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1 Introduction

Many applications in science and engineering lead to nonlinear eigenvalue problems (NEPs).
To illustrate this, a collection of some scientifically and practically relevant NEPs is given in
[6]. Unfortunately, NEPs have to be treated completely differently in comparison to linear
eigenvalues problems since several troubles which are not relevant for linear eigenvalue
problems can occur. For instance, it is possible that there are more eigenvalues than
the dimension of the problem and that eigenvectors to different eigenvalues are linearly
dependent. In particular, the solution of large-scale NEPs, which occur in FEM and BEM
applications quite often, is a challenge [20]. In this master thesis we restrict to a certain
class of NEPs of the form

T (λ)v = 0,

where T : D → Cn×n is holomorphic in some open domain D ⊂ C. Our goal is to compute
all eigenvalues (and corresponding eigenvectors) lying within a given contour ΓC ⊂ D. We
will focus on algorithms which make use of the approximation of the poles of the resolvent
of T . In literature, there are at least two major ways to do this, one which uses contour
integrals [1, 7] and another one based on rational interpolation [32]. Since the presented
algorithms in [1] and in [7] are quite similar, we will follow [7] and [32] to derive the
corresponding methods, which we will call contour integral method (CIM) and rational
interpolation method (RIM) in this thesis. These numerical methods are very suitable to
use in practice since, apart from the holomorphy, there are no other requirements on T
such as symmetry, structure, and whether the involved matrices are dense or sparse.

Figure 1.1: An image which shows the contour ΓC, the searched eigenvalues inside the
contour (red stars) and some eigenvalues outside the contour (light-blue stars).
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The thesis is organized in the following way: Roughly speaking, it consists of two parts.
The first one involves the Chapters 2-5 and has the aim to introduce the numerical methods
mentioned above, and the second one is built by the Chapters 6-8 and has the intention to
present boundary integral formulations for acoustic eigenvalue problems and to compare
the depicted algorithms for the computation of eigenvalues.

The first part is organized as follows: In Chapter 2, some important definitions related
to NEPs are given and the theorem about the representation of the resolvent of T is stated.
This theorem shows that the eigenvalues can be characterized as poles of the resolvent and
provides the base for the algorithms CIM and RIM. Therefore, these methods can be seen
as numerical methods approximating the poles of the resolvent T−1. Our main reference
for this chapter is [7]. In Chapter 3, the CIM is derived. This method approximates the
poles by using contour integrals. In doing so, the NEP is transformed into a linear matrix
eigenvalue problem from which the eigenvalues and eigenvectors can be calculated easily. In
Chapter 4, the RIM is derived. This method uses rational interpolation instead of contour
integrals. Although the RIM and the CIM do not seem to have much in common at first
glance, the RIM can in fact be seen as a generalization of the CIM where the interpolation
points are chosen on the contour. In Chapter 5, the key steps of different variants of the
Rayleigh-Ritz procedure in the context of the CIM and the RIM are summarized [31, 32, 33].
This procedure provides a possibility to transform NEPs with large dimensions, which occur
in practice very often, into NEPs with smaller dimensions. The smaller problems can then
be solved with comparatively little cost by using the CIM or the RIM.

The second part has the following structure: In Chapter 6, formulations of time-harmonic
acoustic eigenvalue problems with Dirichlet and Neumann boundary conditions are given
first. Then the boundary integral operators are introduced and boundary integral formu-
lations are derived. Our main reference here is [28]. In Chapter 7, an error estimate for
the calculated eigenvalues and eigenvectors of the boundary integral formulations is stated.
We will see that we can get a convergence order with respect to the mesh size of up to
three for the eigenvalues and up to 3/2 for the eigenvectors in the case, where lowest order
Galerkin discretizations are chosen [27, 30]. Finally, in Chapter 8, the different algorithms
presented in the Chapters 3-5 are compared in several numerical experiments for interior
and exterior eigenvalue problems.
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2 Basics of nonlinear eigenvalue
problems

In this chapter we would like to introduce the basics of nonlinear eigenvalues problems
(NEPs) of the form

T (λ)v = 0, v 6= 0, (2.1)

where T ∈ H(D,Cn×n) is holomorphic in some open domain D ⊂ C, i.e., all coefficients
of T are holomorphic functions in D. Moreover, we assume that T is regular, i.e., det(T )
does not vanish identically in D. We largely follow [7].

Definition 2.1. We call (λ, v) ∈ D × Cn\{0} an eigenpair of T if T (λ)v = 0. λ is called
eigenvalue and v is the corresponding eigenvector.

Similarly as for linear eigenvalue problems, one can introduce the geometric multiplicity
of an eigenvalue. However, the definition of the algebraic multiplicity of an eigenvalue has
to be adapted for NEPs. Therefore, we introduce the concept of root functions.

Definition 2.2. We call a function v ∈ H(D,Cn) root function of T at λ ∈ D if the
following condition is satisfied:

T (λ)v(λ) = 0, v(λ) 6= 0.

The order of zero of T (z)v(z) at z = λ is called multiplicity of v at λ and denoted by ν.

Due to the fact that v is holomorphic, it can be represented by a power series as follows
[12, Chapter II, Theorem 4.1.]

v(z) =
∞∑
j=0

(z − λ)jvj, v0 6= 0.

This representation leads to the definition of chains of generalized eigenvectors.

Definition 2.3. Let

v(z) =
∞∑
j=0

(z − λ)jvj
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with v0 6= 0 be a root function of T at λ ∈ D with multiplicity ν, i.e.,

dj

dzj
(T (z)v(z))|z=λ = 0 ∀j = 0, . . . , ν − 1,

dν

dzν
(T (z)v(z))|z=λ 6= 0.

Then any sequence of vectors

(v0, . . . , vµ−1), µ 6 ν,

is called a chain of generalized eigenvectors (CGE) or Jordan chain of length µ, v0 is an
eigenvector, and v1, . . . , vµ−1 are associated vectors for v0 of T at λ. The set Gλ(T ) spanned
by all the elements of Jordan chains corresponding to λ is called generalized eigenspace of
T at λ.

With these definitions in mind, we define the rank of an eigenvector of T and the canon-
ical system of generalized eigenvectors, which finally leads us to a proper definition of the
algebraic multiplicity of an eigenvalue of T .

Definition 2.4. Let v0 ∈ ker(T (λ)), v0 6= 0, be an eigenvector of T at λ. Then

rλ(v0) := max{ν : v is a root function of T at λ with multiplicity ν and v(λ) = v0}

is called the rank of v0. The number

Mλ(T ) := max
v0∈kerT (λ)\{0}

rλ(v0)

is called maximal length of Jordan chains corresponding to λ.

Note that the definition above is well-defined as r(v0) is finite [17, Lemma A.8.3].

Definition 2.5. Let η be the dimension of ker(T (λ)). The system of vectors

Ṽ =
(
vlj, 0 6 j 6 ml − 1, 1 6 l 6 η

)
is called canonical system of generalized eigenvectors (CSGEs) of T at λ if the conditions
below are fulfilled:

(1) The vectors v1
0, . . . , v

η
0 form a basis of ker(T (λ)).

(2) The tuple (vl0, . . . , v
l
ml−1) is a CGE of T at λ for l = 1, . . . , η.

(3) rλ(v
1
0) = m1 := max{rλ(v0) : v0 ∈ ker(T (λ))}.

(4) rλ(v
l
0) = ml := max{rλ(v0) : v0 ∈ ker(T (λ))\ span{v1

0, . . . , v
l−1
0 }} for l = 2, . . . , η.

The numbers m1 > · · · > mη are called partial multiplicities.

Now the algebraic multiplicity of an eigenvalue of T can be defined as follows.
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Definition 2.6. The number

mλ(T ) :=

η∑
l=1

ml

is called algebraic mulitplicity of T at λ and η is called geometric mulitplicity. We call the
eigenvalue λ simple if its geometric and algebraic multiplicity are equal to one.

The following theorem about the representation of the resolvent T (z)−1 [7, Corollary 2.8]
is used as base in the construction of the numerical methods presented in [1, 7, 31, 32, 33]
for solving NEPs of the form (2.1).

Theorem 2.7. Let C ⊂ D be a compact subset and let T ∈ H(D,Cn×n). Then C contains
at most finitely many eigenvalues λk, k = 1, . . . , nC, with corresponding CSGEs of T

Vk =
(
vl,kj , 0 6 j 6 ml,k − 1, 1 6 l 6 ηk

)
.

Further, let the corresponding CSGEs on TH be given by

Wk =
(
wl,kj , 0 6 j 6 ml,k − 1, 1 6 l 6 ηk

)
such that

rλk(w
l,k
0 ) = ml,k,

and the scaling condition

j∑
α=0

mν,k∑
β=0

(wl,kj−α)HTα+β,kv
ν,k
mν,k−β = δν,lδ0,j, 0 6 j 6 ml,k − 1, 1 6 l, ν 6 ηk,

where Tj,k = 1
j!
T (j)(λk), is satisfied. Then there exist a set C ⊂ U ⊂ D and a holomorphic

function R ∈ H(U ,Cn×n) such that

T (z)−1 =

nC∑
k=1

ηk∑
l=1

ml,k∑
j=1

(z − λk)−j
ml,k−j∑
ν=0

vl,kν (wl,kml,k−j−ν)
H +R(z) (2.2)

holds for all z ∈ U\{λ1, . . . , λnC}.

Note that the poles of the resolvent T (z)−1 are exactly the eigenvalues of T . Therefore,
our aim is to extract these poles properly. In the next two chapters we present two ways
to approximate them. As already mentioned in the introduction, the first one makes use
of contour integrals and the second one of rational interpolation.
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3 Contour integral method (CIM)

In this chapter we would like to derive the CIM, which provides a way to approximate
the poles of the resolvent T (z)−1 by using contour integrals. In doing so, we largely follow
[7]. Another algorithm which uses the contour integral approach is the so-called block SS
method, though this method differs only slightly from the one proposed by Beyn [7]. For
a detailed derivation and description of the block SS method we refer to [1]. However, in
comparison to [7] where the case of multiple eigenvalues is treated too, in [1] it is assumed
for the derivation of the algorithm that all eigenvalues are simple.

3.1 Main idea of the CIM

The central idea of the CIM is to apply the residue theorem [12, Chapter IV, Theorem
3.1.] to the representation of the resolvent (2.2) in Theorem 2.7. This gives the following
result [7, Theorem 2.9].

Theorem 3.1. Let T ∈ H(D,Cn×n) and let ΓC ⊂ D be a contour, i.e., a simple closed
curve, such that there are no eigenvalues of T on ΓC. Let us denote the eigenvalues in the
interior int(ΓC) ⊂ D by λk, k = 1, . . . , nC. Then it holds for every f ∈ H(D,C) with the
CSGEs from Theorem 2.7

1

2πi

∫
ΓC

f(z)T (z)−1dz =

nC∑
k=1

ηk∑
l=1

ml,k∑
j=1

f (j−1)(λk)

(j − 1)!

ml,k−j∑
ν=0

vl,kν (wl,kml,k−j−ν)
H .

If we further assume that all eigenvalues are simple, the above formula simplifies to

1

2πi

∫
ΓC

f(z)T (z)−1dz =

nC∑
k=1

f(λk)vkw
H
k ,

where vk and wk are left and right eigenvectors corresponding to λk which are normalized
according to

wHk T
′(λk)vk = 1, k = 1, . . . , nC.

Note that the holomorphic term R(z) in the representation of T (z)−1 vanishes since
by Cauchy’s integral theorem [12, Chapter II, Theorem 2.2.] every contour integral for a
holomorphic function is equal to zero.
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3.2 Derivation of the algorithm

Let ΓC ⊂ D be a contour. In this section we summarize the main steps in the derivation
of the algorithm for calculating all eigenvalues of T ∈ H(D,Cn×n) which lie in the interior
of the contour int(ΓC) ⊂ D. Let

κ =

nC∑
k=1

ηk∑
l=1

ml,k (3.1)

be the sum of all algebraic multiplicities of all eigenvalues. For large-scale problems it is
necessary to condense T (z)−1 so that it is possible to carry out the computations in an
affordable time with moderate memory costs. Therefore, we multiply T (z)−1 by a random
matrix U ∈ Cn×l, where l 6 n, from the right. For l we require that it is chosen larger or
equal than the maximal algebraic multiplicity of the eigenvalues of T , i.e.,

l > max
k=1,...,nC

(
ηk∑
l=1

ml,k

)
. (3.2)

Note that it is always assumed that κ 6 n because this is typical of large-scale problems.
Moreover, we always require that U has full rank. However, this condition is fulfilled in
almost all practical situations due to the floating point arithmetic. In the sequel we will
need the following matrices.

Definition 3.2. Let p ∈ N0. Then we call Ap given by

Ap :=
1

2πi

∫
ΓC

zpT (z)−1Udz ∈ Cn×l (3.3)

contour moment of order p.

The following lemma shows that there exist decompositions of the contour moments Ap
into matrices.

Lemma 3.3. Let Ap by given as in (3.3) and let p ∈ N0. Then there exists a splitting of
Ap in the following way:

Ap = V ΛpWHU, (3.4)

with

V =
(
vl,kj , 0 6 j 6 ml,k − 1, 1 6 l 6 ηk, 1 6 k 6 nC

)
∈ Cn×κ,

W =
(
wl,kj , 0 6 j 6 ml,k − 1, 1 6 l 6 ηk, 1 6 k 6 nC

)
∈ Cn×κ,
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defined as in Theorem 2.7, and Λ having Jordan normal form

Λ =

J1

. . .

JnC

 , Jk =

Jk,1 . . .

Jk,ηk

 ,

Jk,l =


λk 1

. . . . . .

λk 1
λk

 ∈ Cml,k×ml,k .

(3.5)

Proof. Using Theorem 3.1 we get for every p ∈ N0

Ap =
1

2πi

∫
ΓC

zpT (z)−1Udz =

nC∑
k=1

ηk∑
l=1

ml,k∑
j=1

(zp)(j−1)(λk)

(j − 1)!

ml,k−j∑
ν=0

vl,kν (wl,kml,k−j−ν)
HU. (3.6)

In order to show the statement, we calculate Λp first. Since Λ and Jk have block diagonal
form, it holds

Λp =

J
p
1

. . .

JpnC

 , Jpk =

J
p
k,1

. . .

Jpk,ηk

 .

For Jpk,l we get the following representation

Jpk,l =



λpk
pλp−1
k

1!

p(p−1)λp−2
k

2!
· · · p(p−1)···(p−ml,k+2)λ

p−ml,k+1

k

(ml,k−1)!

. . . . . . . . .
...

. . . . . . p(p−1)λp−2
k

2!
. . . pλp−1

k

1!

λpk


∈ Cml,k×ml,k .

Note that the entries in this matrix coincide with the terms

(zp)(j−1)(λk)

(j − 1)!

in (3.6). Moreover, V can be written in the form

V =
(
v·,1· . . . v·,nC·

)
, v·,k· =

(
v1,k
· . . . vηk,k·

)
, vl,k· =

(
vl,k0 . . . vl,kml,k−1

)
∈ Cn×ml,k .

Analogously, WH can be represented as

WH =

 (w·,1· )H

...
(w·,nC· )H

 , (w·,k· )H =

 (w1,k
· )H

...
(wηk,k· )H

 , (wl,k· )H =

 (wl,k0 )H

...

(wl,kml,k−1)H

 ∈ Cml,k×n.

The statement follows directly by matrix multiplication.
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Let us now choose K ∈ N such that Kl > κ and the following rank conditions hold

rank

 V
...

V ΛK−1

 = rank
(
WHU · · · ΛK−1WHU

)
= κ. (3.7)

If both matrices, V and WHU , have full rank, then K = 1 and l > κ. In the case where
either V or WHU or both do not have full rank, the following lemma shows that the
rank conditions are satisfied if K is chosen larger than the sum of all maximal partial
multiplicities at all eigenvalues [7, Lemma 5.1].

Lemma 3.4. Let the assumptions of Theorem 2.7 be fulfilled. Then the rank conditions
(3.7) hold for

K >
nC∑
k=1

max
16l6ηk

ml,k. (3.8)

Proof. We restrict to proving the first rank condition since the second rank condition can
be shown in a similar way. The proof follows [7]. To start with, from our definition of the
partial multiplicities it follows directly

m1,k = max
16l6ηk

ml,k

for all k ∈ {1, . . . , nC}. We choose K such that (3.8) is satisfied. In order to prove

rank

 V
...

V ΛK−1

 = κ, (3.9)

we have to show that for all j = 0, . . . , K − 1, it follows from V Λjx = 0 for some x ∈ Cκ

that x = 0, i.e., we show that the columns of the Kn × κ matrix in (3.9) are linearly
independent. We suppose V Λjx = 0 for some x ∈ Cκ and for all j = 0, . . . , K− 1. For any
arbitrarily chosen k ∈ {1, . . . , nC} and 0 6 β 6 m1,k − 1 we define the polynomial

Pk,β(z) := (z − λk)β
nC∏

r=1,r 6=k

(z − λr)m1,r .

We notice that by our assumption on the choice of K these polynomials have at most
degree K − 1. Hence, it follows V Pk,β(Λ)x = 0. Then we partition V into columns and x
into blocks which are compatible with the Jordan structure (3.5), i.e.,

V = (V1 · · ·VnC) , Vk = (V1,k · · ·Vηk,k) , Vl,k =
(
vl,k0 · · · v

l,k
ml,k−1

)
,

x =

 x1
...
xnC

 , xk =

 x1,k
...

xηk,k

 , xl,k =

 xl,k0
...

xl,kml,k−1

 .
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Using this partitioning we get from V Pk,β(Λ)x = 0

0 =

nC∑
j=1

Vj(Jj − λk)β
nC∏

r=1,r 6=k

(Jj − λr)m1,rxj.

Due to (Jr − λr)m1,r = 0, it follows immediately

0 = Vk(Jk − λk)β
nC∏

r=1,r 6=k

(Jk − λr)m1,rxk.

After expanding into columns again and using (Jk,l − λk)β = 0 for β > ml,k, we obtain

0 =

ηk∑
l=1

β6ml,k−1

Vl,k

[
nC∏

r=1,r 6=k

(Jk,l − λr)m1,r

]
(Jk,l − λr)βxl,k. (3.10)

Now we show for fixed k ∈ {1, . . . , nC} by induction on β = m1,k − 1, . . . , 0, that

xl,kν = 0 (3.11)

for all β 6 ν 6 ml,k − 1, where l ∈ {1, . . . , ηk}. For the basis we have to verify that (3.11)
holds for β = m1,k − 1. In fact, (3.10) reads in this case

0 =

ηk∑
l=1

ml,k=m1,k

(
vl,k0 · · · v

l,k
ml,k−1

) nC∏
r=1,r 6=k

(Jk,l − λr)m1,r

0 · · · 1
...

...
0 · · · 0


 xl,k0

...

xl,kml,k−1


=

nC∏
r=1,r 6=k

(λk − λr)m1,r

ηk∑
l=1

ml,k=m1,k

vl,k0 xl,kml,k−1.

Since the vectors vl,k0 are linearly independent by Definition 2.5, xl,kml,k−1 = 0 for all l ∈
{1, . . . , ηk}. For the induction step we assume that (3.11) holds for β (induction hypothesis)
and show that it remains true for β−1. Taking this hypothesis into consideration, equation
(3.10) leads, similarly as above, to

0 =

ηk∑
l=1

β6ml,k

(
vl,k0 · · · v

l,k
ml,k−1

) nC∏
r=1,r 6=k

(Jk,l − λr)m1,r


0 · · · 1 · · · 0
...

...
. . .

...
0 · · · 0 · · · 1
...

...
...

0 · · · 0 · · · 0




xl,k0

...

xl,kβ−1
...
0


=

nC∏
r=1,r 6=k

(λk − λr)m1,r

ηk∑
l=1

β6ml,k

vl,k0 xl,kβ−1.
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Again, the linear independence of the vectors vl,k0 implies xl,kβ−1 = 0 for all l ∈ {1, . . . , ηk},
and therefore x = 0.

We form the Hankel matrices

B0 :=


A0 A1 · · · AK−1

A1 A2 · · · AK
...

...
. . .

...
AK−1 AK . . . A2K−2

 , B1 :=


A1 A2 · · · AK
A2 A3 · · · AK+1
...

...
. . .

...
AK AK+1 . . . A2K−1

 . (3.12)

By (3.4) we can represent B0 and B1 in the following way

B0 =

 V
...

V ΛK−1

(WHU · · · ΛK−1WHU
)

:= V[K]W
H
[K] ∈ CKn×Kl

and

B1 =

 V
...

V ΛK−1

Λ
(
WHU · · · ΛK−1WHU

)
:= V[K]ΛW

H
[K] ∈ CKn×Kl. (3.13)

Then we compute the reduced singular value decomposition (SVD)

V[K]W
H
[K] = B0 = V0Σ0W

H
0 , (3.14)

where V0 ∈ CKn×κ, V H
0 V0 = Iκ, W0 ∈ CKl×κ, WH

0 W0 = Iκ and Σ0 = diag(σ1, . . . , σκ) ∈
Cκ×κ. In order to show rank(B0) = κ, we need the following lemma [11, Section 2.5.5].

Lemma 3.5 (Sylvester’s rank inequality). Let A ∈ Cm×n and B ∈ Cn×p. Then it holds

rankA+ rankB − n 6 rankAB 6 min{rankA, rankB}.

Due to the rank conditions (3.7) we know that V[K] ∈ CKn×κ and WH
[K] ∈ Cκ×Kl have

rank κ. Therefore, we obtain by applying Sylvester’s rank inequality to B0

κ 6 rankB0 6 κ.

This implies that rank(B0) = κ. Hence, B0 has singular values (s. [9, Lemma 4.29])

σ1 > · · · > σκ > 0 = σκ+1 = · · · = σKl.

Another consequence of the rank conditions (3.7) and of equation (3.14) is

ran(B0) = ran(V[K]) = ran(V0), (3.15)
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where ran denotes the range. This follows directly from the fact that the columns of the
matrix products V[K]W

H
[K] and V0Σ0W

H
0 are linear combinations of the column vectors of

V[K] and V0 respectively. Since V0, V[K] ∈ CKn×κ and V0 has orthonormal columns, we can
write

V[K] = V0S (3.16)

with

S = V H
0 V[K] ∈ Cκ×κ

regular due to (3.15). With (3.14) and (3.16) we obtain

V0SW
H
[K] = V0Σ0W

H
0 ,

and it follows by multiplying this equation with the matrix V H
0 from the left side and using

the definition of orthogonal matrices V H
0 V0 = Iκ that

SWH
[K] = Σ0W

H
0 .

Due to the regularity of S, we can apply S−1 to this equation. This leads to

WH
[K] = S−1Σ0W

H
0 . (3.17)

Plugging (3.16) and (3.17) into (3.13) gives

B1 = V[K]ΛW
H
[K] = V0SΛS−1Σ0W

H
0 ,

and after multiplication by V H
0 from the left and by W0Σ−1

0 from the right, we finally obtain
by using V H

0 V0 = Iκ and WH
0 W0 = Iκ

B := V H
0 B1W0Σ−1

0 = SΛS−1. (3.18)

Note that this matrix B can be calculated without any knowledge of the eigenvalues and
CSGEs, only by calculating the matrices B0 and B1 defined as in (3.12) via the contour
integrals (3.3) and computing the reduced SVD of B0. We summarize this result in the
following theorem [7, Theorem 5.2].

Theorem 3.6. Let T ∈ H(D,Cn×n) and let ΓC ⊂ D such that there are no eigenvalues of
T on ΓC. Let us denote the pairwise distinct eigenvalues inside ΓC by λk, k = 1, . . . , nC, and
the corresponding partial multiplicities by m1,k > · · · > mηk,k. Further, we suppose that the
rank conditions (3.7) are fulfilled with κ given by (3.1). Then the matrix B ∈ Cκ×κ defined
in (3.18) has Jordan normal form with the same eigenvalues λk and corresponding partial
multiplicities ml,k, l = 1, . . . , ηk, k = 1, . . . , nC, as T . If sl,kj are corresponding CSGEs for
B, one can obtain suitable CSGEs for T via

vl,kj = V
[1]

0 sl,kj , 0 6 j 6 ml,k − 1, 1 6 l 6 ηk, 1 6 k 6 nC,

where V
[1]

0 denotes the upper n× κ block in

V0 =

V
[1]

0
...

V
[K]

0

 .
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3.3 Approximation of B0 and B1

The major cost of the algorithms lies in the calculation of the integrals Ap given by (3.3).
Since it is generally not possible to calculate Ap explicitly, we approximate these integrals by
performing numerical integration. Note that the generation of Ap also requires to compute
T (z)−1U in the integrand. To do this, equations of the form

T (z)X = U,

where X ∈ Cn×l, have to be solved. Let us assume that there exists a 2π-periodic smooth
parametrization of ΓC, i.e., there exists φ ∈ C1(R,C) such that

φ(t+ 2π) = φ(t) ∀t ∈ R.

For the approximation of Ap we use the trapezoidal sum because it can be shown that

the approximation Âp of Ap converges exponentially to Ap with respect to the number of
quadrature nodes N if equidistant nodes tj = 2jπ

N
, j = 0, . . . , N , are taken as quadrature

points [7, Theorem 4.7]. We obtain approximations of the form

Ap :=
1

2πi

∫
ΓC

zpT (z)−1Udz ≈ 1

iN

N−1∑
j=0

T (φ(tj))
−1Uφ(tj)

pφ′(tj) =: Âp. (3.19)

3.4 Algorithm (CIM)

By summarizing the steps from the previous sections we obtain the following algorithm,
which is called Integral algorithm 2 in [7].

Algorithm 1 CIM
1: Fix the contour ΓC and the number N of quadrature points for the trapezoidal rule.

Choose l 6 n according to (3.2), and K ∈ N such that Kl > κ and (3.7) are fulfilled.
Note that in most cases the number of eigenvalues κ is unknown beforehand. Construct
a n× l random matrix U .

2: Calculate the matrices Âp given by (3.19) for p = 0, . . . , 2K − 1.

3: Form the approximations B̂0 and B̂1 of the block Hankel matrices B0 and B1 given as
in (3.12) by using Âp instead of Ap.

4: Compute the reduced SVD of B̂0 = Ṽ ΣW̃H , where Ṽ ∈ CKn×Kl, W̃ ∈ CKl×Kl, Ṽ H Ṽ =
W̃HW̃ = IKl, and Σ = diag(σ1, σ2, . . . , σKl).

5: Determine κ by σ1 > · · · > σκ > tolrank > σκ+1 ≈ · · · ≈ σKl ≈ 0.
6: Set V0 = Ṽ (1 : Kn, 1 : κ), W0 = W̃ (1 : Kl, 1 : κ) and Σ0 = diag(σ1, σ2, . . . , σκ).
7: Compute the matrix B̂ = V H

0 B̂1W0Σ−1
0 ∈ Cκ×κ and solve the eigenvalue problem for B̂.

Let (λj, sj) be an eigenpair of B̂. Calculate vj = V
[1]

0 sj, and accept λj, if λj ∈ Int(ΓC)
and ‖T (λj)vj‖/‖vj‖ 6 tolres.
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Remark (Choice of K, tolrank and tolres). When looking at the above algorithm, the ques-
tion arises, how to choose the parameters K, tolrank and tolres.

First of all, the parameter K can be chosen one if the generalized eigenvectors are linearly
independent. However, numerical tests have shown that in this case it is even better to
choose K = 2, but larger values are not recommended due to the special structure of the
Hankel matrices. For the case of linearly dependent eigenvectors, Lemma 3.4 has to be
taken into consideration.

As far as tolrank is concerned, this parameter describes in fact the numerical rank of a
matrix, which is defined as the largest value k such that

σk > δ · σ1

for a given tolerance δ. Clearly, there exists no explicit formula for the proper choice of δ
since the singular value distribution of B0 and B1 is affected by several factors, e.g. the
position of the eigenvalues and their distribution. In our numerical tests we almost always
chose δ ≈ 10−14 for the cases where dense matrices were used in the calculation of T (φ(tj))
and a direct solver (LU) was chosen for solving the systems of linear equations. For the
cases where these matrices were approximated with tolerance ε, i.e.,

‖T (φ(tj))− Tε(φ(tj))‖2 . ε,

and the systems of linear equations were solved using an iterative solver (GMRES) with
tolerance gmrestol, the following approximation formula for δ worked nicely

δ ≈ max{ε, gmrestol} · 10−2.

Finally, the parameter tolres is used to “remove” spurious eigenvalues lying inside of ΓC
from the list of all calculated eigenvalues. Typically there is a gap of several orders in the
residuals of the real and the spurious eigenvalues. In most cases tolres can be chosen 10−4

or even lower.
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4 Rational interpolation method
(RIM)

In this chapter we would like to present an algorithm for calculating all eigenvalues of
T ∈ H(D,Cn×n) lying in the interior of a given contour ΓC ⊂ D which uses the rational
interpolation approach to approximate the poles of T (z)−1. The main ideas are taken from
[32], though the algorithm is derived in a bit different way.

4.1 Jacobi rational interpolation algorithm

The central idea of the RIM is to compute an appropriate rational interpolant of T (z)−1U
inside ΓC, where U is a random matrix chosen as in the CIM, and to calculate the zeros of
the denominator then. One possibility to compute the rational interpolant of a function
inside ΓC is to use the so-called Jacobi rational interpolation algorithm. This algorithm is
presented in [10] for scalar functions f . In this section we follow [10] and generalize the
algorithm for matrix-valued functions. Let

F (z) := T (z)−1U ∈ Cn×l (4.1)

be matrix-valued, where U ∈ Cn×l is a random matrix with l 6 n linearly independent
columns and l should be chosen according to (3.2), i.e.,

l > max
k=1,...,nC

(
ηk∑
l=1

ml,k

)
.

For a given set of N tuples (zi, F (zi)), i = 0, . . . , N − 1, we would like to determine a
matrix-valued polynomial Pµ of degree µ and a scalar polynomial qν of degree ν with
N = µ+ ν + 1 such that

F (zi) =
Pµ(zi)

qν(zi)
∀0 6 i 6 N − 1. (4.2)

Note that the coefficients of Pµ are matrices. Now we need some definitions from the
barycentric Lagrange interpolation theory [5]. First, we define the node polynomial

l(z) := (z − z0)(z − z1) · · · (z − zN−1)
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and the barycentric weights

wi :=
1

l′(zi)
=

1∏N−1
j=0,j 6=i(zi − zj)

∀0 6 i 6 N − 1. (4.3)

From (4.2) we obtain for every j > 0

wiz
j
iPµ(xi) = wiz

j
iF (zi)qν(zi) ∀0 6 i 6 N − 1,

and by summation of these terms we get

N−1∑
i=0

wiz
j
iPµ(zi) =

N−1∑
i=0

wiz
j
iF (zi)qν(zi). (4.4)

Before proceeding, we repeat some important definitions from the interpolation theory for
scalar-valued functions g.

Definition 4.1. The divided differences of a function g with respect to xi, i = 0, . . . , n,
are defined recursively as follows.

• zeroth divided difference:

g[xi] = g(xi),

• first divided difference:

g[xi, xi+1] =
g[xi+1]− [g(xi)]

xi+1 − xi
,

• kth divided difference:

g[xi, xi+1, . . . , xi+k] =
g[xi+1, xi+2, . . . , xi+k]− g[xi, xi+1, . . . , xi+k−1]

xi+k − xi
.

We denote g[x0, . . . , xk] by [g(x)]0,...,k.

Definition 4.2. We define the Newton interpolation polynomial of order n of a function
g at the interpolation points x0, . . . , xn by

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0) · · · (x− xn−1). (4.5)

It can be shown via induction that the coefficients ak are given by the divided differ-
ences [g(x)]0,...,k (see e.g. [9, Chapter 8] for real-valued g). Hence, it follows immediately
[g(x)]0,...,n = 0 if g is a polynomial of degree smaller than n. In addition, an = [g(x)]0,...,n
is the leading coefficient of pn(x), i.e., the coefficient of xn.
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Theorem 4.3 (Lagrange interpolation formula). Let g(x0), g(x1), . . . , g(xn) be given. Then
there exists a unique polynomial pn ∈ Πn such that

pn(xi) = g(xi) ∀0 6 i 6 n.

In particular, pn can be represented as

pn(x) =
n∑
i=0

g(xi)li(x), (4.6)

where

li(x) :=
n∏

k=0,k 6=i

x− xk
xi − xk

(4.7)

are the Lagrange basis polynomials.

Proof. See e.g. [9, Theorem 8.3] for real-valued g.

Note that the leading coefficient of the Lagrange basis polynomial li defined in (4.7) for
fixed i ∈ {0, . . . , n} is given by

n∏
k=0,k 6=i

1

xi − xk
= wi.

Hence, the coefficient of xn in pn(x) defined by (4.6) is

n∑
i=0

wig(xi).

By equating it with the corresponding coefficient in the formula for the Newton interpola-
tion polynomial (4.5)

an = [g(x)]0,...,n,

we deduce the formula

[g(x)]0,...,n =
n∑
i=0

wig(xi). (4.8)

Note that the definitions and results above also remain true for matrix-valued functions
G ∈ Cn×l because they can be written as

G(z) :=

g1,1(z) · · · g1,l(z)
...

...
gn,1(z) . . . gn,l(z)


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and the results can be applied to each component gi,j(z). Clearly, the coefficients a0, . . . , an
in (4.5) are matrices A0, . . . , An ∈ Cn×l when G is used. The corresponding analogue of
formula (4.8) for G is

[G(x)]0,...,n =
n∑
i=0

wiG(xi).

By setting G(z) = zjPµ(z) and G(z) = zjF (z)qν(z) respectively, equation (4.4) can be
represented via the divided differences of order N − 1 with respect to the interpolation
values zi as

[zjPµ(z)]0,...,N−1 = [zjF (z)qν(z)]0,...,N−1.

The left term vanishes for 0 6 j 6 ν − 1 since N = µ+ ν + 1 and

deg(zjPµ(z)) = j + µ 6 ν − 1 + µ = N − 2.

Hence,

[zjF (z)qν(z)]0,...,N−1 = 0 ∀0 6 j 6 ν − 1. (4.9)

This represents a system of ν matrix-equations and ν+1 unknowns, namely the coefficients
of qν(z). Therefore, we have one degree of freedom in the choice of the coefficients of qν(z).
Since qν(z) is a polynomial of degree ν, it can be represented as

qν(z) =
ν∑
k=0

dkz
k,

where we choose dν = 1. With this ansatz we receive from (4.9) the following linear systems
of equations

N−1∑
i=0

wiz
j
iF (zi)qν(zi) =

N−1∑
i=0

wiz
j
iF (zi)

ν∑
k=0

dkz
k = 0 ∀0 6 j 6 ν − 1,

which can be rewritten as

ν∑
k=0

hj+kdk = 0 ∀0 6 j 6 ν − 1, (4.10)

where

hs :=
N−1∑
i=0

wiz
s
iF (zi) ∈ Cn×l ∀0 6 s 6 2ν − 1. (4.11)
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Finally, we can put (4.10) into the form
h0 h1 h2 · · · hν−1

h1 h2 h3 · · · hν
h2 h3 h4 · · · hν+1
...

...
...

. . .
...

hν−1 hν hν+1 . . . h2ν−2




D0

D1

D2
...

Dν−1

 = −


hν
hν+1

hν+2
...

h2ν−1

 , (4.12)

where Di = diag(di, . . . , di) ∈ Cl×l. This system is called Yule-Walker system.

Remark. Note that for given µ and ν a rational interpolant satisfying (4.2) at all points
does not have to exist. This is the case, when zi is a zero of the numerator and the
denumerator polynomials at the same time. However, Saff [24] showed the following: Let
f be a scalar function. If the degree ν of the monic polynomial qν is chosen as the number
of poles of f , then there exist rational interpolants pµ/qν which converge uniformly to f
in some region. Moreover, the poles of those rational interpolants converge to the poles
of f , provided that µ is sufficiently large. We will see that for ν = K, where K is the
number of blocks per row/column of the Hankel matrices B0 and B1 in the CIM given by
(3.12), a rational interpolant of the matrix-valued F defined as in (4.1) exists, provided
that N is sufficiently large. Clearly, it also has to be assumed that (3.8) holds in the
case where the generalized eigenspace is rank-deficient. If all generalized eigenvectors are
linearly independent, K can be chosen one.

4.2 Relationship between the zeros of qν and a

generalized eigenvalue problem

In this section we show that there exists a relationship between the zeros of the polynomial
qν in the rational interpolant of F and a generalized eigenvalue problem involving Hankel
matrices. For this, we need the following lemma.

Lemma 4.4. Let qν be a complex-valued monic polynomial of degree ν with zeros x1, . . . , xν,
i.e.,

qν(z) = d0 + d1z + · · ·+ dν−1z
ν−1 + zν = (z − x1) · · · · · (z − xν). (4.13)

Then the eigenvalues of the Frobenius companion matrix

C :=


0 0 · · · 0 −d0

1 0 · · · 0 −d1

0 1 · · · 0 −d2
...

...
. . .

...
...

0 0 · · · 1 −dν−1


coincide with the zeros of qν.
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Proof. “⇐ ” Let xj be a zero of qν , i.e., qν(xj) = 0. Then it holds

CT


1
xj
...

xν−2
j

xν−1
j

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−d0 −d1 −d2 · · · −dν−1




1
xj
...

xν−2
j

xν−1
j

 =


xj
x2
j
...

xν−1
j

xνj

 = xj


1
xj
...

xν−2
j

xν−1
j

 ,

where

−d0 − d1xj − · · · − dν−1x
ν−1
j = −qν(xj) + xνj = xνj

is used. Therefore, xj is also an eigenvalue of C. “ ⇒ ” Now we assume that xj is an
eigenvalue of C. Then xj is also an eigenvalue of CT and hence there exists an eigenvector
(a0, a1, . . . , aν−1)T ∈ Cν\{0} such that

CT


a0

a1
...

aν−2

aν−1

 =


a1

a2
...

aν−1

−d0a0 − d1a1 − · · · − dν−1aν−1

 = xj


a0

a1
...

aν−2

aν−1

 .

If we choose a0 = 1, we obtain (a0, a1, . . . , aν−1)T = (1, xj, . . . , x
ν−1
j )T . The last row implies

d0 + d1xj + · · ·+ dν−1x
ν−1
j + xνj = 0.

Therefore, xj is a zero of qν .

A generalization of this result is given by the following corollary.

Corollary 4.5. Let qν be given as in Lemma 4.4. Then the eigenvalues of the matrix

C̃ :=


0 0 · · · 0 −D0

Il×l 0 · · · 0 −D1

0 Il×l · · · 0 −D2
...

...
. . .

...
...

0 0 · · · Il×l −Dν−1

 ,

where Di = diag(di, . . . , di) ∈ Cl×l, coincide with the zeros of qν (each zero occurs l times).

Proof. Analogously to the proof of Lemma 4.4 with eigenvector (I1×l, xjI1×l, . . . , x
ν−1
j I1×l)

T .

Using this corollary, we are now able to prove the following theorem which describes the
relationship between the zeros of qν and a generalized eigenvalue problem using Hankel
matrices, mentioned in the introduction of this section.
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Theorem 4.6. Let Pµ/qν be the rational interpolant of a matrix-valued function F in the
interpolation points z1, . . . , zN , where F (z) ∈ Cn×l, Pµ is a matrix-valued polynomial of
degree µ and qν is a monic polynomial of degree ν represented as in (4.13). Denote the
poles of Pµ/qν by x1, . . . , xν. Then x1, . . . , xν are eigenvalues of the eigenvalue problem

(H< − λH)y = 0, (4.14)

where

H :=


h0 h1 · · · hν−1

h1 h2 · · · hν
...

...
. . .

...
hν−1 hν · · · h2ν−2

 , H< :=


h1 h2 · · · hν
h2 h3 · · · hν+1
...

...
. . .

...
hν hν+1 · · · h2ν−1

 , (4.15)

and hs is defined as in (4.11) for 0 6 s 6 2ν − 1.

Proof. The proof is similar to the proof in [18, Theorem 4] where the statement is shown
for a scalar f . By Corollary 4.5 the zeros x1, . . . , xν of qν are eigenvalues of the matrix C̃.
Let xj be an eigenvalue of C̃ with corresponding eigenvector v, i.e.,

C̃v = xjv.

Then it follows by multiplication with H from the left side

HC̃v = xjHv.

Using (4.12), one can easily show that HC̃ = H<. This proves the statement.

4.3 Relationship between the RIM and the CIM

In this section we show that the CIM can be seen as a special case of the RIM in some
way. In Section 4.1 we have already seen that the RIM leads to the computation of

hp =
N−1∑
j=0

wjz
p
jF (zj), p ∈ N0, (4.16)

where zj are interpolation points, and wj are the corresponding barycentric weights given
by (4.3). In the CIM we have to compute

Âp =
1

iN

N−1∑
j=0

T (φ(tj))
−1Uφ(tj)

pφ′(tj) =
N−1∑
j=0

w̃j z̃
p
jF (z̃j), p ∈ N0, (4.17)

where

z̃j := φ(tj)
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are quadrature points on ΓC,

w̃j :=
1

iN
φ′(tj) (4.18)

are the corresponding weights with tj = 2jπ
N

, and φ is a 2π-periodic smooth parametrization
of ΓC. We show that the two methods are equivalent in the case, where the eigenvalues
within the unit disc are searched and it is assumed that the N roots of unity are chosen as
quadrature and interpolation points, i.e.,

zj = z̃j = exp

(
2πij

N

)
, j = 0, . . . , N − 1.

This relationship has already been noticed for one-dimensional problems in [2] and for a
symmetric generalized eigenvalue problem in [3].

Under the assumptions that z0, . . . , zN−1 are the roots of unity, it holds

l(z) =
N−1∏
j=0

(z − zj) = zN − 1.

Hence, we obtain for every j = 0, . . . , N − 1

wj =
1

l′(zj)
=

1

NzN−1
j

=
1

N
zj.

Due to

z̃j = φ(tj) = exp

(
2πij

N

)
,

it follows φ(t) = exp(it) and thus φ′(t) = i exp(it). Finally, we get by (4.18)

w̃j =
1

iN
φ′(tj) =

1

N
exp(itj) =

1

N
zj = wj.

It can be shown in a similar way that the weights w̃j and wj are the same up to common
factors in the case, where the N roots of unity are multiplied by a constant α > 0 and
shifted by β ∈ C. Furthermore, this remains true for the case, where the same points
are chosen as quadrature and interpolation points, and the contours are ellipses. It seems
reasonable to suppose that these results can also be transferred to the case, where the
contours are even more arbitrary parametrizable C1-contours. Therefore, the CIM can be
seen as a special case of the RIM, if the same points are taken as quadrature points and
interpolation points, and ν is chosen equal to K defined in the CIM. Provided that all
generalized eigenvectors are linearly independent, K can be chosen one, otherwise K has
to be chosen according to Lemma 3.4. We want to note that in [32] the RIM is derived in a
bit different way and there one obtains for interpolation points which are chosen arbitrarily
inside the contour ΓC the same dimensions for the Hankel system as for the one in the CIM.

After having calculated the matrices H and H< defined in (4.15), the next steps to solve
the generalized eigenvalue problem (4.14) are the same as for the CIM. These involve the
calculation of the reduced SVD of H and the transformation of (4.14) into a linear matrix
eigenvalue problem.
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4.4 Algorithm (RIM)

Summarizing the steps described above leads to the following algorithm [32, Section 3.3].

Algorithm 2 RIM
1: Fix the contour ΓC, the number of interpolation points N , and the interpolation points
zj, j = 0, 1, . . . , N − 1, on or within the contour. Calculate the corresponding weights
ωj. Choose l 6 n and K ∈ N such that Kl > κ, and the same requirements for l and
K as in the CIM are satisfied. Construct a n× l random matrix U .

2: Calculate the matrices hs given by (4.11) for s = 0, . . . , 2K − 1.
3: Form the two block Hankel matrices H and H<.
4: Compute the reduced SVD of H = Ṽ ΣW̃H , where Ṽ ∈ CKn×Kl, W̃ ∈ CKl×Kl, Ṽ H Ṽ =
W̃HW̃ = IKl, and Σ = diag(σ1, σ2, . . . , σKl).

5: Determine κ by σ1 > · · · > σκ > tolrank > σκ+1 ≈ · · · ≈ σKl ≈ 0.
6: Set V0 = Ṽ (1 : Kn, 1 : κ), W0 = W̃ (1 : Kl, 1 : κ) and Σ0 = diag(σ1, σ2, . . . , σκ).
7: Compute B = V H

0 H<W0Σ−1
0 ∈ Cκ×κ and solve the eigenvalue problem for B. Let

(λj, sj) be an eigenpair of B. Compute vj = V
[1]

0 sj and accept λj, if λj ∈ Int(ΓC) and
‖T (λj)vj‖/‖vj‖ 6 tolres.

This algorithm differs only slightly from the CIM, yet it guarantees a more general choice
of the interpolation points.
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5 Rayleigh-Ritz procedure

In practical applications the occurring NEPs often have large dimensions. In order to
circumvent solving large problems, the Rayleigh-Ritz procedure can be used. The idea
is to project the original NEP onto a NEP with a smaller dimension and then solve this
smaller NEP by using the CIM (Algorithm 1) or the RIM (Algorithm 2). The two following
steps are the key steps of the classical Rayleigh-Ritz procedure.

(1) Build a proper search space S as a good approximation of a part of the generalized
eigenspace. Let Q be an orthogonal basis of S. The number of columns kS of Q is in
general much smaller than the dimension of the original NEP, denoted by n.

(2) Calculate approximate eigenpairs (λ, v) which satisfy the Galerkin condition

v ∈ S and T (λ)v ⊥ S.

This is equivalent to determining eigenpairs (λ, g) of the NEP with smaller dimension

TQ(λ)g = 0, (5.1)

where TQ(z) = QHT (z)Q ∈ Cks×ks . If (λ, g) is an eigenpair of (5.1), an approximation
of the corresponding eigenpair of (2.1) is (λ,Qg).

In this chapter we follow [31] and [32] where two possibilities to construct a proper search
space S, called the moment scheme and the sampling scheme, are presented.

5.1 Rayleigh-Ritz procedure based on the contour

integral approach

In this section we summarize the the major steps of the moment scheme and the sampling
scheme based on the contour integral approach.

5.1.1 Moment scheme

This scheme was first proposed in [33]. The main idea is to generate S by calculating
contour moments of higher order defined as in Definition 3.2. To start with, we choose a
random matrix Û ∈ Cn×L, where L should be larger or equal than the maximal algebraic
multiplicity of all eigenvalues of T in ΓC, i.e.,

L > max
k=1,...,nC

(
ηk∑
l=1

ml,k

)
. (5.2)
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Then we define

M := (A0, A1, . . . , AKRR−1),

where Ap is defined as in (3.3) for p ∈ N0 and the splitting (3.4) is needed

Ap =
1

2πi

∫
ΓC

zpT (z)−1Ûdz = V ΛpWHÛ .

If KRR is chosen such that

rank(M) = rank(V ), (5.3)

then it follows

span(M) = span(V ).

This relationship can be seen as follows: Firstly, M can be written in the way

M = V (WHÛ ,ΛWHÛ , . . . ,ΛKRR−1WHÛ). (5.4)

Secondly, we can represent V in terms of the column vectors vi as

V = (v1, . . . , vκ).

The matrix multiplication in (5.4) gives a new matrix where each column is a linear
combination of the vectors v1, . . . , vκ. Then the desired equality follows directly with
(5.3). Therefore, we could choose S = span(M) as approximation space of the eigenspace
span(V ). However, the large problem is that Ap can not be computed exactly in practice.
In order to compute Ap, we have to use numerical quadrature rules like the trapezoid rule.
This leads to the computation of the approximated moments

Ap ≈ Âp =
NRR−1∑
j=0

w̃j
RR(z̃j

RR)pT−1(z̃j
RR)Û

with z̃j
RR and w̃j

RR defined as for (4.17). For the approximation of M we obtain

M ≈ M̂ = (Â0, Â1, . . . , ÂKRR−1). (5.5)

If KRR and NRR are chosen such that the rank condition

rank(M̂) > rank(V )

is satisfied, it holds

span(M̂) ≈ span(V ).
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We choose S = span(M̂), what is also proposed in [33]. In practice, an orthogonal basis
Q of M̂ is used. This orthogonal basis can be computed easily by calculating the reduced
SVD of M̂ with tolerance δRR, i.e.,

M̂ ≈ QΣRRV H ,

where ΣRR contains only singular values which are larger than δRR ·σRR1 with σRR1 denoting
the largest singular value. The number of these singular values is called the numerical
rank of M̂ and denoted by kS . In [32] it is proposed to set δRR = 10−14. For the proper
approximation of all poles of T (z)−1 inside ΓC it is necessary to guarantee that the condition
kS > rank(V ) is satisfied. As κ > rank(V ), it is more convenient to use

KRRL > kS > κ. (5.6)

To summarize, KRR and L have to be chosen such that the above condition is fulfilled,
where there is also the restriction (5.2) on the choice of L. These considerations lead to
the following algorithm which is quite similar to the CIRR(S) algorithm in [31] and the
RSRR algorithm in [32].

Algorithm 3 CIM-RRm algorithm

1: Fix the contour ΓC and the number NRR of quadrature points z̃RRj for the trapezoidal
rule. Choose KRR and L such that (5.2) holds and KRRL > kS > κ is satisfied, where
κ, defined as in (3.1), is unknown. Construct a n× L random matrix Û .

2: Build M̂ as in (5.5).
3: Compute the reduced SVD of M̂ = Q̃ΣRRW̃H , where Q̃ ∈ Cn×r, W̃ ∈ CKRRL×r,
Q̃HQ̃ = W̃HW̃ = Ir, r = min{n,KRRL}, and ΣRR = diag(σRR1 , σRR2 , . . . , σRRr ).
Determine the number kS of singular values which are larger than δRR · σRR1 . Set
Q = Ṽ (1 : n, 1 : kS).

4: Calculate TQ(z) = QHT (z)Q. Solve the projected NEP (5.1) by using the CIM (Algo-
rithm 1) or the RIM (Algorithm 2) with choosing U = IkS . This gives the eigenpairs
(λj, gj), j = 1, . . . , κ.

5: Calculate the eigenpairs of the original NEP (2.1) by (λj, Qgj), j = 1, . . . , κ, and check
the residuals ‖T (λj)vj‖2/‖vj‖2, where vj = Qgj.

Remark. Note that in Step 4 the random matrix U in the CIM or in the RIM can be chosen
IkS since the projected NEP TQ(λ)g = 0 usually has a small dimension. Furthermore, the
interpolation points or quadrature points which are chosen for solving the projected NEP
can be completely different than the quadrature points chosen in Step 1 of the algorithm
above.

The big disadvantage of this scheme is that for growing numbers of K, which could
be needed to satisfy the rank condition (5.6), the columns of M̂ become more and more
linearly dependent. As a consequence, the accuracy of computed eigenvalues can be low,
spurious eigenvalues can occur and there can even be a loss of eigenvalues (see example in
[31, Section 3.1]). Finally, it is also possible that (5.6) can not be satisfied accurately any
more. Hence, the moment generated eigenspace is not always reliable.

30



5.1.2 Sampling scheme

In this section we would like to summarize the key steps in the construction of a more
reliable scheme, known as the sampling scheme. This can be seen as a modification of the
moment scheme in some way. Similarly as in the moment scheme, we also choose a random
matrix Û ∈ Cn×L, where L should be chosen such that (5.2) holds again, first. However,
instead of M̂ we construct

Ŝ =
(
T (z̃RR0 )−1Û , T (z̃RR1 )−1Û , . . . , T (z̃RRNRR−1)−1Û

)
∈ Cn×NRRL. (5.7)

It turns out that span(Ŝ) is an appropriate approximation of the generalized eigenspace
spanV because each Âp can be represented as a linear combination of T (z̃j)

−1Û , i.e.,

Âp =
NRR−1∑
j=0

w̃RRj (z̃RRj )pT−1(z̃RRj )Û , p ∈ N0,

and hence it follows directly

span(V ) ≈ span(M̂) ⊂ span(Ŝ).

We set S = span(Ŝ). For the proper approximation of all poles of T (z)−1 inside ΓC it is
necessary to guarantee that the condition kS > rank(V ) is satisfied. As κ > rank(V ), it is
more convenient to use

NRRL > kS > κ. (5.8)

To summarize, NRR and L have to be chosen such that the above condition is fulfilled,
where there is also the restriction (5.2) on the choice of L. As for the moment scheme,
the next steps are to compute an orthogonal basis via performing a reduced SVD with
tolerance δRR on span(Ŝ) and solving the projected NEP with the CIM or the RIM. The
algorithm looks similar to Algorithm 3. This algorithm is called CIRR(S) in [31].

Algorithm 4 CIM-RRs algorithm

1: Fix the contour ΓC and the number NRR of quadrature points z̃RRj for the trapezoidal
rule. Choose L such that (5.2) holds and NRRL > kS > κ is satisfied, where κ, defined
as in (3.1), is unknown. Construct a n× L random matrix Û .

2: Build Ŝ as in (5.7).
3: Compute the reduced SVD of Ŝ = Q̃ΣRRW̃H , where Q̃ ∈ Cn×r, W̃ ∈ CNRRL×r, Q̃HQ̃ =
W̃HW̃ = Ir, r = min{n,NRRL}, and ΣRR = diag(σRR1 , σRR2 , . . . , σRRr ). Determine the
number kS of singular values which are larger than δRR ·σRR1 . Set Q = Ṽ (1 : n, 1 : kS).

4: Calculate TQ(z) = QHT (z)Q. Solve the projected NEP (5.1) by using the CIM (Algo-
rithm 1) or the RIM (Algorithm 2) with choosing U = IkS . This gives the eigenpairs
(λj, gj), j = 1, . . . , κ.

5: Calculate the eigenpairs of the original NEP (2.1) via (λj, Qgj), j = 1, . . . , κ, and check
the residuals ‖T (λj)vj‖2/‖vj‖2, where vj = Qgj.
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5.2 Rayleigh-Ritz procedure based on the rational

interpolation approach

In this section we state the algorithms which correspond to Algorithm 3 and Algorithm 4
when the rational interpolation approach is used instead of the contour integral approach.
The derivation of the algorithms works quite similarly as for the CIM. A detailed description
is given in [31, 32].

5.2.1 Moment scheme

Analogously as above, we define the matrix

M̂ = (h0, h1, . . . , hKRR−1), (5.9)

where hp is given as in (4.16)

hp =
NRR−1∑
j=0

wRRj (zRRj )pF (zj)

for p ∈ {0, . . . , KRR− 1} with interpolation points zRRj on or within ΓC and corresponding
weights wRRj . Then the algorithms based on the moment scheme reads as follows.

Algorithm 5 RIM-RRm algorithm

1: Fix the contour ΓC, the number of interpolation points NRR, and the interpolation
points zRRj , j = 0, 1, . . . , NRR−1, on or within the contour. Compute the corresponding
weights ωRRj . Choose KRR and L such that (5.2) holds and KRRL > kS > κ is satisfied,

where κ defined as in (3.1), is unknown. Construct a n× l random matrix Û .
2: Build M̂ as in (5.9).
3: Compute the reduced SVD of M̂ = Q̃ΣRRW̃H , where Q̃ ∈ Cn×r, W̃ ∈ CKRRL×r,
Q̃HQ̃ = W̃HW̃ = Ir, r = min{n,KRRL}, and ΣRR = diag(σRR1 , σRR2 , . . . , σRRr ).
Determine the number kS of singular values which are larger than δRR · σRR1 . Set
Q = Ṽ (1 : n, 1 : kS).

4: Calculate TQ(z) = QHT (z)Q. Solve the projected NEP (5.1) by using the CIM (Algo-
rithm 1) or the RIM (Algorithm 2) with choosing U = IkS . This gives the eigenpairs
(λj, gj), j = 1, . . . , κ.

5: Calculate the eigenpairs of the original NEP (2.1) by (λj, Qgj), j = 1, . . . , κ, and check
the residuals ‖T (λj)vj‖2/‖vj‖2, where vj = Qgj.

5.2.2 Sampling scheme

Let Ŝ be defined analogously as above by

Ŝ =
(
T (zRR0 )−1Û , T (zRR1 )−1Û , . . . , T (zRRNRR−1)−1Û

)
∈ Cn×NRRL. (5.10)
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Then the corresponding algorithm, which is called RSRR in [32], is given below.

Algorithm 6 RIM-RRs algorithm

1: Fix the contour ΓC, the number NRR of interpolation points zRRj , and the interpolation
points zRRj , j = 0, 1, . . . , NRR − 1 on or within the contour. Choose L such that (5.2)
holds and NRRL > kS > κ is satisfied, where κ, defined as in (3.1), is unknown.
Construct a n× L random matrix Û .

2: Build Ŝ as in (5.10).
3: Compute the reduced SVD of Ŝ = Q̃ΣRRW̃H , where Q̃ ∈ Cn×r, W̃ ∈ CNRRL×r, Q̃HQ̃ =
W̃HW̃ = Ir, r = min{n,NRRL}, and ΣRR = diag(σRR1 , σRR2 , . . . , σRRr ). Determine the
number kS of singular values which are larger than δRR ·σRR1 . Set Q = Ṽ (1 : n, 1 : kS).

4: Calculate TQ(z) = QHT (z)Q. Solve the projected NEP (5.1) by using the CIM (Algo-
rithm 1) or the RIM (Algorithm 2) with choosing U = IkS . This gives the eigenpairs
(λj, gj), j = 1, . . . , κ.

5: Calculate the eigenpairs of the original NEP (2.1) by (λj, Qgj), j = 1, . . . , κ, and check
the residuals ‖T (λj)vj‖2/‖vj‖2, where vj = Qgj.
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6 Boundary element method for
eigenvalue problems in acoustics

In this chapter we formulate interior and exterior eigenvalue problems for the Laplace
operator first, then we derive corresponding boundary integral formulations, and finally we
give a characterization of the eigenpairs. The material of this chapter is based on [28].

6.1 Formulation of eigenvalue problems for the

Laplace operator

Our starting point is the Helmholtz equation in R3

−∆u(x)− k2u(x) = 0,

where u is a complex, scalar-valued function and k is the wave number. This equation
describes the propagation of a time-harmonic sound wave in a homogeneous, isotropic, and
friction free medium. Note that the Helmholtz equation follows directly from the acoustic
wave equation in R3

1

c2

∂2

∂t2
U(x, t) = ∆U(x, t),

where c denotes the speed of sound, by plugging in the ansatz for time-harmonic sound
waves with frequency ω

U(x, t) = Re{u(x)e−iωt},

and defining k := ω/c. In the sequel we will assume that Re(k) > 0. Thus, we define

C+ := {z ∈ C : Re(z) > 0}

as the space of complex numbers with real part larger or equal than zero. Before stating
the eigenvalue problems, we need some general definitions and assumptions. First of all,
let us assume that Ω− ⊂ R3 is a bounded Lipschitz domain with closed, piecewise smooth
boundary, and that Ω+ := R3\Ω− is simply connected. We denote the boundary of Ω− by
Γ and define the space of test functions in Ω± by

D∞ := C∞0 (Ω±),
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where C∞0 (Ω±) is the space of infinitely differentiable functions with compact support in
Ω±. Furthermore, we introduce the space

L2(Ω−) :=

{
u : Ω− → C measurable :

∫
Ω−
|u(x)|2dx <∞

}
.

The Sobolev space H1(Ω−) is given by

H1(Ω−) := {u ∈ L2(Ω−) : ∃Dju ∈ L2(Ω−) for all j = 1, 2, 3},

where Dju is the weak derivative of u with respect to xj, i.e.,∫
Ω−
u(x)

∂φ

∂xj
dx = −

∫
Ω−
Dju(x)φ(x)dx

for all φ ∈ D∞(Ω−). Moreover, we introduce the space

H1
0 (Ω−) : = D∞(Ω−)

H1(Ω−)

=
{
u ∈ H1(Ω−) : ∃(φn)n ⊂ D∞(Ω−) such that φn → u in H1(Ω−)

}
.

Then we define the spaces

L2
loc(Ω

+) :=

{
f ∈ L2(Ω+) :

∫
U

|u(x)|2dx <∞ ∀U b Ω+

}
,

where U b Ω+ means that u is open, bounded, and U ⊂ Ω+, and the Sobolev space

H1
loc(Ω

+) :=
{
u ∈ L2

loc(Ω
+) : ∃Dju ∈ L2

loc(Ω
+) for all j = 1, 2, 3

}
.

For a more detailed description of these spaces and their properties we refer to [19]. In the
following we will also need the spaces

H1(∆,Ω−) := {u ∈ H1(Ω−) : ∆u ∈ L2(Ω−)},
H1

loc(∆,Ω
+) := {u ∈ H1

loc(Ω
+) : ∆u ∈ L2

loc(Ω
+)}.

Now we consider the Dirichlet and Neumann trace operators. In the case of smooth func-
tions u± ∈ C∞(Ω±) the Dirichlet trace operators for Ω+ and Ω− respectively are given
by

γ±0 u
±(x) = lim

Ω±3x̃±→x
u(x̃±)

and the Neumann trace operators are defined by

γ±1 u
±(x) = lim

Ω±3x̃±→x
∇u±(x̃±)|Γ · n(x)
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for x ∈ Γ. It can be shown that for these operators there exist unique extensions

γ+
0 : H1

loc(Ω
+)→ H1/2(Γ), γ−0 : H1(Ω−)→ H1/2(Γ),

γ+
1 : H1

loc(∆,Ω
+)→ H−1/2(Γ), γ−1 : H1(∆,Ω−)→ H−1/2(Γ),

see [19, Theorem 3.37], [19, Lemma 4.3] and [8, Lemma 3.2]. The spaces H1/2(Γ) and
H−1/2(Γ) are called trace spaces. These spaces can be defined as follows: The former one
is given by

H1/2(Γ) := C0(Γ)
‖·‖

H1/2(Γ) ,

where C0(Γ) denotes the space of continuous functions on Γ and

‖u‖H1/2(Γ) :=

(∫
Γ

|u(x)|2dsx +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|3
dsxdsy

)1/2

.

The latter one is the dual space of H1/2(Γ), i.e.,

H−1/2(Γ) :=
(
H1/2(Γ)

)′
:= {v : H1/2(Γ)→ C linear and continuous},

where the corresponding norm is given by

‖v‖H−1/2(Γ) := sup
06=w∈H1/2(Γ)

|〈v, w〉Γ|
‖w‖H1/2(Γ)

with the duality pairing

〈v, w〉Γ := v(w),

which can be represented as

〈v, w〉Γ :=

∫
Γ

v(x)w(x)dsx,

if v ∈ L2(Γ) ⊂ H−1/2(Γ). Now we formulate interior and exterior eigenvalue problems for
the Laplacian with Dirichlet and Neumann boundary conditions respectively.

Interior eigenvalue problems:

(D) Find pairs (k, u) ∈ C+ ×H1
0 (Ω−)\{0} such that

−∆u− k2u = 0 in Ω− (6.1)

is fulfilled in a weak sense.
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(N) Find pairs (k, u) ∈ C+ ×H1(Ω−)\{0} such that

−∆u− k2u = 0 in Ω−, (6.2)

γ−1 u = 0 on Γ

is fulfilled in a weak sense.

Exterior eigenvalue problems:

(D) Find pairs (k, u) ∈ C+ ×H1
loc(Ω

+)\{0} such that

−∆u− k2u = 0 in Ω+,

γ+
0 u = 0 on Γ, (6.3)

u satisfies a radiation condition

is fulfilled in a weak sense.

(N) Find pairs (k, u) ∈ C+ ×H1
loc(Ω

+)\{0} such that

−∆u− k2u = 0 in Ω+,

γ+
1 u = 0 on Γ, (6.4)

u satisfies a radiation condition

is fulfilled in a weak sense.

Definition 6.1. We call pairs (k, u) which are solutions of the above exterior eigenvalue
problems for the Laplacian with Dirichlet and Neumann boundary conditions respectively,
scattering-resonance pairs. The number k is called resonance and u is called corresponding
resonance function.

We require for the radiation condition in (6.3) and (6.4) that u can be expanded as

u(x) =
∞∑
n=0

n∑
m=−n

an,mh
(1)
n (kr)Y m

n

(
x

|x|

)
for r = |x| > r0, (6.5)

where r0 is chosen such that Ω− ⊂ Br0 := {x : |x| < r0}, an,m are constants, h
(1)
n are

the spherical Hankel functions of the first kind, and Y m
n are the spherical harmonics [22].

Solutions with an expansion of this form are called outgoing solutions. For k ∈ R+
0 this

condition matches with the Sommerfeld radiation condition

lim
r→∞

r

(
∂u

∂r
(x)− iku(x)

)
= 0, (6.6)

where r = |x| and ∂
∂r
u(x) = x

|x| · ∇u(x) [16, Remark 2.1]. In addition, for k ∈ C+ with

Im(k) > 0 one can show that a solution of the above scattering-resonance problems (6.3)
and (6.4) which satisfies the Sommerfeld radiation condition (6.6) also fulfils the radiation
condition (6.5). Note that this can even be done for k ∈ C with 0 6 arg(k) < π (s. [19,
Chapter 9]).
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6.2 Representation formula and boundary integral

operators

In this section we state the representation formulas for solutions of the interior and exte-
rior eigenvalue problems and introduce the boundary integral operators for the Helmholtz
equation. To start with, the fundamental solution of the Helmholtz equation in R3 is given
by [26, Section 5.4]

U∗k (x, y) =
1

4π

eik|x−y|

|x− y|
.

We define for given k ∈ C the single layer potential SL(k) : H−1/2(Γ) → H1(∆,Ω−) ×
H1

loc(∆,Ω
+) by

(SL(k)ψ)(x) =

∫
Γ

U∗k (x, y)ψ(y)dsy, x ∈ R3\Γ,

and the double layer potential DL(k) : H1/2(Γ)→ H1(∆,Ω−)×H1
loc(∆,Ω

+) by

(DL(k)φ)(x) =

∫
Γ

∂

∂ny
U∗k (x, y)φ(y)dsy, x ∈ R3\Γ.

The representation formulas for solutions of the interior and exterior eigenvalue problems
are given by the following theorem.

Theorem 6.2. Let k ∈ C. Then the following assertions about the representation of a
solution of the Helmholtz equation hold true:

(i) Every solution u ∈ H1(Ω−) of the Helmholtz equation in Ω− has the representation

u(x) = (SL(k)γ−1 u)(x)− (DL(k)γ−0 u)(x) for x ∈ Ω−. (6.7)

(ii) Every solution u ∈ H1
loc(Ω

+) of the Helmholtz equation in Ω+ has the representation

u(x) = (− SL(k)γ+
1 u)(x) + (DL(k)γ+

0 u)(x) for x ∈ Ω+, (6.8)

provided that u satisfies the radiation condition (6.5) for k 6= 0.

Proof. For (i) see [19, Theorem 6.10], and for (ii) [28, Corollary 6.5].

The lemma below summarizes some properties of the single layer potential and the double
layer potential.

Lemma 6.3. Let k ∈ C. Then the mappings SL(k) and DL(k) are linear and continuous.
Moreover, these potentials satisfy the jump relations

γ+
0 SL(k)ψ − γ−0 SL(k)ψ = 0, γ+

1 SL(k)ψ − γ−1 SL(k)ψ = −ψ, (6.9)

γ+
0 DL(k)φ− γ−0 DL(k)φ = φ, γ+

1 DL(k)φ− γ−1 DL(k)φ = 0, (6.10)

for ψ ∈ H−1/2(Γ) and φ ∈ H1/2(Γ).
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Proof. See [19, Theorem 6.11].

In addition, we need another property.

Theorem 6.4. Let k ∈ C. We define the second-order differential operator P := −∆−k2.
Then it holds

P SL(k)ψ = 0 = P DL(k)φ

for ψ ∈ H−1/2(Γ) and φ ∈ H1/2(Γ). Hence, the single layer potential and the double layer
potential are solutions of the Helmholtz equation in Ω±. In addition, they satisfy (6.5) for
k 6= 0.

Proof. See [19, p. 202] for the first and [28, Theorem 6.4] for the second statement.

By applying the trace operators to the single layer potential and the double layer poten-
tial, we can define the following boundary integral operators:

• single layer boundary integral operator V (k) : H−1/2(Γ)→ H1/2(Γ)

V (k) :=
1

2
[γ+

0 SL(k) + γ−0 SL(k)],

• adjoint double layer boundary integral operator K ′(k) : H−1/2(Γ)→ H−1/2(Γ)

K ′(k) :=
1

2
[γ+

1 SL(k) + γ−1 SL(k)],

• double layer boundary integral operator K(k) : H1/2(Γ)→ H1/2(Γ)

K(k) :=
1

2
[γ+

0 DL(k) + γ−0 DL(k)],

• hypersingular boundary integral operator D(k) : H1/2(Γ)→ H−1/2(Γ)

−D(k) :=
1

2
[γ+

1 DL(k) + γ−1 DL(k)].

Some of the properties of the above defined boundary integral operators are summarized
in the following lemma.

Lemma 6.5. Let k ∈ C. Then the mappings V (k), K ′(k), K(k), and D(k) are linear and
continuous. Moreover, the following operators are compact:

V (k)− V (0) : H−1/2(Γ)→ H1/2(Γ),

K ′(k)−K ′(0) : H−1/2(Γ)→ H−1/2(Γ),

K(k)−K(0) : H1/2(Γ)→ H1/2(Γ),

D(k)−D(0) : H1/2(Γ)→ H−1/2(Γ).
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Proof. For the first assertion see [19, Theorem 6.11] and for the second [25, Lemma 3.9.8].
Note that in [25] the assertion is only showed for real k, but according to [30] it can be
generalized for complex k.

Furthermore, the following property of V (k) and D(k) will be important later.

Lemma 6.6. The following two assertions hold true:

(i) The mapping C 3 k 7→ V(k) ∈ L(H−1/2(Γ), H1/2(Γ)) is holomorphic, i.e., for every
k ∈ C there exists an element V∗,k ∈ L(H−1/2(Γ), H1/2(Γ)) such that

lim
h→0

∥∥∥∥V (k + h)− V (k)

h
− V∗,k

∥∥∥∥
L(H−1/2(Γ),H1/2(Γ))

= 0,

where ‖·‖L(H−1/2(Γ),H1/2(Γ)) is the operator norm.

(ii) The mapping C 3 k 7→ D(k) ∈ L(H1/2(Γ), H−1/2(Γ)) is holomorphic, i.e., for every
k ∈ C there exists an element D∗,k ∈ L(H1/2(Γ), H−1/2(Γ)) such that

lim
h→0

∥∥∥∥D(k + h)−D(k)

h
−D∗,k

∥∥∥∥
L(H1/2(Γ),H−1/2(Γ))

= 0.

Proof. See [30, Lemma 5.1.1] for (i) and [30, Lemma 5.1.2] for (ii).

By inserting the jump conditions (6.9) and (6.10) into the definitions of the boundary
integral operators, we obtain the following identities:

γ±0 SL(k)ψ = V (k)ψ, γ±1 SL(k)ψ =

[
∓1

2
I +K ′(k)

]
ψ, (6.11)

γ±0 DL(k)φ =

[
±1

2
I +K(k)

]
φ, γ±1 DL(k)φ = −D(k)φ. (6.12)

6.3 Boundary integral formulations for the Dirichlet

eigenvalue problems

In this section a direct and an indirect boundary integral formulation of the eigenvalue
problems (6.1) and (6.3) are given. In the sequel we will only focus on one of the obtained
boundary integral formulations, and we will show that the eigenvalues with negative imag-
inary part are the resonances of the scattering-resonance problem (6.3) and the eigenvalues
with non-negative imaginary part are the eigenvalues of (6.1).

Direct ansatz based on the representation formula:

If we apply γ−0 and γ−1 to the representation formula (6.7), we obtain(
γ−0 u
γ−1 u

)
=

(
1
2
I −K(k) V (k)
D(k) 1

2
I +K ′(k)

)(
γ−0 u
γ−1 u

)
,
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and by applying γ+
0 and γ+

1 to the representation formula (6.8), we get(
γ+

0 u
γ+

1 u

)
=

(
1
2
I +K(k) −V (k)
−D(k) 1

2
I −K ′(k)

)(
γ+

0 u
γ+

1 u

)
.

Remark. Note that that these identities are called Calderon identities.

With γ−0 u = 0 = γ+
0 u, it follows that every eigenfunction u of (6.1) or (6.3) can be

represented as

u(x) =

{
(SL(k)γ−1 u)(x), for x ∈ Ω−,

(− SL(k)γ+
1 u)(x), for x ∈ Ω+,

and we obtain with ψ± := γ±1 u ∈ H−1/2(Γ) the boundary integral formulations

V (k)ψ± = 0, (6.13)[
±1

2
I +K ′(k)

]
ψ± = 0.

Indirect ansatz based on the double layer potential ansatz:

We make the following ansatz for the solution u by using the double layer potential

u(x) = (DL(k)φ)(x) for x ∈ Ω− ∪ Ω+,

where φ ∈ H1/2(Γ)\{0}. By applying the Dirichlet traces γ±0 to this ansatz, we obtain the
following boundary integral formulation[

±1

2
I +K(k)

]
φ = 0.

Note that it is also possible to choose an indirect ansatz for u based on the single layer
potential. However, this ansatz coincides with the representation formula for u.

Characterization of the eigenvalues of (6.13):

Since (6.13) is most appropriate for a conforming Galerkin approximation, we will only
focus on this boundary integral formulation in the sequel.

Due to Lemma 6.6, we know that k 7→ V (k) is a holomorphic map from C into the space
L(H−1/2(Γ), H1/2(Γ)). Therefore, (6.13) has the form (2.1) in a “continuous level”, i.e.,

T (λ)v = 0,

where T ∈ H(D,L(X, Y )) for Hilbert spaces X, Y . By discretizing T we get a NEP of
exactly the form (2.1).

For the characterization of the eigenpairs of (6.13) we need the following two statements.
The first one concerns the eigenvalues of the interior eigenvalue problems (6.1) and (6.2).
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Lemma 6.7. Let k ∈ C+ be an eigenvalue of (6.1) or (6.2). Then it follows k ∈ R+.

Proof. Since k ∈ C+ is an eigenvalue of either (6.1) or (6.2), there exists a corresponding
eigenvector u ∈ H1

0 (Ω−)\{0} or u ∈ H1(Ω−)\{0} respectively, such that (6.1) or (6.2) is
fulfilled in the weak sense, i.e.,∫

Ω−
∇u · ∇vdx− k2

∫
Ω−
uvdx = 0

for all v ∈ H1(Ω−)\{0} or v ∈ H1
0 (Ω−)\{0} respectively. If we set v = u, it follows directly

k2 > 0 and due to k ∈ C+, we get k ∈ R+.

The second statement is the following uniqueness theorem for the solutions of homoge-
neous exterior boundary value problems for the Helmholtz equation [19, Theorem 9.10].

Theorem 6.8. Let k ∈ C+ with Im(k) > 0 and let u ∈ H1
loc(Ω

+) be a solution of the
homogeneous exterior mixed boundary value problem with Γ = ΓD ∪ ΓN

−∆u− k2u = 0 in Ω+,

γ+
0 u = 0 on ΓD,

γ+
1 u = 0 on ΓN .

If u satisfies the Sommerfeld radiation condition (6.6), then u = 0 in Ω+.

Note that this theorem is formulated in [19] even for k ∈ C with 0 6 arg(k) < π. The
next theorem characterizes the eigenpairs of the boundary integral formulation (6.13).

Theorem 6.9. Let (k, ψ) ∈ C+ ×H−1/2(Γ)\{0} be an eigenpair of

V (k)ψ = 0.

Then the following statements hold true:

(i) If Im(k) < 0, then (k, u) with u = (− SL(k)ψ)|Ω+ is a scattering-resonance pair of
(6.3).

(ii) If Im(k) > 0, then k ∈ R+
0 , and (k, u) with u = (SL(k)ψ)|Ω− is an eigenpair of (6.1).

Furthermore, it holds SL(k)ψ = 0 in Ω+.

Proof. (i): We suppose that Im(k) < 0. Firstly, we define v := − SL(k)ψ in Ω− ∪ Ω+.
Then it follows from (6.11) that γ±0 v = −V (k)ψ = 0. This implies that v = 0 in Ω−

because otherwise (k, v) would be a solution of (6.1) due to Theorem 6.4. However, it
follows k ∈ R+

0 for this problem by Lemma 6.7, which is a contradiction to Im(k) < 0.
From v = 0 in Ω− we obtain γ−1 v = 0, and further γ+

1 v = ψ 6= 0 by (6.9). Therefore, v 6= 0
in Ω+. The statement follows with u := v|Ω+ .
(ii) Now we assume that Im(k) > 0. We define v := SL(k)ψ in Ω− ∪ Ω+. By (6.11) it
follows γ±0 v = V (k)ψ = 0. Due to Theorem 6.4, we know that the single layer potential
is a solution of the Helmholtz equation, and we get v = 0 in Ω+ by Theorem 6.8. This
implies γ+

1 v = 0. With the jump condition (6.9) we obtain γ−1 v = ψ 6= 0, and therefore
v 6= 0 in Ω−. This implies that (k, (SL(k)ψ)|Ω−) is an eigenpair of (6.1). By Lemma 6.7
we obtain k ∈ R+

0 .
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6.4 Boundary integral formulations for the Neumann

eigenvalue problems

In this section we derive boundary integral formulations for the eigenvalue problems (6.2)
and (6.4) with Neumann boundary conditions. Similarly as in the previous section, we will
focus on one of the obtained formulations and characterize the eigenpairs.

Direct ansatz based on the representation formula:

With γ−1 u = 0 = γ+
1 u, it follows that every eigenfunction u of (6.2) or (6.4) can be

represented as

u(x) =

{
(−DL(k)γ−0 u)(x), for x ∈ Ω−,

(DL(k)γ+
0 u)(x), for x ∈ Ω+,

and we obtain with φ± := γ±0 u ∈ H1/2(Γ) the boundary integral formulations[
∓1

2
I +K(k)

]
φ± = 0,

D(k)φ± = 0. (6.14)

Indirect ansatz based on the single layer potential ansatz:

We make the following ansatz for the solution u by using the single layer potential

u(x) = (SL(k)ψ)(x) for x ∈ Ω− ∪ Ω+,

where ψ ∈ H−1/2(Γ)\{0}. By applying the Neumann traces γ±1 to this ansatz, we obtain
the following boundary integral equations[

∓1

2
I +K(k)

]
φ = 0.

Note that it is also possible to choose an indirect ansatz for u based on the double layer
potential. However, this ansatz coincides with the representation formula for u. The next
theorem [28, Theorem 2.1, Proposition 2.2] characterizes the eigenpairs of the boundary
integral equation (6.14).

Theorem 6.10. Let (k, φ) ∈ C+ ×H1/2(Γ)\{0} be an eigenpair of

D(k)φ = 0.

Then the following statements hold true:
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(i) If Im(k) < 0, then (k, u) with u = (DL(k)φ)|Ω+ is a scattering-resonance pair of (6.4).

(ii) If Im(k) > 0, then k ∈ R+
0 , and (k, u) with u = (DL(k)φ)|Ω− is an eigenpair of (6.2).

Furthermore, it holds DL(k)φ = 0 in Ω+.

Proof. The proof works analogously to the proof in Theorem 6.9 by defining v := DL(k)φ
in Ω− ∪ Ω+ and interchanging γ±0 and γ±1 . For a more detailed proof see [28].
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7 Error estimates for the Galerkin
approximation of boundary
integral formulations of Laplacian
eigenvalue problems

In this chapter we consider the Galerkin approximation of the boundary integral formula-
tions (6.13) and (6.14), i.e.,

V (k)ψ = 0, D(K)φ = 0,

and we give error estimates for the approximated eigenvalues and the corresponding eigen-
vectors. These eigenvalue problems are considered as eigenvalue problems for holomorphic
Fredholm operator-valued functions. For the Galerkin approximation of such eigenvalue
problems there exists a convergence theory [14, 15].

In the first section we will introduce Fredholm operators in general, then we will state
convergence results for the Galerkin approximation of eigenvalue problems for holomorphic
Fredholm operator-valued functions, and finally we will show that these results can also be
applied to V and D. Our main references for this chapter are [27] and [30] .

7.1 Fredholm operators

In this section we would like to give the general definition of Fredholm operators and state
an important property concerning compact perturbations of Fredholm operators.

Definition 7.1. Let X, Y be Banach spaces. Then a bounded, linear operator A ∈ L(X, Y )
is called Fredholm operator, if dim(kerA) <∞ and codim(ranA, Y ) <∞. The number

indA = dim(kerA)− codim(ranA, Y )

is called Fredholm index of A.

Remark. The codimension codim(ranA, Y ) of ranA in Y is defined as the dimension of
the factor space dim(Y/ ranA).

There holds the following property for Fredholm operators [19, Theorem 2.26]:

45



Theorem 7.2. Let X, Y be Banach spaces and let A ∈ L(X, Y ) be a Fredholm operator.
Further, let C ∈ L(X, Y ) be a compact operator. Then A+ C is a Fredholm operator and
ind(A+ C) = indA.

Remark. Recall that an operator C ∈ L(X, Y ) is called compact if for each bounded
sequence (xn)n ⊂ X the sequence (Cxn)n ⊂ Y has a convergent subsequence.

7.2 Convergence results for the Galerkin

approximation of eigenvalue problems for

holomorphic Fredholm operator-valued functions

In the sequel let X be a Hilbert space over C with inner product (·, ·)X , and let D ⊂ C be
some open and connected subset of C. Furthermore, we assume that S ∈ H(D,L(X,X))
is a Fredholm operator function with index zero, i.e., S(λ) is a Fredholm operator of index
zero for all fixed λ ∈ D. We consider the following eigenvalue problem: Find λ ∈ D and
v ∈ X\{0} such that

S(λ)v = 0. (7.1)

In order to compute approximated eigenpairs of (7.1), we use the Galerkin approximation.
For the Galerkin variational formulation we choose a sequence {Xn}n ⊂ X of conforming
finite-dimensional subspaces of X. The variational formulation reads as follows: Find
λn ∈ D and vn ∈ Xn\{0} such that

(S(λn)vn, xn)X = 0 ∀xn ∈ Xn. (7.2)

Next we consider the orthogonal projection Πn : X → Xn. Then the orthogonality relation

(S(λn)vn − ΠnS(λn)vn, xn)X = 0 ∀xn ∈ Xn

implies that the variational problem (7.2) is equivalent to the variational problem: Find
λn ∈ D and vn ∈ Xn\{0} such that

(ΠnS(λn)vn, xn)X = 0 ∀xn ∈ Xn,

and therefore to the problem

ΠnS(λn)vn = 0. (7.3)

Concerning the eigenvalues of the operator S, one can show the following important
property [30, Theorem 3.2.2]:
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Lemma 7.3. Let S be defined as above and let us assume that for the resolvent set of S
there holds

ρ(S) :=
{
λ ∈ D : ∃S(λ)−1 ∈ L(X,X)

}
6= ∅.

Then the spectrum

σ(S) := D\ρ(S)

does not contain any cluster points and every λ ∈ σ(S) is an eigenvalue.

The following theorem provides the desired convergence result [27, Theorem 4.2].

Theorem 7.4. Let S be a Fredholm operator function with index zero. Further we assume
that for every λ ∈ D the operator S(λ) has a splitting into a X-elliptic operator S0 ∈
L(X,X) and a compact operator C(λ) ∈ L(X,X), i.e.,

S(λ) = S0 + C(λ).

Moreover, let {Xn}n ⊂ X be a sequence of conforming finite-dimensional subspaces such
that the condition

lim
n→∞

inf
xn∈Xn

‖x− xn‖X = 0 ∀x ∈ X (7.4)

is satisfied. Then the following assertions hold:

(i) Let λ0 ∈ σ(S) be an eigenvalue. Then there exists a sequence (λn)n of eigenvalues of
the Galerkin eigenvalue problem (7.3) such that

lim
n→∞

λn = λ0.

(ii) Let {(λn, vn)}n be a sequence of eigenpairs of the Galerkin eigenvalue problem (7.3)
with ‖vn‖X = 1. Then it holds

lim
n→∞

λn = λ0 ∈ σ(S).

Moreover, there exists a subsequence of (vn)n which convergences to an eigenvector
corresponding to λ0.

An error estimate for an approximated eigenpair is given by the following theorem [27,
Theorem 4.4].

Theorem 7.5. Let the assumptions of Theorem 7.4 hold true. Furthermore, let D0 ⊂ D
be a compact subset such that there are no eigenvalues on the boundary of this subset, i.e.,
∂D0 ⊂ ρ(S), and D0 ∩ σ(S) = {λ0}. Then there exist constants C > 0 and N ∈ N such
that for all n > N and λn ∈ σ(ΠnS) ∩ D0

|λn − λ0| 6 C(δnδ
∗
n)1/Mλ0

(S),
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where

δn := max
v0∈Gλ0

(S),‖v0‖X61
inf

vn∈Xn
‖v0 − vn‖X , δ∗n := max

w0∈Gλ0
(S∗),‖w0‖X61

inf
vn∈Xn

‖w0 − vn‖X ,

and Gλ0
(S∗) is the generalized eigenspace corresponding to the adjoint eigenvalue problem

S∗(λ0)w0 := [S(λ0)]∗w0 = 0.

Moreover, we get the following estimate for the eigenvectors vn corresponding to λn with
‖vn‖X = 1: There exists a constant c > 0 such that for all n > N

inf
v0∈kerS(λ0)

‖vn − v0‖X 6 c

(
|λn − λ0|+ max

z0∈kerS(λ0),‖z0‖X61
inf

zn∈Xn
‖z0 − zn‖X

)
.

7.3 Application of the results to V and D

In this section we show how Theorem 7.4 and Theorem 7.5 can be applied to the boundary
integral formulations corresponding to V and D. For that, we need the following lemma.

Lemma 7.6. Let A ∈ H(D,L(X,X)), where X and D are defined as in the previous
section. Let us assume that A(λ) has a splitting into a X-elliptic operator A0 ∈ L(X,X)
and a compact operator C(λ) ∈ L(X,X), i.e.,

A(λ) = A0 + C(λ),

for all λ ∈ D. Then each A(λ) is a Fredholm operator with index zero and thus A is a
Fredholm operator function with index zero.

Proof. Since A0 is X-elliptic, there exists a constant cA0 > 0 such that

(A0x, x)X > cA0‖x‖2
X

for all x ∈ X. Due to the Lemma of Lax-Milgram [25, Lemma 2.1.51], A0 is invertible.
Hence, dim(kerA0) = 0. From dim(X/X) = 0 it follows that A0 is a Fredholm operator
with index zero. With Theorem 7.2 we obtain that A(λ) is Fredholm with index zero for
every λ ∈ D, and thus A is a Fredholm operator function with index zero.

As already mentioned above, our goal is to apply the convergence results of Section 7.2
to the boundary integral formulations

V (k)ψ = 0, D(k)φ = 0. (7.5)

However, the problem which occurs has to do with the mapping properties

V ∈ H(D,L(H−1/2(Γ), H1/2(Γ))), D ∈ H(D,L(H1/2(Γ), H−1/2(Γ))),

48



since we have assumed for S defined in the previous section that S ∈ H(D,L(X,X)).
In the sequel a formulation for (7.5) is derived which allows the direct application of the
results in Section 7.2. A variational formulation of (7.5) reads as follows: Find k ∈ D,
ψ ∈ H−1/2(Γ) and φ ∈ H1/2(Γ) respectively, such that

〈u, V (k)ψ〉H−1/2(Γ)×H1/2(Γ) = 0 ∀u ∈ H−1/2(Γ), (7.6)

〈D(k)φ, v〉H−1/2(Γ)×H1/2(Γ) = 0 ∀v ∈ H1/2(Γ). (7.7)

Note that

(·, ·)H−1/2(Γ)×H1/2(Γ) := 〈·, ·〉H−1/2(Γ)×H1/2(Γ)

is a sequilinear form, i.e., a form which is antilinear in the first and linear in the second
argument.

7.3.1 Representation of sesquilinear forms as inner products in
Hilbert spaces

In this subsection we show how sesquilinear forms can be represented as inner products
in Hilbert spaces, which we will utilize for an appropriate formulation of the eigenvalue
problems (7.5). Let X be a Hilbert space over C with inner product (·, ·)X . Remember that
an inner product on X is a complex-valued form which is antilinear in the first argument,
linear in the second argument, and positive definite, i.e., the following properties are fulfilled
for all x, y, z ∈ X and λ ∈ C:

• (λx+ y, z)X = λ(x, z)X + (y, z)X ,

• (x, λy + z)X = λ(x, y)X + (x, z)X ,

• (x, y)X = (y, x)X ,

• (x, x)X > 0 with equality if and only if x = 0.

First, we recap some general definitions. The dual space of X is defined as

X ′ := {f : X → C linear and continuous}.

For f ∈ X ′ and x ∈ X the duality pairing is given by

〈f, x〉X′×X := f(x),

with the related norm

‖f‖X′ := sup
06=x∈X

|〈f, x〉X′×X |
‖x‖X

.

If the bidual space X ′′ is identified with X, then we set

〈x, f〉X×X′ = 〈f, x〉X′×X . (7.8)
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Moreover, we define the complex conjugate of a linear and bounded functional f ∈ X ′ by

〈f, x〉X′×X := 〈f, x〉X′×X . (7.9)

Let u ∈ X. Then we consider the linear and bounded functional Ju ∈ X ′ given by

〈Ju, v〉X′×X = (u, v)X ∀v ∈ X. (7.10)

It is obvious that this functional is linear. The boundedness follows by using the Cauchy-
Schwarz inequality

|〈Ju, v〉X′×X | = |(u, v)X | 6 ‖u‖X‖v‖X .

Note that the map J : X → X ′ is conjugate-linear due to the definition of the inner
product, and surjective. From the following Riesz representation theorem [19, Theorem
2.30] it follows that J is also injective and isometric, i.e., ‖Ju‖X′ = ‖u‖X .

Theorem 7.7 (Riesz representation theorem). Let X be a Hilbert space and let f ∈ X ′.
Then there exists a uniquely determined u ∈ X such that

〈f, v〉X′×X = (u, v)X ∀v ∈ X.

Moreover it holds ‖f‖X′ = ‖u‖X .

We define the mapping ιX : X → X ′ by

ιXu := Ju.

Note that this mapping is an isomorphism. It follows directly from (7.10) that

〈ιXu, v〉X′×X = 〈Ju, v〉X′×X = (u, v)X ∀u, v ∈ X.

Further, we obtain with u = ι−1
X w

(ι−1
X w, v)X = 〈w, v〉X′×X ∀w ∈ X ′,∀v ∈ X,

and

(w, (ι−1
X )∗v)X′ = 〈w, v〉X′×X ∀w ∈ X ′,∀v ∈ X.

If we now define

I := (ι−1
X )∗ : X → X ′,

we get the desired relationship between the inner product in X and the sesquilinear forms

(w, Iv)X′ = 〈w, v〉X′×X ∀w ∈ X ′,∀v ∈ X, (7.11)

(I∗w, v)X = 〈w, v〉X′×X ∀w ∈ X ′,∀v ∈ X. (7.12)
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7.3.2 Application of the derived relationship to V and D

In this subsection we first rewrite the equations (7.6) and (7.7) by using the relationships
(7.11) and (7.12), and then we show that the results of Section 7.2 can be applied. To start
with, by (7.11) we can rewrite (7.6) with X = H1/2(Γ), X ′ = H−1/2(Γ), w = u ∈ H−1/2(Γ),
and v = V (k)ψ ∈ H1/2(Γ) in the following way

(u, IV (k)ψ)H−1/2(Γ) = 〈u, V (k)ψ〉H−1/2(Γ)×H1/2(Γ) = 0 ∀u ∈ H−1/2(Γ). (7.13)

Similarly, we get with (7.12) by setting w = D(k)φ ∈ H−1/2(Γ)

(I∗D(k)φ, v)H1/2(Γ) = 〈D(k)φ, v〉H−1/2(Γ)×H1/2(Γ) = 0 ∀v ∈ H1/2(Γ). (7.14)

Due to the fact that I and I∗ are isomorphisms, the following theorem follows directly [30,
Theorem 5.1.3 ii), Theorem 5.1.4 ii)].

Theorem 7.8. Let I : H1/2(Γ) → H−1/2(Γ) and I∗ : H−1/2(Γ) → H1/2(Γ) be given as
above. Then it holds:

(i) The spectra of V and IV coincide. Moreover, the kernels of V (k) and IV (k) coincide
for every arbitrarily chosen k ∈ C. For every k ∈ σ(V ) the maximal length of Jordan
chains corresponding to k, and the algebraic multiplicity are the same for V and IV .

(ii) The spectra of D and I∗D coincide. Moreover, the kernels of D(k) and I∗D(k)
coincide for every arbitrarily chosen k ∈ C. For every k ∈ σ(D) the maximal length
of Jordan chains corresponding to k, and the algebraic multiplicity are the same for
D and I∗D.

The next theorem [30, Theorem 5.1.3 i), Theorem 5.1.4 i)] shows that IV and I∗D are
Fredholm operator functions with index zero.

Theorem 7.9. Let I : H1/2(Γ) → H−1/2(Γ) and I∗ : H−1/2(Γ) → H1/2(Γ) be given as
above. Then it holds:

(i) The operator function

IV : C→ L(H−1/2(Γ), H−1/2(Γ)),

k 7→ IV (k),

is holomorphic and defines a Fredholm operator function of index zero.

(ii) The operator function

I∗D : C→ L(H1/2(Γ), H1/2(Γ)),

k 7→ I∗D(k),

is holomorphic and defines a Fredholm operator function of index zero.
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Proof. We follow the proofs in [30].
(i) The holomorphy of IV is a direct consequence of the holomorphy of V . For every
arbitrarily chosen k ∈ C we can write IV (k) in the following way

IV (k) = IV (0) + I(V (k)− V (0)).

One can show that V (0) is H−1/2(Γ)-elliptic, i.e., there exists a constant cV0 such that

〈w, V (0)w〉H−1/2(Γ)×H1/2(Γ) > cV0‖w‖2
H−1/2(Γ) ∀w ∈ H

−1/2(Γ)

[19, Corollary 8.13]. Then it follows with (7.11) that IV (0) is H−1/2(Γ)-elliptic. Further-
more, V (k)−V (0) is compact by Lemma 6.5. This implies that I(V (k)−V (0)) is compact,
too. Lemma 7.6 shows that IV (k) is a Fredholm operator with index zero and since k was
chosen arbitrarily, IV is a Fredholm operator function with index zero.
(ii) The holomorphy of I∗D is a direct consequence of the holomorphy of D. For every
arbitrarily chosen k ∈ C we can write I∗D(k) in the following way

I∗D(k) = I∗D̃(0) + I∗(D(k)− D̃(0)),

where D̃(0) is given by

D̃(0) := D(0) + α〈1Γ, ·〉H−1/2(Γ)×H1/2(Γ)1Γ,

with α ∈ R+, and 1Γ ∈ H−1/2(Γ) is a functional defined by

1̃Γ(v) :=

∫
Γ

v(x)dsx

for all v ∈ H1/2(Γ). Note that in contrast to D(0), the operator D̃(0) is H1/2(Γ)-elliptic
[26, p. 177]. The reason why the operator D(0) is not H1/2(Γ)-elliptic is that the constants
lie in the kernel of this operator. However, with (7.12) it follows that I∗D(0) is H1/2(Γ)-
elliptic, too. The operator D(k) − D̃(0) is compact, since D(k) − D(0) is compact by
Lemma 6.5 and the operator given by v 7→ 〈1Γ, ·〉H−1/2(Γ)×H1/2(Γ)1Γ is also compact. It is

known that the sum of two compact operators is again compact. Hence, I∗(D(k)− D̃(0))
is also compact and with Theorem 7.6 the assertion follows.

This theorem allows us to apply Theorem 7.4 and Theorem 7.5 to IV and I∗D. In the
sequel we restrict to the special case where the maximal length of Jordan chains is equal
to one. The following relationship between δn and δ∗n holds:

Theorem 7.10. Let λ0 ∈ D0 ∩ σ(IV), where D0 is defined as in Theorem 7.5. Further,
we assume that Mλ0(IV ) = 1. Then it holds

δn = δ∗n

in Theorem 7.5. The same holds true for I∗D instead of IV .
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Remark. For real eigenvalues λ0 one can show that the maximal length of any Jordan
chain is equal to one [27, Lemma 5.3].

In order to prove this theorem, we need the following lemma.

Lemma 7.11. Let k ∈ C. Then the following two assertions hold:

(i) [IV (k)]∗ = IV (−k).

(ii) (k, t) with t ∈ H−1/2(Γ)\{0} is an eigenpair of V , i.e., V (k)t = 0, if and only if
(−k, t) is an eigenpair of V , i.e., V (−k)t = 0.

Proof. (i) The proof of this statement can also be found in [27, Lemma 5.2]. By [25, p.
120] the single layer boundary integral operator admits a representation as weakly singular
boundary integral of the form

(V (k)w)(x) =

∫
Γ

U∗k (x, y)w(y)dsy, ∀x ∈ R3,

for all w ∈ L∞(Γ). Let now t, u ∈ H−1/2(Γ). Then it holds with (7.13)

(u, IV (k)t)H−1/2(Γ) = 〈u, V (k)t〉H−1/2(Γ)×H1/2(Γ) =
1

4π

∫
Γ

∫
Γ

eik|x−y|

|x− y|
t(y)dsyu(x)dsx

=
1

4π

∫
Γ

∫
Γ

e−ik|x−y|

|x− y|
u(x)dsxt(y)dsy =

1

4π

∫
Γ

∫
Γ

e−ik|x−y|

|x− y|
u(x)dsxt(y)dsy

= 〈t, V (−k)u〉H−1/2(Γ)×H1/2(Γ) = (t, IV (−k)u)H−1/2(Γ)

= (IV (−k)u, t)H−1/2(Γ).

This proves the first assertion.
(ii) Let (k, t) ∈ C × H−1/2(Γ)\{0} be an eigenpair of V , i.e., V (k)t = 0. By taking the
complex conjugate we get V (k)t = 0. We can rewrite V (k)t in the following way

(V (k)t)(x) =

∫
Γ

U∗k (x, y)t(y)dsy =

∫
Γ

U∗k (x, y)t(y)dsy =

∫
Γ

U∗−k(x, y)t(y)dsy = (V (−k)t)(x)

for every x ∈ R3, where

U∗k (x, y) = U∗−k(x, y) (7.15)

is used. Hence, the statement follows.

An analogous result holds true for I∗D instead of IV :

Lemma 7.12. Let k ∈ C. Then the following two assertions hold:

(i) [I∗D(k)]∗ = I∗D(−k).
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(ii) (k, u) with u ∈ H1/2(Γ)\{0} is an eigenpair of D, i.e., D(k)u = 0, if and only if
(−k, u) is an eigenpair of D, i.e., D(−k)u = 0.

Proof. (i) The proof of this statement can also be found in [30, Lemma 5.1.6] for real
k. By [25, Corollary 3.3.24] the hypersingular boundary integral operator admits for all
u, v ∈ H1/2(Γ) a representation of the form

〈D(k)u, v〉H−1/2(Γ)×H1/2(Γ)

=

∫
Γ

∫
Γ

U∗k (x, y)
{

(curlΓu(y), curlΓv(x))− k2u(y)v(x)(n(x), n(y))
}
dsydsx,

where n is the unit normal vector pointing from the domain Ω− to Ω+ and curlΓ is the
surface rotation given by

curlΓu(x) = n(x)×∇ũ(x), x ∈ Γ,

with a local extension ũ of u. Let now u, v ∈ H1/2(Γ). Then it holds with (7.14), (7.15),
(7.9), and (7.8)

(I∗D(k)u, v)H1/2(Γ) = 〈D(k)u, v〉H−1/2(Γ)×H1/2(Γ) = 〈u,D(−k)v〉H1/2(Γ)×H−1/2(Γ)

= 〈u,D(−k)v〉H1/2(Γ)×H−1/2(Γ) = 〈D(−k)v, u〉H−1/2(Γ)×H1/2(Γ)

= (I∗D(−k)v, u)H1/2(Γ) = (u, I∗D(−k)v)H1/2(Γ).

This proves the first assertion.
(ii) Let (k, u) ∈ C × H1/2(Γ)\{0} be an eigenpair of D, i.e., D(k)u = 0. By taking the
complex conjugate we get D(k)u = 0. Due to (7.15), we can rewrite D(k)u as

〈D(k)u, v〉H−1/2(Γ)×H1/2(Γ) = 〈D(−k)u, v〉H−1/2(Γ)×H1/2(Γ)

for all v ∈ H1/2(Γ). Hence, the statement follows.

We are now able to prove Theorem 7.10.

Proof of Theorem 7.10. We restrict to showing the proof for IV . The proof for I∗D works
analogously. To start with, we would like to recall the definitions of δn and δ∗n

δn := max
v0∈Gλ0

(IV ),‖v0‖X61
inf

vn∈Xn
‖v0 − vn‖X , δ∗n := max

w0∈Gλ0
([IV ]∗),‖w0‖X61

inf
vn∈Xn

‖w0 − vn‖X .

Due to the definition of the adjoint eigenvalue problem and Lemma 7.11(i), the following
relationship holds

(IV )∗(λ0) = [IV (λ0)]∗ = IV (−λ0),

and therefore it follows for the corresponding generalized eigenspace

Gλ0
([IV ]∗) = G−λ0

(IV ).
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Since we have assumed that Mλ0(IV ) = 1, the generalized eigenspaces Gλ0(IV ) and
G−λ0

(IV ) coincide with ker IV (λ0) and ker IV (−λ0) by definition. It remains to show
that

max
v0∈ker IV (λ0),‖v0‖X61

inf
vn∈Xn

‖v0 − vn‖X = max
w0∈ker IV (−λ0),‖w0‖X61

inf
vn∈Xn

‖w0 − vn‖X .

In order to show this, we fix v0 ∈ ker IV (λ0) with ‖v0‖X 6 1. By using Lemma 7.11(ii)
v0 ∈ ker IV (−λ0). Since Xn is finite-dimensional, there exists a finite basis {φ1, . . . , φn}.
Therefore, every element vn ∈ Xn can be written as

vn =
n∑
j=1

αjφj

with constants αj ∈ C. As Xn is a subspace, the element vn is also contained in Xn. The
assertion follows now directly from

‖v0 − vn‖2
X = ‖Re(v0 − vn)‖2

X + ‖Im(v0 − vn)‖2
X = ‖v0 − vn‖2

X .

7.3.3 Error estimate for lowest order Galerkin approximation

In this subsection we additionally assume that Ω− has a polygonal boundary. Our aim
is to state the error estimates for lowest order Galerkin approximations of the boundary
integral formulations. As approximation spaces we consider Xn = S0

h(Γ) ⊂ H−1/2(Γ)
and Xn = S1

h(Γ) ⊂ H1/2(Γ). The former space denotes the space of piecewise constant
functions, whereas the latter one is the space of piecewise linear functions. These spaces
are defined as follows:

Definition 7.13. Let Γh be a valid decompositions of Γ, i.e.,

(i) Γh is a finite set of non-degenerate triangular elements {τ1, . . . , τmh},
(ii) Γh =

⋃mh
l=1 τl,

(iii) two neighbouring elements of Γh either share a node or an edge.

Let nh denote the number of vertices {xl}nhl=1 of Γh. Then

S0
h(Γ) :=

{
vn =

mh∑
k=1

βkψk, βk ∈ C

}
, S1

h(Γ) :=

{
vn =

nh∑
k=1

γkφk, γk ∈ C

}
,

where the basis functions ψk and φk are given by

ψk(x) =

{
1, x ∈ τk,
0, x /∈ τk,

φk(x) =


1, x = xk,

0, x = xl 6= xk,

piecewise linear, elsewhere.
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Let {Γh}h be a family of valid decompositions of Γ, which are uniformly shape regular,
i.e., there exists a constant c > 0 independent of the decomposition, such that

dl 6 chl, ∀l = 1, . . . ,mh,

where dl and hl are the diameter and the local mesh size of τl

dl := sup
x,y∈τl
|x− y|, hl :=

(∫
τl

dsx

)1/2

.

Moreover, we assume that {Γh}h is globally quasi-uniform, i.e., there exists a constant
cG > 1 independent of mh such that

hmax

hmin

:=
max

l=1,...,mh
hl

min
l=1,...,mh

hl
6 cG.

The following lemma points out that the assumption on the choice of the finite-dimensional
subspace Xn in Theorem 7.4 is satisfied by S0

h(Γ) and S1
h(Γ).

Lemma 7.14. Let {Γh}h be given as above. Then the spaces S0
h(Γ) and S1

h(Γ) fulfil the
condition (7.4).

Proof. See [25, Corollary 4.1.28] for S0
h(Γ). The proof for S1

h(Γ) can be done analogously.

Before stating the error estimates for the eigenvalues and eigenvectors, we need the
following properties of S0

h(Γ) and S1
h(Γ) [30, Eq. (5.18)]

inf
vh∈Sηh(Γ)

‖v − vh‖Hη−1/2(Γ) 6 chs−η+1/2‖v‖Hs
pw(Γ) ∀v ∈ Hs

pw(Γ),

where η ∈ {0, 1}, s ∈ [η−1/2, η+1], and Hs
pw(Γ) is defined as in [26]. Under the assumption

that the maximal length of any Jordan chain is equal to one, we obtain from Theorem 7.5
for η ∈ {0, 1} the following error estimates for the eigenvalues

|λn − λ0| 6 C̃h2s−2η+1 max
v0∈kerAη(λ0),‖v0‖Hη−1/2(Γ)

61
‖v0‖2

Hs
pw(Γ) ∼ O(h2s−2η+1), (7.16)

and for the eigenvectors

inf
v0∈kerAη(λ0)

‖vn − v0‖Hη−1/2(Γ) 6 Ĉ

(
h2s−2η+1 max

v0∈kerAη(λ0),‖v0‖Hη−1/2(Γ)
61
‖v0‖2

Hs
pw(Γ)

+ hs−η+1/2 max
z0∈kerAη(λ0),‖z0‖Hη−1/2(Γ)

61
‖z0‖Hs

pw(Γ)

)
∼ O(hs−η+1/2)

where A0 := IV , A1 := I∗D, and kerAη(λ0) ⊂ Hs
pw(Γ) for some s ∈ [η − 1/2, η + 1].

Therefore, the highest orders of convergence using lowest order approximation spaces are
O(h3) for the eigenvalues and O(h3/2) for the eigenvectors, provided that ker IV (λ0) ⊂
H1

pw(Γ) and ker I∗D(λ0) ⊂ H2
pw(Γ).
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8 Numerical examples

In this chapter we would like to compare the presented numerical methods by discussing
the results of several numerical experiments.

8.1 Interior eigenvalue problem for the Laplace

operator on the unit cube

In this section we focus on the computation of eigenvalues of the interior Dirichlet Laplace
eigenvalue problem

−∆u− k2u = 0 in Ω−,

γ−0 u = 0 on Γ,

where Γ := ∂Ω− and Ω− = (0, 1)3 is the unit cube in R3. Our aim is to find all eigenvalues
k which lie in the interval [1.0, 19.0]. By Theorem 6.9 we have seen that the eigenvalues of
the above eigenvalue problem correspond to the numbers k ∈ R+

0 of the boundary integral
formulation

V(k)t = 0, (8.1)

where t ∈ H−1/2(Γ)\{0}. Note again that equation (8.1) describes a NEP since it is non-
linear in the parameter k.

Discretization and Galerkin approximation:

Let S0
h(Γ) := {ψhj }

mh
j=1 ⊂ H−1/2(Γ) be the space of piecewise constant functions. Then

the Galerkin variational formulation leads to the following eigenvalue problem

Vh(kh)t = 0, (8.2)

where

Vh(kh)[i, j] =

∫
Γ

∫
Γ

1

4π

eikh|x−y|

|x− y|
ψhj (y)dsyψhi (x)dsx.

Note that (8.2) has exactly the required form (2.1).
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In order to solve (8.2) we choose a discretization of Γ in triangles with mesh size h = 0.1.
This leads to 1,468 degrees of freedom (DOFs). Figure 8.1 was created with Gmsh [13]
and shows the discretization.

Figure 8.1: Discretization of Γ in triangles with mesh size h = 0.1.

For computing the BEM matrices we used the open-source Galerkin boundary element
library BEM++ 3.0.0 [21]. Note that in this example only dense matrices were used. The
calculations were performed in IPython [23]. In BEM++ the boundary integrals are, by
default, computed by using Gauß quadrature rules with 12 symmetric integration points per
triangle and Duffy type transformations. For solving the systems of linear equations for the
matrices Âp and hp, defined by (3.19) and (4.11), we used the command numpy.linalg.solve,
which calls the LAPACK routine gesv. This routine solves a well-determined, i.e. full rank,
linear matrix equation AX = B by computing the LU decomposition of A.

Exact eigenvalues and their distribution:

The exact eigenvalues of (8.2) are given by the formula [29, Section 10.1, Example 1]

kh = π
√
k2

1 + k2
2 + k2

3, k1, k2, k3 ∈ N. (8.3)

Figure 8.2: Eigenvalues in [1.0, 19.0] with their corresponding algebraic multiplicities.
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One can verify that there are 78 eigenvalues in the interval [1.0, 19.0], when counting them
according to their multiplicities. Figure 8.2 shows their distribution and their correspond-
ing algebraic multiplicities. We observe that there are several eigenvalues with algebraic
multiplicity six and only two eigenvalues with algebraic multiplicity one. In addition, the
eigenvalues with algebraic multiplicity six are all in the right half of the interval.

Comparison of the CIM and the RIM:

Note that for all our tests we used the same contour ΓC, namely an ellipse with center
in (x0, y0) = (10.0, 0.0), semi-major axis a = 9.0, and semi-minor axis b = 0.1.

First of all, we would like to compare the CIM with the RIM for different values of K
and l, where K denotes the number of blocks of the Hankel matrices B0, B1 in the CIM
and H, H< in the RIM, and l is the number of columns of the random matrix U . For our
tests we fixed the following parameters:

• N = 150 equidistant quadrature points on ΓC for the CIM;

• N = 150 Chebyshev points of the first kind in the interval [1.0, 19.0] for the RIM;

• δ = 10−14, which is used for the determination of the numerical rank σk > δ · σ1, for
both algorithms;

• tolres = 10−3, which is used in the residual tests, for both algorithms.

In order to facilitate the comparison, we first sorted the calculated eigenvalues in as-
cending order according to their real values, then we assigned them indices according to
their position, and finally we plotted the residuals ‖T (λj)vj‖2/‖vj‖2 against these indices.
In Figure 8.3, our results for different values of K and l are illustrated.

Figure 8.3: Comparison of the CIM and the CIM for different values of K and l.
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One can notice that for fixed values of K and l the residuals ‖T (λj)vj‖2/‖vj‖2 are nearly
the same for both algorithms. Furthermore, the residuals increase with increasing values of
K, except for K = 1 and K = 2. For K = 1 the residuals are not only a few orders higher
than for K = 2, but they also show higher oscillations. At some point both algorithms start
to fail completely. We noticed that when trying the cases K = 15, l = 10 and K = 21,
l = 7. In the former case both algorithms only found 50 eigenvalues and in the latter
one 35. Besides that, some calculated eigenvalues were totally wrong, although (3.2) and
Kl > κ were fulfilled. This observation could be explained as follows. The larger the value
of l is, the more information of T (z)−1 can be acquired, which leads to a higher accuracy.
For increasing values of K though, the Hankel matrices B0, B1, H, and H< become more
and more ill-conditioned due to their special structure. Hence, it is better to choose small
values of K and larger values of l. The problem which occurs is that with larger values of
l the number of linear systems which have to be solved becomes larger, too.

Before moving on to the results of the CIM with Rayleigh-Ritz procedure, we would like
to have a look at the discretization errors of our calculated eigenvalues with respect to the
exact eigenvalues given by formula (8.3). Figure 8.4 shows these discretization errors in
the case, where the RIM with K = 2 and l = 75 was used.

Figure 8.4: Discretization errors using the RIM with K = 2 and l = 75.
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Comparison of the CIM-RRm and the CIM-RRs:

Now we would like to compare the CIM using the Rayleigh-Ritz procedure based on the
moment scheme with the corresponding method based on the sampling scheme. Since we
have seen before that the results for the CIM and the RIM are nearly the same, we only
focus on the CIM here. Note that we also solved the projected NEP TQ(λ)g = 0 by using
the CIM. For our tests the following parameters were fixed:

• NRR = 150 equidistant quadrature points on the contour ΓC for the Rayleigh-Ritz
procedure;

• δRR = 10−14, which is used for the determination of the numerical rank kS in the
moment and the sampling scheme;

• same quadrature points for the projected NEP (N = NRR);

• K = 2 blocks in each row and column of the Hankel matrices B̂0 and B̂1 assembled
when solving the projected NEP;

• δ = 10−14, which is used for the determination of the numerical rank of B̂0 in the
projected NEP;

• tolres = 10−3 for the residual tests.

We performed the following tests:

• CIM-RRs with L = 15 and L = 6;

• CIM-RRm with L = 15 and KRR = 10, 20;

• CIM-RRm with L = 6 and KRR = 25, 50;

In Table 8.1, the calculated numerical ranks for Ŝ and M̂ are summarized.

Method Parameters Numerical rank kS

CIM-RRs L = 15 480
CIM-RRs L = 6 272
CIM-RRm L = 15, KRR = 10 75
CIM-RRm L = 15, KRR = 20 73
CIM-RRm L = 6, KRR = 25 32
CIM-RRm L = 6, KRR = 50 30

Table 8.1: Numerical ranks kS for Ŝ and M̂ .

We can notice that for the CIM-RRs the necessary condition

NRRL > kS > κ = 78

for the proper approximation of the generalized eigenspace corresponding to the eigenvalues
inside ΓC is fulfilled for both choices of L, whereas for the CIM-RRm the necessary condition

KRRL > kS > κ = 78
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is not satisfied for any case. This usually has the effect that some of the calculated eigen-
values are totally wrong and others are missing. However, in the cases L = 15, KRR = 10,
and L = 15, KRR = 20, for the CIM-RRm, the determined numerical rank is only slightly
smaller than the real rank (78), and with the help of K = 2 all 78 eigenvalues were calcu-
lated. Though, the residuals of these calculated eigenvalues are much smaller than those
when the CIM-RRs is used, as one can see in Figure 8.5. In the cases L = 6, KRR = 25,
and L = 6, KRR = 50, only 17 and 30 eigenvalues respectively were computed.

Figure 8.5: Residuals using the Rayleigh-Ritz procedure.

The different behaviour of the residuals of the calculated eigenvalues can be explained
by the different quality of the approximated generalized eigenspaces which are obtained
from the matrices M̂ and Ŝ. In order to fulfil the rank condition (5.6)

KRRL > kS > κ,

the choice of small values of L implies that KRR has to be chosen large. The problem
which occurs is that by using higher moments in M̂ , the columns of this matrix become
more and more linearly dependent.

The different qualities of the approximated eigenspaces can also be observed by looking
at the singular values of M̂ and Ŝ, which are shown in Figure 8.6. Note that in order to
be able to compare the singular value distributions for M̂ and Ŝ more effectively, we first
scaled the singular values such that the first one is always one and we only consider the first
150 singular values of M̂ and Ŝ, which normally have min{n,KRRL} and min{n,NRRL}
singular values respectively.
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Figure 8.6: Singular values of M̂ and Ŝ for L = 15 (left) and L = 6 (right).

We can notice that the singular values decrease much faster when using the moment
scheme. Whereas the 78th singular value, which is the first eigenvalue to the left of the
vertical line in the figures, is only around two orders lower than the first one in Ŝ, the
ratio is around 16 orders for M̂ . Since we chose δRR = 10−14 for the moment scheme, the
eigenvalues can not be extracted properly. Figure 8.7 even shows that the numerical rank
never reaches 78 no matter how large we choose KRR. To conclude, we have seen that the
sampling scheme generates far more reliable and better approximations of the eigenspaces.

Figure 8.7: Numerical rank kS in dependence of the number of moments KRR.
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Comparison of the CIM and the RIM from a viewpoint of reducing the number
of quadrature points N :

Since the assembly of BEM matrices is expensive, we are interested in finding out how
small the number of quadrature and interpolation points N can be chosen in the CIM
and the RIM such that accurate results are still obtained. Figure 8.8 shows the residuals
against N for the cases K = 1, l = 100, and K = 2, l = 50. As before, the N quadrature
points for the CIM were chosen equidistantly on the contour, and as interpolation points
for the RIM N Chebyshev points of the first kind in the interval [1.0, 19.0] were taken.

For the tests we fixed the following parameters:

• δ = 10−14 for the determination of the numerical rank;

• tolres = 10−3 for the residual tests.

Figure 8.8: Residuals for K = 1, l = 100 (left) and K = 2, l = 50 (right).

From Figure 8.8 we can make two observations: Firstly, we can notice again that the
residuals are quite the same for both methods and that they show higher oscillations in
the case K = 1, l = 100, than for K = 2, l = 50. Secondly, whereas in the former case
N should be chosen larger or equal than 50 to get accurate results, N should be chosen
at least 30 in the latter one. Much smaller values than these are not recommended to be
chosen.
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Comparison of the CIM and the CIM-RRs from a viewpoint of reducing the
number of quadrature points N :

Similarly as before, we would like to compare the CIM and the CIM-RRs from a view-
point of reducing the number of quadrature points N . For the numerical tests we chose
the following parameters for the CIM:

• δ = 10−14 for the determination of the numerical rank;

• K = 2 blocks in each row and column of the Hankel matrices B̂0 and B̂1;

• tolres = 10−3 for the residual test.

For the CIM-RRs we fixed:

• δRR = δ = 10−14 for the determination of the numerical ranks of Ŝ and B̂0;

• NRR = N equidistant quadrature points for Ŝ;

• tolres = 10−3 for the residual test.

Figure 8.9 shows the residuals for different values of N . Note that for N = 20 the CIM
does not work any more since some eigenvalues are not found.

Figure 8.9: Comparison of the residuals when using the CIM and the CIM-RRs.

We can notice that for the same N the residuals are always smaller when the CIM-RRs
is used instead of the CIM. Therefore, it really make sense to use the CIM-RRs, provided
that the matrices T (zRR1 ), . . . , T (zRRNRR), calculated for Ŝ, can be stored. Otherwise, a value
of N means for the CIM-RRs that in fact 2N matrices have to be assembled. In this case
it could be better to choose the CIM, depending on the costs for solving the linear systems.
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Improvement of the residuals in the CIM-RRs for constant N :

We are now interested in the effects of the choice of L, which describes the number of
columns of the random matrix Û , on the residuals for a constant number of equidistant
quadrature points on the contour. We performed the tests for N = 20, 35 with the following
parameters:

• δRR = δ = 10−14 for the determination of the numerical ranks of Ŝ and B̂0;

• K = 2 blocks in each row and column of the Hankel matrices B̂0 and B̂1 in the
projected NEP;

• tolres = 10−3 for the residual test.

The plot on the left-hand side of Figure 8.10 shows the residuals against L for N = 20,
and the other one on the right-hand side of Figure 8.10 for N = 35.

Figure 8.10: Residuals when using the CIM-RRs for fixed values of N = 20 and N = 35
with variable L.

By condition (5.2)

L > max
k=1,...,nC

(
ηk∑
l=1

ml,k

)
,

L has to be chosen at least six. We can observe that a change from ten to 20 has a much
larger effect on the residuals than a change from 20 to 50.
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Improvement of the residuals in the CIM for constant N :

As before, we would like to find out more about the relationship between l, which denotes
the number of columns of the random matrix U , and the residuals for constant N = 20, 35.
We fixed the following parameters:

• δ = 10−14 for the determination of the numerical rank;

• K = 2 blocks in each row and column of the Hankel matrices B̂0 and B̂1;

• tolres = 10−3 for the residual test.

Note that the CIM does not work for N = 20, l = 50, since some eigenvalues are not
found. However, by increasing l more information is available which has the consequence
that all eigenvalues are detected now.

Figure 8.11: Residuals when using the CIM for fixed values of N = 20 and N = 35 with
variable l.

By the necessary condition

Kl > κ = 78,

l has to be chosen at least 39 for K = 2. In the right plot of Figure 8.11 we can see that a
change of l from 100 to 150 still has a large effect on the residuals.
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Experimental order of convergence (EOC):

In general, the experimental order of convergence (EOC) can be computed by the fol-
lowing formula:

eoc =
log |λ− λhl−1

| − log |λ− λhl |
log hl−1 − log hl

,

where λ denotes the exact eigenvalue, λhl−1
is the calculated approximation of λ based on a

coarser level of discretization, and λhl is the approximated eigenvalue based on the current
level of discretization.

We used the following meshes:

mesh size h number of nodes

0.1 1468

0.05 5668

0.035 11928

In Table 8.2, the EOC is calculated for some eigenvalues. For the calculation we used the
CIM with N = 35 equidistant quadrature points on the contour, K = 2, l = 50, δ = 10−10,
and tolres = 10−3. Note that for the eigenvalues with algebraic multiplicity larger than one
we always took the calculated eigenvalue closest to the exact eigenvalue.

h exact eigenvalue approximated eigenvalue absolute error eoc

0.1
10.88279619

10.87838690-0.00011426j 0.00441076
0.05 10.88232402-3.48820227e-07j 0.00047216 3.223
0.035 10.88267076+7.88826624e-07j 0.00012542 3.716

0.1
14.39658614

14.39115293-0.00037488j 0.00544612
0.05 14.39597381-9.38423554e-06j 0.00061239 3.152
0.035 14.39641940+5.19538255e-08j 0.00016673 3.647

0.1
17.20721163

17.20016987-0.00088348j 0.00709696
0.05 17.20635512-3.84305336e-05j 0.00085737 3.049
0.035 17.20698510-1.96376116e-06j 0.00022653 3.731

0.1
18.84955592

18.82721087-0.00112661j 0.02237343
0.05 18.84718760-5.79938118e-05j 0.00236902 3.239
0.035 18.84885440-4.52768175e-06j 0.00070153 3.411

Table 8.2: Experimental order of convergence for different eigenvalues.

In all cases we have a nearly cubic convergence. This matches with formula (7.16), which
gives an error estimate for the eigenvalues.
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8.2 Neumann eigenvalues of a pipe

In this example we are interested in finding all eigenvalues of the boundary integral formu-
lation

D(k)φ = 0

which lie close to the real axis and have a real part in the interval [-0.1,2.1]. The domain
Ω− is a pipe with length 5, outer radius 0.5, and inner radius 0.25.

By Theorem 6.10 we know that the eigenvalues of the above problem with negative
imaginary part are the resonances of (6.4) and the ones with non-negative imaginary part
are the eigenvalues of (6.2).

Discretization and Galerkin approximation:

Similarly as in the previous example, discretization by using the space of piecewise linear
functions S1

h(Γ) := {φhj }
nh
j=1 ⊂ H1/2(Γ) leads to the following eigenvalue problem

Dh(kh)u = 0,

where

Dh(kh)[i, j] = 〈D(k)φi, φj〉H−1/2(Γ)×H1/2(Γ).

In the sequel we will use the following discretizations of the pipe.

Mesh Number of nodes Number of elements

pipe 0 484 968
pipe 1 3784 7568
pipe 2 7307 14614
pipe 3 15136 30272

Table 8.3: Meshes with the numbers of corresponding nodes and elements.

Figure 8.12 illustrates the different meshes. For the pictures we used Gmsh [13], and
for the assembling of the BEM and Fast BEM matrices the open-source Galerkin bound-
ary element library BEM++ 3.0.3 [21]. All the other calculations were performed with
Python2.7.

Since we are only interested in eigenvalues and resonances which lie close to the real axis,
we always used an ellipse with center in (x0, y0) = (1.0, 0.0), semi-major axis a = 1.1, and
semi-minor axis b = 0.2 as contour.
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(a) pipe 0 (b) pipe 1

(c) pipe 2 (d) pipe 3

Figure 8.12: Meshes showing the discretized pipe.

Our first aim again is to investigate whether it is more efficient to use the CIM or the
CIM with the Rayleigh Ritz procedure based on the sampling scheme (CIM-RRs) for the
computation of the eigenvalues in the case where dense matrices are used.

As a second point, we would like to find out more about the effects on the results when
H-matrices are used instead of dense matrices. Note that the term H-matrix refers to
the so-called ”Hierarchical matrices”, which are used in the Fast BEM. These matrices
provide approximations of the dense matrices used in the BEM. The big advantage is that
the overall complexity of the assembly of the matrices linked to the discretized boundary
integral operators can be reduced from O(n2) for dense matrices to O(n log n) for H-
matrices, where n denotes the number of nodes in the corresponding grid. In BEM++ the
ACA (adaptive cross approximation) is used for generating the low-rank approximations.
A detailed description of Hierarchical matrices can, for instance, be found in [4].

Roughly speaking, we know that the main cost of the CIM is based on the computation
of the matrices

Âp =
N−1∑
j=0

w̃jT (z̃j)
−1U ∈ Cn×l, p = 0, . . . , 2K − 2,

and the residual tests. However, the cost for the CIM-RRs is mainly determined by the
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assembly of the approximation of the generalized eigenspace

Ŝ =
(
T (z̃RR0 )−1Û , T (z̃RR1 )−1Û , . . . , T (z̃RRNRR−1)−1Û

)
∈ Cn×NRRL,

the computation of the matrices

ˆ̂
Ap =

N−1∑
j=0

w̃jTQ(z̃j)
−1I ∈ CkS×kS , p = 0, . . . , 2K − 2,

and the residual tests. Now we would like to have a closer look at the following operations:

• Matrix assemblies: If N denotes the number of equidistant quadrature points on the
contour, we have to assemble N BEM or Fast BEM matrices for the computation of
Âp, p = 0, . . . , 2K − 2, in the CIM. However, for the CIM-RRs NRR matrices have to

be assembled for Ŝ, plus N matrices for
ˆ̂
Ap. For simplicity reasons we always assumed

that N = NRR.

The number of operations for the assembly of a BEM matrix is O(n2), whereas a Fast
BEM matrix can be assembled with a cost of O(n log n). In both cases, n denotes the
number of nodes of the mesh. In the case where we can store the matrices assembled
for Ŝ, we can reuse them for the CIM which is applied to the projected NEP, and
hence the number of matrices which have to be assembled is the same for the CIM
and the CIM-RRs in this special case. In our tests we did not reuse the matrices due
to memory requirements.

• Solving of linear systems: For the assembly of Âp in the CIM we have to solve N
equations of the form

T (z̃j)X = U, (8.4)

where T (z̃j) ∈ Cn×n and U ∈ Cn×l with at least l > κ/2 for K = 2. In comparison to
that, for the CIM-RRs we have to solve NRR = N equations

T (z̃j)X = Û , (8.5)

where Û ∈ Cn×L with

L > max
k=1,...,nC

(
ηk∑
l=1

ml,k

)
.

We can assume that l and L are chosen such that L 6 l. Moreover, the equations

TQ(z̃j)X = I,

where TQ(z̃j), I ∈ CkS×kS , have to be solved, but due to kS � n in most technical
applications we neglect the cost to solve them. For dense matrices we solved the
equations (8.4) and (8.5) by calculating the LU decomposition of T (z̃j), which has a
cost ofO(n3), once and by computing the solution column-wiseO(n2). ForH-matrices
we used the GMRES.
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• Residual tests: The number of residual tests depends on the choice of the parameter
δ, which is used for the determination of the numerical rank. For each test a BEM or
Fast BEM matrix has to be assembled. Therefore, it is desirable to choose δ in such
a way that the numerical rank coincides with the number of eigenvalues.

For the CIM with RRs one could circumvent the problem of performing expensive
residual tests by storing the matrices TQ(z1), . . . , TQ(zN) (s. Algorithm 4) and then
computing an interpolant of TQ as in (4.6)

T IQ(z) =
N∑
i=1

TQ(zi)li(z).

Note that since the matrices TQ(z1), . . . , TQ(zN) have a small dimension, namely kS×
kS , the storage of these matrices is no problem at all. Instead of ‖T (λj)vj‖2/‖vj‖2 we
could compute ‖T IQ(λj)gj‖2/‖gj‖2 now, where vj and gj are defined as in Algorithm 4.
Another possible improvement for the CIM-RRs from the viewpoint of reducing the
computational cost could be to calculate an interpolant T IQ given as above and then
apply the CIM to this interpolant in the second step of the CIM-RRs algorithm.
As the evaluation of T IQ is cheap, there can be used even more quadrature points
in the CIM for the calculation of the eigenpairs of the interpolated projected NEP.
To summarize, we performed the following four variants of the CIM-RRs, where the
notations are the same as in Chapter 5:

Variant Description

1 Choose NRR quadrature points z̃RRj , build Ŝ and compute Q. Then apply
the CIM to TQ(z) = QHT (z)Q with N quadrature points z̃j. Compute the
residuals ‖T (λj)vj‖2/‖vj‖2.

2 Choose NRR quadrature points z̃RRj , build Ŝ and compute Q. Then apply the
CIM to TQ(z) = QHT (z)Q with N quadrature points z̃j. Store the matri-
ces TQ(z̃1), . . . , TQ(z̃N) computed for the CIM and assemble the interpolation
polynomial T IQ(z). Compute the residuals ‖T IQ(λj)gj‖2/‖gj‖2.

3 Choose NRR quadrature points z̃RRj , build Ŝ and compute Q. Then choose
N quadrature points zj and calculate the matrices TQ(z1), . . . , TQ(zN). Use
these matrices to assemble the interpolant T IQ(z). Apply the CIM with 4N
quadrature points to T IQ(z). Compute the residuals ‖T (λj)vj‖2/‖vj‖2.

4 Choose NRR quadrature points z̃RRj , build Ŝ and compute Q. Then choose
N quadrature points zj and calculate the matrices TQ(z1), . . . , TQ(zN). Use
these matrices to assemble the interpolant T IQ(z). Apply the CIM with 4N
quadrature points to T IQ(z). Compute the residuals ‖T IQ(λj)gj‖2/‖gj‖2.

72



For our computations we used all four meshes described in Table 8.3.
Since the results, as far as the residuals are concerned, are quite
similar for the different meshes, we would like to present the results
for pipe 3. As already mentioned above, we always chose NRR = N
in the CIM-RRs. For all tests the following parameters were fixed:

CIM N = 15, K = 2, l = 20, δ = 10−7

CIM-RRs NRR = N = 15, L = 6, K = 2, δRR = 10−8, δ = 10−7

Note that several additional tests suggested that it is not advisable to
choose N much lower than 15 in this example. In the Fast BEM we
used hmateps = 10−5 as approximation accuracy for the H matrices.
The equations

T (z)X = U

were solved by using the LU decomposition in the case of dense ma-
trices and by using the GMRES method with a tolerance gmrestol =
10−8 in the case of H-matrices. The following plots show the cal-
culated eigenvalues and their corresponding residuals by using the
CIM and the different variants of the CIM-RRs for dense matrices
and H-matrices. The meaning of the characters used in the plots is
explained by the legend to the right of this text.

# 1e-03
3 1e-04
× 1e-05

E 1e-06
# 1e-07
3 1e-08
× 1e-09

E 1e-10
# 1e-11
3 1e-12
× 1e-13

E 1e-14
# 1e-15
3 1e-16

BEM (dense matrices):

Figure 8.13: CIM, N=15, pipe 3.
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When looking at the CIM in Figure 8.13, we can notice that all 14 eigenvalues were
found by the algorithm and that their residuals have an order of around 1e-06 or 1e-07.
Actually, we can only see eleven eigenvalues since the ones at 1.848, 1.493, and 1.355 have
algebraic multiplicity two. Moreover, no spurious eigenvalues occur. This is typical of
dense matrices if N is sufficiently large. Note that in the plot of the singular values (in
all plots they were scaled such that the first one always is one) there are two gaps, one at
around 10−1 and the other at 10−4. If we had therefore set δ = 10−4, we would not have
computed other eigenvalues lying outside of ΓC either. However, for the choice δ = 10−1,
we would have got completely wrong results. Hence, it is not advisable to use the criteria

κ = Argmax
j=1,...,Kl−1

(σj/σj+1)

for the determination of the numerical rank, although this is proposed in some articles.
The numerical results for the different variants of the CIM-RRs are presented below.

Figure 8.14: CIM-RRs Variants 1 and 2, N=15, pipe 3.
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Figure 8.15: CIM-RRs Variants 3 and 4, N=15, pipe 3.

We observe that the results for Variant 1 in Figure 8.14 are nearly the same as for the
CIM. Again, all eigenvalues inside the contour are found, no spurious ones occur, and the
residuals nearly coincide. In contrast, the residuals in Variant 2 are all a few orders lower
than those in Variant 1. Note that in the singular values of the matrix B̂0 we can observe
a gap of one order. This gap comes directly after the 14th singular value.

In Figure 8.15, where the CIM is applied to the interpolated projected NEP, we can
notice that the gap in the singular values of B̂0 is around eight orders. Since δ was chosen
10−7, the numerical rank now coincides with the real number of eigenvalues which has the
effect that no other eigenvalues lying outside the ellipse are calculated. Furthermore, the
residuals in Variant 4 are extremely low. Let us now turn to the Fast BEM.
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Fast BEM:

Figure 8.16: CIM, Fast BEM, N=15, pipe 3.

Figure 8.17: CIM-RRs Variants 1 and 2, Fast BEM, N=15, pipe 3.
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Figure 8.18: CIM-RRs Variants 3 and 4, Fast BEM, N=15, pipe 3.

When we compare the above plots for the Fast BEM with those from the BEM, we
can notice that the residuals for the CIM (Figure 8.16, Figure 8.13) are quite the same.
However, in Figure 8.17 spurious eigenvalues lying inside the contour occur. For Variant 1
it is no problem to distinguish the real eigenvalues and the spurious ones since there is a
difference of a least three orders in the residuals, though in Variant 2 such a distinction
is not possible any more. Hence, Variant 2 should be avoided completely. The results for
Variant 3 and Variant 4 in Figure 8.18 nearly coincide with those from the BEM.

To conclude, due to the large gap in the singular values of B̂0, Variant 3 or 4 seem to be
most suitable for the computation of eigenvalues. Moreover, these variants also have much
smaller computational times than the CIM at least for the case when H-matrices are used.
In the case of dense matrices, Variant 3 and 4 certainly have a large potential provided
that the matrices which have to be assembled for Ŝ can be stored.
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Computational times:

CIM:

Mesh Time in seconds (BEM) Time in seconds (Fast BEM)

pipe 0 15.3 50.8
pipe 1 463.0 1500.7
pipe 2 2501.9 5519.4
pipe 3 18883.6 22383.0

CIM-RRs Variant 1:

Mesh Time in seconds (BEM) Time in seconds (Fast BEM)

pipe 0 22.9 54.8
pipe 1 638.9 1462.8
pipe 2 3704.6 3798.5
pipe 3 23504.9 11700.0

CIM-RRs Variant 2:

Mesh Time in seconds (BEM) Time in seconds (Fast BEM)

pipe 0 15.9 38.6
pipe 1 489.7 904.1
pipe 2 2958.3 2688.3
pipe 3 19517.4 8960.6

CIM-RRs Variant 3:

Mesh Time in seconds (BEM) Time in seconds (Fast BEM)

pipe 0 23.1 53.6
pipe 1 643.2 1194.6
pipe 2 3626.3 3387.7
pipe 3 22589.3 10541.8

CIM-RRs Variant 4:

Mesh Time in seconds (BEM) Time in seconds (Fast BEM)

pipe 0 16.1 38.5
pipe 1 497.8 906.6
pipe 2 2862.0 2744.0
pipe 3 18929.0 9118.7
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