
Stefan Loigge, BSc

Unified and Dependable
Robot Control Architecture

based on ROS

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Gerald Steinbauer

Institute for Software Technology

 Diplom-Ingenieur

Supervisor

Graz, September 2016

This document is set in Palatino, compiled with pdfLATEX2e and
Biber.

The LATEX template from Karl Voit is based on KOMA script and
can be found online: https://github.com/novoid/LaTeX-KOMA-
template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I
have explicitly indicated all material which has been quoted either
literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s
thesis dissertation.

Graz,

Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbststän-
dig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht
benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe. Das in
TUGRAZonline hochgeladene Textdokument ist mit der vorliegen-
den Masterarbeit identisch.

Graz,

Datum Unterschrift

iii

Abstract

In this thesis an universal software architecture for autonomous
robots with the ability to observe, diagnose, and repair software
components is presented. In terms of autonomy the robot system
should be able to operate autonomously as long as possible without
human interventions. Therefore, the system must be able to detect
faults, including changes in the environment and wrong behaviors
of components of the robot. Goals for the robot are given by human
or a central server. The goals are used by a planner to generate
a plan to achieve that goals. The maintenance also includes the
functionality to generate additional goals by its own in order to
maintain the autonomy. The resulting plan contains different tasks,
which are behaviors of the robot. Each task requires a system
configuration which is related to different software components
that need to be configurated before the task is executable. The
execution of the task itself is supervised by the task executer.

The second important part of this work is the monitoring, diagno-
sis, and repair of components at runtime. Observers are used to
monitor relevant aspects of the robot. Therefore, several observers
are started with each running component based on their proper-
ties. The results from the different observers are collected by the
diagnosis engine. In combination with the diagnosis model which
is updated with each start and stop of a component, the diagnosis
engine is able to identify which components are faulty. But this
is only necessary, if some observers report inconsistent observa-
tions. For repairing a system, the components that are identified as
faulty are restarted, which is supervised by the task executer. For
repairing the task executer has also to care about the dependencies
between components. Furthermore, the task executer has to deal

v

with components that stay faulty even after a restart. The task
executer has to replace the faulty component with an alternative
one or cancel the execution of the related tasks if no alternative
exists.

Finally, the proposed architecture including the observation, diag-
nosis, and repair was realized as a proof-of-concept implementa-
tion. Additionally, an evaluation with an use case and different
scenarios demonstrate the mentioned skills.

vi

Acknowledgements

I would first like to thank my supervisor, Gerald Steinbauer, for
his support for this master thesis and nearly my entire study. We
had a lot of interesting discussions on this work but also on other
robotic related topics. His office door was always open whenever I
ran into a trouble spot.

I would also like to thank the company incubedIT for funding this
thesis.

Further I would express my gratitude to my friends and colleagues
from the RoboCup Rescue Team TEDUSAR for their time and
support. Especially Clemens Mühlbacher, which was also my co-
supervisor. He invested hours in interesting discussions about all
topics concerning robotics. Also his support in implementation
details was really helpful.

Finally I would like to thank my family for their continuous en-
couragement throughout my study and my whole life. Without
their support many of my projects would not have been possible
and many of my goals would not have been reachable for me.

Thank you.

Stefan Loigge
Graz, Austria, September 2016

vii

Contents

Abstract vii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Challenges 2
1.3 Contribution . 4
1.4 Outline . 5

2 Problem Formulation 7

3 Related Research 9
3.1 Architecture . 9
3.2 Knowledge-Base . 11
3.3 Agent Control . 13
3.4 Monitoring and Diagnosis 16

4 Prerequisites 19
4.1 Robot Operating System 19
4.2 Consistency Based Diagnosis 21

5 Concept 25
5.1 Architecture . 25

5.1.1 Overview . 25
5.1.2 High-Level . 27
5.1.3 Mid-Layer . 37
5.1.4 Low-Level . 44
5.1.5 Knowledge base 46

5.2 Monitoring and Diagnosis 48
5.2.1 Overview . 48

ix

Contents

5.2.2 Observers . 49
5.2.3 Diagnosis . 53

5.3 Concept for Fault Handling 59

6 Implementation 63
6.1 Architecture . 63
6.2 Observation . 66

6.2.1 Messages . 66
6.2.2 Observer Manager 67
6.2.3 Observer Functionalities 67
6.2.4 Resource Monitor 71
6.2.5 Observer Plug-ins 71

6.3 Diagnosis and Repair 76
6.3.1 PyMBD . 76
6.3.2 Configuration and System Description Vali-

dation . 77
6.3.3 Messages . 80
6.3.4 Rule Based Repair 81

7 Evaluation 87
7.1 General . 87

7.1.1 Description 87
7.1.2 Setup . 89
7.1.3 Test procedure 90

7.2 Scenario 1 . 90
7.3 Scenario 2 . 92
7.4 Scenario 3 . 94
7.5 Scenario 4 . 95

8 Conclusion and Future Work 99
8.1 Future Work . 100

Bibliography 103

x

List of Figures

1.1 Overview of the different levels of the architecture. 3

3.1 Example of a Teleo-Reactive Program. 15
3.2 Example execution of a Teleo-Reactive Program. . . 15

4.1 Connection examples of the publisher-subscriber
model of ROS. 20

4.2 Circuit for consistency based diagnosis example. . . 22

5.1 Architecture overview. 26
5.2 Detailed architecture overview. 27
5.3 Flowchart of goal planner. 28
5.4 Flowchart of integrity goal generator. 31
5.5 Flowchart of plan executer. 32
5.6 Sequence diagrams of plan execution with one and

two task(s). 35
5.7 Sequence diagram of plan execution with interrupt. 36
5.8 Sequence diagram of plan execution with interrupt. 36
5.9 Flowchart of a task. 38
5.10 Sequence diagram of plan execution with faulty

functionality. 42
5.11 Sequence diagram of plan execution with faulty be-

havior. 43
5.12 Flowchart of a low-level component. 45
5.13 Monitoring and diagnosis overview. 49
5.14 Delay measurement between connections. 50
5.15 Example observation of components. 52
5.16 Dependencies of components in the diagnosis model. 54
5.17 Monitoring, diagnosis, and fault handling overview. 60

xi

List of Figures

6.1 Class diagram of the task executer. 64
6.2 Work-flow of the task executer. 65
6.3 Example for system description updating. 78
6.4 Class diagram of the reporter. 83

7.1 Dependencies of functionalities and behaviors of the
use case. 88

7.2 Used nodes for scenario 1 91
7.3 Used nodes for scenario 2 92
7.4 System configuration change if lidar is marked as

permanent faulty. 93
7.5 Used nodes for scenario 3 94
7.6 System configuration for sequential execution of

non-shareable nodes. 95
7.7 Used nodes for scenario 4 96
7.8 System configuration change if nodes are marked as

permanent faulty while other tasks are running. . . 97

xii

1 Introduction

This thesis presents a new approach for an universal software
architecture for autonomous robots with the ability of monitoring,
diagnosis, and self-repair.

Robots are used since decades to support humans or do operations
dangerous for humans. They are used at production lines for cars
or consumer electronics to increase the productivity or do work
with accuracy humans not able to. These robots are very inflexible.
They are build for a very defined and static environment and
cannot react to uncertainties if they can sense their environment at
all.

In the last years increasingly autonomous robots were developed.
They are used to do more complex tasks. For example, they can
work in logistics environments by carrying objects. This is possible
because these robots are using many different sensors to sense
their environment. Also the computing power of small computers
increases in the last few years. This makes it possible to interpret
the sensor data, do complex actions, and estimate behaviors.

These complex systems need also to be stable for a long time
to guarantee autonomy. For this, components of the robot need
to be observed which represents the current state of the robot.
If the system is in a forbidden or impossible state, the system
needs to react. This can be the case if components are faulty or the
environment has changed unpredictably. Therefore, a diagnosis
need to be calculated to find the faulty components. With this
information it is maybe possible to repair the them. Even if the
robot is not able repair the faulty part, it can call for help.

1

1 Introduction

1.1 Motivation

Many of the todays robots are used for complex tasks which claims
for some self organization skills This means they have to sense their
environment, interpret all the inputs, and need to solve complex
reasoning problems. All this increases the complexity of auton-
omous robots in hardware and in software. Many different parts
can be faulty and can prevent the robot from doing its job. Thus
autonomous robots need the ability for self monitoring, diagnosis,
and repair.

Defining an universal software architecture for autonomous robots
can simplify the development and reduce the maintenance costs.
Even though these robots have their own specific working environ-
ments and capabilities, the architecture design reduces all software
components and interactions to the bare essentials. This design pat-
tern for software components offers the possibility for observation
and diagnosis working in the background.

1.2 Goals and Challenges

In the following the goals and challenges are presented. The main
aspect is to define a general architecture for autonomous robots
which is system independent and can provide the described capa-
bilities above. It should provide the possibilities to use it for new
and already running robots.

The observation need to be done at different levels of the hierarchy
of the robot system, see Figure 1.1. It is necessary to find the
possible faulty components and to find possible solutions to solve
the problem. The most promising solution is taken first. If the
problem cannot be solved in the current layer the error handling
escalates upwards the hierarchy. This structure looks similar to the
TDL (task description language) [1] which describes a concept for

2

1.2 Goals and Challenges

Figure 1.1: Overview of the different levels of the architecture.

handling exceptions in a layered architecture. Section 3.1 contains
more information about TDL.

It is possible that faulty components are not repairable. Therefore,
an alternative way to achieve the goals needs to be found. Maybe
there exists redundant components that can do the same work as
the faulty ones even if the quality of service degrades.

Detect faulty behaviors To detect errors, it is necessary for the
robot to know how the system should be acting in precise situa-
tions. This can concern hardware components, which can be defect,
polluted, blocked, or it is just a crashed driver. Therefore, different
properties of components need to be monitored. This can be prop-
erties of the component itself like memory consummation, but also
observations of output data of the components like frequency or
content of the output.

Another possible scenario is that observed components seems to be

3

1 Introduction

working correctly, but combining the output data causes a conflict.
For example, if the movement of a robot is measured with different
sensors, but the data are different because the robot skids on a
slippery surface.

Find faulty components and search for solutions Faulty proper-
ties are detected, but to guarantee a long autonomous and reliable
operation time, the robot has to determine which components
causes these faults. If components are continuously estimated as
faulty the robot has to use redundant components if one exists.
The robot need knowledge about its components and how they are
connected among each other. Only with such knowledge the robot
is able to repair faulty and depending components.

Use an universal architecture An universal architecture is re-
quired to supervise, monitor, diagnose, and repair software compo-
nents of the robot. Therefore, the architecture includes several parts
for planning, resource management, and execution are necessary.

Controlling different software components is only possible, if all
them use a specified design pattern, which is also known by the
architecture. Hence the management parts of the architecture can
interact with the software components over a defined interface. Ad-
ditional, the reusability of software component can be increased.

1.3 Contribution

This thesis contributes a general concept for an universal architec-
ture for autonomous robots, which is easy to manage and expand.
Each software module, no matter whether is is a mid-layer or low-
level module, is well specified. With this specification it is possible
to add further software modules, which are automatically usable

4

1.4 Outline

by the robot. New skills can be added, which expand the capabil-
ities of the robot. Also the reliability can be improved by adding
modules similar to already existing modules.

Another improvement of this universal architecture is its observa-
tion and diagnosis capabilities, which work in the background and
are transparent for the software modules. New added software
modules need further description to define what can be observed
and how the diagnosis has to interpret it. This is also required
for all existing software modules. With this little more informa-
tion each software module is known and can be processed by the
observer manager, the diagnosis engine, and the rule engine.

Parts of this thesis are also published in [2] which presents an
approach for supervising of hardware, software and behavior of
autonomous industrial transport robots. The theoretical part of this
paper includes the observers, the diagnosis engine, and the rule-
based repair engine which were mostly designed and implemented
in course of this work. In addition, the paper presents a practical
part with a real world use case, where different fails are injected
during runtime and the faults had to be detected by the system of
the robot.

1.4 Outline

The following sections are arranged as follows: In Chapter 2 the
problem formalization is presented. Chapters 3 discusses the re-
lated research. This includes research topics about different archi-
tectures, knowledge bases for providing, collecting, and storing
all kind of information, and different works about agent control.
Prerequisites are discussed in Chapter 4. This includes, besides the
used frameworks, the used method of consistency based diagnosis.
In Chapter 5 the architecture concept is described. This includes
the architecture design with its high-level, mid-layer, low-level, and
knowledge base. This Chapter also outlines the different observers

5

1 Introduction

for monitoring, the diagnosis engine, and a concept for fault han-
dling. The next Chapter 6 gives some details of the implementation
including class diagrams and explanations for observer and di-
agnosis engine configurations. Chapter 7 presents different use
cases. The finally Chapter 8 includes the conclusion of this thesis,
possible improvements, and the further work.

6

2 Problem Formulation

A robot has to achieve a set of given goals. A goal G is defined as
a temporal database G : = Φ as defined in [3, Page 311]. More-
over, a temporal qualified expression tqe [3, Page 311] is defined,
which has the form p(ζi, . . . , ζk)@[ts, te) where p is a flexible rela-
tion, ζi, . . . , ζk are variables of objects or constants. The temporal
variables ts and te assert that ∀t, ts < t < te the relation p is holding.
A temporal database Φ is defined as a pair Φ = (Z , C) where Z is
a set of tqes and C is a set of constraints for objects and timings.

The composition of a set of goals {G1, . . . ,Gm} is defined again
as temporal database G := (Z , C), with a conjunction of tqes and
constraints of the defined Gi:

Z : =
�

i=1...m

Zi C : =
�

i=1...m

Ci.

A task T is a tuple T = (name(T), precond(T), effects(T), const(T)),
where name(T), precond(T), effects(T), and const(T) are defined
similar to operators as in [3, Page 314]:

• name(T) is an expression T (x1, . . . , xk, ts, te), where T is an
operator symbol, x1, . . . , xk are object variables used in T
together with temporal variables in const(T).

• precond(T) and effects(T) are tqes.
• const(T) is a conjunction of constraints.

A plan π = {a1, . . . , ak} is defined as a set of actions and each
action is a partial instance of a task, as described in [3, Page 320].
The planning algorithm has to produce a plan that meet all the

7

2 Problem Formulation

given goals based on Φ0 = (Z , C), which is a temporal database
describing the initial state.

F = FS ∪ FNS describes a set of all possible functionalities of a
system, where FS = {r1, . . . , rm} defines a set of shareable func-
tionalities and FNS = {r1, . . . , rm} defines a set of non-shareable
functionalities. Furthermore FS ∩FNS = ∅ are disjoint sets. A task
Ti requires a set of functionalities Ni ⊆ F . With the limitations of
the functionalities contraints are added to the tasks which further
restricts the plan.

To get a fully instantiated plan it is necessary to ground all variables
of the plan.

Each task Ti is mapped to a behavior Bj, where Bj has the same
variables as Ti and represents a Teleo-Reactive (TR) program [4].

8

3 Related Research

This chapter contains different discussions about current available
literature related to this thesis. The research topics and works are
grouped to four different sections. Section 3.1 is about similar ar-
chitectures for autonomous robots that uses a layered design. Then
different approaches of knowledge processing are discussed. The
third section contains some research work on agent control. Finally,
literature dealing with monitoring and diagnosis is discussed.

3.1 Architecture

Laas Alami, et al. [5] describe an architecture for mobile robots
for planning tasks with temporal and domain constraints and for
controlling the execution of task corresponding actions in real-time.
The architecture is also able to react to possible events, which can
be changes of the environment or properties of the robot itself.

The described architecture comprises three layers: a decision level,
an execution control level, and a functional level. The functional
level is used for the basic low-level function processing like control
loops. It is used for all the basic actions and perception capacities
of the robot. This level is close to the hardware of the robot because
of its interaction with sensors and actors. Also the monitoring of
events is done by this level. Functionalities are embedded into
modules which can perform specific tasks. These modules follow a
standardized module structure and are modeled with GenoM[6].

The second level is called execution control level and is used as
mid-layer. It is used as interface between the abstract high-level

9

3 Related Research

and the low-level which works with concrete actions. Depending
on the task requirements this level controls and coordinates the of
low-level modules. It should be noted that this level is a purely
reactive system without planning capability. It gets sequences of
actions that should be executed from the decision level and selects,
configure, and synchronizes necessary functions of the functional
level.

The decision level is the last of the three described layers. It repre-
sents the high-level, which need knowledge about the tasks and
the execution context to generate the task plan. The execution of
the plan is also supervised by the decision level by using PRS [7].

Another work from Lemai and Ingrand [8], forces on interleaving
temporal planning and execution in robotics domain. They describe
an architecture, which has to perform in dynamic environments
with limited resource capabilities. Therefore, the generation of
plans has to respect deadlines and resource constraints. Also mech-
anisms are described, for adapting the plan in terms of execution
timings while plan execution.

A big benefit of this layered structure is that the decision level
does not need to care about properties of other layers, like basic
actions and perception capacities of the robot. This thesis also uses
a similar layered structure to benefit from the same advantages.

TDL As mentioned in the introduction, Simmons and Apfel-
baum [1] defined TDL. It is a language for which supports the
coordination of actions, environment monitoring, and exception
handling. This is done by representing tasks as task trees, which
are hierarchical decompositions of tasks into subtasks. In addition,
task trees also include constraints for task synchronization and
links different exception handlers to nodes. Each node of the tree
represents an action which performance can succeed or fail. To that
nodes can also be used for monitoring, which trigger an event if
conditions are fulfilled. Exceptions (thrown by actions) are used as
description of a fail. The system searches for an exception handler

10

3.2 Knowledge-Base

up the task tree that can handle the exception. Exception handlers
are able to add new nodes to the tree or terminate existing ones. If
the handler is unable to handle the exception, the system contin-
uous the search for exception handlers. This procedure allows a
local repair without affecting the global task tree.

fault-tolerant robot architecture Crestani, et al. [9] presents an
approach for an architecture for fault-tolerance autonomous robots.
It is designed for robots working in dynamic environments and
handling faulty or unforeseen situations. This is a two-layered
architecture including a decisional and an executive layer. In the
executive layer they uses the technique of FMECA (failure modes,
effects and criticality analysis) [10]. If a module is faulty a detection
module, which accompanies the module, reports a fault signature.
Fault signatures are mapped to dedicate faults by using an inci-
dence matrix. They also use a database to store all module stated,
which are permanently updated. This database is accessible for all
layers and is necessary for dealing with faults. Repairing is done
by recovery actions of recovery modules managed by the recovery
supervisor. Among others, these actions are able to reconfigure
modules, make autonomy adjustment, or even stop the mission.

3.2 Knowledge-Base

CRAM The work of Beetz, et al. [11] focuses on a cognitive-
enabled middle-ware for higher-level capabilities like learning
and knowledge processing for better action planning. It is named
Cognitive Robot Abstract Machine (CRAM). The resulting con-
trol programs of the robot are more flexible, reliable, and efficient.
They are using lightweight reasoning mechanisms which are in-
ferring control decision. Hence it is not required to preprogram
decisions.

This toolbox contains mainly two parts, the CPL (CRAM Plan
Language) and a knowledge processing system. For CPL they use

11

3 Related Research

no new plan language, but extended the Common Lisp language,
so they were able to use existing Lisp compilers.

As knowledge processing system they use KnowRob.

KnowRob Another work of Beetz, et al. [12, 13] is about knowl-
edge processing for cognitive robots, in short KnowRob. It describes
how knowledge can be processed and how it can maybe used with
robots to give them the needed knowledge for everyday tasks. They
had to solve some challenging tasks like grounding the informa-
tion, representing uncertain knowledge, acquiring knowledge for
everyday tasks, finding suitable expressive representations which
allows fast reasoning, predicting effects of actions, and interacting
with humans while interpreting their actions.

In their knowledge base many different types of information are
included. On one hand they include commonsense knowledge,
for instance a cup can break if the grasping force is too high or
coffee may be spilled if the cup is moved too fast or is turned over.
This type of information is very important even if it is obvious
for humans. On the other hand, an encyclopedic knowledge like
Wikipedia is used. Hence they have to use different knowledge rep-
resentation techniques to store information, for example positions,
ontologies, but also procedural knowledge.

Knowledge is acquired from several sources:

Internet Informations from the Internet can be extracted [14].
Therefore, natural language need to be interpreted.

Natural language A syntax tree is generated, with known actions,
involved objects, and additional information about location,
time constraints and much more.

Observations Generate knowledge from observing humans [15].
Exchange knowledge Providing knowledge for other robots, like

the RoboEarth project [16]. KnowRob is a central part of that
Web-based knowledge providing system.

12

3.3 Agent Control

RoboEarth The Web-based knowledge providing system Robo-
Earth presented by Beetz, et al. [16] explore a knowledge base
shared for robots. It is a common representation for robots and pro-
vides ontologies for data, skills, objects, actions, gasping, models
of objects and much more.

3.3 Agent Control

IndiGolog In the work of De Giacomo, et al. [17] a high-level
programming language called IndiGolog is described. IndiGolog
is an extension for Golog [18], which is a logical programming
language. Golog works off-line, which is one disadvantage. This
extension provides nondeterminism, supports sensing actions, and
programs are executed on-line. Therefore, it can be used for plan-
ning while operating of autonomous agents, which need to sense
their environment.

Golog uses the situation calculus [19] which is a first order lan-
guage for representing dynamic domains and reasoning about
effects of action. Reasoning is used by the interpreter to generate a
plan, which is legally executable.

IndiGolog has also some interesting features like the support for
parallel execution of actions and that it can make non-deterministic
decisions.

PRS The following paper presents PRS which is high-level super-
visor and control language. PRS strands for procedural reasoning
system and is already presented in 1996 by Ingrand, et al. [7]. PRS
is not a planner for high-level tasks but it is for execution of prede-
fined plans, while making decisions at runtime and checking for
policies. Even if PRS is no planner it is often referenced as reac-
tive planner. PRS is based on the model of Belief-Desire-Intention
(BDI) [20].

13

3 Related Research

A goal is a description of a state the system should reach. The PRS
kernel has to find and execute sequences of actions to reach the
given goal.

The main elements of kernel are:

database This is the system view of the world, which is auto-
matically updated. The Database include not only symbolic
information but also numeric information like robot position.

library of plans These are sequences of actions that achieve certain
goals under certain conditions. Because PRS is no planner
it does not plan with actions, it searches for plans that can
perform the given task.

task graph The last part is used for monitoring. It keeps track of
the currently running tasks and the state of execution.

Because each action-sequences achieve a certain goal it may be nec-
essary to add subgoals to achieve the primary goal. This subgoals
are used as gain to find other possible sequences of actions.

Teleo-Reactive Programs In [4] Nilson presented Teleo-Reactive
Programs. This is a formalism for computing and organizing of
actions which are used for autonomous agents operating in a
dynamic environment.

Each Teleo-Reactive (T-R) program contains a sequence of actions,
where all actions direct the agent towards a defined goal. The
reactive part selects the actions, hence the current, perceived state
of the environment has to be sensed.

As a simple working example an ordered set of rules is given. If
a condition is hold the corresponding action can be executed, see
Figure 3.1. Lets assume at the beginning that KG and KA are not
true but KB, see Figure 3.2. The rule list is scanned in top-down
order as long as the conditions of the selected rule line does not fit
to the beginning assumption of KG,KA, and KB.

Illustrated with Figure 3.2, the first two rule does not fit, its condi-
tions are KG but given is ¬KG and KA but given is ¬KA. The third

14

3.3 Agent Control

KG → nil
KA → α1
KB → α2

Figure 3.1: Example of a Teleo-Reactive Program. KG, KA, and KB are conditions
and αn are actions that can be executed if condition(s) is(are) fulfilled.
For this example, the condition KG defines that the agent took a
picture. KA defines that the agent has to be on a defined position
and KB is true as long as the agent is not at the defined position.
The action α1 will take a picture, α2 will move the agent towards the
defined position.

¬KG,¬KA, KB comment
α2 agent moves closer to end

position�
¬KA agent not at end position�

α2 agent moves closer to end
position�

KA agent at end position�
α1 agent takes a picture�

KG agent took picture�√
finish

Figure 3.2: Example execution of a Teleo-Reactive Program. The first line shows
the given situation.

rule fits because KB is true, hence the action α2 is executed, which
effect move the agent into the direction of the defined position. But
KA is still false after the the first execution of α2. Because KB is still
true, action α2 is executed again, which effect now changes KA to be
true because it is sensed that the agent now on the defined position.
For the third round the second rule fits and α1 is executed. With
the execution of α1 the condition KG changes to true. For the next
round the first rule is taken because KG is true. This will terminate

15

3 Related Research

this program because of nil which is the termination term of T-R
programs.

The main advantage is that this action execution is robust and
works well if retry helps. A T-R program are able to always achieve
the goal, but only if two properties of the sequence are given. The
first on is that the sequence has to be complete, which means that
at least on condition of the sequence is true. Secondly the sequence
has to respect the regression property. Therefore, it is necessary
that each condition Ki is a regression of higher conditions reachable
with the action αi.

3.4 Monitoring and Diagnosis

Zaman, et al. [21] describe in their work a diagnosis and repair ar-
chitecture for ROS-based robot systems by following the approach
of model-based diagnosis and repair. This work deals with the
detection and repair of faulty hardware and software components
that negatively affects performance and the autonomy of a robot.
They implemented a diagnosis and repair system that can be inte-
grated into a running system. This work uses the robot operating
system (ROS), which is also used by this thesis, see Section 4.1. The
provided introspective functionalities of ROS are relayed to this
work for monitoring. Their system includes several parts:

Diagnosis Board The hardware diagnosis board measures the volt-
age and current of each used hardware component and also
switch them on and off. This makes hardware observation
and even repair possible.

Observer Observers are implemented as ROS nodes and monitor
different properties of the system. Different observer types are
described, where each supports observation of a particular
aspect of the robot.

Diagnosis Engine The diagnosis engine uses all the information of
the observers and a diagnosis model to calculate a diagnosis,
resulting with a set for faulty and a set for correctly working

16

3.4 Monitoring and Diagnosis

components. This engine uses the approach presented in [22],
which is also described in Section 4.2.

Diagnosis Model Server The diagnosis model server provides the
diagnosis model for the diagnosis engine. The description of
the model is defined by a configuration at start time.

Repair Engine The repair engine takes current observations and
diagnoses, transform the information into a planning problem
and tries to solve the problem.

This description defines an observation and diagnosis system,
which is transparent for the components of the robot, works in the
background, and allows to add observations for further proper-
ties.

17

4 Prerequisites

In this chapter some basic prerequisites for this work are presented.
That includes the used software framework, which is introduced
as first. A detailed part about diagnosis is presented secondly.

4.1 Robot Operating System

Quigley, et al. [23] introduced the robot operating system (ROS).
ROS1 was initially released back in 2007 by Willow Garage2 and
the STAIR project at Stanford University3 and is provided as open
source project.

ROS is not a traditional operating system, it is a collection of frame-
works for robotic software development. It is a robotics middleware
and provides functionalities very similar to an operating system.
It provides a structured communication layer above the host op-
erating system. A big advantage is its support for heterogeneous
cluster of computers. All units of the cluster are connected via a
network interface in a peer-to-peer topology.

ROS is designed to be a language-independent framework. There-
fore, it support C++, Python, and LISP. Some other language ports
are additionally available but not all of them are completed till
now.

1http://www.ros.org
2http://www.willowgarage.com/
3http://stair.stanford.edu/

19

4 Prerequisites

(a)Only one node publishes on a
topic, which has only one sub-
scriber.

(b)Several nodes publish on a topic,
which has only one subscriber.

(c)Only one node publishes on a
topic, which has several sub-
scribers.

(d)Only one node publishes on a
topic, which has several sub-
scribers. One of the subscriber is
also again the publishing node.
Hence nodes can subscribe on
their own published topics.

Figure 4.1: Here some possible connections are illustrated to show the topic-
based publisher-subscriber model used by ROS. Illustrations are
adopted from http://wiki.ros.org/.

The main concepts of ROS, which are nodes, messages, topics, and
services, are described below.

nodes Each node has its own process to perform computation.
Typically, a system comprises many of this nodes which are
basically software modules.

messages Messages are typed data structures to offer the possibil-
ity of communication between nodes. This includes standard
primitive types like integer or double, but also arrays and
compositions of other messages are possible.

topics The communication between nodes is done by practicing
publish–subscribe chaining. This technique offers a node to
publish a message, without knowing the nodes that sub-
scribes. As illustrated in Figure 4.1 publishing and subscrib-
ing nodes are not aware of each others.

services For synchronous transactions between nodes a pair of

20

4.2 Consistency Based Diagnosis

strictly defined messages for request and response are used.
This communication is different to topics, it is limited to
a many-to-one connection. Only one node can advertise a
service and but several nodes are allowed to call the service.

actionlib Because ROS does not support asynchronous services
Marder-Eppstein and Vijay Pradeep [24] developed the ac-
tionlib. With this extension it is possible to send requests to a
node which will response, similar to services. The difference
to services is that the requesting node continuous without
waiting for the response. The requesting node is able to re-
ceive a periodic feedback from the progress of the request
and it will also be able to cancel the execution of the request.

Because this framework is framework is open source, there exist
a large community where many different software modules are
available.

4.2 Consistency Based Diagnosis

In the work of Reiter [22] he described an approach for model-
based diagnosis for a functional system description. The goal is to
observe a real system, compare observations with a given model,
and if there are some discrepancies, determine which system com-
ponents had caused this behavior. It is also possible to determine
different system components for the same faulty situation, hence
diagnosis do not need to be unique.

System model Reiter defines a system as a pair (SD , COMPO-
NENTS) where SD stands for the system description and COMPO-
NENTS for the system components. The system description is a set
of first-order sentences and contains information about the behav-
ior of the component and the structure of the system. The system
components are used as a finite set of constants. The behavior for
each component is described by logical relations between input
and output and additionally includes an “abnormal” predicate

21

4 Prerequisites

AB(x) for each component. The description for a correct working
component c therefore includes the literal ¬AB(c).

Observation The real system needs to be observed, to be able to
compare it with the model. Therefore, the observation OBS is a
finite set of first-order sentences.

Example To show the procedure the following example is used.
Figure 4.2 shows a circuit with two logic gates. Therefore, the
system uses the COMPONENTS = {AND1, AND2}.

Figure 4.2: Circuit for consistency based diagnosis example.

This circuit has the following Boolean axioms:

SD =

AND(x) ∧ ¬AB(x) → out(x) = and(in1(x), in2(x))
AND(AND1), AND(AND2)
out(AND1) = in1(AND2)
in1(AND1) = 0 ∨ in1(AND1) = 1
in2(AND1) = 0 ∨ in2(AND1) = 1
in2(AND2) = 0 ∨ in2(AND2) = 1

The last three axioms are necessary to specify the inputs of the
circuit to be binary.

22

4.2 Consistency Based Diagnosis

OBS =

in1(AND1) = 1
in2(AND1) = 1
in2(AND2) = 1
out(AND1) = 1
out(AND2) = 0

This is the observation set with example observation results:

With this observation the real system does not correspond with
the model, because SD ∪ {¬AB(c)|c ∈ COMPONETS} ∪ OBS is
inconsistent. The goal is to retract the set of abnormal components
to get the formula consistent again.

The corresponding conflict set C for this faulty system is C =
{AND1, AND2}. The first possible solution is that all components
are faulty, which is no good solution. It is necessary to reduce the
set of faulty component to a minimum.

This is done by assuming that one or more components of the
conflict set are abnormal. If the system still stays faulty a new
conflict set is created. This procedure is repeated till the system
turns valid or no more combinations of abnormal components can
be assumed.

All this conflict sets are used to find a hitting set, which should
also be minimal. As a result, several diagnoses establish different
minimal hitting sets.

For this example the minimal hitting set H will be H = {AND2}.

PyMBD

For the implementation part of this thesis, the software from
PyMBD, developed from Quaritsch, et al. [25] was adopted. Modi-
fications were necessary, because continuous diagnosis calculation
and the support of continuous changing observations were re-
quired. Furthermore, a new way of adding new observation types

23

4 Prerequisites

was implemented. These types of observations are described in
Section 5.2.2.

24

5 Concept

In the following sections of this chapter the concept of the depend-
able architecture for autonomous robots is presented. This concept
defines the basic organization of the functionality and the basic
structure of software components for monitoring, diagnosis, and
fault handling.

The concept comprises three main parts. The first one is the ar-
chitecture, which defines the needed basic software components
on the one hand and the knowledge base, storing information for
automated administration, on the other hand. Monitoring and diag-
nosis is the second part. It contains a description, who the system
is supervised and how this information is used for diagnosis. Last
but not least the fault handling is described.

5.1 Architecture

The architecture is divided into four parts. These are the high-level,
the mid-layer, the low-level, and the knowledge base, as shown in
Figure 5.1. The Figure also shows the possible interactions between
the different layers.

5.1.1 Overview

As already mentioned the architecture is divided into four parts.
The first one is the high-level. Its main task is to generate plans to
reach given goals. Such goals are given by an user but can also be

25

5 Concept

Figure 5.1: Architecture overview and the possible interactions.
high-level (blue), mid-layer (yellow), low-level (green), knowledge
base(gray)

generated by the robot itself, to maintain its autonomy. Generated
plans contains tasks, which are executed and supervised by the
plan executer.

Tasks are located in the mid-layer. Each task requires defined
functionalities before its behavior is executable. The combination
of all functionalities of a task is called system configuration. The
task executer, which is also part of the mid-layer, has to schedule
and prepare the system configurations. Also the execution of the
behaviors of the tasks are supervised by the task executer.

Behaviors and functionalities, which are used for system con-
figurations, are components of the low-level. They may contain
real-time control loops, object recognition, manipulation and other
interactions with hardware components.

The fourth part of the architecture is the knowledge base. It stores
all needed information about the different layers. Among others
this includes goals, plans, configurations for components used for
there initialization, configurations for observers, and parameters
used by the diagnosis engine. Also return values of behaviors
and tasks useful for the task executer and the plan executer are
stored in the knowledge base. Behavior, functionality, and task

26

5.1 Architecture

Figure 5.2: Detailed architecture overview and the possible interactions.
high-level (blue), mid-layer (yellow), low-level (green), knowledge
base(gray)

related values, used during their execution, can also be stored in
the knowledge base. For low-level components the knowledge base
may be not fast enough, for example to store video streams, but
state information can be stored in the knowledge base in order
to perform the execution. Last but not least, configurations of the
observers are also stored in the knowledge base.

5.1.2 High-Level

The high-level consists of three parts, as shown in Figure 5.2 in
blue. The first one is the goal planner. It generates plans to reach
the given goals. As second, the integrity goal generator which is
used to generate goals which insures the integrity of the robot. The

27

5 Concept

Figure 5.3: Flowchart of the goal planner.

task of the last one is to execute the generated plans and therefore
it is called the plan executer.

Goal planner

The main task of the goal planner is to generate plans for given
goals. Figure 5.3 shows a flowchart of the goal planner.

After starting and if initialization is done, it waits for new goals

28

5.1 Architecture

which are stored in the knowledge base. New goals can be stored
in the knowledge base by an user or by the integrity goal genera-
tor.

Generating plan If new goals are available, the goal planner
needs a consistent knowledge base. Therefore, it sends a request
to the plan executer to pause execution. The plan executer is used
to execute and supervise the execution of generated plans. It will
be described in more detail later in this section. After the plan exe-
cuter confirms the request, the planner generates a plan to reach
the goals. As long as goals are not reached, they stay in the knowl-
edge base. Reached goals are removed by the planning process of
the goal planner.

In the survey of Weld [26], he shows different techniques for plan-
ning with such conditions by planning with graphs. Among others,
he includes the GRAPHPLAN from Betz and Furst [27]. GRAPH-
PLAN is an algorithm for generating a shortest partial-order plan
in STRIPS-like domains. Different conditions (mutex relations) be-
tween propositions, actions, and effects are used to represent their
dependencies.

The planner need to consider about similar restrictions:

• Preconditions of tasks must be fulfilled, otherwise it can not
be executed.

• Tasks can be executed parallel if the effects of the tasks do
not interfere with each other. Weld describes this condition
as Inconsistent Effects.

• A task can be executed parallel to other tasks only if its effect
does not influence their preconditions. Weld describes this
condition as Interference.

Another condition of Weld, which is called Competing Needs, de-
scribes preconditions that are mutually exclusive usable by actions.
The goal planner does not include this condition, because the task
executer cares about system configurations.

29

5 Concept

The planner needs to guarantee that the parallel execution of tasks
of a plan is possible.

The generated partial-order plan only fulfills the before described
conditions. The task executer (mid-layer), which executes and
supervises all functionalities and behaviors, will make further
restrictions later.

The plan is stored in the knowledge base and from where the
plan executer fetches it. Otherwise if no plan can be generated, the
planning fail will be reported.

Finally the goal planner goes back to the beginning and waits for
new goals. It will loop till its process is terminated.

Integrity goal generator

The integrity goal generator is also part of the high-level. It is not
a planner, but it generates and posts goals that are necessary to
keep the robot autonomous as long as possible.

Figure 5.4 shows a flowchart of the integrity goal generator.

After starting and if initialization is done, it waits for interrupts.

This can be solutions from the diagnosis engine and repair system,
which searches for solutions if components are not working cor-
rectly. If needed a goal is generated and stored in the knowledge
base.

Finally the integrity goal generator goes back to the beginning and
waits for a new interrupt. It will loop till its process is terminated.

Plan executer

The plan executer is the last of the tree parts of the high-level. It is
used to execute the generated plan from the goal planner.

Figure 5.5 shows a flowchart of the plan executer.

30

5.1 Architecture

Figure 5.4: Flowchart of the integrity goal generator.

After starting and if initialization is done, it waits for a new plan.
If one is available in the knowledge base, is will be fetched and
executed. The plan contains tasks, which should be executed, and
constraints, which controls the execution of the tasks.

Before a task is executed the plan executer updates the diagnosis
model and prepare the observers. Updating the diagnosis model
is necessary to keep the model up to date. The diagnosis model
is the internal representation of all running tasks and low-level
components. Otherwise observations can not be interpreted by the
diagnosis engine. It is also necessary to update the diagnosis model
if a task is stopped. For more details see Section 5.2.3.

After the diagnosis model update, also the observation is con-
figured. Observer configurations for all tasks are stored in the
knowledge base. For each executed task the observer manager
is updated with the configurations of the current task. For more

31

5 Concept

Figure 5.5: Flowchart of the plan executer.

32

5.1 Architecture

details about observers and how this update procedure work see
Section 5.2.2. Please note that currently there is no observer for
tasks defined, but observers for low-level components.

In the execution step all tasks are executed at their defined start
times. Several sequence diagrams are shown with Figure 5.6 and
illustrates different possible scenarios for tasks and their required
system configurations, behaviors and start times.

The work-flow of the plan executer, tasks, task executer, function-
alities, and behaviors is always the same:

• the plan executer receives a plan and executes the task de-
pending on their constraints,

• each task requests a system configuration which are send to
the task executer,

• the task executer prepares the system and sends a response,
• after that the task requests the execution of behavior by the

task executer,
• the task executer executes the behavior,
• after finishing, the behavior returns and may return a result,
• the result is forwarded to the task and to the plan executer

The first sequence diagram (Figure 5.6a) shows a simple scenario
with only one task. The task executer receives a system configura-
tion and starts the corresponding functionalities f 1 and f 2. After
the system is prepared the task gets the response.

Figure 5.6b shows a sequence diagram with two tasks and both
need the same system configuration. t1 and t2 do not have any
execution time constraints, therefore both tasks are started simul-
taneously by the plan executer. This happens because the plan
executer does not care about limitations with functionalities. The
task executer schedules the execution, starting with t1, which gets
the response first. After execution of behavior b1 of t2 finishes, t2
gets the response for executing b2.

The last sequence diagram (Figure 5.6c) shows a simple scenario
with two tasks and both need the same system configuration.
t1 and t2 have the execution time constraints that both have to

33

5 Concept

start at the same time, therefore both tasks need to be started
simultaneously. The task executer tries to schedule the execution,
but there is no possible solution, because both tasks request the
same system configuration for the same time. The request of the
tasks is canceled, which effects replanning because the whole plan
has failed.

The sequence diagrams showed that it is necessary that tasks are
least minimal constrained to give the task executer the possibility
to shift the execution times of tasks. This is necessary, because
tasks often require a defined system configuration, where conflicts
in the configuration need to be avoided. For more details, see
Paragraph task executer described in Section 5.1.3.

If the task executer of the mid-layer is not able to execute the given
tasks, some of them reports an error, which is returned to the plan
executer, illustrated in Figure 5.6c. The failing execution of a task
stops the execution of the whole plan. The fail is reported, which
requires replanning.

After the execution the diagnosis model is updated again and the
observers for this task are stopped.

Interruption of running tasks As mentioned above, the goal plan-
ner requests to pause execution of tasks if it needs to generate a
new plan. It is necessary to get a most likely consistent knowledge
base while planning. Especially perceptional parts of tasks may
negatively influence the planning procedure because the robot state
may change during planning. Hence tasks need to be interruptible.
If all tasks are paused, the knowledge base would not be updated
any more by the tasks. The plan executer will send the response
of the interruption request, so that all executions are stopped.

There is an exception for tasks that are not allowed to be inter-
rupted and have to finish their job. These are tasks whose behav-
iors do not have interruption points because the whole execution
would fail otherwise. Interruption points are specific moments in
progress of the behavior that are possible for interruptions. To

34

5.1 Architecture

(a)This sequence diagram shows a simple scenario with a plan that has
only one task t1. f 1, f 2 are functionalities and b1 is a behavior. Task
t1 requires f 1 ∧ f 2 ∧ b1.

(b)This sequence diagram shows a scenario with a plan that has two
tasks t1 and t2. f 1, f 2 are non-shareable functionalities and b1, b2
are behaviors. Task t1 requires f 1 ∧ f 2 ∧ b1 and task t2 requires f 1 ∧
f 2 ∧ b2.

(c)This sequence diagram shows a scenario with a plan that has two tasks
t1 and t2 which should be executed simultaneously. f 1, f 2 are non-
shareable functionalities and b1, b2 are behaviors. Task t1 requires
f 1 ∧ f 2 ∧ b1 and task t2 requires f 1 ∧ f 2 ∧ b2.

Figure 5.6: This sequence diagrams show scenarios with a plan that has one or
two task(s).

35

5 Concept

Figure 5.7: This sequence diagram shows the same example as shown in Fig-
ure 5.6. But this time an interrupt is send and t1 in an interruptible
task. Therefore, the whole execution chain is informed to pause.

Figure 5.8: This sequence diagram shows the same example as shown in Fig-
ure 5.6. But this time an interrupt is send and t1 in a not interruptible
task. Hence, the interrupt is noticed by the task, but the execution of
the behavior is continued.

prevent such situations, tasks are allowed to ignore the interrup-
tion request as long as it is a critical task with a short execution
time. This is necessary because the goal planner waits for the re-
sponse of the interruption. For an illustration of interruptible and
not interruptible tasks, see the sequence diagrams of Figures 5.7
and 5.8

After replanning, the plan executer gets the new plan. Some tasks
of the new plan may be already started, but currently paused. This
tasks are restarted or continued from their last state.

36

5.1 Architecture

5.1.3 Mid-Layer

The mid-layer is shown in Figure 5.2 in yellow. Its main job is to
execute all tasks given by the plan executer of the high-level. The
start times of tasks are roughly defined, because the task executer
need to be able to shift the execution times to make their execution
possible. Therefore, the task executer has to prepare the system
for the execution of each task. Some of the tasks are executed in
parallel, but only if their required system configurations are not
conflicting.

Task

Tasks are defined as the flowchart shows in Figure 5.9. After start-
ing a task it needs to be configured. If this is done, a request for
a defined system configuration is send to the task executer. This
request will be blocking the task as long as the task executer does
not response. The task executer gets also the constraints of the
task, which are used to find a possible time slot where the system
configuration is possible and reserved for this task. If there is no
possible time slot the request of the task is canceled, which also
cancels the task. An error is reported and the execution of the plan
fails – replanning is necessary.

If there is a time slot found for this task, the task executer prepares
the system. After that the task is informed by the task executer
that the system is ready. This allows the task to start the execu-
tion procedure. But before the observers for this task, which are
already configured, are activated. For more details see Section 5.2.2.
Observers for this task are also deactivated if the execution of
the behavior stops. Therefore, if the execution of the task is not
running, the observers will not report the failing of a behavior.

The behavior that should be executed is send to the task executer,
which supervises its execution. The execution of tasks can be
stopped by various reasons. If the execution needs to be paused
for the goal planner, it will be interrupted, if it is interruptible,

37

5 Concept

Figure 5.9: Flowchart of a task.

38

5.1 Architecture

and it waits till execution is re-enabled again. For pausing the
execution, it is necessary to inform the task executer to pause the
corresponding behavior. If the task is not interruptible, the request
is ignored – the task will continue till its finished. After re-enabling
the execution of the task and if it is still part of the new plan, it is
necessary to send another request for the system configuration to
the task executer. This is necessary because other functionalities
are also interrupted and need to be re-enabled. If the task is not
part of the new plan it is terminated by the plan executer.

If the execution of a task fails or properties of the task are observed
as faulty, it is necessary to report the failing execution of the task.
This requests a replanning of the goal planner.

If the execution ends successful, the success is reported.

Task Executer

The task executer is a central part for the execution of tasks. This
includes the following subjects:

• Order tasks in time slots, so that their required system con-
figurations are possible without conflicts and to fulfill con-
straints of the tasks and the plan.

• Prepare the system with the necessary configuration for the
execution of tasks at its time slots by executing and supervis-
ing execution of functionalities.

• Execute and supervise execution of behaviors of running
tasks.

Managing System Configurations Each task requires a defined
system configuration, where tasks are allowed to be executed
parallel. Therefore, it is necessary to manage different system
configurations applied at the same time.

At the beginning each started task (started by the plan executer)
requests a system configuration, that is necessary for execution.

39

5 Concept

Additionally, the constraints of the tasks are also included in the
request. Tasks can be started simultaneously or while other tasks
are already running. Hence the task executer has to care about
all tasks that are currently requesting a system configuration or
are already running. This information gives the task executer the
possibility to search for a time slot, where the system configuration
can be applied without conflicts and all constraints are fulfilled.
This is done by describing it as a Constraint Satisfaction Prob-
lem (CSP) [28], which tries to find a suitable timetable.

This timetable is used to prepare the system configurations at the
given time slots, and inform the tasks that are still waiting for
a response. The response of the task executer gives a task the
permission to continue, because its requested system configuration
is prepared.

With each new request over time, the timetable need to be resched-
uled. If no solution can be found, the task executer is not able
to prepare the system configurations for the tasks. Tasks that are
still waiting for their system configuration are informed that their
request has been canceled. This will cause a replanning, done by
the goal planner of the high-level.

It is possible that during the scheduling procedure an interrupt for
replanning arrives. This will cancel the scheduling procedure and
all tasks, that are waiting for a system configuration are informed
about the cancel of their request. But the tasks should already
know about the interrupt, because they should have been informed
by the plan executer by now.

Prepare System Configurations The second part of the task ex-
ecuter is to prepare the system configuration for the tasks. Each
system configuration includes different functionalities, described
in the next Section 5.1.4. Before the task executer can answer the
system configuration request from a task, it needs to start all nec-
essary functionalities, as shown in previous sequence diagrams
(Figure 5.6).

40

5.1 Architecture

The task executer has to supervise the execution of the function-
alities. Because the functioning of functionalities and behaviors
are the same the task executer does not distinguish between them..
Therefore, each execution of functionality is supervised from the
same part of the task executer that also supervises the execution
of behaviors, which is described next.

Supervise Behavior Execution The last part of the task executer
is to manage the execution of all functionalities and behaviors,
which are both low-level components. Additionally, it has to care
about the right start procedure of each component, because each of
them can have its own configuration, which is stored in the knowl-
edge base. Hence the task executer has to load the configuration
and prepare the started, but not running, low-level component.
After finishing the initialization, the component is set to running.

If a task receives an interrupt to pause, the request may be for-
warded to the task executer to pause the currently running behav-
ior. Also each used functionality, which are used by this task may
be interrupted. There is one case, where a functionality is allowed
to continue even of the interrupt. The task executer does not for-
ward the interrupt to the functionality as long as not interruptible
tasks are using it. If all not interruptible tasks are finished, the
functionality immediately gets the interrupt request.

To handle an interrupt, each functionality and each behavior that
are used by interruptible tasks need a defined procedure to deal
with this request.

For each execution of the low-level components the task executer
also has to care about preparing the observers and update the
diagnosis model. If observers are defined for components, they
need to be started and configurated. Therefore, the task executer
informs the observer manager about the required observers and
observer configurations. The configuration of observers for each
functionality and each behavior is stored in the knowledge base.
For more details about this procedure see Section 5.2.2. Updating

41

5 Concept

Figure 5.10: Sequence diagram of plan execution with faulty functionality. This
sequence diagram shows a simple scenario with a plan that has
only one task t1. f 1, f 2 are functionalities and b1 is a behavior.
The task t1 requires (f 1 ∨ f 2) ∧ b1. The fail of the functionality is
marked with a red cross.

the diagnosis model is necessary to keep the model up to date.
As already mentioned before, diagnosis model is the internal rep-
resentation of all running components. The diagnosis engine is
only able to interpret the observations, if observed components are
present in the diagnosis model. For more details see Section 5.2.3
which describes the diagnosis and how its model is continuously
updated.

Failing functionalities or behavior

It is not possible to ensure that the execution of low-level functions
always finishes successfully. The handling with faulty low-level
components is different for functionalities and behavior.

The sequence diagram of Figure 5.10 shows a scenario where a
task requires a system configuration, that can be prepared by two
different functionalities. Therefore, the task executer can decide
between f 1 and f 2. If one functionality fails, the task executer
can use the other functionality as an alternative. The example
shows the fail of a functionality, which can be caused by different
reasons. One reason may be, that the functionality itself raises
an exception and stops execution. Another reason may be that

42

5.1 Architecture

Figure 5.11: Sequence diagram of plan execution with faulty behavior. This
sequence diagram shows a simple scenario with a plan that has
only one task t1. f 1 is a functionality and b1 is a behavior. The
task requires f 1∧ b1. The fail of the behavior is marked with a red
cross.

the observers detects faulty situations of the functionality, the
diagnosis reasons that the functionality is faulty, and the repair
engine arranges the execution stop handled by the task executer.
However, the execution stops, this functionality is required for
behaviors, which may already running. The task executer tries
to inform the behaviors to wait, because the system need to be
reconfigured. If the behavior supports this request, they have to
wait till the new system configuration is prepared. Otherwise, if
the request is not supported, the execution of the behavior need
to be canceled, which stops the execution of the task with an error
– replanning is required.

The sequence diagram of Figure 5.11 shows a scenario where a
task requires the functionality f 1 to execute the behavior b1. The
example shows the fail of a behavior, which can be caused by
different reasons, similar to the previous example where the func-
tionalities fails. One the one hand it is possible that the behavior
itself raises an exception or the behavior is estimated as faulty by
the diagnosis. However the execution stops, the task executer has
to try to restart the behavior again. Some behaviors may require a
“warm start” where already maintained achievements are loaded
during restart. Therefore, the behavior need to store achievements
in the knowledge base. If such information are found in the knowl-

43

5 Concept

edge base, the task executer use them for the initialization of the
behavior.

If the behavior cannot be restarted or it continuously fails after a
certain number of restarts, the task executer stops the execution by
returning an error to the task, which effects a failing plan execution
and replanning.

5.1.4 Low-Level

The low-level is the lowest level of the architecture, see Figure 5.2.
It is used for the communication with the hardware or real-time
control loops. Additionally, components of the low-level can have
a reactive manner, like stopping the robot immediately if an error
occurs to keep the robot and other individuals of the environment
save.

Both functionalities and behaviors have a very similar flowchart.
Therefore, both are described by the same flowchart shown in
Figure 5.12.

A low-level component is started and configured by the task exe-
cuter of the mid-layer. Before the execution can start, all observers
of this component are activated. The execution is started also by
the task executer. After the execution stops, all observers are also
deactivated.

If an interrupt arrives, forwarded from the task executer, the com-
ponent need to pause and wait for being re-enabled again or being
terminated by the task executer.

The execution of a component is stopped if an exception is raised
by the component itself or an observers detects faulty situations,
the diagnosis reasons that the component is faulty, and the repair
engine arranges the execution stop.

If the execution is stopped the component reports its stop.

44

5.1 Architecture

Figure 5.12: Flowchart of a low-level component which is either a functionality
or a behavior. Blue parts are only necessary for a behavior.

45

5 Concept

Another two cases are only used for behaviors, colored blue in
the flow chart. The first one is very similar to the interrupt. If
the component is informed by the task executer about a needed
reconfiguration of the system, the component has to pause. It may
be the case that the behaviors does not support a reconfiguration
of the system, because of possible lags of the data-flow. In this
situation the task executer has to stop the execution of the behavior
and reports an error to the task that the execution has failed.

The second case is that the execution finishes without errors. The
success is reported and the behavior ends.

The major difference of functionalities and behaviors is that func-
tionalities are used by the task executer to prepare a system config-
uration that is necessary for the execution of a behavior. Therefore,
functionalities are started before and stops after the behavior. A
functionality is designed for running continuously after it has
been started, hence it does not have the finish state as shown in the
flow chart. Some of the functionality are shareable and some of
them are not. Shareable functionalities are primary used for per-
ception, whereas non-shareable functionalities are primary used
for control the robot and interact with the environment.

5.1.5 Knowledge base

The last of the four parts to describe is the knowledge base. It is a
central component and accessible from all three layers. Besides the
high-level also the mid-layer and even the low-level have access
to it. The knowledge base is used for providing, collecting, and
storing all kind of information. As Beetz, et al. already mentioned
in [12], it is a challenging task to keep the information grounded.
Harnad [29] describes in his article the problems of symbol ground-
ing. To give a short example, the goal planner only need the name
of an object of the environment to create a plan, but the path plan-
ner, which plans a path to the object, requires a detailed metrical
position.

46

5.1 Architecture

name provided by required by
goals user, integrity goal generator goal planner
plans goal planner plan executer

Table 5.1: Knowledge base information regarding the high-level.

name provided by required by
configuration plan executer

observer configuration observer manager,
plan executer

task dependent values
(return values) task high-level, task, ob-

server

Table 5.2: Knowledge base information regarding the mid-layer.

The following Tables show a short overview which data the knowl-
edge base has to processes. The first Table 5.1 lists some of the
necessary data regarding the high-level. This includes the goals
from the user and the integrity goal generator on the one side
and the generated plan from the goal planner on the other side.
Here the knowledge base is used for data exchange between all
high-level components.

Table 5.2 lists some of the necessary data regarding the mid-layer,
and the last Table 5.3 lists some of the necessary data regarding
the low-level. Both include necessary configurations needed for
the initialization of tasks, behaviors, and functionalities. Also the
configuration of the observers is stored in the knowledge base. This
includes several configurations of each observer for each compo-
nent (tasks, behaviors, and functionalities). All the configurations
for observers and components itself are predefined.

These tables only list information regarding the different levels of
the architecture. But each component has access to the knowledge
base and can use it to store:

• temporal information needed by the component itself,
• state information of itself,

47

5 Concept

name provided by required by
configuration task executer

observer configuration observer manager,
task executer

component dependent
values (return values)

functionality,
behavior

observer, behavior,
functionality, task

Table 5.3: Knowledge base information regarding the low-level.

• information of achievements, which are loaded if the compo-
nent is restarted (“warm start”),

• data exchange with other components (limited bandwidth)
• return values.

The exchange of data between component by using the knowledge
base is primary for state information in order to perform the
execution. For sharing data that requires a high-bandwidth, like
video streams, other techniques need to be used.

5.2 Monitoring and Diagnosis

The following section describes the monitoring and the diagnosis
concept of the universal architecture.

5.2.1 Overview

The diagnosis system has the following structure as illustrated in
Figure 5.13. Each system component, like low-level components as
well as tasks of the mid-layer, are monitored by different types of
observers. Those observers are used to monitor certain aspects of
the system. This information of all the observers is processed by a
diagnosis engine.

48

5.2 Monitoring and Diagnosis

Figure 5.13: Monitoring and diagnosis overview. observer (yellow), diagnosis
engine (blue)

5.2.2 Observers

Observers are used to monitor different properties of the system
components. Some of them are used to check components directly
and some of them only can check the communication between the
components. In the following two types are described, that are able
to monitor components directly.

Resource This observer is used to check the consumption of sys-
tem resources of a component. Memory usage and CPU load
are monitored by using the system monitor of the operating
system.

Component To ensure a component is started, this observer checks
for the availability of a component. This does not assure a
correct working component, just that it is up and known by
the system. As an example, this can be realized by using
the system monitor of the operating system for searching for
processes of the component.

49

5 Concept

(a)Delay measurement between connections with same frequency.

(b)Delay measurement between connections with stochastic messages.

Figure 5.14: This figures show two different types of delay measurement. Each
message is marked as black bar. The arrow shows the measured
time.

The following presented observers are used for monitoring the com-
munication of components. Note that all observers that monitors
communication and properties of messages need to add themselves
to the receivers lists of the connection. So they are able to receive
all send messages.

Frequency The first property of a message, if its send periodically,
is the frequency, which can be measured by the Frequency
observer.

Time-out If it is necessary that messages are send within a defined
period of time, this observer can be used. It will be able to
detect lags of messages if they are to big.

Timing The Timing observer basically measures the time difference
between two connections. This is done by waiting for the
message of the first connection and calculate the time delay
to the next message of the second connection.
Figure 5.14 illustrates the measured delay between messages.
The upper Figure shows two connections which have the

50

5.2 Monitoring and Diagnosis

same frequency. As shown, the measurement starts at the
first received message from the first connection. When the
message from the second connection is received, the time
difference is calculated. With this observer its possible, for
instance to monitor the input and the output of a compo-
nent and if this component sends output messages within a
defined time delay depending to input messages.
The lower Figure shows two connections where the messages
are send stochastically. As it is shown, the delay is calculated
between the closest pair of messages from both connections.
With other words, all messages from the first connections
except the last are ignored as long as no message from the
second connection is received. All following messages of the
second connections are ignored as long as no message from
the first connection is received.

Time-Stamp This observer reads the content of a message, which
message type has to contain a time-stamp. If the time-stamp
of the sent message is older that the defined limit, this ob-
server reports it.

Value This observer is able to monitor the content of messages,
which requires that the observer can handle the data type of
the messages. The observer can compare the contents of the
messages with predefined contents or check if values of the
messages are within a defined range.

Movement The movement observer is a very special one. Its task
is to compare two different connections and both sends move-
ment information. Both messages are compared and if the
difference is bigger than a defined threshold the observer
reports it. This observer can be used, for instance, to compare
measured movements from the IMU1 and the sensed move-
ment from the odometry which should be the movement
measured by the rotation speed of the wheels or tracks. The
observer is able to detect if the robot has slippage because of
a slippery surface. If so the acceleration and rotations sensors

1Inertial measurement unit: A device that is able to measure force, angular
rate, and magnetic field for each axis.

51

5 Concept

Figure 5.15: This is an example of observers that observe components. Compo-
nents are observed by resource observers and the connections are
observed by frequency and timeout observer.

of the IMU measures less movement than the odometry.

These are only some useful observers which are needed for moni-
toring an autonomous robot. If other special observers, like the last
one, are needed, they can easily be added.

All the different observers need to be known by the diagnosis
engine. Otherwise it will not know how to interpret the observer’s
reports. This rules are described is the Section 5.2.3.

Observer Management for Universal Architecture

All this observes need to be managed by a central module. The tasks
of this module, which is the observer manager, are as following:

load and configure observers The observer manager has to load
all observers which are needed. Before a component is started
different observers need to be started and configured. The
plan executer and the task executer have to care about that.
Both get the observer configuration of the component from
the knowledge base. The necessary observer configuration
is send to the observer manager. This configuration contains
information about all observers that are needed. As shown in
Figure 5.15 there exist several instances of the same observer.
This is necessary because each instance of an observer is con-

52

5.2 Monitoring and Diagnosis

figured for one single component or one single connection.
Each component and each connection has its own properties,
therefore each observer has its own thresholds, limits and pa-
rameters. All this information is defined in the configuration
request of the plan executer or the task executer.

activate/deactivate observers Before the execution of a compo-
nent starts all observers of the component need to be acti-
vated. As long as observers are deactivated, they will not
monitor the properties of the component or connection. Acti-
vating and deactivating of observers is necessary to control if
observers should monitor the properties or not. If observers
are activated while the component is not executed, the ob-
servers may report faults even though the component is not
running.

stop observer If the observer manager is informed that a low-level
components or a task is stopped, also the observations are
not necessary any more. The observer manager will stop and
unload the corresponding observers.

5.2.3 Diagnosis

The diagnosis engine gets all the observations from all observers.
If there is at least one observation that reports a faulty behavior
the engine calculates different sets of possible faulty components
following the approach of consistency based diagnosis, which is
basically described in Section 4.2.

Definitions for Diagnosis Rules

The diagnosis model contains many components, that are cur-
rently executed. Most of the components have connections to other
components. Hence faults can propagate through the network of
components and connections. This behavior need to be formalized
with clauses, which are used to define the model of the diagnosis
engine. But before some definitions are necessary.

53

5 Concept

Figure 5.16: Dependencies of components in the diagnosis model. Components
are named as N1, N2, N3, and N4. Connections of data flows are
named m1, m2, m3, and m4.

Communication Graph On the one hand, the communication
graph contains components N . In the following description of the
rules the term n is used to select one component out of N .

On the other hand connections are also contained in the commu-
nication graph. These connections are defined with M. In the
following description of the rules the term m is used to select one
connection out of M.

Additionally, two functions are used. These two are input : N →
2M and output : N → 2M.

General Rules for Diagnosis Model

Each component can use several data inputs and outputs. This
communication between the components defines the dependencies
between the components. Figure 5.16 shows an example with four
components N1, N2, N3, and N4. These connections are named m1,
m2, m3 and m4. Basically if an observation of a component detects
a fault the component is faulty. As a result, the data output of the
faulty component can also be faulty. Because of the dependencies
of the components, following components that use this faulty data
as input are also allowed to have faulty output, but the components
themselves are not faulty. On the other side, if an observation of a
connection detects a fault, all previously components are possible
faulty components.

54

5.2 Monitoring and Diagnosis

To define this dependencies two formulas are necessary. Formulas
are defined as clauses. The atom AB() stands for the “abnormal”
predicate of components or messages as mentioned in 4.2.

The first one is

∀mo ∈ output(n) : AB(n) → AB(mo)

which implicates that if component n is faulty also the message mo
is faulty. The second formula, which is

∀mo ∈ output(n) : AB(mo) →

AB(n)

�

mi∈input(n)

AB(mi)

defines that if a message AB(mo) is faulty either its source compo-
nent itself or some input messages are faulty.

For example, the Clauses 5.1 show all needed clauses for represent-
ing the dependencies for the scenario of Figure 5.16.

AB(N1) → AB(m1)

AB(N2) → AB(m2)

AB(N3) → AB(m3)

AB(N4) → AB(m4)

AB(m1) → AB(N1)

AB(m2) → AB(N2)

AB(m3) → (AB(N3) ∨ AB(m1) ∨ AB(m2))

AB(m4) → (AB(N4) ∨ AB(m3)) (5.1)

Special Rules of Observers for Diagnosis Model

The basic rules are only describing the dependencies between the
components. Each observer type also needs rules, to describe their

55

5 Concept

behavior for the diagnosis model. Some of them are very similar,
because they just measure different properties of a connection for
instance.

Resource The Resource observer monitors a component n directly.
Hence a detected fail can directly assigned to the component.
Therefore, the rule looks like

¬obsrecource(n) → AB(n).

Component This observer also checks a component n directly.
Hence the rules look similar to the Resource observer rule.

¬obscomponent(n) → AB(n)

Frequency Observing the frequency of messages of a connection
m requires this rule:

¬obs f requency(m) → AB(m)

This time not the component is included, but the connections
of the component. If the observation is faulty the connection
need to be faulty.

Time-out Time-out observer is a watchdog for a connection m and
needs a similar rule to the Frequency observer.

¬obstimeout(m) → AB(m)

Time-Stamp The time-stamp does not check properties of the
connection m but meta-information. The needed rule for the
diagnosis looks like

¬obstimestamp(m) → AB(m).

Value The model for the value observer uses

¬obsvalue(m) → AB(m)

for describing its behavior. If values of the messages of con-
nection m does not fit to the predefined values, the connection
is faulty.

56

5.2 Monitoring and Diagnosis

Timing The rule for the timing observer looks like

¬obstiming(m1, m2) → (AB(m1) ∨ AB(m2)).

If the observation detects an illegal delay between two mes-
sages of different connections m1 and m2, one of this connec-
tions need to be faulty.

Movement The last described observer is the movement observer,
which compares two different connections whose messages
contains movement information. It is described with

¬obsmovement(m1, m2) → (AB(m1) ∨ AB(m2) ∨ AB(movement))

which defines, that if the observation of the movement is
abnormal, either one of the compared connections (m1 or
m2) is faulty or the movement (movement) itself, which is a
behavior, is faulty. This observer needs a third type, besides
components and connections, to describe a faulty situation.
For instance, if the robot stands on a slippery surface and it
tries to move, the information of the wheel may not match
with the information from the IMU. If this is the case the
robot slides and the movement fails, but all components and
connections are working correctly.

Diagnosis Engine for Universal Architecture

To use the diagnosis engine for the universal architecture it has
to provide an interface for updating the diagnosis model. This
is necessary because if low-level functions and mid-layer tasks
are started or stopped, the diagnosis model need to be informed
about the changes. Otherwise it will not be able to interpret the
new observations of newly started modules or it maybe waits for
observations of modules that were already stopped.

The following example is used to describe this procedure. The
scenario is shown in Figure 5.16.

57

5 Concept

1. At the beginning no components are running. Therefore, the
diagnosis model is empty.

components input output observers

2. The first component N1 is started and its output m1 is moni-
tored by a frequency observer obs f requency(m1). After the up-
date the diagnosis model is generated based on the following
information.

components input output observers
N1 m1 obs f requency(m)

3. A second component N2 is started. It also has no input con-
nection and one output connection m2. The connection is also
monitored by a frequency observer obs f requency(m2).

components input output observers
N1 m1 obs f requency(m1)
N2 m2 obs f requency(m2)

4. The third component N3 is started. It uses the connections
m1 and m2 as input and has the connection m3 as out-
put. The connection is monitored by a frequency observer
obs f requency(m3). Additionally the N3 is monitored by a re-
source observer obsresource(N3) to.

components input output observers
N1 m1 obs f requency(m1)
N2 m2 obs f requency(m2)
N3 m1, m2 m3 obs f requency(m3)

obsresource(N3)

5. The last component N4 has the connections m3 as input and
m4 as output. This component is monitored by a component
observer obscomponent(N3) to.

58

5.3 Concept for Fault Handling

components input output observers
N1 m1 obs f requency(m1)
N2 m2 obs f requency(m2)
N3 m1, m2 m3 obs f requency(m3)

obsresource(N3)
N4 m3 m4 obscomponent(N4)

The diagnosis engine uses the information, shown above, to gener-
ate the diagnosis model. The model need to be generated after each
update (after each start or stop of components). Updates because
of terminating components remove the corresponding entries of
the diagnosis engine. Therefore, the afterwards new generated
diagnosis model does not include the terminated components.

5.3 Concept for Fault Handling

The following section describes a possible way how to handle faulty
software components of the universal architecture.

Rule engine

For repairing faulty component of the robot’s software a simple
rule system was chosen.

This system has a lot in common with a T-R program [4]. Each rule
that is included in the sequence of the T-R program has a condition
and an action. This rule engine differs from a T-R program by the
execution. The rule engine does not stop searching if a valid rule is
found, but it searches all valid rules and executes their actions.

The rule engine collects the information of the diagnosis engine and
additionally all the information of the observers. See Figure 5.17,
which shows the extended overview of observers, diagnosis engine

59

5 Concept

Figure 5.17: Monitoring, diagnosis, and fault handling overview. observer (yel-
low), diagnosis engine (blue), rule engine (green)

and the added rule engine. If the collected information fit to defined
rules, these rules are triggered.

Each rule consisted of two parts, first is the condition and second
is the action.

The condition is a logic test and, if it is satisfied, it triggers the
corresponding action. Each condition is defined as a conjunctional
set of the following sub-condition. Each sub-conditions composes
all its elements by a disjunction.

positive observations This particular sub-condition defines a set
of observations that has to be positive (not faulty).

negative observations This sub-condition is defines a set ob obser-
vations that has to be negative, which is faulty.

positive possible faulty diagnosis Here, a set of positive possible
faulty components need to be defined. Possible faulty com-
ponents are calculated by the diagnosis engine and for this
sub-condition, they has to be assumed as faulty.

negative possible faulty diagnosis The last sub-condition defines
negative possible fault components, which are components
that are not faulty.

60

5.3 Concept for Fault Handling

rules actions

1. rule positive possible faulty diagnosis N1 1. actionnegative possible faulty diagnosis N2
2. rule positive possible faulty diagnosis N1, N2 2. action

3. rule positive possible faulty diagnosis N1 3. actionpositive possible faulty diagnosis N2

Table 5.4: Example rules used by the rule engine.

Table 5.4 shows examples how such rules can look like. The first
rule defines that the component N1 need to be diagnosed as faulty
and N2 as not faulty. This is the only situation where the rule
engine triggers the action of this rule.

The second rule is triggered if the components N1 or N2 are
diagnosed as faulty. Therefore, it also triggers if the first rule
triggers.

The third rule defines that both component N1 and N2 need to
be diagnosed as faulty. If this rule triggers also the second rule
triggers but the first rule will not. This example shows also that
the rule engine is able to trigger several rule at the same time.

As already mentioned after a condition test satisfies, the corre-
sponding actions are carried out. For this, different types of actions
are available. This are only some examples:

execute process This type of action executes a defined command
of the operating system, which can kill the process of the
faulty component for instance.

send mail Often it is necessary to inform human beings about a
faulty situation. With this action, the rule engine of the robot
sends a mail with a defined content.

write log Probably the most used action is to write content to a
log file if the system seems to be faulty.

send command This action type is able to send a command to
components of the robot, for example the high-level.

61

5 Concept

change parameter The last mentioned type changes parameters
of components of the robot.

After the actions have been executed the rule engine waits for an
update of the observations and the diagnosis to recheck if some
rules can be triggered.

62

6 Implementation

In this Chapter more details about the implementation and the
configurations are given. At first, details about the implementation
of the architecture are presented. This includes low-level compo-
nents, the task executer, and parts of the needed knowledge base.
Section 6.2 presents the observers that have been implemented
with the ROS framework1 described in Section 4.1. The diagnosis
engine is described afterwards. It was adopted from the code of
PyMBD[25]. The rule engine is presented as fourth.

All configurations used for the diagnosis and the observers are
stored in yaml-files and not in the knowledge base as described in
the concept. YAML [30] is a data serialization language for many
different programming languages and often used for configuration
files.

6.1 Architecture

The implementation of the described architecture from Section 5.1
includes the task executer, functionalities, and behaviors. Addi-
tional parts of the knowledge base are included.

The task executer is structured as shown in Figure 6.1. The task
executer gets its commands via several TCP connections and using
Protocol Buffers2, which is a mechanism for data serialization.
For each command another connection is established. Therefore,

1http://wiki.ros.org/
2https://developers.google.com/protocol-buffers/

63

6 Implementation

Figure 6.1: Class diagram of the task executer.

64

6.1 Architecture

takePicture

moveTo

continuousDefault

launch
Task Executer

T
ra

ns
la

to
r

P
lu

g
in

s

takePicture

moveTo

localization

Diagnosis
Engine

Observer
Manager

DataBase

Figure 6.2: Work-flow of the task executer.

the task executer uses three different command handlers, one for
starting a new task, one for send feedback of a running task, and
one for cancel a running task. All three command handlers use the
same base, which offers all needed methods.

The task executer uses the launch executer to start and stop func-
tionalities and behaviors. The launch executer is designed to start
roslaunch-files as new process. Therefore, it is possible to start and
stop any ROS-package. The launch executer also cares about the
update of the observers and the diagnosis model. All necessary
information for updating are stored in the database and need to be
predefined.

Each functionality and behavior can have its own interface, like
for the behavior takePicture uses other instructions than the be-
havior moveTo. This came from the fact, that every ROS-node has
its own purpose. Therefore, it is necessary to create a plug-in
for translating the instructions coming from the task executer to
instructions understandable by the nodes, see Figure 6.2. These
plug-ins are derived from translator plug-in base, which defines
required methods. Besides the start and stop of nodes also the
translator plug-ins are started and stopped.

This design makes it possible to implement, start, and test func-
tionalities and behaviors by its own, without the necessity of any
running parts of the architecture.

65

6 Implementation

6.2 Observation

This section describes the monitoring of nodes and its topics. At
first the necessary message is defined, followed by the observer
manager and provide functionalities, usable by the observer plug-
ins. The resource monitor collects information of running processes
from the operating system and prepares the information for ob-
servers that need them. At last all implemented observers and its
configuration are described.

6.2.1 Messages

Each observer generates data about its monitored component. This
information need to be send to the diagnosis engine. Hence the
information need to be send as structured data as shows in List-
ing 6.1. The observation (last line of listing) gives information about
the current state of the observed node or topic by using a positive
integer. It can be used to inform about the current operation mode
of the monitored component. Negative state information specifies
faults. Therefore, the observers are able to give different types of
faults of nodes or topics. Currently the diagnosis engine only dis-
tinguishes from correct (positive state) and faulty (negative state)
working components.

Listing 6.1: Observer Info message
tug observers msgs/ o b s e r v a t i o n i n f o [] o b s e r v a t i o n i n f o s

std msgs/Header header # ros header message
uint32 seq
time stamp
s t r i n g frame id

s t r i n g type # observat ion type , e . g . hz
s t r i n g resource # observed t o p i c and/or node name
tug observers msgs/observat ion [] observat ion

i n t 3 2 GENERAL OK=0
i n t 3 2 GENERAL ERROR=−1
i n t 3 2 NO STATE FITS=−2
i n t 3 2 NOT AVAILABLE=−3
i n t 3 2 TIMEOUT=−4
s t r i n g observation msg # a b r i e f message
s t r i n g verbose observat ion msg # d e s c r i p t i o n of taken obs .
i n t 3 2 observat ion # observat ion r e s u l t

66

6.2 Observation

6.2.2 Observer Manager

All running observers are organized by the observer manager.
All observers are designed as plug-ins loadable by the observer
manager. Two identical managers were necessary to support ob-
servers implemented in C++ and python. These two programming
languages offer different capabilities, which can be useful for mon-
itoring different properties. Both managers offer a plug-in base
implementation, which is used by all plug-ins. Another part of the
managers is to subscribe to all needed topics and forward them
to the observers. Hence each topic is only subscribed once even
if several different observes need them. This seems to be more
efficient than let all observers subscribe to the topic by its own.
This was necessary because of the internal organization of the
ROS framework, which needs a lot of system resources if many
subscribers subscribe to a topic where many messages are send
with a high frequency.

At start time of the managers, they get the configurations of the
observers, which are instantly loaded and configured. Currently
observers need to be configured before the managers are started,
hence no later dynamic loading of observers is supported. Also dy-
namic configuration changes of observers are not supported. This
restriction is caused by the used plug-in library, which only sup-
ports loading of plug-ins. Unloading plug-ins are not supported.

6.2.3 Observer Functionalities

Each observer plug-in has to validate one or more input channels.
In some chases it is necessary to filter this inputs to get more
meaningful information. Afterwards the observers have to validate
the inputs if they meet certain requirements. Different hypotheses
checks are implemented.

67

6 Implementation

Filter

The observers get the messages of a topics. Afterwards they extract
the information that are necessary for its type of monitoring. For
instance, the frequency observer just measures the time between
the arrived messages, while the value observer has to analyze the
content of a message. All observers have in common that they
may have to filter their measurements. Therefore, this library was
implemented for filtering integer and floating values. Its interface
offers three functions, which are update (add a new value), get
(read the filter value), and reset (reinitialize the filter). Observers
can use filters to smooth different values. All filters are available as
library or script for C++ and python. This makes it easy to use for
different data types.

All different filters are listed below.

No filter Here no filtering is done, the output is equal the input.
type : n o f i l t e r

Mean filter A window size can be defined. Otherwise all measure-
ments ever inserted are part of the mean.
type : mean
window size : 200 # opt iona l

Median filter A window size need to be defined.
type : median
window size : 200

Kmeans filter A window size need to be defined for the median.
Additional a k size need to be defined for the mean calcula-
tion around the median.
type : kmeans
window size : 200
k s i z e : 10

EWMA filter This is the exponentially weighted moving average
filter. The decay rate is the blending coefficient to combine a
new measurement to the old ones. This filter uses

x f ilter = x f ilter · (1.0 − decay rate) + xmeasurement · decay rate.

68

6.2 Observation

A window size can also be defined. This forces to calculate
the ewma always new from the beginning of the list, because
with each new measurement, the list changes.
type : ewma
window size : 200 # opt iona l
decay ra te : 0 . 0 5

Additional filters are available for calculating the deviation of the
data. The first one is the standard deviation, which calculates
the deviation of the measurements. The second one searches the
smallest and the larges value of the measurements. Both uses the
same measurements as used for the filters, so the same window size
is used.

Hypotheses Checks

Hypotheses checks are necessary to validate that given measure-
ments meets a certain requirement. Two different test methods are
available.

The observers get the messages of a topics. Afterwards they extract
the information that are necessary for its type of monitoring. The
observers can filter the measurements. Afterwards the measure-
ments are checked with one of the following tests.

The first one is the Student T-Test [31]. For this check it is nec-
essary to use the mean and the standard deviation filters. Addi-
tionally, several parameters need to be specified: true mean, stan-
dard deviation, and significance level. These parameters specifies
the values the measurement ideally should have.
type : s t u d e n t t
true mean : 0 . 1 0
s t d d e v i a t i o n : 0 .0003
s i g n i f i c a n c e l e v e l : 0 . 0 5

The second available test compares the measurements with nominal
values. For this procedure different tests are available.

69

6 Implementation

Normal distribution This test checks if the measurement is within
the one-sigma uncertainty of a normal distribution.

type : gauss
mean : 0 . 1 # mean of the d i s t r i b u t i o n
s t d d e v i a t i o n : 0 . 2 5 # std dev of the d i s t r i b u t i o n

Exact The measurement value need to be exact the specified value.
This test supports integers.

type : exac t
exac t : 1 # the value to meet

Different The measurement value need to be different from the
specified value. This test supports integers.

type : not
e x a c t n o t : 1 # the value to be d i f f e r e n t from

Greater than The measurement value need to be greater than the
specified value.

type : g r e a t e r t h a n
g r e a t e r t h a n : 0 . 1 # the value to be g r e a t e r than

Less than The measurement value need to be less than the speci-
fied value.

type : l e s s t h a n
l e s s t h a n : 0 . 1 # the value to be l e s s than

In between The measurement value need to be in between the two
specified values.

type : in between
lower bound : 2 . 0 # lower bound of the i n t e r v a l
upper bound : 5 . 1 # upper bound of the i n t e r v a l

Not in between The measurement value need not to be in between
the two specified values.

type : not in between
lower bound : 2 . 0 # lower bound of the i n t e r v a l
upper bound : 5 . 1 # upper bound of the i n t e r v a l

70

6.2 Observation

6.2.4 Resource Monitor

Some observers may need meta information about nodes that are
only known by the operating system. The task of the resource
monitor is get the CPU and the memory usage of all processes
that are used by the robot. Therefore, it requests the names and
corresponding process identifier (PID) of all nodes known in by the
ROS-master, which is the central management component of ROS.
All nodes, topics, and services are registered in the ROS-master. The
monitor is written in python and uses the python-library psutil3.
In combination with the known PIDs the resource monitor is able
to get access to the mentioned information. All collected usages are
published by using the defined message as listed in Listing 6.2.

This messages includes a list of a structure called NodeInfo which
contains information about each individual node. This include
not only the CPU and memory usage, but also the PID and the
hostname for identifying the host, where the node is running.

Listing 6.2: Resource Info message
std msgs/Header header

uint32 seq
time stamp
s t r i n g frame id

tug resource moni tor/NodeInfo [] data
s t r i n g name
uint32 pid
s t r i n g hostname
f l o a t 3 2 cpu
uint64 memory

6.2.5 Observer Plug-ins

Observers are able to be implemented in C++ or in python, but
both have in common to use the provided base for observers and
both need to be usable as plug-in. Each observer has its own
configuration with its own necessary parameters.

3https://pypi.python.org/pypi/psutil

71

6 Implementation

The configurations of an observer define valid and also forbidden
behaviors of the monitored node(s) or topic(s). If an observer is not
able to find an allowed behavior the observation reports a faulty
behavior. For the configuration such a behavior is called state and
has a name and a number. This number is used in the observer
message for the observation result. As already mentioned in the
description of the observer message in Section 6.2.1 behaviors with
negative numbers are classified as faulty and positive are classified
as valid states.

An additional feature of this implementation is that the observers
and the diagnosis engine can differ between nodes that are publish-
ing on the same topic. For instance, if node A and node B publish
on topic 1, the message can not be assigned to a publisher, but the
meta-information refers to a caller id which is the node name.

Resource Observer

This observer is used to check the CPU and memory consummation
of nodes. Therefore, it is necessary, that the resource monitor,
described in the previous section, is running. The resource monitor
publishes information about all running nodes and this observer
has to subscribe this topic. If the resource monitor is not running,
this observer will not publish any observations. Each node need
to be separately defined with its own filter for CPU usage and an
own filter for memory usage. Further, several states per node can
be specified.
− type : resources

s t a r t u p t i m e : 1 0 . 0 # wait t i l l f i r s t obsera t ion
r e s o u r c e t o p i c : /diag/node infos # t o p i c of resource information
nodes : # s e t of nodes to observe
− name : /nodeA # name of the node

c p u f i l t e r : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r the CPU
mem fi l ter : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r the memory
s t a t e s : # s e t of p o s s i b l e s t a t e s
− s t a t e : ’nameXY’ # name of s t a t e

number : 1 # number of s t a t e , negat ive
numbers def ine s f a u l t y s t a t e s

cpu : <hypothesis check> # hypothesis check f o r the CPU
memory : <hypothesis check> # hypothesis check f o r the memory

72

6.2 Observation

Component Observer

This observer is used to observe if all predefined nodes are run-
ning. Therefore, this observer requires a running resource monitor,
because all running nodes are included in resource information
message. If a node is not included, it is not registered in the ROS-
master. Missing nodes are published as faulty. This observer only
monitor if a node exists without checking for valid or faulty behav-
iors.
− type : component

s t a r t u p t i m e : 1 0 . 0 # wait t i l l f i r s t obsera t ion
r e s o u r c e t o p i c : /diag/node infos # t o p i c of resource information
nodes : # s e t of nodes to observe
− name : /nodeA # name of the node

Frequency Observer

The Hz observer measures the frequency of messages of a topic.
This observer also includes caller ids, which names the publishing
node of a message. If several nodes publish to the same topic, it will
be possible to calculate the frequency for each of them separately.
− type : frequency

main loop rate : 1 . 0 # observat ion r a t e
s t a r t u p t i m e : 1 0 . 0 # wait t i l l f i r s t obsera t ion
t o p i c s : # s e t of t o p i c s to observe
− name : /topicA # name of the t o p i c

c a l l e r i d s : # parameter f o r d i f f . c a l l e r ids
− c a l l e r i d : [/nodeA] # l i s t of c a l l e r ids

f i l t e r : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r frequency
s t a t e s : # s e t of p o s s i b l e s t a t e s
− s t a t e : ’ s t a t e 1 ’ # name of s t a t e

number : 1 # number of s t a t e , negat ive
numbers def ine f a u l t y s t a t e s

frequency : <hypothesis check> # hypothesis check f o r frequency

This example presents different possible configurations for a topic
published by several nodes. The first one is that all messages, in-
dependent from its publisher, are used for the frequency measure-
ment. The second example configuration restricts the measurement
to messages published by the node with the name /nodeA. The

73

6 Implementation

last example shows the configuration for measuring the frequency
of messages published from several nodes. Here messages from
/nodeA and /nodeB are used for the frequency measurement.

. . .
c a l l e r i d s : # parameter f o r d i f f . c a l l e r ids
− c a l l e r i d : [] # l i s t of c a l l e r ids

. . .
− c a l l e r i d : [/nodeA] # l i s t of c a l l e r ids

. . .
− c a l l e r i d : [/nodeA , /nodeB] # l i s t of c a l l e r ids

. . .

Timing Observer

This observer measures the time between messages of two different
topics. For a detailed description see Paragraph Timing Observer
in Section 5.2.2
− type : timing

main loop rate : 1 . 0 # observat ion r a t e
t o p i c s : # s e t of t o p i c s to observe
− topicA : /topicA # name of the f i r s t t o p i c

c a l l e r i d A : [] # l i s t of c a l l e r ids f i s t t o p i c
topicB : /topicB # name of the second t o p i c
c a l l e r i d B : [] # l i s t of c a l l e r ids second t o p i c
s ingle shot mode : t rue # true f o r not continuous msgs
f i l t e r : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r frequency
s t a t e s : # s e t of p o s s i b l e s t a t e s
− s t a t e : ’ s t a t e 1 ’ # name of s t a t e

number : 1 # number of s t a t e , negat ive
numbers def ine f a u l t y s t a t e s

delay : <hypothesis check> # hypothesis check f o r score

Time-Out Observer

If it is necessary, that messages are published in time. The time-out
observer is able to monitor this property. This observer is used as
watchdog for topics. It measures the time between messages. If the
difference is to large or no message is send in time the observer
reports an error. This observer includes caller ids, which offers
the possibility to define a time-out configuration for a restricted
number of nodes.

74

6.2 Observation

− type : timeout
s t a r t u p t i m e : 1 0 . 0 # wait t i l l f i r s t obsera t ion
t o p i c s : # s e t of t o p i c s to observe
− name : /topicA # name of the t o p i c

c a l l e r i d s : # parameter f o r d i f f . c a l l e r ids
− c a l l e r i d : [/nodeA] # l i s t of c a l l e r ids

timeout : 1 . 0 # maximum time between messages
max timeouts in a row : 2 # how of ten repor t ing time−outs

Time-Stamp Observer

This observer reads the time-stamp of a message. If the time-stamp
in the message it is to old, the observer reports a fail.
− type : timestamp

main loop rate : 1 . 0 # observat ion r a t e
t o p i c s : # s e t of t o p i c s to observe
− name : /topicA # name of the t o p i c

c a l l e r i d s : # parameter f o r d i f f . c a l l e r ids
− c a l l e r i d : [] # l i s t of c a l l e r ids

f i l t e r : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r frequency
s t a t e s : # s e t of p o s s i b l e s t a t e s
− s t a t e : ’ s t a t e 1 ’ # name of s t a t e

number : 1 # number of s t a t e , negat ive
numbers def ine f a u l t y s t a t e s

age : <hypothesis check> # hypothesis check f o r age

Score Observer (Value Observer)

The score observer is one implementation of a value observer. It is
used to monitor floating-point value of message. Observed mes-
sages need to be of type float. Structured data is not supported.
− type : s c o r e s

main loop rate : 1 . 0 # observat ion r a t e
s t a r t u p t i m e : 1 0 . 0 # wait t i l l f i r s t obsera t ion
t o p i c s : # s e t of t o p i c s to observe
− name : /topicA # name of the t o p i c

f i l t e r : < f i l t e r c o n f i g u r a t i o n> # f i l t e r conf . f o r frequency
s t a t e s : # s e t of p o s s i b l e s t a t e s
− s t a t e : ’ s t a t e 1 ’ # name of s t a t e

number : 1 # number of s t a t e , negat ive
numbers def ine f a u l t y s t a t e s

score : <hypothesis check> # hypothesis check f o r score

75

6 Implementation

6.3 Diagnosis and Repair

This section describes the diagnosis to estimate possible faulty
nodes, if observers report a faulty behavior. With this knowledge
about possible faulty nodes the rule engine searches for actions to
be execute in order to repair the system or inform human beings.

6.3.1 PyMBD

The diagnosis engine is based on the framework PyMBD, which is
actual a Python library for testing and experimenting with differ-
ent established model-based diagnosis algorithms. This library is
described in detail in [25].

For this work some changes of the framework were necessary, but
not for the central functionality. For example, all but one imple-
mented algorithms are removed because only one algorithm is
required and to reduce the complexity of the engine. Furthermore,
the framework was designed to diagnose logic circuits rather than
a robot using observations from different observers. Hence, to re-
ceive the messages from the observers, it was necessary to add the
support for ROS and for continuous changing observations. The
diagnosis now is calculated recurrently, using the last known obser-
vations. This is different to the original implementation, where this
information was set hard-coded and the diagnosis was calculated
once for each algorithm. The input file, which was required before
as system description to generate the diagnosis model, contained
the information about input and output variables and how they are
connected by using logic gates. This had to be changed because it
was necessary to update the system description with each started
or stopped node. At startup time no nodes are running, therefore
the system description is empty.

76

6.3 Diagnosis and Repair

6.3.2 Configuration and System Description
Validation

At start-time of the diagnosis the system description is empty.
With the first started node a configuration update is send to the
diagnosis engine.

This includes two parts:

node configuration This configuration names each node and list
its published and subscribed topics. With the information
about the topics, the dependencies between the nodes are
defined, as described in Section 5.2.3. Listing 6.3 show a part
of the later described ROS-service which is used for updating
the system description.

Listing 6.3: Node configuration
tug diagnosis msgs/node conf igurat ion [] nodes

s t r i n g name # name a node
s t r i n g [] sub top ic # name of t o p i c s sub . by the node
s t r i n g [] pub topic # name of t o p i c s pub . by the node

observer configuration This configuration names each used obser-
vation type and which topic or node they are observing. For
example, a frequency observation is added by declare the
type as “frequency” and give one topic which frequency is
observed. To add another topic, which frequency is also ob-
served, it need to be added with another observer configura-
tion. Listing 6.4 show a part of the later described ROS-service
which is used for updating the system description.

Listing 6.4: Observer configuration
tug diagnosis msgs/ o b s e r v e r c o n f i g u r a t i o n [] observers

s t r i n g type # type of observat ion
s t r i n g [] resource # resource t h a t i s observed

For a better explanation the same example as in Section 5.2.3 is used.
For this example, the nodes N1 and N2 are already running and
node N3 is started. Therefore, the node and observer configuration
for node N3 looks like shown in Listing 6.5.

77

6 Implementation

Figure 6.3: Example for updating the system description. Nodes are named as
N1, N2, N3, and N4. Topics are named m1, m2, m3, and m4.

The Listings 6.6 and 6.6 show the system description before and
after the update.

Listing 6.5: Configuration that should be added to the system description
nodes :
− name : N3

sub top ic : [m1 , m2]
pub topic : [m3]

observers
− type : frequency

resource : [m3]
− type : resource

resource : [N3]

Listing 6.6: System description be-
fore the update

nodes :
− name : N1

sub top ic : []
pub topic : [m1]

− name : N2
sub top ic : []
pub topic : [m2]

observers
− type : frequency

resource : [m1]
− type : frequency

resource : [m2]

Listing 6.7: System description after
the update

nodes :
− name : N1

sub top ic : []
pub topic : [m1]

− name : N2
sub top ic : []
pub topic : [m2]

− name : N3
sub top ic : [m1 , m2]
pub topic : [m3]

observers
− type : frequency

resource : [m1]
− type : frequency

resource : [m2]
− type : frequency

resource : [m3]
− type : resource

resource : [N3]

78

6.3 Diagnosis and Repair

If a node is stopped the diagnosis engine gets the request to re-
move parts of its system description. Continue the example by
stopping node N3. The configuration for removing node N3 looks
like shown in Listing 6.5, which is the same configuration that was
used for adding node N3. This time the diagnosis engine has to
search for parts of its system description that confirms with the
request and removes it. The resulting system description looks
like the system description shown in Listing 6.6 which is the same
configuration before adding node N3.

For changing the system description of the diagnosis engine a
ROS-service is used. The service also includes the information if
the configuration should be added or removed form the system
description. The service-message is described in Section 6.3.3.

System Description Validation

Changing the system description may cause an inconsistent gen-
erated diagnosis model. A diagnosis calculation is only possible
with a consistent model. Therefore, it is necessary to validate the
description after each change. This validation includes several tests,
the most important once are listed below.

• All set node and topic names used in the observer configu-
ration need to be already known by the system description.
Hence it is necessary to define the node in the node config-
uration and topics need to be defined as “published topic”
in the node configuration. Otherwise the diagnosis will not
be able to judge the node as faulty, even if a topic is faulty,
which can only caused by a publishing node.

• There is also a restriction for node and topic names. For
instance, the names of topics and nodes are not allowed to
start with the characters “AB” or “/AB” because these are
used by the diagnosis engine itself. Using such names may
cause unpredictable diagnosis results.

79

6 Implementation

After the validation has finished without errors the system descrip-
tion is released for the generation of diagnosis model which is
afterwards usable by the diagnosis engine. If the system descrip-
tion is not consistent, no diagnosis model is generated. Therefore,
as long as the system description is inconsistent no diagnosis is
calculated.

6.3.3 Messages

Two different messages need to be defined for the diagnosis. The
first one is shown in Listing 6.8 and defines the structured data
used by the diagnosis to publish its results. The diagnosis may
have more than one possible sets of node names, because different
combinations of faulty nodes can explain the same observed situa-
tion. Therefore, for example, the diagnosis may came up with a set
including nodeA, nodeB and with another set nodeF, nodeA where
both sets are plausible explanations for a current faulty situation.

Listing 6.8: Diagnosis message
std msgs/Header header # ros header message

uint32 seq
time stamp
s t r i n g frame id

s t r i n g type # name of used s o l v e r
tug diagnosis msgs/diagnos is [] diagnoses

tug diagnosis msgs/resource mode assignement [] d iagnos is
i n t 3 2 GENERAL OK=0
i n t 3 2 GENERAL ERROR=−1
s t r i n g resource # e s t i m a t e t f a u l t y node name
s t r i n g mode msg # a b r i e f message
i n t 3 2 mode # diagnosed mode

The second definitions is required for the used ROS-service for
updating the diagnosis model when nodes are started or stopped
as already described in Section 5.2.3. This service message is shown
in Listing 6.9. The service includes a request message part (upper
section) and a response part (lower section).

With each update the system description is changed and with
each change of the system description a new diagnosis model is

80

6.3 Diagnosis and Repair

generated.

The request includes the configuration of nodes and observers
that should be changed in the system description of the diagnosis
engine. In addition to the configuration it needs to be specified
how the configuration should be interpreted –should it be added
or removed from the system description.

The response part of the service is used to inform about the success
of the system description update and the consistency of the model,
which is validated after each change of the system description to
guarantee a consistent model.

Listing 6.9: Model Configuration service
i n t 3 2 ADD=1
i n t 3 2 REMOVE=2
tug diagnosis msgs/c o n f i g u r a t i o n conf ig

tug diagnosis msgs/node conf igurat ion [] nodes
tug diagnosis msgs/ o b s e r v e r c o n f i g u r a t i o n [] observers

i n t 3 2 a c t i o n
−−−
i n t 3 2 NO ERROR=0
i n t 3 2 GENERAL ERROR=−1
i n t 3 2 CONFIG INVALID=−2
i n t 3 2 errorcode
s t r i n g error msg

6.3.4 Rule Based Repair

For processing observations or diagnosis a simple rule system
for triggering actions is implemented. For that, rules need to be
defined at start time of the rule engine by using the following
yaml-configuration:
r u l e s :
− type : <type of the r u l e> # type of r u l e to t r i g g e r

<r u l e type s p e c i f i c c o n f i g u r a t i o n> # type−depending c o n f i g u r a t i o n
<query> # r u l e s f o r t r i g g e r
r e c a l l d u r a t i o n : 1 0 . 0 # delay between t r i g g e r again
s i n g l e s h o t : t rue # only allow t r i g g e r once

This configuration defines a type, the type specific configuration, a
query, and further parameters. The rule engine is able to trigger

81

6 Implementation

different actions like write a message into a log file, send an email,
or change a parameter. The parameter type of the configuration
defines, which action should be used for this rule. If the type need
type specific parameters, they also need to be defined.

The query defines the conditions, when the rule has to trigger.
Therefore, there are four possible fields, two for observation trig-
ger rules and two for diagnosis trigger rules. The first two are
positive observations, which defines observations to trigger, and
negative observations, which defines observations not to trigger.
Listing 6.10 shows the configuration of queries for observation con-
ditions. The parameters occurrences and window size are optional.
It is not necessary to define both observation and observation msg
at the same time.

Listing 6.10: Queries for observation conditions
p o s i t i v e o b s e r v a t i o n s :
− type : ’ frequency ’ # observat ion type

resource : ’m3’ # observed resource
observat ion : −1 # observat ion number
observation msg : ’ error ’ # observat ion message
occurrences : 3 # number of va l id observat ion in a row
window size : 3 # window to count occurences

n e g a t i v e o b s e r v a t i o n s :
− type : ’ frequency ’ # observat ion type

resource : ’m3’ # observed resource
observat ion : −1 # observat ion number
observation msg : ’ error ’ # observat ion message
occurrences : 3 # number of va l id observat ion in a row
window size : 3 # window to count occurences

The second two are positive possible faulty resources and neg-
ative possible faulty resources, where the first one defines con-
ditions for nodes that need to be faulty and the second defines
conditions for nodes that need to not faulty. Both need parame-
ters like resource, which can be the node name, to define those
conditions. Listing 6.11 shows the configuration of queries for the
diagnosis conditions.

82

6.3 Diagnosis and Repair

Listing 6.11: Queries for diagnosis conditions
p o s i t i v e p o s s i b l e f a u l t y r e s o u r c e s :
− resource : ’N3 ’ # f a u l t y estimanted resource name

occurrences : 3 # number of f a u l t y es t imat ion in a row
window size : 3 # window to count occurences

n e g a t i v e p o s s i b l e f a u l t y r e s o u r c e s :
− resource : ’N3 ’ # f a u l t y estimanted resource name

occurrences : 3 # number of f a u l t y es t imat ion in a row
window size : 3 # window to count occurences

The rule engine is structured as shown in Figure 6.4. With all rules

Rule

+ observations_to_use()
+ resources_to_use()
+ trigger_intern()

EMailRule

+ trigger()

LogFileRule

+ trigger()

ServiceRule

+ trigger()

ParameterRule

+ trigger()

RuleFactory

+ create_rule(rule_type, config)
+ ...

EMailRuleFactory

+ instantiate_rule(config)

LogFileRuleFactory

+ instantiate_rule(config)

ServiceRuleFactory

+ instantiate_rule(config)

ParameterRuleFactory

+ instantiate_rule(config)

Reporter

+ observer_callback(observations)
+ diagnosis_callback(diagnoses)
+ run()

ObservationStore

+ add_observation(type, resource, observations, time_stamp)
+ has_changed()
+ ...

1

1

1

0...*

DiagnosisStore

+ add_diagnosis(type, diagnoses, time_stamp)
+ has_changed()
+ ...

1 1

1

1

Figure 6.4: Class diagram of the reporter.

defined the reporter uses the rule factory to create objects for each
defined rule. All rules are stored in a list by the reporter. Each
new observation message is stored in the observation store. The
same applies to new diagnosis messages, which are stored in the
diagnosis store. With each changing in one of the two stores all

83

6 Implementation

rules in the list are asked if they trigger. If a rule triggers it executes
its defined action.

New actions can easily be added to the rule engine. Therefore,
two parts need to be implemented for each new rule type. The
first part is a class that need to be derived from Rule as shown in
Listing 6.12. This class has to include the function trigger which is
executed if this rule is executed.

Listing 6.12: Derived class for new rule
c l a s s NewRule (Rule) :

def i n i t (s e l f , p o s i t i v e o b s e r v a t i o n s , negat ive observat ions ,
p o s i t i v e p o s s i b l e f a u l t y r e s o u r c e s ,
n e g a t i v e p o s s i b l e f a u l t y r e s o u r c e s , r e c a l l d u r a t i o n ,
i s s i n g l e s h o t , new rule data) :

super (NewRule , s e l f) . i n i t (p o s i t i v e o b s e r v a t i o n s ,
negat ive observat ions ,
p o s i t i v e p o s s i b l e f a u l t y r e s o u r c e s ,
n e g a t i v e p o s s i b l e f a u l t y r e s o u r c e s ,
r e c a l l d u r a t i o n , i s s i n g l e s h o t)

s t o r e r u l e s p e c i f i c data
s e l f . new rule data = new rule data

def t r i g g e r (s e l f) :
super (NewRule , s e l f) . t r i g g e r i n t e r n ()

process r u l e s p e c i f i c a c t i o n
pass

The second part is a class that need to be derived from RuleFactory
as shown in Listing 6.13. This class is necessary to read the config-
uration for the new rule and to create an instance of the rule.

Listing 6.13: Derived class for new rule factory
c l a s s NewRuleFactory (RuleFactory) :

@staticmethod
def i n s t a n t i a t e r u l e (conf ig) :

read c o n f i g u r a t i o n f o r :
pos observat ions = RuleFactory . p a r s p o s i t i v e o b s e r v a t i o n s (conf ig)
neg observat ions = RuleFactory . p a r s n e g a t i v e o b s e r v a t i o n s (conf ig)
p o s p o s s i b l e f a u l t y r e s o u r c e s =
RuleFactory . p a r s p o s i t i v e p o s s i b l e f a u l t y r e s o u r c e s (conf ig)
n e g p o s s i b l e f a u l t y r e s o u r c e s =
RuleFactory . p a r s n e g a t i v e p o s s i b l e f a u l t y r e s o u r c e s (conf ig)
i s s i n g l e s h o t , r e c a l l d u r a t i o n , new rule data

return NewRule (pos observat ions , neg observat ions ,
p o s p o s s i b l e f a u l t y r e s o u r c e s , n e g p o s s i b l e f a u l t y r e s o u r c e s ,
r e c a l l d u r a t i o n , i s s i n g l e s h o t , new rule data)

84

6.3 Diagnosis and Repair

The last step is to add the new rule factory class to the basic rule
factory class, shown in Listing 6.14. Hence the new rule is known
by the rule engine.

Listing 6.14: Code snippet for adding the new rule factory
c l a s s RuleFactory (object) :

factory map =
{

. . .
’newrule’ : lambda conf ig : NewRuleFactory . i n s t a n t i a t e r u l e (conf ig) ,
. . .

}

85

7 Evaluation

This chapter contains a qualitative use case with four different
scenarios. It should show hot the system tries to keep the robot
alive. The first scenario demonstrates the stop of a task if its low-
level components are stopped because of a fault. After that another
scenario demonstrates how a low-level component is replaced with
an equivalent one. The third and the fourth scenarios show the
behavior of the architecture with shareable and non-shareable low-
level components. But before the use case is described in detail.

7.1 General

7.1.1 Description

For this use case a simple architecture was chosen with five nodes
used as functionalities and two nodes as behaviors. Figure 7.1
shows all used nodes and how they are connected by topics. There
connections define the dependencies between the nodes.

The whole use case is simulated by using dummy nodes. Hence no
real robot was used. All nodes are only able to subscribe and/or
publish messages on topics. They do not offer other functionalities.
The nodes used for the behaviors are finishing after a certain
runtime and return. The remaining nodes that are used for the
functionalities are not terminating and are running continuously
till an external termination request.

The following nodes are used as functionalities:

87

7 Evaluation

Figure 7.1: Dependencies of functionalities and behaviors of the use case. Func-
tionalities are shown in blue, behaviors are shown in green.

lidar This node emulates a Lidar and publish Lidar-like informa-
tion.

lidar filter The Lidar filter is emulating a node that is able to filter
the raw-data from the Lidar.

robot base The robot base publishes dummy messages to emulates
the sensors, like odometry, of the robot.

cam The node cam is used to simulate a camera.
cam to lidar The last used functionality is the cam to lidar con-

verter. It subscribes to the topic of the cam and publishes
emulated Lidar-like information on the same topic as the
Lidar filter.

Two further nodes, used as behaviors, need to be described. Both
nodes start a ROS-action server and waits for new action-goals.
If a new goal arrives the node waits some seconds to emulate a
behavior the robot movement. Afterwards an action-result is send
and the task executer stops. Generally, nodes for behaviors would
terminate after it execution finishes. But this two nodes need to be
terminated by the task executer because the action servers need to
be stopped. The termination of a behavior is done automatically
by the task executer if the node is still running even it has send its

88

7.1 General

results.

move to This node emulates the behavior of moving the robot to
a defined goal position.

take picture For emulating the behavior of taking a picture this
node is implemented.

For this use case the knowledge base is a storage class and stores

• information which behaviors is used by which task,
• which functionalities are needed for the behaviors,
• the configuration of the diagnosis,
• the rating of nodes,
• the fault counters of nodes,
• and the information of shareable and non-shareable nodes.

7.1.2 Setup

For this use case several components are used:

• the resource monitor for monitoring the resources consum-
mation of running nodes,

• the observer managers for C++ and Python observers,
• the diagnosis engine for calculating diagnoses if properties

are observed as faulty,
• the task executer as central part for starting and stopping

functionalities and behaviors,
• and a text-based user interface for starting, stopping, and

restarting tasks.

All configurations for the observers are predefines as yaml-configu-
rations. The observers are started and initialized after the observer
managers are started.

The configuration of the diagnosis for all nodes is also predefined
and is stored in the knowledge base.

With the text-based user interface an user can execute a task with-
out the need of a plan executer. It uses the same interfaces for

89

7 Evaluation

starting and stopping task the plan executer would use. The used
interface for restarting a task would also be used the rule engine.
Therefore, the user is able to simulate the request a restart of a
node that is estimated as faulty.

7.1.3 Test procedure

After all components of the use case are started the user can select
between two tasks. The user selects a task it wants to be executed.
The name of the task is send to the task executer. The task executer
sends a request to the knowledge base to get a suitable behavior,
which has the highest rating for this task. The rating of behavior is
done by the knowledge base. At startup all nodes have a predefined
rating. If a node is estimated as faulty its rating is decreased.
Additionally, the fault-counter of the node is increased. Before the
behavior is executed the task executer has to prepare the system.
Therefore, it sends a request to the knowledge base to get all needed
functionalities for the task. The returned list of functionalities are
executed. After system is prepared the the task executer executes
the behavior.

With each started execution of nodes the task executer has to
update diagnosis engine.

While a task is executed the user is able to start further tasks, stop
running tasks, or mark a task as faulty and restart it. The different
scenarios of this use case show the behavior of this architecture.

7.2 Scenario 1

For the first scenario only a subset of the node are used as shown in
Figure 7.2. This scenario demonstrates how the task executer deals
with not replaceable functionalities that are estimated as faulty.
Not replaceable means that there is no alternative functionality
that can replace the faulty one.

90

7.2 Scenario 1

Figure 7.2: Used nodes for the first scenario.

Some additional information for this scenario:

• The maximal number a node is allowed to be faulty is three.
• The behavior of move to needs to be stopped and restarted if

the system configuration needs to be repaired.

The following steps describe the test procedure of this scenario:

1. The user selects the task move to.
2. The task executer prepares the system by starting the lidar,

robot base, and lidar filter.
3. Afterwards the behavior of the task is executed.
4. To simulate a continuous faulty Lidar, the user continuously

requests to restart the node lidar.

At the first time the lidar was estimated as faulty the task executer
stops the execution of move to. The faulty functionality is marked
as faulty for the first time (increasing the fault-counter). In the
interests of simplification, the task executer stops also other func-
tionalities used by this task. If no component is running any more,
the task is restarted, which requires a prepared system configura-
tion. After that the behavior is executed again.

But the lidar stays faulty. The whole procedure from above is
repeated. This time the counter of the faulty functionality is in-
creased to two.

After the third time the lidar is faulty the counter increases to three
and now the functionality is marked as permanent faulty because

91

7 Evaluation

it reached the maximal number of allowed faults. It cannot be used
any more.

The task executer is not able to prepare the system configuration
anymore, because it gets no possible functionality because no node
is defined which can replace the defective lidar. Therefore, the task
executer has to cancel the execution of the task.

7.3 Scenario 2

This scenario is similar to the first use case, with the difference that
this time there is also a second functionality that can offer lidar-
like information. Therefore, cam to lidar, which needs cam, can be
used in case the lidar is marked as permanent faulty. See Figure 7.3,
which shows the used architecture with all used nodes. This sce-
nario demonstrates how the task executer deals with replaceable
functionalities that are estimated as faulty.

Figure 7.3: Used nodes for the second scenario.

Some additional information for the use case setup:

• The maximal number a node is allowed to be faulty is three.

92

7.3 Scenario 2

• The behavior of move to needs to be stopped and restarted if
the system configuration needs to be repaired.

• The task executer always gets the functionalities lidar filter
and lidar first, because they have a higher rating than cam and
cam to lidar.

The test procedure of this scenario is the same as described in the
first scenario. Also the behavior of the architecture for the first two
times, where the lidar is faulty, is the same as in the first scenario.
The system configuration looks like shown in Figure 7.4a. After the
third time the lidar is estimated as faulty it is marked as permanent
faulty and this node can not be used any more. Because lidar filter
required lidar also this node is marked as permanent faulty.

This time the task executer gets the functionalities named cam
to lidar and cam, which are able to replace the lidar filter and the
lidar. After starting functionality cam and cam to lidar another valid
system configuration is prepared to execute the behavior again.
Now the system configuration look like shown in Figure 7.4b.

(a)System configuration before lidar
is marked as permanent faulty.

(b)System configuration after lidar
is marked as permanent faulty.

Figure 7.4: System configuration change if lidar is marked as permanent faulty.
Transparent components are inactive and not used by the task exe-
cuter.

93

7 Evaluation

7.4 Scenario 3

The third scenario demonstrates how the task executer handles
several executions of tasks that are not executable at the same time.
For this, the system is shows in Figure 7.5.

Figure 7.5: Used nodes for the third scenario.

Some additional information for the use case setup:

• The functionalities lidar and lidar filter are shareable.
• The functionality robot base is non-shareable.

The following steps describe the test procedure of this scenario:

1. The user selects the task move to.
2. The task executer prepares the system by starting the lidar,

robot base, and lidar filter.
3. Afterwards the behavior of the task is executed.
4. The user selects the task move to another time while it is still

running.

The task executer tries to prepare the system configuration for
the second task. But because the robot base is not shareable, the
execution of the second task need to be suspended, see Figure 7.6a.
The robot is not able to execute both tasks simultaneously, hence
they are scheduled and executed sequentially.

94

7.5 Scenario 4

After the first move to finishes the second is executed, Figure 7.6b.
In the interests of simplification, all functionalities are stopped
after the first task and are restarted for the second task.

(a)System configuration for first
move to.

(b)System configuration for second
move to.

Figure 7.6: System configuration for sequential execution of move tos that use
non-shareable nodes. Transparent nodes are inactive and not execut-
ed/suspended.

7.5 Scenario 4

For the forth scenario the whole architecture, which was described
at the beginning of this chapter, is used. Figure 7.7 shows the archi-
tecture again. This scenario shows how the task executer switches
from a system configuration with a faulty lidar to a configuration
with the functionality cam to lidar even if the cam is already used
by the task take picture.

Some additional information for the use case setup:

• The maximal number a node is allowed to be faulty is three.
• The behavior of move to and take picture need to be stopped

and restarted if the system configuration needs to be repaired.
• The task executer always gets the functionalities lidar filter

and lidar first, because they have a higher rating than cam and
cam to lidar.

• The functionalities lidar, lidar filter, cam, and cam to lidar are
shareable.

95

7 Evaluation

Figure 7.7: Used nodes for the fourth scenario.

• The functionality robot base is non-shareable.

The following steps describe the test procedure of this scenario:

1. The user selects the task move to.
2. The task executer prepares the system by starting the lidar,

robot base, and lidar filter.
3. Afterwards the behavior of the task is executed.
4. The user selects the task take picture frequently while the node

move to is running.

4.1. The task executer starts the cam to prepares the system.
4.2. Afterwards the behavior of the task is executed.

5. To simulate a continuous faulty Lidar, the user also continu-
ously requests to restart the node lidar.

This scenario is an extension of the second scenario described in
Section 7.3. As long as the lidar is not marked as permanent faulty
the system configuration looks like shown in Figure 7.8a.

If the request for restarting the node lidar arrives the third time, lidar
and lidar filter are marked as permanent faulty, as it is described in
the first two scenarios.

96

7.5 Scenario 4

This time the task executer gets the functionalities named cam
to lidar and cam. After starting functionality cam and cam to lidar
another valid system configuration is prepared to execute the
behavior move to again.

Now, if the task take picture is started by the user, the function-
ality cam is already running because it us used for the system
configuration of move to. However the task executer starts with the
execution of the behavior of take picture because cam is a shareable
functionality, see Figure 7.8b.

(a)System configuration before lidar
is marked as permanent faulty.

(b)System configuration after lidar
is marked as permanent faulty.

Figure 7.8: System configuration change if nodes are marked as permanent
faulty while other tasks are running. Transparent components are
inactive and not used by the task executer.

The functionality cam is running as long as at least one of the two
tasks, which requires it for their system configuration, are executed
by the task executer.

97

8 Conclusion and Future Work

This chapter summarizes the work presented in this thesis and in
addition possible improvements and future work are discussed.

This thesis presented an architecture for autonomous robots with
the ability to observe, diagnose, and repair components. Further
software components can easily be added and are usable by the
architecture. The architecture also supports redundant software
modules. Therefore, not repairable modules can be replaced.

First all necessary parts of the architecture are defined by giving a
formal problem formulation, which mainly depends on the defini-
tions used by Ghallab, et al. [3]. This definition and the description
about consistency-based diagnosis are used to describe the interac-
tions and work flow of the universal architecture. This includes also
the interactions between the different components of the different
layers. Furthermore, the procedure of monitoring components and
the diagnosis engine, which collects all the results of the observers
and calculates a hitting set of possible faulty components, was
described. Finally, a repair engine was presented that is used to col-
lect the observation results and the results of the diagnosis engine
and sends commands for the repairing procedure. Further chap-
ters describe the implementation including the implementation of
mid-layer and low-level parts of the architecture, the observers, the
diagnosis engine, and a rule-based repair engine.

The qualitative evaluation of this thesis includes an use case with
four different scenarios that show the potential of this architec-
ture, even if the implementation only includes the task executer
of the mid-layer and low-level components. Attention was also
given to the observers and the diagnosis engine. During the test of

99

8 Conclusion and Future Work

the different scenarios is always observes faulty working compo-
nents and the diagnosis calculated correct estimations about faulty
components. The use case shows that the architecture is able to
handle tasks that are estimated as faulty and restart them. Tests
also showed that the task executer is able to switch between dif-
ferent system configurations for the same task. Some tasks are not
executable at the same time because of intersections of their system
configurations. The last two use cases show that the task executer
is able to manage shareable and non-shareable components of the
low-level. Therefore, tasks are executed simultaneously or in a
row.

Some drawbacks of ROS are recognized during the implemen-
tation for this thesis. Some core functionalities of ROS are not
well-engineered. For example, the implementation used for the
communication between nodes is inefficient and needs a lot of
system resources independent from the content of the transferred
data.

8.1 Future Work

Several observers for different properties of low-level components
are presented in this work, but hardware components are not in-
cluded. As mentioned in the work of Zaman, et al. [21], a diagnosis
board would offer the possibility to measure the voltage and also
the current of several devices like laser scanner and motor drivers.
With such a diagnosis board, observers would be able to detect a
faulty device and the the diagnosis engine would be able to make
a more precise estimation of faulty components of the robot. An-
other feature of the diagnosis board would be possibility to switch
devices on and off. One the one hand the repair engine would be
able to restart the device, e.g. if the laser is in a fault state and need
to be disconnected from and reconnected to the power source. On
the other hand, it would be possible to switch off unused devices.

100

8.1 Future Work

In some situations, this would save some energy, which can be an
important point for mobile robots that are sourced by batteries.

The implementation, which was done for this thesis, includes only
the parts of the mid-layer and low-level. As further parts, the high-
level components goal planner, plan executer, and integrity goal
generator need to be implemented. The task executer uses simple
TCP connections with simple structured data (Protocol Buffer)
these high-level components can be ROS independent. Furthermore
the task executer can be extended to support non-ROS related
software modules. Due to the translator plug-ins used by the task
executer, the realization of this extension should be simple.

101

Bibliography

[1] Reid Simmons and David Apfelbaum. A task description
language for robot control. In Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on,
volume 3, pages 1931–1937. IEEE, 1998.

[2] Stefan Loigge, Clemens Mühlbacher, and Gerald Steinbauer.
Supervision of hardware, software and behavior of auton-
omous industrial transport robots. In IEEE QRE Workshop
on Verification and Validation of Adaptive Systems (VVASS 2016).
IEEE, 2016.

[3] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
planning: theory & practice. Elsevier, 2004.

[4] Nils J. Nilsson. Teleo-reactive programs for agent control.
JAIR, 1:139–158, 1994.

[5] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab, and
Félix Ingrand. An architecture for autonomy. The International
Journal of Robotics Research, 17(4):315–337, 1998.

[6] Sara Fleury, Matthieu Herrb, and Raja Chatila. G en om: A tool
for the specification and the implementation of operating mod-
ules in a distributed robot architecture. In Intelligent Robots
and Systems, 1997. IROS’97., Proceedings of the 1997 IEEE/RSJ
International Conference on, volume 2, pages 842–849. IEEE,
1997.

[7] François Félix Ingrand, Raja Chatila, Rachid Alami, and
Frédéric Robert. Prs: A high level supervision and control

103

Bibliography

language for autonomous mobile robots. In Robotics and Au-
tomation, 1996. Proceedings., 1996 IEEE International Conference
on, volume 1, pages 43–49. IEEE, 1996.

[8] Solange Lemai and Félix Ingrand. Interleaving temporal plan-
ning and execution in robotics domains. In AAAI, volume 4,
pages 617–622, 2004.

[9] Didier Crestani, Karen Godary-Dejean, and Lionel Lapierre.
Enhancing fault tolerance of autonomous mobile robots.
Robotics and Autonomous Systems, 68:140–155, 2015.

[10] BSI BS5760. Reliability of systems, equipment and compo-
nents, part 5. guide to failure modes, effects and criticality
analysis (fmea and fmeca). British Standards Institute, 1991.

[11] Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth.
Cram—a cognitive robot abstract machine for everyday manip-
ulation in human environments. In Intelligent Robots and Sys-
tems (IROS), 2010 IEEE/RSJ International Conference on, pages
1012–1017. IEEE, 2010.

[12] Moritz Tenorth and Michael Beetz. Knowrob: A knowledge
processing infrastructure for cognition-enabled robots. The
International Journal of Robotics Research, 32(5):566–590, 2013.

[13] Moritz Tenorth, Dominik Jain, and Michael Beetz. Knowl-
edge processing for cognitive robots. KI-Künstliche Intelligenz,
24(3):233–240, 2010.

[14] Moritz Tenorth, Daniel Nyga, and Michael Beetz. Understand-
ing and executing instructions for everyday manipulation
tasks from the world wide web. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 1486–1491.
IEEE, 2010.

[15] Michael Beetz, Moritz Tenorth, Dominik Jain, and Jan Ban-
douch. Towards automated models of activities of daily life.
Technology and disability, 22(1, 2):27–40, 2010.

104

Bibliography

[16] L Riazuelo, M Tenorth, DD Marco, M Salas, L Mosenlech-
ner, L Kunze, M Beetz, JD Tardos, L Montano, and J Montiel.
Roboearth web-enabled and knowledge-based active percep-
tion. In IROS Workshop on AI-based Robotics, 2013.

[17] Giuseppe De Giacomo, Yves Lespérance, Hector J Levesque,
and Sebastian Sardina. Indigolog: A high-level programming
language for embedded reasoning agents. In Multi-Agent
Programming:, pages 31–72. Springer, 2009.

[18] Hector J Levesque, Raymond Reiter, Yves Lesperance,
Fangzhen Lin, and Richard B Scherl. Golog: A logic pro-
gramming language for dynamic domains. The Journal of Logic
Programming, 31(1):59–83, 1997.

[19] John McCarthy and Patrick J Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. Readings in
artificial intelligence, pages 431–450, 1969.

[20] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From
theory to practice. In ICMAS, volume 95, pages 312–319, 1995.

[21] Safdar Zaman, Gerald Steinbauer, Johannes Maurer, Peter
Lepej, and Suzana Uran. An integrated model-based diagnosis
and repair architecture for ros-based robot systems. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on,
pages 482–489. IEEE, 2013.

[22] Raymond Reiter. A theory of diagnosis from first principles.
Artificial intelligence, 32(1):57–95, 1987.

[23] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros:
an open-source robot operating system. In ICRA workshop on
open source software, volume 3, page 5, 2009.

[24] Eitan Marder-Eppstein and Vijay Pradeep. Ros actionlib pack-
age documentation (2009). http://www.ros.org/wiki/actionlib, 30.

105

Bibliography

[25] Thomas Quaritsch and Ingo Pill. Pymbd: A library of mbd
algorithms and a light-weight evaluation platform. Proceedings
of 2014 international workshop on the principles of diagnosis, 2014.

[26] Daniel S Weld. Recent advances in ai planning. AI magazine,
20(2):93, 1999.

[27] Avrim L Blum and Merrick L Furst. Fast planning through
planning graph analysis. Artificial intelligence, 90(1):281–300,
1997.

[28] Rina Dechter. Constraint processing. Morgan Kaufmann, 2003.

[29] Stevan Harnad. The symbol grounding problem. Physica D:
Nonlinear Phenomena, 42(1-3):335–346, 1990.

[30] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t
markup language (yamlTM) version 1.1. yaml. org, Tech. Rep,
2005.

[31] William H Press, Saul A Teukolsky, William T Vetterling, and
Brian P Flannery. Numerical recipes in C, volume 2. Cambridge
university press Cambridge, 1996.

106

