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I

Abstract

Molecular charge transport is one of the most fascinating topics in solid-state physics. On one
hand there is attempt for developing molecular devices which reproduce the properties of mi-
croelectronic components on the other hand it is an interesting topic because of the comparison
between measurements and first-principles calculations. The aim of this work is a first-principles
calculation of the charge transport through a benzene-1,4-dithiol (BDT) molecule contacted by
two gold chains. The BDT transport system is a benchmark system in both, experiment and
theory. There are significant differences between the measurements and the theoretical predic-
tions to be worth the effort of further investigations. The aim of this thesis is to investigate the
effect of strong correlations between the electrons in the BDT molecule on the transport properties.

In order to compute the transport properties the electronic band structure of the system is calcu-
lated using the plane-wave pseudopotential code Quantum Espresso. The Kohn-Sham eigenvalues
and eigenfunctions are then transformed to a real-space basis of Maximally Localized Wannier
Functions (MLWF) using the code Wannier90. This allows extracting a tight-binding Hamil-
tonian to describe the transport system. Strong electron correlations are then included using
an extended Hubbard model. The many-body physics within Non-equilibrium Green functions
(NEG) enable doing the transport calculation through a strongly correlated molecule connected
by two leads.

First the transport over a single gold chain is studied. A tool for calculating the current through
a lead-center-lead system is implemented. By comparing the electronic band structure of the gold
chain with their transmission function, it is possible to check the algorithm. Then the transport
properties of the gold-BDT-gold system are calculated. It turns out that in the case of single gold
chains as leads, the transport properties are determined only by the orbitals coupling to the gold
s-orbitals. Therefore transport through the benzene pz-orbitals is suppressed. Strong correlations
between the electrons in the central region are treated by use of many-body physics. The corre-
lations lower the current flowing through the transport system.
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Kurzfassung

Der Ladungstransport in Molekülen ist eines der faszinierendsten Gebiete der Festkörperphysik.
Einerseits gibt es Bestrebungen molekulare Bauelemente zu entwickeln, die mikroelektronische
Komponenten nachbilden, andererseits ist der Vergleich zwischen experimentellen Messungen und
Ab-initio-Rechnungen ein interessantes Thema. Ziel dieser Arbeit ist die Ab-initio-Berechnung
des Ladungstransportes über ein Benzen-1,4-dithiol (BDT) Molekül, das mit zwei Goldketten
kontaktiert ist. Das BDT-Transportsystem ist zu einem Referenzsystem im Experiment und in
der Theorie geworden. Trotzdem gibt es signifikante Unterschiede zwischen den Messungen und
den Vorhersagen der Theorie, was weitere Forschungen rechtfertigt. Unter anderem stehen die
Auswirkungen von starken Korrelationen zwischen Elektronen im BDT-Molekül im Mittelpunkt
dieser Arbeit.

Um die Transporteigenschaften berechnen zu können, wird der Dichtefunktionaltheorie (DFT)
Code Quantum Espresso zum Bestimmen der elektronischen Bandstruktur des Systems verwendet.
Die Kohn-Sham Eigenwerte und Eigenfunktionen werden mit dem Code Wannier90 in eine Basis
maximal-lokalisierter Wannierfunktionen (MLWF) transformiert. Diese Vorgehensweise führt zu
einem, das Transportsystem beschreibenden, Tight-Binding-Hamiltonian. Starke Korrelationen
zwischen den Elektronen können durch ein erweitertes Hubbard-Modell berücksichtigt werden.
Die Vielteilchenphysik und Nichtgleichgewichts-Greenfunktionen ermöglichen Transportrechnun-
gen über ein stark-korreliertes Molekül zwischen zwei Kontakten.

Zuerst wird der Ladungstransport über eine Kette von Goldatomen untersucht. Ein Programm zur
Berechnung des Stromes durch ein Kontakt-Zentrum-Kontakt System wird implementiert. Durch
den Vergleich der elektronischen Bansdstruktur der Goldkette mit ihrer Transmissionsfunktion
kann der Algorithmus auf Richtigkeit überprüft werden. Dann werden die Transporteigenschaften
des Gold-BDT-Gold Systems berechnet. Es stellt sich heraus, dass, bei Verwendung einzelner
Goldketten als Kontakte, die Transporteigenschaften nur durch die Orbitale bestimmt werden,
die an die Gold s-Orbitale koppeln. Der Transport über die Benzen pz-Orbitale wird unterdrückt.
Schlussendlich werden starke Korrelationen zwischen den Elektronen in der Zentralregion mit
Hilfe der Vielteilchenphysik berücksichtigt. Die Korrelationen reduzieren den Strom durch das
Transportsystem.
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Graz, 2016

Michael Rumetshofer



VI



CONTENTS VII

Contents

1 Introduction 1

2 Theoretical Concepts 5
2.1 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Maximally-localised Wannier functions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Electron interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 LCR transport system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Statistical ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Non-equilibrium Green functions . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.3 Lehmann representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Spectral function and occupation number . . . . . . . . . . . . . . . . . . . 20

2.7 Coupling Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Cluster Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Semi-infinite Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Quantum Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8.1 Current between two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8.2 Current through the LCR System . . . . . . . . . . . . . . . . . . . . . . . 27
2.8.3 System out of equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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Chapter 1

Introduction

Modern computational physics allows to deduce macroscopic properties, e.g. the electrical conduc-
tivity, from fundamental equations like the Schrödinger equation. Comparing these calculations
with experimental results helps to investigate and improve the theoretical methods and the ex-
perimental techniques and leads to deeper insights in the mechanisms of quantum systems. At
small scale quantum effects become relevant and there is attempt to use those effects for building
molecular devices like a resonant tunneling transistors [1] [2].

An important breakthrough in molecular transport happened in 1997. The groups of Mark Reed
at the Yale University and James Tour at the University in South Carolina were able to measure
the current-voltage characteristic of a Benzene-1,4-Dithiol (BDT) molecule contacted with gold
leads [3]. This experiment is often considered as the first measurement on single molecule junc-
tions. The experiment was done at room temperature in argon atmosphere. BDT became the
workhorse in the field of molecular transport and several experiments were done afterwards. For
example Lörtscher, Weber and Riel [4] have measured the same system under ultrahigh vacuum
conditions at different temperatures (250 K and 50 K). Both experiments used a method called
the Mechanically Controllable Break Junction (MCBJ) method. In the MCBJ method a notched
metal wire is placed on a flexible substrate. BDT in solution is applied on the metal surface.
Bending the substrate until the metal wire breaks and evaporating the solvent produces a self-
assembled monolayer (SAM) at the place of fracture. After bending the substrate back until a
desired distance between the contacts the current-voltage characteristic can be measured. The
distance between the contacts can be determined by using a piezo sensor and the tunneling cur-
rent. Nowadays there are many more experimental methods, e.g. techniques involving a Scanning
Tunneling Microscope (STM) or an Atomic Force Microscope (AFM).

By now many measurements where done on the gold-BDT-gold system. But according to [5] the
measured conductances vary between 5 · 10−5 G0 and 0.1 G0. Calculations done for this system
predict a conductance between 0.05 G0 and 0.4 G0. The values are given in units of the conduc-
tance quantum G0 = 2e2/h. Because of this big differences within and between the experimental
and theoretical results there is still need to investigate the gold-BDT-gold system in detail. In
general the theoretical conductances tend to be higher than the measured ones.

The present work investigates the gold-BDT-gold system drawn in figure 1.1. Even though it is
not possible to use single gold chains as leads in an experimental transport system they represent
a good model system, because this lead geometry is as simple as possible and it could give deeper
insight in the transport mechanisms than using more realistic leads. Keeping the positions of the
gold atoms constant and optimizing the positions of the BDT atoms leads to a twisted geometry
of the BDT molecule between the gold chains.
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Figure 1.1: Gold-BDT-gold system used for the transport calculation.

The first-principles calculation method chosen in this thesis is an extended version of using Density
Functional Theory (DFT) and Non-equlibrium Green functions (NEG). Within DFT the energy
levels and wave functions of the transport system including electron correlations at a mean field
level can be calculated. Using Maximally Localized Wannier Functions (MLWF) it is possible
to reduce the full Hamiltonian of the system to a smaller real-space Hamiltonian which only
contains the electronic states relevant for transport. The real-space Hamiltonian can then be
rearranged to the Left lead-Center-Right lead (LCR) structure of the transport system. Transport
properties through the system can be calculated using NEG. Figure 3.1 sketches the main parts
in a DFT+NEG calculation.

transport system

bandstructure calculation

Density Functional Theory

Wannier transformation

Maximally Localized Wannier Functions

LCR Hamiltonian

Setting up the LCR structure

transport calculation

Non-equilibrium Green functions

transport properties

Figure 1.2: Structural model of DFT+NEG.

DFT+NEG is a standard approach [6] and is only able to describe coherent transport. Coherent
transport means that the electrons flow elastically without exchanging energy. This is the case if
the time that an electron spends on the central molecule of the LCR geometry is shorter than the
time it takes to interact with other electrons or phonons. The approximation is correct in the case
of large coupling between the leads and the central region. If the coupling is weak electrons stay
long enough in the central region to scatter inelastically. In this so-called incoherent transport
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regime it is necessary to describe strong correlations between the electrons. This can be done by
the use of many-body physics in addition to the DFT+NEG approach [7].

This extended DFT+NEG approach is used in this thesis to be able to describe the transport
phenomena in an intermediate regime between strong and weak coupling. In principle the bonds
between the gold chains and the sulfur atoms of the BDT molecule are strong and transport
should be in the coherent regime, but the large discrepancies between calculated and measured
conductances suggest that electronic correlations play an important role in this system.

This thesis is structured as follows. In chapter 2 the theoretical concepts are introduced and
discussed, followed by chapter 3 including the computational techniques needed for implementing
the concepts. Finally in chapter 4 the theory is applied to the gold-BDT-gold system.
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Chapter 2

Theoretical Concepts

This chapter explains how to perform first-principles molecular transport calculations within the
method of DFT+NEG including strong electron correlations. Section 2.1 introduces a suitable
Hamiltonian for describing quantum systems. How to calculate the model parameters using DFT
and MLWFs is discussed in the sections 2.2, 2.3 and 2.5. Within DFT only finite or periodic
systems can be calculated and therefore a technique for setting up the Hamiltonian in LCR
transport structure is needed. Section 2.4 explains this procedure. The transport calculation in
terms of NEG including strong electron correlations is discussed in the sections 2.6, 2.7 and 2.8.
Finally section 2.9 illustrates the approximations assumed within this approach.

2.1 Model Hamiltonian

In order to calculate charge transport properties one has to study the movement of charge carriers
in the transport system. Here the interest is on electrons interacting with the atomic nuclei and
with each other. In quantum mechanics particles are described by their wave functions. The field
operators

Ψ̂†(r) :=

N∑

i

Ψ∗
i (r)â

†
i

Ψ̂(r) :=

N∑

i

Ψi(r)âi (2.1.1)

denote creation and annihilation of particles in the quantum state described by the wave functions
Ψi(r). The fermionic commutation rules ensure the anti-symmetry of the electronic states.

{

âi, â
†
j

}

:= δij

{âi, âj} := 0
{

â†i , â
†
j

}

:= 0 (2.1.2)

First the electrons are considered to be independent from each other. The model Hamiltonian
has to describe the motion of a valence electron through a transport system consisting of effective
nuclear potentials. Within the Born-Oppenheimer approximation the atoms are fixed at their
equilibrium positions. The kinetic and potential energy term, later called one-particle term, in
second quantization is
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T̂ =

∫

d3r Ψ̂†(r)

(
−~

2

2m
∆+ V (r)

)

Ψ̂(r). (2.1.3)

Considering the fact that the electrons are interacting with each other due to their Coulomb
potential energy U leads to the interaction term

Û =
1

2

∫

d3r

∫

d3r′ U(r, r′)Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r). (2.1.4)

Inserting the definition of the field operators 2.1.1 into the expressions for the kinetic and potential
energy term T̂ and the interaction term Û and adding the terms leads to the Hamiltonian

Ĥ = T̂ + Û =
N∑

ij

tij â
†
i âj +

1

2

N∑

ijkl

Uijklâ
†
i â

†
j âkâl (2.1.5)

with the parameters

tij =

∫

d3r Ψ∗
i (r)

(
−~

2

2m
∆+ V (r)

)

Ψj(r)

Uijkl =

∫

d3r

∫

d3r′ U(r, r′)Ψ∗
i (r)Ψ

∗
j (r

′)Ψk(r
′)Ψl(r). (2.1.6)

This Hamiltonian is so far exact within the Born-Oppenheimer approximation. The Latin index i
denotes the wave function ī and the spin σ ∈ {↑, ↓}. If the wave functions are independent of spin,
and the spin of an electron is conserved during a hopping process between two wave functions

tij = t̄ij̄δσσ′ (2.1.7)

holds. The Hamiltonian in equation 2.1.5 is very general, but due to the interaction term it
is difficult to solve. Knowing the parameters tij and Uijkl the Hamiltonian can be set up in
many-particle space using a suitable basis. However the size of the many-particle space is growing
exponentially with the number of wave functions N . This explains why strong electron correlations
are usually taken into account in small systems. A possible approximation of the interaction term,
which does not reduce the size of the many-particle space but simplifies the calculation, is to
consider only density-density correlations

1

2

N∑

ijkl

Uijklâ
†
i â

†
jâkâl ≈

1

2

N∑

i6=j

Uij n̂in̂j (2.1.8)

with

Uij =

∫

d3r

∫

d3r′ |Ψi(r)|
2 |Ψj(r

′)|
2
U(r, r′). (2.1.9)

The more localized the wave functions are, the better this approximation is. U(r, r′) denotes the
energy of a screened Coulomb potential

U(r, r′) =
e2

4πǫ|r− r′|

1

η(r, r′)
(2.1.10)



2.2. DENSITY FUNCTIONAL THEORY 7

with the screening factor η. The function η(r, r′) represents the screening of the potential due
to the remaining mobile charge carriers. To estimate the screening factor the Random Phase
Approximation (RPA) [8] can be used. In a first approximation the screening factor can also be
estimated by using the Poisson equation

∆u(r, r′) = −
ρ(r)

ǫ
−

eδ(r− r′)

ǫ
(2.1.11)

where ρ denotes the remaining charge carriers and u(r, r′) is the potential. In the Thomas-Fermi
approximation the charge density is proportional to the potential.

ρ(r) = −ǫk20u(r, r
′) (2.1.12)

Solving the Poisson equation in the Thomas-Fermi approximation leads to an exponentially de-
caying Coulomb potential energy. The screening wave vector k0 has to be estimated again using
techniques like RPA.

U(r, r′) = −eu(r, r′) =
e2

4πǫ|r− r′|
e−k0|r−r

′| (2.1.13)

A further possible approximation of the interaction part in the Hamiltonian in equation 2.1.5 is
to include the interactions only at a mean field level. This is essentially done in DFT calculations.

2.2 Density Functional Theory

In the previous section a suitable model for describing electrons in a solid was introduced. In order
to do transport calculations for a real solid within this model one has to determine the hopping
parameters tij and the interaction parameters Uijkl. A widely used approximation to solve the
electronic structure problem in real materials is Density Functional Theory (DFT). This section is
a short introduction to the theory analogous to the textbook Theoretische Festkörperphysik from
Czycholl [9]. Starting point is the time-independent Schrödinger equation.

ĤΦ(r1, ..., rN ) = EΦ(r1, ..., rN ) (2.2.1)

Φ(r1, ..., rN ) is the many-particle wave function, which depends on the position of the N electrons.
The full interacting Hamiltonian in the Born-Oppenheimer approximation is

Ĥ =







N∑

i=1

−~
2

2m
∆+

N∑

i=1

V (ri) +
1

2

N∑

i,j=1
i6=j

U(ri, rj)







, (2.2.2)

which is analogous to the Hamiltonian in second quantization in equation 2.1.5. V (ri) is the one-
particle potential energy for the ith particle and U(ri, rj) is the interaction energy between the ith
and the jth particle. For the present the ground state of the system is considered. DFT introduces
a great simplification, because instead of the full many-body wave function Φ0(r1, ..., rN ) it is based
on the ground state density n0(r).

n0(r) =

∫

d3r1...

∫

d3rN Φ∗
0(r1, ..., rN )

N∑

i=1

δ(r − ri)Φ0(r1, ..., rN ) (2.2.3)
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DFT is based on the papers of Hohenberg and Kohn [10] and Kohn and Sham [11]. The basic the-
orem of Hohenberg-Kohn says that the groundstate density n0(r) of a bound system of interacting
electrons in some external potential V (r) determines this potential uniquely [12]. A consequence
of this theorem is that the ground state energy is a functional of the ground state particle density.

E0 = E [n0(r)] (2.2.4)

Therefore the variational principle

δE [n0(r)] = 0 (2.2.5)

with the constraint

∫

d3r n0(r) = N (2.2.6)

can be used to obtain the ground state energy of the system. In order to determine the energy
functional, one can split the energy into three functionals, the kinetic, the one-particle potential
and the interaction term.

E [n0(r)] = T [n0(r)] + V [n0(r)] + U [n0(r)] (2.2.7)

For non-interacting electrons the kinetic energy can be written as

T [n0(r)] =

N∑

i=1

∫

d3rΦ∗
i (r)

(

−
~
2∆

2m

)

Φi(r) (2.2.8)

with the particle density

n0(r) =

N∑

i=1

|Φi(r)|
2
. (2.2.9)

To treat a system with interacting electrons, one introduces some fictitious non-interacting parti-
cles, the Kohn-Sham orbitals Φi(r), and drags the rest terms into the functional U [n0(r)]. The
one particle potential depends on the particle density as

V [n0(r)] =

∫

d3r V (r)n0(r). (2.2.10)

In comparison with Hartree-Fock theory the interacting functional is

U [n0(r)] =
1

2

∫

d3r

∫

d3r′
e2

4πǫ |r− r′|
n0(r)n0(r

′) + Exc [n0(r)] (2.2.11)

where Exc [n0(r)] is the exchange correlation functional which contains also the interaction cor-
rection to the kinetic energy. The energy functional becomes

E [n0(r)] =

N∑

i=1

∫

d3rΦ∗
i (r)

(

−
~
2∆2

2m

)

Φi(r) +

∫

d3rV (r)n0(r)

+
1

2

∫

d3r

∫

d3r′
e2

4πǫ |r− r′|
n0(r)n0(r

′) + Exc [n0(r)] (2.2.12)



2.3. MAXIMALLY-LOCALISED WANNIER FUNCTIONS 9

and the variational principle

δΦ∗
i






E [n0(r)]−

N∑

j=1

ǫj

(∫

d3r |Φj(r)|
2
− 1

)





= 0. (2.2.13)

can be used to deduce the Kohn-Sham equations 2.2.14. This equations must be solved self-
consistently with equation 2.2.9, which gives the connection between the wave functions and the
particle density. Usually the Kohn-Sham equations are solved using a finite set of basis functions
to reduce the differential equations to a set of algebraic equations. These equations are typically
solved numerically and lead to the Kohn-Sham energies ǫi and the wave functions Φi.

{

−
~
2∆2

2m
+ V (r) +

∫

d3r′
e2

4πǫ |r− r′|
n(r′) +

δExc

δn0(r)

}

Φi(r) = ǫiΦi(r) (2.2.14)

Finally the problem is to find the right exchange correlation functional Exc [n0(r)]. A widely used
approximation for this functional is the Local Density Approximation (LDA). In LDA the ex-
change correlation functional depends only on the density at the coordinate where the functional
is evaluated.

For finite systems the Kohn-Sham equations can be solved in position space as written out in
equation 2.2.14. In a periodic crystal it is useful to solve the equations in k-space. In a periodic
crystal the Bloch theorem holds and the wave functions can be written as

Φi(r) =
∑

k

eikrϕik(r)
︸ ︷︷ ︸

Φik(r)

(2.2.15)

where Φik(r) are Bloch states. A periodic crystal consists of a unit cell of the size a × b × c
repeated on every lattice vector R = naa + nbb + ncc with na, nb, nc ∈ Z. ϕik(r) is a periodic
function with the periodicity R.

ϕik(r) = ϕik(r+R) (2.2.16)

A proof of the Bloch theorem is to show that Φik(r) is an eigenstate of the translation operator
T̂R.

T̂RΦik(r) = T̂Reikrϕik(r)

= eik(r+R)ϕik(r+R)

= eikReikrϕik(r)

= eikRΦik(r) (2.2.17)

2.3 Maximally-localised Wannier functions

Solving the Kohn-Sham equations in k-space results in Bloch states Φnk(r) and the corresponding
energies ǫnk with the band index n and the momentum k. The Bloch states are by definition

spreaded out over the crystal structure. With the unitary transformation U
(k)
mn the system can be

transformed to a localized basis using Maximally Localised Wannier Functions (MLWF) ΨnR(r)
where n is the band index again and R the lattice vector. The transformation can be written as
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ΨnR(r) =
V

(2π)3

∫

BZ

[
∑

m

U (k)
mnΦmk(r)

]

e−ikRdk (2.3.1)

with V as the unit cell volume. The unitary transformation U
(k)
mn between Bloch and Wannier

functions is not unique, and several methods have been designed to find an optimal recipe. The
method of Marzari and Vanderbilt [13] is minimizing the sum of the second moments of the
Wannier functions Ω, the so-called spread, to get the transformation matrix.

Ω =
∑

n

[

〈Ψn0(r)| r
2 |Ψn0(r)〉 − (〈Ψn0(r)| r |Ψn0(r)〉)

2
]

(2.3.2)

One can distinguish between an gauge invariant term ΩI and a term Ω̃ that depends on the choise

of the transformation matrix U
(k)
mn.

Ω = ΩI + Ω̃ (2.3.3)

with

ΩI =
∑

n

[

〈Ψn0(r)| r
2 |Ψn0(r)〉 −

∑

Rm

(〈ΨmR(r)| r |Ψn0(r)〉)
2

]

(2.3.4)

Ω̃ =
∑

n

∑

R 6=0

(〈ΨnR(r)| r |Ψn0(r)〉)
2
+
∑

m 6=n

∑

R

(〈ΨmR(r)| r |Ψn0(r)〉)
2

Therefore the method of Marzari and Vanderbilt is minimizing only the term Ω̃ with a steepest-
descent or a conjugate-gradients algorithm. A brief introduction to MLWFs can be found in the
Wannier90 user guide [14].

The procedure described above is sufficient to obtain MLWFs from an isolated group of bands.
Isolated means that there is a finite gap to all the other bands. For a group of bands which is
not isolated, so-called entangled bands, one needs an extra procedure [15]. An example where
this procedure is needed are the sd-bands in gold. To get only the Wannier functions of the s-
band one needs to disentangle the s-band from the d-bands. To do so one has to define an energy
window which includes at least the N Wannier bands of interest. The bands inside this window are
part of the Hilbert space F(k). Minimizing ΩI is used to get the right N -dimensional subspace
S(k) ⊆ F(k). It turns out that ΩI measures the change of character of the bands. Because
minimizing ΩI is an iterative process an initial guess for the subspace S(k) is needed. Additional
a second energy window, the so-called inner window, can be defined. The bands from the inner
window must be included in the subspace S(k). In a second step one can do the procedure from
Marzari and Vanderbilt in the determined subspace S(k) to get the Wannier functions.

2.4 Electron interactions

The procedure until now allows to determine the parameters t̃ij in the basis of the MLWFs
ΨiR(r). The interaction term Uij can be calculated with equation 2.1.6. Since using DFT to
determine t̃ij the mean field part of the electron interactions is already included in t̃ij . Simply
adding the interaction term to the one-particle term would count interactions twice. How to treat
this problem, called double counting, is discussed in this section. A possibility to eliminate the
double counting is to subtract the mean field part of the electron interactions before adding the
full interactions. Starting from the density-density interaction and splitting the sum produces
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Û =
1

2

∑

i6=j

Uij n̂in̂j

=
1

2

∑

ī=j̄

σ 6=σ′

Uīj̄ n̂īσn̂j̄σ′ +
1

2

∑

ī6=j̄

σσ′

Uīj̄ n̂īσn̂j̄σ′ . (2.4.1)

The indices i = {ī, σ} and j = {j̄, σ′} include the wave function indices ī and j̄ and the spins σ
and σ′. The first term describes the interaction of electrons in the same orbital but therefore with
different spin. The second term describes the interaction between different orbitals and arbitrary
spins. Uīj̄ = Uij because the Coulomb interaction is independent of the spin. In the Hartree-Fock
approximation the product of two operators is written like

ÂB̂ =
(

Â−
〈

Â
〉)(

B̂ −
〈

B̂
〉)

︸ ︷︷ ︸

≈0

+Â
〈

B̂
〉

+ B̂
〈

Â
〉

−
〈

Â
〉〈

B̂
〉

(2.4.2)

where the correlations between fluctuations are neglected. Using the Hartree-Fock approximation
for the density operators in equation 2.4.1 leads to

Û ≈
1

2

∑

ī=j̄

σ 6=σ′

Uīj̄

(
〈n̂īσ〉 n̂j̄σ′ + n̂īσ

〈
n̂j̄σ′

〉)
+

1

2

∑

ī6=j̄

σσ′

Uīj̄

(
〈n̂īσ〉 n̂j̄σ′ + n̂īσ

〈
n̂j̄σ′

〉)
(2.4.3)

where the direct products of expectation values can be canceled because they are just constants.
Using the symmetry of the Coulomb interaction Uīj̄ = Uj̄ī and renaming the indices produces the
first line of the following equation.

Û ≈
∑

ī=j̄

σ 6=σ′

Uīj̄ n̂īσ

〈
n̂j̄σ′

〉
+
∑

ī6=j̄

σσ′

Uīj̄n̂īσ

〈
n̂j̄σ′

〉

=
∑

ī
σ

Uī̄in̂īσ 〈n̂īσ〉+ 2
∑

ī6=j̄
σ

Uīj̄ n̂īσ

〈
n̂j̄σ

〉
(2.4.4)

In the second line of the equation the sum over σ′ is performed using 〈nīσ′〉 = 〈nīσ〉. Renaming
〈n̂īσ〉 by n0

ī
in equation 2.4.4 produces the double counting term.

∆t̄īi ≈ Uī̄in
0
ī +

∑

m̄ 6=ī

2Uīm̄n0
m̄

=

Nocc∑

k̄

∑

m̄

∣
∣{Q†}k̄m̄

∣
∣ (Uī̄iδīm̄ + 2Uīm̄(1− δīm̄)) (2.4.5)

n0
ī
is the equilibrium population without interactions of the i-th orbital. Q is the matrix which

diagonalizes the Hamiltonian without interaction and E are the corresponding eigenenergies. The
double counting term has to be subtracted from the parameter t̃ij .

t̄ij̄ = t̃̄ij̄ −∆t̄īiδīj̄

= {QEQ†}īj̄ −∆t̄īiδīj̄ (2.4.6)

Using DFT and MLWFs and respecting the double counting the model Hamiltonian with defined
parameters tij and Uij for describing a real quantum system is determined.
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2.5 LCR transport system

Using a code which has been designed for solids, only periodic systems can be calculated. Figure
2.1 shows three replications of the unit cell used in the DFT calculation for the gold-BDT-gold
system.

Figure 2.1: Gold-BDT-gold transport system in the DFT calculation.

The goal is to calculate the transport properties of a Left lead-Center-Right lead (LCR) transport
system, shown in figure 2.2, which is neither finite nor periodic. Therefore the DFT calculation
and the Wannier transformation have to be performed for a periodic or a finite system and one
has to restructure the model Hamiltonian afterwards to describe the LCR transport system. A
software which does these steps automatically is discussed in [16]. In this thesis a similar procedure
is adopted. First the MLWFs of one unit cell are sorted according to their positions. The big
advantage of working in a localized basis is that there is a small overlap between MLWFs far away
from each other. This is the basic requirement for splitting up the model Hamiltonian into an
LCR system.

L C R

Figure 2.2: Transport over the central region C contacted with the two leads L and R.

Sorting the MLWFs by the position of their centers produces a Hamiltonian schematically written
out in equation 2.5.1. The blank spaces denote neglected hopping elements. The splitting has
to be chosen in a way that the neglected hopping elements are rather small. The size of the
central region HC should also depend on the magnitude of the hopping parameters VLC and VCR.
If the coupling is weak, the hopping parameters VLC and VCR are small and electrons will stay
long enough in the central region to scatter inelastically. In this incoherent transport regime it
is necessary to include strong electron correlations and electron-phonon coupling in the central
region and one has to cut the system at positions where the coupling is weak.
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tij =


















. . .
. . .

. . .
. . . VL

V †
L HL VLC

V †
LC HC VCR

V †
CR HR VR

V †
R

. . .
. . .

. . .
. . .


















(2.5.1)

To obtain the LCR transport system the sub-Hamiltonians HL, HR, VL and VR have to be re-
peated along the dotted lines. By the use of Green functions and Cluster Perturbation Theory
(CPT) the sub-Hamiltonians HL and HR and the couplings matrices VL and VR can be used to
form semi-infinite leads.

If parts of the Hamiltonian are coupled by hand one has to care about the symmetry and the
parity pattern. For instance in forming the semi-infinite leads the ordering of the MLWFs with
respect to symmetry and parity in the sub-Hamiltonians HL or HR is arbitrary but has to be the
same in all. The parity comes from the fact that the MLWFs are always found to be real and
therefore undetermined up to a overall sign.

In a more general case the system can be extended in adding a Left Transition (LT) layer and a
Right Transition (RT) layer to include the influence of the central region to the leads. Figure 2.3
shows the structure of this extended LCR system. The transition regions have to be chosen big
enough to ensure that the central region does not influence the leads anymore.

L LT C RT R

Figure 2.3: Transport over the central region C connected by the transition regions LT and RT
to the two leads L and R.
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tij =






















. . .
. . .

. . . HL VL

V †
L HL VLT

V †
LT HTL VLC

V †
LC HC VCR

V †
CR HTR VTR

V †
TR HR VR

V †
R HR

. . .

. . .
. . .






















(2.5.2)

The Hamiltonian of the extended LCR system is written out in equation 2.5.2. Again the blank
spaces denote neglected hopping elements. The transition regions have to be coupled to the leads
before calculating the transport properties through the central region in the same way as in the
LCR system.

2.6 Green functions

The main goal in theoretical physics is to calculate measurable quantities. Therefore in the
formalism of quantum mechanics expectation values, eigenvalues and correlation functions are
of interest. Green functions are a powerful tool to calculate this quantities. This section gives
only a brief introduction in using Green functions. The full theory of equilibrium Green function
is presented in [17]. Non-equilibrium Green function techniques in the treatment of quantum
transport are presented in [18].

2.6.1 Statistical ensembles

Thermodynamic expectation values can be calculated using different statistical ensembles. In
the canonical ensemble the treated system can exchange heat with the environment at fixed
temperature, volume and number of particles. Given a full set of eigenstates |n〉 the expectation
value of the operator Â is

〈

Â
〉

=
1

Z

∑

n

〈n| Â |n〉 e−βEn (2.6.1)

where β = 1/kBT depends on the temperature and En are the eigenvalues to the eigenstates |n〉.
A representation independent from the basis can be reached by using the density operator ρ̂.

ρ̂ =
1

Z
e−βĤ (2.6.2)

Z is the partition function

Z = Tr
(

e−βĤ
)

. (2.6.3)

The expectation value for A can be written as

〈

Â
〉

= Tr
(

ρ̂Â
)

. (2.6.4)
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In the grand canonical ensemble the system can exchange heat and particles with the environment
at fixed temperature, volume and chemical potential. The density operator in the grand canonical
ensemble is

ρ̂ =
1

Z
e−β(Ĥ−µN̂) (2.6.5)

with the partition function

Z = Tr
(

e−β(Ĥ−µN̂)
)

. (2.6.6)

The expectation value can be calculated using again equation 2.6.4. If a system is in equilibrium
there is simple connection between the canonical and the grand canonical ensemble, which is
presented at the end of section 2.6.3.

2.6.2 Non-equilibrium Green functions

The derivation of the non-equilibrium Green functions in this section is based on a paper from
Jauho [19] and a paper from Keldysh [20]. The Hamiltonian 2.6.7 describes a transport system

driven out of equilibrium due to the term ĥt. ĥt could be a shift in on-site energies or an external
electric field. ĥt is assumed to be switched on at time t0. The goal is to calculate how the
quantum system evolves in time. T̂ is assumed to be the unperturbed Hamiltonian and V̂ t is the
perturbation.

Ĥt = T̂ + Û t + ĥt
︸ ︷︷ ︸

V̂ t

(2.6.7)

In quantum mechanics time evolution can be done either in the states (Schrödinger picture) or in
the observables (Heisenberg picture). The Dirac picture, also called interaction representation, is
an intermediate representation where the time evolution of T̂ is done in the observables and the
typically more difficult part V̂ t is time-evolved in the states.

|ΨD(t)〉 = ŜI(t, t0) |ΨD(t0)〉 (2.6.8)

ÂH(t) = Ŝ
†

I(t, t0)ÂI(t)ŜI(t, t0) (2.6.9)

The time evolution operator ŜI connects states at different times in the interaction picture

ŜI(t, t0) = T e
− i

~

∫
t
t0

dt′V̂
I

t (t
′)

(2.6.10)

and satisfies the relations

ŜI(t0, t0) = 1 (2.6.11)

and

ŜI(t1, t0) = ŜI(t0, t1)
−1 = ŜI(t0, t1)

†. (2.6.12)

T denotes the time-ordering operator and is defined as
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T Â(t1)B̂(t2) :=

{
Â(t1)B̂(t2), t1 > t2
B̂(t2)Â(t1), t2 > t1

. (2.6.13)

The interaction part Û t is switched on and off adiabatically. Therefore there is no interaction for
t → ±∞ and the interaction attains its full strength at t = 0.

Û t = Ûe−0+|t| (2.6.14)

Assuming that ĥt is switched on at time t0 implies that ĥt is zero for t < t0 and the limes t0 → −∞
is assumed. For simplicity the system is assumed to be at zero temperature and |Ψ0〉 is the ground
state of T̂ . Starting in the Heisenberg picture the time-ordered Green function is

GT

ÂB̂
(t1, t2) = −i

〈Ψ0| T ÂH(t1)B̂H(t2) |Ψ0〉

〈Ψ0| |Ψ0〉
. (2.6.15)

The operators ÂH(t1) and B̂H(t2) can of course depend on space coordinates and spin but now
only the time-dependence is of importance. With equation 2.6.9 the operators in the time-ordered
Green function can be transformed from the Heisenberg to the Dirac picture.

GT

ÂB̂
(t1, t2) = −i

〈Ψ0| ŜI(t0,∞)T ŜI(∞, t1)ÂI(t1)ŜI(t1, t2)B̂I(t2)ŜI(t2, t0) |Ψ0〉

〈Ψ0| |Ψ0〉

= −i
〈Ψ0| ŜI(t0,∞)T ŜI(∞, t0)ÂI(t1)B̂I(t2) |Ψ0〉

〈Ψ0| |Ψ0〉
(2.6.16)

The order of the operators on the right side of the time-ordering operator can be changed. In
equilibrium the theorem of Gell-Mann and Low holds. The theorem says that if |Ψ0〉 is an
eigenstate of T̂ and when V̂ t is a term which is adiabatically switched on and off then

|∞〉 = eiφ |Ψ0〉 (2.6.17)

holds. Level crossing is not excluded. Therefore in equilibrium one can derive the time-ordered
Green function already from equation 2.6.16. In non-equilibrium the theorem of Gell-Mann and
Low is not valid anymore because ĥt is not necessarily switched on adiabatically. The trick is to
go back to t0 on a contour c ∈ {+,−} along the time axis.

∞

t0 t2 t1+

−
x x x

Figure 2.4: Keldysh contour.

In addition to the time the side of the contour τ1 = {t1, c1}, τ2 = {t2, c2} has to be specified.
Introducing the contour ordering operator as

TcÂ(t1, c1)B̂(t2, c2) =

{
Â(t1, c1)B̂(t2, c2), {t1, c1} > {t2, c2}

B̂(t2, c2)Â(t1, c1), {t2, c2} > {t1, c1}
(2.6.18)
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and using the contour ordering operator instead of the time ordering operator enables permuting
all operators and the Green function can be calculated.

GTc

ÂB̂
(t1, c1, t2, c2) = −i

〈Ψ0| TcŜI(t0,∞)ŜI(∞, t0)ÂI(t1)B̂I(t2) |Ψ0〉

〈Ψ0| |Ψ0〉

= −i
〈Ψ0| TcÂI(t1)B̂I(t2) |Ψ0〉

〈Ψ0| |Ψ0〉
(2.6.19)

Depending on the contour four different Green functions are generated. The bottom line of this
thesis is to calculate charge transport through a quantum mechanical system. It turns out that
the transport properties are related to two-point Green functions with the fermionic annihilation
and creation operators in the argument. The Green functions can be defined as

GT
ij(t, t

′) := GTc

âiâ
†
j

(t,+, t′,+) = −i
〈

T
{

âi(t)â
†
j(t

′)
}〉

time-ordered

G>
ij(t, t

′) := GTc

âiâ
†
j

(t,+, t′,−) = −i
〈

âi(t)â
†
j(t

′)
〉

greater

G<
ij(t, t

′) := GTc

âiâ
†
j

(t,−, t′,+) = i
〈

â†j(t
′)âi(t)

〉

lesser

GT̄
ij(t, t

′) := GTc

âiâ
†
j

(t,−, t′,−) = −i
〈

T̄
{

âi(t)â
†
j(t

′)
}〉

anti-time-ordered

(2.6.20)

Only three of this four Green functions are linearly independent because of

Gk := G> +G< = GT +GT̄

Gr := GT −G< = G> −GT̄

Ga := GT −G> = G< −GT̄ . (2.6.21)

This relations between the Green functions can be shown by the use of their definitions. Gk is
called the Keldysh, Gr the retarded and Ga the advanced Green function. The Keldysh space can
be defined as

G =

(
Gr Gk

0 Ga

)

or Ĝ =

(
GT G<

G> GT̄

)

. (2.6.22)

G and Ĝ are connected by a linear transformation given by the relations 2.6.21. The retarded
and the advanced Green function are

Gr
ij(t, t

′) := −iθ(t− t′)
〈{

âi(t), â
†
j(t

′)
}〉

(2.6.23)

Ga
ij(t, t

′) := iθ(t′ − t)
〈{

âi(t), â
†
j(t

′)
}〉

. (2.6.24)

There are useful relations between the Gr, Ga and Gk.

Ga = (Gr)†

Gk = −(Gk)† (2.6.25)

In equilibrium

Gk = (Gr −Ga)(1− 2f) (2.6.26)
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holds. With the retarded and the advanced Green function it is possible to determine properties
like the Density Of States (DOS) or level broadening. To describe kinetic properties the greater
Green function G> and lesser Green function G< are of importance. In equilibrium the lesser and
greater Green function are not independent from the retarded and the advanced Green function.
To determine Green functions their definitions, the Lehmann representation or the equation of
motion can be used. The Lehmann representation is derived in the next section.

2.6.3 Lehmann representation

In equilibrium the Lehmann representations can be used to calculate Green functions. In order to
deduce the Lehmann representation of the retarded Green function the spectral representation of
the greater end the lesser Green functions are used. The spectral representations can be reached by
inserting a full eigenbasis of the Hamiltonian and involving the operators in time. The Hamiltonian
is assumed to be time-independent. First the canonical ensemble is used and the extension to the
grand canonical ensemble is shown at the end of this section.

G>
ij(t, t

′) =
−i

Z

∑

n

e−βEn 〈n| âi(t)â
†
j(t

′) |n〉

=
−i

Z

∑

mn

e−βEn 〈n| eiĤtâie
−iĤt |m〉 〈m| eiĤt′ â†je

−iĤt′ |n〉

=
−i

Z

∑

mn

e−βEnei(En−Em)(t−t′) 〈n| âi |m〉 〈m| â†j |n〉 (2.6.27)

The same calculation can be done for the lesser Green function.

G<
ij(t, t

′) =
i

Z

∑

mn

e−βEnei(Em−En)(t−t′) 〈n| â†j |m〉 〈m| âi |n〉 (2.6.28)

Renaming the indices m and n in the lesser Green function and using the definition 2.6.24 leads
to the spectral representation of the retarded Green function.

Gr
ij(t, t

′) = θ(t− t′)
(
G>

ij(t, t
′)−G<

ij(t, t
′)
)

= −iθ(t− t′)
1

Z

∑

mn

(
e−βEn + e−βEm

)
ei(En−Em)(t−t′) 〈n| âi |m〉 〈m| â†j |n〉 (2.6.29)

If the Hamilton does not depend explicitly on time the Green functions depend only on the time
difference (t− t′). In non-equilibrium this is only the case in steady state, meaning long time after
bringing the system out of equilibrium. Finally renaming (t − t′) by t and defining the Fourier
transformation as

Gr
ij(ω) :=

∫ ∞

−∞

Gr
ij(t)e

iωtdt

Gr
ij(t) =

1

2π

∫ ∞

−∞

Gr
ij(ω)e

−iωtdω. (2.6.30)

leads to the Lehmann representation.

Gr
ij(ω) =

−i

Z

∑

mn

(
e−βEn + e−βEm

)
〈n| âi |m〉 〈m| â†j |n〉

∫ ∞

0

ei(ω+En−Em)t

=
1

Z

∑

mn

〈n| âi |m〉 〈m| â†j |n〉

ω + En − Em + i0+
(
e−βEn + e−βEm

)
(2.6.31)
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The 0+ ensures the convergence of the Fourier integral. Introducing the 0+ is essentially the same
as doing a Laplace transformation. Analyzing the retarded Green function in the complex plane
gives poles below the real axis and the function is analytically in the upper half plane. From
the analyticity in the upper half plane, and therefore from the causality, a relationship between
imaginary and real part of the Green function, called Kramers-Kronig relation, can be derived.
Changing the sign in front of the i0+ term produces the Lehmann representation of the advanced
Green function.

In literature often the grand canonical ensemble is used. In the following the connection between
the canonical and the grand canonical ensemble in equilibrium using the example of the lesser
Green function is shown. The µ as index of the Green function means treating expectation value
and time evolution in the grand canonical ensemble.

µG<
ij(t) = i

〈

â†j âi(t)
〉

= i
〈

â†je
i(Ĥ−µN̂)tâie

−i(Ĥ−µN̂)t
〉

(2.6.32)

In the case of [Ĥ, N̂ ] = 0 one obtains

µG<
ij(t) = i

〈

â†je
iĤt
(

e−iµN̂tâie
iµN̂t

)

e−iĤt
〉

= eiµti
〈

â†je
iĤtâie

−iĤt
〉

= eiµtG<
ij(t). (2.6.33)

Doing a Fourier transformation leads to the equation

µG<
ij(ω) =

1

2π

∫ ∞

−∞

eiωteiµtG<
ij(t)dt

=
1

2π

∫ ∞

−∞

ei(ω+µ)tG<
ij(t)dt

= G<
ij(ω + µ). (2.6.34)

The effect of the chemical potential is a shift along the frequency axis. This can also be seen in
the Lehmann representation. In the denominator of equation 2.6.31 only the difference of energies
En −Em appears where the state |n〉 consists of N and |m〉 of (N +1) particles. So the difference
of the particle numbers is one and therefore only one times µ appears during the change from the
canonical to the grand canonical ensemble, which is again a shift of the frequency axis.

For the lesser Green function

G<
ij(ω) =

∫ ∞

−∞

G<
ij(t)e

iωtdt

=

∫ ∞

−∞

i
〈

â†j âi(t)
〉

eiωtdt

= −

(∫ ∞

−∞

i
〈

â†i (t)âj

〉

e−iωtdt

)∗

= −

(∫ ∞

−∞

i
〈

â†i âj(t)
〉

eiωtdt

)∗

= −

(∫ ∞

−∞

G<
ji(t)e

iωtdt

)∗

= −
(
G<

ji(ω)
)∗

(2.6.35)
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holds. This property will be used later on to derive an expression for the current between two
systems.

2.6.4 Spectral function and occupation number

The spectral function A is essentially the imaginary part of the retarded Green function.

A(ω) = Tr (Aij(ω)) (2.6.36)

Aij(ω) := −
1

π
Im
(
Gr

ij(ω)
)

(2.6.37)

For real b the relation

Im
1

b+ i0+
= −

0+

b2 + 0+2 = −πδ(b) (2.6.38)

holds. The δ-distribution is approximated by a Lorentzian function with an infinitesimal scale
parameter. In order to deduce the spectral representation of the spectral function the Lehmann
representation is used.

Aij(ω) =
1

Z

∑

mn

〈n| âi |m〉 〈m| â†j |n〉
(
e−βEn + e−βEm

)
δ (ω + En − Em) (2.6.39)

The spectral function is a weighted sum over δ-distribution with the allowed energy transitions in
the argument. Comparing this expression with the Lehmann representation of the retarded Green
function leads to the fluctuation dissipation theorem.

Gr
ij(ω) =

∫ ∞

−∞

dω′ Aij(ω
′)

ω − ω′ + i0+
(2.6.40)

The fluctuation dissipation theorem connects the spectral function with correlation functions re-
spectively Green functions. Another quantity of interest is the occupation number. To derive an
expression for the occupation number depending on Green functions it is useful to evaluate the
diagonal elements of the Keldysh Green function.

Gk
ii(t) = i

〈

â†i âi(t)
〉

− i
〈

â†i (t)âi

〉

= i
(

2
〈

â†i âi(t)
〉

− 1
)

(2.6.41)

Identifying the number of particle operator and doing a Fourier transformation at the time t = 0
leads to

n̂i =
〈

â†i âi

〉

=
1

2

(

Im

(
1

2π

∫ ∞

−∞

Gk
ii(ω)dω

)

+ 1

)

. (2.6.42)

The spectral function and the occupations number of the orbitals are important tools for analyzing
the transport behavior of a quantum system.
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2.7 Coupling Green functions

2.7.1 Cluster Perturbation Theory

With the Lehmann representation Green functions in equilibrium can be calculated. Now coupling
systems to achieve bigger or even infinite systems is of interest. The simplest way to do this is
using Cluster Perturbation Theory (CPT). An introduction to quantum cluster methods in general
is given in [21]. The model Hamiltonian in equation 2.1.5 consists of a one-particle part T̂ and
the correlation part Û . At first only the one-particle part is treated. T̂ is split into a cluster part
and a rest part. The cluster part contains all hoppings within a cluster and the rest part only the
hoppings between different clusters.

T̂ =
∑

j
αβ

tjjαβ â
†
jαâjβ +

i6=j
∑

ij
αβ

tijαβ â
†
iαâjβ (2.7.1)

The clusters are labeled by Latin indices and the Greek indices denote all quantum numbers within
a cluster, e.g. orbital number and spin. An example cluster structure is sketched in figure 2.5.

j

α

Figure 2.5: Arrangement of clusters in a chain. Each cluster contains more atoms or orbitals.

A possibility for calculating Green functions is the equation of motion method. This equation can
be derived using the δ-distribution as the derivative of the Θ-function. 2.7.2 is the equation of
motion for the retarded Green function defined in equation 2.6.24.

i
∂

∂t
Gr

âiαâ
†

jβ

(t, t′) =
∂

∂t
θ(t− t′)

〈{

âiα(t), â
†
jβ(t

′)
}〉

= δ(t− t′)
〈{

âiα(t), â
†
jβ(t

′)
}〉

− iθ(t− t′)
〈{[

âiα(t), Ĥ
]

, â†jβ(t
′)
}〉

= δ(t− t′)
〈{

âiα(t), â
†
jβ(t

′)
}〉

+Gr

[âiα,Ĥ]â†

jβ

(t, t′) (2.7.2)

The equation also holds for the corresponding advanced Green function. They only obey different
boundary conditions.

Gr

âiαâ
†

jβ

(t, t′) = 0 for t < t′

Ga

âiαâ
†

jβ

(t, t′) = 0 for t > t′ (2.7.3)
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Doing a Fourier transformation leads to the equation of motion in frequency space.

ωGr

âiαâ
†

jβ

(ω) =
〈{

âiα, â
†
jβ

}〉

+Gr

[âiα,Ĥ]â†

jβ

(ω) (2.7.4)

Here the boundary conditions must be inserted additionally by replacing ω by ω + i0+ for the
retarded Green function respectively by ω − i0+ for the advanced one. In case of the interacting
Hamitonian Ĥ the equation of motion leads to higher-order Green functions and therefore a series
of equations. To do practically calculations one has to abort the series by hand. Considering only
the one-particle Hamiltonian T̂ the series aborts itself and the equations are exact. The equation
of motion in frequency space leads to

ωGr

âiαâ
†

iβ

(ω) = δαβ +
∑

γ

tiiαγG
r

âiγ â
†

iβ

(ω) +

i6=j
∑

jγ

tijαγG
r

âjγ â
†

iβ

(ω). (2.7.5)

The so-called cluster Green function g can be calculated by using again the equation of motion
respecting only the hoppings within the cluster.

ωgr
âiαâ

†

iβ

(ω) = δαβ +
∑

γ

tiiαγg
r

âiγ â
†

iβ

(ω) (2.7.6)

Combining the eqations 2.7.5 and 2.7.6 leads to the equation

Gr

âiαâ
†

iβ

(ω) = gr
âiαâ

†

iβ

(ω) +

i6=j
∑

jγδ

gr
âiαâ

†
iγ

(ω)tijγδG
r

âjδ â
†

iβ

(ω). (2.7.7)

Redefining the Green functions to be matrices of the size of their Greek indices leads to the matrix
equation 2.7.8. The Green function of the i-th cluster can be calculated knowing the cluster Green
function and the Green functions connecting cluster i and j.

Gii,r(ω) = gii,r(ω) +

i6=j
∑

j

gii,r(ω)tijGji,r(ω) (2.7.8)

The same procedure can be done to obtain the Green function between cluster i and j.

Gij,r(ω) =

i6=j
∑

j

gii,r(ω)tijGjj,r(ω) (2.7.9)

Combining 2.7.8 and 2.7.9 leads to the CPT equation

Gij = gij +
∑

kl

gikVklGlj (2.7.10)

which also holds in Keldysh space. A cluster Green function gij with two different indices i 6= j
is zero. The coupling part must be written in block diagonal form.

Vij =

(
tij 0
0 tij

)

(2.7.11)
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The CPT equation is exact for non-interacting systems. In order to see what happens if the
correlation part Û is treated, equation 2.7.10 is used to write down the full Green function of a
cluster.

G = g + gV G (2.7.12)

V denotes the influence of neighboring clusters. Rewriting the expression leads to

G−1 = g−1 − V. (2.7.13)

Interactions are treated within the cluster Green function g by using the cluster self energy ΣCl.
g0 is the cluster Green function without interactions.

g−1 = g−1
0 − ΣCl (2.7.14)

Setting this expression into equation 2.7.13 leads to

G−1 = g−1
0 − V
︸ ︷︷ ︸

G
−1

0

−ΣCl. (2.7.15)

Defining G0 to be the coupled Green function without interaction produces

G = G0 +G0ΣClG (2.7.16)

which looks similar to the famous Dyson equation

G = G0 +G0ΣG. (2.7.17)

Comparing equation 2.7.16 and 2.7.17 shows that the approximation done within CPT is to replace
the full self enery Σ by the cluster self energy ΣCl.

2.7.2 Semi-infinite Chain

As an example in this section CPT is used for calculating the Green function G11 of a semi-infinite
chain. The structure of a semi-infinite chain consisting of equal clusters is drawn in figure 2.6.

g33 g22 g11

α α α

Figure 2.6: Arrangement of clusters in a semi-infinite chain.
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G11 is the Green function of the first cluster coupled to the rest of the semi-infinite chain. Therefore
using the CPT equation leads to

G11 = g11 + g11V12G21 (2.7.18)

where g11 is the Green Function of the single cluster. The coupling Vij exists only between
neighboring clusters and therefore j is restricted to j = i ± 1. In the case of the semi-infinite
chain the first cluster has only one neighbor. The CPT equation can be used again to produce
the Green Function G21.

G21 = g22V21G11 (2.7.19)

Combining the equations 2.7.18 and 2.7.19 leads to

G11 = g11 + g11V12g22V21G11. (2.7.20)

The cluster Green function g22 can be seen again as a Green function for a semi-infinite chain,
therefore g22 = G11. This leads to an equation for G11 depending only on the cluster Green
function and the coupling matrix between the clusters.

G11 =
((

g11
)−1

−V12G11V21
)−1

(2.7.21)

The equation must be solved iteratively and will be used later on to calculate the Green functions
of the leads in the transport system.

2.8 Quantum Transport

The goal of this section is to find an expression for calculating the current flowing through a
transport system. First a formula for the current between to systems is derived. This formula
can also be applied for calculating the current through the LCR transport system. Finally the
Landauer-Büttiker formula is deduced.

”Usually when we think about a current flowing, we imagine the electrons as particles moving along.

Really we should be thinking about how the occupation of the wave like eigenstates is changing.” [22]

2.8.1 Current between two Systems

A closed quantum system consisting of system I and system II is assumed. The current between
the systems can be expressed by the derivative of the number of particles operator of one of the
systems.

j = q
d

dt

〈

N̂I

〉

= q

〈
d

dt
N̂ I

〉

(2.8.1)

Using the Heisenberg picture the observables have to satisfy the Heisenberg equation. This leads
to an expression for the current

j = q

〈
d

dt
N̂ I

〉

=
iq

~

〈[

Ĥ, N̂I

]〉

. (2.8.2)



2.8. QUANTUM TRANSPORT 25

System I System II

N̂I N̂ II

j

Figure 2.7: Current between two systems.

Each of the two systems consists of clusters which are labeled by Latin indices. Every cluster
contains more orbitals with spins labeled by Greek indices. In this notation the total number of
particle operator of system I is

N̂ I =
∑

l∈I
γ

n̂lγ . (2.8.3)

The full interacting Hamiltonian 2.1.5 in this index notation is

Ĥ =
∑

ij
αβ

tijαβ â
†
iαâjβ +

1

2

∑

ijkl
αβγδ

U ijkl
αβγδâ

†
iαâ

†
jβ âkγ âlδ (2.8.4)

where the first term describes the hopping between the orbitals and the second term introduces
the electron-electron correlations. To calculate the current between the systems I and II the
commutator of N̂ I and Ĥ is needed. The sums can be extracted from the commutator because of
linearity. Due to the commutation rules of number operators the commutator with the interaction
part of the Hamiltonian vanishes.

[

Ĥ, N̂ I

]

=
∑

ij
αβ

∑

l∈I
γ

tijαβ

[

â†iαâjβ , n̂lγ

]

(2.8.5)

By use of the commutation relations

[âiα, n̂jβ ] = δijδαβ âiα
[

â†iα, n̂jβ

]

= −δijδαβâ
†
iα (2.8.6)

the commutator can be solved. There are four possibilities to distribute the two indices i and j
at the two systems I and II. Distinguishing this cases leads to four terms.
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[

Ĥ, N̂ I

]

=
∑

i∈I
j∈I
αβ

∑

l∈I
γ

tijαβ

(

â†iαâjβδjlδβγ − â†iαâjβδilδαγ

)

+
∑

i∈I
j∈II
αβ

∑

l∈I
γ

tijαβ

(

â†iαâjβδjlδβγ − â†iαâjβδilδαγ

)

+
∑

i∈II
j∈I
αβ

∑

l∈I
γ

tijαβ

(

â†iαâjβδjlδβγ − â†iαâjβδilδαγ

)

+
∑

i∈II
j∈II
αβ

∑

l∈I
γ

tijαβ

(

â†iαâjβδjlδβγ − â†iαâjβδilδαγ

)

(2.8.7)

The first term adds up to zero. The δ-functions are restricting the sums. Therefore the first
part in the second term, the second part in the third term and the last term are zero too. The
remaining terms are

[

Ĥ, N̂ I

]

= −
∑

i∈I
j∈II
αβ

tijαβ â
†
iαâjβ +

∑

i∈II
j∈I
αβ

tijαβ â
†
iαâjβ . (2.8.8)

Renaming the indices of the second sum and applying 2.8.2 produces an expression for the current.
Also the fact that t is hermitian is used, which must hold because Ĥ is observable.

j = −
q

~

∑

i∈I
j∈II
αβ

(

tijαβ i
〈

â†iαâjβ

〉

− tij∗αβ i
〈

â†jβ âiα

〉)

(2.8.9)

The current depends on correlation functions of annihilation and creation operators. By use of
the definition of the lesser Green function 2.6.20 and doing a Fourier transformation defined in
2.6.30 one can rewrite the expectation values in formula 2.8.9. Using

i
〈

â†i âj

〉

= G<
ij(t = 0) =

1

2π

∫ ∞

−∞

G<
ij(ω)dω (2.8.10)

and the relation 2.6.35 leads to

j = −
q

~

∑

i∈I
j∈II
αβ

(

tijαβG
ij,<
αβ − tij∗αβG

ji,<
βα

)

= −
q

h

∫ ∞

−∞

∑

i∈I
j∈II
αβ

(

tijαβG
ij,<
αβ (ω)− tij∗αβG

ji,<
βα (ω)

)

dω

= −
q

h

∫ ∞

−∞

∑

i∈I
j∈II
αβ

2Re
(

tijαβG
ij,<
αβ (ω)

)

dω (2.8.11)
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The Green function between the systems I and II is needed and therefore i 6= j. Under this
conditions G< = G> is true and therefore GK = 2G<.

j = −
q

h

∫ ∞

−∞

∑

i∈I
j∈II
αβ

Re
(

tijαβG
ij,k
αβ (ω)

)

dω (2.8.12)

An expression for the current depending on the Keldysh Green function in frequency space is
derived. More often than not tijαβ ∈ R is true. This would not be the case in applying a magnetic
field.

2.8.2 Current through the LCR System

In particular the quantity of interest is the current flowing through a molecule contacted by two
leads which is described by the LCR transport system drawn in figure 2.2. For technical reasons
electron correlations are considered only in the central system. According to equation 2.8.12 the
Keldysh part of GLC is responsible for the current between the left lead and the central region.
GLC can be calculated using the CPT equation.

GLC = gLLVLCGCC (2.8.13)

The same equation holds for the Green function between the right contact and the central region.
Therefore

GνC = gννVνCGCC with ν ∈ {L,R} (2.8.14)

holds which is exact for considering interactions only in the central region. Due to equation 2.8.13
two further Green functions are needed to calculate GLC . As cluster Green function for the leads
gLL the Green function G11 in equation 2.7.21 is used. GCC can be calculated by using the CPT
equation again.

GCC = gCC +
∑

ν∈{L,R}

gCCVCνGνC

= gCC +
∑

ν∈{L,R}

gCCVCνgννVνCGCC

= gCC + gCC
∑

ν∈{L,R}

VCνgννVνC

︸ ︷︷ ︸

∆CC

GCC (2.8.15)

Equation 2.8.15 is not exact anymore. It turns out that it is a first-order result in doing strong-
coupling perturbation theory [21]. To include the transition regions gTL and gTR in the transport
calculation they should be coupled to the semi-infinite leads in equation 2.7.21. Then the Green
functions GTL and GTR represent the new leads.

GTL =
((

gTL
)−1

−VTLgLLVLT
)−1

GTR =
((

gTR
)−1

−VTRgRRVRT
)−1

(2.8.16)

At this point in principle all equations for calculating the current through the LCR system are
derived. The following paragraphs are analytical simplifications of this formulas. In a first step
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calculating the equations for the retarded, advanced and keldysh Green function separate saves
computational effort. The retarded part of GCC produces

GCC,r = gCC,r + gCC,r∆CC,rGCC,r (2.8.17)

with the solution

GCC,r =
((

gCC,r
)−1

−∆CC,r
)−1

. (2.8.18)

The advanced part can be calculated similar to the retarded part and results in

GCC,a =
((

gCC,a
)−1

−∆CC,a
)−1

. (2.8.19)

The Keldysh part is more difficult to calculate.

GCC,k = gCC,k + gCC,k∆CC,aGCC,a

+ gCC,r∆CC,kGCC,a

+ gCC,r∆CC,rGCC,k (2.8.20)

where (ABC)
k
= AkBaCa +ArBkCa +ArBrCk is used.

(
1− gCC,r∆CC,r

)
GCC,k = gCC,k + gCC,k∆CC,aGCC,a

+ gCC,r∆CC,kGCC,a (2.8.21)

Using equation 2.8.18 and 2.8.19 to substitute ∆CC,r and ∆CC,a leads to

GCC,k = GCC,r
((

gCC,r
)−1

gCC,k
(
gCC,a

)−1
+∆CC,k

)

GCC,a

= GCC,r
(
gCC,r

)−1
gCC,k

(
gCC,a

)−1
GCC,a

︸ ︷︷ ︸

Λ

+GCC,r∆CC,kGCC,a. (2.8.22)

In equilibrium the Keldysh Green function is proportional to the Fermi function f and the differ-
ence of advanced and retarded Green function. Equation 2.6.26 can be used to derive

(
gCC,r

)−1
gCC,k

(
gCC,a

)−1
= (1− 2fC)

(
gCC,r

)−1 (
gCC,a − gCC,r

) (
gCC,a

)−1

= (1− 2fC)
((

gCC,r
)−1

−
(
gCC,a

)−1
)

= 2i0+(1− 2fC) (2.8.23)

where the structure of retarded and advanced cluster Green function

(
gCC,r

)−1
= ω − TCl − Σee + i0+

(
gCC,a

)−1
= ω − TCl − Σee − i0+ (2.8.24)

is used in the last line. TCl denotes the hopping part inside the cluster and Σee is the electron
self energy. According to the Lehmann representation the Green Function of a finite system has
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only real poles and the imaginary part is simply due to i0+. Therefore the anti-hermitian part of
the self energy in finite size systems is always proportional to 0+. The full Green function of the
center can be calculated including also the lead-induced self energy.

(
GCC,r

)−1
= ω − TCl − Σee − Σr + i0+

(
GCC,a

)−1
= ω − TCl − Σee − Σa − i0+ (2.8.25)

The lead-induced self energy Σ can be split up into a hermitian part R and an anti-hermitian part
i
2Γ.

Σr = R −
i

2
Γ

Σa = R +
i

2
Γ (2.8.26)

The matrices R and Γ are both hermitian. R and Γ represent the influence of both leads and
therefore

R =
∑

ν∈{L,R}

Rν

Γ =
∑

ν∈{L,R}

Γν (2.8.27)

holds. Splitting up the hermitian and the anti-hermitian part in equation 2.8.25 leads to

(Gr)−1 = (ω −B) + i

(

0+ +
Γ

2

)

(Ga)
−1

= (ω −B)− i

(

0+ +
Γ

2

)

(2.8.28)

with

B = TCl +Σee +R (2.8.29)

and an expression for Λ follows.

Λ = 2i0+(1− 2fC)GCC,rGCC,a

= 2i(1− 2fC)
0+

(ω −B)
2
+
(
0+ + Γ

2

)2 (2.8.30)

Now two cases have to be distinguished.

Γ 6= 0: In this case Λ is proportional to 0+.

Γ = 0: For orbitals that do not couple to the leads Λ is proportional to the δ-distribution.

Λ = 2i(1− 2fC)
0+

(ω −B)
2
+ (0+)

2

= 2i(1− 2fC)πδ(ω −B) (2.8.31)
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In the case of calculating the current the Keldysh Green function is multiplied by the coupling
matrix and therefore Λ = 0 holds. Due to Λ = 0 the Fermi function of the center does not enter
the transport calculation at this point. Using equation 2.6.26 again shows that the Fermi functions
of the leads enter in ∆CC,k.

∆CC,k =
∑

ν∈{L,R}

V Cνgνν,kV νC

=
∑

ν∈{L,R}

(1− 2fν)V Cν (gνν,a − gνν,r) V νC (2.8.32)

The result is an equation to calculate the Keldysh part of the central Green function.

GCC,k = GCC,r∆CC,kGCC,a (2.8.33)

The Green function GLC separated in retarded, advanced and Keldysh component produces

GLC,r = gLL,rV LCGCC,r (2.8.34)

GLC,a = gLL,aV LCGCC,a (2.8.35)

GLC,k = gLL,rV LCGCC,k + gLL,kV LCGCC,a. (2.8.36)

As mentioned above the Green functions of the leads gνν can be calculated using equation 2.7.21.
The retarded component is

G11,r =
((

g11,r
)−1

− V 12,rG11,rV 21,r
)−1

(2.8.37)

The leads are always in equilibrium and therefore the equations 2.6.25 and 2.6.26 can be used for
calculating the advanced and the Keldysh component.

2.8.3 System out of equilibrium

The theory of a quantum system out of equilibrium was already introduced in section 2.6.2. Now
the goal is to apply the theory on the LCR transport system. The LCR transport system can be
driven out of equilibrium by applying a voltage across the system. This is done by shifting the
Green functions of the leads on the frequency axis against each other. Due to keeping the filling
of the leads to be constant also the chemical potentials µL and µR are shifted. In equilibrium
µ = µL = µL = µC holds and µ can be determined calculating the Fermi energy within DFT.

µL

µR
µC

Figure 2.8: The LCR transport system out of equilibrium.
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The current through the system can be calculated using equation 2.8.12 where the Keldysh Green
function between the left lead and the center contributes. The last sections have showed how to
calculate this Green function within CPT. The chemical potentials of the leads µL and µR enters
the transport calculation within the Fermi function in the Keldysh component of the lead Green
functions. The filling of the central region should be adjusted automatically by the formalism
during the transport calculation. Therefore the initial chemical potential of the central region
µC should not enter the transport calculation. This is really the case in having a non-interacting
central region. In the case of interaction in the central region the cluster Green functions gCC,r

and gCC,a depend on the electron self energy Σee which depends on the filling of the system and
therefore µC enters. In order to fix this problem one has to solve the transport system for the
electron self energy Σee and the filling of the central region consistently.

2.8.4 Landauer-Büttiker formula

Formula 2.8.11 can be used as starting point to deduce the Landauer-Büttiker formula, which is
intuitively understandable and has advantages in the computational calculation.

j = −
q

h

∫ ∞

−∞

∑

i∈I
j∈II
αβ

2Re
(

V ij
αβG

ij,<
αβ (ω)

)

dω (2.8.38)

Calculating the current between the left lead (i ∈ I = L) and the central region (j ∈ II = C)
leads to the matrix equation

jLC = −
2q

h

∫ ∞

−∞

Re
(
Tr
(
V CLGLC,<(ω)

))
dω. (2.8.39)

In analogy to the previous section the CPT equation leads to

GLC = gLLVLCGCC . (2.8.40)

This equation is exact in the case of non-interacting leads. Using the Langreth theorem

GLC,< = gLL,<V LCGCC,a + gLL,rV LCGCC,< (2.8.41)

and defining the lead-induced self energies Σν with ν ∈ {L,R} leads to

jLC = −
2q

h

∫ ∞

−∞






Re



 Tr



V CLgLL,<V LC

︸ ︷︷ ︸

ΣL,<

GCC,a + V CLgLL,rV LC

︸ ︷︷ ︸

ΣL,r

GCC,<














dω

= −
2q

h

∫ ∞

−∞







Re
(
Tr
(
ΣL,<GCC,a

))

︸ ︷︷ ︸

j1

+Re
(
Tr
(
ΣL,rGCC,<

))

︸ ︷︷ ︸

j2







dω. (2.8.42)

Simplifying the term j1:

The lesser Green function in the non-interacting case is
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gνν,<k (ω) = i

∫ ∞

−∞

eiωt
〈

â†k(t)âk(0)
〉

= i

∫ ∞

−∞

eiωt
〈

eiĤtâ†ke
−iĤtâk

〉

= 2πifν(ω)δ(ω − ωk,ν). (2.8.43)

Therefore the lesser part of the lead-induced self energy is

Σν,<(ω) = V Cνgνν,<(ω)V νC

= ifν(ω)Γ
ν(ω). (2.8.44)

Plugging 2.8.44 into the j1 term produces

j1 = Re
(
Tr
(
ΣL,<GCC,a

))

= Re
(
Tr
(
ifLΓ

LGCC,a
))

. (2.8.45)

The next step is to compute the full interacting Green function of the central region. One can use
the CPT equation to write down

GCC = gCC + gCC
∑

ν∈{L,R}

VCνgννVνC

︸ ︷︷ ︸

Σν

GCC . (2.8.46)

This expression is not exact anymore for a correlated central region. Using the CPT-approximation
to write down the advanced part of the Green function produces

Ga = Gr(Gr)−1Ga

= Gr(gr)−1Ga −GrΣrGa

= Gr(gr)−1Ga −GrRGa +
i

2
GrΓGa. (2.8.47)

According to equation 2.8.26 the self energy is split up into a hermitian part R and an anti-
hermitian part i

2Γ. Plugging 2.8.47 into the equation 2.8.45 leads to

j1 = Re
(
Tr
(
ifLΓ

LGCC,r(gCC,r)−1GCC,a
))

︸ ︷︷ ︸

ja
1

−Re
(
Tr
(
ifLΓ

LGCC,rRGCC,a
))

︸ ︷︷ ︸

jb
1

−
1

2
Re
(
Tr
(
fLΓ

LGCC,rΓGCC,a
))

︸ ︷︷ ︸

jc
1

. (2.8.48)

In the term ja1 one can substitute

(gCC,r)−1 = ω − h− Σee
︸ ︷︷ ︸

A

+i0+. (2.8.49)

So ja1 again splits up into two terms, the one with A and the i0+-term. In the A-term A is
hermitian and the trace
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b = Tr (ΓGrAGa)

b∗ = Tr
(
Ga†A†Gr†Γ

)

= − Tr (GrAGaΓ)

= − Tr (ΓGrAGa) = b (2.8.50)

is always b ∈ R. Therefore the A-term is zero. Also the i0+-term is zero because the 0+ always
dominates the rest part.

0+ Re
(
Tr
(
fLΓ

LGCC,rGCC,a
))

−−−−→
0+→0

0 (2.8.51)

jb1 cancels for the same reason as the A-term in ja1 . So the remaining part is

j1 = −jc1 = −
1

2
Re
(
Tr
(
fLΓ

LGCC,rΓGCC,a
))

= −
1

2
Tr
(
fLΓ

LGCC,rΓGCC,a
)

= −
1

2

∑

ν∈{L,R}

Tr
(
fLΓ

LGCC,rΓνGCC,a
)
. (2.8.52)

Simplifying the term j2:

The j2 term depends on the lesser Green function of the center GCC,<. The Keldysh version
of the Kadanoff-Baym theorem is

G< = Gr(gr)−1g<(ga)−1Ga +GrΣ<Ga. (2.8.53)

In analogy to the equations 2.6.26 the cluster lesser Green function for the center is

gCC,< ∝ fC(g
CC,a − gCC,r) (2.8.54)

and therefore

GCC,< = fCG
CC,r (gCC,r)−1(gCC,a − gCC,r)(gCC,a)−1

︸ ︷︷ ︸

(gCC,r)−1−(gCC,a)−1

GCC,a +GCC,rΣ<GCC,a. (2.8.55)

The first part of the sum is zero due to the same reason as ja1 . The second part remains.

j2 = Re
(
Tr
(
ΣL,rGCC,rΣ<GCC,a

))

=
∑

ν∈{L,R}

Re
(
Tr
(
ifνΣ

L,rGCC,rΓνGCC,a
))

=
1

2

∑

ν∈{L,R}

Re
(
Tr
(
fνΓ

LGCC,rΓνGCC,a
))

=
1

2

∑

ν∈{L,R}

Tr
(
fνΓ

LGCC,rΓνGCC,a
)

(2.8.56)
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Summing up j1 and j2 leads to the Landauer-Büttiker formula.

jLC = −
2q

h

∫ ∞

−∞

dω (j1 + j2)

= −
q

h

∫ ∞

−∞

dω (fR(ω)− fL(ω)) Tr
(
ΓLGrΓRGa

)
(2.8.57)

Meir and Wingreen have deduced this formula in [23]. Defining the transmission function

T (ω) = Tr
(
ΓLGrΓRGa

)
(2.8.58)

leads to

jLC = −
q

h

∫ ∞

−∞

dω (fR(ω)− fL(ω))T (ω) (2.8.59)

the Landauer Büttiker formula proposed by Rolf Landauer in 1957 [24]. In applying a voltage
across the transport system the Fermi functions of the leads are shifted against each other. If
there is a finite transmission in this energy region current can flow.

2.9 Summary and discussion

This chapter introduced the basic theoretical concepts used in this thesis. First the many-body
Hamiltonian which describes the electrons in the gold-BDT-gold system was introduced. The
Hamiltonian consists of a one-body part (kinetic and potential energy) and a two-body term,
which describes the interaction between the electrons. Then the methods used to estimate the
model parameters ab-initio were described. In this thesis Density Functional Theory (DFT) and
Maximally Localized Wannier Functions (MLWF) were used. The following sections explained
how to setup the geometry of the transport system, the so-called LCR geometry. Finally the
formalism of Non-equilibrium Green functions (NEG) and Cluster Perturbation Theory (CPT)
were introduced. The concepts will be used to implement the transport equations.

The novelty of this thesis is to combine all this aspects to solve a realistic model of transport
through a molecular system, including many-body effects. Before going further the approxima-
tions made within this work are discussed critically in the following paragraphs.

1.) Denstity Functional Theory (DFT): To construct the eigenvalues and eigenfunctions
of the model system DFT was employed. There one assumes that the Kohn-Sham orbitals
represents a good approximation for the non-interacting quasi-particles in the system. Al-
though this is formally not exact, several empirical and theoretical (Koopmans’ theorem)
arguments justify this assumption. DFT and many-body methods are widely used in many
fields of theoretical physics [25] and provide a very powerful tool to realistically describe sys-
tems with strong electron correlations. Besides the Kohn-Sham obital problem there is the
aspect of the choice of the exchange-correlation functional. This can influence, for example,
the equilibrium geometry and the band gap of the benzene molecule. One has to chose a
functional which produces reasonable results.

2.) Non-equilibrium: In this thesis all DFT calculations were done with the transport system
in equilibrium. But by applying a voltage the system is driven out of equilibrium. Therefore
the charge density changes compared to the equilibrium one. One can include this effect by
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calculating NEG and DFT self-consistently with respect to the charge density. This is done
by first guessing a charge density und using the Poisson equation to calculate the potential.
Doing a DFT calculation within this potential produces the paramters for using the NEG
technique to calculate the charge density again. The procedure has to be repeated until the
charge density converges [5].

3.) Cluster Perturbation Theory (CPT): A further approximation done with this approach
is to use CPT for coupling Green functions which is not exact anymore in the case of
having strong electron correlations. Depending on the coupling strength compared to the
interaction strength one has to go beyond the CPT approximation. By including strong
electronic correlations there is also the problem in determining the screening factor.
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Chapter 3

Computational Techniques

The following sections explain the computational techniques used to implement the LCR transport
calculation. All electronic band structures calculations were done with the Open Source code
Quantum Espresso [26] which is based on plane waves and pseudopotentials. The Open Source
code Wannier90 [14] was used for computing the MLWFs. The sections 3.1 and 3.2 specify the
parameters for the Quantum Espresso and Wannier90 calculations. How to implement NEG
technique is introduced in the sections 3.3, 3.4, 3.5 and 3.6.

3.1 Quantum Espresso

In this thesis the Open Source code Quantum Espresso was used for performing the Density
Functional Theory (DFT) calculations. Quantum Espresso is a band structure code written for
solids. In principle, the only physical input parameters are the size of the unit cell and the desired
atom configuration within this unit cell. Because of periodicity the Kohn-Sham equations are
solved in k-space. Quantum Espresso uses a Plane Wave (PW) basis set for solving the Kohn
Sham equations. In order to reduce the basis size, the electron-ion interaction is treated in the
pseudopotential approximation. For doing reliable calculations a set of parameters has to be
found. In this thesis all parameters are converged with respect to the total energy.

• Vacuum distance:

For calculating non-periodic structures with a code written for solids one has to introduce
vacuum distances in the directions were the structure should not be periodic.

• Cut-off energy:

Using PWs to describe the Bloch states leads to

Φi(r) =
∑

k

eikrϕik(r)

=
∑

k

eikr
∑

G

ck+GeiGr

=
∑

kG

ck+Gei(k+G)r. (3.1.1)

In practice one has to use a finite number of PWs. This can be done by taking only plane
waves with an energy smaller than a cut off energy Ecut. Therefore only wave functions
which satisfy
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∣
∣
∣
∣

~
2(k+G)2

2m

∣
∣
∣
∣
< Ecut (3.1.2)

are used within the calculation. For the charge density, equation 2.2.9, this implies

∣
∣
∣
∣

~
2(k +G)2

2m

∣
∣
∣
∣
< 4Ecut. (3.1.3)

for non-ultrasoft pseudopotentials. The number of plane waves which enters a given physical
problem is determined by its smallest length-scale oscillations. These are reduced substan-
tially if the full potential generated by the ionic cores is replaced by a pseudopotential which
coincides with the atomic potential outside a given core radius and is smooth inside.

• k-grid:

Within DFT calculating integrals over the Brillouin-zone are necessary. This can be done
numerically by replacing the integrals by weighted sums over a special k-grid. A common
choice is to take a uniform grid of k-points. The number of k-points has to be chosen big
enough. For calculating the Density Of States (DOS) or the Fermi level the tetrahedron
method was used.

• Smearing parameter:

In metallic systems integrals over functions that are discontinuous at the Fermi-level appear.
Therefore a smearing technique which replaces the functions by smoother ones is necessary.
Standard techniques are a Gaussian smearing or the Methfessel-Paxton method.

The Perdew Zunger (PZ) exchange correlation functional within Local Density Approximation
(LDA), the ultrasoft pseudopotential van ak and the Methfessel-Paxton smearing technique are
used for calculating the gold-BDT-gold transport system. The functional and the pseudopotential
are chosen according to paper [27] were comparable band structure problems are calculated.

3.2 Wannier90

The Open Source codeWannier90 was used for performing the Wannier transformation of a subset
of bands of a given electronic structure. In principle the program determines the transformation
matrix in equation 2.3.1 by minimizing the spread of the MLWFs. The basic parameters for doing
the transformation successfully are the energy windows and the starting orbitals.

• Energy windows: For choosing the orbitals to be transformed to a localized basis an inner
and an outer window have to be defined. The inner window should contain as many bands
as the number of Wannier orbitals wanted to be extracted. The outer window restricts the
energy range of the Wannier bands. In practice, it is necessary to adjust the windows until
the PW bands desired to transform are reproduced by the Wannier bands.

• Starting orbitals: The starting orbitals |gn〉 are important to guide the minimization
procedure to the MLWFs if there are entangled bands. They should already be a good guess
of the MLWFs.

Wannier90 is compatible with Quantum Espresso and uses the overlaps between the cell periodic

part of the Bloch states M
(k,b)
mn = 〈ϕmk|ϕnk+b〉 and the projections of the initial guess for the

localised orbitals on the Bloch states A
(k)
mn = 〈Φmk|gn〉 as input parameters for the Wannier

transformation.
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3.3 Basis states and Hamiltonian

The next challenge after determining all model parameters is finding the ground state and the
corresponding eigenvector of the many-particle Hamiltonian. Therefore one has to represent the
Hamiltonian in the many-particle basis. If there are L MLWFs in the system then the number of
many-particle basis states is 22L. A common technique for setting up the basis vectors is using a
decimal representation of the bit sequence of the occupation. As example 3.3.1 shows a state with
L = 4, N↑ = 3 and N↓ = 2 in binary and decimal notation.

|115〉 = |0, 1, 1, 1
︸ ︷︷ ︸

up

, 0, 0, 1, 1
︸ ︷︷ ︸

down

〉 (3.3.1)

Nσ is the total number of electrons with spin σ in the system. In this example the sites one and
two are fully occupied, on site three there is only an up-electron and site four is empty. This bit
sequence is equal to the decimal number 115. Before setting up the Hamiltonian one should care
about symmetries. The commutators

[

Ĥ, N̂↑

]

= 0
[

Ĥ, N̂↓

]

= 0 (3.3.2)

hold. Therefore the Hamiltonian splits up in sectors with fixed particle numbers N↑ and N↓. The
number of basis states in each sector is given by dl.

dN↑ =

(
L

N↑

)

dN↓ =

(
L

N↓

)

(3.3.3)

dl = dN↑dN↓ (3.3.4)

Further symmetries would reduce the size of the sectors. Setting up the Hamiltonian can be done
in each particle sector l = {N↑, N↓} separately.

Ĥ =
⊕

l

Ĥ
(l)

(3.3.5)

H(l)
µν = 〈ω(l)

µ | Ĥ |ω(l)
ν 〉 (3.3.6)

Instead of programming a loop over µ and ν it is faster to generate the possible states 〈ω
(l)
µ | cor-

responding to |ω
(l)
ν 〉 and search them in a list. There are only few entries in the matrices therefore

sparse matrices should be used.

In addition the up and the down sector in the Hamiltonian are decoupled. Therefore the Hamilton
matrices can be calculated separately and combined using the Kronecker product. The decoupled
up and down sectors are also used in the Band Lanczos algorithm.

3.4 Calculating Green functions

The Green function in the ground state |Ω〉 of the Hamiltonian is of interest. Using the spectral
representations 2.6.27 and 2.6.28 at zero temperature and the definition of the retarded Green
function 2.6.21 leads to
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Gij(ω) = 〈Ω| âi
1

ω − Ĥ + E0

â†j |Ω〉+ 〈Ω| â†j
1

ω + Ĥ − E0

âi |Ω〉 . (3.4.1)

The first term is called electron part and the second one hole part. Photoelectron Spectroscopy
(PES) and Inverse Photoemission Spectroscopy (IPES) can be used to measure this terms directly.
Here only the electron part will be discussed. The hole part can be calculated in a similar way.
Let |ωl〉 be the many-particle basis of the Hamiltonian then the ground state can be written as

|Ω〉 =
∑

l

bl |ωl〉 . (3.4.2)

As mentioned above the Hamiltonian is block diagonal within a fixed number of particles. There-
fore |Ω〉 is in the N -particle subspace. Inserting the eigenbasis of the N + 1-particle subspace of
the Hamiltonian leads to a matrix equation for the electron part of the Green function

〈Ω| âi
1

ω − Ĥ + E0

â†j |Ω〉 =
∑

lmn

bmb∗l 〈ωm| âi |βn〉 〈βn|
1

ω − En + E0
|βn〉 〈βn| â

†
j |ωl〉

=
∑

n

Q
(e)
in

1

ω − En + E0
Q

(e)†
nj

=

{

Q(e) 1

ω − E − E0
Q(e)†

}

ij

(3.4.3)

with the matrix

Q
(e)
in =

∑

m

bm 〈ωm| âi |βn〉 . (3.4.4)

The dimension of the many-body Hamiltonian, even in particle subspace, grows exponentially
with the system size and solving the eigenvalue problem gets a challenge. Very powerful tools for
solving huge eigenvalue problems are exact diagonalization algorithms.

3.5 Band Lanczos algorithm

A method for setting up Green functions directly is the Band Lanczos algorithm. The following
brief introduction to the Band Lanczos algorithm is taken from [21]. The Band Lanczos algorithm
is a generalized Lanczos procedure where the Krylov subspace is spanned not by one, but by many
states. As starting vectors

|Φi〉 = â†i |Ω〉 (3.5.1)

are used. Because the Hamiltonian is decoupled in spin, the spins up and down can be treated
separately. Therefore i runs from 1 to L and let Ĥ ′ be the corresponding Hamiltonian. The
Krylov subspace is spanned by the application of Ĥ ′ on the starting vectors and orthonormalizing
the new vectors with respect to the previous ones.

{

|Φ1〉 , ..., |ΦL〉 , Ĥ
′ |Φ1〉 , ..., Ĥ

′ |ΦL〉 , ..., Ĥ
′m |Φ1〉 , ..., Ĥ

′m |ΦL〉
}

(3.5.2)

The orthogonalization procedure can become a problem. A practical rule is to control the number
of iterations m by looking on the convergence of the lowest eigenvalue.
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The projected HamiltonianH on the Krylov subspace has 2L diagonals around the central diagonal
and can be diagonalized using standard techniques. The Band Lanczos procedure provides directly
the Q(e) matrices in equation 3.4.3. Doing the same procedure for the hole part leads to the Green
function.

Gij(ω) =
∑

n

Q
(e)
in Q

(e)†
nj

ω − En + E0
+
∑

m

Q
(h)
imQ

(h)†
mj

ω + Em − E0
(3.5.3)

3.6 Calculating transport properties

All formulas for calculating the transport properties of the LCR transport system are treated in
chapter 2. Although implementing the calculation is straightforward, there are some points to
take care of.

LCR Hamiltonian

Setting up the Green functions

Exact diagonalization

Calculating the leads

Form semi-infinite chains

Couple the transition regions

Coupling the LCR system

Obtain all NEGs

Calculating transport properties

Spectral functions

Current-voltage characteristic

Occupation numbers of the orbitals

transport properties

Figure 3.1: Calculation scheme of the NEG method.

First of all the size of the Green functions is reduced by a factor of two using the retarded, ad-
vanced and Keldysh Green functions separately and not Keldysh space. In principle then the
Green functions are matrices of size 2L× 2L, where L is the number of orbitals in the cluster. To
halve the size of the matrices a second time the spins can be treated separately.

In order to calculate the Green functions of the semi-infinite chains, equation 2.7.21 has to be
solved iteratively. In every step a Green function has to be inverted and problems occur if the ma-
trix is close to singular. In general it is recommendable to use the relations between the retarded,
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advanced and Keldysh Green function instead of calculating the Green functions separately to
avoid numerical problems.

In addition the Green functions depend on the frequency ω. The spectral function or the trans-
mission in dependence of ω can be calculated directly from the obtained Green functions. The
calculation of the current or the occupation numbers of the orbitals is more troublesome, because
one has to integrate over the Green functions. Because of calculating a realistic system the Green
functions can vary rapidly as a function of energy. The simplest way to do the integration is
using a fixed ω-grid and the trapezoidal method. The artificial level broadening 0+ must be cho-
sen as small as possible. Taking the Landauer-Büttiker formula instead of the integration over
the Keldysh Green function is advantageous because in the derivation of the Landauer-Büttiker
formula terms proportional to 0+ were already canceled. Making 0+ small is no problem in cal-
culating the current, but for computing the occupation numbers the resolution in ω must be in
the order of 0+ and therefore the computational effort is high. More sophisticated approaches are
adaptive integration methods or a integration routine which takes care about both parameters,
the artificial level broadening 0+ and the grid size.
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Chapter 4

Application

Calculating the transport properties through the Benzene-1,4-Dithiol (BDT) molecule connected
by two gold chains is divided into three parts. First the leads, single gold chains, are studied
within different approximations in section 4.1. Strong electron correlations are neglected in all
gold atoms. Second, the benzene molecule is discussed in section 4.2. Finally, in section 4.3 the
focus is on the full gold-BDT-gold system. Strong electron correlations are treated in the BDT
molecule.

4.1 Gold-Chain

A convergence analysis leads to the choice of a cut-off energy for the wavefunction of 32 Ry and
the charge density of 128 Ry. All the parameters are converged with respect to the total energy
(5 meV ). The Perdew Zunger (PZ) exchange correlation functional within local density approxi-
mation (LDA) and an ultrasoft pseudopotential (Au.pz-van ak.UPF) are used in the calculation.
Because gold is a metal also a smearing technique is necessary. Methfessel-Paxton with a smearing
parameter of 0.01 Ry is chosen.

x

y

z

Figure 4.1: Unit cell of the gold chain.

Due to using a code designed for solids a vacuum distance in the directions perpendicular to the
gold chain has to be introduced. The vacuum distance must be chosen big enough (dvac = 12Å)
to avoid the effect of periodicity in the y and z direction. The unit cell is shown in figure 4.1. The
calculated equilibrium gold distance in this regime is dAu = 2.4699 Å. So the size of the tetragonal
unit cell is dAu × dvac × dvac.
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126 k-points are used to calculate the bandstructure in figure 4.2. The Density Of States (DOS) is
calculated using the tetrahedron method and 1260 k-points. Gold has the electron configuration
[Xe] 4f14 5d10 6s1. All energies are given in the energy scale of the Quantum Espresso calculation.
The Fermi energy is EFermi = −5.725 eV . For the transport calculations the bands near the Fermi
level are important. There are one s-band (green) and five d-bands (blue). How the electrical
conductance, especially the transmission function, is influenced by considering only the s-band is
the first point of the investigation.
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Figure 4.2: Bandstructure and DOS of a gold chain. The s-band is marked green and the d-bands
are drawn in blue. The Fermi level is at the zero of the energy scale.

4.1.1 The s-model

AWannier transformation is used to get a maximally localized orbital for the s-band. As a starting
guess for the orbital an s-orbital centered on the gold atom is used. The inner and the outer window
are the dotted lines in figure 4.4. The red line is the result of the Wannier transformation. The
resulting Wannier orbital is shown in figure 4.3. The starting s-orbital centered at the gold atom
has been shifted in-between two gold atoms and forms therefore a σ-bond.

x
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z

Figure 4.3: Gold Wannier orbital in the s-model.

The Wannier orbitals are not eigenfunctions of the Hamiltonian anymore. Therefore the Hamilto-
nian in the Wannier basis has off-diagonal elements, hoppings to neighboring atoms, in addition
to the on-site energies. Table 4.1 shows the on-site energy ǫ and the hopping parameters ti, where
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ti is the hopping to the i-th neighbour. Due to the DFT calculation all energies are given within
an accuracy of ±5 meV .

Table 4.1: Hopping parameters in the s-model.

ǫ [eV ] t1 [eV ] t2 [eV ] t3 [eV ] t4 [eV ] t5 [eV ] t6 [eV ]
−5.293 −1.290 0.523 −0.237 0.097 −0.045 0.035

The hopping parameter decreases with the distance due to the reduced overlap of the orbitals.
A possible way to reduce the number of parameters in the subsequent transport calculation is to
truncate the expansion at the point where the hopping parameter falls under a defined threshold
value. A second possibility is to include only hopping parameter up to a defined hopping distance.
The convergence of the expansion can be judged from a comparison of the achieved tight binding
model with the actual band structure shown in figure 4.4. The dashed curves show the s-bands
in different tight binding (TB) regimes. TBi includes all hopping smaller or equal to the i-th
neighbor. The dashed band which is furthest away from the original band at the X point is TB1.
The next one is TB2 and so on.
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Figure 4.4: Bandstructure in the s-model. The black lines are the actual PWSCF band structure,
the dashed lines are calculated with a TB model with different numbers of neighbors and the
dotted lines present the inner and outer Wannier window.

The s-model in TB1 is the easiest case to calculate the conductance in the gold chain. The cluster
Green function is plotted in figure 4.5 and shows a resonance at the onsite energy ǫ because there
is only one atom in the cluster.
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Figure 4.5: Cluster Green function of a transport calculation over a gold chain in the s-model
considering only nearest neighbor hoppings.

Forming an semi-infinite chain out of the cluster Green function GCl shows a semicircular imag-
inary part in GLL, in figure 4.6. The semicircle has its center at ǫ and a diameter of 4t1. The
imaginary part of the full central Green function GCC shows the typically 1d-DOS behavior.
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Figure 4.6: Full Green functions of a transport calculation over a gold chain in the s-model
considering only nearest neighbor hoppings.

The Green function GLC and the lead-induced self energy Σ are plotted in figure 4.7.
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Figure 4.7: Lead-induced self energy of a transport calculation over a gold chain in the s-model
considering only nearest neighbor hoppings.
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Figure 4.8: Band structure, DOS and transmission of a gold chain with nearest neighbor hoppings
in the s-model.
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The band structure, the DOS and the conductance are shown in figure 4.8. With this arrangement
of the plots it is easy to understand the results of the conductance calculation and to see the
approximation which is done by just using nearest neighbor hoppings. The figure clearly shows
that there is a finite conductance if there is a band at a certain energy.

4.1.2 The sd-model

The sd-model includes the s-band and five d-bands per gold atom. Therefore the Hamiltonian
can be divided in 6× 6 matrices where ǫ is the Hamiltonian of one isolated gold atom and ti are
the hopping matrices to the neighboring gold atoms. The Wannier orbitals are not orthogonal per
definition therefore off-diagonal elements appear. The s-orbital is highlighted in orange and the
d-orbitals in blue. The energies are again given in eV and an accuracy of 5 meV .

ǫ =













−6.685 0.645 0 0 −0.645 0
0.645 −7.167 0 0 0.063 0
0 0 −7.664 0 0 0
0 0 0 −7.104 0 0

−0.645 0.063 0 0 −7.167 0
0 0 0 0 0 −7.664













(4.1.1)

Due to the Wannier transformation matrices with complex numbers can appear. The complex
values can be transformed to real numbers using the arbitrary phase of each wavefunction. This
is already done here.

〈Ψ̃m| ˆ̃H |Ψ̃n〉 = 〈Ψm| eiφm ˆ̃He−iφm |Ψn〉 = 〈Ψm| Ĥ |Ψn〉 (4.1.2)

The matrix ǫ must be symmetric, or hermitian in case of a complex matrix. The matrices 4.1.3
and 4.1.4 are the hopping matrices to the next two neighbors.

t1 =











−2.151 0.089 0 0 −0.089 0
0.645 −0.408 0 0 0.227 0
0 0 0.863 0 0 0
0 0 0 −0.181 0 0

−0.645 0.227 0 0 −0.408 0
0 0 0 0 0 0.863











(4.1.3)

t2 =











0.427 −0.023 0 0 0.023 0
0.089 0.014 0 0 −0.011 0
0 0 0.092 0 0 0
0 0 0 0.003 0 0

−0.089 −0.011 0 0 0.014 0
0 0 0 0 0 0.092











(4.1.4)

In the further calculations one has to pay attention that each orbital has as many neighbor or-
bitals on the right as on the left side due to symmetry. Therefore for a calculation with nearest
neighbors some matrix elements in t1 have to be set to zero (gray marked values) and no matrix
t2 is used. For a calculation with next nearest neighbors one has to delete the gray marked values
in t2 and use the full matrix t1. In case of not deleting these values the s-orbital would have more
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d-orbitals on the right side as on the left.

The full Hamiltonian for a LCR transport calculation considering only nearest neighbor hoppings
is shown in equation 4.1.5. The quantity of interest is the current that flows from the left lead
(green-left) over the central region (blue) to the right lead (green-right).

H =



























T V12

V †
12

. . .
. . .

. . . T V12

V †
12 T V12

V †
12 T V12

V †
12 T V12

V †
12 ǫ

. . .

. . .
. . . V12

V †
12 T



























(4.1.5)

First only nearest-neighbor hoppings V12 = t1 and T = ǫ are considered. Calculations with second
nearest-neighbor hoppings can be done with

T =

(
ǫ t1
t†1 ǫ

)

and V12 =

(
t2 0
t1 t2

)

(4.1.6)

and so on. The basis functions of the matrices ǫ, t1 and t2 are the orbitals shown in figure 4.9.
The orbital number corresponds to the row and the column of the matrices.

x
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z

1) 4)

2) 5)

3) 6)

Figure 4.9: Gold Wannier orbitals in the sd-model.

Orbital 3, 4 and 6 correspond to the dxz, dyz and dxy real-valued d-orbitals which are constructed
by linear combination of the spherical harmonics. Diagonalizing the d-orbital part of equation
4.1.1 produces orbital 2’ and 5’ which can be identified with the dz2 and the dx2−y2 real-valued
d-orbital.
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Figure 4.10: Wannier orbitals calculated by diagonalizing the d-orbital part in ǫ.

Diagonalizing the whole ǫ matrix leads to the eigenfunctions in figure 4.11. In orbital 1* and 2*
one can see the hybridization between the s-orbital and the d-orbital.
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1*) 4)

2*) 5*)

3) 6)

Figure 4.11: The hybridized gold orbitals.

Using the eigenbasis produces the on-site matrix ǫ̃ and the hopping matrix t̃1. Due to rotational
symmetry of the gold chain the orbitals 4 and 5* and the orbitals 3 and 6 have the same energy.

ǫ̃ =











−7.909 0 0 0 0 0
0 −6.005 0 0 0 0
0 0 −7.664 0 0 0
0 0 0 −7.104 0 0
0 0 0 0 −7.104 0
0 0 0 0 0 −7.664











(4.1.7)

t̃1 =











−1.613 1.313 0 0 0 0
0.401 −1.173 0 0 0 0
0 0 0.863 0 0 0
0 0 0 −0.181 0 0
0 0 0 0 −0.181 0
0 0 0 0 0 0.863











(4.1.8)

Therefore the cluster Green function shown in figure 4.12 is diagonal. Of course the excitation
energies are at the energies in ǫ̃. Due to the non-diagonal hopping matrices the full Green functions
and the lead-induced self energy are not diagonal anymore. But in the case of considering only
nearest neighbor hoppings only one off-diagonal element is non-zero.
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Figure 4.12: Green functions of a transport calculation over a gold chain in the sd-model consid-
ering only nearest neighbor hoppings.



52 CHAPTER 4. APPLICATION

As one can see in the figures 4.12 and 4.13 the four elements which are diagonal in t̃1 show the
typical tight binding behavior from the s-model. The imaginary part of the lead Green function
is a semi-circle and the imaginary part of the full center Green function looks like a 1d-DOS.
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Figure 4.13: Lead-induced self energy of a transport calculation over a gold chain in the sd-model
considering only nearest neighbor hoppings.

The bandstructure, the DOS and the transmission are plotted in figure 4.14. There is a simple
connection between these plots. The transmission is the number of bands (channels) at a certain
energy.
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Figure 4.14: Bandstructure, DOS and transmission of a gold chain with nearest neighbor hoppings.

Figure 4.15 results from a next nearest neighbor calculation.
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Figure 4.15: Bandstructure, DOS and transmission of a gold chain with next nearest neighbor
hoppings.

4.2 Benzene

Benzene is a well studied molecule. Because of its symmetries it is possibly to predict the pattern
of the main levels using the Hückel model. A general Hamiltonian in the Born-Oppenheimer
approximation is

Ĥ =

N∑

i=1

(

−
~
2∇2

i

2m
−

N∑

l=1

Zle
2

4πǫ|ri −Rl|

)

+
1

2

N∑

i,j=1
i6=j

e2

4πǫ|ri − rj |
=

N∑

i=1

Ĥi (4.2.1)

where the indices i and j run over the electrons and Rl are the positions of the atoms. It is
assumed that there is one electron per atom. In a further approximation the electron correlation
can be treated by using an effective one-particle Hamiltonian Ĥi for each electron. In doing this
approximations the Hamiltonian can be separated into Hamiltonians Ĥi, also called molecular
orbital Hamiltonian ĤMO, for each electron i which can be solved by linear combination of atomic
orbitals. In this regime the total wavefunction is approximated by a linear combination of the
atomic orbitals of the atoms in the molecule.

|ΨMO〉 =

N∑

j=1

cj |φj〉 (4.2.2)

Starting from the time-independent Schrödinger equation

ĤMO |ΨMO〉 = E |ΨMO〉 (4.2.3)
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the coefficients cj are defined by the extended eigenvalue problem

N∑

j=1

〈φi| ĤMO |φj〉 cj = E

N∑

j=1

〈φi| |φj〉 cj. (4.2.4)

The Hückel model now assumes that the atomic wave functions are orthogonal 〈φi|φj〉 = δij
to each other. For the benzene molecule it is obvious to take a pz-orbital out of the plane for
each carbon atom. Therefore the diagonal matrix elements 〈φi|HMO|φi〉 = α are all the same.
Respecting only overlap between nearest neighbor orbitals 〈φi|HMO|φi+1〉 = β the Hückel model
applied to benzene leads to the eigenvalue problem











α− E β 0 0 0 β
β α− E β 0 0 0
0 β α− E β 0 0
0 0 β α− E β 0
0 0 0 β α− E β
β 0 0 0 β α− E





















c1
c2
c3
c4
c5
c6











= 0. (4.2.5)

It turns out that the overlap β has a negative sign. The energy levels of benzene are arranged like

E = {α− 2β, α− β, α− β, α+ β, α+ β, α+ 2β} (4.2.6)

from the highest to the lowest energy. Level two and three are degenerated, also the energy levels
four and five. The difference between these energies is the HOMO-LUMO gap. The corresponding
eigenvectors are

c =

















−1
1

−1
1

−1
1











︸ ︷︷ ︸

B2g

,











−1
0
1

−1
0
1











,











1
−2
1
1

−2
1











︸ ︷︷ ︸

E2u

,











1
0

−1
−1
0
1











,











1
2
1

−1
−2
−1











︸ ︷︷ ︸

E1g

,











1
1
1
1
1
1











︸ ︷︷ ︸

A2u







. (4.2.7)

The first three eigenenergies respectively eigenvectors are the antibonding, the last three the bond-
ing ones. The point group of benzene is D6h and the irreducible representation is B2g, E2u, E1g

and A2u. The orbitals are typically named by their symmetry.

Figure 4.16 presents the molecular orbitals obtained by doing a full ab-initio DFT calculation for
the benzene molecule with a Generalized Gradient Approximation (GGA) functional. The orbitals
are sorted by their energies.
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E2uE2u

E1gE1g

A2u

Figure 4.16: Benzene orbitals sorted by their energies.

The orbitals E2u, E1g and A2u can be identified with orbitals from the DFT calculation. The B2g

orbital must be searched at higher energies. Planar orbitals cannot be described by the pz-orbitals
used in the Hückel model. The energy levels corresponding to the orbitals in figure 4.16 and the
comparison the Hückel model are shown in figure 4.17. The Hückel parameters are fitted using
the energy difference of the HOMO-LUMO gap.
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Figure 4.17: Benzene energy levels.

The energies depend on the functional chosen in the DFT calculation. Table 4.2 compares the
HOMO-LUMO gap and the distances dCC and dCH calculated with different functionals to mea-
sured values.

Table 4.2: Comparison of different functionals to experimental results.

GGA (pbe-rrkjus) LDA (pz-van ak) experimental [28]
HOMO-LUMO gap 5.1151 eV 5.1840 eV 4.9 eV
dCC 1.394 Å 1.384 Å 1.396 Å
dCH 1.090 Å 1.094 Å 1.083 Å

The Perdew Zunger (PZ) exchange correlation functional and an ultrasoft pseudopotential (pz-
van ak) are used in the further calculations analog to paper [27].

4.3 Au-BDT-Au system

In this section the transport through a gold-BDT-gold system is discussed. For simplicity rigid
gold chains with equal distances between the gold atoms, as calculated in section 4.1, are assumed
as leads. Nearest neighbor hoppings between the gold atoms are assumed. The transport system
is drawn in figure 4.18.

AuAuAu
S

C C

C C

C C

H
H

H
H S

AuAuAu

Figure 4.18: Gold-BDT-gold system used for the transport calculation.
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At first different configurations of the BDT between the gold leads are discussed. After choosing
the geometry a Wannier transformation is performed to generate the Hamiltonian in a maximally
localized basis. The Hamiltonian is used to do the molecular transport calculation. Finally
electron-electron interactions will be included.

4.3.1 Geometry optimization

The unit cell used for performing the DFT calculations is shown in figure 4.19. The distance
between the gold atoms in the chain dAu and the vacuum distance dvac are chosen according to
section 4.1.

x

y

z dAu−AudAu

Figure 4.19: Unit cell of the gold-BDT-gold system.

Doing geometry optimizations for particular distances dAu−Au between the contacts results in
different configurations for the BDT atoms. The configurations are shown in figure 4.20.

a) b)

c) d)

e) f)

Figure 4.20: The line (a), thienothiophene (b), twisted (c), atop (d), twisted-twisted (e) and the
atop-twisted (f) configuration of BDT.
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The total energies Etot of the configurations depending on different distances dAu−Au between the
contacts are drawn in figure 4.21.
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Figure 4.21: The total energy Etot for different geometries and distances dAu−Au between the
contacts.

At large distances (dAu−Au > 11 Å) the broken configuration is energetically preferred. In the
broken geometry the BDT is placed at one contact and not in-between the two contacts. At
narrow distances (11 Å > dAu−Au > 8.5 Å) the twisted configuration is favored. At even smaller
distances (8.5 Å > dAu−Au) the twisted-twisted geometry is preferred until the atoms rearrange
and form the molecule thienothiophene. For the transport calculations the twisted geometry at
a distance of dAu−Au = 9.17 Å is chosen, because this is the geometry with the lowest total energy.

Quantum Espresso is a code written for periodic materials therefore the number of gold atoms
per unit cell has to be chosen large enough to reduce periodic effects in the DFT calculation and
that the BDT molecule relaxes like coupled to two semi-infinite gold chains. The results of doing
Wannier transformations with different numbers of gold atoms NAu per unit cell are summarized
in table 4.3.

Table 4.3: Convergence of the energies as a function of the number of gold atoms NAu per unit
cell.

NAu 4 6 8
gold benzene gold benzene gold benzene
−2.59 −5.39 −2.01 −5.21 −2.02 −5.21
−1.96 −2.81 −1.84 −2.65 −1.81 −2.65
−1.85 −2.50 −1.74 −2.32 −1.74 −2.32
−1.33 1.87 −1.26 2.03 −1.22 2.02
−1.33 2.81 −1.26 2.98 −1.22 2.98
−0.64 5.78 −0.23 6.01 −0.23 6.00
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The gold columns present the eigenenergies of a gold atom as far as possible away from the BDT.
The energies of the benzene B2g, E2u, E1g and A2u states are in the benzene columns. The values
seem to be already converged using six gold atoms per unit cell.

4.3.2 Hamiltonian and orbitals

For the Wannier transformation an energy window and a starting guess for the orbitals is needed.
It turns out that the starting orbitals have to be chosen carefully. According to section 4.1 an
s-orbitals and the five d-orbitals are used as starting guess for the gold atoms. But now it is
important to place the s-orbitals in-between the gold atoms to get the σ-bonds. For the sulfur
atoms px-, py- and pz-orbitals are chosen and for the carbon atoms pz-orbitals, which point out of
the ring plane. The remaining functions are chosen randomly. An inner energy window narrowed
by −5.95 eV and 3.16 eV and an outer window bounded by −5.95 eV and 7.46 eV produce
suitable results. The Wannier transformation is only done for the Γ-point.
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Figure 4.22: Wannier transformation of the gold-BDT-gold system.

The Fermi energy is EFermi = −4.898. Again all energies are given in the energy scale of the
Quantum Espresso calculation. In figure 4.22 the band structure (green) calculated with Quantum

Espresso is compared to the levels (black) of the Wannier orbitals. At the Γ-point almost all levels
seem to agree with a band from the PWSCF calculation. Also the projected bands are shown to
see to which sort of atom the levels belong to. The darker the lines are the more contribution to
the particular atom sort is present. In principle, the bands near the Fermi level are important
for the transport properties. Therefore the gold s- and d-orbitals and the BDT orbitals near the
Fermi level should be included in the Wannier transformation.

The Wannier transformation produces 49 orbitals and therefore a Hamiltonian of the size 49× 49.
For further calculations one has to sort the Wannier orbitals by their centers and symmetries. The
structure of the sorted Hamiltonian is
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H =



























HAu VAu V †
Au

V †
Au HAu VAu

V †
Au HAu VAuS VAuB VAuSS

V †
AuS HS VSB VSS VSSAu

V †
AuB V †

SB HB VBS VBAu

V †
AuSS V †

SS V †
BS HS VSAu

V †
SSAu V †

BAu V †
SAu HAu VAu

V †
Au HAu VAu

VAu V †
Au HAu



























. (4.3.1)

The Hamiltonian consists of the left and the right transition region (green), the center (blue) and
the coupling matrices (red) in-between. All other matrix elements are neglected. In the next
paragraphs the basis functions and sub-Hamiltonians of the individual blocks are explained.

The core of the transport calculation is the benzene molecule described by

HB =















−5.29 −2.61 −2.62 0 0 0.11 0.22 −0.22
−2.61 −4.50 0.05 0 0 −2.85 −0.25 0.22
−2.62 0.05 −4.67 0 0 −0.15 −2.85 0.11

0 0 0 −9.39 0.32 0 0 0
0 0 0 0.32 −8.99 0 0 0

0.11 −2.85 −0.15 0 0 −4.67 0.05 −2.62
0.22 −0.25 −2.85 0 0 0.05 −4.50 −2.61
−0.22 0.22 0.11 0 0 −2.62 −2.61 −5.29















. (4.3.2)

Two of the eight orbitals are completely decoupled from the other ones. The basis functions are
the orbitals plotted in figure 4.23. The orbitals are labeled by the row respectively column number
of the Hamiltonian HB. Orbital 1, 2, 3, 6, 7 and 8 are pz like orbitals. The other ones are in the
xy-plane and have inversion symmetry with respect to the xy-plane. In literature [29] a hopping
parameter between the pz-orbitals of 2.40 eV is used to describe the energy levels of the benzene
molecule correct. That is in agreement with the central matrix 4.3.2.

Diagonalizing HB produces the typical benzene orbitals shown in figure 4.24. The pz like orbitals
combine to the Hückel solution.
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Figure 4.23: Benzene orbitals in the Wannier basis.
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Figure 4.24: Benzene orbitals in the eigenbasis.
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Six of the 49 orbitals belong to the sulfur atoms. Therefore the left sulfur Hamiltonian HS is of
size 3× 3.

HS =





−3.07 0 1.21
0 −6.43 0

1.21 0 −7.23



 (4.3.3)

The basis of the Hamiltonian HS are orbital 1, 2 and 3 in figure 4.25. The orbitals 4, 5, and 6
belong to the right sulfur atom. The Hamiltonian for the right sulfur atom looks similar to 4.3.3
and is therefore not written out here. Orbital 2 and 5 are pz-like orbitals. The others are in the
plane of the benzene ring.

x
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z

1) 4)

2) 5)

3) 6)

Figure 4.25: Sulfur orbitals in the Wannier basis.

The coupling matrix between the left sulfur atom and the benzene is

VSB =





0 0 0 0.20 0.19 0 0 0
−2.11 0.23 0.15 0 0 0.03 0.03 0.04

0 0 0 −0.09 0.38 0 0 0



 . (4.3.4)

All pz-orbitals (blue) are coupled to each other but not to the planar ones (orange). Equations
4.3.5 and 4.3.6 describe the coupling between the gold atoms and between a gold atom and the
central region.

VAuS =











−1.79 0 0.33
0.45 0 −0.09
0 −1.08 0
0 −0.74 0

1.50 0 1.62
0.73 0 0.53











(4.3.5)
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VAuB =

















0 0 0 0.31 −0.11 0 0 0

0 0 0 −0.02 −0.00 0 0 0

0.13 −0.19 0.01 0 0 0.07 −0.03 −0.01

0.14 0.01 −0.01 0 0 −0.03 −0.01 0.01

0 0 0 0.16 0.01 0 0 0

0 0 0 0.51 −0.09 0 0 0

















(4.3.6)

So the observed symmetry even holds at the contact to the gold chains and within the gold chain.
There are two transport channels through the system. pz-like orbitals determine the first channel.
The second channel is constructed by the hybridized s-orbitals in the gold chain and the planar
sulfur and benzene orbitals. All orbitals in the second channel have inversion symmetry with
respect to the xy-plane.

4.3.3 Transport channels

As discussed above there are two separate transport channels through the system. In the non-
interacting case it is possible to do the transport calculation for the channels separately.

Channel I:

Channel I consists of orbital 1, 2, 3, 6, 7 and 8 in figure 4.23 and 2 and 5 in figure 4.25. They are
all pz-like orbitals and therefore for symmetry reasons decoupled from the orbitals with inversion
symmetry with respect to the xz-plane. In a first step the Green functions of the left and the
right leads have to be calculated. The third gold atom on the left hand of the center is formed to
a semi-infinite chain as the left lead. Then successive the transition regions 1, 2 and 3 are added.
The spectral function of the left lead is plotted in figure 4.26.
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Figure 4.26: Channel I - Spectral density of the left lead.

The right lead must be calculated using the same procedure. The result for the right lead is nearly
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the same as for the left one and plotted in figure 4.27. The differences result from the fact that
the BDT molecule is not arranged perfectly symmetric between the gold chains.
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Figure 4.27: Channel I - Spectral density of the right lead.

The spectral densities of the leads are filled up to the Fermi energy. Applying a voltage across the
transport system shifts the lead spectral functions against each other. In channel I the leads are
completely filled with electrons. Therefore even if a voltage is applied there is no current flowing
because there are no empty states for the electrons to hop into. Channel I is not conducting at all
but for the sake of completeness the central region will be discussed too. The spectral function of
the central region has its resonances at the eigenvalues of the corresponding Hamiltonian.

EI
Center − EFermi = {−5.55,−3.96,−2.39,−2.09,−0.51, 2.78, 2.92, 6.20} (4.3.7)

The spectral function of the isolated central region is drawn in figure 4.28.
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Figure 4.28: Channel I - Uncoupled spectral density of the center.

Coupling the leads to the center and applying voltage leads to the spectral functions in figure 4.29.
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Figure 4.29: Channel I - Coupled spectral density of the center.

In the weak coupling regime the molecular orbitals of the central region are only weakly disturbed
by the leads and sequential-tunneling processes are responsible for the conductance. The molecular
orbitals are hybridized with the states in the leads in the large coupling regime and coherent
transport happens. Comparing figure 4.28 and the 0 V curve in figure 4.29 shows that due to
the coupling of the central region to the leads the peaks are broadened and shifted and there is
additional structure from the leads in the spectral density. Therefore the investigated transport
system is not in the small coupling regime.
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EFermi

Figure 4.30: Channel I - Transport over a weak coupled central region.

Figure 4.30 illustrates the transport behavior in the case of full occupied leads. The red dashed
line is the Fermi energy.

Channel II:

Channel II consists of orbital 4 and 5 in figure 4.23 and 1, 3, 4 and 6 in figure 4.25. Figure 4.31
presents the spectral function of the left lead calculated through coupling the transition layers to
the semi-infinite gold chain.
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Figure 4.31: Channel II - Spectral density of the left lead.

The behavior in the right lead is nearly the same and plotted in figure 4.32.
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Figure 4.32: Channel II - Spectral density of the right lead.

Diagonalizing the channel II part of the center Hamiltonaian leads to the eigenvalues

EII
Center − EFermi = {−4.76,−4.01,−2.67,−2.53, 2.11, 2.20} (4.3.8)

The peaks of the uncoupled spectral function of the center are at these eigenvalues.

−8 −6 −4 −2 0 2 4 6
0

10

20

30

40

50

60

70

80

90

100

E − E
Fermi

A
C

C

C
l

(E
)

Figure 4.33: Channel II - Uncoupled spectral density of the center.

Coupling the leads to the center and applying different voltages produces the spectral functions
in figure 4.34.
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Figure 4.34: Channel II - Coupled spectral density of the center.

In channel II there are full and empty states in the leads. Due to this fact and because the spectral
density of the central region has a finite value at the Fermi level there is transport in Channel II.
Figure 4.35 sketches a typical transport behavior in the weak coupling regime. Applying a voltage
shifts the lead Green functions against each other. If there are states in the central region current
can flow through the system.

EFermi

Figure 4.35: Channel II - Transport over a weak coupled central region.

The gold-BDT-gold transport system, in the configuration as treated within this thesis is not in
the weak coupling regime.

4.3.4 Electron interactions

Electron-electron interactions were calculated using the Wannier orbitals and formula 2.1.9. A
constant screening parameter of η = 1.5 is chosen according to [7]. To calculate the interaction
parameter the integration was done numerically using the wave functions given on a lattice (67×
50× 50). The calculated interaction parameters are
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U =




















6.14 3.81 3.68 3.25 3.40 2.24 2.70 2.46 2.34 1.82 1.84 1.51 1.43 1.26
3.81 7.90 7.05 4.93 3.25 3.32 3.39 2.90 2.27 2.28 2.00 1.60 1.50 1.43
3.68 7.05 7.94 5.10 3.50 3.71 3.60 3.23 2.48 2.50 2.17 1.71 1.60 1.52
3.25 4.93 5.10 9.00 5.18 5.23 4.47 4.49 3.42 3.37 2.96 2.17 2.00 1.85
3.40 3.25 3.50 5.18 8.54 3.41 4.47 4.55 5.22 2.97 3.37 2.50 2.28 1.83
2.24 3.32 3.71 5.23 3.41 8.91 4.43 4.80 3.03 5.22 3.42 2.48 2.27 2.36
2.70 3.39 3.60 4.47 4.47 4.43 4.67 4.47 4.45 4.45 4.48 3.62 3.40 2.71
2.46 2.90 3.23 4.49 4.55 4.80 4.47 5.11 4.79 4.56 4.49 3.23 2.90 2.48
2.34 2.27 2.48 3.42 5.22 3.03 4.45 4.79 8.92 3.41 5.23 3.70 3.32 2.25
1.82 2.28 2.51 3.37 2.97 5.22 4.45 4.56 3.41 8.52 5.18 3.50 3.26 3.43
1.84 2.00 2.17 2.96 3.37 3.42 4.48 4.49 5.23 5.18 9.00 5.10 4.93 3.27
1.51 1.60 1.71 2.17 2.50 2.48 3.62 3.23 3.70 3.50 5.10 7.94 7.05 3.69
1.43 1.50 1.60 2.00 2.28 2.27 3.40 2.90 3.32 3.26 4.93 7.05 7.90 3.81
1.26 1.43 1.52 1.85 1.83 2.36 2.71 2.48 2.25 3.43 3.27 3.69 3.81 6.16




















. (4.3.9)

The values are given in eV with an accuracy of ±0.1 eV . Again all orbitals corresponding to
channel I are marked blue, channel II is marked in orange. The two channels are coupled by the
interaction term.

The results can be compared to the Pariser-Parr-Pople (PPP) Model for π-electron systems with
only nearest neighbor hoppings and Coulomb interaction. There the most used values for describ-
ing benzene are t = 2.40 eV and U = 11.26 eV [29] which is in agreement with the obtained
U using a smaller screening parameter η. The Matago-Nishimoto approximation [30] makes it
possible to estimate the off-diagonal from the diagonal elements.

Uαβ =
e2

4πǫ0dαβ + 2e2

Uαα+Uββ

(4.3.10)

The results are shown in equation 4.3.11. The nearest neighbor C-distance is assumed to be
dCC = 1.40 Å.

U =











9.00 4.74 4.80 3.58 3.55 3.28
4.74 8.54 3.54 4.73 3.22 3.55
4.80 3.54 8.91 3.27 4.73 3.58
3.58 4.73 3.27 8.92 3.54 4.80
3.55 3.22 4.73 3.54 8.52 4.74
3.28 3.54 3.58 4.80 4.74 9.00











(4.3.11)

The calculated values are in agreement with the red values in equation 4.3.9.

Although channel I and channel II are coupled by the electron correlations interactions are only
treated in channel II. Channel I is not conducting and therefore ignored in the further calculations.
The approximation makes sense because due to the DFT calculation the influence of channel I on
channel II is already treated at a mean field level.

Channel II:

In this case Uij is the orange part of matrix 4.3.9. In the interacting case the levels get pushed
away from the Fermi energy. This can be seen by comparing the uncoupled spectral functions in
figure 4.33 and figure 4.36.
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Figure 4.36: Channel II + electron interactions - Uncoupled spectral density of the center.
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Figure 4.37: Channel II + electron interactions - Coupled spectral density of the center.

The coupled spectral function plotted in figure 4.37 has a lower value in the transport window
than the coupled spectral function without interaction. Therefore the conductance in the case of
including strong electron correlations will be smaller.

4.3.5 Current-voltage characteristic

Finally figure 4.38 presents the current-voltage characteristic with and without electron interac-
tions in the central region. Due to the fact that channel I is not conducting the current is only
calculated using channel II. The current is mainly due to the strong-coupling leads. Even if there
are no states in the transport region of the spectral density of the decoupled central region the
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leads are able to induce transmission.
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Figure 4.38: Current-voltage characteristic of the gold-BDT-gold system.

The current-voltage characteristic is only valid for |U | < 2 V . Looking at the band structure of
the gold chain in figure 4.2 shows that one has to include the gold p-orbitals for higher voltages.

The experimental measurements of Reed and Tour [3] and of Lörtscher, Weber and Riel [4] show
a non-linear behavior of the current-voltage characteristic. Reed and Tour have detected a rise of
the current at U = ±0.7 V at room temperature, see figure 4.39, and Lörtscher, Weber and Riel
at U = ±0.45 V at 250 K and U = ±0.3 V at 50 K. If the coupling of the leads is small enough
the spectral function of channel I in figure 4.28 suggests non-linear behavior within channel I,
because there is an energy level near the Fermi energy.

Figure 4.39: Current-voltage characteristic of the
gold-BDT-gold system measured by Reed and Tour
[3].

In theoretical investigations it turns out that the transport strongly depends on the type of the
junction and the leads and it is not known how the contact geometry in the experiments really
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looks like. For example Kondo, Kino, Nara, Ozaki and Ohno [31] have investigated the dependence
of the transmission on the contact geometry in a gold bulk-BDT-gold bulk system. They have
coupled the BDT molecule at different places in different rotation angles at the Au(111) surfaces
and came to the result that a pz-type LUMO orbital mainly contributes to the transport properties
and the coupling to this orbital depends on the contact geometry. Also Ventra, Pantelides and
Lang [32] have obtained similar results. They have modeled the leads as homogeneous electron gas
and showed that the current is more than two orders of magnitude smaller if a single gold atom
is put in-between each metal-molecule contact. The reason is that the gold s-states couple only
to sulfur p-states perpendicular to the metal surface and therefore a channel closes in placing the
single gold atom in-between the metal-molecule contacts. This is in agreement with the results of
this thesis.

Comparing figure 4.38 with the experimental measurement in figure 4.39 shows, that even in
contacting the BDT molecule with single gold atoms, the calculated current is still higher than in
the current in the experiment. Therefore it is necessary to include strong electron correlations and
electron-phonon coupling in calculations. The current-voltage characteristic in figure 4.38 shows
clearly that including electron-electron interactions reduces the current.
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Chapter 5

Summary and Prospects

In this thesis the transport properties through a benzene-1,4-dithiol (BDT) molecule connected
to two semi-infinite gold chains were investigated. The calculation was done using Density Func-
tional Theory (DFT) and Non-equlibrium Green functions (NEG) and including strong electron
correlations in the BDT molecule. First the technique was used to study a single gold chain. By
comparing the electronic band structure of the gold chain with their transmission function, it is
possible to check the algorithm. Connecting two gold chains to the BDT molecule led to the gold-
BDT-gold system investigated within this thesis. It turns out that in the gold-BDT-gold system
transport takes place in two decoupled channels. Channel I consists of pz-like orbitals but is not
conducting due to the symmetry of the leads. The transport properties of channel II consisting
of orbitals with inversion symmetry with respect to the xy-plane are mainly determined by the
structure of the leads. Including strong electron correlations reduces the current.

There are a few points which would be worth the effort of further investigations on the gold-BDT-
gold system.

• First it would be interesting to improve the gold-BDT-gold system transport calculation
including more than nearest-neighbor coupling in the gold atoms.

• Numerically difficulties in integrations over the Keldysh Green functions causes problems by
calculating the occupation numbers of the orbitals.

• A third improvement of the existing technique would be to calculate the screening parameter
in the interaction potentials consistently.

• The experiment of Lörtscher, Weber and Riel [4] shows that the current decreases with
temperature which suggests to perform calculations at finite temperatures.

Further steps imply changing the system of investigation. For instance contacts which couple to
channel I can be taken. This can be done by using gold bulks or gold tips as leads instead of the
semi-infinite gold chains or by replacing the gold atoms by platinum or aluminum atoms.



74 CHAPTER 5. SUMMARY AND PROSPECTS



LIST OF FIGURES 75

List of Figures

1.1 Gold-BDT-gold transport system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structural model of DFT+NEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Gold-BDT-gold transport system in the DFT calculation. . . . . . . . . . . . . . . 12
2.2 LCR transport system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Extended LCR transport system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Keldysh contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Arrangement of clusters in a chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Arrangement of clusters in a semi-infinite chain. . . . . . . . . . . . . . . . . . . . . 23
2.7 Current between two systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 LCR transport system out of equilibrium. . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Calculation scheme of the NEG method. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Unit cell of the gold chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Bandstructure and DOS of a gold chain. . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Gold Wannier orbital in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Bandstructure in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Cluster Green function in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Full Green functions in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Lead-induced self energy in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Band structure, DOS and transmission in the s-model. . . . . . . . . . . . . . . . . 47
4.9 Gold Wannier orbitals in the sd-model. . . . . . . . . . . . . . . . . . . . . . . . . 49
4.10 Gold d-orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11 Hybridized gold orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.12 Green functions in the sd-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Lead-induced self energy in the sd-model. . . . . . . . . . . . . . . . . . . . . . . . 52
4.14 Bandstructure, DOS and transmission in the sd-model (TB1). . . . . . . . . . . . . 52
4.15 Bandstructure, DOS and transmission in the sd-model (TB2). . . . . . . . . . . . . 53
4.16 Benzene orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.17 Benzene energy levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.18 Gold-BDT-gold transport system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.19 Unit cell of the gold-BDT-gold system. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.20 Configurations of the BDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.21 Total energies of the BDT configurations. . . . . . . . . . . . . . . . . . . . . . . . 58
4.22 Wannier transformation of the gold-BDT-gold system. . . . . . . . . . . . . . . . . 59
4.23 Benzene orbitals in the Wannier basis. . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.24 Benzene orbitals in the eigenbasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.25 Sulfur orbitals in the Wannier basis. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.26 Channel I - Spectral density of the left lead. . . . . . . . . . . . . . . . . . . . . . . 63
4.27 Channel I - Spectral density of the right lead. . . . . . . . . . . . . . . . . . . . . . 64
4.28 Channel I - Uncoupled spectral density of the center. . . . . . . . . . . . . . . . . . 65



76 LIST OF FIGURES

4.29 Channel I - Coupled spectral density of the center. . . . . . . . . . . . . . . . . . . 65
4.30 Channel I - Transport over a weak coupled central region. . . . . . . . . . . . . . . 66
4.31 Channel II - Spectral density of the left lead. . . . . . . . . . . . . . . . . . . . . . 66
4.32 Channel II - Spectral density of the right lead. . . . . . . . . . . . . . . . . . . . . 67
4.33 Channel II - Uncoupled spectral density of the center. . . . . . . . . . . . . . . . . 67
4.34 Channel II - Coupled spectral density of the center. . . . . . . . . . . . . . . . . . . 68
4.35 Channel II - Transport over a weak coupled central region. . . . . . . . . . . . . . 68
4.36 Channel II + electron interactions - Uncoupled spectral density of the center. . . . 70
4.37 Channel II + electron interactions - Coupled spectral density of the center. . . . . 70
4.38 Current-voltage characteristic of the gold-BDT-gold system. . . . . . . . . . . . . . 71
4.39 Current-voltage characteristic measured by Reed and Tour. . . . . . . . . . . . . . 71



LIST OF TABLES 77

List of Tables

4.1 Hopping parameters in the s-model. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Comparison of different functionals to experimental results. . . . . . . . . . . . . . 56
4.3 Convergence of the energies as a function of the number of gold atoms per unit cell. 58



78 LIST OF TABLES



BIBLIOGRAPHY 79

Bibliography

[1] M. Di Ventra, S. T. Pantelides, N. D. Lang. The benzene molecule as a resonant-tunneling

transistor. Appl. Phys. Lett. 76, 3448 (2000).

[2] F. Schwarz, G. Kastlunger, F. Lissel, C. Egler-Lucas, S. N. Semenov, K. Venkatesan, H. Berke,
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