2.1 and 2.2 respectively.
Another common measure is the accuracy which can be seen in Equation 2.3.

Precision =
TP

TP + FP
(2.1)
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Recall =
TP

TP + FN
(2.2)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

The F1-score is calculated using the values for precision P and recall R which
is shown in Equation 2.4 for the general case with a constant β, which is chosen
in a way to give more weight to either precision or recall. Equation 2.5 shows
the balanced F1-measure with β = 1.

F =
(β2 + 1)PR
β2P +R

(2.4)

F =
2PR
P +R

(2.5)

2.7 Rule-based Methods for Entity Recognition

Rule-based systems require expert knowledge in order to develop classification
rules. These rules are usually difficult to create and often not very robust (Brill,
1992). The first systems used carefully hand crafted rules, but most modern
systems use machine learning to automatically create the rules. The great
advantage of rule-based systems is that they have no need for a labelled training
data set and thus are the best option when no annotated data is available
(Nadeau & Sekine, 2007). Further, the common if-then rules are usually simple
for humans to comprehend. Some example methods for automatically creating
rules are extraction through the sequential covering algorithm or inducing rules
from decision trees (Han, Pei, & Kamber, 2011).
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2.7.1 Rule Extraction Using a Sequential Covering
Algorithm

Sequential covering algorithms extract rules directly from the training data
set. Rules are created sequentially and ideally address as many samples of the
desired class as possible while not covering any samples from other classes. The
rules should be high in accuracy and usually follow the basic if-then pattern.
The rules are sequentially created until the desired quality is reached or until
there is no more training data available (Han et al., 2011).

2.7.2 Rule Extraction from a Decision Tree

Another way of creating a rule-based system for NLP is inducing if-then rules
from a decision tree. This is done in a simple manner by retracing all paths
from the root node to each leaf and creating simple if-then rules connected
through a logical and for every path. The extracted rules are then joined using
the logical or. By the nature of a decision tree the created rules are mutually
exclusive and unordered. Inducing rules from a decision tree is very straight
forward, but can lead to an exhaustive set of rules. Further processing might
be needed in order to decrease the amount of rules and to result in a clearly
structured system (Han et al., 2011).

2.8 Machine Learning Methods for Entity
Recognition

The first attempts in NER were rule-based systems. Lately however, machine
learning techniques have become more popular, as long as there is a sufficient
amount of data available. The different statistical approaches may be supervised,
unsupervised or semi-supervised (Nadeau & Sekine, 2007).
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2.8.1 Supervised Learning

Supervised learning approaches are the most prevalent techniques at the moment
(Nadeau & Sekine, 2007). The foundation of all supervised learning methods
is a large labelled training data set from which the model infers knowledge,
i.e. the model is trained. The key elements for a high performance are the
availability of a large labelled training data set and a carefully selected feature
set (Abacha & Zweigenbaum, 2011). In NLP lexical and syntactic characteristics
are exploited for extracting meaningful features from the text, such as POS tags.
Some examples of supervised learning approaches are naive Bayes (Rish, 2001),
Decision Trees (Quinlan, 1986), Hidden Markov Models (HMM) (Rabiner,
1989), Support Vector Machines (SVM) (Cortes, 1995), and CRF (Lafferty,
McCallum, & Pereira, 2001). These methods all have the need for a large
annotated document collection in common. Based on the annotations, the
system is then able to create lists of entities and disambiguation rules (Nadeau
& Sekine, 2007). The main challenge with supervised learning is the need for
a large amount of annotated training data, which is often difficult, expensive,
or time consuming to obtain and requires manual effort of human experts
(Carlson, Betteridge, Wang, Hruschka, & Mitchell, 2010).

Generally, supervised learning models can be either generative or discriminative.
Generative approaches model the joint distribution and make predictions by
using the Bayes rule for calculating the conditional probability. Discriminative
models, on the other hand, directly model the conditional probability distribu-
tion (Jordan & Ng, 2002; Sutton & McCallum, 2011). For most classification
tasks, discriminative models are the preferred approach (Jordan & Ng, 2002)
as they are better for handling rich and overlapping features (Sutton & McCal-
lum, 2011). The following are brief descriptions of selected supervised learning
approaches.

Naive Bayes

The naive Bayes classifier is a very basic generative approach. The Bayes’
theorem serves as theoretical foundation and is applied to the classification
problem, as shown in Equation 2.6.
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P (Ck|X) =
P (X|Ck)P (Ck)

P (X)
(2.6)

The class is denoted by Ck, given k different classes, and X represents the
feature vector X = (x1, x2, ... xn). Given the feature vector X, the naive
Bayesian classifier predicts the class with the highest posterior probability
P (Ck|X) using the Bayes’ theorem in Equation 2.6. Since P (X) is constant,
only P (X|Ck)P (Ck) needs to be maximized. To reduce the complexity of this
computation, the classification algorithm builds on the simple assumption that
the features are conditionally independent of each other given the class label,
i.e. they exhibit class-conditional independence. This assumption facilitates the
calculation of P (X|Ck) as can be seen in Equation 2.7 (Han et al., 2011).

P (X|Ck) =
n∏
i=1

P (xi|Ck) = P (x1|Ck) · P (x2|Ck) · ... · P (xn|Ck) (2.7)

The naive assumption made by Bayesian classifiers is mostly unrealistic in
practice, but greatly simplifies the computation. Naive Bayes classifiers are
usually high in speed and are often able to compete with more sophisticated
methods (Rish, 2001; Han et al., 2011).

Decision Tree Induction

The application of decision trees for classification tasks goes back to the 1980’s.
The characteristic of these methods is that the knowledge is represented in
form of a decision tree. Typically starting at a root node, the internal nodes
represent a test on an attribute, the branches denote the outcome of the test
and the leaves symbolize the class labels. After the construction, classification
rules can be easily induced from the decision tree. In general, these classifiers
are intuitive, generative and computationally fast (Han et al., 2011; Quinlan,
1986).
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HMM

Markov chains are the foundation of HMM and the original theoretic concepts
were published by Baum and Petrie (1966). A HMM is a finite model based
on generating the joint probability distribution of possible sequences (Eddy,
1996). In this generative approach, the probability of the current state is only
dependent on the probability of the previous state, which makes it particularly
useful for sequential data, such as DNA or sentences. The goal is to design a
HMM capable of explaining an observed sequence without knowing the hidden
stochastic process (Han et al., 2011). For a more detailed explanation of the
underlying theory see Rabiner (1989).

SVM

SVM are a type of discriminative model originally intended for two class
classification problems. The idea is to classify data points by constructing an
optimal separation hyperplane. Apart from classification, regression tasks are
also a common application for SVM (Cortes, 1995).

CRF

The main idea behind CRF is to build a discriminative probabilistic model
for labelling sequence data. The advantage is that the conditional probability
can depend on non-independent or arbitrary features of the observed sequence.
Features may include different granularity levels of the same observation, such
as characters, n-grams or words. Further, the conditional probability may also
depend on the past and future observation which is taken into account as
well. CRF use an exponential model for the probabilities of the entire label
sequence given the observation sequence. In general, CRF perform very well
in cases where the data distribution has dependencies of an higher order than
the model, which is the case in natural language processing and in many other
real life problem settings (Lafferty et al., 2001; Sha & Pereira, 2003; Sutton
& McCallum, 2011).
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2.8.2 Unsupervised Learning

On the contrary to supervised learning, unsupervised learning techniques
are applied to unlabelled data and build on lexical structures and statistics.
Unlabelled data is usually easy to collect, but not as useful and can often lead
to poor performance (Carlson et al., 2010).

Clustering

Clustering is the most common unsupervised method for NER (Nadeau &
Sekine, 2007). Basically clustering means to group unlabelled data points
in a suitable way (Jain, Murty, & Flynn, 1999). One of the most prevalent
algorithms for clustering is the k-means algorithm (MacQueen, 1967).

2.8.3 Semi-Supervised Learning

Semi-supervised learning tries to overcome the problem of collecting a large
amount of labelled data by using only a small number of annotated data com-
bined with a larger amount of unlabelled data. This approach is promising
and can be very useful if not enough labelled data is available. However, most
systems have not achieved an accuracy similar to the supervised approaches
(Carlson et al., 2010). Some examples of wrapper-based semi-supervised ma-
chine learning methods are bootstrapping, co-training, and disagreement-based
approaches.

Bootstrapping

Bootstrapping, or self-training, is an iterative wrapper method. The model uses
the annotated data for training and classifies unlabelled data. The confident
labels are added to the training data set and so forth. With this method the
supervised model needs no modification. The main advantage of bootstrapping
is its simplicity, however incorrect labels are carried on and have increasing
impact with every iteration (Suakkaphong et al., 2011; Zhu & Goldberg,
2009).
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Co-Training

Co-training is also an iterative wrapper technique for semi-supervised machine
learning, which was first introduced by Blum and Mitchell (1998). Two or more
classifiers are trained on different views of the data, which can be achieved
by training different types of classifiers or by training the same classifier on
different subsets of the data set. Then, the classifiers predict unlabelled data
and the most confident labels are added to the training data set of the other
classifier or classifiers. This process continues until all the unlabelled data has
been labelled (Suakkaphong et al., 2011; Zhu & Goldberg, 2009).

Disagreement-based Learning

A further approach to semi-supervised learning is based on disagreement.
Multiple learning algorithms are trained and collaborating with each other.
The idea behind disagreement-based semi-supervised learning is to look at
the instances where the learners disagree and let the learner with the highest
confidence teach the other learner (Zhou & Li, 2010).

2.8.4 Ensemble Methods

Ensemble methods try to combine the results of two or more different classifiers.
Ideally an ensemble of classifiers should perform better than the individual
classifiers (Saha & Ekbal, 2013). In order to achieve a good performance the
individual classifiers should differ from each other in where they are prone to
make errors (Opitz & Maclin, 1999). Some examples for ensemble methods are
voting, bagging, boosting, and stacking. By combining classifier results, more
entities will be found, however also more false positive and false negative cases
will also arise (Keretna, Lim, Creighton, & Shaban, 2014).

Voting

Different classifiers are known to perform better for a certain class than others.
The ides of voting is that each classifier is allowed to vote for the cases in
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which it performs well. An extension for this approach would be to add weights
according to the confidence level of the classifier (Saha & Ekbal, 2013).

Bagging

In bagging (Breiman, 1996) the classifiers are trained on different subsets of
the training data set. These subsets are usually randomly chosen from the data
set. (Opitz & Maclin, 1999).

Boosting

Boosting (Freund, 1995; Schapire, 1990) is similar to bagging, with the excep-
tion that the training data subsets are chosen depending on the performance
of an earlier classifier. Boosting creates a series of classifiers and presents each
one with previously incorrectly predicted examples to increase the performance.
On a downside boosting methods may overfit noisy data sets (Opitz & Maclin,
1999).

Stacking

The principles of stacking (Wolpert, 1992) are based on letting a higher level
classifier correct the errors of multiple lower level classifiers. The final stage
classifier makes a prediction combining the results of the previous classifiers
(Hendrickx & Bosch, 2003).

2.8.5 Active Learning

Active learning, sometimes also known as human-in-the-loop learning, is based
on the idea of using a human expert during the training process. By incorporat-
ing human knowledge in this way, the necessary amount of annotated training
data can be significantly reduced. Basically the goal is to use less training
samples while achieving high a accuracy through choosing the training data
intelligently (Settles, 2010).
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Active learning is an iterative approach and can be described as a series of
steps. According to K. Zhang et al. (2014) the basic steps of an active learning
system are as following:

1. train model with a small amount of annotated training data
2. use the model on unlabelled data
3. present some the data to an expert for labelling
4. add the new labelled data to the training data set
5. iterate steps 1-4 until convergence

A graphical representation of these steps as an active learning cycle (Settles,
2010) is shown in Figure 2.3. The key step in active learning is to chose which
data is presented to the expert (step 3 in this case). A baseline approach is to
choose randomly. However the goal is to select data that will contribute the
most useful information to the training process. Approaches could be based
on selecting the data with the highest uncertainty or with the most diversity
(Chen, Lasko, Mei, Denny, & Xu, 2015). The large impact on time needed for
training makes this step an essential task in active learning.

Figure 2.3: Representation of the active learning cycle. Image adapted from Settles (2010)
combined with the basic steps according to K. Zhang et al. (2014).

26



2.9 Summary

Uncertainty-Based Sampling

Uncertainty sampling is based on the assumption that the most uncertain
examples in the data set are also the most informative. To present the most
uncertain data point to the expert would give the classifier the most useful
information. There are different methods in how to determine the uncertainty.
E.g. based on the posterior probability output from the CRF classifier, based
on the entropy of the probability distribution, or based on the entropy of the
individual words (Chen et al., 2015).

Diversity-Based Sampling.

As opposed to uncertainty sampling, diversity sampling is not dependent on the
model and its results. It is based on the assumption that adding similar examples
to the training data set does not bring much improvement in performance
and thus the best strategy is to find query examples that differ to the already
labelled data. Example approaches include word similarity, syntax similarity,
and semantic similarity (Chen et al., 2015).

2.9 Summary

Generally, NLP is concerned with automatically understanding natural language.
Many different research fields play a role in solving this problem, e.g. machine
learning and linguistics. Information extraction from plain text is a major
goal of NLP. An important subtask here is NER, which aims to automatically
extract certain terms, such as persons, locations, and organizations from plain
text.

Medical entity recognition, on the other hand, is concerned with extracting
medical terms from text. The two main tasks in this field are (1) identification
of the medical term and its boundary in the sentence and (2) classification of
the term as one of a pre-defined semantic categories, such as anatomy, disease
or symptom (Abacha & Zweigenbaum, 2011; S. Zhang & Elhadad, 2013).
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Different approaches for medical entity recognition may be rule-based or based
on machine learning. While rule-based methods have a need for expert knowledge
(Brill, 1992), machine learning approached require a large annotated data set
(Nadeau & Sekine, 2007). Different machine learning approaches are supervised
learning, unsupervised learning, semi-supervised learning, ensemble methods,
and active learning. The basic concepts have been described above and serve
as a theoretical foundation of the task at hand.
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3 Related Work

Essentially, the aim of any information extraction system is to turn data into
information, information into knowledge, and finally knowledge into wisdom
(Rowley, 2007). Medical entity recognition aims to extract information by
identifying and classifying medical terms in text. This chapter on related work
highlights published literature that is relevant for this thesis. The selected
papers give an outline of previous work from the general and the medical
domain. Finally, state-of-the-art NLP systems for the medical domain are
described shortly to complete the overview of related work. The new insights
gained from researching related work will help making mindful system design
decisions.

3.1 Related Work in Named Entity Recognition
for the General Domain

A lot of relevant research has been conducted in the general domain. In 2007,
Nadeau and Sekine (2007) published a survey of named entity recognition
and classification, which serves as a good starting point for of this section. In
general, adaptability is a desirable feature for NER systems and thus much of
the discoveries made in other domains are still useful for the medical problem
setting.

3.1.1 Tagging Format

Ratinov and Roth (2009) did a comparison of several methods for the separate
steps of NER in their work. Considering representation of terms, the authors
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found the BILOU format was performing superior to the IOB format. The same
results could be obtained in another study comparing the two different tagging
formats by Tang, Cao, Wu, Jiang, and Xu (2012). However, the authors also
stated that the more complicated BILOU format requires more training time
than the simpler IOB format.

3.1.2 Semi-Supervised

Carlson et al. (2010) showed that by constraining the learning task by coupling
the training of many extractors of categories, the performance of a semi-
supervised system can improve greatly. The input of their system is an ontology
describing the target categories and relations, some seed examples for each and a
lot of unlabelled data. The iterative method starts by training multiple classifiers
with the seed examples and then uses these classifiers for the unlabelled data.
Confident new examples are then added to the seed examples for and the
classification step is performed again.

3.1.3 Active Learning

Recently, K. Zhang et al. (2014) combined the approach of active learning
with CRF for sentiment identification from online reviews. The authors used
syntactic and semantic features for the CRF model and presented two different
active learning strategies for choosing which data is to be presented to the
human oracle. Both strategies performed better than the baseline approaches
with an accuracy greater than 65%. Further adding and tuning of features and
also incorporating the topic of the data is proposed for future research.

3.1.4 Multilingual Entity Recognition

The CoNLL-2003 shared task focused on the challenge of language-independent
NER (Tjong Kim Sang & De Meulder, 2003). The best performing system
in this task for both English and German used a combination of Maximum
Entropy (ME) models, transformation-based learning, HMM, and robust risk
minimization. Interestingly, this system achieved a recall of 89% for the English
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data, but only 64% using the German data (Florian, Ittycheriah, Jing, & Zhang,
2003). A possible reasons for this rather big difference might be the higher
morphological complexity of German which makes lemmatization more difficult.
Another example for why NER might be harder for German data, is that
capitalization is a good predictor for named entities in English, but does not
have much use in German because all nouns are capitalized (Faruqui & Padó,
2010).

Apart from the CoNLL-2003 shared task, advances were made using Wikipedia
as a knowledge source. Yosef, Spaniol, and Weikum (2014) developed a system
for the Arabic language called AIDArabic. In another study, Nothman, Ringland,
Radford, Murphy, and Curran (2013) classified each Wikipedia article into
named entity types for 9 languages, including English, German, Spanish, and
Russian. Hereby the authors produced a multilingual silver-standard corpus of
training annotations for further research.

3.2 Related Work in Medical Entity Recognition

In medical entity recognition, there are some added challenges compared to the
general domain, such as abbreviations, Latin words, and multi-word terms. The
approaches and concepts described in the following papers have been designed
for medical entity recognition specifically.

3.2.1 Previous Work on the Ophthalmology Data Set

Recently, Liu et al. (2015) presented a system for unsupervised medical term
extraction from clinical letters. The experiment was performed on the same
data set as used in the research of this thesis. The system consists of three
complementary unsupervised approaches, which extract medical terms from
documents and a genetic algorithm for integrating the extraction results to learn
the best parameters. The used approaches were namely PrefixSpan (Pei et al.,
2004), C-Value (Frantzi, Ananiadou, & Mima, 2000), and TextRank (Mihalcea
& Tarau, 2004). The PrefixSpan algorithm uses n-gram frequencies for term
extraction based on sequential pattern mining. The C-Value approach is based
on statistical and linguistic information, and ranks the terms considering their
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length, frequency and the frequency of their sub-phrases. The term extraction
in the TextRank algorithm is performed by using a co-occurrence graph for
candidate ranking. The three different approaches were combined using a
genetic algorithm ensemble method. The proposed system achieved a f-score of
72.47% with minimal annotation, thus performed considerably better than the
extraction approaches by themselves.

3.2.2 Conditional Random Fields and Feature Selection

In an article presented by Abacha and Zweigenbaum (2011) different methods
for medical entity recognition were compared: (1) a semantic and rule-based
method which builds on MetaMap, (2) a statistical method with a SVM
classifier, (3) a statistical method using the IOB format and a CRF classifier,
and (4) a hybrid method using the features from method 1 and combining
it with the statistical methods from 3. The best performing method was the
hybrid approach. The system uses the output of the domain knowledge based
approach, transforms it into the IOB format and trains the CRF with these
tags as features.

Wang (2009) presented a CRF model which uses IOB formatting. The features
used in the study include lexical, orthographic, semantic features, but no
syntactic features as they were dealing with a specific type of medical notes
without much grammatical structure. The system was able to outperform the
baseline method. For future work the author mentioned making changes to the
semantic classes and dividing some of the classes into further categories.

For the 2013 Conference and Labs of the Evaluation Forum (CLEF) eHEALTH
challenge, Bodnari, Deléger, Lavergne, Névéol, and Zweigenbaum (2013) pre-
sented a supervised CRF model for the identification of disorder entities from
electronic health records. They chose to use lexical and morphological features
containing information about the lemma of the terms in form of unigram and
bigram features, syntactic features, such as POS tags. Another feature was
the type of the document in general and the authors further included Unified
Medical Language System (UMLS) features and also features generated with
Wikipedia. Additionally, the authors also proposed to use more textual data
and to include the Brown word clustering information as features for future
work.
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Keretna, Lim, and Creighton (2015) proposed a feature extraction technique
based on graphs. The idea is to create a graph representing the given unstruc-
tured medical text and extract helpful features from this graph. In addition to
the novel features the authors also used POS tags, suffixes, Term Frequency -
Inverse Document Frequencys (tf-idfs), orthographic features, preceding and fol-
lowing words as contextual features. The approach could increase performance
in 5 out of 6 cases with the only exception being the CRF classifier.

3.2.3 Ensemble methods

An approach for dealing with the peculiarities of medical language was presented
by Y. Xu et al. (2012). The authors created two CRF models for entity
recognition, one for standard natural language and one specifically designed for
telegraphic sentences which are typical in many medical letters, patient records,
or discharge summaries. The proposed system dynamically switches between
the two models and performed better in combination than either of the two
by itself. For the standard language model the authors chose lexical, syntactic,
ontological and word features. For the model for telegraphic sentences the
features consisted of lexical, syntactic, ontological and sentence information.

Keretna et al. (2014) proposed an ensemble approach, which combines a CRF
with a ME classifier. The presented system performed considerably better than
the two classifiers applied separately. Different features are used for the different
classifies in order to achieve a diversity which leads to better ensemble results.
For the ME classifier the used features were of linguistic nature and consisted
of n-grams, the word itself, and the frequency of the word in the data set, while
the features for the CRF classifier were contextual and contained the shape of
the word, prefixes, suffixes, and the previous and following word. For further
work the authors propose to use a higher number of classifiers for each feature
set and to increase the input features as well. Additionally, ensemble methods
other than voting could be applied and studied.
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3.2.4 Semi-Supervised

A disease entity recognition system was developed by Suakkaphong et al.
(2011). Bootstrapping, a semi-supervised technique, is combined with CRF and
implemented in a sequential fashion. Lexical features and syntactic features are
used for classification. The authors claim that this combination outperforms
supervised CRF for disease name recognition.

3.2.5 Active Learning

In a study on active learning, Chen et al. (2015) compared different sample
selection strategies for named entity recognition in clinical text. They used
a CRF classification systems which has already been presented in a previous
study (Jiang et al., 2011). The results showed that uncertainty-based approaches
outperformed diversity-based methods as well as the baseline approaches.

3.2.6 Nested Biomedical Entities

A biomedical entity recognition system dealing with nested terms was proposed
by Gong et al. (2015). The system is presented with previously extracted noun
phrases. A window size is set to one word and entity recognition is performed
for all single-word terms in the noun phrase. The window size is then increased
by one and the process is repeated until window size is equal to the number of
words of the noun phrase.

3.3 Relevant Competitions of the Natural
Language Processing Community in the
Medical Domain

Objectively comparing results from different research publications with each
other is hardly possible as the experimental conditions vary greatly. Different
data sets, cross validation techniques, evaluation measures and other factors
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make a correct comparison of NLP systems difficult. In order to promote
research and enable objective comparison of NLP systems, various competitions
have been held in the past. The Semantic Evaluation (SemEval) series and the
CoNLL-2003 challenge (Tjong Kim Sang & De Meulder, 2003) incorporated
general and medical tasks, while the i2b2 tasks and the CLEF eHEALTH
challenges strictly focused on the biomedical domain.

3.3.1 i2b2 challenge 2010

In 2010 the i2b2 challenge presented three tasks: (1) medical concept extraction
from patient reports, (2) assertion classification of theses concepts, and (3)
relation extraction. The best performing systems of the first task used CRF or
a hybrid approach training CRF with the output of a rule-based NER system.
The best performing system for task 1 achieved an overall F1-score of 0.852. In
the other tasks the most effective systems were based on SVM where a few also
combined this with the output of a rule-based system (Uzuner et al., 2011).

One of the promising hybrid system combined CRF with heuristic rule-based
models for entity recognition and a SVM for assertion classification (Jiang
et al., 2011). Another participating team, Minard et al. (2011), tried different
approaches and also concluded in their work that the approach with the highest
performance was of a hybrid kind.

3.3.2 CLEF eHealth challenges 2013 and 2015

The goal of the 2013 CLEF eHealth challenge was disease entity recognition from
electronic medical records. Bodnari et al. (2013) developed a supervised system
based on a CRF model. Additionally the system used Wikipedia combined
with biomedical terminologies as a knowledge source. The system achieved a
F1-score of 0.711.

The 2015 CLEF eHealth evaluation lab task 1b participants tried to extract 10
types of entities, including anatomy and disorder, from French biomedical text.
The best performing system yielded a F1-measure of 0.756. A major difficulty
for this task lies in developing a system for a language other than English
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for which there are not many resources available for the biomedical domain
(Grouin et al., 2015).

3.4 Overview of Relevant Natural Language
Processing Tools for the Medical Domain

In order to give an overview, this section provides a short description of se-
lected tools for medical NLP. Aside from the tools below which have been
designed for the medical field specifically, there are some comprehensive NLP
libraries which contain components useful for both the general and the medical
domain, such as OpenNLP1, the Stanford NLP Toolkit2, Natural Language
Toolkit (NLTK)3 (Loper & Bird, 2002), General Architecture for Text Engi-
neering (GATE)4 (Cunningham, Maynard, Bontcheva, & Tablan, 2002) and
Unstructured Information Management Architecture (UIMA)5 (Ferrucci &
Lally, 2004).

3.4.1 LSP-MLP

According to Meystre, Savova, Kipper-Schuler, and Hurdle (2008) the first tool
for medical NLP was the Linguistic String Project - Medical Language Processor
(LSP-MLP)6 (Sager, Friedman, & Lyman, 1987), which was developed at New
York University. It focused on extracting symptoms, drugs, and medication
side effects from clinical documents.

1Apache OpenNLP: https://opennlp.apache.org/
2The Stanford NLP Group: http://nlp.stanford.edu/
3NLTK: http://www.nltk.org/
4GATE: https://gate.ac.uk/
5UIMA: https://uima.apache.org/
6LSP-MLP: http://www.cs.nyu.edu/cs/projects/lsp/
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3.4.2 UMLS

The UMLS7 (Lindberg, 1990) is a repository of biomedical vocabularies and
also integrates integrates terminology, classification and coding standards. The
UMLS is a large-scale project of the National Library of Medicine (NLM), e.g.
including the SPECIALIST system (McGray, Sponsler, Brylawski, & Browne,
1987). Many NLP applications are based on the UMLS.

3.4.3 SPRUS

The Special Purpose Radiology Understanding System (SPRUS) (Haug, Ranum,
& Frederick, 1990), later called SymText (Haug et al., 1995) and then MPLUS
(Christensen, Haug, & Fiszman, 2002), was developed at the University of Utah.
It first focused only on semantics and then added syntactic and probabilistic
analysis to the system.

3.4.4 MedLEE

The Medical Language Extraction and Encoding System (MedLEE) was also
one of the first medical NLP systems developed (Friedman, Johnson, Forman,
& Starren, 1995). It is based on semantics and is used for NLP from clinical
reports to be applied for decision support. MedLEE has been commercialized
in 2012 (BusinessWire, 2012)by health fidelity8.

3.4.5 MetaMap

MetaMap9 was developed by the NLM. The system uses a knowledge-based
approach for mapping terms to the concepts of the UMLS Metathesaurus
(Aronson, 2001).

7UMLS: https://www.nlm.nih.gov/research/umls/
8Health Fidelity: http://healthfidelity.com/
9MetaMap: https://metamap.nlm.nih.gov/
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3.4.6 cTakes

The Clincal Text Analysis and Knowledge Extraction System (cTakes)10

(Savova, Kipper-Schuler, Buntrock, & Chute, 2008) is based on the UIMA
framework. It consists of a full NLP pipeline, including a NER model, for
the clinical domain. The approach combines machine learning methods with
rule-based methods.

3.4.7 MedEx

MedEx11, a medication extraction system, was developed in 2010 with a major
focus on identifying medication entities, including temporal entities, from
clinical notes and also discharge summaries. The system is based on UIMA and
was created at the Vanderbilt University Center (H. Xu et al., 2010).

3.5 Summary

The amount of computer-processable medical data in the form of plain text, such
as electronic health records or clinical discharge letters, is steadily increasing,
and might render a valuable source for analysis. However, the unstructured
nature of plain text makes it difficult to extract useful information. The challenge
here lies in understanding natural language and converting the underlying
information into a structured format. Classical NER tackles the problem of
identifying names of persons, organizations, or locations in plain text. While
this has been studied extensively, there are still many challenges to overcome
in the medical area.

The statistical machine learning approach has been used in many of the pub-
lished papers on entity recognition in general. One of the most popular classifiers
in the medical domain is the CRF classifier (Abacha & Zweigenbaum, 2011;
Bodnari et al., 2013; Keretna et al., 2015; Wang, 2009). An essential part

of the learning task is to select the best features for the given data set. These

10cTakes: http://ctakes.apache.org/
11MedEx: https://sbmi.uth.edu/ccb/resources/medex.htm
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features may include lexical, syntactic, semantic, or corpus-based features. The
representation of term labels, i.e. the tagging format, also plays an important
role. Research in the general domain shows that while BILOU labels generally
outperform the more basic IOB labels, they also lead to an increase in training
time (Tang et al., 2012). A relatively new machine learning approach for entity
recognition is active learning. This method has shown favourable results in the
general domain (K. Zhang et al., 2014) and the medical domain (Chen et al.,
2015). The idea is to incorporate a human expert, in this case a doctor or med-
ical specialist, into the learning process. This iterative approach is promising,
but more research is needed in this area (Chen et al., 2015).

To conclude, the idea of using a machine learning classifier for medical entity
recognition is not new, however combining this classifier with carefully chosen
preprocessing steps, an informative feature set, and a suitable tagging format
for entity boundary detection could lead to a better performing system. Further,
techniques other than supervised learning could be interesting to implement
and subsequently compare the results. Generally, medical entity recognition is
an interesting challenge which builds on different research fields and it could
have a large impact on the development of new medical applications.
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After extensively studying the literature on medical entity recognition, some
conclusions can be drawn. Most importantly, there is definitely a high demand
for efficient medical entity recognition systems, seeing that a large portion
of the existing medical data is in plain text format. Therefore, automatically
extracting information from unstructured data is the main goal in this field of
research (Liu et al., 2015).

This work is focused on the two main tasks of medical entity recognition: (1)
trying to identify medical terms in natural language text documents, and (2)
classifying the extracted terms as certain semantic types (Abacha & Zweigen-
baum, 2011). There are many approaches to this challenge as has been shown
in Chapter 2 and Chapter 3. Supervised approaches have been widely used and
have continuously shown good results as long as there is a sufficient amount of
labelled training data available (Friedman et al., 2013). In this thesis a promis-
ing supervised learning model will be implemented and combined with other
techniques for achieving high performance. A common challenge in the medical
domain is the poor availability of annotated training data (Cohen, 2005), thus
an alternative approach to the supervised method will be explored.

This chapter describes the elementary methodology of this thesis. Considering
the insights that have been gained from studying the related work, basic system
design decisions are made. Then, the conceptual architecture is described and
an overview is shown. Later, the chosen methods are explained in more detail.
After a brief description of the tools, libraries, and resources needed for the
implementation, the chapter ends with a short summary of the presented
information.
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4.1 Requirements and Goals

A data set of clinical doctors letters together with a list of labelled medical
terms has been provided. The main goal is to create a simple medical entity
recognition system, which is capable of identifying and classifying medical terms
in these letters. Supervised learning techniques have demonstrated promising
results as long as enough annotated data is accessible, thus a supervised method
will be selected as a first approach for this task (Friedman et al., 2013).

While the classifier itself is a crucial part of the medical entity recognition
system, there are other techniques which can also have a large impact on the
performance. NP-chunking and special tagging formats are examples of such
methods (Ramshaw & Marcus, 1995; Ratinov & Roth, 2009). As a result,
another suggestion is to add further steps before the actual classification in order
to enhance the performance. For research purposes this could be implemented
as an additional version of the system to obtain an interesting comparison.

Feature engineering plays an important part in any classification task. The aim
is to find the best representation of the given data. Features for the medical
term identification and semantic type classification problem could include
lexical, syntactic, semantic, document based, or corpus based features. The
challenge presents itself in selecting informative features without suffering from
overfitting (Garla & Brandt, 2012; Y. Xu et al., 2012).

Friedman et al. (2013) stated that interesting future research directions in
medical entity recognition involve finding alternatives to supervised learning.
The time and labour excessive annotation of a training data set as well as the
poor adaptability to other domains are remaining challenges for supervised
learning approaches. Hence, there is a demand of finding alternative methods
which require less supervision (Friedman et al., 2013).

Visualization is often neglected in other experiments. A simple and under-
standable visualization tool for marking medical terms in text would encourage
analysis before and after the actual experiment. During an initial analysis it
could show some patterns and give interesting insights into where the terms
are located in the text. On the other hand, medical entity recognition often
involves medical experts who could certainly profit from seeing the results in
an understandable way. Consequently, the creation of a simple web interface is
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also a desirable objective. The idea is to plainly highlight the identified and
classified medical terms in text. A straightforward web interface could be useful
for analysis and visualization.

Taking everything into account, the goals of this thesis can be summarized in
the following points:

• creating a medical entity recognition system capable of handling clinical
doctors letters

• selecting features that are highly informative, without overfitting the data
• implementing different versions of a supervised classifier
• implementing an alternative classifier with less supervision
• evaluating and comparing the different classifiers
• creating a final list of medical entities extracted from the given data set
• creating a simple web interface for highlighting identified medical entities

in text

4.2 Conceptual Architecture

In order to develop a successful system, the individual parts, such as prepro-
cessing and classification, have to work together well. Based on the identified
requirements (see Section 4.1), a medical entity recognition system is proposed.
A general overview of the conceptional architecture of this system is depicted
in Figure 4.1.

The input of the system is a collection of raw text documents. These files are
subject to a series of preprocessing steps, more precisely, cleaning, word and
sentence tokenization, and POS tagging. The next step is the classification of
the medical entities. This part is the most complex part and is also implemented
in different ways for an interesting comparison. The different approaches all use
training data, a list of known medical entities, the IOB tagging format, and
feature engineering. The system produces output in a structured format, which
can then be used for evaluation and analysis. Moreover, the output list can serve
as input for the web interface and possibly be used for future applications.

Going into more detail on the preprocessing steps, basic data cleaning is
necessary as the input is in raw text format. Further, it is important to keep
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Figure 4.1: Conceptional architecture of the medical entity recognition system

in mind that word level information is most interesting for this task. For
performing sentence and word level NLP, techniques such as sentence and word
tokenization should be carried out first. Taking some of the previous work into
account, POS tags have proven to be informative features for medical entity
recognition (Doan et al., 2012; Y. Xu et al., 2012). Therefore, the preprocessing
steps will consist of data cleaning, sentence and word tokenization, and POS
tagging.

A classifier in a medical entity recognition system requires labelled training
data. The format of these labels might also have an impact on performance.
The established IOB format and the more complex BILOU format would both
be good options for labelling. However, a comparison showed that the more
basic IOB format requires less training time than the more advanced format
(Tang et al., 2012). For time efficiency reasons, the IOB format is chosen for
implementation. Further, a dictionary of known medical terms is used for
various reasons. The dictionary enables annotating the training data, serves
as input for a initial analysis through the web interface and can be used for
evaluation purposes.

Considering the classification, an informative feature set can greatly increase
performance (Abacha & Zweigenbaum, 2011) and particular attention should
be paid to feature engineering with focus on linguistic features, such as lexical
and syntactic features (recall Section 2.5). Since textual data can be seen
as a sequence of words, the best supervised approach for this task would
be some kind of sequential labelling machine learning model. CRF is well
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suited for this task and even considered as the best performing supervised
learning model for medical entity recognition according to Wang (2009) (see
Section 3.2.2). Consequently, CRF is selected for classification. Supervised
classification can be performed at once or in separate stages and further
step can be added to the approach to enhance performance. Since various
methods seem promising, different variations of the supervised approach will
be implemented for comparison. The supervised classification approaches are
discussed in more detail in the following Subsection 4.2.1.

As an alternative to the supervised learning approach, the active learning
classification, as explained in Section 2.8.5, is promising. The hypothesis is that
by adding an expert into the learning process of the classifier, the system will
achieve high accuracy while being faster and requiring no or little training data
(Chen et al., 2015). Hence, an active learning approach will also be implemented
in this work. A more detailed discussion of concepts of the active learning
approach is given in the Subsection 4.2.2.

A web interface will be created for visualization purposes. The web application
will enable the analysis of the initial observations as well as the final findings of
the study. The popular Stanford NER online tool1 will serve as a role model for
the design of the web page. The main idea of the web interface is to highlight
the identifies medical terms in text using a colors corresponding to the semantic
types.

Finally, performance measure will show which variation of the medical entity
recognition system performs best. According to Cohen (2005), the most common
evaluation measures for entity recognition systems are precision and recall, and
F1-score. For this reason and to enable objective comparison, precision, recall
and F1-score will be used for evaluation.

4.2.1 Supervised Classification Approaches

Medical entity recognition consists of two main steps, namely (1) identifying
the medical term and its boundary in text, and (2) classifying this term as a
certain semantic category (Abacha & Zweigenbaum, 2011; S. Zhang & Elhadad,
2013). Considering that CRF is a sequential labelling model, these two steps

1Stanford Named Entity Tagger: http://nlp.stanford.edu:8080/ner/
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could be performed in a single process (S. Zhang & Elhadad, 2013). In order to
handle the two tasks at once, a suitable label format, such as IOB, is essential.
As an example, a CRF classifier combined with the IOB format labels has
been presented by Abacha and Zweigenbaum (2011). With this in mind, the
supervised Classifier Version 1 (CV1) is designed, which performs medical entity
recognition in a single step using CRF.

In a study by Y. Xu et al. (2012) NP-chunking was incorporated as a prepro-
cessing step and the identified NPs were then used as features for the classifier.
After a brief analysis of the data set however, it became clear that some of
the medical terms are not NPs, but rather verb phrases, adjective phrases or
foreign words. The idea was formed to denote all phrases that could be possible
medical terms as candidate phrases. Thus, identifying these candidate phrases
using a simple rule-based chunker and then feeding this additional information
to the classifier could improve the overall performance. Thereof, for Classifier
Version 2 (CV2), the additional step of candidate phrase extraction is added
before the actual classification step.

Previous research has shown that boundary detection of multi-word medical
terms is one of the more difficult tasks of medical entity recognition (Uzuner et
al., 2011). Even though the CRF classifier is capable of handling entity boundary
detection and entity classification in a single step (S. Zhang & Elhadad, 2013),
it would nevertheless be interesting to see how performance and execution
time changes if the two steps were executed separately. Thus, for Classifier
Version 3 (CV3) of the supervised system, the classification is performed in two
stages, resulting in a stepwise classification. After candidate phrase chunking,
the medical entity is only recognized at first and then classified in the next
step.

Three different supervised learning systems are implemented in this work. An
overview of the three approaches is shown in Figure 4.2. To summarize, the
popular classifier CRF is implemented in three different ways: (1) using a
single-step approach, (2) adding an extra candidate phrase extraction step
before classification, and (3) performing the identification of the medical entity
and the type classification in two separate steps. This work will find out if
the more elaborate approaches actually exhibit an increase in performance as
would be assumed.
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Figure 4.2: Overview of three variations of a supervised CRF classifier for medical entity
recognition

4.2.2 Active Learning Approach

In addition to the supervised approach, an active learning system is implemented.
The intention of active learning is to overcome the problem of poor availability of
annotated data sets in the medical domain (Cohen, 2005). Directly integrating
a medical specialist into the training process is the main advantage of active
learning systems. The basic idea here is that high accuracy can be reached
by carefully selecting the training samples to present to the expert while the
necessary amount of training data is reduced (Settles, 2010). The basic steps
of an active learning system presented by K. Zhang et al. (2014) will serve as a
role model for implementing this approach.

The resulting active learning model can be seen in Figure 4.3. The single-step
CRF approach (CV1), as explained in the section above, is used for classification.
The model is trained with a small initial data set at first. Next, a subset of
data samples is selected and presented to the expert for labelling. Uncertainty-
based approaches are promising for selecting the best query samples, since they
outperform other methods according to Chen et al. (2015) (see Section 3.2.5).
Consequently, the active learning approach will perform query sampling based
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on uncertainty. Because CRF is the model of choice, the uncertainty can
simply be estimated through the prior probability output of the classifier
after prediction. The chosen query sampling method is strongly related to the
uncertainty-based approach explained by Chen et al. (2015). The selected and
labelled samples are then added to the training data set and the iterative cycle
continues until convergence or the desired performance is reached. Finally, the
active learning approach will be compared to the more established supervised
methods. The findings will be analysed and discussed.

Figure 4.3: Outline of the active learning classification steps

4.3 Conditional Random Fields

CRF will be used for classification in this work and therefore the theoretical
basis is briefly described. The idea of CRF was first published in 2001 (Lafferty
et al., 2001). For classification tasks, the aim is to create a model for maximizing
the conditional probability to predict the most likely class. While generative
methods, such as HMM, model the joint probably, CRF directly models the
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conditional probability (Sutton & McCallum, 2011). In the following definition
of a general CRF by Lafferty et al. (2001), X represents a random variable over
the data sequence, i.e. the feature vector, and Y is the corresponding random
variable over the label sequence.

Definition. Let G = (V ,E) be a graph such that Y = (Yυ)υ∈V , so that Y is
indexed by the vertices of G. Then (X,Y ) is a conditional random field in case,
when conditioned on X, the random variables Yυ obey the Markov property with
respect to the graph: p(Yυ|X,Yω,ω 6= υ) = p(Yυ|X,Yω,ω ∼ υ), where ω ∼ υ
means that ω and υ are neighbours in G.(Lafferty et al., 2001)

According to the original definition by Lafferty et al. (2001) and to Sutton and
McCallum (2011), who have written a very useful tutorial on CRF, Equation 4.1
depicts the conditional distribution of a CRF.

P (y|x) = 1
Z(x)

∏
ΨA∈G

exp


K(A)∑
k=1

θakfak(ya,xa)
 (4.1)

The normalization function (or partition function) Z is defined according to
Equation 4.2.

Z(x) =
∑
y

∏
ΨA∈G

exp


K(A)∑
k=1

θakfak(ya,xa)
 (4.2)

4.4 Used Tools and Libraries

Several existing tools and libraries are employed for the implementation of the
presented approaches. The tools are selected based on the requirements and the
conceptual architecture described in Section 4.1 and Section 4.2 respectively.
This section provides a brief overview and description of all tools and libraries
used for this thesis.
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4.4.1 Bootstrap

Bootstrap2 is a popular framework for developing HTML, CSS, and JS appli-
cations. It also provides free design templates and thus was the framework of
choice for giving the web application a simple design.

4.4.2 CRFsuite and python-crfsuite

The CRFsuite3 software is a fast implementation of CRF. The tool provides
fast training and tagging, different training methods, linear-chain CRF. The
python-crfsuite4 library is a very simple Python binding to CRFsuite. It uses
Cython and the CRFsuite C++ API. The combination of these tools is used
for training and testing the classifier model.

4.4.3 Django

Django5 is a Python framework for building Web applications. The open source
library is fast, secure, scalable and takes care of Web development basics.
Django was used for creating the web application.

4.4.4 FuzzyWuzzy and python-Levenshtein

FuzzyWuzzy6 is a small python package for fuzzy string matching. The simi-
larity of two sequences is calculated using the Levenshtein distance and the
corresponding package python-Levenshtein7.

2Bootstrap: http://getbootstrap.com/
3CRFsuite: http://www.chokkan.org/software/crfsuite/
4python-crfsuite: https://pypi.python.org/pypi/python-crfsuite
5Django: https://www.djangoproject.com/
6FuzzyWuzzy: https://pypi.python.org/pypi/fuzzywuzzy
7python-Levenshtein: https://github.com/ztane/python-Levenshtein/
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4.4 Used Tools and Libraries

4.4.5 NLTK

NLTK8 is an extensive Python package. It includes over 50 lexical resources
and provides many libraries and tools for working with natural language. The
tool kit includes libraries for classification, tokenization, stemming, tagging,
parsing, and semantic reasoning.

4.4.6 Pandas

Pandas9 is another useful Python package equipped with data structures and
data analysis tools. The pandas library makes data manipulation simple and
effective.

4.4.7 Scikit-learn

The Python package scikit-learn10 contains tools for data mining and analy-
sis. Applications include classification, regression, clustering, model selection,
preprocessing, and dimensionality reduction.

4.4.8 Simplejson

Simplejson11 is a fast and simple Python library for decoding and encoding
JSON files. This package is used for transforming a csv file into a JSON file to
make it compatible with the Django framework.

8NLTK: http://www.nltk.org/
9Pandas: http://pandas.pydata.org/

10Scikit-learn: http://scikit-learn.org/stable/
11Simplejson: https://pypi.python.org/pypi/simplejson/
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4 Methods and Development

4.4.9 Stanford POS Tagger

The Stanford POS tagger12 is implemented in Java. After tokenization, it
assigns the according POS tag to each word in a plain text sentence. This
state-of-the-art tool is a log-linear POS tagger as described by Toutanova, Klein,
and Manning (2003) and Toutanova and Manning (2000). The software also
contains two trained models for the English language. The POS tags used are
defined by the University of Pennsylvania (Penn) Treebank tag set13 (Santorini,
1990).

4.5 Summary

The goals of this work have been further refined and an appropriate medical
entity recognition system has been proposed based on the insights that have
been gained from studying the literature. The system is able to handle medical
text data through combining proven methods and techniques, such as text
preprocessing, POS tagging, and IOB format labelling. For classification, the
popular CRF model will be applied since it has shown to work well with
sequential data (Wang, 2009). Moreover, feature engineering has significant
impact on the performance of the classifier. The features will be designed to
best represent the data while taking care not to cause overfitting.

The two central challenges of medical entity recognition are the identification
of medical terms in text and the classification of the semantic type of these
terms (Abacha & Zweigenbaum, 2011). To tackle these tasks, three supervised
approaches and an active learning approach have been presented.

Section 4.2.1 described three different versions of a supervised classifier. The
first version follows a basic single-step approach of performing the two tasks
at once. For a second version of the classifier an additional step of extracting
possible candidate phrases is integrated and this additional information is added
to the feature vector for classification. In the third version of the classifier, the
identification and the classification are performed in two separate steps.

12Stanford POS Tagger: http://nlp.stanford.edu/software/tagger.shtml
13Penn Treebank tag set: http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
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4.5 Summary

Considering that annotation of medical text documents is costly and involves
expert knowledge (Friedman et al., 2013), an alternative approach to the
supervised method has also been presented in Section 4.2.2. The active learning
model is an iterative approach which directly incorporates a domain specialist
into the learning process. An uncertainty-based approach will be used for
selecting the query samples. By iteratively presenting the chosen samples to the
expert, this approach should be able to reduce the necessary training data.

In conclusion, three versions of a supervised medical entity recognition system
and an active learning system will be implemented. Lastly, the performance
of these approaches will be measured and compared, which gives rise to the
following two research questions:

1. Will the more complex supervised approaches perform better than the
basic single-step approach?

2. Will the active learning system be able to significantly reduce the amount
of data needed to reach the same or higher performance scores than the
supervised approaches?
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5 Experiment Design and Results

The aim of this work is to design the experiments, implement and compare
the approaches of medical entity recognition which have been proposed in
Chapter 4. Essentially, medical entity recognition enables converting plain text
into structured information (S. Zhang & Elhadad, 2013). The presented systems
aims to identify and classify medical terms in text. The structured output then
consists of a list of medical terms with their corresponding semantic type.

Three supervised classifiers using CRF and an active learning classifier as an
alternative are implemented. The different supervised approaches include a
simple single-step approach (CV1), an approach with additional candidate
phrase extraction (CV2), and a stepwise approach performing candidate phrase
extraction, medical term identification, and type classification sequentially
(CV3). The active learning method utilizes the classification model from the
supervised CV1 and uncertainty-based sampling.

The detailed information of the setup of the study is described in this chapter.
The precise descriptions of the used data set and of how the selected methods
are implemented will also be provided. After the detailed design of this work has
been discussed, the obtained results will be presented and the most interesting
findings will be reviewed.

5.1 Development environment

The presented medical entity recognition and semantic type classification is
implemented and evaluated on a Nectar server1. The server provides scalable

1Nectar: https://nectar.org.au/research-cloud/
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5 Experiment Design and Results

computing power and allows running programs rapidly, which is a major advan-
tage as the training of the machine learning model is usually time consuming.
Access to a Nectar instance has been provided by co-supervisor of this theses
Wei Liu. An Ubuntu 14.04.1 LTS machine runs on the Nectar server. The X2Go
Client2 is used to access the server remotely using a Windows 10 operating
system. The medical entity recognition system is implemented in Python3

(Version 3.4.3).

The web interface is implemented and run directly on the Windows 10 machine
using Anaconda4 (Version 2.5.0). Anaconda is a data analytics platform with
Python and major Python packages pre-installed. The used version of Anaconda
includes Python (Version 3.5.1) as well as the Spyder IDE5 for implementing
Python programs.

5.2 Data Set

The data set used in this experiment consists of 29175 clinical discharge letters
between ophthalmologists and general practitioners. The data set has been
provided by co-supervisor Wei Liu, who has used the same data in a previous
study on an unsupervised medical entity recognition system (Liu et al., 2015),
which was presented in Section 3.2.1. The medical terms extracted in the
unsupervised experiment were presented to three domain experts for revision
and the results were used for annotating the data set.

The medical field of ophthalmology is concerned with the anatomy and physiol-
ogy of the eye, eye diseases and vision disorders. The letters have been collected
during a period of 10 years and were written by five different specialists. The
names and addresses of patients have been removed by anonymisation algo-
rithms for privacy reasons and thus no conclusions can be drawn on the actual
patients. Further, the letters are in unstructured natural text in the English
language.

2X2Go: http://wiki.x2go.org/
3Python: https://www.python.org/
4Anaconda: https://www.continuum.io/why-anaconda
5Spyder: https://github.com/spyder-ide/spyder
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5.3 Semantic Types

An initial analysis of the data set shows that it is comprised of exactly 29175
non-empty letters. Each letter consists of approximately 7.61 sentences and
each sentence in turn is made up of about 17.01 words, which leads to an
average number of 129.44 words per letter.

5.3 Semantic Types

The identified medical terms have to be classified as one of a pre-defined
semantic category. Common semantic categories for medical entity recognition
are the SOAP types, which stands for subjective (S), objective (O), assessment
(A) and plan (P) (Cameron & Turtle-song, 2002). Other semantic classes
have been used in the research also. As future research options, Wang (2009)
mentioned that dividing some categories further could lead to less ambiguity
and more coverage of terms.

During a study on the same data set, (Liu et al., 2015) consulted with domain
experts and agreed on seven semantic types, which are also used for the task
at hand. These seven categories can be seen in Table 5.1 and are used for
classifying medical terms in this work.

Number Category
0 Symptom
1 Anatomy
2 Sign
3 Test
4 Measurement
5 Diagnosis
6 Treatment

Table 5.1: Semantic types for classification of medical terms
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5.4 Dictionary of Known Medical Terms

The ophthalmology discharge letters data set was used in a previous experiment
by Liu et al. (2015) who extracted medical terms using an unsupervised approach
which was explained in more detail in Section 3.2.1. The obtained medical
terms were then presented to three domain experts for evaluation. In the first
step, the correctness of the extracted entity was marked, meaning that the
experts stated if the extracted term was an actual medical entity.

In the second evaluation step, the domain experts classified the correctly
extracted medical entities as one of the seven semantic types which have been
described in Section 5.3, and more specifically in Table 5.1. The medical terms
were only considered as correct, if all three domain experts agreed on what
type of semantic category the term belonged to. The Python library pandas
enabled fast list manipulations through the use of data frames. The resulting
list of correctly extracted and classified medical terms will be used for labelling
the training data and evaluating this work. The list of known medical terms
consists of 2179 medical terms of a length between one and six words per term
and serves as a lookup dictionary for evaluating the classifier. The first 10 lines
of the dictionary of known medical terms are shown in Table 5.2.

phrase category
a-/b-scans 4
a-scan 4
abducens nerve palsy 6
ablation 7
abnormal blood test 4
abnormal head posture 3
abnormal intraocular pressure 3
abnormal macular reflex 3
abnormal vascular pattern 3
abscess 6

Table 5.2: Extract of the first 10 lines of the dictionary of known medical terms. Terms are
in alphabetical order.
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5.5 General System Architecture

Based on the conceptual architecture presented in Section 4.2, the actual
architecture of the system incorporating existing tools and frameworks is
now presented. The components of the medical entity recognition system are
displayed in Figure 5.1. In order to keep the overview simple, the web interface
and the tools used exclusively for the web interface are described in more detail
in the following Section 5.6.

Figure 5.1: System architecture of the medical entity recognition system

The Python library NLTK (see Section 4.4.5) is used for handling the cor-
pus of clinical discharge letters, tokenization, POS tagging, candidate phrase
chunking, during the classification and also for the web interface. The popu-
lar Stanford POS tagger, as mentioned in Section 4.4.9, is applied for POS
tagging. The Python library pandas (see Section 4.4.6) is used for the cre-
ation of the dictionary of known medical terms, which has been described in
Section 5.4. The classification is performed using CRFSuite and the Python
binding python-crfsuite, as explained in Section 4.4.2. The scikit-learn library
(recall Section 4.4.7) is used for cross-validation and for calculation of precision,
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recall and F1-score. The components of the system are described in more detail
in the following sections.

5.6 Web Interface

Another objective of this thesis was to create a simple web interface for visuali-
sation of recognized medical terms in text. The design of the web application
is shown in Figure 5.2. The application takes plain text as input and identifies
medical entities. In the output text, the terms are highlighted in different
colors according to the seven semantic types symptom, anatomy, sign, test,
measurement, diagnosis, and treatment. The Python web framework Django
(see Section 4.4.3) is used for the implementation of the web page. In order to
match the terms with medical entities, a medical term lookup list is used. This
list can either be the dictionary of known medical terms or the output of one of
the supervised or active learning approaches. For making the list in CSV format
compatible with the Django framework, the Python package simplejson (recall
Section 4.4.8) is used. Components of the application are word and sentence
tokenization, stemming, and fuzzy matching. The used tokenizers and stemmers
are part of the NLTK library, which has been described in Section 4.4.5. The
Python packages FuzzyWuzzy in combination with python-Levenshtein were
used for fuzzy string matching, as mentioned in Section 4.4.4. A basic bootstrap
template (see Section 4.4.1) was used for a clear and simple design of the
application.

Figure 5.3 shows the initial page of the created web interface. Text input can
take place through simple copying and pasting or by uploading up to three files
in ’txt’ or ’zip’ format. The web interface allows users to chose which categories
of medical entities should be highlighted. By default, all seven categories are
highlighted in the output text in different colors. In this process the longest
matching term is preferred over shorter terms. Further if terms of the same
length would overlap, the later term is chosen to be highlighted. Overlapping
highlighting has not been implemented, but could easily be added if wished for.
Below the input text field, the user has the possibility to choose between exact
matching and various algorithms of fuzzy matching, with exact matching being
the default setting. Additionally the user can choose which type of stemming
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5.6 Web Interface

Figure 5.2: Architecture of the medical entity recognition web application including used
tools

should be performed before matching the terms, while no stemming is selected
by default.

Fuzzy matching is performed using the FuzzyWuzzy library. It uses the Lev-
enshtein distance to calculate differences between string sequences. If fuzzy
matching is selected, the user is able to choose the matching threshold as well.
In more detail, the web interface allows the user to make the following fuzzy
matching algorithm choices:

• exact: No fuzzy matching is applied.
• ratio: Simple comparison of two strings with a measurement of edit

distance.
• partial ratio: This method also considers partial matches.
• token sort ratio: Considers out of order strings by sorting the tokens

alphabetically, and then joining them back together.
• token set ratio: Matches strings which include each other by splitting

them into an intersection and a remainder string.
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Figure 5.3: Initial page of the medical entity recognition web application

Stemming is performed using the stem package of the NLTK library. The web
page gives the user a choice of the following stemming algorithms:

• no stemming: No stemming is performed.
• minimal: A stemmer that uses regular expressions to identify morpho-

logical affixes. This minimal version only removes the substring ’s’.
• porter: A word stemmer based on the original Porter stemming algorithm

presented in Porter (1980).
• snowball: The English Snowball stemmers developed by Martin Porter6.
• lancaster: A word stemmer based on the Lancaster stemming algorithm

presented in Chris (1990).

Figure 5.4 shows the output of the web application using an example letter
from the ophthalmology data set. None of the extra options are selected and
the default settings of exact matching and no stemming stay in place. The
seven categories are identified and highlighted. As can be seen in the figure,
three medical terms are recognized, namely the diagnosis macular degeneration,
the anatomy term intraocular and the treatment term catarct surgery.

6http://snowball.tartarus.org/algorithms/english/stemmer.html
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5.6 Web Interface

Figure 5.4: Medical entity recognition web application using an example clinical letter with
the default options

After choosing the more advanced option of fuzzy matching using the ratio
algorithm with a threshold of 95, the results slightly change, as can be seen
in Figure 5.5. The application now also recognizes the diagnosis term age
related macular degeneration and the measurement term intraocular pressures
in addition to the treatment term cataract surgery. The reason for these newly
found terms is that in the lookup list, these terms are denoted as age-related
macular degeneration with a hyphen and intraocular pressure without the plural
’s’. Since fuzzy matching is selected and these terms only differ by one character,
they are matched.

The option of stemming is selected in the example given in Figure 5.6. Using
porter stemming before matching the terms, the application is able to find
the diagnosis term macular degeneration, the sign term lens opacities, the
measurement term intraocular pressures, and the treatment term cataract
surgery. The new term of lens opacities is recognized using this method since
the lookup dictionary contains the term lens opacity. The fuzzy matching option
did not find it, as there is more than one character difference of the two terms.
However the word stem is exactly the same and thus it is recognized using the
porter stemmer.
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Figure 5.5: Medical entity recognition web application using an example clinical letter with
fuzzy string matching selected using the ratio algorithm

Figure 5.6: Medical entity recognition web application using an example clinical letter with
porter stemming selected
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5.7 Preprocessing

The first step of the medical entity recognition pipeline is preprocessing of the
raw data. The doctors letters are in plain text, have been anonymised and
contain some noise which makes preprocessing necessary. The following sections
briefly explain the individual steps.

5.7.1 Data Cleaning

Data cleaning is performed with basic string replacement using regular expres-
sions. Additionally, empty files are discarded. The following cases are regarded
in this order during preprocessing:

1. all none printable strings were replaced with a single space
2. unwanted white space characters were replaced with a single space
3. patterns such as “## # ####”, which were due to anonymization,

were replaced with a single “#”
4. multiple “.” were replaced with a single “.”
5. for better sentence tokenization, a space was added after the “.”, if the “.”

was followed by a capital letter

5.7.2 Tokenization and POS-Tagging

After the data cleaning step some basic NLP is performed using the NLTK
library for Python. The documents are split into sentences, which are then
split into words using NLTK tokenizers. The tokenized sentences are further
processed by the Stanford POS-tagger, as mentioned in Section 4.4.9. After
the POS-tagging step each word and the assigned POS-tag are saved to files in
the format token/POS-tag.

5.7.3 IOB Format Labelling

In this next step, the IOB labels are added to the terms. The list of known
medical entities is assumed to be ground truth and used as a lookup table.
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All terms are compared with the dictionary and in case of a match, the term
is labelled according to the IOB format. The sentences are scanned through
systematically and preference is given to the longest (term with most words)
and also to the later term in case of multiple matches. As there are seven
different semantic categories, there are 15 different label in IOB format (O;
B-1,B-2, ... B-7; I-1,I-2, ... I-7).

5.7.4 Candidate Phrase Chunking

Many NER and medical entity recognition systems incorporate a NP-chunker,
which identifies groups of words with a head noun. In the given ophthalmology
data set, some medical terms are not NPs, but rather verb phrases, adjectives
or foreign words. Classic NP-chunking would rule these medical terms out,
which is not desirable. Thus, a candidate phrase chunking step is introduced in
the pipeline. Candidate phrases can be medical terms or not, but words that
are not classified as part of a candidate phrase are not further processed.

This step is implemented using a simple regular expression parser from the
NLTK library. The candidate terms are extracted based on the following four
grammar rules:

1. <FW>?<RB>?<DT>?<(VBG|VBN|VBZ)>?<JJ> ∗<(NN|NNS|NNP)>+<VBZ>?
2. <(VB|VBG|VBN|VBP|VBZ)>
3. <JJ>
4. <FW>

The results of the preprocessing steps are saved to text files. Table 5.3 shows
an example of a preprocessed sentence. Each line consists of (1) the token, (2)
the POS tag with the possible extension -CP to mark it as a candidate phrase,
and (3) the label in IOB format. Sentences are separated by blank lines.

5.7.5 Preprocessing Findings

During a first analysis of the data, some obvious patterns became clear. In
general, it is very common for multi-word terms to include another medical
entity. A multi-word diagnosis or measurement frequently often includes an
anatomy term at the beginning. And a multi-word treatment often contains a
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I PRP O
will MD O
pick VB-CP O
this DT O
up RP O
when WRB O
I PRP O
see VBP-CP O
her PRP$ O
after IN O
the DT O
weekend NN-CP O
and CC O
commence VB-CP O
her PRP$ O
on IN O
antiviral NNS-CP B-7
agents NNS-CP I-7
. . O

Table 5.3: Example sentence at the end of all the preprocessing steps. Each line contains the
token, the POS tag (and possible extension -CP), and the IOB label.

diagnosis term at the beginning. To summarize, some examples are given in
Table 5.4.

For confirmation and visualization purpose, the web application described in
Section 5.6 was used for the same clinical letter example as before. Interesting
observations could be made by using different settings of the web interface.
Some screen shots can be seen in Figure 5.7. The ratio algorithm and a threshold
of 95 are selected for fuzzy matching and stemming is performed using the
porter stemmer. The output of the web interface considering all seven semantic
type categories is shown in Subfigure 5.7a. As would be expected, by combining
fuzzy matching and stemming, the application recognizes the best results of the
two individual selections (as compared to only fuzzy matching in Figure 5.5 and
only stemming in Figure 5.6). The identified medical entities are age related
macular degeneration of type diagnosis, lens opacities of type sign, intraocular
pressures of type measurement, and cataract surgery of type treatment.

When less categories are chosen to highlight, interesting observations can be
made. Looking at Subfigure 5.7b, all categories except measurement are selected.
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Text fragment Annotation

has had pterygium surgery on the right pterygium, Diagnosis
pterygium surgery, Treatment

considers cataract surgery on that eye cataract, Diagnosis
cataract surgery, Treatment

intraocular pressure and fundi were normal intraocular, Anatomy
intraocular pressure, Measurement

to have age related macular degeneration macular, Anatomy
macular degeneration, Diagnosis

Table 5.4: Examples for multi-word medical terms including another medical term

The measurement term intraocular pressures is not recognized any more, but
instead the anatomy term intraocular is highlighted. The system behaves
correspondingly for the other categories. Subfigure 5.7c shows what happens
when all types are selected except diagnosis. Instead of the diagnosis term age
related macular degeneration, the anatomy term macular is recognized. On the
last Subfigure 5.7d in the bottom right corner, all classes except treatment are
chosen. Alternatively to the treatment term cataract surgery, the diagnosis is
highlighted. These observations agree with the finding from Table 5.4.

5.8 Feature Extraction

A set of 13 different features is used for this experiment. The features are of
lexical and syntactic nature and there is one sentence based feature, which can
be seen in Table 5.5. These features are used for the word itself as well as for
the previous and the following word. If there is no previous or following word,
the feature BOS (beginning of sentence) or EOS (end of sentence) is appended
respectively. Hence, up to 39 features are used per term all together.

The POS tags are created using the Stanford POS-tagger, see Section 4.4.9
and Section 5.7.2. The University of Pennsylvania (Penn) Treebank tag set7

is used for labelling the POS tags. The POS tags usually have two or three
letters. The first two letters denote the general word class, such as ’NN’ for
common noun, and the third letter describes the more specific type, e.g. ’NNS’

7Penn Treebank tag set: http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
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5.8 Feature Extraction

(a) all semantic types are selected (b) measurement is not selected

(c) diagnosis is not selected (d) treatment is not selected

Figure 5.7: Examples of nested medical terms visualized by using the web application to
highlight different categories. Used settings were the ratio algorithm for fuzzy
matching with a threshold of 95 and the porter stemmer.
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for plural common noun. Thus, the full POS tag and the first two letters alone
are used as features.

lexical features: syntactic features:
word in lowercase POS tag (e.g. NNS)
word length first 2 characters of POS tag (e.g. NN)
word stem (porter stemmer) candidate phrase (boolean)
prefix (2, 3, 4 letters)
suffix (2, 3, 4 letters) sentence based features:
uppercase (boolean) position of the word in the sentence
title case (boolean)
alpha characters only (boolean)
digits only (boolean)

Table 5.5: Features used for the experiment

5.9 Classification

This work implements three supervised classifier version and an active learning
version. All variations of the medical entity recognition system use data cleaning,
POS tagging, and IOB format labelling for preprocessing, which have been
described in Section 5.7.

The classification step of the medical entity recognition and semantic type
classification system is performed using CRF (see Section 4.3). For training the
model and predicting the class labels, the CRFsuite8 was used in combination
with the python binding python-crfsuite9, as described in Section 4.4.2. The
selected methods from the CRFsuite are the linear-chain CRF for training and
testing, the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
method (Nocedal, 1980) for optimization, and the forward-backward algorithm
using the scaling method (Rabiner, 1989) for calculating the posterior marginal
distribution.

8CRFsuite: http://www.chokkan.org/software/crfsuite/
9python-crfsuite: https://pypi.python.org/pypi/python-crfsuite
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5.9 Classification

5.9.1 Supervised Classification

Three different versions of a supervised classifier are implemented based on
the concepts described in Section 4.2.1. The exact implementations of the
different classifier versions using selected tools and libraries are described in
this section.

Classifier Version 1

CV1 performs medical entity identification and semantic type classification in a
single step. The training data is represented by the features which are extracted
from the preprocessed documents. Each word in the data set is labelled with
IOB format labels. The use of this labelling format enables classification in a
single step. In CV1 every word of the document is used for classification. This
results in a very imbalanced data set, as most of the words are no medical
terms and thus labelled O.

Classifier Version 2

Additionally to the methodology of CV1, the second version of the classifier
(CV2) applies the step of candidate phrase chunking before classification.
The terms which are identified as candidate phrases are marked with -CP as
extension to the POS tag. Further, the boolean feature candidate phrase is
added to the feature set. For training and testing, only the candidate phrase
terms are used. Thus, the amount of training data is reduced. The remaining
approach is equivalent to CV1.

Classifier Version 3

Besides the techniques of CV2, the classification in CV3 is divided into two
separate steps. The classifier is basically used twice. The first model is trained
using the candidate phrases (according to CV2), but only using the labels
I, O and B without the semantic categories. As a next step, the extracted
multi-word terms are joined through inserting ’ ’ instead of a space between
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terms. As a result, the data set now only contains terms labelled as O or a
medical entity marked as B. In another classification execution, the identified
medical terms are now classified as a certain semantic category. This time, the
second model is trained using only the medical terms. The prediction of the
test data also occurs in two steps accordingly. For evaluation, the multi-word
terms connected by ’ ’ are separated again to make the performance measures
comparable to the other approaches.

5.9.2 Active Learning Classification

The active learning classifier, which has been introduced in Section 4.2.2, is
implemented in a similar manner as CV1. The only difference is the selection
of the training data. As there is no human expert present for the experiment,
the dictionary of known medical terms from the ophthalmology domain is
used as an oracle. Initially, five letters are randomly selected for training the
model. This small number is chosen, since the active learning system should
function as an alternative for situation with very little or no training data. In
every iteration, five sentences are selected to be presented to the expert. In
regard to the theoretical human expert, five sentences have to be enough, since
annotation is costly and time consuming.

After the model is trained, the remaining documents of the data set are used for
evaluation. As long as the stopping criteria is not reached, the iterative cycle
continues. Reasons for ending the classification are reaching a desirable F1-score
or reaching the maximum amount of 200 iterations. The F1-score of the best
performing supervised system is chosen as stopping criteria. The selection of
query samples to be presented to the oracle is based on uncertainty. The CRF
algorithm provides the posterior probability of each sequence, i.e. sentence, of
the test data set. The five sentences with the lowest posterior probability, and
thus the highest uncertainty, are selected for expert labelling.

5.10 Performance Evaluation

10-fold cross-validation is used for statistical analysis of the three supervised
classifiers. The full data set is randomly divided into 10 folds. 9 parts are used
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as training data set and the testing data set is comprised of the remaining part.
The 10 folds are iterated through in a way that the testing part is always a
different one. The averages over all 10 iterations are calculated for the final
measures of precision, recall and F1-score. This technique allows objective
evaluation of the system. The Python package scikit-learn (see Section 4.4.7)
is used for implementing cross validation.

5.11 Results and Discussion

A series of experiments have been performed to evaluate the three supervised
approaches and the one active learning approach presented. The systems are
evaluated using a data set of 29175 clinical discharge letters. Performance
measures used are precision, recall and F1-score. The following sections show
the outcome of the study and discuss interesting findings.

5.11.1 Results of the Supervised Classification Approaches

The performances of the three variations of the supervised classifier are shown
in Table 5.6 for data set sizes ranging from 25 documents to the full data set
of 29175 documents. For each data set size and for each classifier version, the
precision, recall and F1-scores are presented. The highest measures for every
data set size are marked in bold. In addition to the results in tabular form, the
F1-scores of the different classifiers are shown in a graph over the data set size
in Figure 5.8. Overall, a maximum F1-score of 0.98 is achieved using CV2 for
data set sizes 10000 and 25000.

CV1, CV2 and CV3 show very similar performance, with CV2 slightly leading
for larger data sets. For very small data sets, CV3 performs best. With increasing
data set size however, the performance of CV3 decreases compared to the other
two. It is somewhat surprising that the most advanced classifier performs
the worst. Possible explanations could be that some medical entities are not
identified in the first step and don’t even reach the second step. Thus, early
mistakes progress. Another possible issue might be the combination of the
multi-word terms to a single word. Through combining terms, the features
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selected for the previous and following words change which could have an
impact on performance.

CV1 CV2 CV3
files P R F1 P R F1 P R F1

25 0.782 0.617 0.665 0.780 0.605 0.652 0.827 0.633 0.685
50 0.873 0.683 0.753 0.869 0.678 0.747 0.842 0.713 0.759

100 0.882 0.736 0.793 0.881 0.722 0.783 0.823 0.718 0.757
250 0.936 0.844 0.882 0.931 0.841 0.876 0.892 0.850 0.865
500 0.956 0.897 0.920 0.957 0.894 0.924 0.918 0.884 0.895

1000 0.962 0.930 0.946 0.970 0.929 0.946 0.939 0.916 0.925
2500 0.978 0.954 0.964 0.979 0.952 0.967 0.955 0.947 0.949
5000 0.981 0.967 0.975 0.982 0.966 0.972 0.961 0.951 0.955

10000 0.982 0.970 0.979 0.986 0.970 0.980 0.967 0.960 0.962
25000 0.981 0.971 0.976 0.987 0.978 0.980 0.963 0.951 0.956
29175 0.982 0.971 0.976 0.984 0.973 0.979 0.968 0.960 0.964

Table 5.6: Performance of the three variations of the supervised classifier for different data
set sizes

Another observation can be made by comparing execution times, as is shown
in Table 5.7 for a data set size of 2500 documents. These times can not be
viewed as absolute values, since many other things would have to be considered,
such as the development environment (see Section 5.1), or other applications
running simultaneously. However, the ratios of the presented times are suitable
to compare the different supervised classifier variations. CV2 and 3 are fastest,
because they perform prior candidate phrase selection which leads to using less
words for training. CV1 needs almost double the time as the other versions.
This shows that the simplest classifier is the most time consuming, since it is
trained on all words and not only on the candidate phrases.

CV1 CV2 CV3
time in s 1341 758 619

Table 5.7: Execution time of the three variations of the supervised classifier for a data set of
2500 documents
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Figure 5.8: F1-scores of the three different supervised learning approaches over various data
set size

77



5 Experiment Design and Results

5.11.2 Results of the Active Learning Approach

The active learning classifier is evaluated using data set sizes of 100, 1000,
10000, and 29175 clinical letters. For evaluation, precision, recall and F1-scores
are measured for every iteration. The overall performance results are presented
in Table 5.8 for every fifth iteration until a maximum of 200 iterations.

As expected, the performance steadily increases with every iteration. Through
a suitable selection of query samples for the expert to label, the overall amount
of training data needed is significantly reduced. For the full data set, the system
was able to reach a F1-score of 0.92 after 100 iterations and a F1-score of
0.95 after 200 iterations. However, such high numbers of iterations might not
be realistic considering that a human expert should normally be used for the
labelling task.

Another observation is that the performance is smaller for larger data sets. This
is probably due to the fact that the training data to testing data ratio decreases
for larger data sets. The training data consists of the initial five documents and
the additional five sentences per iteration, which is both independent of the
overall data set size. The remaining sentences in the data set, which are not
used for training, are then used for evaluation. Thus the number of sentences
in the testing data set increases with the size of the overall data set.

For visualization purpose, the performance measures of the first 100 iterations
using the full data set of 29175 clinical letters are shown in Figure 5.9. First
of all, the graph shows how the F1-score is a weighted average of precision
and recall, since the F1 curve is situated between the precision and recall
curves. The graph also clearly illustrates that the increase in performance is of
logarithmic shape rather than linear, meaning that the performance increases
rather fast in the beginning and then slowly converges towards the maximum
value.

To evaluate the effect of the uncertainty-based query selection approach, random
sampling has also been implemented as a baseline. Figure 5.10 shows the F1-
scores evaluated on the full data set of 29175 clinical letters. The F1-scores
are presented as a function of the number of iterations. After 100 iterations,
the uncertainty-based approach achieves a F1-score of 0.92, while the random
sampling baseline only reached a F1-score of 0.71 within the same number of
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100 files 1000 files 10000 files 29175 files
I P R F1 P R F1 P R F1 P R F1
0 0.44 0.12 0.18 0.52 0.15 0.21 0.58 0.22 0.31 0.40 0.09 0.14
5 0.81 0.39 0.52 0.88 0.35 0.48 0.88 0.46 0.59 0.79 0.32 0.42

10 0.93 0.56 0.68 0.89 0.49 0.60 0.90 0.58 0.70 0.83 0.43 0.54
15 0.96 0.67 0.78 0.91 0.59 0.70 0.93 0.64 0.75 0.87 0.61 0.70
20 0.93 0.70 0.79 0.91 0.71 0.79 0.95 0.71 0.80 0.92 0.69 0.77
25 0.96 0.72 0.81 0.93 0.75 0.83 0.93 0.79 0.84 0.93 0.74 0.81
30 0.96 0.74 0.83 0.95 0.77 0.85 0.94 0.82 0.87 0.94 0.74 0.82
35 0.99 0.77 0.86 0.95 0.81 0.87 0.96 0.82 0.88 0.93 0.77 0.84
40 0.98 0.82 0.88 0.96 0.82 0.88 0.96 0.81 0.87 0.93 0.80 0.85
45 0.97 0.85 0.91 0.97 0.83 0.89 0.95 0.86 0.90 0.95 0.81 0.87
50 0.98 0.89 0.93 0.96 0.84 0.90 0.97 0.83 0.89 0.95 0.83 0.88
55 0.97 0.90 0.93 0.97 0.87 0.91 0.97 0.86 0.90 0.95 0.84 0.88
60 0.98 0.91 0.94 0.98 0.87 0.92 0.96 0.87 0.91 0.95 0.84 0.89
65 0.98 0.92 0.95 0.98 0.88 0.92 0.97 0.87 0.92 0.95 0.85 0.89
70 1 0.94 0.97 0.98 0.88 0.93 0.97 0.88 0.92 0.96 0.85 0.90
75 1 0.93 0.96 0.98 0.90 0.93 0.97 0.89 0.93 0.96 0.86 0.91
80 1 0.96 0.98 0.98 0.91 0.95 0.97 0.90 0.93 0.96 0.87 0.91
85 0.99 0.91 0.95 0.97 0.91 0.94 0.97 0.87 0.91
90 0.99 0.92 0.95 0.98 0.92 0.95 0.97 0.88 0.92
95 0.99 0.93 0.96 0.98 0.92 0.95 0.97 0.88 0.92

100 0.99 0.93 0.96 0.98 0.92 0.95 0.96 0.89 0.92
105 0.99 0.93 0.96 0.98 0.92 0.95 0.97 0.89 0.93
110 0.99 0.94 0.96 0.98 0.92 0.95 0.97 0.90 0.93
115 0.99 0.94 0.96 0.98 0.92 0.95 0.97 0.90 0.93
120 0.99 0.94 0.96 0.98 0.93 0.95 0.97 0.90 0.93
125 0.99 0.95 0.97 0.98 0.93 0.95 0.98 0.90 0.93
130 0.99 0.95 0.97 0.98 0.94 0.96 0.98 0.90 0.93
135 0.99 0.95 0.97 0.98 0.94 0.96 0.98 0.90 0.94
140 0.99 0.95 0.97 0.98 0.94 0.96 0.97 0.91 0.94
145 0.99 0.95 0.97 0.99 0.94 0.96 0.97 0.91 0.94
150 0.99 0.95 0.97 0.99 0.94 0.96 0.98 0.91 0.94
155 0.99 0.96 0.97 0.99 0.94 0.96 0.98 0.91 0.94
160 0.99 0.96 0.98 0.99 0.94 0.96 0.97 0.92 0.94
170 0.99 0.95 0.96 0.98 0.93 0.95
180 0.99 0.95 0.97 0.98 0.92 0.95
190 0.99 0.95 0.97 0.98 0.92 0.95
200 0.99 0.95 0.97 0.98 0.93 0.95

Table 5.8: Overall performance measures of the active learning approach for different data
set sizes
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Figure 5.9: F1-score, precision and recall of 100 iterations of the active learning system using
the full data set of 29175 documents

iterations. The uncertainty-based approach clearly outperforms the random
selection baseline.

5.11.3 Comparison of the Different Approaches

In order to objectively compare the two approaches, it is important to remember
that each clinical letter consists of approximately 7.61 sentences. The active
learning approach randomly chooses five documents as an initial training
data set and five sentences are added to the training data per iteration. The
supervised learning systems use 10-fold cross-validation and hence the training
data set is always nine-tenths of the full data set. Taking this information
into consideration, it is easily possible to convert training data set sizes given
as number of documents or iterations into number of sentences for objective
comparison.

Table 5.9 shows the direct comparison of CV1 of the supervised approach and
the active learning approach. CV1 has been chosen for comparison, because
the active learning approach trains the model in the same manner as CV1. For
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Figure 5.10: F1-score of 100 iterations of the active learning system using the full data set of
29175 documents. The implemented uncertainty-based approach for sampling is
compared to random selection.

the case of using 100 files the supervised CV1 achieves a F1-score of 0.79 using
a training set of 90 documents, or about 685 sentences. The active learning
approach evaluated on 100 files is able to reach the same F1-score after only 20
iterations, which is equal to 138 sentences. As a consequence, the active learning
approach requires less training data while achieving the same performance as
the supervised approach.

supervised learning active learning
training 100 letters 29175 letters
sentences P R F1 P R F1 P R F1

138 0.67 0.60 0.61 0.93 0.70 0.79 0.92 0.69 0.77
168 0.78 0.62 0.67 0.96 0.72 0.82 0.93 0.74 0.81
343 0.87 0.68 0.75 0.98 0.92 0.95 0.96 0.83 0.89
685 0.88 0.74 0.79 1 ≥0.96 ≥0.98 0.97 0.91 0.94

Table 5.9: Results of the supervised approach CV1 for data set sizes 20, 25, 50, and 100.
Directly compared with the active learning approach used on a data set of 100
clinical letters and on the full data set.

Fur further analysis and visualization, two comparisons of the supervised CV1
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and the active learning classifier are presented in Figure 5.11. Subfigure 5.11a
shows the F1-score as a function of the number of sentences in the training
data set and Subfigure 5.11b presents the number of sentences needed to reach
a certain F1-score. Again, it becomes clear that the active learning approach is
able to achieve higher performance while requiring significantly less labelled
data.

5.12 Summary

This work deals with medical entity recognition and semantic type classification.
Three variations of a supervised classifier and one active learning classifier have
been presented and evaluated. A data set of 29175 clinical discharge letters was
used for evaluation. Performance measures consisted of precision, recall, and
F1-score.

Of the three supervised approaches, CV1 and CV2 outperformed CV3. The
best results were achieved by CV2 with an F1-score of 0.98. The identification
of the medical terms and the classification of the semantic types are executed in
separate steps in CV3. Due to the separation of the two tasks, mistakes made
in the first step are transferred to the second step, which is a possible reason for
the inferior performance of CV3. Directly comparing the other two approaches,
CV1 performed slightly better for smaller data set and CV2 achieved slightly
better results for larger data sets. However, CV2 is more time efficient than
CV1. CV2 performs candidate phrase chunking before the actual classification,
which leads to less training data samples and makes this approach less time
consuming.

The active learning system was able to reach a competitive performance with
less labelled training data. Using the full data set, the active learning system
achieves a F1-score of 0.92 after 100 iterations. The active learning approach
uses uncertainty-based sampling for selecting the data samples to present to the
expert for labelling. As a baseline, random sampling was also implemented. The
uncertainty-based active learning approach was able to significantly outperform
the random sampling baseline.

82



5.12 Summary

(a) F1-score as function of training data set sizes

(b) Number of sentences in training data set to reach F1-scores

Figure 5.11: Comparison of the supervised classifier CV1 and the active learning system. The
active learning approach is evaluated on the full data set and on a smaller data
set of 10000 clinical letter.
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For training the model of the active learning system, the supervised CV1 was
used, which allows for interesting comparison. Using a training data set of
about 685 sentences, the supervised CV1 achieved a F1-score of 0.79. The active
learning approach reached the same F1-score after only 20 iterations using a
total of 138 training sentences. Consequently, the active learning system was
able to reach the same performance while reducing the training data by 80%.

Finally, the two research questions which have been asked in Section 4.5 can
now be addressed. The insights gained from this study lead to the following
answers:

1. Will the more complex supervised approaches perform better than the
basic single-step approach?
A: Based on the setup and experimentation, results indicate that CV1

and CV2 outperformed the more complex CV3. Overall, CV2 demon-
strated the best performance. The medical entity recognition ap-
proach CV2 combined prior candidate phrase chunking with single-
step identification and classification.

2. Will the active learning system be able to significantly reduce the amount
of data needed to reach the same or higher performance scores than the
supervised approaches?
A: In consideration of the setup used in this experiment, the active

learning approach reached the same F1-score as the supervised
approach CV1 while using decidedly less training data. For the
example of a F1-score of 0.79, the active learning approach was able
to reduce the necessary training data by 80%.
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The majority of medical data is only available in unstructured natural language
text format (Liu et al., 2015). Clinical letters contain a great amount of useful
information, which is hidden in unstructured text. Consequently, there is a
high demand for systems with the ability to extract this valuable information.
Medical entity recognition aims to identify and classify informative medical
terms in text documents, thus making it an essential part of medical NLP and
text analysis(Abacha & Zweigenbaum, 2011).

In this thesis, different supervised and active learning medical entity recognition
and type classification systems have been presented. The approaches were
evaluated using a collection of clinical discharge letters and demonstrated
successful performance. The following section gives an overview of the most
interesting findings from literature survey, development and experimentation
of this work. Finally, a summary about possible future research directions
concludes this thesis.

6.1 Summary of this Thesis

The main objective of this thesis is the creation of a system for automatic
medical term extraction and classification of the corresponding semantic type.
During the course of this work, many interesting observations have been made
and the most relevant findings and results are now discussed.

The foundations of medical entity recognition are computer science, artificial
intelligence and linguistics. Compared to the closely related field of NER,
medical entity recognition has to deal with additional challenges, such as
multi-word terms, abbreviations and other peculiarities of medical language.
In general medical entity recognition consists of two tasks: (1) identifying the
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medical entity and its boundaries within the sentence, and (2) classifying the
semantic type of the extracted entity based on a set of pre-defined categories
(Abacha & Zweigenbaum, 2011; S. Zhang & Elhadad, 2013). The insights
gained from the literature survey of the general area can easily be adapted
to the medical field, e.g. IOB format labelling. Supervised machine learning
and the CRF classifier are popular for both general and medical applications.
Research also shows that active learning is a promising alternative to the more
established supervised approach. Moreover, the literature review demonstrates
that there are still many challenges to overcome in the field of medical entity
recognition.

Building on the observations gained through the background research and the
literature survey, three different supervised learning variations and one active
learning approach are designed. All approaches employ the CRF model for
classification combined with IOB format labels and common preprocessing steps
(e.g. POS tagging). The three versions of the supervised system are composed of
a single-step approach (CV1), an additional step of candidate phrase extraction
step before classification (CV2), and a stepwise approach which performs the
identification and the type classification of the medical entity separately (CV3).
The active learning model builds on CV1 and selects the training sample to
present to the expert based on uncertainty.

The experiments are carried out using a data set of 29175 clinical discharge
letters. Precision, recall and F1-score are employed for evaluation. Overall CV2
achieves the best results with an F1-score of 0.98. The more simple CV1 shows
a similar performance, but is more time consuming. CV3 is outperformed by
the other approaches, because the mistakes made in the entity identification
step are carried on to the semantic type classification step. The performance
of the uncertainty-based sampling approach for active learning clearly exceeds
the baseline of random sampling. The comparison of the supervised approaches
with the active learning approach confirms that through selecting training
samples iteratively and based on uncertainty, the amount of labelled data can
be dramatically reduced.

In summary, the best performing supervised system (CV2) uses candidate
phrase extraction and IOB labels combined with CRF. The active learning
approach uses uncertainty-based sampling together with IOB format labels and
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CRF. The insights gained in this study give rise to interesting ideas for further
research, which will be briefly discussed in the following section.

6.2 Future Outlook

Based on the presented medical entity recognition approaches, further research
could include (1) exploring other alternatives to supervised learning, such as
semi-supervised learning, (2) adding further steps to the preprocessing pipeline,
e.g. spell checking, (3) using the more advanced BILOU format instead of
the IOB labels , (4) adapting the presented systems to a multilingual medical
entity recognition problem, or (5) using a different machine learning model
for classification, such as SVM. These points just give an idea of further
research possibilities. The encountered limitations of the presented medical
entity recognition and semantic type classification approaches are now discussed
and specific alternatives for future work are described.

The ophthalmology data set used in this work was originally unannotated and
labels were added using the medical terms that have been extracted during
an unsupervised study on the data set by Liu et al. (2015). As a result, the
annotations are not exactly ground truth, but still suitable for testing. For
future work, it would be interesting to evaluate the presented approaches on a
different data set. However, it is difficult to access annotated data sets in the
medical domain for privacy reasons.

The findings of a first analysis of the data after preprocessing (see Section 5.7.5)
demonstrated that many of the multi-word medical terms contain one or more
other medical terms which might be of a different type. A study presented by S.
Zhang and Elhadad (2013) showed that nested medical terms occur frequently
in clinical notes. Gong et al. (2015) proposed a biomedical entity recognition
system for handling these nested terms. The multi-word terms are iterated
through using of a window with increasing size to find all medical entities
contained in the multi-word terms. This approach is intriguing and would also
be suitable for the ophthalmology data set. Thus, including the nested entity
approach into the presented systems is another future research possibility.
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The used features in this study consist of lexical features, syntactic features,
and sentence based features. Semantic features contain semantic type informa-
tion from dictionaries or ontologies, such as the UMLS. Adding the semantic
categories provided by dictionary lookup to the feature set used for this work
could lead to an increase in performance. Nevertheless, incorporating domain
specific information will lead to less adaptability to other areas. Other features
that have shown to increase performance are word clusters (Y. Xu et al., 2012)
or distributional based word representations (Tang, Cao, Wu, Jiang, & Xu,
2013). Hence, a further option for future research is adding extra features for
classification.

The initial documents selected for training of the active learning classifier have
an impact on overall performance. The implemented classifier chooses these
documents randomly. Other initial selection methods could be explored, e.g.
training the classifier with one example for each semantic category. Considering
the query selection of the active learning classifier, a downside of uncertainty-
based sampling by using the posterior probabilities of the CRF is that the
model needs to train and predict labels for every iteration which is time
consuming. Hence, alternative methods for selecting the training samples
could be investigated. Even though the diversity based approach has been
outperformed by the uncertainty based approach in a study by Chen et al.
(2015), it would anyhow be interesting to implement it as an alternative. A
more advanced sampling method was proposed by Huang, Jin, and Zhou (2014),
which selects informative and representative sample, thus combining uncertainty
and diversity based approaches. Adapting this approach for the presented active
learning system in this thesis is another option for further research.
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