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Abstract

This thesis attempts to discuss an implementation for the semantic scene
reconstruction. The goal is to analyse a scanned scene, detect known objects,
extract them and replace them with a virtual three dimensional representation
of the object. The replacement should be exchangeable, meaning that it should
be possible to align every model of the objects class with the scanned object.
In the end an application is implemented which allows to scan a scene and
replace objects with their three dimensional model counterpart. A possible use
case of this application could be a refurnishing helper.
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1 Introduction

The advent of RGB-D devices brought a lot of new possibilities in terms of
computer vision and especially object recognition. RGB-D devices provide in
addition to the colour information, like the one returned by common cameras,
also the depth information of every pixel of the colour image. Each shot
of such a device provides therefore a 2.5 dimensional representation of the
scanned scene. This additional depth information allows reasoning more
easily about the components of the scene. While various approaches exist
to detect objects in a colour only image, it is hard to tell the exact pose of
an object only by looking at the colour information, which is necessary for a
semantic scene reconstruction.

Semantic scene reconstruction refers to a method to detect components of
a scene and to semantically label them. By labelling them, the scene can
be virtually reconstructed by using three dimensional models of the objects
(Figure 1).

Figure 1: Colour image of a single shot scan (left), without the detected
object (middle) and scene with replaced object (right).

An application for such a reconstruction is for example in the field of robotics.
By analysing a scene and semantically reconstruct it, the robot can reason
about the scene with the three dimensional representation of the real objects
(Figure 2). The robot can therefore use the reconstructed scene to interact
with the real object or how to move between the objects. Other use cases
could be a remote support interface, where components of the scene are virtu-
ally overlaid with the three dimensional representation. By interacting with
this representation reparation tasks can be explained more easily.

With the rise of affordable RGB-D devices, several consumer applications are
possible as well. One application could be to the rearrangement or swapping
of different pieces of furniture in semantically reconstructed scenes. There-
fore, allowing to virtually remodel rooms.



Figure 2: The scene is first scanned by the robot (top left). By analysing
the point cloud (top right), the respective mesh models can be computed
(bottom right) and can then be used for the grasp computation (bottom
left). [20]

This last example for a possible application will by used to show the pro-
ceeding and the different methods of the semantically reconstruction in this
thesis, where the main motivation is to semantically label a scene and align
three dimensional representation of the detected objects within the scene.
This master thesis will focus on the implementation of a prototype for the
analysis of a scene. The result will be a small application which can be used
to classify objects in a captured scene and replace them with an arbitrary
three dimensional model of an object of the same class.

The goal is a simple application which should require as minimal user inter-
action as possible. The user should be able to scan a scene right inside the
application. The scans are single shot scans, since this way even inexperi-
enced user should be able to scan the scene, containing every object.
Additionally, saving, reloading and opening of several scans even made from
sources outside the application should be possible.

After a scene is scanned the object detection and alignment should hap-
pen automatically or with as little interaction from the user as possible. It
should be possible for the user to refine a step manually at any time. Even
after objects are detected and aligned by the application the user can still
adjust the position as well as the orientation of every model.

The user has also the possibility to add models on their own if the corre-
sponding scanned object was not detected or for other reasons.

In the end the application should be user-friendly and easy to use. There



are many use cases where such an application is helpful. A big use case is
certainly in the field of interior design. With the help of this application an
user could scan for example their living room and redecorate it in different
styles, change furnitures, move furniture around all or add new furniture.
Since a lot of companies provide free available three dimensional models of
their furniture, a customer could use this application to view how the furni-
ture would look in their own four walls, without actually buying it. This can
help also the user to calculate which furniture and especially which size the
furniture should have.

In most home planer the room needs to be created by the user too, requiring
him therefore to measure the room, which is not only a time consuming ac-
tivity, but also error prone. Instead, the only data needed for this application
is a scan of the room, which is as simple as taking a photograph. Having
the scan and the models in a real world size, it is easy for the user to figure
out, if the given model would fit in the wanted position. A task which would
otherwise require the user to measure and possibly convert it to the right
length unit.

Figure 3: Query object in the first column and the 5 top database model
matches. [17]

Other use cases of this application include the possibility to virtualize a
scene. This could be used in fields such as arts, where it is easier, cheaper
and especially faster to create various prototypes as a small real world model,
which can then be scanned in, to create the virtual counterpart of them.

The general nature of this thesis allows for a lot of other applications.

An application, which is often named in various publications [17][19], is the
database retrieval (Figure 3). Database retrieval describes the idea to search
similar three dimensional models of a query object and also to align it so
that the query object and the database models can be seen from the same
view.



2 Related Work

The recognition and alignment of objects is an active research area. Several
approaches exist, which take different attempts to solve the problem for spe-
cial use cases. Various methods exists which use geometric, colour and other
informations to achieve this goal. This chapter will describe some current
state-of-the-art methods.

The two widely used pipelines - local and global recognition pipeline - are
discussed, which are foremost used for geometric detection and description
of objects.

The last section of this chapter will focus on methods working on images and
therefore only colour and depth images.

2.1 Local Features

Local refers to the fact, that local feature descriptors are used. The local
recognition pipeline is made out of several steps (Figure 4).

s> s
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Figure 4: Different steps used in the local recognition pipeline.

The first step is the key point extraction step, followed by the feature de-
scription step. These two steps are made for both, the query object and the
database objects. In the next step the resulting features are matched and
corresponding features are grouped. Finally, these correspondences are used
to find the relative alignment.

2.1.1 Key Point Extraction

The key point extraction step is needed to find interest points, which can
later be used as starting point to describe the surrounding region.

Several key point detectors, such as Intrinsic Shape Signature [39] and Har-
ris3D [28], are available. The main attributes of a key point detector are
repeatability and distinctiveness. Repeatability means that with the same
or similar input the detected key points should be the same. Distinctiveness



refers to the property, that the detected key points should be easy to describe
and match.

Key points can be detected using various methods. In [16][1] key points
are detected by down sampling the input uniformly and taking the resulting
points as key points. However, this does not guarantee at all, that distinct
key points are found.

The Intrinsic Shape Signature (ISS) uses the principal curvature to detect
key points. This is done with the help of a covariance matrix defined as:

k
1
Mpi) = —— wi(p; — pi)(pj — i)
(pi) Zlewi ;21 (pj — pi)(pj — pi)

where p; are points lying within the search distance of the current point p;
and the weighting factor w;, which is defined as:

1
lp; 1l

w;

This matrix, more precisely the ordered eigenvalues thereof, are used to dis-
card points where a repeatable local reference frame cannot be defined. The
remaining points are then rated according to their saliency (the magnitude of
the third eigenvalue). By using non maxima suppression the points are again
reduced, such that only points with a high principal curvature are returned
(Figure 5).

Figure 5: Key points (red) extracted with ISS. [30]



Another widely used detector is the three dimensional specialisation of the
two dimensional Harris corner detector described in [12]. The basic idea of
the Harris corner detector can be thought of as looking at an image through
a small window. By shifting the window around changes in the images can
be observed and classified as corner or edges (Figure 6).
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Figure 6: Harris detector: by looking at the image through a small window,
the changes in the image can be observed and classified. [7]

The three dimensional version uses the surface normals, instead of the image
gradients, to detect changes in directions.

2.1.2 Feature Description

The detected key points are now used as starting points for the local feature
descriptors. The goal of a local feature descriptor is to describe the surface
around a key point as general as possible and to encode it into a comparable
representation, while still preserving the characteristic of the surface.

First basic concepts common to some descriptors are described.

Local Reference Frame Local descriptors take a feature point which can
be easily detected and describe the surface around this point. As the local
descriptors are independent from each other a local coordinate system has to
be introduced, in which the descriptor is computed. This coordinate system
should be fixed in all axes, unique, unambiguous and easy to construct and
reconstruct. Some early descriptors ([16][9]) fixed the coordinate system
on only one axis along the normal of the feature point, because of this it
is necessary to compare rotated versions of their descriptors against each
other. Later [32] and [31] fixed two axes and consequently also the third axis
by introducing a local reference frame. To create the frame of a feature point



p a weighted covariance matrix M is constructed using points lying in the
radius R around p:

1 T
M) g, e

with the euclidean distance (I distance)

d; = ||pz —pH2'

From this matrix the eigenvalues are computed. The normal direction is now
given by the eigenvectors corresponding to the smallest calculated eigenvalue.
This direction together with the other two eigenvector provides an estimate
of the three unit vectors of the reference frame. Due to the sign ambigu-
ity of the eigenvalue decomposition another step is required to make them
unambiguous. This happens by reorient the first, the one with the biggest
eigenvalue, and the third, the one with the smallest eigenvalue, so that they
are coherent with the majority of the presenting vectors. The last unit vector
is computed as the cross product of the two others.

In the following, some widely used local feature descriptors are listed in
chronological order.

Spinlmages The Spinlmage descriptor is a local shape descriptor intro-
duced 1999 by Johnson et al. [16]. It uses a point and its normal to define
a partial coordinate system. In this coordinate system the other points are
represented using two cylindrical coordinates. The radial coordinate « is the
perpendicular distance between the point and the surface, the elevation coor-
dinate § is the distance from the point to the tangent plane (Figure 7a). The
coordinate system is only fixed by the surface normal, so the third angular
coordinate cannot be used. Thus, all possible rotations have to be compared
if the descriptor is matched. To create a Spinlmage all points in the support-
ing region of the point p are described in the cylindrical coordinate system
shown in Figure 7a and inserted in a 2D accumulator, where o and ( are
the bin indices. The bins are then bi-linearly interpolated to smooth out the
contribution.

To match two models the Spinlmage’s of the vertices of the models are com-
puted and stored in a database. A random point of the scene is taken and
its Spinlmage is calculated. The Spinlmage is then matched against the
database by using the [ distance. This procedure is repeated for about 100
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Figure 7: Coordinate system and creation of Spinlmage’s

point correspondences, which are then grouped and removed from outliers.
Several other descriptors [6][9] where introduced, which provide better results
and have a better performance than Spinlmage. Therefore, this descriptor is
not considered in this thesis.

3D Shape Context (3DSC) The 3D Shape Context descriptor was in-
troduced in 2004 by Frome et al. [9]. This local shape descriptor creates
a spherical grid around the key point, where the north pole of the sphere
lies along the surface normal of the key point. The bins of the descriptor
are created by dividing the height and the azimuth of the sphere uniformly.
Radial the bins are logarithmically divided. Each bin gets filled with the
weighted count of points that fall into the bin. The weighted count is calcu-
lated with:
1

) = VG

where p; is the local point density around the bin. Each rotation around the
north pole of the description has to be checked, since the reference frame is
only fixed along the surface normal. The number of divisions are free, so the
length of the descriptor is given by JxKxL.

The found descriptors are matched using the [, distance. To match two
collections of descriptors a cost is calculated by summing up the minimal
distance between a descriptor p,, in the query collection S, and another
descriptor g, in the database collection S;:

cost(Sy, Si) = Z max _ dist(qg, pm)

med{l,....M
ke{l,..,.K} { )
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3DSC is superseded by USC, it was therefore not taken into considera-
tion.

Unique Shape Context (USC) The USC descriptor [31] is derived from
the previously described 3DSC and introduces additionally a fixed frame, so
that the descriptor is fixed in all three axes. The reference frame is created
by eigenvalue decomposition of the weighted covariance Matrix M of points
within the neighbourhood of the feature point (see 2.1.2). After the eigen-
value decomposition there is still a sign disambiguation, so the sign of biggest
and smallest eigenvalue are reoriented so that they are coherent with most of
the representing vectors. The last axis is obtained with the cross product of
the two other axes. Afterwards the same procedure as in 3DSC is used. The
calculation of the reference frame brings no big overhead, in fact it reduces
the overall computation time of the matching algorithm as not all rotations
have to be checked.

This descriptor is not taken into consideration in this thesis, because accord-
ing to Alexandre [3] SHOT has a better recognition rate.

Signature of Histograms of OrienTations (SHOT) Signature of His-
tograms of Orientations is a local surface descriptor introduced by Tombari
et al. [32]. It creates a repeatable reference frame (see 2.1.2) around a key
point by eigenvalue decomposition of M. The resulting vector is still not re-
peatable as the sign could be different. Therefore, the vector which has the
most directional support is selected. From this reference frame a spherical
grid is created, by dividing the height in 2 parts, the azimuth in 8 parts and
in 2 radial parts. From each part a histogram with 11 bins is created by
calculating the angle between the point normal and the feature point. Con-
sequently, the length of the descriptor is 352 (2-8-2-11), plus 9 for storing
the reference frame.

The found descriptors can be matched using the /5 distance.

This descriptor was successfully used in Tombari et al. [32] to match and
align two representations of the same object. It is therefore taken into con-
sideration to be used to match also similar objects against each other.

Signature of Histograms of OrienTations COLOR (SHOTCOLOR)
SHOTCOLOR [33] is an extension of SHOT. Additionally, to the geometric
information of a point it takes the colour information to calculate the descrip-
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tor. The colour difference [ is calculated in RGB or CIE colour space:

I(Rq, Rp) = ZIIRP(@') — Rq(i)]],

where R,,R, are colour triplets (e.g RGB) of two points.

Even-tough this descriptor is an improvement of the previously introduced
SHOT descriptor, it can not be used because it requires the colour informa-
tion of the objects to match.

Rotation-Invariant Feature Transform (RIFT) The Rotation-Invariant
Feature Transform [18] is a local surface and intensity descriptor. It takes
concepts from the 2D computer vision. It fits a circular patch around the
point and divides it into concentric rings (Figure 8a). For all points lying in
such a ring a histogram is populated (Figure 8b). The histograms are cre-
ated using the angle between the orientation of the gradient and the vector
pointing outward from the centre, to make it rotational invariant.

RIFT

Figure 8: Three sample points in the normalized patch (a) map to three
different locations in the descriptor (b) [18]

The found descriptors can be matched using the [, distance.

This descriptor uses the intensity to describe the surrounding of a key point.
Since the goal is to match arbitrary objects, which do not necessarily have
the same colour or intensities, this descriptor will not be taken into consid-
eration.

12



Point Feature Histogram (PFH) The Point Feature Histogram descrip-
tor is a local surface descriptor introduced by Rusu et al. [23]. The descriptor
encodes a local surface by using the surface normals and the curvature esti-
mate. It uses two points p and ¢ to create a fixed reference frame, with axes
u,v and w, in one of the points p:

u = surface normal at p

Based on this reference frame the following angular values are computed:

B=v-n,

B P—q

'Y—U/'—
Ip—qll

d = arctan(w - ng, u - ny)

with n, = surface normal at g.

The three angular values (3, v, §) combined with the Euclidean distance
(I p— q ||) between the points are used to describe the relationship between
the two points. They are used to creating a histogram for each point using
the relation of the point with its k& neighbours. The histogram is binned
into 16 bins (Figure 9b). The combination of these histograms is the final
descriptor.

] /—\.Ql . ) ‘ o ‘
B =3 < |mp1 mp2 =p3
= e = mQ Q2 1mQ3
4 v = 20—
4 oA

¥ 7 : 'A, (1 “ " |
i | 8 =), .. il

S10 12 14 162 4 1012 14 162 8§10 12 14 16

(a) (b)

Figure 9: Sample points of two different point clouds and their feature his-
tograms [23]

The computation of this descriptor is expensive as each point is compared
with its k neighbours, leading to O(n - k?) computations on a point cloud
with n points.

The found descriptors can be matched using the [y distance.

This descriptor is superseded by FPFH | it is therefore not taken into con-
sideration.
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Point Feature Histogram RGB (PFHRGB) The Point Feature His-
togram RGB [15] is an extension of the PFH descriptor. It uses the available
RGB information of the points, therefore doubling the number of bins in the
histograms. The additional bins are computed using the ratio between each
colour channel of the RGB values of the points.

The found descriptors can be matched using the [, distance.

Since this descriptor uses the colour information, it cannot be used to match
arbitrary objects.

Fast Point Feature Histogram (FPFH) The Fast Point Feature His-
togram is an enhancement of the PFH. It uses the same methods as in-
troduced by PFH, but tries to reduce the computational complexity. The
complexity is reduced by discarding the 4th (distance) value and the decor-
relation of the remaining histogram dimensions.

The found descriptors can be matched using the [y distance.

This descriptor provides a fast and reliable way, to describe a key point
and the surrounding. Therefore, it is considered in this thesis as key point
descriptor.

Radius-Based Surface Descriptor (RSD) The Radius-Based Surface
Descriptor is a local surface descriptor introduced by Marton et al. [20].
To calculate it each point in the neighbourhood of the feature point is used
to fit a sphere in so that the points lie on the surface of the sphere and
their normals are normals of the sphere. From these spheres the sphere with
maximum and minimal radius are saved.

To match two descriptors against each other the radii are compared.

This descriptor has the disadvantage that it gives the best performance with
objects, which have a single body. On objects which have several small parts
(e.g. ahandle or chair legs), the recognition rate can be really low. Therefore,
this descriptor is not taken into consideration.

Point Pair Feature (PPF) The Point Pair Feature descriptor introduced
2010 by Drost et al. [6] uses oriented point pairs, their relative position and

orientation to describe an object (Figure 10a). The point pair feature F is
defined as:

F(mb m2) = (d7 <(n1a d), <I(n27 d), <z(nl; n2))
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where my, mo are the points, ny, no their normals and d the distance vector
between the points

d = ||m2 — m1H2.

< means angle between the vectors.

Hash table

F
(Key to the
hash table)

(b) Point pairs with similar feature vector are
saved in the same slot.

Figure 10: Point pair feature F of two oriented points (a) and global model
description using a hash table (b). [6]

To build the descriptor of a model the point pair feature of point pairs that
lie on the model surface are calculated. Then the feature vector is sampled
and equal feature vectors are grouped and saved in a hash table with F as
index.

During matching a random point pair is selected and the feature F is cal-
culated. Using the hash table (Figure 10b) it is easy to find the matching
points and to align the models.

According to Alexandre [3] the FPFH descriptor provides a better recognition
rate, than this descriptor. Therefore, PPF will not be used.

Normal Aligned Radial Feature (NARF) The Normal Aligned Radial
Feature descriptor is a local surface descriptor, which uses range images as
input. It was introduced by Steder et al. [29] in 2011. To detect stable points
for every point in the range image the surface changes in its neighbourhood
and the dominant direction of this change is computed. Stable points are
then found by comparing the direction with those of the neighbours. Good
key points will be points that lie near a object’s corner.

The NARF descriptor creates a local range patch around the key point.
Then a star pattern of beams is overlaid on the point and for every beam

15



a value of how much the surface changes along the beam is computed. The
concatenation of these values produces the descriptor. The descriptor is still
not rotational invariant as it can be rotated around the normal, therefore
the descriptor is calculated for each possible rotation and the angle with the
highest value is considered the dominant orientation.

This descriptor is not taken into consideration in this thesis, since it uses
range images.

Tri-Spin-Image (TriSI) The TriSI descriptor [38] is a local surface de-
scriptor. It takes the surface around a key point and uses it to create a
local reference frame. On each axis of the reference frame a Spinlmage of
the local surface is created. The descriptor is the concatenation of the three
Spinlmage’s TriST = S1,,S1,, S13. Because of this the size of the descriptor
is too big, therefore the descriptor gets projected to a principal component
analysis subspace.

For performance reasons this descriptor was not taken into account.

Rotational Projection Statistics (RoPS) The RoPS descriptor [11]
uses the local surface around a point to create a local reference frame that
is unambiguous. The local surface is then brought in this reference frame,
rotated around the z axis by 6 and projected to each axis plane, which
are then partitioned, leading into 3 matrices LxL. These matrices are then
encoded into several statistics and concatenated to form a sub descriptor for
this rotation. The procedure is repeated for each axis with a different . The
typical length of RoPS is 135.

This descriptor is not taken into consideration, since in most cases it provides
nearly the same results as the previously introduced SHOT.

2.1.3 Feature Matching and Alignment

The feature description of each feature of the query object needs to be
matched against the features of the database object. Once all correspon-
dences between the features has been found, these correspondences need to
be grouped. This grouping is done by enforcing geometrical consistency be-
tween the key points of all correspondences.

With the given correspondences a good alignment, which suffices all cor-
respondences needs to be found. The correspondences grouping does not
guarantee, that every correspondence in the group is consistent to one single

16



transformation. Therefore, another step is needed to check if every corre-
spondence leads to the same transformation and to find the transformation
which gives the most consensus across the correspondences.

To find such a consensus several methods exists. The random sample con-
sensus (RANSAC) [8] tries to find a transformation using only a few random
correspondences. If the error of all correspondences using the computed
transformation is small the transformation is taken as final transformation,
else other random samples are used (Figure 11).

(a) Data set with many (b) Line found using
outliers. RANSAC.

Figure 11: Example using the RANSAC method to fit a line into a data set
of points. [35]

Since the overall computational complexity of the alignment using the stan-
dard RANSAC method is high, Rusu et al. [26] try to reduce this complexity
by using a similar approach. The sample consensus initial alignment (SAC-
[A) uses three steps to find the best alignment of a set of features. In the
first step n random features of the query object are selected, where each new
feature sample should lie outside a minimal distance of the other samples.
In the next step for each of these samples matching features in the database
object are searched. A random feature of the matching feature is taken and
the two samples are considered correspondences. With this list of correspon-
dences a rigid transformation and an error metric is computed in the last
step. As error metric the Huber penalty measure is used:

1.2 | <
Lh(ei) — ?61 ||€ZH — te
ste@lleill —te)  lesll > te

These three steps are repeated until the transformation with the best error
metric is found. SAC-TA provides a fast and efficient way to find a good
alignment between two feature sets (Figure 12).

17



Figure 12: Alignment using SAC-TA. Left unaligned partial views, middle
and right alignment result. [26]
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2.2 Global Features

While the local recognition pipeline, tries to detect an object by matching
database objects to the scene, the global recognition pipeline tries to find a
matching object of a certain query object in the database.

Since the global feature descriptors work only in terms of an object, the
first step in the global recognition pipeline is to get a clean object from the
scanned scene. After the clean object is obtained a descriptor of the object
as a whole is calculated. The next step depends on the descriptor. If the
features of the descriptor can be used to obtain a transformation between
the query and the database object, then the features are matched and a
transformation is searched. If the descriptor can only be used to classify the
object, then a further step is needed, to align the classified object with a
database object of the same class (Figure 13).

Figure 13: Different steps used in the global recognition pipeline.

2.2.1 Segmentation

Segmentation (or clustering) of a scene refers to the methods used to break a
scene down into smaller parts or sections. The ideal goal of a segmentation is
to retrieve a cluster which contains one object exclusively. Several algorithms
exists which try to perform clustering on an arbitrary point cloud.

The euclidean segmentation as described in [25] uses a specialisation of the
flood fill algorithm [34]. The flood fill algorithm works, by taking a starting
point and a search criterion. Starting from the start point, each neighbour
which fulfils the search criterion is visited. This is done recursively, so in
the end all neighbours which are connected and fulfil the search criterion are
visited once. Figure 14 shows an example for the flood fill algorithm using
colours as search criterion.

The euclidean segmentation is derived as follows. Starting from an initial
point p; of the input cloud P every point p; which fulfils the criterion

min||p; — pjll2 > dun,
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Figure 14: Starting from a initial point (blue), all connected white tiles are
coloured in turquoise.

where dy, is the maximum allowed distance threshold, is added to a cluster.
This step is repeated until all points of the point cloud P are port of the list
point clusters.

An improvement of the euclidean segmentation is the region based seg-
mentation described in [25]. In this algorithm the points are not only
clustered by the minimal distance criterion, but also by a criterion regarding
the change of normal direction between points. The additional criterion is
defined as:

arccos((r;, n;)) < au,

where n;, n; are the normals of the points and ay, maximal allowed angle
difference between points in the same cluster.

A different approach is taken by the minimum cut (min-cut) based seg-
mentation presented in [10]. The min-cut based segmentation algorithm
performs binary segmentation, by dividing the point cloud into two separate
clusters (Figure 15). One cluster is considered the foreground cluster which
contains only points of the object to be extracted. The other cluster contains
only points which does not belong to the object and are therefore considered
as background. The method takes as input a point which is known to be
around the centre of the object and a search radius which is approximately
the size of the object to be extracted. First a k-nearest neighbours graph of
the input cloud is constructed and weights are assigned to each edge of the
graph. The weight of an edge 7 is defined as

(%)
W; =exp | —— N
o

where d; is the distance between the points of the edge and ¢ a normali-
sation factor. Further each point is assigned a background penalty, which
punishes points which are further away from the object centre. The back-
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Figure 15: Input point cloud (a) and construction of the nearest neighbour
graph (b). Background penalties visualized as red (high) and green (low)
points (c). Chosen object’s centre (d) and final segmentation using min-cut

(e) [10]
ground penalty can be defined as

disttocenter
B(y) = )

radius

where disttocenter is the distance from the current point to the input centre
point and radius is the input radius. On the set up graph the minimum cut is
now applied, which means that the graph is divided into back- and foreground
points by cutting the smallest possible amount of edges. The segmentation
can be refined by adding more point constraints (defining them as back- or
foreground).

2.2.2 Feature Description

Having a segmented object the global feature descriptors can now be used to
describe the object.
In the following, some widely used global feature descriptors are listed.

Curvedness-Orientation-Shape Map On Sphere (COSMOS) COS-
MOS is a global surface descriptor introduced 1997 by Dorai et al. [5]. Each
point gets categorised by the surface index ST and the radius R. Surface
patches are created, by combining neighbouring points which have the same
category. Using a shape mapping function each patch is represented globally
and can be used as a descriptor.

The performance of this descriptor is not sufficing and it is therefore not
considered further.
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Global Fast Point Feature Histogram (GFPFH) The Global Fast
Point Feature Histogram [27] uses the FPFH described earlier to segment
the objects into geometric primitives. From that a histogram is created
consisting of the geometric primitives of each patch.

This descriptor is not used in this thesis, because the ESF descriptor has a
better performance in matching objects.

Global Radius-Based Surface Descriptor (GRSD) The Global Radius-
Based Surface Descriptor was introduced in 2011 by Marton et al. [21]. It
first divides the input in voxels, which then gets categorised in geometric
categories (plane, sphere, edge, ...) using the RSD. The resulting histogram
of the categories is then the GRSD descriptor.

Since the ESF provides a better performance than this descriptor, the GRSD
is not used in this thesis.

Viewpoint Feature Histogram (VFH) Viewpoint Feature Histogram
[24] is based on the FPFH descriptor. It is a global descriptor and produces
only one descriptor for a input cloud. First the centroid ¢ of the cloud is
computed using the average of each point, then the vector n. between the
centroid and the viewpoint is computed and the local reference frame is
computed as followed:

U =ne
v=(p—c)xXu
w=1uXuv

The angle values are computed as in PFH, further a new angle is intro-
duced:

point normal.c
Qr = arccos el

The final VFH descriptor is build using the four histograms, leading to a
total descriptor length of 263.

Since this descriptor is superseded by the following CVFH descriptor, it is
not considered as potential global descriptor in this thesis.

2.2.3 Clustered Viewpoint Feature Histogram (CVFH)

Clustered Viewpoint Feature Histogram [2] is an extension of the Viewpoint
Feature Histogram, which is more robust in handling cluttered and occluded
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scans. It creates stable regions and computes the centroid ¢ and normal n,
of this region. The reference frame is then calculated the same way as in
the VFH but this time using ¢ and n., resulting in «, v, 4, 8 plus a SDC
component:

_p.)2
spC =P
max{(c — p;)?*}
Leading to («, 7, §, SDC, [3) and length of 308 of the descriptor.
According to Wohlkinger et al. [37] the ESF descriptor provides better re-
sults than this descriptor. Therefore, this descriptor is not considered fur-
ther.

Ensemble of Shape Functions (ESF) The Ensemble of Shape Functions
descriptor is a global shape descriptor introduced by Wohlkinger et al. [37]
in 2010. To calculate this descriptor a 64x64x64 voxel grid is created from
the input. From that 10 histograms with 64 bins each are created. 3 random
points are selected and their angle are inserted in a histogram. Addition-
ally, the location of the points are taken into account leading to 3 separate
histograms (ON, OFF and MIXED). The same thing is done by choosing 3
random points and their area and with 2 random points and their distance.
The last histogram uses the results from the distance MIXED histogram. It
calculates the ratio between ON and OFF on the line and saves it to the
histogram.

ESF provides good results and also a good performance in comparison to
VFH and CVFH [37]. Therefore, it is used as global descriptor in this the-
sis.

A2h The A2h [17] global shape descriptor divides the point cloud of a scan
in 3 bins along the up axis (z). Between each point pair in a bin the angle
between the point normals are computed. The angle is than inserted into 50
bins covering 0-360. The frame is not fixed so each rotation around the z axis
has to be compared. (In the paper they do this with a preprocessing step,
by calculating a 9x9x9 voxel grid and comparing this to get the rotation)
To due the fact that this descriptor requires the up axis of the object to be
known, it was not considered further. However, some other parts (voxel grid)
of the method described in the paper are used.

LI2015 This global shape descriptor introduced in 2015 by Li et al. [19]
uses a combination of 2d and 3d functions. To detect key points a combined
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2D /3D corner detection is applied to find feature points.

These key points are described by both their local and global contexts. Fur-
ther, with this descriptor it is not only possible to match two objects, but also
to register an object in respect to another. Because of this the descriptor K;
is composed of two parts a global description of supporting primitives GG; and
a local neighbourhood description L;. For the global part planes and lines
are used, where planes are favoured because they are more robust. For each
key point the most prominent horizontal plane and the two most prominent
vertical planes or lines are saved. The local part differs between database and
scanned objects. For the database object key points the local neighbourhood
geometry is characterized by a local unsigned distance function with the help
of this function it can be determined how much the scan lies outside the sur-
face of the database model. The neighbourhood of scanned key points can
be incomplete, therefore a grid around the key point is computed and each
cell is categorised as known empty space, known occupied space and unknown
observations. When computing the grid only points that are connected to
the key point are taken into account.

To match two models first the global description is used to align the two key
points. Then the distance between the two descriptors d(K;, K;) are com-
puted by comparing the local parts.

Since this descriptor can only work on a scene which is completely scanned
and not with a single shot scan, it is not considered as descriptor in this
thesis.

2.2.4 Feature Matching

Since the global feature descriptor understand the notion of an object and
every descriptor describes the object with a vector, the matching of a query
object to a database model can be done by comparing the two objects using
the Manhattan, the Euclidean or any other distance metric.

2.2.5 Alignment

After the corresponding database object has been found the object’s position
and scale can be determined by taking the bounding box of both objects and
calculating the translation of the middle points and the size differences.

To find the rotation of the query object with respect to the database query
either the information returned by the descriptor can be used or other meth-
ods need to be used. In [2] a camera roll histogram (CRH) is used, which

24



is stored along-side the descriptor to find the final pose. The CRH is com-
puted by projecting the normals of each point onto a plane orthogonal to the
camera plane. The angles between the projected normals and the up view
vector is then used to create the histogram. The angle are discretised into a
resolution of 4 degrees, leading to a histogram with 90 bins. The rotation of
the query object can now be determined by comparing the CRH saved along
with the descriptor and the CRH constructed from the query object. Kim et

% 5 w0 25 70 35 % @5 % 5 10 25 20 35 380

Figure 16: A model with different orientations (left) and the corresponding
camera roll histogram (right). [2]

al. [17] uses a density voxel representation of the point clouds to find a good
alignment between the two objects. To find it, a voxel grid representation
of each possible orientation of the database object is created and matched
against the voxel grid of the query object. The rotation is then the rotation
of the voxel grid with the smallest error.

2.3 Image based retrieval

A lot of approaches ([4][13]) have been made to recognize an object and to
estimate the pose of such an object using images.

HOG (Histogram of Oriented Gradients) [4] tries to detect an object with
the help of image gradients. First the image gradients are computed, then
the resulting image is divided in small cells. Inside each of these cells a his-
togram of oriented gradients is calculated. To increase the performance, the
local histogram is detected by using the calculated intensity over a bigger
block. With the help of this value, all cells in the block are normalized. The
concatenation of the histograms of all blocks form the final feature vector.
LineMod (multi-modal LINE) introduced in [13] uses colour and depth in-
formation to detect and align objects. By using both informations LineMod
creates two so called modalities (Figure 18). The first modality are two
dimensional colour gradients found in the colour image. Image gradients
provide good and reliable cues for images with texture-less objects. Further,
they are also robust to illumination change and noise. The second modality
are three dimensional surface normals which are calculated using the depth
image. The two modalities are normalized and then quantized into equally

25



(d)

Figure 17: Test image (a) and the computed HOG descriptor (b). (c, d)
HOG descriptor weighted by positive and negative weights. [4]
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Figure 18: 2D colour gradients, 3D surface normals and the combination as
multiple modalities. [13]

distributed bins as shown in Figure 19.

Since the modalities does not provide any interests points, special approaches
need to be done to detect an object in an image. The features are first quan-
tized in 8 bins (45°) and then spread around the initial position leading to a
binarized image (Figure 20).

Using these binary images response maps can be precomputed with the help
of look up tables for each possible query feature. The features are invariant
to small translations, since they are previously spread. This also means that
during the response map creation only every i'th pixel has to be considered.

Due to the use of modalities obtained from colour and depth information
LineMod is able to detect texture-less objects and also to detect objects in
a cluttered scene.

Like HoG, LineMod relies on hand-crafted representations of the templates,
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Figure 19: Quantisation of the normalized modalities. [13]
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Figure 20: Modalities to binary image conversion. [14]

which are suboptimal compared to statistically learned features.

Wohlhart et al. [36] circumvent that in their approach by using a convo-
lutional network. The convolutional neuronal network is used to calculate 16
dimensional descriptors. These descriptors can then be used to recognize and
estimate the pose of a query object. Initially the descriptors of all template
poses of an object are computed. These can be used to match the descriptor
of an arbitrary image by searching the nearest neighbour of the template pose
descriptors. The nearest neighbour can be found by taking the euclidean dis-
tance between the template descriptors and the query descriptor.

The descriptor computed by the neuronal network should therefore have two
properties. The euclidean distance between two descriptors of the same ob-
ject should be in relation to the difference of their pose and descriptors of
two different objects should have a large distance.

In order to fulfil these requirements, the following cost functions are used to
find the network parameters. The triplet cost function uses three samples
si,s; and s from the training dataset (image data x and pose p), where ei-
ther two samples (s;,s;) are from the same object and the other (s;) from
another object or all samples are from the same object, but two poses p;, p;
are more similar to each other than the other two (p;, px):

wa(xz)_fw(l’k)ng )
wa(xi>_fw(xj>”2+m ’
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where m is a margin in set to 0.01 and f,(z) is the output of the CNN for
an input image x.
The overall term is then simply the sum of each triplet:

Etriplets == Z C(Si7 Sj, Sk)' (2)

(Si,Sj,Sk)eT

The pair cost function is used to learn the network to be robust against noise
or changes in illumination. This is enforced during the training by defining
that two poses of the same object with a small distance should also have a
small distance in their descriptor:

Loaire = D ful@:) = ful;)lI3: (3)

(Si,Sj)GP

The overall requirement can now be defined as

L= 'Ctriplets + ‘Cpairs + )\Hw/Hga (4)

where the last term is a regularization term over the parameters of the net-
work.

The structure of the network as seen in Figure 21b consists of four layers.
The first two convolute the input images with a set of filters. Max-pooling
which samples the input down (Figure 21a) and rectified linear (ReLU) ac-
tivation function (Equation 5) defined as:

f(y) = maz(0,y). (5)

input conv+max pool conv+max pool fully con.  fully con.

16 x 8x8xC 7 x 5x5x16

Single depth slice
E ) I

4 6 6 8 6 8
—
3 1 1 0 3 4
1 2 2 4
v 64x64xC 28x28x16 12x12x7 256  descriptor size
(a) Max pooling and sub- (b) Overall structure of the network

sampling over a 2 x 2 area

Figure 21: Network structure as described in Wohlhart et al. [36]
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The following two layers are fully connected. The first employs again a ReLLU
activation, whereas the last layer has the resulting descriptor as output.

To train the network two training sets are taken for every object. One of it is
synthetically generated using three dimensional CAD models of the objects,
the other is manually generated using a RGB-D device.

Additionally, to these, various variants of the synthetic training set are cre-
ated, by adding background noise around the objects. Using these the net-
work should learn to ignore the background behind the objects.

It has shown that the convolutional neuronal network approach described
in [36] outperforms the results of LineMod [13] and HOG [4] in terms of pose
error, descriptor length and also retrieval speed.

Further it is shown in the paper, that it is possible to generalize the de-
scriptor. The descriptor generalizes well in an experiment, where the query
object is not known during the trainings phase. The resulting pose estimation
returned a good recognition rate.
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3 Method

To solve the problem of detection and especially the alignment of three di-
mensional models with an incomplete scan of an object belonging to the same
class a method has to provide several properties. The method should be able
to classify an object in a general way and should be invariant to scale since
the object to be detected may vary in size. It should also be able to de-
tect the object in various not necessarily common positions and orientations.
Since no single method has all of these properties, this thesis tries to solve
the problem by using various different approaches, which in combination al-
low to detect and align incomplete scans with a model. In the following the
different components will be explained and in the end the derived method
will be discussed.

3.1 Local Feature Analysis

The first approach takes the standard local pipeline way described earlier.
The pipeline can be divided in two parts. The pre process part is done off-
line, it can be seen as a set up phase for the whole approach. During this set
up a database is created, which is used in the next part.

The on-line part is the part of the pipeline which runs during the recognition.
The scene is processed and objects are matched against the database.

3.1.1 Off-line

The initial step in the pipeline is to create a database with three dimensional
models of every object, that should be detected in the scanned scene. The
database is set up using freely available CAD models from an open source
model library !. For a better further processing they are converted to a more
suitable format (Figure 22a). Since the models come from different unknown
sources, their sizes can vary and there can be a huge difference to the dimen-
sions of a real world object. Therefore, the models are resized so that they
all have the same size and they are in the characteristic dimensions, which a
real object would have. After that the models are converted into point clouds
(Figure 22b), so that they have the same representation as the scanned scene.
Finally, the normals of every point in the cloud are computed (Figure 22c),
by computing the Least-Squares plane fit for the nearest neighbours of each

Ihttps://3dwarehouse.sketchup.com/
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point.

This point clouds can then be used to extract key points (Figure 23), which

(a) 3d model (b) point cloud (c) point cloud

representation with  calculated
normals

Figure 22: Pre process steps done on every database model

are stable, distinct and detectable using well defined criteria. The three di-
mensional Harris corner detector (2.1.1) is used. It is fast and especially it
is adjustable. This means that the amount of key points that are found are
dependent of a search radius parameter. Since the sizes of every model and
searched object are the same, the search radius parameter can be chosen to
be relative to the object size.

These key points are then used by the Fast Point Feature Histogram (FPFH)
feature descriptor. The descriptor describes the surface around the key points
in a distinct and reproducible way. The result is a feature vector (Figure 23),
which can then be used to find similar surface parts.

After the pre process part the database contains the three dimensional CAD
representation and their key points and the corresponding feature vectors of
each model.

3.1.2 On-line

The on-line part of the pipeline starts by taking a single image scan from a
scanning device, which results in a RGB image and a depth image. These
images are then merged and converted into a point cloud with colour infor-
mation.
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Figure 23: Key points (orange) extracted with the Harris key point detector
and the FPFH histogram of one key point.

The constructed point cloud has a high amount of points (Figure 24a), which
is undesired as it takes up too many resources and computation time to pro-
cess this cloud. Therefore, the point cloud is sampled to a smaller point
cloud, with no colour information included, as that is not needed in the fur-
ther processing anyway. The sampled point cloud is much smaller (Figure
24b), but contains still enough information to do the same operation and
to give the same result as the whole scan would. The sampled point cloud

(a) Constructed point cloud (b) Sampled point cloud

Figure 24: The constructed point cloud contains many points (307200), by
sampling it down the amount of points can be reduced (14291), while still
preserve all the details needed to detect an object.

is then processed like the model point clouds in the pre process step. The
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normals are calculated and the key points and their feature descriptor are
computed for the whole scene.

These feature descriptors can now be used to search corresponding features
in every database model. The correspondences found are not necessarily ge-
ometrically correct and it is not guaranteed, that every feature in the scene
has exactly one corresponding feature in the model (Figure 25a). Therefore,

(a) all correspondeces found (b) cleaned correspondences

Figure 25: The initial found correspondences (left) can contain correspon-
dences where a feature corresponds to multiple features of the other object.
Only after removing these a clean set of correspondences (right), which prop-
agate a similar transformation, is obtained.

the correspondences need to be cleaned, such that only correspondences with
one to one relation remain (Figure 25b). Since each of these correspondences
provide their own result of the relative transformation of the objects, a good
consensus needs to be found.

To find these consensuses the SAC-TA method (2.1.3) is used. It provides a
fast and reliable way to find a good consensus between the transformation
proposed by each correspondence. This way a preliminary position and ori-
entation of an object in the scene is found.

Due to the fact that only a few key points are used and therefore the number
of correspondences can be really low, finding a good consensus, does not nec-
essarily mean, that an object was found. To verify that the matched features
are part of a sought object a further step is required.

This verification step uses the bounding box of the matched database model
to obtain the points belonging to the detected object (Figure 26). A voxel
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(a) Extracted points of a correctly (b) Extracted points of a wrongly
matched object matched object

Figure 26: A successful alignment, does not guarantee that a correct object
has been found. Only after the verification step wrong detections can be
eliminated. The objects are extracted from the scene and then compared
with the matched model.

grid representation of these points is created using the methods described in
[17].

This voxel grid is then compared with the voxel grid of the matched model.
The comparison is done by detecting the number of voxels that are present
in both, the model and the scene part and the number of voxels that are in
the scene but not part of the object. To get a matching error from these
two values, the following threshold is defined: The number of equal vox-
els needs to be at least 70 percent, this has proven to be a good value. A
higher threshold is not efficient, as the scan returns a 2.5D representation
of the scene, so there is always a part of the scanned object which will not
be present in the scan. The number of voxels which exists only in the scene
should be minimized, we take therefore this number as matching error if the
other threshold holds.

Although with this error metric in some cases an otherwise correctly detected
object, is seen as not, it ensures that only valid objects are detected and that
wrong detections are minimized if not eliminated.

If more than one object should be found, the scene can be cleaned by re-

moving the points of the already detected objects. With the cleaned scene
the procedure can be repeated until no further object is found.
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To give more comfort to the user and to allow him to change the align-
ment any way he wants, some user tools are implemented as well.

The first tool allows the user to change the position of the aligned model
(Figure 27a). It uses a ”translate-gizmo”, which is well known from other
3D applications. The ”gizmo” can be used to freely position the model in all
dimensions or it is also possible to constraint the movement to one or two
specific dimensions by clicking on the appropriate axes.

The second tool allows the user to rotate the model (Figure 27b). Same as
for the first tool the axis of rotation can be restrained by the user.

The third tool allows the user to change the scale of the model (Figure 27c).
Although even with this tool it is possible to restrain the axis of scaling,
the main application of this tool is to uniformly scale a model across all

P ‘ .

(a) translate ) rotate (c) scale

Figure 27: Implemented ”gizmos” to help the user to refine the alignment of
models.
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3.2 Global Feature Analysis

The next step is to use a global descriptor pipeline. The global pipeline
consists of clustering, classification and alignment. Same as for the local
pipeline a pre process step is introduced, which creates the database used
throughout the pipeline.

3.2.1 Pre processing

During the pre processing step the database is populated. The procedure is
nearly the same as in the local pipeline. The models are downloaded, con-
verted into a point cloud and other data which will be needed later is created
(ESF descriptor, Voxel grids, ...). Unlike the models in the local pipeline,
the models used in this database does not need to have the same size as for
the global descriptors, the relative size of object is of no importance.

3.2.2 Clustering

As seen in 2.2.1 several methods to segment a scene into smaller parts are
available.

They all use different approaches and as such they report different clusters.
Since none of theses satisfies the premise to segment a scene into specific
objects and therefore none of theses methods can be used to automatically
extract an object from the scene, an interactive approach is taken instead.
It is fairly easy for an user to detect and define an object in a scene and by
using a simple interaction. Like this a good segmentation of the scene can
be created, which is a really challenging task to automate. Therefore, the
user is given some tools which require only simple interactions, like drawing
a rectangle or picking unwanted parts of the scene.

In particular three tools are integrated into the implemented application
which can be used to remove unwanted points from the scene.

The first tool is a rectangle selection tool (Figure 28a). With this tool the
user can draw a rectangle around the points he wants to be retained. This
tool is easy to use and provides a good way to remove big portion of points.
The second tool is a cluster selection tool (Figure 28b). It uses the region
growing segmentation. After the scene segmentation the tool can be used to
select different clusters of the scene and remove them. Therefore, this tool is
used to refine the object and remove smaller parts of the scene.

The third tool uses the min cut based segmentation described earlier (Figure
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28c). This algorithm needs two parameters as input, a foreground radius
and a point which lies near the centre of the object. These parameters can
be found, by letting the user draw a bounding box around the object to
be extracted. Given this rectangle the foreground radius can be defined as
maximum dimension of the bounding box created by the points inside. A
point lying near the centre of the object, can be found by taking a point from
the centre of the drawn rectangle. After the first segmentation, the user can
refine it by defining points as background points. This tool can by used to
semi automatically extract an object from the scene.

(a) Rectangle selection  (b) Region selection tool,  (c¢) Min cut selection tool,
tool, every point lying by clicking on a region the the selected green part are
inside the volume spanned whole cluster obtained by used as foreground points
by the projected rectangle the region based segmenta- parameter for the min cut
will be selected. tion, will be selected. segmentation.

Figure 28: Selection tool implemented to help the user to extract the wanted
object.

With the help of these three tools the segmentation step can be achieved
fast, requiring only a little portion of user interaction.

3.2.3 Classification

Having the extracted object, a database model which matches the object,
needs to be found.

For this the Ensemble of Shape Functions (ESF) global descriptor (2.2.3)
is used. The ESF takes as input a point cloud and returns a 640 element
feature vector. This vector can then be used to compare two objects.

A special property of the ESF is that not only the same object returns the
same vector, but also objects which are similar or belong to the same class,
return a vector which differs only marginal. Since this thesis tries to not only
detect objects which have a model representation in the database, but also
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unknown objects of a class, this property is of good use. This way the ESF
can be used to classify an object.

To keep the classification as general as possible the class of an object is de-
tected by comparing the ESF vector with every model of every class in the
database. The class of an object can then be found by taking the class with
the least average error over all of its models.

For this thesis the accuracy of the ESF applied over the whole database
is enough. As there can always be the possibility that an object is wrongly
classified, the user is given the chance to correct the detected class manually
after the automatic classification step.

3.2.4 Alignment

Given the now classified object the orientation of the object needs to be
figured out, to allow to align the three dimensional model to the scanned
object.

Voxel Grid

The first approach uses a variation of the voxel grid method proposed in
[17].

The method described in the paper creates a voxel grid representation of
every possible orientation of the database models. During the alignment a
voxel grid representation of the scene object is created. By matching these
representations the orientation of the scene object, with respect to the model
can be found.

This alignment works quite good and they are able to align a variety of dif-
ferent models of the same class to a scan. However, they use a constraint to
get these results. The Z-axis or the ground plane of the scan has to be known
and therefore the search space for possible orientations is only the rotation
around the Z or Upper axis. The use of this constraint is comprehensible,
as the search space without this constraint grows a lot in comparison of 36
possible orientations using the 10 degree step from the paper. They also use
a voxel grid with 9x9x9 voxel, which take up a lot of memory space.

Further experimentations during this thesis have shown that the voxel grid
can be reduced to a simple two dimensional grid, by projecting each point
down to the fixed ground plane. The results using this grid are the same, in
some cases even better, as with the three dimensional counterpart, however
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the needed memory space is reduced, in fact it was possible to reduce the
grid size to 6x6 without any visible loss in the alignment precision.

Since this approach needs to know the Upper axis to successfully find the
orientation of the object, further user interaction is needed. Similar to the
previous user interactions, also this interaction is designed to be as minimal
as possible. To get the Upper axis, the simplest way is to let the user select
a point which lies on the ground plane. Using the region based segmentation
described in 2.2.1 the cluster which contains the point can be used to find
the ground plane using the random sample consensus described in 2.1.3.
This way a good alignment result can be found if the ground plane is previ-
ously known.

CNN

To remove the Upper axis constraint and to reduce the memory usage an
additional method using a convolutional neuronal network is implemented.
This method follows the approach of Wohlhart et al. [36]. The goal of this
paper is to train a neuronal network, which is able to find the model and the
pose of an object, by analysing the colour and depth images of a scan.
Even though Wohlhart et al. used the neuronal network to both detect and
align models, in our case the network will only be used to align a model
with a scanned object. The main reasons behind this decision are of prac-
tical nature. Since the detection and matching of a model to a scanned
object was already successfully tested and implemented with the help of the
ESF descriptor, only the alignment part of the neuronal network is needed.
Another reason lies in the fact that the classification of objects using the
neuronal network adds more complexity, speaking of computation time and
storage needed. The main reason regards the flexibility and extensibility of
the whole system. Even though a classification using the neuronal network
would be possible, it is not practical and feasible. To classify an object the
neuronal network needs to be trained with the data of all classes, which is
both time and storage consuming. Further the whole system needs to be
trained together, meaning that if a class is added to the system the whole
network needs to be retrained. By using the neuronal network only for align-
ment purposes, each class can be trained individually and therefore it is
simple to add a class without touching the other classes.

To train the neuronal network synthetic images of scans are needed. Like in
the paper the scans were generated using the 3D graphics software Blender®.

'https://www.blender.org/
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For the scans 301 template position are created. They all lie on a half dome
over the object created using a regular icosahedron and subdividing it two
times. Scans of the same model from additional positions are made by sub-
dividing one more time. These additional 1241 scans will be used as training
set. From each position three images are saved, the colour information from
the frame buffer, the depth information from the depth buffer and a binary
mask image, which displays only the model surface.

Since the scans in the global pipeline are already cleaned, meaning that only
the extracted object and no disturbing background is in it, also the synthet-
ically generated images are created without background. Also, contrary to
the implementation in the paper no further background noise is added.

The binary mask image is used, to create the 64x64 pixel images, which
are needed as input for the neuronal network. These images are created,
by calculating the minimum bounding rectangle of the mask image. The
bounding rectangle is then made square, by extending the smaller dimension
with the difference to the higher dimension. Additionally, a fixed amount is
added to both dimension, so that the objects are not touching the border of
the images. The resulting image part is then scaled to have the extent of
64x64 pixel.

In the paper not only the pose, but also the model corresponding to the
scanned object is detected. Because in this thesis the goal is to detect multi-
ple objects of the same class and not only to match one object to one model,
the to way train the network has to be changed. Generally speaking the goal
is to train one network for each class, which is then able to detect the pose
of an arbitrary object of this class with respect to one template model.

To achieve this, several adjustments has to be made. Instead of having
multiple models of different classes, multiple models of the same class where
used to train the neuronal network. The scans are then divided into tem-
plate, training and test sets.

The template set contains the 301 template poses of one single model. This
is seen as template model of the whole class. The matching will later be
performed on this model.

The training set contains the remaining 1241 images of this first model and
a random fraction of images of a second model. The remaining images are
used to test the neuronal network after it has been trained.

Before the training a set of triplets is created, which is then used during
the training phase. In the original implementation the triplets where se-
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lected by fulfilling two conditions. The first is that if all samples are from
the same object, the poses of two samples must be more similar than the
pose of the other sample. The second is that two samples have to be from
the same, whereas the other is from another object.

Since in this implementation only one object (or one class) is available, the
second conditions is removed and the missing samples are created using the
first condition.

The trained network is finally used to create a descriptor of every pose of the
template model. This descriptor can then be used to match the descriptor
of a query image to the right template pose. To use this neuronal network
the scanned cloud, which has been cleaned and classified during the previous
steps, needs to be converted into the colour, depth and mask images needed
by the neuronal network. The conversion is easy if the cloud is held orga-
nized, meaning that the pixel position, where each point is constructed, is
known. Special attention needs to be paid to the depth images, as these can
be varying and the distances can differ a lot with the ones of the synthetically
generated depth images. Therefore, every depth image, synthetic or real is
normalized, such that the nearest point corresponds to 0 and the farthest
point to 1.

With the descriptor of the real world images obtained with the neuronal
network, a matching template pose can be found by comparing it (using the
euclidean distance) with the template descriptors. The found pose represents
now the pose, more precisely the orientation, of the scanning device during
the scan. The orientation of the model is therefore the inverse of the found
pose.

While this method can return a good alignment, in some cases where the
scanning device is not held in an upright position, this method fails, since the
training data did not contain images where the camera roll angle is changed.
To solve this problem a further step is needed. Since the network can only
work with images which where taken in an upright camera position, the input
data of the query object is transformed by rotating the image consecutively
and therefore receiving 180 different images. Theses images are then fed into
the neuronal network. This results in 180 poses, which are now used to find
the right pose of the object. To get which poses fits the object best, the
model is transformed using the pose and then a voxel grid representation as
described previously is created. The right pose can then be found by com-
paring the object representation with the representation of the transformed
model.

41



Since the query objects are matched against the nearest template pose, this
does not mean that the found pose is exactly the same. To refine the pose
and bring it a little closer to the correct pose of the scanned object a further
step is introduced. The alignment is refined by rotating the aligned model in
the range of five degrees around each axis and comparing the resulting voxel
grid representation with the voxel grid representation of the scanned object.
This way the alignment can be vastly improved.

The final orientation can then be used to orient the model the same way
as the scanned object. By computing the bounding box of both, the model
and the object, the model can also be positioned to be right in the centre
of the scanned object and to have the similar dimension. In the end two
methods to find the alignment of an object are implemented.
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4 Results

In this chapter the results of the various methods for detecting and aligning
objects will be discussed. The first part talks about the results gathered with
a local pipeline, while the second part discusses the different variants of the
global pipeline approach and their results.

4.1 Local Pipeline

The local recognition pipeline uses local feature descriptors to detect objects.
In a pre-processing step the implementation creates a database with the
models and their local descriptors. Later these local descriptors are used to
find and align the models in a scanned scene.

4.1.1 Key-point Detectors

During the implementation two state-of-the-art key-point detectors were
compared. The Intrinsic Shape Signatures (ISS) detector by Yu Zhong et
al. [39] and the three dimensional specialization of the Harris corners detec-
tor [28] were tested. Both take a point cloud with point normals as input
and return stable feature points.
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(a) Unmodified model (b) Scaled model

Figure 29: Key-points found by the Harris detector on the same model with
different scales. In both cases the same search radius is used.

While the ISS takes no further parameter, the Harris key point detector
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needs an additional search radius parameter. This parameter controls how
much of the surrounding points will be taken into consideration to determine
the score of the key-point. If the parameter is high the key point amount
will drop, since only the most distinctive point in a big neighbourhood will
be selected as key point. However, if it is too low, a lot points with little
details will be reported as key points (Figure 29).

Contrary the number of key-points reported by the ISS will always stay the
same, even if the model gets scaled (Figure 30).
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(a) Unmodified model (b) Scaled model

Figure 30: Key-points found by the ISS detectors. The detector is invariant
to scale, therefore the same amount of key points is detected in the scaled
and the unmodified model.

While in most applications such a behaviour is unwanted, in this case an
adjustable key point descriptor is needed. Since the ISS is not controllable,
it will always return a high amount of key points. We rather want a small
set of key points, which describe the most distinctive parts of the object, due
to the fact that we want to match objects which are highly dissimilar. This
is why in our implementation the Harris key point detector is used. With
this detector we can decide how many and which type of key points we will
get.

This will help us in the further steps, as we only want to match the most
distinctive parts of two rather different objects.

Therefore, even tough the ISS on the first glance provides better results, the
Harris key-point detector will be used in the further computations.
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4.1.2 Feature Point Descriptors

Same as for the key-points two state-of-the-art feature descriptors were tested.
Those are the Fast Point Feature Histogram (FPFH) and the Signature of
Histograms of Orientations (SHOT). They were tested using the key-points
detected with the Harris key point detector. Both descriptors take a search
radius parameter, which defines how many of the surrounding points will be
taken into consideration to create the feature descriptor.

(a) FPFH (b) SHOT

Figure 31: Alignment of two incomplete scans (orange and green) of the same
chair. The alignment of the orange scan with the green scan is shown in blue.

Both descriptors performed equally well during all the tests. As can be seen in
Figure 31 both, FPFH and SHOT, are able to align two scans from different
directions of the same objects. That is not surprising, as they both where
made for such a use case. But as further tests have shown (Figure 32) they
both are also able to give a good initial alignment of two quite dissimilar
models of the same class.

Since the results of both descriptors where nearly the same, the FPFH was
picked. The reason is that it has a better integration with the Point Cloud
Library! which is used in the implementation of the practical part of this
thesis.

http://www.pointclouds.org
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Figure 32: Alignment (blue) of two similar models (orange and green). Left
FPFH and right SHOT respectively. The alignment error of the two methods
between the two chairs is nearly the same. Whereas the error between the
watering cans is larger with both methods, but the FPFH aligns it with a
smaller error.

4.1.3 Alignment

Principle Component Analysis

A first approach to align a scan with a model was to take the Principle Com-
ponent Analysis (PCA) [22]. The PCA computes the principal component of
a point cloud. As result the eigen vectors of the point cloud is returned. In
the case of a complete model the PCA will return the main components of
an object, which can be used to align two objects. In the given case, however
the scan is an incomplete representation of the real object. Therefore, the
analysis of it will return a wrong result with respect to the real complete

object (Figure 33). So it is not possible to retain a good alignment using the
PCA method.

Figure 33: Results of the PCA applied on a partial scan left and a complete
model right. Note that the computed principal component is exactly opposed
to the scan direction.
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Sample Consensus Initial Alignment

To get a correct alignment and especially to be robust against missing object
parts, the Sample Consensus Initial Alignment (SAC-TIA) introduced by Rusu
et al. [26] was tested. It tries to align the matched features not only by
optimizing the distance between two correspondences, but also by taking
into account the ratio of overlapping between the two point clouds. Because
of this SAC-IA is most often used to register two different and incomplete
scans of the same object. During the tests, it was also possible to align even
two rather dissimilar objects in a satisfying way. Therefore, SAC-IA provides
a fast and robust way to align two diverse point clouds.

As shown in Figure 34 it is possible to align a scan and a model which are
quite dissimilar acceptable.

Figure 34: Scan and model, detected and aligned using the local recognition
pipeline.

4.1.4 Conclusion

With the described methods, Harris key point detector, fast point feature
histogram and the sample consensus initial alignment, the local pipeline ap-
proach has given some good results. It has been proven to work on scans,
where a relatively similar model is available in the database. It is possible to
match and align various objects as can be seen in Figure 35.
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Despite this, the approach is unsuitable for a general object detection and
matching, where the appearance of models are really different in comparison
with the models known in the database. It also depends a lot on how much
of the scanned object is visible in the scan and how much can be used to
calculate the feature descriptors. Another weak point of this approach is that,
due to the fact that radius parameter are needed for the key-point detection
and also the feature description, the size of the scanned object has to be
known, at least approximately, during the database creation. Therefore, it is
also not possible to detect objects with different sizes than the ones present
in the database.

For an application where all objects in the scene, are previously known and
available in a CAD representation, this approach should bring good results
and a high matching quote.
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Figure 35: Various scenes with the aligned models (green). Due to the
spherical body the teapot is not aligned with the right pose, whereas the
chest is aligned 90 degrees rotated, as there is too little information about
the correct pose in the feature descriptors.
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4.2 Global Pipeline

This section covers the results of the global pipeline approach. Objects are
first extracted from the scene, then they are matched against the models in
the database. Finally, the matched objects are aligned accordingly.

4.2.1 Clustering

To extract an object from the scan and liberate it from the clutter three
segmentation algorithms were tested. These are Euclidian, Region growing
and Min Cut based segmentation. They all use different measures to decide
if a point lies in the same cluster.

The Euclidian segmentation uses the flood fill algorithm. First a random
point is chosen, then the distance of each neighbouring point is calculated.
If it is less than a threshold, then the point is added to the cluster. If no
new point can be added, a new cluster starting from a new random point
is created. As can be seen in Figure 36 due to the fact that the algorithm
only takes the distance between two points, it can not detect if a point
belongs to another object and therefore the clusters returned by the Euclidian
segmentation can span multiple objects.

Figure 36: The Euclidian segmentation produces clusters which can span
over multiple objects. Note how some parts of the scan are not clustered, as
the distance threshold is too small.

The Region growing segmentation uses the same algorithm, but instead of
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only looking at the distance of the points, also the curvature of the points is
taken into account. By using the curvature as measurement, this algorithm
is able to return clusters with a cleaner segmentation, which respects object
borders. However, it also segments the object itself, if the object is made of
surfaces with different orientations and hard edges.

(a) The Region growing segmenta- (b) The Min Cut based segmenta-
tion clusters the scene nicely into tion fails to extract the object, since
basic elements, the object is made in the scan the transition between
of. object and background is seamless.

Figure 37: Region growing and Min Cut based segmentation.

The Min Cut based segmentation uses an algorithm introduced in [10]. This
algorithm takes the centre point of an object and its radius as input and
returns a binary set of foreground and background points. Where foreground
points are likely to belong to the object and background points are not part
of the object. During some tests it has shown, that a clean extraction of the
object from a scan is not possible and that the returned foreground points
will always return some clutter, which was wrongly classified.

The figures 36 and 37 visualize the results of each individual algorithm. As
seen the region growing segmentation provides the best segmentation of the
scene into separate patches. But since most objects are clustered into multi-
ple patches an extraction of one object using only this method is not possible.
In fact clustering of a scene is an active research area and a general solution
does not exist yet. Therefore, the extraction of the object is performed with
the help of the user. Giving him the right tools and a pre clustered scene,
there is little interaction needed to define the objects bounding box and to
remove all the clutter around the object (Figure 38).
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Figure 38: User helped segmentation: first the user draws a rectangle around
the object in the scene, then the user can refine the selected rectangle, by

removing unwanted clusters.

4.2.2 Classification

For the classification part the Ensemble of Shape Functions (ESF) descriptor
is used. It is fast to compute and describes an object in a 640 dimensional
vector. The good thing about this descriptor is that it does not describe
the object precisely, but uses a collection of shape functions to create a
good approximation of the shape. It is therefore perfect to compare two

objects.

Figure 39: Two different watering cans and their respectively ESF descrip-
tors. The difference between the two descriptors is minimal.
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As seen in Figure 39, two objects of the same class return a similar descriptor.
By comparing the descriptors it is easy to detect to which class an object
belongs.

In some cases however, especially if object classes contain similar shapes the
ESF returns the wrong match (Figure 40).

Figure 40: Some objects can have similar elements and therefore some shape
functions can be equal. This leads to a smaller overall difference and a wrong
classification.

The table in Figure 41 shows our test set and the query results. Most of
the time the ESF delivers the right class, whereas some objects return the
wrong class. These cases can be dealt with, by comparing the query with
more objects of the same class and taking the class with the best average
results over all database entries.

Because there is always the possibility that an object will be misclassified, the
user is given the chance to change the detected class into a more appropriate
class after the classification step.
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book chair chest hammer

0.178 chair0l 0.136 chair01 0134 chest01 0.1881 hammer0L

0.179 chair02 0.185 chair02 0.151 chest02 0.261]  hammer02

0.185 chest01 0.185 wateringcan02 0.160 chair01 0.264 table02

0.190 chest02 0.186 chest02 0.190 chair02 0.298 table01

0.199 trash02 0.189 teapot02 0.204 trash02 0.299 book01

0.224 table01 0.190 teapot01 0.241 trash01 0.303 book02

0.232 trash0l 0.190 chest01 0.264 wateringcan02 0.305 chair0l

0.234 book02 0.214 trash02 0.268  teapotOl 0.306 chair02

0.259  hammer02 0.232 wateringcan01  0.271  teapot02 0.344 chest0l

0.261 book01 0.298 table01 0.273 table01 0.345 trash02

table teapot trash watering can

0.232 table02 0.164 chair01 0.186 chest01 0.110 wateringcan01
0.372 chair0l 0178 teapotD2 0.197 chair0l 0.144 wateringcan02
0.376 chest0l 0.178 chair02 0.201 chest02 0178 chair02
0.387 chest02 0.200 trash02 0.218 chair02 0.184 chair01l
0.395 chair02 0.214 teapot01 0.231 trashD2 0.242 hammer02
0.429 trash02 0.219 wateringcan02 0.242 trashD1 0.264 table01

Figure 41: Retrieval results using the ESF descriptor on the test set. Most
of the time the right result is returned, only on some specific objects, the
returned results are incorrect.

4.2.3 Alignment

Voxel Grid

To get an alignment which is robust against variations a method described by
Kim et al. [17] and some derivative methods were tested. In this publication
a voxel grid representation of the point clouds (Figure 42a) is used to align
two quite dissimilar objects. More precisely, a voxel grid representation of
every possible orientation of the models in the database is made. During the
alignment step, the voxel grid representation of the scan is then compared
to all available voxel grids in the database, returning the orientation of the
scan with respect to the model in the database.

While this method provides good results, it needs a lot of memory as for
every orientation a voxel grid has to be stored in database.

Voxel Image

To improve this a similar approach was taken. Instead of taking a three
dimensional voxel grid, only a two dimensional image representation was
used (Figure 42b). The image representation was made by projecting each
point of the point cloud down to the ground plane. The projected points
are then rasterized into an image where each entry contains the normalized
amount of points that are lying in the pixel.
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(a) 3D voxel grid (b) 2D image

Figure 42: Point cloud of a chair model with the voxel grid and image rep-
resentation. The colours depict the various point densities in the voxels.

This improves the memory used but also the alignment itself (Figure 43).

(a) 3D voxel grid (b) 2D image

Figure 43: Alignment of a model (green) to a scan (orange) using the voxel
grid and image representation with a fixed upper axis.

The biggest drawback of both methods is that they need a fixed upper axis
to align the objects. With the help of a little user interaction it would be
possible to define a proper upper axis, but the user interaction should be
minimized. Therefore, the next step was to get rid of this constraint and
allow the alignment of arbitrary objects.

3D Voxel Grid
Three methods where tested. The first was to try to use the voxel grid
without constraints to align two models. Since now the voxel grid needs
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to be made for every possible orientation, the memory usage is really high.
Also, the alignment is getting worse compared to the previous case, as there
are more degrees of freedom (Figure 44).
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(a) Fixed upper axis (b) Free upper axis

Figure 44: Alignment of a model (green) to a scan (purple) using the voxel
grid representation with fixed upper axis and without.

Depth Image

The next step is to use the depth images of an object and compare it with ev-
ery possible depth image of another object. The resolution of the images can
be really low, more precisely it is better if they are not too high, because we
want to match different objects. By taking low resolution images, the align-
ment gets better because it gets not disturbed by small differences between
the objects. The resulting alignment, as seen in Figure 45 is a bit better as
the previous used voxel method. However, it is still not good enough than
the methods with fixed upper axis.
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(a) 3D voxel grid (b) depth image

Figure 45: Alignment of a model (grey) to a scan (purple) using the voxel
grid and the depth image representation.

3 Shape Images

To reduce the alignment error further and to somewhat stabilize the results,
another method using images, taken from front, side and top respectively,
was tested. The images used are binary images, meaning that a pixel has the
value of one, if it there are any projected points lying inside the boundaries
of the pixel or zero if no point lies inside. This significantly improves the
memory usage regarding the voxel grid and also the depth image approach.
Even tough the alignment improves a little too, the alignment error is still
too high, to be acceptable for the human eye. As can be seen in Figure 46,
even the improvement made with this method is too small. The alignment
does look better than the other results, but it is still not good.

(a) depth image (b) 3 binary images

Figure 46: Alignment of a model (red) to a scan (blue) using the depth image
and the three binary images representation.
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Convolutional Neuronal Network

The comparison of different objects of the same class, or their representation,
using standard measurements, like euclidean distances can be challenging.
Therefore, the next step was to use a neuronal network to find the right
alignment of a model to a scan of the same class.

Wohlhart et al. [36] used in their publication a neuronal network, which is
able to classify and align a model with a scan. The network is trained using
colour and depth image of different views of an object and their pose. By
using a triplet cost function the network is trained to describe two similar
poses of the same object in a similar descriptor, whereas a different pose or a
pose from a different object should lead to a descriptor with a high difference.
The trained network can then be used to generate descriptors from template
images and query images. By comparing the descriptors the most similar
template pose can be found. As training set synthetically generated images
and real world images are used. In addition, background noise is added mimic
different backgrounds. This way the network should learn to only consider
the object and to ignore the background. Figure 47 shows some results of
the described paper. The first row shows the colour images and the second
row the corresponding depth images.

Figure 47: Retrieval results of the neuronal network presented in Wohlhart
et al. [36]. The left column represents the query object, whereas the right
column displays the detected pose respectively.

The method used in this thesis follows the idea of the paper. However, since
the class of the object is already detected during the classification step and
the extracted object is clean of any clutter, some simplification can be made.
The network should only learn to generate a descriptor of the pose of one
object or one class of objects.

To get to these results, the network is trained using a set of clean synthetic
data generated from different objects of the same class. The difference of the
objects are validated using the ESF descriptor, as seen in Figure 48. The
selected objects all belong to the same class, meaning that in this special
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case they all can be classified as a chair. Nevertheless, each object differs in
various ways from each other object, as can be visually be seen in the object
models as well as in the ESF descriptor difference. This way the training
objects can be selected generally as objects which are in the same class, but
which ESF descriptor differ the most.
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Figure 48: Objects used to train the neuronal network: Model representation
and their corresponding ESF descriptors. (for more results see Appendix)

One main aspect of neuronal network is that, the more training data is
available, the better the network can be trained and the better the results of
the trained network will get. Of course the same is true of the convolutional
neuronal network used in this implementation. The more variation of a class
it is trained with, the better it will detect the pose of a query object.

In contradiction to that, during the tests it has shown, that using only two
different objects as training data is enough to detect the pose of a big portion
of the same class. Further it has been shown, that using an additional object
as training data does not increase the overall detection of the pose. In fact,
most of the time the network trained with two objects returns the same
alignment as the network trained with three objects.

This can be seen in visually in Figure 50b and Figure 50c, where queries which
lead to the best matching pose are shown. While in the case of two objects
as training data, the best matching poses are nearly identical with the query
poses, the case where three objects are used as training data, the alignment of
the best matching poses are sometimes (e.g. in the fifth row) slightly of. Also
in Figure 49b and Figure 49c, where the alignment error is plotted, showing
the descriptor distance in correlation with the angle distance, the alignment
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error increases in the case where two objects are used as training data. It
can also be seen that in the case where two objects are used the correlation
of the distance and error is nearly linearly. This is a wanted result, because
if the distance between the angle of two poses is increase, also the distance
between the descriptors should increase.

(a) One object (b) Two objects (c) Three objects

Figure 49: Correlation between the descriptor distance (Y-axis) and the
similarity of the pose (X-axis) displayed as plot.
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(a) One object (b) Two objects (c) Three objects

Figure 50: The best matching poses (right) using some test data (left). The
network trained with two objects gives the best results, followed by the net-
work trained with three objects. To train the network with only one object
increases the alignment error dramatically.

The tests also showed, that using two objects is also the minimum to get a
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good pose estimation. If only one object is used to train the neuronal net-
work, the resulting detected poses are visibly worse (Figure 49a and Figure
50a) than the results of the network trained with two objects.

In the end the trained network can output a descriptor of every pose of
a template object, which can be used to match the scan data.

The following matches were made using a synthetically generated test set as
well as a set of real world scans of different objects. Both show the query
colour and depth images in the left column and the matched template images
on the right column. In Figure 51 one finds that the network was able to
exactly match all synthetic query images with the correct template images.

G ol k
b

Figure 51: Retrieval results using the trained network on a synthetically
generated test dataset. The first columns show the query pose and the second
columns show the best matching pose of the template object respectively. (for
more results see Appendix)

Figure 52 shows that the neuronal network provides good to very good results
even on real world scan data. In some cases the alignment is a bit off (e.g.
fourth row first and second column), which could come due to the fact that
scan images are a bit rotated around the forward camera axis with respect
to the template ones. To fix theses cases an additional step is introduced,
where various rotated versions of the same query image are used to find the
best alignment (3.2.4).

The biggest alignment error can be seen in row 2, last column. This is prob-
ably because even tough the template is rotated with respect to the query,
the images still look pretty similar. As this happened only once during all
the tests this error is seen as an exceptional case.

Since the template poses does not contain every possible orientation, the
found pose can still be a bit of. This can be seen especially, when the aligned
three dimensional representation is overlaid with the scanned object (Figure
53a). To get a better alignment, the found pose is refined by comparing the
density voxel representation of the model rotated in a range of five degrees
around each of the three rotational axes. This way the final pose (Figure 53b)
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Figure 52: Retrieval results using the trained network on test data generated
with a RGBD device. (for more examples see Appendix)

is a good approximation of the real orientation of the scanned object.

(a) Alignment detected by (b) Refined alignment
the CNN.

Figure 53: Alignment of a model to a scanned object using the neuronal
network method. To get a good alignment the result of the network needs
to be refined.
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4.2.4 Comparison

Using the global descriptor pipeline approach it is possible to detect objects
if the class of the object is in the database and therefore previously known.
The described global descriptor pipeline brings two possibilities (Figure 54),
one where the ground plane, or upper world axis has to be known and one
with no such restrictions. Both however need a clean segmented object to
work on.

(a) Alignment using the (b)  Alignment  using
voxel image approach and the neuronal network
a known upper axis. approach.

Figure 54: Approaches using the global descriptor pipeline

The biggest advantage of the neuronal network method, is that it does not
need as much storage as the voxel image one. It is enough to have the
descriptors of one template object of each class in the detection step, whereas
the other method needs several objects of each class to bring good results.
Both methods have their drawbacks, in the first it is the need of a fixed
upper axis, which gives in return a better alignment compared to the second
method. The second method has no such restriction, however it can be
seen in Figure 54, that the alignment error increases therefore. Since the
neuronal network is independent of any fixed axis, it is also possible to train
the network such that object which are not in there upright position are
found (Figure 55).
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Figure 55: With the neuronal network approach it is also possible to find an
alignment for objects, which are not in their usual position.

4.3 Performance

In the following the performance of each part of the system is analysed. The
performance tests where made on a Intel Core i7-4500U CPU.

To scan a scene, two images (colour and depth) are created by the RGB-D
device. The information of these images are then merged and a point cloud
is constructed. The time needed to take the images and construct the point
cloud is about 0.7 seconds, with an image resolution of 640x480 pixel. This
time could be lowered to 0.4 seconds, by using a lower resolution (160x120
pixel). This reduction has no influence, since the constructed scenes are down
sampled anyway (as described earlier). The only downside of using images
with lower resolution is the visual appearance to the user. Therefore, in this
thesis a higher resolution is used.

For the first method using the FPFH descriptor, the models need to be
preprocessed by converting them to a point cloud with normals, scaling them
to fit in a unit box and reducing their point count, these take about 11 seconds
per model. The next step of the off-line part is to detect key points using
the Harris key point detector. The time used to detect these key points
depends on the complexity of the model, it lays however around one second
in average. These key points are then used by the FPFH descriptor. The
FPFH descriptor needs around 2 second to describe every key point, again
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the time depends on the complexity of the model. During the detection
step, the key points of the scene needs to be detected and described (this
takes about 3 seconds). Next the features need to be compared and matched
against each other and the found object needs to be verified. This takes again
3 seconds. After an object has been found the scene must be researched for
any other known objects. Therefore, the automatic detection of objects using
this method can take a very long time, since these steps needs to be repeated

for every model.

FPFH chair = book average FPFH chair | book average
preprocess model | 12.64 10.44 11.54 seconds scene key points 1.100| 1.000| 1.050 seconds
key point detector 0.72 0.78 0.75 seconds scene fpfh descriptor | 2.050| 1.980| 2.015 seconds
FPFH descriptor 227 229 2.28 seconds match align 3.000| 2.790| 2.895 seconds
Total 0.261 0.225 0.243 minutes Total 6.150| 5.770| 5.960 seconds
Complexity (0.243 * n) minutes

ZUP chair = book average EUP chair | book average
preprocess model | 12.64 10.45 11.545 seconds ESF lookup 0.098| 0.090| 0.094 seconds
ESF descriptor 0.14 0.18 0.16 seconds voxel image lookup 0.180| 0.130| 0.155 seconds
voxel images 9.52 9.45 9.485 minutes Total 0.278| 0.220| 0.249 seconds
Total 9.73 9.63 9.68 minutes

Complexity (9.68 * n) minutes

CNN chair . book average CNN chair | book average
render templates 19 20 19.5 minutes ESF lookup 0.098| 0.090| 0.094 seconds
train network 148 151 149.5 minutes query CNN 2.490| 2.480| 2.485 seconds
ESF descriptor 0.14 0.18 0.16 seconds CNN refine 4.250| 4.180| 4.215 seconds
Total 167.00 171.00 169.00 minutes Total 6.838| 6.750| 6.794 seconds
Complexity (169 * k) + (0.00267 * n) minutes

(a) Off-line performance. n denotes the total
model count in the database and k denotes
the class count.

(b) On-line performance.

Figure 56: Performances of the three methods. The FPFH method is clearly
the fastest in the off-line step, only with a high number of models per class
the CNN method could be faster. In the on-line step the method with fixed
upper axis is the fastest.

Similar to the previous method, also the method with fixed upper axis needs
an off-line step, where the database is deployed. During this step each model
is downloaded and transformed, leading to a point cloud of the model, which
fits in the unit box. This step takes about 12 seconds depending on the size
and the complexity of the model. Next the ESF descriptor of the model
needs to be calculated, which takes about 0.1 seconds. For this method to
work a voxel image of the model of every possible rotation around the upper
axis is needed. The calculation of these voxel images takes about 10 minutes.
After that the model is prepared and can be used in the on-line step.
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The on-line step needs some user interaction, the up axis needs to be defined
and the object needs to be freed from the surroundings. Then the class of the
object is detected, by computing the ESF descriptor and looking at the ESF
descriptors in the database. This lookup is a fast operation (0.1 second), as
it uses a kd-tree data structure. Once the class has been found the corre-
sponding model can be aligned by creating a voxel image of the object and
comparing it with the voxel image of every rotation of the model. Also, this
lookup is implemented using a kd-tree so it has about the same performance
(0.1 second) as the previous lookup.

Overall the time needed to build the database is dependent on the amount
of models used, while the time needed to detect an object and align a model
is nearly constant, since the amount of models in the database has no influ-
ence.

Contrary to the other methods the method using a convolutional neuronal
network does not need to do an off-line step for every model used. For the
neuronal network to work, it needs to be trained. Therefore, two objects
per class need to be rendered from several viewpoints, which takes about
20 minutes per object. With these rendered images the network is trained
which takes about 2.5 hours to be completed.

The on-line step needs again an object which is free from any clutter. After
the object is classified using the same approach like in the previous method, a
descriptor of the object using the colour and depth image is computed. This
descriptor is then matched against the descriptors of the template object.
This part takes about 2.5 seconds to complete. As described earlier, the
detected pose gets refined by using a voxel grid, which takes about 4 seconds.
Even-tough the time needed for the off-line step of this method seems to be
much higher than the other methods at the first glance, it has to be pointed
out, that the time spent is on a per class basis, rather than on a per model
base like the other methods. Another point is that time reported here, is
the time needed to train the convolutional network on a CPU. Training the
network on a GPU leads to big acceleration (about 1h trainings time). The
on-line step could also be improved, by using a GPU and another framework
for the network.
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4.4 Conclusion

This thesis provides three approaches to detect and align an object with an
arbitrary model of the same class.

The first is the local pipeline approach, which can be seen as an automatic
approach. The pipeline works without any user interaction and displays the
detected objects and the aligned models right away. This method works
pretty good for objects, for which a relatively similar model is available in
the database. However, due to the use of local features this method has no
chance to detect objects, which are very different from the models in the
database. Therefore, two other methods using the global pipeline approach
are implemented in the application as well.

The second method requires the user to define the ground plane of the scene
and therefore simultaneously the upper axis. After that, the object needs
to be cleared of any clutter. This is a relatively easy task and can be done
fast if the object is standing on the ground plane, since the ground plane
gets removed upon user selection and now the object should be standing free
without any other objects nearby. With the box selection tool the free stand-
ing object can now be selected and the classification and alignment detection
using the voxel image method can be started.

The third method uses the neuronal network approach to detect the pose
of an object. Like in the previous method, also this one requires that the
user extracts the object he wants to be classified and aligned from the scene.
Even tough the two latter methods need user interaction, they were able
to detect and align more objects and especially much better than the first
method using the local pipeline approach.

Equipped with these the user can now easily use the implemented applica-
tion to replace objects with arbitrary models and can therefore for example
use it to create his own visually impression of how his home would look with
different furniture.
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5 Discussion

The result of this thesis is a system which allows to virtualize a real world
scene, scanned with a RGB-D device. To achieve this the system uses three
different methods. Each method works differently and has its own use case,
but also its own drawbacks.

The first method uses the local pipeline. It uses local descriptors to describe
the surface around key points. These can be matched and corresponding
features and key points can be found. When looking at these correspondences
a rigid transformation from one set of the points to the corresponding point
set needs to be found. This is a known problem and various solution [26][32]
exists. The problem arises if the transformation can be of non rigid nature.
This can happen if the size of the query object differs hugely with the size of
the object to be matched, but also for the case of this thesis, where a query
object needs to be matched with a model of the same class. The geometric
matching of such general objects using the local pipeline is impossible, as
the degree of freedom is too high with respect of the known parameters.
What would be need is a lot more information about the objects, which
could be used to restrict the degree of freedom. A possibility would be to
know the up vector of all points or the knowledge of some special properties,
e.g. symmetry, which could be used to derive some geometrical information
about the object.

Another drawback of this method lies in the computational complexity and in
the storage needed. Since the verification if an object was found takes place
after the alignment, each model in the database is searched and aligned in
the scene. If a lot of objects want to be detected the database can be huge
and therefore also the automatic detection and alignment step will take up
a lot of time.

However, due to the use of local feature descriptor, the orientation of the
object, the scanning device or the models in the database have no influence
in the resulting detection and alignment.

For the simple case where only a small amount of objects, which are nearly
identical to the one available in the database, should be detected and aligned,
this approach is sufficient. It has been successfully used to find and align
various object.

The second and the third method use the global descriptor pipeline. Since
global descriptors work on the whole object, the object needs to be free of
clutter. This is a huge disadvantage regarding the previous method. The
segmentation of an arbitrary scene is a difficult task, actively researched and
until now no general solution has been found. Even-tough an automatic seg-
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mentation of a scene would be really nice, the interactive solution used in
this thesis provides a good compromise, which leads to a good segmentation
with little user interaction.

To classify the object the ESF descriptor is used. It returns a good classifi-
cation for most of the model and it is really fast to compute the descriptor
from a point cloud. An enhancement of the usage of the ESF could be done,
by using some learning algorithm to classify an object. In the current imple-
mentation the ESF of a query object is matched against the whole database.
A better approach would be to create a template descriptor of each class
using some specific descriptor and then match the query object against these
template descriptors.

The second method uses a voxel grid to find the alignment of a model. This
is efficient and accurate. There are two drawbacks using these methods. The
up vector of the scanned object needs to be known. This could be defined
automatically, by detecting the ground plane, however the detection is not
always right and in case of a miss detection the user is left with a misaligned
model. Therefore, to reliable align the model the up vector needs to be de-
fined by the user. The other drawback is, that the voxel grid representation
of each orientation of every model has to be stored in database, this increases
the storage usage of the database.

The third method uses a convolutional neuronal network. Unlike the other
methods, these methods finds the alignment of an object, by matching the
scanning device pose against template poses. Using a neuronal network it is
possible, due to the use of training data with different instances of the same
class, to match a big spectrum of object variants in a class. A drawback
of this method is the need of training data and especially the time needed
to train the network. In particular the time needed to make the neuronal
network robust against camera rolling was too high. Therefore, another ap-
proach is used to find the correct pose including the camera rolling. It uses
again voxel grid, which have the drawback of being computational expensive
during execution time.

Overall this thesis tries to explain the current state-of-the-art in object detec-
tion and alignment. It does that by implementing several approaches which
can then be used in the resulting user application. This application provides
a simple way to create a virtualized scene from a real world scene.

This thesis can be seen as groundwork on which further experimentation and
research can happen.
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APPENDIX

A ESF Test Models

(a) book01 (b) book02 ) chair01 (d) chair02
(e) chest01 ) chest02 ) hammer01 ) hammer02

(i) table01 (j) table02 (k) teapot01 (1) teapot02

(m) trash01 (n) trash02 (o) wateringcan01 (p) wateringcan02

Figure 57: Models used to test the ESF descriptor (Figure 41).
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C Chair Single Trained

Figure 59: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation shows
clearly, that training the CNN with one objects is not enough, to get a good
descriptor.

Figure 60: This figure (clipped colour scale) shows that the main part of the
correlation forms a nearly horizontal line.
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Figure 61: Results of a query (first image pair) and the returned template poses found by the CNN trained with
one object. The results are sorted starting from the best match on the left side. Most of the queries return a wrong

first match and also the further matches do not contain the right pose.
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Figure 62: This Figure shows the queries (left image pair) for which the CNN trained with one object returned a

false match (right image pair).



D Chair Two Trained

Figure 63: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation forms
nearly a line with 45 degree pitch, which means that it would map the simi-
larity of the pose.

Figure 64: This figure (clipped colour scale) shows that there exists a few
outliers, which break out from the line.
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Figure 66: This Figure shows the queries (left image pair) for which the CNN trained with two objects returned a

false match (right image pair).



E Chair Three Trained

Figure 67: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation forms
nearly a line with 45 degree pitch, which means that it would map the simi-
larity of the pose.

Figure 68: This figure (clipped colour scale) shows that there are more outlier,
which break out from the line, than in the previous case, where the CNN
was trained with two objects.
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Figure 69: Results of a query (first image pair) and the returned template poses found by the CNN trained with
three objects. The results are sorted starting from the best match on the left side. It can be seen, that the first

match is not always the best matching pose.
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Figure 70: This Figure shows the queries (left image pair) for which the CNN trained with three objects returned a

false match (right image pair).



F Chair Upside Down

Figure 71: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation forms
nearly a line with 45 degree pitch, which means that it would map the simi-
larity of the pose.

Figure 72: This figure (clipped colour scale) shows that there exists a few
outliers, which break out from the line.
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Figure 75: This Figure shows the queries (left image pair) for which the CNN trained with two objects returned a

false match (right image pair).



G Hammer

Figure 76: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation forms
nearly a line with 45 degree pitch, which means that it would map the simi-
larity of the pose.

Figure 77: This figure (clipped colour scale) shows that there exists a few
outliers, which break out from the line, but with are still in the surrounding
of the line.
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H Table

Figure 81: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The main part of the
drawn correlation forms a line, although there are many outliers.

Figure 82: This figure (clipped colour scale) shows that there exists a lot of
outliers, which spread far away from the line.
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I Watering Can

Figure 86: This figure visualizes the correlations between the descriptor dis-
tance (Y-axis) and the similarity of the pose (X-axis). The correlation forms
nearly a line with 45 degree pitch, which means that it would map the simi-
larity of the pose.

Figure 87: This figure (clipped colour scale) shows that there exists a few
outliers, which break out from the line.
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