
Konstantin Lassnig, BSc

An Autonomous Robot for
Campus-Wide Transport Tasks

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer

Institute for Software Technology

 Diplom-Ingenieur

Supervisor

Graz, September 2016

This document is set in Palatino, compiled with pdfLATEX2e and
Biber.

The LATEX template from Karl Voit is based on KOMA script and
can be found online: https://github.com/novoid/LaTeX-KOMA-
template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I
have explicitly indicated all material which has been quoted either
literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s
thesis dissertation.

Graz,

Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig verfasst, andere als die angegebenen Quellen/Hilfsmittel
nicht benutzt, und die den benutzten Quellen wörtlich und in-
haltlich entnommenen Stellen als solche kenntlich gemacht habe.
Das in TUGRAZonline hochgeladene Textdokument ist mit der
vorliegenden Masterarbeit identisch.

Graz,

Datum Unterschrift

iii

Acknowledgements

First I would like to thank my supervisor Gerald Steinbauer, who
always found the time for discussing ideas and methodologies. I
hold him in high regard because he spend a lot of time for sup-
porting me during the time of my master thesis, even in stressful
periods.

Special thanks to Clemens Mühlbacher, he invested a lot of time
by supporting me not only with many helpful contributions but
also by assisting me when assembling or transporting the robot.
Moreover I am thanking the group of the Autonomous Intelligent
System laboratory of the Institute of Software Technology for their
support. Furthermore I have to thank the company incubedIT for
funding this thesis.

Many thanks to the whole Tedusar Team for their great support.
We made such a good job in bringing ideas to life and solving
challenging problems together. We worked really hard, but made
sure we had fun doing it!

I like to thank my girlfriend for always supporting me throughout
my whole life. She reminds me to enjoy life, either by doing sports
or by drinking wine together and have a good talk. Finally I want
to thank my whole family as well as all my friends for believing
and supporting me and my ideas.

Konstantin Lassnig
Graz, Austria, August 2016

v

Abstract

In this thesis we present a navigation system for an autonomous
transport robot. The system is able to operate in outdoor as well
as indoor environments. The navigation system is specially de-
signed for urban areas, such as campus sites which raise numerous
challenges. The system allows reacting autonomously on dynamic
changes of the environment such as blocked sideways and roads
while trying to stay on preferred paths like sidewalks. In this thesis
we present the core modules of the system: (1) mapping, (2) localiza-
tion and (3) path planning and navigation. Techniques developed
within this thesis, contribute to the area of large-scale graph-based
mapping by fusing information of several sensors to one efficient
and consistent map representation. Moreover, algorithms which
translate this representation into a hybrid representation compris-
ing a roadmap and local grid maps are presented. The topological
roadmap allows easy access to the underlying local grid maps.
Thus is a practical solution to treat large-scale maps. Moreover
existing technologies for solving local localization or path planning
and navigation can be reused. The planning architecture is based
on separated abstraction levels and comprises a high-level mod-
ule which is able to generate paths in real-time for large outdoor
environments. The high-level planner uses the roadmap with a
graph topology to take the global structure of the environment
into account. Theses global plans are refined by a local planner
using the connected local grid maps. Furthermore the planner also
incorporates the traversability and type of the actual terrain into
planning. The proposed navigation system was implemented and
realized with a mobile robot prototype to allow extensive testing
and evaluation in a real world scenario. The evaluation verified the

vii

technical feasibility and functionality of the proposed algorithms
as well as the implementation.

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Challenges 2
1.3 Contribution . 3
1.4 Outline . 5

2 Problem Formulation 7

3 Related Research 11
3.1 Mapping . 11
3.2 Graph-Based SLAM 12
3.3 Navigation Systems 13
3.4 Terrain Analysis . 14

4 Prerequisites 17
4.1 Robot Operating System 17
4.2 Move-Base . 18
4.3 Graph-Based SLAM 21
4.4 Adaptive Monte Carlo Localization 24
4.5 Planning . 24

5 Concept 27
5.1 Overview . 27

5.1.1 Hardware . 29
5.1.2 Software . 33

5.2 Preprocessing . 33
5.3 Odometry . 36
5.4 Mapping . 38

5.4.1 Graph-Based Mapping 39

ix

Contents

5.4.2 Topological Hybrid Mapping 41
5.5 Localization . 49
5.6 Planning . 52

5.6.1 Roadmap . 53
5.6.2 Topological Planning and Execution 55
5.6.3 Global/Local Planning 58

5.7 Terrain Analysis . 61

6 Implementation Details 65
6.1 Mapping . 65

6.1.1 Graph-Based Mapping 66
6.1.2 Topological Hybrid Mapping 68

6.2 Planning . 70
6.2.1 Roadmap . 70
6.2.2 Topological Planning 71

6.3 Terrain Analysis . 74
6.3.1 Terrain Mapping 75
6.3.2 Terrain Analyzing 76

7 Evaluation 79
7.1 Sensors . 79

7.1.1 Laser Range Finders 79
7.1.2 GPS . 81

7.2 Mapping . 85
7.2.1 Graph-Based Slam 85
7.2.2 Topological Hybrid Mapping 88

7.3 Localization . 90
7.4 Planning . 96

7.4.1 Roadmap . 99
7.5 Terrain Analysis . 102

8 Conclusion 107
8.1 Discussion . 107
8.2 Lessons Learned . 108
8.3 Future Work . 109

Bibliography 111

x

List of Figures

1.1 Typical day at the Inffeld campus of the TU Graz. . 4
1.2 Inffeld campus of the TU Graz 4

4.1 Topic communication concept in ROS. 19
4.2 Synchronized service communication in ROS. . . . 20
4.3 Concept of the action-server communication. 20
4.4 Concept of the Move-Base 21
4.5 SLAM process represented as a graph. 23
4.6 Graph-based edge error formulation. 23

5.1 Overall system architecture. 28
5.2 System architecture for data acquisition. 29
5.3 Complete robot build up in side view. 31
5.4 Robot setup in front and top view. 31
5.5 Laser sensor setup side view. 32
5.6 Laser sensor setup top view. 32
5.7 Schematic overview for mapping. 34
5.8 Workflow concept for planning. 35
5.9 Scan chain data flow chart. 37
5.10 Concept of ground removal implementation. 37
5.11 Sample hybrid topological hybrid map. 46
5.12 Accessibility check of an early topological graph. . 47
5.13 Topological hybrid graph with underlaying map. . 48
5.14 Map switching by choosing candidates. 52
5.15 Roadmap generation with different inputs. 56
5.16 Planned path on the roadmap. 59
5.17 Creation of an elevation map. 63
5.18 Relation between range and intensity readings. . . 64

xi

List of Figures

6.1 Class diagram of existing and custom types for g2o. 67
6.2 Overview of the topological mapping classes. . . . 70
6.3 Illustration of the planning procedure. 73
6.4 Acting classes of the terrain analysis. 75
6.5 Layered costmap illustration. 77

7.1 Laser range finder comparison. 80
7.2 Sensor evaluation of the used GPS. 82
7.3 Sample GPS routes two compare manufacturers. . . 83
7.4 Same sample route with IMU-GPS only. 83
7.5 Close-up shot of the GPS comparison. 84
7.6 Difficult regions for building maps. 86
7.7 Close ups of the constructed pose-graph. 87
7.8 Generated pose-graph of the TU Graz campus. . . . 88
7.9 Topological hybrid graph of the TU Graz campus. . 89
7.10 Cutout of the overall topological hybrid graph. . . . 90
7.11 Selected collection of created occupancy grid maps. 91
7.12 Particle distribution after changing the map. 92
7.13 Particle filter re-localizes. 93
7.14 Places to evaluate localization accuracy. 95
7.15 Spot deviations for three different scenarios. 95
7.16 Localization deviations for every spot. 96
7.18 The resulting planning durations of both methods. 97
7.19 Topological planner provides way-point sequence. . 98
7.20 Way-point sequence with a smooth corner. 99
7.21 Comparison of roadmap generation methods. . . . 100
7.22 Example sections of the generated roadmap. 101
7.23 Elevation map taken from various angles. 103
7.24 Costmap comparison with ground truth. 104
7.25 Sample vegetation classifications. 105

xii

1 Introduction

This thesis presents the design and implementation of a fully au-
tonomous transport system that can be used indoor and outdoor.

With increasing need for flexibility and automation fully autonomous
mobile robots are increasingly deployed in industrial faculties and
demonstrate their usefulness in a variety of different tasks. This
new kind of robots do not require any kind of modification to
the environment, like magnets in the floor or painted lines. An-
other big improvement is the new gained ability to work side by
side with humans, without cages or restrictions. This offers hole
new perspectives. Nowadays the transportation task is more often
transferred to robots due to flexibility reasons. The clear majority
of mobile robots are designed for indoor scenarios only but with
rising popularity and acceptance by the industry robots begin to
expand their working fields. As a consequence outdoor robots are
becoming essential for short and intermediate transport services.

Autonomous driving is a new upcoming field in the automotive
industry and will have profound effects on our daily life and
society. Mobility and the way we travel is transforming whenever
new technologies come available. This technology offers a lot of
benefits in terms of safety and will prevent a lot of human caused
accidents. In the next subsequent years such systems will first
appear on highways due to complexity reasons but the goal for
the future is clear, driving wherever a human is able to drive.
These highly automated cars have the same underlying technology
as robots and rely on algorithms earlier investigated in the field
of robotics. Prospective developments in this industry will again
heavily depend on achievements firstly made in robotics.

1

1 Introduction

1.1 Motivation

Transportation is one of the major problems of our current eco-
nomic system. Almost every industry needs to transport objects
from point A to point B.

It is estimated that at least 70 million people1 worldwide are work-
ing directly in the transportation industry. When talking about
transportation, mobility of individuals is very similar and deals
with the same needs.

Autonomous robot delivery systems can combine several advan-
tages at once. Instant or unscheduled delivery will increase the
productivity by delivering faster. The transportation of goods can
be accomplished with a fraction of the costs compared to conven-
tional systems. Furthermore autonomous robots can easily adapt
to a large variety of tasks or external influences. Only very flexible,
cost-efficient and smart solutions will master the challenges of
ever-changing customer needs for logistic industries.

1.2 Goals and Challenges

In this section we further describe the goals and challenges of
such a fully autonomous transport system. The overall goal is a
functional navigation system which is able to travel autonomously
in a campus like environment. The campus of the Graz University
of Technology at the Inffeld site is a typical example. An overall
schematic view of the campus can be seen in Figure 1.2 and in
Figure 1.1 a typical surrounding is shown. Such regions are espe-
cially challenging because autonomous driving is only very limited
possible. The optimization of intra-logistics on similar sites will
require autonomous robot solutions in the near future.

1http : //www.ilo.org

2

1.3 Contribution

The environment is changing to some extent, either because of
coming and going construction sites or because of very crowded
and populated pedestrian zones. Urbane environments are very
complex, dynamic and thus challenging scenarios with a lot of
potential pitfalls, like negative obstacles as depressions, ditches or
potholes. A lot of moving objects, not only people but bicyclists
and cars which disturb sensor measurements just like constantly
changing weather conditions violate global positioning system
(GPS) readings.

Next we point out the key aspects of this thesis.

1. Producing a global consistent map offline, which is then
further used for localization and path planning purposes.
The map needs to be consistent and precise enough so that
the final localization accuracy is sufficient.

2. High-level navigation which is fast and efficient enough
to work on large-scale environments and flexible to avoid
blocked routes. Planning routes for several hundreds of me-
ters works in real-time.

3. The system is capable of operating in- and outdoors and is
able to switch instantaneously between both scenarios.

4. It incorporates reasonable routes into path planning and
chooses sidewalks and pedestrian-zones instead of moving
straight to the goal.

5. Traversability analysis is necessary to avoid negative obsta-
cles like curbstones but also depressions and ditches. Further-
more unwanted terrain like vegetation should be bypassed
as long as possible.

1.3 Contribution

This thesis presents a complete setup, comprising hardware and
software solutions, of a fully autonomous transport system for
outdoor and indoor usage. Descriptions of complete setups like
this one are rather rare and most of the time only sub features are

3

1 Introduction

Figure 1.1: Typical day at the Inffeld campus of the TU Graz.

Figure 1.2: Inffeld campus of the Graz University of Technology. The campus
is on the longest side approximate 700m long and 320m wide (map
image c� TU Graz).

4

1.4 Outline

discussed. Therefore, we point out all relevant challenges, solu-
tions and future work of a complete autonomous transport system
setup for operating in urban areas. We show an offline mapping
solution by utilizing pose-graphs with additional sensor process-
ing, to build a global consistent map. The constructed pose-graph
builds the foundation for an extended topological graph which
is used for localization and in conjunction with a roadmap for
navigation. These environment representations are very useful,
particular in dealing with very large-scale maps. It has computa-
tional benefits and this is important when coping with insufficient
processing power, a common problem for mobile robots. Further-
more we propose navigation procedures on different stages, which
make path planning on large scale maps tractable but still incorpo-
rates reasonable routes into planning. This is possible by building
roadmaps with unique graph topologies beforehand and apply-
ing them when necessary. The navigation execution is therefore
processed by a high-level planner which is then triggering the
low-level modules.

1.4 Outline

The following chapters are organized as follows. Chapter 2 gives a
formal representation of the transport task. Related research with
link to this thesis is presented in Chapter 3, Chapter 4 contains
necessary basic prior knowledge. The overall concept and several
design decisions for hardware and software as well as algorithm
explanations are described in Chapter 5. Implementation details
can be found in Chapter 6. The results of all the different parts
are then evaluated and discussed in Chapter 7. Finally we con-
clude with a discussion the outcomes, lessons learned, additional
improvements and propose future work in Chapter 8.

5

2 Problem Formulation

This thesis describes an autonomous transport system with one
robot R := {R0}. In an environment E the robot R0 is moving and
E is defined within a two dimensional space as E := {x ∈ R2}.

The robot is traveling from the starting point s to the goal g (s, g ∈
R2), for every navigation task T ∈ T . Navigation tasks T are tuple
of �s, g�.
To accomplish any navigation task a map like environment repre-
sentation is necessary. We then use this abstract model for deter-
mine the robot position and furthermore creating plans.

The main map structure is formulated with a pose-graph P and is
defined with P := (N, C).

• N is a set of nodes. Where nodes are similar to robot poses
and every node n is fully described with ni = (xi, yi, θi, Si)
whereby each node can carry informations from arbitrary
many sensors, Si := {s1

i , s2
i , . . . , sj

i}. In our particular situation
nodes are carrying sLaser and sGPS measurements.

• C is a set of edges and every edge is connecting two nodes
and is defined by c := (n1, n2, k). Where n1 and n2 are nodes
and k relates to the numerical measurement error.

For solving the mapping problem and creating a pose-graph
we acquire a sequence of odometry u1:T = {u1, . . . , uT}, laser
l1:T = {l1, . . . , lT} and GPS gps1:T = {gps1, . . . , gpsT} measure-
ments. The odometry measurement comprises the translational
velocity vt and the rotational velocity wt at time t. The odometry
measurement is defined with ui = (vt

i wt
i)

T. GPS measurements

7

2 Problem Formulation

include information about longitude, latitude and altitude and is
thus described with gpsi = (longi lati alti)

T. Laser measurements
consist of multiple range measurements li = {r1, . . . , rj}. The un-
known variables trajectory x1:T = {x1, . . . , xT} and the map m can
than be estimated. This map representation can further translated
into local occupancy grid maps. Grid maps discretize the world
into cells and each cell is assumed to be occupied or free space. Let
celli denote individual grid cells, hence occupancy grid maps are
formulated in Equation (2.1).

grid map = ∑
i

celli (2.1)

Occupied cells are notated with p(celli = 1) and free cells with
p(celli = 0), thus p(celli) describes the probability if a grid cell is
occupied.

Instead of modeling a complete 3D representation of the environ-
ment we define a two-dimensional grid with three-dimensional
information. The elevation map discretizes the world into cells
(Equation (2.2)).

elevation map = ∑
i

eci (2.2)

Each cell eci can be described as a tuple of eci = �oi, µi, σ2
i �. Where

oi is the occupancy probability, µi is the elevation and σ2
i is the

variance of the estimation.

Determine the own position is called localization and a necessary
precondition for planning a path toward a goal. Localization in this
thesis is the process of estimating the robot position xt against a
known map m. The robot position is defined with xt = (x y θ)T.
For that purpose we keep a probability density p(xt|l1:t, u0:t−1)
of the position at time t given all laser measurements l1:t and
control inputs u0:t−1. The resulting probability distribution suffices
to approximate a state hypothesis of xt.

8

We utilize a navigation graph for planning, defined of the form
N := {P, G, E, O}. This graph represents navigability, so edges
only connect grid maps if and only if a possible path exists between
them.

• P is a pose-graph.
• G is a set of local grid maps.
• E is a set of edges connecting neighboring grid maps. Edges

are of the form e := (g1, g2, t) where g1 and g2 are grids and
t is the relative cost.

• Every grid maps g owns a set of overlaying nodes so that
g, Og ⊂ N. Og is therefore a set of nodes inside the covered
area of g.

A path is defined as a continues mapping π(R0) : [tR0 , tR0 +ΔtR0] →
E which is further described in the book of Choset [1]. The start
of the path is constrained to π(R0)(tR0) = sR0 and the goal with
π(R0)(tR0 + ΔtR0) = gR0 . Planning on the navigation graph is then
separated in three sub-tasks. Selecting the start way-point ns and
the goal way-point ng closest to the robot and the goal respectively.
The topological path can then be computed with astar(ns, ng).

We further assume the low-level planning and execution as solved.

9

3 Related Research

This chapter gives an overview of relevant research which is re-
lated to this thesis. The first part describes relevant mapping tech-
niques and optimization procedures which have already success-
fully demonstrated in real scenarios. This is followed by complete
outdoor navigation systems dealing with similar applications and
presenting already some effective solutions. The last part discusses
some literature on dealing with terrain classification to allow robots
to navigate on save ground.

3.1 Mapping

Map creation of the environment is an essential skill for mobile
robots. Robots use these maps for localization and navigation. The
process of map building is called simultaneous localization and
mapping (SLAM) [2], while the robot tries to localize itself inside
the current environment model it successively integrates more
measurements to the map and thus extends it. It is a fundamental
and complex problem, because acquiring a consistent map requires
a good localization estimate and vice versa.

The most famous map creation paradigms in literature are Kalman
filter, particle filter or graph-based. For example GMapping [3]
provides a highly efficient SLAM solution. It implements Rao-
Blackwellized particle filter to create maps. Each particle carries
therefore an individual map of the environment as well as the
trajectory of the robot. The map strongly depends on the trajectory,
which can be efficiently estimated first. The sampling and thus

11

3 Related Research

the next generation of particles is obtained by applying a proposal
distribution, whereby an odometry motion model is typically used.
Each particle gets an individual importance weight assigned and
then resampled. Only individual particles are selected for resam-
pling, depended on their importance weight. It takes odometry
and laser range measurements as input and outputs an occupancy
grid map.

3.2 Graph-Based SLAM

The simultaneous localization and mapping can also be represented
by a graph. This technique is even older than the particle filter
but became popular in 2006 due to several new mathematical
toolkits, which made the computation practicable. These algorithms
solve nonlinear error functions in an efficient manner and can be
adapted to a wide range of other problems. Graph-based slam
state of the art techniques are able to deal with very large maps
and are highly customizable and process all kind of sensor inputs.
New enhanced algorithms encouraged map sizes even beyond
several kilometers by introducing hierarchical approaches [4] and
maintaining different level of detail. Due to its versatility it can be
used for optimizing high dimensional problems and therefore able
to build large-scale 3D maps.

One famous and widely used open source framework is g2o [5],
presented and developed by Kümmerle and Grisetti et al. The con-
structed graph consists of nodes (vertices) which represent robot
poses at a certain time and edges which connect corresponding
poses due to same measurement observations. Each node carries
information about it sensor readings and edges can then measure
the correlation between each pose. When the graph is constructed
the optimization routine finds the most consistent representation.
For more detail information see Section 4.3.

12

3.3 Navigation Systems

3.3 Navigation Systems

Navigation is a core functionality for all mobile robots. This com-
bines the ability to estimate the current position and simultaneously
plan a path to a goal. Most state of the art solutions require a pre-
recorded map which was taken in forehand either by exploring
autonomously or by controlling the robot remotely. In indoor sce-
narios autonomous exploration [6] is very popular to automate the
mapping process. This technique has the major advantage of cre-
ating maps without any supervision. For that reason, commercial
systems like modern robot vacuum cleaner for example the iRobot
Roomba 980, already offer this functionality. However the larger the
operating area for navigation becomes, the more suitable technique
is remote controlled [7, 8] or GPS guided [9]. These systems rely
on a previously taught map for reaching a specific goal location
within the recorded area. When controlling the robot remotely the
operator can exactly specify which part of the environment should
be learned. In some cases the robot is even restricted to drive the
exact same route. The majority of navigation systems so far focused
on indoor scenarios or in comparable small operating areas, apart
from a few exceptions which are described next.

One of the few systems special designed for the outdoor navi-
gation task is the autonomous city explorer (Bauer et al. [10]). It
successfully took a longer tour through Munich without any map
knowledge or GPS information, solely from information given from
passers-by. The robot frequently interacted with pedestrians which
were the primary source for orientation and direction information.
It approached humans autonomously and recognized a number of
basic commands by using a speech recognition system.

Kümmerle et al. [11] describes a complete system for mobile robots
navigating in urban scenarios. Obelix the robot of the University of
Freiburg managed to navigate autonomously in the city center for
a distance of more than 3km. This system uses accurate maps of
the city center in conjunction with GPS. The maps where generated
with a SLAM procedure while someone manually drove the robot

13

3 Related Research

along a route. The system contains a dedicated map data structure
for dealing with large-scale maps and a variant of Monte-Carlo
localization realized with a particle filter. What makes this work
interesting is the way how the system is designed to deal with very
large maps. Their dedicated map data structure allows the robot
to use large amount of information in an effective manner. Instead
of computing and working with one large map they computed a
lot of small ones locally. Due to their graph-based SLAM solution
another graph consisting of nodes and edges is constructed, where
each node comprises a local map computed with the information
stored in the first graph. Furthermore this data structure allows
different level in abstract planning. The topology of the graph
connecting the local maps is considered by the high level planner
for computing a path towards a goal location. Therefore each edge
of the topological graph represents navigable paths.

Košnar and Krajnık [12] introduced the large map framework
(LaMa). This framework is intended to handle spatial knowledge
of large environments and also utilizes a topological map to acquire
and store all necessary data. They used this framework together
with vision algorithms to keep the robot on the road and detect
crossings. Crossings create a vertex inside the topological graph
and then get connected with neighboring vertices by edges which
again represent paths.

3.4 Terrain Analysis

Navigation systems need to analyze the surrounding terrain to
ensure a robot’s safety on slopes and uneven surfaces. This skill
is further necessary to robustify navigation but also useful to just
take an easier path to the goal. Many decisions depend on robot
capabilities, like traversing certain obstacles like curbstones or on
desired behaviors such as avoiding vegetation to keep the robot on
a track.

14

3.4 Terrain Analysis

Common vision based system [13, 14] try to differentiate between
paths (drivable) and non-drivable terrain. The image is therefore
classified in regions, which are either drivable or not. This proce-
dure is rather difficult because the quality is affected by plenty of
factors such as lighting or surface material of the road.

In research point clouds, elevation maps [15, 16] and multi-level
surface maps [17] became common terrain map types. All of these
map types require some sort of 3D measurements of the surround-
ing, which is typically achieved with laser scanners or depth cam-
eras. Elevation maps or height maps for example serve as a very
good terrain representation because they are memory efficient and
satisfy all required information to distinguish different terrains or
all kind of obstacles. In many cases a local window around the
robot even suffices, this saves memory and computational effort.
Such a map stores an estimated height for each grid cell and is also
referred as a 2.5D representation of the environment. For further
information see Section 5.7.

Successful robot configurations in the past, like Stanley [18] from
the Stanford University, not only used a single laser scanner to
acquire the surface data but also a computer vision system. This
was especially necessary when driving speeds exceeded 40 km/h
and the laser scanner would not measure far enough.

15

4 Prerequisites

This chapter serves as an overview for all basic prerequisites, which
are essential for this work. It contains principle algorithm designs
as well as software frameworks.

4.1 Robot Operating System

The Robot Operation System (ROS) [19] is a popular robotic frame-
work which serves as a basic communication layer. ROS mainly
requires an operating system as a host and runs on Linux-based
platforms. This framework delivers easy to use, out of the box
features and tools for package management and inter process com-
munication. Due to its heterogeneous multi-computer design it
is able to spread tasks on multiple on- and off board machines.
The communication is based on TCP/IP sockets for transporting
message over networks. It supports C++, python and several other
programming languages and is thus suitable for a wide variety of
uses. ROS is fully open source and comes with a diversity of pack-
ages which have been released from a big community. Additional
documentation can be found at http://wiki.ros.org.

In the next paragraph the main architecture is described in more
detail. Processes are called nodes inside ROS and the communi-
cation between them is handled with predefined messages. Each
single node performs individual tasks and computation, like driver
module or perception. For reasons of flexibility, nodes have unique
names for identification and can run simultaneously. Predefined
messages are described through the interface definition language

17

4 Prerequisites

(IDL) and are build up with primitive data structures. The transac-
tion of messages is done over topics (Figure 4.1), which are similar
to uniquely named channels. Within one topic only one message
type can be exchanged. When one node is sending data, it pub-
lishes the message to the topic and then other nodes can subscribe
to the topic to receive the message. Nodes can subscribe and pub-
lish on several topics at once but communication partners are never
aware of their opposite. In some cases the communication needs
to be synchronized and this is achieved with so called services.
Services are provided by certain nodes, following the same prin-
ciple as web services and use well defined messages similar as
topics. The service design is shown in Figure 4.2. To manage all the
nodes and communication a core process is used, the ROS master.
This process keeps track of all registered nodes, every topic and
service. The ROS master is responsible for setting up a peer-to-peer
connection between appropriate nodes. Furthermore the master
includes a parameter server, where nodes can either share or look
up specific parameters.

The actionlib library introduced another missing concept, which
enables ROS to cope with long lasting tasks and asynchronous
communications. With this library it is possible to receive feedback
while task execution or even stop it entirely. The action concept is
illustrated in Figure 4.3. The actionlib implementation is build up
on services provided by ROS.

4.2 Move-Base

One of the most known ROS packages is the Move-Base [20]. De-
veloped by the community to tackle the indoor navigation task and
features a wide set of customizable settings to fit a lot of different
robots. First the package receives goals in real world coordinates
and plans global paths to the desired locations, this is called the
GlobalPlanner. As it can be seen in Figure 4.4 the GlobalPlanner

requires a so called costmap, for computing valid paths. Costmaps

18

4.2 Move-Base

Figure 4.1: Topic communication concept in ROS, with publisher and subscriber
node. Adapted from http://wiki.ros.org

19

4 Prerequisites

Figure 4.2: Synchronized service communication concept in ROS, with advertiser
and look up node. Concept taken from http://wiki.ros.org

Figure 4.3: Concept of the action-server communication provided by actionlib.
Figure adapted from http://wiki.ros.org

20

4.3 Graph-Based SLAM

Figure 4.4: Concept of the navigation stack together with Move-Base. Figure
adapted from http://wiki.ros.org

are basically grid maps but include further information which are
relevant for navigation. Costmaps distinguish between free and
occupied cells and apply costs for every grid cell. This is necessary
for computing paths. The global costmap is typically created with
an environmental map and some additional sensor sources. In
the second stage it computes trajectories and finally velocities for
every motor controller with the LocalPlanner. The LocalPlanner

requires also a costmap similar to the GlobalPlanner but only of
the near local neighborhood.

4.3 Graph-Based SLAM

As mentioned in Section 3.2 the SLAM problem (Section 3.1) can be
formulated within a graph structure, like illustrated in Figure 4.5.
These graphs are also called pose graphs because robot poses

21

4 Prerequisites

(circles colored in cyan and labeled with xS denote robot poses) at
different measurement times, are connected to each other. Usually
robots are equipped with an odometry sensor, this enables the robot
to measure relative movements in a time interval. This relative
information is used to connect subsequent robot poses within the
graph and labeled as zS.

In addition some landmark detection is required, whereby a land-
mark can be any object in the environment. In Figure 4.5 diamond
shapes in green represent landmarks and are marked as xL. Typi-
cally, when using laser scanners corners and edges are treated as
landmarks. Due to the noisy odometry measurements, landmark
detections serve as a correction of robot positions and thus can
interconnect multiple robot poses at different timestamps. The
sensing of landmarks is also affected by noise and therefore edges
between robot poses and landmarks also introduce some measure-
ment error zL.

Graph-based SLAM decouples the problem in two sub tasks which
are separately solved in the front or back-end part. This showed
to be very effective for dealing with noisy measurements. First the
graph needs to be constructed from the raw measurements, this is
done in the front-end part. Then the graph optimization is within
the back-end part, here the most likely configuration of the graph
will be determined.

The front-end is responsible to compute a consistent estimate of
the robot trajectory. Although some measurement could induce
multiple resulting edges to different poses, it is advisable to restrict
the process only to the most likely topology. The back-end is then
trying to find a spatial configuration which satisfies the earlier
constructed model, by minimizing the edge errors based on a least-
squares solution. Every single edge is characterized with an error
function and an uncertainty matrix, this formalizes the quality of
each connection. In Figure 4.6 the edge error definition is illustrated.

22

4.3 Graph-Based SLAM

Figure 4.5: SLAM process represented as a graph. Circular nodes represent
robot poses xS and green color denotes landmarks xL. Edges be-
tween consecutively robot poses are odometry measurements zS and
measurements which connect landmark to robot poses are labeled
with zL. Figure adapted from https://openslam.org/g2o.html

Figure 4.6: The error eij(xi, xj) results from the offset between the real zij and
expected measurement ẑij. Measurements are typically gathered
from odometry sources when solving the SLAM problem. Every
pose graph edge is specified by its error function and uncertainty
matrix Ωij. Figure adapted from https://openslam.org/g2o.html

23

4 Prerequisites

4.4 Adaptive Monte Carlo Localization

The Monte Carlo localization algorithm as proposed by Fox et
al. [21] is a probabilistic approach to solve localization problems
for mobile robots. The algorithm estimates the current position and
orientation of the moving robot by taking current measurements
and fitting them against a known map. It uses particles which can
be somehow distributed and therefore fit every arbitrary distri-
bution in reality. Each particle represents a possible state. If there
is no information about the start position given, the particles are
uniformly distributed over the full map, so that every position is
evenly likely. Every time the robot moves, all particles are moved
the same way and when receiving a measurement the particles
are resampled accordingly. After each newly received input the
algorithm predicts the new robot state.

The most crucial part is the number of used particles. While too
many particles could slow down the computation and one would
risk its real time capabilities but when using too few the model is
not capturing the reality good enough and this can cause localiza-
tion failures. To circumvent this problem adaptive particle numbers
had been introduced. Such adaptive methods use adequate parti-
cle amounts, depending on the current localization quality. ROS
already provides a localization package which implements an adap-
tive particle filter with many different algorithms described in the
probabilistic robotics [2] book. In this thesis we utilize this package
which is called adaptive Monte Carlo localization (AMCL).

4.5 Planning

Path planning is described as the process of searching for the
shortest route between the start and goal point in principle. It
can be distinguished between path finding on metrical maps and
graph traversal. Both use cases rely on an environment model to
carry out the planning procedure. One of the most famous search

24

4.5 Planning

algorithm is A*. Hart and Nilsson et al. [22] described it in 1968
and although some hybrid variants emerged, it is still a state of the
art solution. The algorithm requires a heuristic to guide the search
to the goal and that is the reason why it always picks the most
favorable variant among all possible paths. So A* always explores
those paths first which appear to have the lowest costs.

For path finding or metrical planning a grid model of the search
space is utilized, which is an obvious choice because todays map-
ping (Section 3.1) processes already output occupancy grids. Graph
traversal, in contrast to metrical planning, uses an abstract graph
model of the environment to find the shortest route between two
points. To finally reach the desired goal, the robot has to visit each
vertex of the computed route and this could sometimes lead to
suboptimal routes compared to the grid-based metrical planning
approach. Very effective solutions combine both methods to speed
up the hole planning procedure. Planning on vast areas becomes
tractable with graph traversal and then the grid-based search is
further used to fine grain the route.

25

5 Concept

This chapter gives an overview of all relevant design decisions
taken during each step of the system development. It includes
hardware choices as well as software design patterns. Some con-
cepts are described in more detail for a deeper understanding
of the basic design, which is necessary for being able to follow
Chapter 6 about the implementation. The first section presents the
hardware used as a base for experiments. The overall software de-
sign is discussed next and then we provide details about individual
software modules used for solving particular problems.

5.1 Overview

In the early design phase we had to choose the best robot configu-
ration to fit for an autonomous transport robot. The first explicit
choice we had to make was the robot base. It needed to be able to
drive outdoors and to have a reasonable size to fit all the needed
sensors but nevertheless it should work for indoor tasks as well.

After the available transport capacity was known the necessary
sensor set can be put together. For outdoor tasks GPS was an obvi-
ous choice to become aware of the global position. Due to several
reasons, including privacy and security concerns we decided not to
use any camera systems. Cameras have very good future prospects
for autonomous vehicles because they have a very low-price and
cover a wide range of applications. But considering how strong
light influences the capturing quality, especially in the evening or
dawn, a good sensor combination is mandatory for robots.

27

5 Concept

Figure 5.1: Overall system architecture.

Laser scanners are the most valuable sensors for us to pick be-
cause these types of sensors are very precise, easy to use and not
very prune to measurement errors. Finally we added an inertial
measurement unit (IMU) to the sensor setting, which provides
indispensable orientation measurements.

Figure 5.1 shows our general system architecture. Environmental
sensors (see following Section 5.1.1 for more details) are used
to estimate the current state, detect obstacles and to analyze the
terrain. The state estimation is receiving information from multiple
sources and delivers a position estimate within the environment for
both planners. The high level planner assigns goals to the low level
planner which furthermore computes paths for the path follower
and finally moves the vehicle.

In Figure 5.2 the overall architecture for data acquisition concept
is illustrated and is further described in Section 5.1.2. The robot
operator is manually driving the robot. Then the system is building
all the necessary environment representations.

28

5.1 Overview

Figure 5.2: System architecture for data acquisition.

5.1.1 Hardware

The robot used for field testing is a Pioneer 3 AT with a custom
assembly. This model was the most promising choice for us, as it
is able to drive outdoors and has a reasonable size as mentioned
in the previous section. The robot has a skid steering drive with a
maximum forward speed of 0.7 m/s. This robot base is designed
for asphalt, sand, dirt as well as carpet and in indoor use. The max-
imum traversable step height is about 10 cm but with all sensors
installed the full robot weight increased from 12 kg to approxi-
mately 23 kg and for this reason we decreased the traversable step
height to 5 cm. The footprint of the complete robot is 0.65 m x 0.5
m and has a height of around 0.8 m (Complete robot assembly can
be seen in Figure 5.3 and Figure 5.4).

On the top center a Lenovo notebook is mounted for running the
entire software and to visualize the planned route and further
information about the navigation system. The notebook is powered
by an Intel Core i5 processor with a clock speed of 2.53GHz and
has 4GB DDR3 RAM.

Additionally a front facing webcam is attached to the robot but only
for capturing the tests and easier troubleshooting. The environment
measurements are very long processes. If any unpredicted effect

29

5 Concept

occurs, e.g. very erroneous sensor behavior, we can have a look
at the captured images of the webcam afterwards and explain the
results.

The main sensors are laser range finders (LIDAR). In our setup we
use three LIDARs, whereby two SICK LMS 200 are mounted in
front and back of the robot to capture the horizontal surrounding.
The third laser, a Hokuyo UTM 30LX is added on top the front
facing SICK. The Hokuyo laser is declined by 20◦ to detect obstacles
and to identify the terrain (Figure 5.5). The chosen angle of 20◦

provided be the best translation between detecting obstacles in the
distance and loosing information near the robot.

Another reason for this configuration is the terrain classification
which distinguishes between vegetation and drivable roads. Clas-
sification with laser measurements shorter than roughly 1 m are
rather difficult and would lead to incorrect results, which is further
explained in Section 5.7.

The horizontal laser range finders are configured to measure up to
80 m with a frequency of 10 Hz. This configuration does not allow
very fast rotational movements but only long distance measure-
ments gather enough localization features in vast open outdoor
environments. The scanning angle is 180 ◦, thereby appears a lack
of coverage at each side of the robot. This should not be an issue
because the robot is not able to drive sideward. This can be seen in
Figure 5.6.

As for the IMU we used a XSense MTi-G which provides GPS
functionality with an external antenna. The IMU is appropriate
orientated, so that the sensor uses the same x-axis, y-axis and z-axis
direction as the robot. In our configuration the driving direction
is the x-axis. It is positioned inside the body center as close as
possible to the center of rotation. The GPS antenna is located at
the top of an extra pole on the robot to obtain additional space
between antenna, ground and robot. In Figure 5.3 the sensor layout
is shown.

30

5.1 Overview

Figure 5.3: Complete robot setup in side view, with all comprising sensors
labeled.

Figure 5.4: Robot setup in front and top view with all visible sensors marked.

31

5 Concept

Figure 5.5: The laser sensor setup from the side view. Green lines mark the
horizontal lasers (SICK LMS 200) and the red one shows the terrain
analyzing laser (Hokuyo UTM 30LX).

Figure 5.6: Laser sensor setup from the top view. Green areas show the covered
area from the horizontal lasers and red areas denote the downwards
facing laser.

32

5.2 Preprocessing

5.1.2 Software

The software concept is illustrated in two figures. Figure 5.7 shows
the mapping process while Figure 5.8 depicts the autonomous
planning procedure.

For mapping the environment we have to carry out the following
five steps. The process begins by taking measurements of the oper-
ating environment. Which is as easy as driving the robot around
manually. This step requires recording only the raw sensor infor-
mation but we suggest to include the preprocessing as it saves
computational time later. In the preprocessing step all incoming
sensor measurements are prepared for further computation. Beside
some basic filtering (described in Section 5.2) of each laser scan
we had to deal with both horizontal laser scans simultaneously
and therefore introduced a laser scan chain, which is described
in Section 5.2. After preprocessing the sensor data we perform a
graph-based mapping (see Section 5.4.1) which outputs a global
map representation. This information is then fed into the topologi-
cal hybrid mapping module (more information in Section 5.4.2) for
creating local maps and building a map graph. Finally a road map
is build using the previous computed topological hybrid map.

In contrast to the mapping process, the planning is almost entirely
online. As illustrated in Figure 5.8 the topological planner (see Sec-
tion 5.6.2) receives the final goal as well as the current localization
and outputs intermediate goals for the low-level planner (further
details in Section 5.6.3). The localization module is described in
Section 5.5 and uses the active local map and the topological hybrid
graph to obtain a pose of the robot.

5.2 Preprocessing

After the experimental robot setup was finished (see Section 5.1.1),
we had to prepare all the different sensor sources to gather reliable
measurements. Therefore we first decided to introduce a laser

33

5 Concept

Figure 5.7: Overview for the mapping process. Components framed in blue color
are computed offline and green color denotes data structures.

34

5.2 Preprocessing

Figure 5.8: Workflow concept for planning. Green color indicates data structures
and red components require an online computation.

scan chain for easier maintenance of both horizontal laser. The
data flow chart is shown in Figure 5.9. Providing a noiseless laser
scan due to preprocessing is not only essential for detecting reliable
obstacles while operating autonomously but also saves unnecessary
post-processing at map creation. As illustrated in Figure 5.9 the
scans are merged at the beginning and then passed through some
basic filtering operations offered by the point cloud library [23].
One basic filtering mechanism is the statistical outlier removal 1

which analysis the mean distance for every point and distances
or standard deviations outside an interval are considered as out-
liers. The box filter 2 afterwards removes erroneous measurements
which are too short. While recording data used for map generation,
the box filter can even be set to two meters so that the operator
following the robot is removed.

Due to missing 3D sensing capabilities and the assumption of
driving on flat terrain we implemented a very simple ground

1http : //pointclouds.org/documentation/tutorials/statistical outlier.php
2http : //docs.pointclouds.org/trunk/classpcl 1 1 crop box.html

35

5 Concept

removal filter (Figure 5.10). Although the robot never updates its
vertical believe, it suffices in many situations to transform the
scan by using the orientation of roll and pitch from the IMU. We
therefore receive a relative height estimate of each measurement
(shown in red color) and then simply remove scans exceeding
certain thresholds (thresholds are colored in green).

After removing any possible ground measurements the laser scan is
finally outputted as laser and point cloud for easier subsequent use.
This state of the preprocessed scan should be used for planning
purposes. Otherwise more advanced filtering mechanisms like
removing moving objects would cause the robot to ignore critical
aspects for planning. The filtering of complex objects, such as
people or cars is very helpful and measurements are then perfectly
usable for localizing or mapping purposes. We therefore added a
people filter within the scan chain overview but only to point out
the different outputs. Such an advanced implementation would be
out of scope of this thesis.

5.3 Odometry

The concept behind odometry is rather simple. The wheel rota-
tions can be translated into linear and angular displacements, so
that the offset to a known starting position can be approximated.
Odometry has a very good short-term accuracy but in the long run
the error is increasing significantly because errors get accumulated.
Nevertheless it serves as a very good initial guess for mapping
algorithms and is therefore advisable to be included. Hence it is
useful to fine tune the odometry as good as possible.

Unfortunately odometry is altered by many factors such as encoder
resolution, wheel diameter, ground slippery and transport load
to name just a few. The raw odometry measurements are directly
outputted from the pioneer base and are basically not calibrated to
fit the momentary robot load and tire pressure.

36

5.3 Odometry

Figure 5.9: Scan chain data flow chart. Combines two laser scans and outputs
one merged scan for localization and another for planning.

Figure 5.10: Concept of ground removal implementation. Green lines denote
thresholds to remove horizontal laser measurements (red color). For
a better visualizing of the ground removal filter only the effect of
pitch orientations is shown. The final filter takes roll orientations
into account as well.

37

5 Concept

We therefore applied a calibration technique, namely the square
path experiment referring to the book of Borenstein et al. [24].
This method is able to deal with systematic errors by determine
correction factors for an uncertain wheelbase and unequal wheel
diameters. Within this experiment the robot has to drive a square
path by using the odometry sensors only. The position at the end
is then compared to the start position. This test should be repeated
multiple times in clockwise and counter clockwise direction. The
correction factors can then be estimated because the repetitions
limit the influences of non-systematic errors. After the successful
calibration we included both correction factors for improving the
raw odometry.

Our complete robot setup comprises multiple other sensors which
also can be used as an odometry source. The current implementa-
tion employs an unscented Kalman filter (UKF) [25] to provide a
nonlinear state estimation and thus a better odometry estimation.
T. Moore and D. Stouch et al. [26] already offer a ROS package,
namely the robot localization which includes various Kalman
filter. This UKF implementation is capable of using an arbitrary
number of input sources and sensors types. One input source is
provided by the earlier corrected wheel odometry and the second
input source is the IMU. We fed the velocity given by the odometry
and only the orientation measurements from the IMU into the
filter.

5.4 Mapping

Map creation is essential for any navigation system, either to pro-
vide routing information or to estimate the current robot position.
A very common map representation is introduced by Elfes et
al. [27] and are called occupancy grids. Every grid cell can directly
be transformed into real world coordinates. Each cell marks an
area as free or occupied by an obstacle. This environmental model
showed to be very effective and is still a state of the art solution

38

5.4 Mapping

for two dimensional maps. As described in Section 3.1 we could
have also used GMapping for map generation but it turned out
that graph-based mapping methods have far more benefits for rea-
sons of different sensor support and easier maintenance of larger
maps. Maps in the size of e.g. our campus will lead to relative
large memory footprints and algorithms which refer to this map
will suffer in processing speed and probably lose their real-time
capabilities. Due to evaluation reasons, we decided to record all
sensor information and run the mapping process with different
settings offline.

5.4.1 Graph-Based Mapping

Graph-based mapping as described in Section 3.2 and Section 4.3
solves the problem of simultaneous localization and mapping. The
Algorithm 1 shows the workflow on how the input data consisting
of odometry, laser scan and GPS measurements are processed until
a final pose-graph is returned. The input data must be in chrono-
logical order, so that the algorithm can take care of neighborhood
relations. Furthermore related measurements are picked by mini-
mizing the time interval between the recording times. The current
odometry measurement always serves as the reference time and
corresponding laser or GPS readings are then chosen depending
on their recording time (Line 13, 20).

At the beginning we initialize the pose-graph by adding the first
odometry and GPS measurement (Line 4). This very first pose
is furthermore fixed and never changed throughout the whole
mapping process. New poses are always added whenever either
the distance or the angle to the previous pose in the graph is larger
than a certain threshold (Line 10). For monitoring the offset we
estimate the new pose by adding the odometry difference to the
latest pose (Line 8), which was added to the graph (Line 7). Then an
edge is added to the pose-graph to connect them. The quality of the
edge and thus the bond strength between those poses is described
by the corresponding uncertainty matrix. If the scan matching

39

5 Concept

succeeds a smaller uncertainty matrix is selected, otherwise larger
values are preferable.

Then the corresponding GPS reading is checked if it fulfills the
validation criteria and if this is the case GPS edges are added to the
graph. Validating is done by first checking the status information of
the measurement and secondly by analyzing the first error and if it
is within a threshold. This is necessary because the signal could be
lost at any time or measurement errors with unnatural jumps might
occur. GPS edges only capture the error between the Euclidean
distance and the computed GPS distance by further using the
haversine formula3 [28], splitted in three Equations (5.1, 5.2, 5.3).
The haversine formula calculates the great-circle distance between
two points, hence the shortest distance over the earth’s distance. In
Equation (5.1) and Equation (5.2) auxiliary variables are computed.
Almost all used variables belong to the GPS domain (latitude,
longitude) or mentioned separately. It should be pointed out that
GPS related variables need to be in radians. The final GPS estimated
distance is then calculated together with the earth’s radius in
Equation (5.3).

The error function of GPS edges is therefore only a subtraction of
both distances. Edges connecting odometry measurements belong
to the group of 2D transformations with an error vector to incor-
porate position and yaw information. Whereas GPS edges only
consider a numerical error, the difference of two distances. Every
new and valid GPS reading is connected to the initial GPS pose.
Moreover some additional GPS edges are created to support the
mapping process by removing degrees of freedom of the overall
graph.

Algorithm 1 also ensures the optimality of the constructed graph
by iteratively optimizing (Line 27) it via Iterative Local Lineariza-
tions [29]. Additionally it constantly performs constraint tests (Line
25 and Algorithm 2), to find potential loop closures or to filter out
misleading edges.

3https : //en.wikipedia.org/wiki/Haversine f ormula

40

5.4 Mapping

Possible loop closures are detected within the constraints check
and rely on finding good potential poses. Poses near to the latest
pose, but neither directly connected nor by traversing the graph
and visiting some vertices, are considered potential loop closing
vertices. After some graph related neighbors, of each potential
pose, are added to the list we have to group them in reasonable
sets by using the k-nearest neighbor algorithm. Finally we can
obtain a loop closing result by running a more extensive scan
matching search. The GPS outlier removing procedure is rather
straight forward. First all edge errors are computed by considering
a robust cost function (Pseudo Huber as suggested by Kümmerle
et al. [11]) and then additionally normalized to their length. The
errors are then comparable, otherwise very long ranges will more
often have the largest error and are wrongly removed. We filter out
a small percentage of the worst GPS edges after a certain amount
of new edges are collected.

a = sin2(
Δlat

2
) + cos(lat1) · cos(lat2) · sin2(

Δlon
2

) (5.1)

c = 2 · atan2(
√

a,
�
(1 − a)) (5.2)

d = Rearth radius · c (5.3)

5.4.2 Topological Hybrid Mapping

In this section we look into topological hybrid mapping or some-
times referred as map-graphs. This method combines the function-
ality of topological graphs (see Section 4.5 for additional informa-
tion) but also incorporates occupancy grid maps (Kurt Konolige
et al. [30] described this idea for the first time). In this thesis we
suggest a modified version, namely an extended topological hybrid
map. Our extended graph divides individual maps into multiple
one due to accessibility. This means that every known pose can be
reached from any other known pose position inside one map.

41

5 Concept

Algorithm 1: Graph-Based Mapping
Data: odometry list . . . all odometry recordings
Data: gps list . . . all GPS recordings
Data: laser scan list . . . all laser range recordings
Result: pose graph . . . fully constrained pose-graph

1 begin
2 initial pose ←− f irstOdometry(odometry list)
3 initial gps ←− f irstGPS(gps list)
4 graph.addInitial(initial pose, initial gps)
5

6 foreach odometry in odometry list do
7 last pose ←− graph.getLastPose()
8 new pose ←− ComputeEstimate(odometry)
9

10 if (DistBetween(last pose, new pose) > dist tresh) or
(AngleBetween(last pose, new pose) > angle tresh) then

11

12 graph.addNewPose(new pose)
13 new pose laser scans ←− getPoseScans(laser scan list)
14

15 matching succeeded = f alse
16 if ScanMatchingSuccess f ul(new pose laser scans) then
17 matching succeeded = true
18 end
19 graph.addEdge(new pose, new pose gps, matching succeeded)

20 new pose gps ←− getPoseGPS(gps list)
21 if IsGPSValid(new pose gps) then
22 graph.addGPSEdges(new pose, new pose gps)
23 end
24

25 graph ←− checkConstraints(graph)
26

27 graph ←− optimize(graph)
28

29 end
30 end
31 end

42

5.4 Mapping

Algorithm 2: Check Pose-Graph Constraints
Input: pose graph . . . pose-graph
Output: pose graph . . . pose-graph

1 Function checkConstraints(pose graph)
/* check for loop closures */

2 last pose ←− graph.getLastPose()
3

4 poses ←− potentialLoopClosurePoses(graph)
5

6 poses ←− addNeighbours(poses, graph)
7

8 p groups ←− f indGroups(poses, graph)
9

10 closest poses ←− closestPoses(p groups, graph)
11

12 foreach pose in closest poses do
13 if ScanMatchingSuccess f ul(pose, last pose) then
14 graph.addLoopClosingEdge(pose, last pose)
15 end
16 end
17

/* check for GPS outlier */

18 gps edges ←− getAllGPSEdges(graph)
19

20 gps edge errors ←− computeGPSEdgeErrors(graph)
21

22 gps edges, gps edge errors ←− sort(gps edges, gps edge errors)
23

24 if gps edges.size() > threshold then
25 for i ← 0 to gps percentage do
26 graph.removeGPSEdge(gps edges[i])
27 end
28 end

43

5 Concept

Therefore we distinguish between occupancy grid maps which
can be fully traversed and grid maps which can be only partially
visited by the robot in reality.

To visualize the difference Figure 5.13b shows an ordinary local
grid where all poses within the grid are used for rendering the
occupancy grid map. In contrast Figure 5.13c relates to the extended
map and Figure 5.13d is the resulting new grid. For building
such a graph a fully consistent pose-graph is essential, failures or
inconsistencies will cause severe problems.

Algorithm 3 captures one approach to produce our modified topo-
logical hybrid map. The initial step is responsible for providing at
least one grid for every pose-graph pose. The iteration sequence
through the pose-graph is prescribed and mandatory by the previ-
ous creation process. The initial covering process is described in
more detail by Algorithm 4 and is rather straight forward, except
the maintenance of an additional covered list which functions as a
map for saving correspondences between poses and grids.

Now the topological hybrid graph can be extended by checking the
accessibility (Algorithm 5). While processing through the whole
topological graph we render a complete temporary map for each
grid (Line 4), on which we perform all accessibility checks. These
grid maps can easily be created with the earlier constructed cov-
ered list. The grid map is computed by a standard ray tracing pro-
cedure using all the laser scans gathered from all covered poses.

To validate traversability we need to look at each covered pose
from the covered list and test if planning to the pose at the grid
center is possible. This is further visualized by Figure 5.12. The
blue rectangle represents for the original local grid and the dashed
one is newly created. Green circle denote poses and number 4 to
6 are truly related to the grid, however 34 to 36 are not accessible
poses and therefore do not relate to that grid.

44

5.4 Mapping

We now maintain two separated map structures. One is saving
poses responsible for the final map creation and called used list.
The second map (unconnected poses) is a temporary list for all
poses which are neither connected to the grid center nor to any
other grid. From Line 17 to 26 in Algorithm 5 we process through
the unconnected poses list until every pose is validity used by a
local map. Then we need to find all covering poses for all newly
created grids (Line 28).

Due to the nature of the pose-graph, which is per definition contin-
uously connected, a resulting graph can always be created. There
exists only one exceptional case, where the size of the local grid is
large enough to enclosure the complete pose-graph.

After all local grids are ready for deployment the process of edge
creation is clean and easy. The process is described by Algorithm 6
in more detail. Here we iterate over all grids and compare their
used list to one another and if a similar pose occurs in both lists we
add a new edge connecting these grids to the topological hybrid
graph. At the end of the graph creation process we render and save
all occupancy grid maps and output the final topological hybrid
graph.

Algorithm 3: Topological Hybrid Mapping
Data: pose graph . . . fully constrained and consistent pose-graph
Result: tp graph . . . topological graph
Result: local maps . . . local occupancy grid maps

1 begin
2 tp graph ←− CoverPoses(pose graph)
3

4 tp graph ←− CheckAccessibility(tp graph, pose graph)
5

6 tp graph ←− CreateEdges(tp graph)
7

8 BuildAndSaveMaps(tp graph)
9 SaveTopologicalGraph(tp graph)

10 end

45

5 Concept

Figure 5.11: Sample topological hybrid map. Orange rectangles outline local
grids, edges which visualize connections between grids are colored
in red. In the center one sample local grid is rendered.

46

5.4 Mapping

Figure 5.12: Accessibility check of all covered poses within a local grid of an
early topological graph. A new local grid is created because covered
but inaccessible poses where found (no valid path between pose e.g.
35 to pose 5, which is the center of the local grid).

47

5 Concept

(a) Topological hybrid graph overlays the map.

(b) Local grid,
ordinary graph.

(c) Local grid,
extended graph.

(d) One newly cre-
ated local grid.

Figure 5.13: Topological hybrid graph with underlaying map. Difference be-
tween ordinary and extended method is visualized in Figure 5.13b
and Figure 5.13c.

48

5.5 Localization

Algorithm 4: Cover Poses
Input: pose graph . . . pose-graph
Output: topological graph . . . topological graph

1 Function CoverPoses(pose graph)
2 topological graph ←− []
3 foreach pose in pose graph do
4 not covered = true
5 foreach grid, center in topological graph do
6 if distance(center, pose) < threshold then
7 not covered = f alse
8 topological graph.insertCoveredList(grid, pose)
9 end

10 end
11

12 if not covered then
13 topological graph.createGrid(pose)
14 end
15 end

5.5 Localization

For localization we use a sample-based approach known as the
particle filter as explained in Section 4.4. As explained before, such
a particle filter is able to cope with all kind of non-Gaussian error
hypothesis unless enough particles are involved.

The current setup uses 1,000 to 5,000 particles due to its adap-
tive character. As for the observation model, which is crucial for
computing the likelihood for each particle given the laser measure-
ment, we decided to pick the range finder model. This model
can explicitly deal with unexpected objects, failures and random
measurements.

The other measurement source is the combined odometry, provided
by the UKF (Section 5.3) and relevant for moving all particles ac-
cordingly to the motion model. AMCL applies the sample motion

model for adding odometry measurements to the hypothesis, so
noise and movement characteristics are better captured.

49

5 Concept

Algorithm 5: Check Accessibility
Input: pose graph . . . pose-graph
Input: tp graph . . . topological graph
Output: tp graph . . . topological graph

1 Function CheckAccessibility(tp graph, pose graph)
2 foreach grid, center in tp graph do
3 covered list ←− tp graph.getCoveredList(grid)
4 map ←− buildCompleteMap(grid, covered list)
5

6 unconnected poses ←− []
7 foreach covered pose in covered list do
8 if planningPossible(map, covered pose, center) then
9 tp graph.insertUsedList(grid, covered pose)

10 else
11 if tp graph. f indInUsedList(covered pose) �= true then
12 unconnected poses.insert(covered pose)
13 end
14 end
15 end
16

17 while unconnected poses �= {} do
18 pose ←− unconnected poses.pop()
19 grid, center ←− tp graph.addNewGrid(pose)
20 foreach pose in unconnected poses do
21 if planningPossible(map, pose, center) then
22 tp graph.insertUsedList(new grid, pose)
23 unconnected poses.remove(pose)
24 end
25 end
26 end
27

28 tp graph ←− GetNewGridsCoveredList(tp graph, pose graph)
29 end
30

50

5.5 Localization

Algorithm 6: Create Edges
Input: topological graph . . . topological graph
Output: topological graph . . . topological graph with edges

1 Function CreateEdges(topological graph)
2 foreach grid 1 in topological graph do
3 used list 1 ←− topological graph.getUsedList(grid 1)
4 foreach grid 2 in topological graph do
5 if grid 1 �= grid 2 then
6 used list 2 ←− topological graph.getCoveredList(grid 2)
7 if (used list 1 ∩ used list 2) �= {} then
8 topological graph.addEdge(grid 1, grid 2)
9 end

10 end
11 end
12 end

The particle filter requires a map to estimate the robot pose against
it and one is provided by picking the most probable local grid
given the topological hybrid graph. Algorithm 7 is responsible for
finding the most likely local grid. At the start we assume a known
robot position and thus a specific local grid. Together with the
current pose estimation we constantly check if the robot is leaving
the local grid. Only a limit set can be considered as candidates,
this is because of the given graph topology and illustrated in
Figure 5.14.

The next local grid is then picked depending on the shortest Eu-
clidean distance (colored in red). In our implementation the dis-
tance to the new local grid has to be one fourth, of the distance
to the current grid closer. This ratio assumption proved to work
pretty well in our field tests. Within the Algorithm 7, this is notated
as the relation in Line 8. This prevents too early map switches,
especially when the robot is driving along the switching boarder.

It is advisable to do the map change for a particle filter only if the
majority of the localization distribution is covered by the next grid.
Overlapping between neighboring grids is therefore an important
property for a topological hybrid graph.

51

5 Concept

Figure 5.14: Map switching by choosing candidates due to the connectivity
(dashed orange lines) of the topological graph. Grid 4 is the only
candidate and finally picked if the distances, highlighted in red,
meet a certain relation.

In our current implementation we considered a local grid size of
60 by 60 meters mainly because localization depends on enough
local features and the average measurement distance of the laser
range finders do not exceed 30 meters.

5.6 Planning

The planning architecture is build up on three abstraction level.
The lowest and second lowest level is covered by the Move-Base

(see Chapter 4 for more information) and the concept is described

52

5.6 Planning

Algorithm 7: Get Best Grid
Input: tp graph . . . topological graph
Input: robot pose . . . current robot localization
Output: best grid . . . best grid

1 Function GetBestGrid(tp graph, roadmap, robot pose, goal)
2 shortest dist ←− computeDistance(tp graph, robot pose)
3 best grid ←− tp graph.getCurrentGrid(robot pose)
4 neighboring grids ←− tp graph.getAdjacentGrids(robot pose)
5

6 foreach neighbor in neighboring grids do
7 distance ←− computeDistance(robot pose, neighbor)
8 relation = distance/(shortest dist + distance)
9

10 if insideGrid(robot pose) and relation < threshold then
11 shortest dist = distance
12 best grid = neighbor
13 end
14 end
15

in Section 5.6.3. The highest level employs A* search on a precom-
puted roadmap, which is an abstracted model of the environment.
This layer outputs a way-point sequence to the goal and hands
each point over to the next lower planning level, the Move-Base.
Due to the layered architecture we unfortunately compute sub-
optimal paths (approximately 10% longer, while using A* search
algorithm on the complete occupancy grid map). But as Konolige
et al. [30] stated, the calculation time is in exchange several orders
of magnitude faster.

5.6.1 Roadmap

In our current design we decided to introduce an abstracted plan-
ning layer to simplify and thereby speed up the whole planning
processing. We therefore implemented a roadmap, similar to on
proposed by Kurt Konolige et al. [30]. Algorithms like A* require a
significant amount of time (several seconds and even longer) on

53

5 Concept

very large sized grid maps for planning, which is not always suf-
ficient for real-time solutions. As earlier mentioned in Section 4.5
hybrid systems benefit from locally navigating on the occupancy
grid maps and producing near-optimal plans on the topological
graph. The roadmap serves as a connection port between these
planning layers and provides way-points as well as edges with
adequate traveling costs, so that planning on this type of graph is
possible. One essential assumption is that two way-points are only
connected if and only if there exists a possible path in the map
between them. The main difference to the implementation of Kurt
Konolige et al. [30] is the way how he offered the locations of every
way-point. He suggested providing way-points, only related to a
specific grid, whereas in our implementation way-points belong to
the world and consist of global coordinates. This property as some
benefits and will be discussed later.

The development of the roadmap is described in Algorithm 8.
When building the roadmap one has to decide to either use, to
build up on, or to exclude the earlier created pose-graph. All
decisions have particular benefits like when using the pose-graph
only method the robot will stay on an already familiar terrain
which is especially helpful in dangerous environments. Whereas
the hybrid variant allows more flexible routing and is useful in
open areas with a lot of environmental changes. The main roadmap
development is presented in Algorithm 8 and passes the simple
sequence of first placing all way-points (whether with or without
pose-graph) and then connecting those way-points with edges.

In Algorithm 9 the way-point placement based on the pose-graph
is described. While iterating through the pose-graph new way-
points are always added whenever the current location near that
suggested position is still way-point free. This complies with a
minimum spread out distance. Every way-point relates to a local
grid and we therefore need to find the correct corresponding one.
This is achieved by looking at all covering grids, but because we
assume an extended topological hybrid map (see Section 5.4.2) we
have further to assure that the relevant position is within a known
area in the local occupancy grid.

54

5.6 Planning

The layout process without any pre-knowledge, except the previous
rendered occupancy grid maps is as follows. Every single local
grid is separately loaded from the hard disk and then identically
processed. First potential way-points are spread out with a grid
pattern. The local occupancy map is then conservatively inflated,
so that obstacles appear larger then in reality but still leave enough
space for the placement. Next we look at every potential point and
validate if this position is obstacle free given the inflated map. If
that’s the case, this point becomes a valid new way-point, otherwise
we perform a spiral search around that point until we either find
free space or we reach a cut off distance and dismiss it.

The final step is to connect way-points by edges comprising of
proper cost values. To start the edge generation every local occu-
pancy grid is loaded again and the obstacles are more radically
inflated than before. Then we look at all grid relevant points includ-
ing way-points from neighboring grids unless they are not covered.
The local A* planner is then called for every potential pair (points
within a certain distance), to find a path between them. The trav-
eled distance is then taken as the cost for the newly created edge.
Although A* is rather fast on such short distances it takes some
time to compute. However this is the only way how to guarantee
that a valid path exists. The computed edge cost relates to the real
travel cost. This time consuming step can be computed completely
offline and saves a lot of processing power while running online
(see Section 7.4 for an evaluation).

5.6.2 Topological Planning and Execution

The topological planner is the highest level in our planning hier-
archy. It is responsible for computing a path sequence to the goal
using the topological hybrid graph and the roadmap (Figure 5.16).
In Algorithm 10 the planning execution is outlined. The user has to
input a specific goal way-point and the planner is then executing
as long as the goal is not reached.

55

5 Concept

(a) Generated with maps only. (b) Only using the pose-graph.

(c) Created with both, pose-graph and maps.

Figure 5.15: Roadmap generation with different inputs. Figure 5.15a creates
a roadmap by using the maps only, whereas Figure 5.15b is just
utilizing the pose-graph. Finally a combination of both is visualized
in Figure 5.15c.

56

5.6 Planning

Algorithm 8: Roadmap Generation
Data: pose graph . . . pose-graph
Data: tp graph . . . topological graph
Data: local maps . . . local occupancy grid maps
Result: roadmap . . . roadmap

1 begin
2 roadmap ←− []
3 if pose graph enabled then
4 roadmap ←− WithPoseGraph(tp graph, pose graph, local maps)
5 end
6

7 if pose graph only disabled then
8 roadmap ←− CreateWaypoints(roadmap, tp graph, local maps)
9 end

10

11 roadmap ←− CreateEdges(roadmap, local maps)
12

13 SaveRoadmap(roadmap)
14 end

Algorithm 9: Way-point layout with pose-graph
Input: pose graph . . . pose-graph
Input: tp graph . . . topological graph
Input: local maps . . . local occupancy grid maps
Output: roadmap . . . roadmap

1 Function WithPoseGraph(tp graph, pose graph, local maps)
2 foreach pose in pose graph do
3 if NoPointNearPosition(pose, roadmap) then
4 foreach grid, center in tp graph do
5 if CoversPoint(pose, center) and

InsideKnownArea(pose, local map) then
6 roadmap.addWaypoint(pose, grid)
7 break
8 end
9 end

10 end
11 end

57

5 Concept

The CreatePlan routine (in Line 4) first searches for the start and
end point within the roadmap and then extracts a way-point se-
quence to the goal by applying A* search.

The plan execution is now processing every way-point of the
plan until the goal is finally reached. For every point we have
to check if the current local grid is still covering it, otherwise the
GlobalPlanner of the lower-level is not able to come up with a
valid plan. At that point we pick a grid which is covering both, the
current robot pose and the next way-point. In the case the local
grid is valid for that specific way-point, it can be submitted to the
next planning layer, the Move-Base. While waiting for the low-level
planner to finish, we can frequently check the distance between the
robot and the temporary goal and simply proceed with the next
way-point if the robot is close enough. This speeds up the path
execution a lot.

5.6.3 Global/Local Planning

This layer of the planning hierarchy comprises two stages, the so
called global and local one. This layer depends on the high-level
planner from Section 5.6.2 for receiving goals. In this thesis we
make use of the well-known Move-Base to solve the lower navi-
gation task at that level (described in Chapter 4). The navigation
sequence is executed as follows: The high-level planner is pub-
lishing a goal within the active local grid, then the GlobalPlanner

computes a path which is then fed to the LocalPlanner.

The GlobalPlanner requires additional knowledge in the form of a
costmap. To come up with an useful and risk free plan. Costmaps
are similar to normal occupancy grid maps except that they include
more information about robot or maneuvering relevant obstacles.
In our case the costmap is additionally informed about vegetation
and relatively small sized obstacles and gaps. Important for making
planning decisions and traversing.

58

5.6 Planning

Figure 5.16: Planned path from roadmap point 1 to 139 in red color. Green and
yellow relate to the roadmap and orange rectangles symbolize grids
from the topological hybrid graph.

59

5 Concept

Algorithm 10: Execute Topological Plan
Data: pose graph . . . pose-graph
Data: tp graph . . . topological hybrid graph
Data: roadmap . . . roadmap
Data: localization . . . current robot localization
Input: goal . . . goal way-point

1 begin
2 goal reached ←− f alse
3 while goal reached = f alse do
4 plan ←− CreatePlan(tp graph, roadmap, localization, goal)
5

6 foreach way point in plan do
7 if insideGrid(way point) = f alse then
8 grid ←− GetBestGrid(way point, localization)
9 switchGrid(grid)

10 end
11

12 move base client.SendGoal(way point)
13 while move base client.CheckState = pending do
14 if distance(way point, localization) < threshold then
15 break
16 end
17 end
18

19 if way point = goal then
20 goal reached ←− true
21 end
22 end
23 end
24 end

60

5.7 Terrain Analysis

Costmaps are build up in a layer like structure and the lowest layer
usually is a static map but in our case this map can change at any
time. The second layer maintains an already provided voxel grid, to
deal with obstacles recognizable through the horizontal lasers. The
last layer is responsible for inflating everything from layers below,
so that the robot keeps a reasonable distance to obstacles and is
therefore the last layer. The planner is then using this costmap and
applying A* search as described in Section 4.5 to determine the
route to the goal.

The last planning level is called LocalPlanner and used to follow a
generated path by computing possible trajectories and translating
them into velocity commands. We decided to pick the dynamic
window approach (DWA) for computing trajectories. It is the rec-
ommended choice, because it consumes less computing power than
similar methods. This method requires a costmap for computation
and we applied the same layer topology as before. The horizontal
lasers as well as the terrain analyzing module are providing ad-
ditional information to two separated layer. The only difference
is the used map size. Whereas the GlobalPlanner depends on the
complete local grid, the LocalPlanner only needs a small window
of about 6 by 6 meter to function properly. This allows the planner
to speed up the map building process which then enables real-time
planning capabilities.

5.7 Terrain Analysis

Terrain analysis supports two tasks. The first task copes with obsta-
cle avoidance. In order to prevent damages of all kind. The second
task deals with terrain classification. To distinguish between “good”
terrain where the robot is permitted to drive or “bad” terrain which
should be possibly avoided. As already discussed in Section 3.4,
these skills heavily depend on the working environment as well as
the robot capabilities.

61

5 Concept

In the overall design a reliable obstacle identification beyond the
horizontal laser scanners is mandatory for any outdoor navigation.
For that reason the down facing Hokuyo (more information on
hardware decisions in Section 5.1.1) fills the important role to
gather enough information to create a detailed elevation map. An
elevation map or height map is a 2.5D dimensional representation
of the environment. The map maintains a flat cell grid and every
cell comprises a height estimation of the terrain. An extended
elevation map was proposed by Pfaff et al. [15], which is able to
detect tunnels e.g. passages under bridges. In Figure 5.17 sample
measurements were taken indoor, to see how the system reacts
to various obstacle heights. The resulting costmap using only the
elevation map as input is visualized in Figure 5.17b. Black denotes
non-traversable obstacles and bright gray color marks free space.
The color reflects the estimated elevation for every point of the
height map.

To obtain the map we utilize a Kalman filter to estimate the height
and its standard deviation in each cell. When adding a new mea-
surement zt with standard deviation σt we use Formula (5.4) and
Formula (5.5) to update the corresponding cell. The measurement
zt is produced by the declined laser scanner and further trans-
formed with the orientation provided by the IMU. We additionally
apply a sensor model, in which the variance increases linear to
the measurement distance. This smooths out measurement errors,
due to traveling on uneven terrain. The gradient of the height map
is constantly updated and if cells exceed a maximum value it is
treated as an insurmountable obstacle, similar to walls.

µ1:t =
σ2

t · µ1:t−1 + σ2
1:t−1 · zt

σ2
1:t−1 + σ2

t
(5.4)

σ2
1:t =

σ2
1:t−1 · σ2

t

σ2
1:t−1 + σ2

t
(5.5)

62

5.7 Terrain Analysis

(a) Picture of robot while analyzing
the terrain.

(b) Result of the computed elevation
map.

Figure 5.17: Creation of an elevation map. Figure 5.17b shows the resulting map
and Figure 5.17a the corresponding scene in reality.

The second terrain analyzing task takes care of classification of the
ground. In this thesis it sufficed to distinguish between vegetation
(especially flat vegetation like grass) and non-vegetation represent-
ing the road surface. Luckily plants exhibit specific laser reflection
properties different to streets. This is further explained by Wurm et
al. [31]. Therefore the classification can easily be done by making
use of the laser reflectivity which is additionally measured by the
down facing Hokuyo laser.

Figure 5.18 presents the correlation between range and intensity
measurements for grass and streets. The closer the measured dis-
tance, the harder the distinction. The blue separation line was
conservatively placed, so that street detection is more preferred.
This classifier can also be trained by applying machine learning
tools like explained in the book of Barber et al. [32].

There are several things which can be done to boost up the clas-
sification accuracy. But the far simplest one is to increase the
range measurements by reducing the angle of the down facing
laser. Although we obtain many wrong classifications, simple post-
processing steps like applying morphological operators strongly
improve the result.

63

5 Concept

Figure 5.18: The diagram shows the relation between range and intensity mea-
surements for grass and road. Green dots represent grass measure-
ments and black correspond to the road. The incidence is visualized
by point density. The blue line shows a possible separation line for
classification.

Beside the elevation map we maintain a second grid for clas-
sification. When building the costmap layer for navigation (see
Section 5.6.3) the previous explained gradient map and the clas-
sification is used. The costmap layer is build up by analyzing
every cell individually. What causes the highest costs at one point
counts for the costs inside the costmap layer (for more details see
Section 6.3.2).

64

6 Implementation Details

In this chapter we talk about implementation details related to the
concept presented in the previous chapter. The overall software
runs on a Linux operating system, with ROS Indigo as middle-ware,
which is further described in Section 4.1. At the very beginning
of this chapter we examine the graph-based mapping as well as
the topological hybrid mapping. Then we show some details on
our planning approach utilizing the roadmap. Finally we conclude
with information about the terrain analysis module.

6.1 Mapping

The process of map creation is split in two separated tasks. The
first one is graph-based mapping, described in Section 5.4.1 and
responsible for directly interpreting the sensor data to construct
a consistent pose-graph. This was mainly achieved with g2o. The
second task is then capable of forming the pose-graph into a topo-
logical hybrid graph, the key concept behind is formulated in
Section 5.4.2.

As mentioned in Section 5.4 we recorded all sensor measurements
for various reasons. This can easily achieved by using ROS inte-
grated solutions the ros bag file system. For that reason some
implementations might also work in an online manner, as long as
enough computational power is available.

It should be mentioned that we decided not to utilize any database,
although we heavily thought about it. The data is now saved to text
files because then the information can easily be modified with any

65

6 Implementation Details

simple editor. For the final distribution these files are loaded into
the memory in no time. In addition this technique makes the need
for any other software dependency obsolete. The constructed pose-
graph, the topological graph and the roadmap can be separately
saved. Further details on the data structures can be looked up in
the following matching sections.

6.1.1 Graph-Based Mapping

The main principle behind building a pose-graph is already de-
scribed in Section 5.4.1 and in this section we will only discuss
details of the realization. The graph-based mapping functionality is
fully implemented within one ROS package (pose graph mapping).
For constructing the graph we need two main class types, namely
the VertexSE2 and the EdgeSE2. Both classes are type of SE2 and
furthermore a hypergraph element (see Figure 6.1 for details) to
simply provide a dimension of three to include information on Δx,
Δy and ΔΘ. The g2o framework already provides several SLAM
relevant and optimized object types. In addition tutorials on how
graph-based slam should be implemented are prepared. The origi-
nal framework is linked to the ROS package and new class imple-
mentations which rely on framework types must be additionally
registered by calling a factory class provided by g2o. Otherwise the
framework does not support these new defined class types.

Figure 6.1 shows the relationship of the individual class types
directly used with g2o. For this thesis we added a new RobotGPS

type for saving GPS measurements to every vertex. Due to the
slow measurement frequency of the GPS not every graph vertex
will have a valid reading. Thus only the chronologically closest
vertex has the valid measurement attached and following vertices
get the same measurement but with an invalid status information
added. So the status information is only true (which denotes a
valid reading) if it was initial and it is a new measurement. In
our current implementation RobotGPS only comprises the GPS

66

6.1 Mapping

Figure 6.1: Class diagram of existing and custom (colored in red) types for g2o.

information longitude, latitude, altitude and the status bool to
specify the validity of the data.

We also introduced a GPSEdge for establishing the connection be-
tween vertices with valid GPS measurements. This edge is also
based on the BaseBinaryEdge but only features one numerical
value and is thus one dimensional in contrast to the three dimen-
sional EdgeSE2. Within this class we added the functionality to
directly compute the distance between two GPS readings with the
haversine formula which was explained in Section 5.4.1.

The node consists of only one process which contains the main
thread and the previous described g2o relevant classes. More-
over some helper classes are implemented for the sake of clar-
ity. The main loop is running with a frequency of 10 Hz and is
successively building up the pose-graph by receiving odometry
nav msgs::Odometry, laser scan sensor msgs::LaserScan and GPS
messages in type of sensor msgs::NavSatFix. Odometry informa-

67

6 Implementation Details

tions are published with a frequency of 50 Hz even though laser
scans are only published with 10 Hz. Therefore running the main
loop at the same frequency as the laser scans causes new scans
for at least every vertex. Furthermore we acquire the difference
between two successive odometry messages and valid GPS mes-
sage are only attached to appropriate poses. For this reason we can
neglect any data synchronization. These messages are received via
ROS topics and for better debugging we output every change of
the pose-graph on a topic with the type visualization msgs::Marker.
This allows us to see all vertices with connections. Especially GPS
related edges are colored differently. The graph optimization is run-
ning pretty fast and can therefore be done for every newly added
vertex. At the moment we run the optimizer for five iterations.

The pose-graph can easily be saved at the end of the process by
using the provided functionality by g2o. Then the graph will be
saved in a text file like shown in Listing 6.1.

Listing 6.1: Saved pose-graph
VERTEX SE2 id x y t h e t a # robot pose ver tex
ROBOT GPS longitude l a t i t u d e a l t i t u d e # ver tex r e l a t e d GPS
ROBOTLASER l a s e r d a t a # ver tex r e l a t e d l a s e r
. . . # a l l v e r t i c e s

EDGE SE2 v e r t e x i d 1 v e r t e x i d 2 e r r o r var iance # normal edge
. . . or . . .

GPS EDGE v e r t e x i d 1 v e r t e x i d 2 e r r o r # GPS edge
. . . # a l l edges

6.1.2 Topological Hybrid Mapping

After building the pose-graph we can start creating the topologi-
cal hybrid graph. The topological mapping package provides the
functionality to create, save, and maintain such a graph. In Fig-
ure 6.2 an overview of the individual module classes and how
they are interconnected and share common resources is visualized.
The mapping process is loading the previous saved pose-graph by
g2o and is therefore only able to build the graph once. The map
rendering process is realized by utilizing the occupancy grid utils

68

6.1 Mapping

package. This graph is then distributed over ROS by means of
visualization tools (visualization msgs::Marker) and a special ROS
message (Listing 6.2). The message contains not only the graph but
additional information about the grid size and the resolution.

If desired, the graph can then be saved similar to what g2o pro-
vides. The saving module is subscribing to the topic where the
graph message is distributed and saves it to a text file in the same
structure as the message. Each created occupancy grid is num-
bered in ascending order and saved as an image, together with a
corresponding parameter text file. This technique is equivalent to
the functionality of the map server, another ROS package and can
therefore be used to load individual maps.

Listing 6.2: ROS topic message of the topological hybrid graph
topologica l nav msgs/TopologicalMapNode [] nodes # l i s t of a l l gr ids

uint32 id
f l o a t 3 2 x s i z e
f l o a t 3 2 y s i z e
f l o a t 3 2 r e s o l u t i o n
geometry msgs/Pose c e n t e r # p o s i t i o n of grid o r i g i n

geometry msgs/Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs/Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

topologica l nav msgs/TopologicalMapEdge [] edges # l i s t of a l l edges
uint32 id
uint32 s r c
uint32 dest

For using the topological hybrid graph we offer a maintenance
module (TopologicalManagerNode), which loads the graph and pub-
lishes it as well as the local grids frequently. Additionally it man-
ages the local grids by loading it directly from the memory and
provides a service for changing. The service only requires the grid
number and returns an error if the grid is not available due to
various reasons.

69

6 Implementation Details

Figure 6.2: Overview of the available topological mapping classes.

6.2 Planning

This section comprises only the high-level planning implemen-
tation, whereas the low-level hierarchy planner was not part of
this thesis. The real planning work is done inside the topological
planning section (Section 6.2.2) but in order to work, the robot
position (see Chapter 5 for more information) and a pre-computed
roadmap is required, which is described next.

6.2.1 Roadmap

The roadmap is also implemented within one ROS package, called
the topological roadmap. The created roadmap is published with
a special designed message which is described in Listing 6.3 and
can be visualized as well. This message comprises all way-points
and their related grid. This is later useful to pick the correct local
grid. As described in Section 5.6.1 every way-point is located in the

70

6.2 Planning

same global frame (in our case it is called the map frame). This has
the advantage that every way-point could directly be transformed
to real world GPS coordinates.

The actual generation process is not started until receiving the
topological hybrid graph for the first time. Then, depending on the
user input, it loads the corresponding pose-graph file and adds
all necessary way-points. The program needs to load individual
maps from time to time and therefore refers to the library pro-
vided by the topological hybrid mapper. The way-point generation
with maps strongly builds up on the functionality offered by the
occupancy grid utils package. This package is able to adapt maps
on the fly like inflating and also includes basic planning capabili-
ties. For example the process of spreading out potential way-points
is checking reasonable positions on inflated grids, this ensures a
safety distance so that points are far enough away from obstacles.

The final roadmap can be saved, loaded and then used very similar
to the topological hybrid graph implementation (Section 6.1.2).

Listing 6.3: ROS topic message of the roadmap
topologica l nav msgs/RoadmapNode [] nodes # l i s t of way−points

uint32 id
uint32 grid # r e l a t e d to t h a t gr id
geometry msgs/Point p o s i t i o n

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

topologica l nav msgs/RoadmapEdge [] edges # l i s t of edges
uint32 id
uint32 s r c
uint32 dest
f l o a t 3 2 c o s t

6.2.2 Topological Planning

The topological planning or high-level planner is providing a
way-point sequence to the global goal for the low-level planner
GlobalPlanner. Therefore it requires the current robot localization

71

6 Implementation Details

and the roadmap. At the moment the user assigns the goal by us-
ing a defined action comprising a goal way-point id or a roadmap
independent pose. Furthermore it is responsible for switching the
maps accordingly and thus depends on the topological hybrid
manager or mapper.

The planning procedure is illustrated in Figure 6.3. The planning
module is only enabled if Move-Base is ready and the topological
hybrid map as well as the roadmap has been received. Then the
planning thread is initiated and incoming goals are further trans-
ferred to the thread execution. After the planner receives the robot
position a plan to the goal is computed by utilizing the roadmap
and the Boost graph library1. The actual execution of the plan
is done in a straight forward manner. The topological planner
thread is sending every way-point successively to the Move-Base.
The Move-Base provides an action move base/goal for receiving
navigation goals. The topological planner always sends the fol-
lowing way-point shortly before the robot is reaching the current
way-point. Hence Move-Base is only finishing the last and final
goal.

The map switching is one crucial part of the whole system. To
perform reasonable decisions, Algorithm 7 described in Section 5.5,
needs information about the robot position, the current and the
following low-level goal. All this is within the scope of the topo-
logical planner. The GetBestGrid algorithm ideally picks a local
grid where the low-level goal and the robot are covered. In some
cases this is not always possible. If for example the way-point
space of the roadmap is too large in proportion with the overlap
of the local grids. Then the second best choice, at least the robot is
covered, is chosen. After a short amount of time the robot has then
driven a little further and a better grid is available. Nevertheless
we recommend changing such configurations. In the current setup
we assume the first grid is the start but this is easily changed by
launch parameters.

1http : //www.boost.org/doc/libs/1 61 0/libs/graph/doc/index.html

72

6.2 Planning

Figure 6.3: Illustration of the topological planning procedure interacting with
the Move-Base.

73

6 Implementation Details

6.3 Terrain Analysis

This last section explains implementation decisions for the elevation
and vegetation mapping and gives some insight on the structure
of the module. Both tasks are combined within one ROS package
elevation mapping because they depend on the same data-flow,
which is laser scan measurements as input and a costmap layer as
output.

The mapping can either work in a rolling window mode or with a
complete persistent map. As it is preferable to keep the data trans-
fer as small as possible we picked the rolling window functionality.
The related costmap has always the same size as the elevation map.
If it exceeds the size of the global costmap only information within
these bounds are transferred.

In Figure 6.4 the involved classes for mapping are shown. The mod-
ule ElevationMappingNode is carrying the elevation and intensity
map. The other two modules are sharing these data by either mod-
ifying or reading it. The measurement module owns an additional
variance map, which is in our implementation only used when
updating existing measurements and thus only relevant for that
module. The module ElevationMaplayer employs a costmap layer,
which can be integrated like any other costmap layer (e.g. inflation
layer) to the Move-Base.

The implementation uses the provided pluginlib2 of Costmap2DROS
to make arbitrary changes to the costmap. This plugin offers a C++
interface and already implements basic methods for accessing
the costmap. Therefore the Costmap 2D Layer is derived from the
costmap 2d :: Costmap2D class.

2http : //wiki.ros.org/costmap 2d

74

6.3 Terrain Analysis

Figure 6.4: Acting classes of the terrain analysis.

6.3.1 Terrain Mapping

The terrain mapping process is primary done in the ElevationMea-
surementNode. This process is running an external measurement
thread for registering new sensor readings. This is especially nec-
essary for depth cameras or laser sensors with a high update rate
because in both cases the data transfer is rather high. Unfortu-
nately ROS is known for having delivery troubles when callbacks
are blocked for too long.

In our configuration the process receives laser scan and odome-
try messages. The message types are sensor msgs::LaserScan and
nav msgs::Odometry respectively. The odometry information is
used to trigger the rolling window and to integrate the readings
on the right position in the map. The process has access to the
elevation and intensity map, carried by the ElevationMappingNode
module. Before computing the elevation, the sensor data is filtered
with a voxel grid and some statistical filter. Then the measurement
is transformed from world to map and finally the height is com-
puted as described in Section 5.7. When performing the vegetation
classification we need to look at the incoming range measurements

75

6 Implementation Details

and their corresponding intensity value. For that reason it has
to classify each ray right at the start and write the result to the
intended intensity map cell.

6.3.2 Terrain Analyzing

The evaluation module is called ElevationMapReadingNode and has
also access to the elevation map but only for reading purposes. It
employs an extra thread for updating the gradient or computing
the costs in order to create the costmap layer. This costmap is
then handed over to the ElevationMapLayer, for making it globally
available as a valid costmap layer. In Figure 6.5 the costmap with
all individual layer is presented. The implementation features four
different costmap layers however the resulting costmap is only
maintained in the master. The local occupancy grid map functions
as the static layer. Then obstacles visible in the horizontal lasers
are inserted and removed in the next layer. Obstacles or terrain
relevant information is covered in layer number three followed by
an inflation procedure.

The gradient of the elevation map can easily obtained by utilizing
OpenCV 3 functions or just by looking at adjacent cells in x and y
direction and computing it by hand. Currently the vegetation costs
almost comply with a fixed value because any vegetation cell gets
the same cost assigned. Only boarder cells have lower costs, due
to applied blurring operations. For the final cell cost, the highest
value of the elevation or vegetation cost is used.

The generated elevation map is rendered as a color image or in an
appropriate ROS point cloud message, this makes evaluation and
parameter calibration easier.

3http : //docs.opencv.org/2.4/index.html

76

6.3 Terrain Analysis

Figure 6.5: Layered costmap illustration with all four individual layers. Yellow
rectangles denote a costmap layer and the color red indicates lethal
obstacles within the costmap.

77

7 Evaluation

The purpose of this chapter is to evaluate the proposed algorithms
and concepts. The first part discusses the quality of the used sensors
and compares the quality of sensors based on the same technology.
In part two the results of graph-based slam and the topological
hybrid mapping are presented. Moreover, we investigate the quality
of the localization based on these maps. In the next section the
planner as well as the roadmap are evaluated. Finally we present
some results of the terrain analyzing module.

7.1 Sensors

7.1.1 Laser Range Finders

The SICK LMS 200 laser range finders can be configured for several
different operation modes. The measuring distance as well as the
frequency depends on the chosen configuration. Due to the outdoor
task the longest measuring configuration with a distance up to 80
m was picked. In Figure 7.1 two laser measurements are compared
because of varying sunlight impacts. They share an identical loca-
tion but are measured at different times a day. The measurement at
night (Figure 7.1b) has clearly more far reaching scans, especially at
the lower part of the image. This is probably due to bright sunlight
which is reducing the laser’s maximum effective range by several
meters. This extra intense light overwhelms the beam originating
from the laser and therefore confuses the sensor. Thus scanning at
night is the optimal situation.

79

7 Evaluation

(a) Laser data captured at
10:00 am.

(b) Laser readings at 11:00 pm.

Figure 7.1: Laser range finder comparison between day and night measurement
(underlying map image c� Google). Captured data at the same posi-
tion but at different times a day. A substantially difference in long
range measurements is visible. The red and yellow color denotes
different measurements.

80

7.1 Sensors

7.1.2 GPS

At the beginning of the development we quickly realized that the
accuracy of GPS in urban environments is very poor, especially in
urban canyons. First of all we evaluated the used GPS sensor by
picking a fixed track around the campus. The robot was remote
controlled and three measurements were recorded at different days
and times. The result is presented in Figure 7.2. Due to missing
ground truth measuring capabilities we estimated the path on the
basis of aerial imagery provided by Google.

Typical reasons for poor measurements are multi path readings,
too few satellites, or weather conditions. Tall buildings and urban
canyons in general disturb GPS very much. These effects are framed
with black rectangles in Figure 7.2. Rectangle a) indicates GPS
errors due to a block of houses and b) show GPS disturbances
caused by tall buildings. The measurement accuracy within those
places was always relatively worse than the remaining track. We
even encountered jumps of up to 50 meters. But the overall poor
quality in this sample is caused due to too few satellites.

GPS sensors often require a warm-up time to initiate the GPS-fix.
This can take up to several minutes. In our experiments we started
with a warm-up time of about 15 minutes. Another improvement
brought an adaption, by mounting a metal plate beneath the GPS
antenna. The size of that plate is approximately 10 by 10 cm and
boosts up the sensor capabilities by preventing multi path effects
caused by reflected GPS signals, e.g. from the ground.

Due to very bad GPS readings we decided to compare our IMU-
GPS with GPS from different manufacturers. An obvious choice
was to test the tracking capability of modern smart phones and
additionally we picked the Garmin Edge 705, as it is a typical
consumer product for tracking purposes.

81

7 Evaluation

Figure 7.2: Sensor evaluation of the IMU-GPS measured on three different days
and times (map image c� Google). The ground truth is emphasized
in yellow. The green, red and blue colored path corresponds to
an individual measurement. Measurement errors due to a block of
houses are labeled with a) and errors because of tall buildings are
labeled with b).

The output of every sensor is shown in Figure 7.3 and in Figure 7.4
the IMU-GPS is additionally shown together with the ground truth.
This sample route was taken on a sunny midday and during a
favorable time with many satellites. At the first glance it is notice-
able that all sensors have errors of at least five meters in some
spots. In this particular run the IMU-GPS has striking accuracy
than the competitors. It only remains weak at some spots, which
are described in more detail in Figure 7.5b. The worst performance
was delivered from the mobile device which is colored in blue.

In Figure 7.5a a close up of the independent measurements is
presented. One can see that the mobile device suffers from a
sparse measurement frequency, in contrast to the other two devices.
This low frequency causes fewer measuring points and thus long
straight lines appear inside the interpolated path. Whereas the
IMU-GPS achieved outstanding results on that day. Beside some
rare spots it only diverges from the ground truth by estimated 3
meters.

82

7.1 Sensors

Figure 7.3: Sample route taken through the campus, to compare GPS from three
different manufacturers. The track colored in red is captured from
the IMU-GPS. The blue one is measured with the Samsung Galaxy
S5 and the green one by the Garmin Edge 705. The ground truth is
highlighted in yellow (map image c� Google).

Figure 7.4: Same sample route as in Figure 7.3 to highlight the IMU-GPS together
with the ground truth (colored in blue) separately. Framed places
with label a demonstrate influences from large buildings. Label b
shows a failure due to indoor driving and in label c the measurement
unit stood still for several minutes and this caused scattering (map
image c� Google).

83

7 Evaluation

(a) IMU-GPS is colored in red. The green track is measured by the Garmin
Edge 705 and the blue shows the readings from the mobile device.

(b) Close-up view of the IMU-GPS, again in red and the ground truth in
blue color.

Figure 7.5: Close-up shot of the GPS comparison in Figure 7.5a as well as the
single IMU-GPS track compared to the ground truth (map images c�
Google).

84

7.2 Mapping

7.2 Mapping

In this section the proposed mapping approach comprising the
graph-based and the topological hybrid mapping is evaluated.

7.2.1 Graph-Based Slam

For testing the graph-based slam we captured several individual
measurements of the complete campus. Therefore the full sensor
suite was required. Then we picked the most promising measure-
ment (depending on the GPS quality, the number of dynamic
objects) and finally created the graph for evaluation. In Figure 7.7a
the constructed graph is overlapping a provided map of the TU
Graz. The created pose-graph is completely consistent because ev-
ery real place consists only once within the graph. Consistency was
mainly possible due to loop closing, which successfully connected
recurring places. In our specific case, the most critical spot for loop
closing was below the bottom right corner of the building Inffeld
10. This building is framed with a red rectangle and labeled with
c in Figure 7.7a. The overall map quality fits the underlying map.
Some areas look very similar to the map, whereby others show
wide disparities and do not capture the reality quite well. This is
especially the case if smaller structures are not registered in the
official map.

Figure 7.7b shows a close up of the building Inffeld 16 together
with the overlaying laser scans. The second close up (Figure 7.7c
captures the difference between the building Inffeld 10 and the
created pose-graph. The underlying images in gray correspond to
the specific sections of the campus building plan offered by the TU
Graz. The green colored rectangles within both figures highlight
well fitted places. Whereas blue areas depict aberrations. The detail
view of Inffeld 16 shows many deviations, mainly because the laser
scanners where not able to reach far enough (see Figure 7.6b) or
measured the slopped vegetation (see Figure 7.6a). We further had
to cope with many GPS failures in that area because of many close

85

7 Evaluation

(a) Slopped vegetation.

(b) Wide open area (c) Close nearby buildings.

Figure 7.6: Difficult regions for building maps.

by buildings (see Figure 7.6c), nevertheless the green framed part
of the map still fits very well. Some difficult regions next to Inffeld
16 are presented in Figure 7.6. When the robot traverses the inner
part of these buildings the translational error increased (area inside
the blue) mainly because no error correction with the GPS was
possible.

The inner place of the Inffeld 10 was not mapped, due to not
far enough reaching laser range measurements. In Figure 7.7c
the faulty part is caused by the large slightly curved part of the
building. This is because scan matching tries to fit a straight wall
which is simply wrong in this case. One might think the wall on
the lower left is completely shifted to the original but here the
visualized laser scans relate to the bicycle stands behind. This
happened because the ground is never perfectly flat and thus the
robot stood slightly lopsided and measured over the actual wall.

The time for building the most accurate pose-graph took almost
twice as long as the capturing time on a standard Lenovo T450s
with an i7-5600U CPU and 2.60 GHz. The measurement time took

86

7.2 Mapping

(a) Overview of the official map with the overlaying pose-graph. The laser
scans are colored in black. The red rectangle a) shows the extracted
close up related to Figure 7.7b and b) relates to Figure 7.7c.

(b) Close up of the pose-graph near the Inffeld 16 buildings.

(c) Inffeld 10 building in more detail.

Figure 7.7: Close ups of the constructed pose-graph. Green rectangles denote
a good fit with the underlying map and the blue rectangles show
faulty parts (map images c� TU Graz).

87

7 Evaluation

Figure 7.8: Generated pose-graph of the TU Graz campus consisting of all ver-
tices, edges as well as GPS related edges. Red color indicates ordinary
edges and green denote GPS edges.

45 minutes and the process required nearly two hours for building
the graph. The scan matching, especially the fine grained matching
for loop closing was very time consuming. The optimization of the
graph never took longer than several microseconds. The visualized
graph of the campus in Figure 7.7a has overall 6.371 vertices and
18.382 edges including 385 GPS edges. In Figure 7.8 the complete
pose-graph is shown as standalone together with all vertices, edges
as well as GPS related edges.

7.2.2 Topological Hybrid Mapping

The overall generated topological hybrid map is visualized in
Figure 7.9 with an activated local grid example in the center. Fig-
ure 7.10 shows the same scene as Figure 7.9 but zoomed in to
the activated map. This graph consists of 52 local maps, 64 edges.
It took one and a half minute to generate by using the previous
mentioned pose-graph. Therefore, an online approach would be
imaginable by changing the implementation in a way to take only
the near neighborhood into account. This would break down the
computation to few milliseconds.

88

7.2 Mapping

Figure 7.9: Generated topological hybrid graph of the TU Graz campus together
with an activated local grid sample in the center.

The local occupancy grid maps have a size of 60 by 60 meters and
some selected examples are depicted in Figure 7.11. The overview
map in Figure 7.11a highlights the selected local grid map locations.
The first three samples present very accurate generated maps with
very clean walls, free areas in white, and only few outliers. The
lower three figures demonstrate bad results, mainly caused by free
open areas where the majority of the laser scans did not reach any
obstacle or only uneven terrain.

The mapping has definitely problems in wide open areas. Laser
range measurements which do not hit any obstacles in such areas
have no influence on the resulting map. Therefore, the mapped area
is labeled as unknown and planning algorithms sometimes avoid
unknown spaces, depending on the configuration. Nevertheless,
these maps can still be used for localization but one can expect
state estimation problems here.

89

7 Evaluation

Figure 7.10: Cutout of the overall topological hybrid graph of the TU Graz
campus. Edges are colored in red and orange denote local grids.

7.3 Localization

We utilize AMCL for localization within the local grid maps, as
described in Section 4.4. This particle-filter based implementation
provides the functionality to switch the map at any time. As we
are using different local maps, the particle filter has to deal with a
changing map at any time.

While testing, we recognized that the filter re-distributes (sam-
pling a Gaussian distribution) its particle believe on map change.
Figure 7.12 shows the re-distribution effect of the cloud. The first
Figure 7.12a presents the localization state shortly before the map
change happens. As one can see the first particles cloud features
more accurate information about the distribution as the second
one. Due to accumulating translational errors caused by long cor-
ridors the smaller cluster appeared. This can be explained by this
specific implementation, which is only referring to the estimated

90

7.3 Localization

(a) Map showing the regions of each selected local occupancy grid
map (map image c� Google).

(b) Good result with
many details.

(c) Clean map with
straight walls and
cars.

(d) Corners and walls
are good captured.

(e) Bad result, due to
open area.

(f) Sparse features
and almost no
objects.

(g) Noise due to
slopped terrain.

Figure 7.11: Selected occupancy grid maps of three good (b to d) and bad (e to
g) results. The upper maps show good outputs of the map making
process, whereas the lower ones demonstrate critical regions with
very few measurements or uneven terrain.

91

7 Evaluation

(a) Two particle clusters emerged.

(b) One large cluster after re-sampling.

Figure 7.12: Particles distribution changes due to map switching. First two clus-
ters appeared because of translational errors. After switching the
map this information was lost.

covariance matrix on map change. The effect has advantages as
well as disadvantages. We lose the previous obtained knowledge
in some cases. One advantage might be that in other cases this
filter refreshing causes better localization results because the in-
ternal believe is re-distributed. The particle filter was configured
to introduce more translational noise by tuning the motion model
accordingly. Two factors strongly influence the localization success.
Without any landmarks at the front or back the robot is not able
correct the translational error. For that reason we increased the
particle spreading in its driving direction.

Figure 7.13 shows a very difficult localization scenario with very
few landmarks, except slopes on a gravel road. The IMU usually
supports the Kalman filter by estimating a better odometry but
when driving on gravel the sensor is shaken and the odometry in
general is fairly poor. Nevertheless the position estimate recovered
after the adaptive particle filter successively increased the particle
number and the size of the particle cloud.

92

7.3 Localization

(a) Particle cloud increases. (b) Unclear about its position

(c) New clusters emerged. (d) Almost re-localized.

Figure 7.13: The laser range measurements do not capture enough features and
therefore causes a spreading of the cloud a). The size of the cloud
increases, until new parts of the map appear b). The cloud is then
re-sampled due to the earlier mentioned map change effect and
is therefore able to find better solutions c). The particle filter then
quickly creates new clusters and re-localizes d).

93

7 Evaluation

A proper setup for evaluating the localization is rather difficult,
especially for outdoor robots because no real ground truth exists.
As we had seen before, GPS is far not precise enough to serve as
the ground truth and other systems are not feasible for outdoor
usage.

We therefore decided to mark various spots at the campus site
(see Figure 7.14) and only measure the position deviation on these
predefined places. For evaluation the robot was remotely driven
through every marked spot in the same order. We repeated this
process three times with different level of difficulty. Late at night
with favorable empty streets, at midday with some ordinary distur-
bances, and a relatively crowded and dynamic environment. This
methodology enables us to obtain qualitative results and to draw
some conclusions about the localization performance.

Figure 7.15 shows the resulting accuracy distribution, measured
with increasing difficulty. In the test scenario at night the best
localization results are achieved, as expected. Among some few
outliers due to translational shifts it accomplished an average
accuracy of approximately 0.2 meter. Whereas the crowded scenario
has overall more problems but nevertheless the mean deviation is
still lower than half a meter, which is good enough for outdoor
transportation tasks.

In Figure 7.16 the distribution for every spot is visualized. The plot
gives a little insight on how well the robot is localized around that
specific area. For example spot 15 (labeled within Figure 7.14) is
one of the most difficult places at the TU campus. This area has
very few localization features and earlier visited spots (spot 13 and
14) already cause a relatively poor position estimate. Furthermore
the robot has to cope with a gravel road and vibrations, which
results in very bad odometry and faulty laser scan measurements.
The overall localization accuracy is surprisingly good. Further
developments by for example introducing GPS measurements into
the particle-filter could still improve the accuracy, especially in free
open areas.

94

7.3 Localization

Figure 7.14: Marked placed on the TU Graz campus to evaluate localization
accuracy and performance. Spot number 13, 15 and 28 probably
cause the lowest localization accuracy.

Figure 7.15: Resulting spot deviations for three different scenarios with varying
difficulties. Measured at the earlier defined places.

95

7 Evaluation

Figure 7.16: Localization deviations for every spot. Individual spots show very
low localization accuracy (e.g. 13 and 15).

7.4 Planning

An extensive comparison of the runtime and the path optimality
between graph and grid-based search (or metrical planning) has
been done in former literature by Konolige et al. [30] as well as
in newer work by Imlauer et al. [33]. As a conclusion Konolige
pointed out that the graph planner is significantly faster although
the traveling distance is negligible longer. To validate their findings
for larger environments we directly compared the metric planner
(GlobalPlanner) with our topological planner. We rendered one
large occupancy grid map because the metric planner requires
it for planning. Then we performed 50 test by randomly chose
the start and end point within the map. Thus the resulting path
distances varied from 10 to 700 meter. In Figure 7.17 the averages of
the resulting distances are presented. It can be seen that the metric
planner created overall shorter paths with an average length of 182
m, than the graph-based method with an average of 273 m. Whereas
the expected planning duration of the graph planner (presented in
Figure 7.18) is several orders of magnitude faster than the metrical
one. The graph planner outperforms the metrical planner with an
average of 0.006 seconds compared to 0.79 seconds.

96

7.4 Planning

Figure 7.17: Evaluation of the resulting path distances computed by metrical
and graph planner. The metrical planner created shorter paths on
average to the goal.

Figure 7.18: The resulting planning durations of both methods. Graph-based
planning outperforms the metrical planner by several orders of
magnitude.

97

7 Evaluation

Figure 7.19: Topological planner provides a way-point sequence for the low-
level planner (path is colored in red). The metrical planner’s path is
colored in blue. The first two way-points have already been visited
and the next valid goal is fed to the metrical planner.

The implemented planner outputs a sequence of way-points as
described in Section 5.6.2. A planned path, starting next to the
building Inffeld 13 and finishes at the upper left entrance for
example, consists of 157 way-points.

Figure 7.19 shows the individual planning hierarchies. The way-
point sequence to the goal is provided by the topological planner
and colored in red color. This path is rather straight forward. The
low-level planner is receiving the way-points one by one. The high-
level executor frequently updates these goals in a way, so that the
low-level planner never really reaches a goal. This is the reason
why the metrical planner is already planning to the next way-point
in the image. As shown in the picture the occupancy grid is limited
and the low-level planner cannot reach beyond the map, whereas
the high-level planner is able to, by utilizing the roadmap.

The other Figure 7.20 shows a corner of a building, where the
planner created a smooth path because of the roadmap graph
topology. The graph not only connects close nearby points but
points which are slightly further away, to allow shortcuts. This
behavior is especially essential for slow robots and prevents abrupt
motions.

98

7.4 Planning

Figure 7.20: The roadmap topology allows the planner to select points, so that
corners are translated to curves, which is useful for easier driving.

7.4.1 Roadmap

As we pointed out in the previous chapter the roadmap generation
can be made from various inputs. In Table 7.1 the different output
sizes of each generation method can be compared. The smallest
solution is with no doubt the pose-graph only variant, as it consists
of three times fewer way-points compared to the other roadmaps.
The coupled solution features approximately one percent fewer
way-points as well as edges than the building method from the
maps only.

Pose-graph Maps Both
Vertices 711 2.598 2.505
Edges 1.836 16.816 15.346

Table 7.1: Size comparison of roadmaps generated with different methods.

The difference in graph topology is compared in Figure 7.21. It can
be seen that the pose-graph created roadmap consists of a very
simple topology (Figure 7.21a). The combined method constructs a
similar complex topology with even fewer way-points and edges
compared to the map layout approach. The main advantage is
indeed the controlled influence on the graph structure by utilizing
the pose-graph as additional input.

99

7 Evaluation

(a) Pose graph only. (b) Evenly distributed
points.

(c) Both informations
combined.

Figure 7.21: Comparison of different roadmap generation methods. The figure
on the far left utilizes only the pose-graph for creating the roadmap.
Whereas the center figure presents a result after spreading out
points evenly on the map. The combined version can be seen on the
right.

To underpin this advantage we picked several example sections,
which are collected in Figure 7.22. The first two figures present a
narrow walkway near to parking cars. Due to the pose-graph, more
edges parallel to the walkway exist. The robot can easier follow
this simpler and straighter way-point topology.

In Figure 7.22d the roadmap is directly located on a street with-
out any walkways. One of our main goals was to incorporate
reasonable routes into planning and in this particular case the
robot should avoid the center of the street. The normal way-point
spreading technique would evenly spread out points including
the street center, which causes routes along the center. With the
combined version it is more likely that the robot will stay at the
street boarders, except it is necessary to traverse the street.

The last sample section shows a barely useful map (Figure 7.22f) but
together with the information of the pose-graph even an additional
possible path emerged.

100

7.4 Planning

(a) Irregular path structures. (b) Edges parallel to the path.

(c) Everywhere evenly
distributed.

(d) Preferable for avoiding
streets.

(e) Only one possible path. (f) More paths available.

Figure 7.22: Example sections of the generated roadmap. Figures on the left
(Figures 7.22a, 7.22c and 7.22e) show the roadmap topology with-
out using any pose-graph information. The effect of building the
roadmap together with the pose-graph is presented on the right-
hand side.

101

7 Evaluation

7.5 Terrain Analysis

The ground obstacle elevation is visualized in Figure 7.23. The
robot is traveling along a narrow passage between cars, gravel
and a slope with a fence. This scenario has a great demand for
environmental assessment. The elevation map is fed by the down
facing laser and therefore only obstacles nearby the robot are visible
in the representation. The model includes still some unknown cells
although the laser’s field of view should have covered them. One
reason might be the impact angle and another cause is shadowing
effects (terrain behind objects cannot be measured). Too steep
beam angles cannot always be recognized correctly by the sensor.
In this figure the elevation map visualizes every grid cell with
boxes. The color as well as the vertical position represent the
measured height at that position. For example blue boxes are higher
located than green ones. In addition the costmap layer is rendered
simultaneously, to highlight non-drivable cells (colored in yellow).
To provide a better glimpse of the costmap accuracy we added
Figure 7.24 of the same location with a top down viewpoint.

The terrain classification is evaluated in Figure 7.25. Two positions
next to vegetation were picked and the corresponding raw classi-
fication outputted. As mentioned in Section 5.7 the classification
quality strongly depends on the measured range, especially for the
Hokuyo laser (see Wurm et al. [31] for more). Thus it was calibrated
to classify in a conservatively fashion by means of preferring the
road more often. This behavior can be identified in Figure 7.25d
because many cells are still classified as road. From this point
forward, some post-processing steps like smoothing and applying
morphological operators can improve the result drastically. Never-
theless this classification already suffices after inflation and feeding
this information to the costmap layer.

102

7.5 Terrain Analysis

(a) Robot traveling through a
narrow passage.

(b) Related elevation map
from the same viewing
angle.

(c) Same passage taken from
the back view.

(d) Corresponding elevation
map. Costmap is shown in
yellow.

Figure 7.23: Elevation map taken from various angles, while traveling on the
campus. Visualization shows the point cloud as boxes and different
colors denote different vertical values (z-axis). The resulting non-
inflated costs are colored in yellow.

103

7 Evaluation

Figure 7.24: Costmap comparison with underlying ground truth image. Yellow
color denotes non-drivable terrain and will be inflated later in the
process.

104

7.5 Terrain Analysis

(a) Robot standing next to a
plant.

(b) Elevation map and color
is consistent with classifi-
cation.

(c) Driving along a walkway
with grass nearby.

(d) Classified grass, without
any post-processing.

Figure 7.25: Sample vegetation classifications at to different spots. Green color
indicates classified raw vegetation, without any post-processing.

105

8 Conclusion

This chapter summarizes this thesis and provides additional guid-
ance for improvements and lessons learned. Furthermore some
future developments related to this work are suggested.

8.1 Discussion

Within this thesis an autonomous transport system for indoor and
outdoor use was presented. The robot is able to travel dynamically
within a campus like environment, by avoiding obstacles and
choosing adequate routes to the goal.

In order to navigate on the campus a global map was created by
utilizing and further developing former graph-based techniques.
This environment representation was built by fusing several sensor
sources and made a global consistent map possible. Furthermore,
an extended topological hybrid graph was proposed which is able
to deal with large-scale maps. This allows the usage of existing and
well known technologies, such as A* search for the metrical plan-
ning or the adaptive particle filter for estimating the localization.
It has computational benefits which is particular important when
coping with insufficient processing power, a common problem for
mobile applications.

The planning architecture is split up in three abstraction level, so
that planning on large-scale outdoor environments remain feasible.
Even though the planner still comprises reasonable routing. The
proposed high-level planner uses an overlaying roadmap topology

107

8 Conclusion

which can be modeled to fulfill several needs. We presented differ-
ent roadmap structures, necessary to meet higher design decisions
like avoiding street centers. Moreover we showed how analyzing
the surrounding terrain to avoid non-traversable, rough, or just
unwanted terrain like vegetation. Hence the planner incorporates
the traversability and type of terrain.

In addition the evaluation at the end, presented individual per-
formance results of the map creation, planning or localization
module. The overall evaluation pointed out the necessary of every
single module and how they collaborate. Finally a fully functional
prototype verified the implementation and the proposed tool set.
We showed the technical feasibility of developing an autonomous
navigation system for campus wide transport tasks.

8.2 Lessons Learned

The map generation of large territories is rather difficult and time
consuming. The constantly changing environment, due to construc-
tion sites or parking cars is a challenging problem for mapping as
well as localization. Furthermore, all kind of moving objects dis-
turb the mapping process and create artifacts within the rendered
maps. Moving objects should be treated in a more specific way
because not only the mapping result would improve drastically
but robots operating in urban environments could then react in a
more appropriate way.

The right amount of filtering is one key aspect of such a system. For
example the ground filter worked quite well for the mapping but
has an adverse effect on localization. For the graph-based mapping,
filtering of outliers was the most important part.

Never trust a single sensor. No matter how reliable it appears
to be, problems will occur and only multiple hypothesis resolve
unexpected behaviors.

108

8.3 Future Work

The hardest part of such a broad project seemed the distinction
between what is important from what is unimportant. Always
worried about failing at the key aspects of this thesis because of
minor details at the start. Even at the end we cannot rule out the
possibility, that small changes at the setup would have made large
impacts on the overall system.

8.3 Future Work

The presented system only processes the environment in two di-
mensions, except for the elevation map. Due to the small height
of the robot several problems occurred in conjunction with laser
measurements hitting the ground (see Section 5.2 for more on this
topic). For systems which work only in two dimensions these are
relatively hard problems to solve, whereas in 3D they are consid-
erable easy. Furthermore, every local map, the topological hybrid
graph as well as the roadmap could be translated into 3D.

As already mention in Section 8.2 moving objects and constantly
changing environments are difficult. Detecting objects, like for
example cars, definitely would help the map making process and
further the localization. We had some localization problems because
nearby cars seem to have very popular scan matching features.

109

Bibliography

[1] Howie M Choset. Principles of robot motion: theory, algorithms,
and implementation. MIT press, 2005.

[2] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilis-
tic robotics. Intelligent robotics and autonomous agents. the
MIT Press, Cambridge (Mass.) (London), 2005.

[3] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. IEEE
Transactions on Robotics, 23(1):34–46, Feb 2007.

[4] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and
C. Hertzberg. Hierarchical optimization on manifolds for
online 2d and 3d mapping. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 273–278, May 2010.

[5] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. G2o: A general framework for graph optimization. In
Robotics and Automation (ICRA), 2011 IEEE International Confer-
ence on, pages 3607–3613, May 2011.

[6] Henry Carrillo, Philip Dames, Vijay Kumar, and José Castel-
lanos. Autonomous robotic exploration using occupancy grid
maps and graph slam based on shannon and rényi entropy. In
2015 IEEE International Conference on Robotics and Automation.
Seattle, Washington, May 2015.

[7] Paul Timothy Furgale and Timothy D. Barfoot. Visual teach
and repeat for long-range rover autonomy. J. Field Robotics,
27(5):534–560, 2010.

111

Bibliography

[8] S. Thrun, M. Beetz, W. Bennewitz, M. andBurgard, A.B. Cre-
mers, F. Dellaert, D. Fox, C. Haehnel, D. andRosenberg, N. Roy,
J. Schulte, and D. Schulz. Probabilistic algorithms and the
interactive museum tour-guide robot Minerva. volume 19,
2000.

[9] Lars B. Cremean, Tully B. Foote, Jeremy H. Gillula, George H.
Hines, Dmitriy Kogan, Kristopher L. Kriechbaum, Jef-
frey C. Lamb, Jeremy Leibs, Laura Lindzey, Christopher E.
Rasmussen, Alexander D. Stewart, Joel W. Burdick, and
Richard M. Murray. Alice: An Information-Rich Autonomous Ve-
hicle for High-Speed Desert Navigation, pages 437–482. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[10] Andrea Bauer, Klaas Klasing, Georgios Lidoris, Quirin
Mühlbauer, Florian Rohrmüller, Stefan Sosnowski, Tingting
Xu, Kolja Kühnlenz, Dirk Wollherr, and Martin Buss. The
Autonomous City Explorer: Towards natural human-robot in-
teraction in urban environments. Social Robotics, 1(2):127–140,
2009.

[11] Rainer Kümmerle, Michael Ruhnke, Bastian Steder, Cyrill
Stachniss, and Wolfram Burgard. Autonomous robot naviga-
tion in highly populated pedestrian zones. J. Field Robotics,
32(4):565–589, 2015.

[12] Karel Košnar, Tomáš Krajnık, Vojtech Vonásek, and Libor
Preucil. Lama-large maps framework. In Proceedings of Work-
shop on Field Robotics, Civilian-European Robot Trial, pages 9–16,
2009.

[13] Pablo De Cristóforis, Matias Nitsche, Tomáš Krajnı́k, Taihú
Pire, Marta Mejail, P. De Cristoforis, M. Nitsche, T. Krajnik,
T. Pire, and M. Mejail. Hybrid vision-based navigation for
mobile robots in mixed indoor/outdoor environments. Pattern
Recognition Letters, 53(Complete):118–128, 2015.

[14] M. Rufus Blas, M. Agrawal, A. Sundaresan, and K. Kono-
lige. Fast color/texture segmentation for outdoor robots. In

112

Bibliography

2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4078–4085, Sept 2008.

[15] Triebel R. Pfaff, P. and W. Burgard. An efficient extension to
elevation maps for outdoor terrain mapping and loop closing.

[16] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R.Y.
Siegwart. Robot-centric Elevation Mapping with Uncertainty Esti-
mates. ETH-Zürich, 2014.

[17] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface
maps for outdoor terrain mapping and loop closing. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 2276–2282, Oct 2006.

[18] Sebastian Thrun, Michael Montemerlo, and Andrei Aron.
Probabilistic terrain analysis for high-speed desert driving.
In Probabilistic Terrain Analysis For High-Speed Desert Driving.,
2006.

[19] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source Robot Oper-
ating System. In ICRA Workshop on Open Source Software in
Robotics, 2009.

[20] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and
K. Konolige. The office marathon: Robust navigation in an
indoor office environment. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 300–307, May 2010.

[21] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian
Thrun. Monte carlo localization: Efficient position estimation
for mobile robots. In National Conference on Artificial Intelligence
(AAAI), pages 343–349, 1999.

[22] N. J. Nilsson P. E. Hart and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on Systems, Science, and Cybernetics, SSC-4(2):100–
107, 1968.

113

Bibliography

[23] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud
Library (PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[24] Y. Borenstein, H. Everett, and L. Feng. Navigating Mobile Robots:
Systems and Techniques. A. K. Peters, 1996.

[25] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of
the kalman filter to nonlinear systems. pages 182–193, 1997.

[26] T. Moore and D. Stouch. A generalized extended kalman filter
implementation for the robot operating system. In Proceedings
of the 13th International Conference on Intelligent Autonomous
Systems (IAS-13). Springer, July 2014.

[27] A. Elfes. Using occupancy grids for mobile robot perception
and navigation. Computer, 22(6):46–57, June 1989.

[28] Michael de Villiers. Heavenly mathematics: The forgotten art
of spherical trigonometry. The European Legacy, 20(5):560–561,
2015.

[29] G. Grisetti, R. Kuemmerle, C. Stachniss, and W. Burgard. A tu-
torial on graph-based SLAM. Intelligent Transportation Systems
Magazine, IEEE, 2(4):31–43, 2010.

[30] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation
in hybrid metric-topological maps. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3041–3047,
May 2011.

[31] Kai M. Wurm, Henrik Kretzschmar, Rainer Kümmerle, Cyrill
Stachniss, and Wolfram Burgard. Identifying vegetation from
laser data in structured outdoor environments. Robotics and
Autonomous Systems, 62(5):675–684, 2014.

[32] David Barber. Bayesian Reasoning and Machine Learning. Cam-
bridge University Press, New York, NY, USA, 2012.

[33] Stefan Imlauer. A Hierarchical Navigation System for Groups
of Autonomous Logistics Robots in Industrial Environments.
Master’s thesis, TU Graz, Austria, 2016.

114

