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Abstract

Automatic phonetic segmentation and labeling of recorded speech corpora has
several applications in natural language processing. Under optimal conditions,
state-of-the-art systems achieve an accuracy in this task that can be compared
with manual segmentation and labeling. Nevertheless there are many cases in
which these optimal conditions are not met. Non-standard pronunciation is one
scenario that poses a challenge to segmentation systems. This thesis investigates
segmentation and labeling of speech that has non-standard pronunciation. Au-
tomatic segmentation of a corpus containing three regional varieties of German
is performed. Specific rules are developed to cope with pronunciation variation.
Several improvements are added to the standard segmentation framework. Fur-
ther, the pronunciation of the vowels by six speakers is analyzed. In particular, a
method for vowel analysis and classification based on artificial neural networks
is proposed and applied to the corpus. A method for integrating the result-
ing phone classifier into an existing HMM/GMM-based segmentation system is
presented and implemented, resulting in a higher segmentation accuracy.



Zusammenfassung

Viele Anwendungen in der Maschinellen Sprachverarbeitung basieren auf der au-
tomatischen phonetischen Segmentierung und Annotation von Sprachkorpora.
Unter optimalen Bedingungen erreichen Systeme am Stand der Technik für diese
Aufgabe heutzutage eine beachtliche Genauigkeit, die vergleichbar mit der ma-
nuellen Segmentierung und Annotation ist. Jedoch gibt es viele Fälle, in denen
diese optimalen Bedingungen nicht erfüllt sind. Eine vom Standard abweichen-
de Aussprache ist ein Szenario, welches Segmentierungssysteme vor Probleme
stellt. Diese Masterarbeit untersucht die Segmentierung und Annotation von
Sprache bei vom Standard abweichender Aussprache. Eine automatische Seg-
mentierung eines Korpus mit drei regionalen Sprachvarianten des Deutschen
wird durchgeführt. Spezielle Regeln werden entwickelt, um mit der vom Stan-
dard abweichenden Aussprache zurechtzukommen und einige dieser Verbesse-
rungen werden im vorhandenen Segmentierungssystem implementiert. Weiters
wird die Aussprache von Vokalen der sechs Sprecher analysiert. Konkret wird
eine Methode für die Analyse und Klassifikation von Vokalen basierend auf Neu-
ronalen Netzwerken vorgeschlagen und auf den Korpus angewandt. Weiters wird
eine Methode, um diesen Lautklassifikator in ein existierendes Segmentierungs-
system zu integrieren, vorgestellt und implementiert, wodurch eine Verbesserung
der Segmentierungsgenauigkeit erzielt wird.
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Chapter 1

Introduction

Speech is the main form of human communication and can be described on
several levels of abstraction. From a physical perspective, speaking causes air
pressure changes over time in front of the mouth and produces a sound wave-
form. The sound waveform can be represented as an acoustic signal, containing
the sampled air pressure changes over time. From a linguistic perspective, the
acoustic speech signal contains a lot of information. The spoken text, the iden-
tity of the speaker, or the pronunciation and intonation of the different words
can be derived from this signal – just as humans do during the process of hear-
ing. The spoken text is usually of particular interest. It can also be considered
as an abstract level of description of the speech signal. The same text can be
realized by many different speech signals, even if spoken by the same speaker.

In natural language processing (NLP), human speech is processed by com-
puters and thus different levels of abstraction are involved. The text is among
the highest levels of abstraction of a speech signal. Going down the abstrac-
tion hierarchy there is a level of abstraction that is of particular importance in
NLP and that deals with the pronunciation of words: the phonetic description.
The field of phonetics describes the sounds that occur in the languages of the
world [Lad75]. The sounds that compose the smallest significant units of utter-
ances, i.e. that are able to distinguish one word from another in a language,
are called phonemes. Different acoustic realizations of a phoneme that do not
alter the meaning of a word are called allophones of that phoneme. The term
phone is generally used for the smallest phonetically identifiable segmental unit
of a speech signal. Each utterance can be phonetically described by a sequence
of phones. If this phone sequence consists of phonemes only, it is called phono-
logical transcription or phonemic transcription. In that case, the transcription
describes only the underlying sounds but not the details of their realization. If
the transcription accounts for all those details, it is called systematic phonetic
transcription. As an example for the difference, [Lad75] mentions the words cat
and catty. The first word is pronounced with a voiceless alveolar plosive (/t/) at
the end. Despite the relation of the second word to the first one, the consonant
near the end changes: it is usually pronounced voiced (as /d/). Thus the two
words have the phonological transcriptions /kæt/ and /kæti/ and the phonetic
transcriptions [kæt] and [kædi], respectively. For cat, the transcriptions are the
same whereas they differ for catty. The usage of the term phonetic transcrip-
tion is often ambiguous. It is a transcription that accounts for some level of
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allophonic detail, in contrast to the phonological transcription. If the level of
details is high, it is called a narrow phonetic transcription, if only few details
are accounted for, the term broad phonetic transcription is used [Lad75]. In this
thesis, when the level of detail is not important, the term phonetic transcription
will be used. Whenever it is important, one of the aforementioned terms will
be used. The common style of writing phonological transcriptions enclosed in
slashes (like /kæti/) and phonetic transcriptions in brackets (like [kædi]) will
also be followed in this thesis.

The phonetic segmentation of an utterance reveals the position and the
identity of its phones. It is a time alignment of the phonetic transcription with
the acoustic signal. In this thesis, the term segmentation is used for phonetic
segmentation of a speech signal unless otherwise noted.

The manual segmentation of speech is an elaborate task that becomes quite
time-consuming for large corpora. An automatic procedure alleviates the seg-
mentation task. A general advantage of automatic methods for speech segmen-
tation, apart from the cost and time needed for manual segmentation, is that
their segment boundaries tend to be more consistent than the ones produced by
human labelers.

Speech segmentation has various applications in speech processing, among
them the creation of the segmental units that are needed to train acoustic models
for automatic speech recognition (ASR). Training with a more accurate segmen-
tation leads to better models and to a higher performance of a speech recognizer
that uses these models. Another application is the accurate annotation of cor-
pora that should subsequently be used for unit-selection speech synthesis. In
this speech synthesis approach, the synthetic utterances are created by selecting
and combining already recorded units in a corpus.

Many automatic procedures for speech segmentation rely on the canonical
phonetic transcription of utterances. The canonical phonetic transcription is the
standard pronunciation and can be looked up in a pronunciation dictionary for
the language, inferred from phonological rules or both. In many cases, however,
the actual pronunciation can differ significantly from the canonical phonetic
transcription. Examples are spontaneous speech, dialects and regional language
variants.

An ideal automatic segmentation and labeling system for regional language
variants should be able to derive an automatic phonetic segmentation as ac-
curate as possible, with respect to phone boundaries and phone classification.
It should be based on the acoustic signal representation and its orthographic
transcription only. It should not be dependent on the canonical transcription
and perform an accurate segmentation for each realized pronunciation variant.
Ideally, it creates a segmentation even if only few data of a certain speaker of a
certain language variant is available and no accurate statistical modeling with
the data can be done. Such a system should account for pronunciation varia-
tion that is not covered by explicit rules known in advance. If enough data is
available, it should be able to derive new pronunciation rules.

In this thesis, research is done on speech segmentation and phone classifica-
tion. The focus is on aspects that can help improving a segmentation system in
a way so that it approaches some features of the described ideal system. The
starting point is the existing segmentation system of the company SYNVO that
is already able to perform a high-quality segmentation on other resources. It
should be adapted to be applicable to a corpus with regional language variants.
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The existing system uses a quite limited phone set that is not suitable for the
ADABA corpus used in this thesis. The ADABA corpus comes with recordings
of three regional variants of German (from Austria, Germany and Switzerland)
and very narrow transcriptions, i.e. it uses a comprehensive phone set. The
pronunciation rules used by the segmentation system are not optimal for the
ADABA corpus and thus should be extended. In parallel to the work on this
thesis, I developed an application program with a graphical user interface (GUI)
that facilitates the whole segmentation process at the company SYNVO. The
application serves as a tool for manual and automatic segmentation of speech
corpora. It is used to perform the automatic and manual segmentations done
in this thesis.

In addition, a method to extract articulatory features for phones is applied.
Especially for the vowels, the extracted features are analyzed in detail. A re-
search question is whether specific aspects of regional pronunciation variation
can be detected with this method. It is also investigated whether vowel clas-
sification can be improved by using the machine learning technique multilayer
perceptrons (MLPs) that learns the articulatory features tongue position and
lip rounding. Ideas on how these features can help to improve a segmentation
and labeling system are given. The features are compared to the well-known
formants. Phone classification with this method is compared to a classifica-
tion based on hidden Markov models (HMMs) and Gaussian mixture models
(GMMs). A combination of the HMM/GMM forced-alignment in the original
segmentation system with the MLP-based phone classifier is implemented and
evaluated.

The remainder of this thesis is organized as follows: Chapter 2 gives the
motivation for and some background information relevant to this thesis. In
chapter 3, a review of the literature of some existing systems is done. Chapter 4
introduces the used speech corpus. Extensions and improvements of the initial
segmentation framework are presented in chapter 5. The research on the vowel
classification task is treated in chapter 6. Evaluation and experiments are done
in chapter 7 and finally conclusions are drawn and an outlook for future work
is given in chapter 8.
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Chapter 2

Motivation and background

From a phonetic point of view, a spoken utterance can be described as a se-
quence of phones – its phonetic transcription. The goal of speech segmentation
is to segment and label an utterance into smaller segmental units. For this the-
sis, these segmental units are the phones and thus the segmentation finds the
boundaries of the phone sequence. To split the utterance into these phone seg-
ments, an accurate alignment of the speech signal and its phonetic transcription
must be done. If the phonetic transcription is known in advance, this task is
often referred to as phonetic alignment. The exact phonetic transcription is not
always known before the segmentation is performed. In many cases, when seg-
menting a single utterance or a whole corpus, all information previously known
is the speech signal and the text, i.e. the orthographic transcription of the ut-
terance. Using this orthographic transcription, a so called canonical phonetic
transcription can be created by looking it up in a pronunciation dictionary that
contains per-word transcriptions or by applying pronunciation rules. The task
of inferring a phonetic transcription from the text and subsequently aligning it
with the speech signal is also called text-dependent alignment.

The task of automatic phonetic segmentation of speech is a complex process
and its details can vary depending on the application. For this thesis, we deal
with speech corpora, a scenario where recordings of a speaker are done in a
controlled environment with a given text. Thus it is necessary to convert the
text to a phonetic transcription automatically. This transcription must then
be aligned with the acoustic signal. The resulting alignment partitions the
signal into a phone sequence: its phonetic segmentation. Design goals of the
whole process are accurate segment boundaries and a transcription that closely
matches the phone sequence actually produced by the speaker.

Automatic speech segmentation has been addressed many times in the past
and several systems have been proposed. Nevertheless there are various situ-
ations where segmentation systems run into problems. Such problems can be
caused by a lack of resources for the recorded language, e.g. missing pronun-
ciation rules or pre-built statistical models. An important factor that causes
problems is pronunciation variation. Pronunciation variation can e.g. occur
when a speaker uses a dialect or a regional language variant that differs from
the standard pronunciation. Regional pronunciation variation is often deter-
mined by the realization of the vowels. The principal dialects of English, for
example, do not have many differences in their consonants [Lad05]. Thus vowels
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are of particular interest for this thesis.
Often, speech segmentation systems assume that the pronunciation follows

a standard that can be looked up in a pronunciation dictionary. Sometimes
the systems model variation of the standard pronunciation. If so, they do this
by applying pronunciation variation rules that are already known. Therefore,
to achieve good segmentation accuracy, it is of particular importance to gather
knowledge about the systematic pronunciation variation of a certain language
variant and to integrate this knowledge into the segmentation system.

2.1 Phonetic transcription of speech sounds
The phonetic transcription of speech is a sequence of symbols where each symbol
represents a phone. There are numerous different phones that humans can
realize, but individual languages don’t make use of all possible phones. Different
languages have different phone inventories. The phones that are actually used
by speakers of a certain language are a language-specific subset of all possible
phones that are realizable by humans.

Nevertheless it is desirable to have a universally applicable symbol set for
phonetic transcriptions that covers all the phones that can occur. A stan-
dardized symbol set that meets this criteria is defined by the International
Phonetic Association (IPA). They publish the International Phonetic Alphabet
(also abbreviated IPA) [AC99]. It contains a comprehensive set of phone sym-
bols. Suprasegmentals and diacritics are used to modify nuances of the phones
(such as stress, nasalization, etc.). The IPA is commonly used by phoneticians
all over the world.

Due to the large symbol set, the IPA contains a variety of special char-
acters which can, unfortunately, still cause problems in many applications of
computer-aided speech processing. Due to this, alternative phonetic alphabets
were proposed. Their main goal is to provide a symbol set encoded in 7 bit
ASCII characters. In many cases, only a subset of the IPA symbols is rep-
resented in such alphabets, depending on the specific application. A famous
example for such an alphabet is the Speech Assessment Methods Phonetic Al-
phabet (SAMPA).

In this thesis, transcriptions are given in IPA unless otherwise noted. For
the work carried out, two machine-friendly phonetic alphabets are used: The
first one is an adapted version of SAMPA for Austrian German (SAMPA Aus-
tria) that is provided with the analyzed corpus (ADABA). The second alter-
native phonetic alphabet used is the SYNVOPA, developed by the company
SYNVO and thus used in the segmentation tool (described in section 5.4). The
alternative phonetic alphabets and their mappings to IPA symbols are listed
appendix A.

2.1.1 Articulatory phonetics
The phonetic transcription described above is based on a phone-level represen-
tation of speech. Although phones are used as smallest base units in many state
of the art speech processing applications, it has been argued that the phone may
not be the optimal smallest base unit [Ost99]. Articulatory features are a repre-
sentation of speech sounds at a sub-phone level. Each phone can be described by
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Figure 2.1: The human vocal tract. The figure is realized with the Vocal Tract
LATEX package [VSK12].

articulatory features. They are directly related to the speech production process
by the human vocal tract and describe the evolution of different articulators in
time during speaking. Figure 2.1 shows the articulators in a human vocal tract.
A more detailed explanation of the articulators in speech production and their
relevance to phonetics can be found e.g. in [Lad75] and [AC99]. In this section,
only a brief description is given to provide the necessary background for later
chapters. The relevant locations are marked with bullets: The vocal folds and
the glottis (1, 2), the lips (9, 10), the teeth (11, 12), the alveolar ridge (8), the
hard palate (6), the velum (5) and the uvula (4). Position (7) is the place of
articulation for post-alveolar consonants. If position (3) touches the back of
the pharynx, air only passes through the oral cavity, otherwise also through the
nasal cavity. The latter is the case for nasal vowels and consonants.

Each phone can be described as a vector of such articulatory features that
represents a specific vocal tract configuration necessary to produce the phone.
However, articulators may change asynchronously and not only at the phone
boundaries. Phones can be distinguished in two major categories, consonants
and vowels. For consonants, the airflow during speech production is disturbed
somehow, either blocked (as for plosives) or restricted. Vowels are voiced sounds
where the airflow is basically undisturbed. The vocal tract, however, has a
different shape for the different vowels. Especially the tongue position and the
mouth shape influence the resonance frequencies of the vocal tract during vowel
production. These are the articulators that are responsible for producing the
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different vowels.
Consonants can be described by the articulatory features manner and place

of articulation. They describe the manner of airflow disturbance and the position
where this disturbance takes place. Consonants are classified by the manner of
articulation into (see [JMK00]):

plosives where the airflow is entirely blocked for some time followed by a burst,
i.e. a sudden release of air

nasals where air is also passing the nasal cavity

fricatives where a narrowing is done by the articulators and causes turbulences
in the airflow

approximates are also done by a narrowing of articulators but without tur-
bulences in the airflow

taps or flaps are articulated in a similar way as plosives, however, there is
no airflow pressure that is blocked and thus now burst follows. They are
realized by movements of the tongue against the alveolar ridge.

Fricatives with a higher pitch are called sibilants, fricatives that follow plo-
sives are called affricates.

The following places of articulation are distinguished [JMK00]:

bilabial where the disturbance (in fact a blocking) of the airflow is done by the
lips

labiodental where the constriction is made by teeth and one lip

alveolar where the constriction takes place just behind the teeth

palatoalveolar where the constriction takes place at the end of the alveolar
ridge

palatal where the constriction takes place at the palate

velar where the constriction takes place at the velum (the soft part of the
palate)

uvular where the constriction takes place further back than the velum

glottal the constriction takes place at the glottis

Using this information, it is possible to describe phones by a few articulatory
features (place and manner for consonants, lip rounding and tongue position for
vowels). Another sub-phone phonetic description of speech that is similar to
this one is the concept of binary distinctive phonetic features and was described
in [CH68]. The individual features can be present or absent for each phone.
The set of distinctive phonetic features is used to distinguish individual phones.
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2.2 Regional varieties and dialects
There are several thousand languages in the world. For example, [Lew09] counts,
at the time of this writing, 6910 different languages. Nevertheless an exact
number is hard to give due to definition problems of the term language. Some
languages, such as German, are pluricentric languages and thus have different
standard varieties (e.g. for German, there are the German spoken in Germany,
Austrian German, Swiss Standard German, and the German spoken in certain
regions of other European countries) [Cly92]. These standard varieties differ
from each other. Nevertheless each variety is considered to be a correct standard
in the respective country. Further, most languages have several dialects, i.e.
varieties that typically do not have a standardized written form and are only
used in colloquial language. The boundary between the terms language, variety
and dialect is not always clear. A famous quote with unknown origin answers
the question concerning the difference between a language and a dialect with “A
language is a dialect with an army and a navy.”, indicating that the definition
and usage of the terms is influenced by politics and power too, and not only by
scientifically funded factors.

For speech processing applications, however, the exact boundaries of the
linguistic definitions are of less importance. In theory, if the necessary resources
such as corpora and pronunciation dictionaries are available, a speech processing
application can be build for any language, variety or dialect. Nevertheless, if
there are no or few resources available for a certain variety or dialect, only the
ones of the related standard language or a related variety can be used – resulting
in performance drawbacks.

An important linguistic aspects in which regional variants of a particular
language differ from each other, is the pronunciation of words. Often, dele-
tions of certain phones in specific contexts or substitutions of phones or phone
sequences with other phone sequences can be observed. This pronunciation
variation causes specific challenges to automatic segmentation systems.

2.2.1 Standard varieties of German
German can be considered as a pluricentric language [Cly92]. It is the official
language in Germany, Austria and Liechtenstein and one of the official languages
in Switzerland and in Luxembourg. Further it is a co-official language in some
parts of Italy and Belgium. In several additional countries it is recognized as a
minority language.

The national varieties have a lot in common, however, there are differences
that are considered as standard in their respective country. Differences can
be found in the vocabulary, in some grammatical concepts in spoken standard
language, in the accentuation of syllables and in the pronunciation of words.

Differences in the vocabulary denote words or phrases that do not occur in
all standard varieties of the language. Austrian specifics include many words
for food (e.g. Erdapfel in Austria versus Kartoffel in Germany) or vocabulary
related to state institutions, but the differences are not restricted to these two
areas.

Grammatical differences include the gender for some nouns and different
auxiliary verbs when composing the perfect for some verbs (e.g. English I sat
in German: Ich bin gesessen vs. Ich habe gesessen).
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Some words show a different accentuation pattern in different standard va-
rieties. For example, the word Kaffee is stressed at the first syllable in most
parts of Germany and on the second syllable in Austria.

And finally, there are phonetic differences, that is, variety-specific pronun-
ciation of words. For this thesis, the differences in pronunciation are the main
scope of interest. An analysis of pronunciation variants in Austrian German
was done e.g. in the thesis of Michael Baum [Bau03]. In his thesis, narrow
transcriptions for a large telephone database (Speech-Dat, see [BEK00]) were
performed. He identified various context-dependent systematic variations which
were subsequently used to improve the accuracy of a speech recognizer for Aus-
trian German. An example for a phonetic difference is the realization of the
phoneme /z/: In many regions of Germany it is actually pronounced as the
phone [z] whereas in Austrian German it is often realized as the unvoiced phone
[s].

2.3 Segmentation and labeling of speech
In many situations, the canonical phonetic transcription does not equal the
actual phonetic content of the utterance spoken. This phenomenon is called
pronunciation variation. A segmentation system has to take this variation into
account. When modeling pronunciation variation, not only the canonical pho-
netic transcription of a word is considered, but also alternative pronunciation
variants. A segmentation system then tries to align all possible phonetic tran-
scriptions with the speech signal. The best matching alignment then determines
the segmentation, which now not only identified the phone boundaries, but also
the best matching pronunciation variant. The main tasks of the underlying
algorithm thus are to

• perform a local acoustic-phonetic matching, i.e. determine how well the
speech signal at a given time matches a certain phone and identify the
best matching phone respectively

• perform a time alignment of the best matching phone sequence and the
speech signal

The latter is a well-known problem of aligning time series and can efficiently
be handled by dynamic programming algorithms. It has been addressed many
times, also in speech research, and the resulting concepts are similar in the
time alignment step and differ only in the way how the local acoustic-phonetic
matching is done. If the acoustic-phonetic matching is done using phoneti-
cally labeled reference-templates, an alignment algorithm called Dynamic Time
Warping (DTW) can be used. If the acoustic-phonetic matching is done by
comparing the speech signal to a statistical model of each phone, as usually
done in speech technology with Hidden Markov Models (HMM), an alignment
algorithm called Viterbi search can be used.

The raw speech signal is redundant from a phonetic point of view. Thus,
in speech technology, it is usually represented as a stream of acoustic features.
These features provide a more compact representation of the perceptually and
phonetically relevant parts of the signal. Alignment is then done between this
feature stream and the phone sequence. Figure 2.2 illustrates the phonetic
alignment.
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Figure 2.2: Alignment of a speech signal with the phonetic transcription of the
word garage. The transcription is given in SYNVOPA notation.

In the past, several systems have been proposed for automatic speech seg-
mentation. Often they are based on HMMs (see e.g. [Rab89]). The HMMs are
used to acoustically model the individual phones, often by using Gaussian Mix-
ture Models (GMMs) to model the acoustic observation sequence (the feature
vector stream) produced by the hidden discrete state sequence that represents
the phones. In the simplest case, the alignment is done by restricting a Viterbi-
search (see [For73]) to the phone model sequence of the known transcription.
In contrast to Viterbi-decoding in speech recognition, the best inter-model path
is assumed to be known, and therefore there is only one possible sequence of
models (assuming no pronunciation variants are considered). The algorithm
finds the minimum-cost alignment between the feature vectors and the states
of the model sequence and is thus able to estimate the location of the phone
boundaries. The phonetic transcription needed for the alignment is derived
from the orthographic representation which is assumed to be known for our
speech segmentation application. If this transcription is a single canonical pho-
netic transcription, there is a single model sequence that is aligned with the
feature stream. Alternatively, several pronunciation variants can be accounted
for. Then the search finds the boundaries as well as the model sequence path
that best matches the acoustic content. In figure 2.3, the input and output of
this operation is shown.

2.4 The speech signal
A speech signal is the sound waveform produced during the speaking process.
This sound waveform is highly redundant in a linguistic sense. Hardly ever two
realizations of the same utterance will result in the same sound waveform, even
if produced by the same speaker.

The sounds that can be produced in the speaking process are restricted by
the physiological characteristics of the human vocal tract. The physical process
involved in human speech production allows for specialized representations and
features when analyzing a speech signal. Some basic concepts that are exploited
are described in the following sections.
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Figure 2.3: Phonetic alignment of the speech signal with several possible tran-
scriptions of the word garage. The transcriptions are given in SYNVOPA no-
tation.

2.4.1 The source-filter model of speech
The source-filter model is a model for the speech production process. In this
model, the speech signal is generated by an excitation source and subsequently
passes a filter that models the vocal tract. The source and the filter are as-
sumed to be independent of each other. This model is of high importance in
speech processing as it approximates important aspects of the speech produc-
tion process. For voiced sounds, the physical equivalent of the source is the
vibrating glottis which produces a periodic signal. For unvoiced sounds, the
physical equivalent of the source is assumed to be approximately white noise
caused by the turbulent airflow coming out of the lung. The filter is realized by
the shape of the human vocal tract.

The source-filter model is also of interesting from a perceptional point of
view. Source and filter are of different importance for the perception of speech.
A vowel, for example, is produced by a periodic excitation source and a vocal
tract shape that does not substantially constrict the airflow. This shape, how-
ever, influences the resonance frequencies of the vocal tract, which are defining
the vowel’s identity. The source, on the other hand, does not significantly in-
fluence the identity of the vowel as long as it is a periodic signal. This becomes
apparent when considering the fact that the same vowel can be pronounced with
different pitches. Even if the excitation is not periodic, the vowel’s identity may
still be perceived correctly (e.g. when whispering, there is no periodic excitation
as the vocal folds don’t vibrate).

Thus, in speech processing applications, the separation of source and filter
is exploited. It is tried to separate parts of the signal that equal the filter in
this model from the parts that equal the excitation source.
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2.4.2 Formants
Formants are local energy maxima in the spectrum of a vowel. Their physical
interpretation are the resonance frequencies of the vocal tract. Therefore they
are of great importance for the vowel identity. The first few formants (defined as
the F-pattern in [Fan60]) are in general sufficient to distinguish between different
vowels of a speaker. The first and the second formant (F1 and F2) even have a
direct relation to physical properties of the vocal tract shape (see e.g. [Joo48]):
F1 is related to the backness of the highest point of the tongue and F2 is related
to the openness of the mouth in the vowel production process (sometimes F2-F1
is used instead of F2). Thus, when using appropriate scaling, a chart of the first
two formants resembles the vowel quadrilateral.

In [LHGR78], an algorithm was presented that is able to infer vocal tract
shapes for English vowels from the first three formant frequencies only. The
authors analyzed the tongue’s position at 18 points in the vocal tract from x-
ray images. They discovered that the tongue’s shape can be determined by
only two principal components, which they identified to be front raising and
back raising components of the tongue and that these two components can be
derived from the first three formant frequencies.

Nevertheless, the vocal tract shape and thus the F-pattern of a specific vowel
differs among speakers due to different anatomical properties. This makes them
speaker-dependent and hence some kind of normalization is needed if formants
are used in a speaker-independent speech processing application. Further, reli-
able formant estimation from the speech signal is difficult [BSH07].

In this thesis the formants are retrieved using the program Praat [Boe01].
This software estimates the formants by using Linear Predictive Coding (LPC)
with the Burg-algorithm (see e.g. [PTVF07]).

2.4.3 Feature representation of a speech signal
It has already been mentioned that the speech signal is redundant from a lin-
guistic point of view. The variation introduced by different vocal tract shapes,
ambient noise, intensity, pitch, speech rate, etc. usually has no influence on
the phonetic content of an utterance. Therefore, it is not a good choice to use
the sound waveform directly in speech processing applications that aim to ex-
tract phonetic content of an utterance. Instead, the goal is to use only relevant
information. During decades of research in speech processing, sophisticated fea-
tures were proposed that emphasize the perceptually and phonetically relevant
characteristics of the speech signal and that are highly invariant to the vari-
ation mentioned before. Among the most popular ones used today, there are
the Mel Frequency Cepstral Coefficients (MFCCs) [DM80]. To calculate them,
the speech signal is partitioned into overlapping windowed segments and this
segments are transformed to the frequency domain. The result is called spec-
trogram and provides a time-frequency representation of the signal. Then a
filterbank analysis is performed on the spectrogram. The filters are overlap-
ping and not equidistantly distributed on the frequency-axis. Instead they are
aligned on the Mel-scale to reflect the perceptual characteristics of the human
ear. The result is a sequence that contains the amplitude of the energy in each
filter-bank channel respectively. In the last step, this resulting sequence is trans-
formed to the cepstral domain by performing the discrete cosine transformation
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of the logarithm of the Mel-filterbank output. The representation of speech in
the cepstral domain is motivated by the source-filter model that sees speech as
a combination of an excitation source (the vocal-folds for voiced sounds and
random noise for unvoiced ones) and a filter behind (the vocal tract). Speech
sounds can be characterized better if explicit knowledge about the source and
the filter is available than from the raw waveform. In the model, the signal emit-
ted from the source undergoes the mathematical operation of convolution with
the filter’s impulse response in the time domain. In the frequency domain, this
operation becomes a multiplication. By using the logarithm, the multiplication
becomes an addition, or superposition. The separation of superpositioned se-
quences is approximately possible if they do not overlap too much. The discrete
cosine transformation ensures a good decorrelation of the individual features.

There are other types of features than MFCCs used in speech process-
ing. A frequently used example are Perceptual Linear Prediction (PLP) co-
efficients [Her90]. They share several characteristics with MFCCs (e.g. spectral
analysis and the use of a filterbank that reflects properties of the human au-
ditory system) and show comparable performance in various applications. For
details, refer to the literature. With a proper representation of a speech signal
by features as MFCCs or PLP coefficients, the foundation for various meth-
ods in speech processing is built. Relevant approaches for automatic phonetic
alignment are descibed in the following chapter.
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Chapter 3

Segmentation of speech
signals

This chapter presents an examination of the methods used in automatic speech
segmentation. The two alternative concepts behind the most common ap-
proaches are explained and existing systems based on these concepts are men-
tioned. Further, different approaches for dealing with pronunciation variation
are described.

3.1 Phonetic alignment
The alignment of a phonetic transcription with a speech signal can be done in
various ways. Most state-of-the art systems use hidden Markov models (HMMs)
for this tasks. As an alternative, the technique of dynamic time warping (DTW)
has also been used in the past. In the following subsections, the two methods
are explained briefly. For details, refer to the literature mentioned in the text.

3.1.1 Hidden Markov Models
Hidden Markov models have been applied successfully as statistical models to
various applications in speech processing. The basics concepts behind these
models are reproduced here briefly. For a detailed explanation of HMMs, please
refer to the literature, e.g. [Rab89].

A HMM is a statistical model for sequential data. The underlying process
is modeled by a state sequence which is not directly observable (hidden). The
transition between the hidden states of the sequence is assumed to follow a
Markov process. Thus, a future state depends only on the present state and not
on other states in the past. Even though the state sequence is hidden, each state
produces an observation that is visible. These observations are modeled by a
second random process. If the observation space is discrete, the model is called
discrete density HMM (DDHMM), if the observation space is continuous, it is
called continuous density HMM (CDHMM). For CDHMMs, Gaussian mixture
models (GMMs) are often used to model the observation probabilities.

A HMM is defined by the following properties:
• The set of states
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• The transition probabilities between the individual states, usually repre-
sented as a transition matrix

• The observation probabilities for each individual state. The observation
space can be discrete or continuous.

• A starting state for the state sequence

A HMM thus is useful if observed sequential data (the observation sequence)
is somehow connected to an unknown underlying second sequence (the hidden
state sequence). Frequently, the sequential data is time-series data.

In speech processing applications, the observed data is the acoustic signal
and thus a time-series signal. As mentioned in section 2.4.3, instead of using
the samples of the waveform directly, a feature representation is used. The
observation sequence is thus a time-series of feature vectors, extracted from the
acoustic signal at equidistant intervals.

The usual phonetic representation of speech is the phonetic transcription and
thus a sequence of phones. Therefore it is a good idea to do the acoustic-phonetic
modeling of speech by HMMs where the hidden state sequence represents the
phone sequence and the observations represent the feature sequence extracted
from the signal. As commonly used features have a continuous range, the ob-
servation space is continuous. Therefore, CDHMMs are used for the modeling.

It is common to use multiple states to model a single phone. This allows
the individual states to represent different parts of the phone. For example,
with a three state HMM the states can model the transition region from the
previous phone, a more or less stationary part and the transition region to the
proceeding phone. In this example, the three states of a phone are expected
to be in a defined order (the transition region to the proceeding phone is never
before the stationary part). Hence it is useful to restrict the possible transitions
between the states to be in forward direction. Often, the skipping of individual
states is forbidden too, leading to a so-called left-to-right HMM.

Usually, three common problems are described when applying HMMs in
practice [Rab89]:

Evaluation of the probability that a specific HMM produces an given obser-
vation sequence

Decoding of the most probable hidden state sequence that produces a given
observation sequence

Parameter estimation of an HMM by supervised learning. Numerous ob-
servation sequences belonging to a specific HMM are given as examples
during training.

The evaluation problem can be solved by the Forward-algorithm, the decoding
problem by the Viterbi-algorithm and the parameter estimation problem by the
Baum-Welch-algorithm. The algorithms are not be reproduced here, please refer
to [Rab89] for an explanation of them.

When using HMMs as models in speech processing, the Forward-algorithm
gives the probability that a particular model (for a phone, subphone, or word)
produced the given acoustic feature sequence. The Viterbi-algorithm is used to
find the best alignment between the feature sequence and the phonetic tran-
scription of an utterance. Alternative pronunciation variants can be considered
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too. The Viterbi-algorithm is applied when doing speech segmentations with
HMMs. The parameter estimation is used to create the desired models, e.g.
phone models that are used for further processing (such as speech recognition
or speech segmentation).

Frequently, each phone is modeled by a separate HMM. These HMMs are
trained via the Baum-Welch algorithm using data that is already labeled. When
the models are used for a decoding task such as speech recognition or speech
segmentation, they must be applied to larger units such as words or sentences.
To achieve this, the individual phone HMMs are connected together according
to the phonetic transcription of the utterance. A lattice of possible hypotheses
can also be produced this way. This is useful when multiple pronunciation
alternatives should be searched. A decoder then searches for the most probable
path through this lattice of HMMs. The resulting path equals the best matching
phone and state sequence for the utterance, given the lattice and the models.
When dealing with the lattice structure during alignment, extensions to the
plain Viterbi algorithm are necessary. An efficient solution to the decoding
problem when using such a lattice is to use an algorithm called token-passing
(explained e.g. in [YRT89]).

When using a HMM-based forced alignment procedure to segment a speech
corpus, the phonetic transcription of the utterance and its alternative pronun-
ciation variants define the search graph. To successfully apply the algorithm, a
precondition is, that models for all the phones in the search graph are available.
If no phone models for the speaker of the utterance exist, speaker-independent
models can be used instead. If speaker-independent models are unavailable too,
there are two options to get started: Either some data must be manually la-
beled and used to bootstrap the HMMs, or a so-called flat start approach can
be used. For the latter, a uniform segmentation is assumed to train the initial
acoustic models. With this acoustic models, a new forced-alignment can be
performed that will probably result in a better segmentation. The new segmen-
tation can then again be used to re-train the acoustic models and so on. This
iterative procedure is called embedded segmentation. Bootstraping of models,
the flat start approach and embedded segmentation are explained e.g in the
HTK book [YEG+06].

3.1.2 Dynamic time warping
Another possibility to align the speech feature vectors with a transcription is to
use reference templates instead of statistical models. When comparing a phone
to a reference template, the possibility of length differences must be taken into
account. An efficient way to solve this is dynamic time warping (DTW). DTW
performs the alignment of two time series while allowing a non-linear warping
of the time-axis. Basically this is done by:

• allowing a feature vector frame of the analyzed time-series to match with
several frames of the reference time-series

• allowing the algorithm to skip frames of one time-series

Using DTW for automatic segmentation, no statistical models of phones are
needed. Instead, reference templates of them are used for alignment with the
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Figure 3.1: DTW alignment of two feature streams.

feature stream of the utterance to segment. Individual templates can be con-
catenated to create a template for a whole utterance.

Figure 3.1 shows an example alignment path of two feature streams. It
can be seen that the two time-series may have different lengths. For a more
detailed discussion of the DTW algorithm and its properties, please consult the
literature, e.g. [SK83].

3.2 Existing systems for speech segmentation
Many existing speech segmentation systems are based on the alignment concepts
either DTW or Viterbi-alignment with HMMs, respectively. Another classifi-
cation of the systems can be made by the a-priori knowledge that the systems
require. Some systems expect nothing but the acoustical signal to be known.
They don’t need the text or the transcription of the utterances. Several ex-
amples for such systems are described in [EA05]. As these systems need to
perform unconstrained phone recognition (explained below in section 3.3), one
has to accept some performance drawbacks. Other systems expect the actual
phonetic realization of the utterance (a narrow phonetic transcription) to be
known. Given the phonetic transcription, a phonetic alignment method using
reference templates or HMMs can be applied. Frequently, segmentation systems
expect only the orthographic transcription to be known. In that case they in-
fer the canonical phonetic transcription from the text. Sometimes they assume
that the speaker follows the standard pronunciation and use the canonical tran-
scription directly for the phonetic alignment. More sophisticated systems try to
consider variation of the standard pronunciation in the alignment.

For this thesis, variation of the standard pronunciation is of particular im-
portance. Many regional language variants are under-resourced. They lack
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available speech corpora, models and pronunciation dictionaries. It is thus more
difficult to deal with regional language variants and their pronunciation varia-
tion using available frameworks for speech segmentation.

In the following sections, some existing systems for automatic segmentation
based on DTW and HMMs are presented briefly.

3.2.1 DTW-based speech segmentation systems
When segmenting a new utterance with the DTW algorithm, a reference tem-
plate for this utterance is needed. If the segmentation task has a constrained
vocabulary (e.g. single digits or a small set of words), it is possible to maintain a
database of pre-segmented reference templates for the whole vocabulary. But in
general it is infeasible to have reference templates for all possible utterances.
Nevertheless the templates can be generated synthetically by concatenating
smaller units such as phone templates. Using concatenated phone templates
has an additional advantage: The phone boundaries of the synthetic template
are defined by the concatenation locations. Thus no manual segmentation on
the template database is necessary (of course, to get the phone templates, a
segmentation has to be performed).

An early DTW-based segmentation system, however, works without refer-
ence templates. It is described in [Wag81]. A two-stage algorithm based on
DTW is used to segment an utterance, given its transcription. DTW is used
in both stages. The system uses no reference templates but a set of acoustic-
phonetic rules along with the features energy, voicing, the fundamental fre-
quency and the linear prediction coefficients (LPC). In the first stage, an ex-
panded version of the phonetic transcription is mapped to a rough acoustic
feature stream (voiced/unvoiced/silence features, and formants for the voiced
segments) by DTW. The local acoustic-phonetic matching is done by a table-
lookup of the distance between the acoustic categories (voiced, unvoiced and
silence) and the phonetic categories of the phone symbols (e.g. vowel, voiced
fricative, stop gap, etc.). Consider the example of the phonetic category stop
gap. In the cited work it is expected that the stop gaps are realized as silence
or as an unvoiced acoustic segment. As the silcence variant is considered to be
more likely, the distance of a stop gap to silence is set lower than its distance to
unvoiced. As the author does not expect the stop gap to be voiced, the distance
to this acoustic segment is set to infinity. In the second stage, the transcription
is expanded again to include transitions to and from the neighbouring segments.
This new expanded transcription is then mapped to the acoustic frames by using
a second DTW algorithm. This time, local matching is done by comparison of
the derivatives of energy and formants to their expected values, that are stored
in a table and depend on the phone transition.

[SS87] experimented with, among others, a template-based method. It uses
speaker-independent single-speech-frame reference templates for each phone.
The templates are concatenated according to the given phonetic transcription
and aligned with the unknown utterance by a dynamic programing algorithm.
Their results show that 92% of the boundaries lie within a 45 ms interval of
a manual reference. Gong and Haton [GH93] use DTW and perform speaker
adaptation to achieve a better match with the reference templates. [Cam96]
uses a speech synthesizer to produce reference templates for the automatic seg-
mentation of a Japanese corpus using DTW.
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In [MD97], the authors use a high-quality speech synthesizer that creates
an acoustic reference utterance from the given text. The phone boundaries in
the synthesized speech signal are known. The created reference utterance is
then aligned with the unknown utterance via DTW. The phone boundaries of
the unknown utterance can be determined by the mapping to the synthesized
utterance with boundaries. Several years later, the same authors compared
their DTW and speech synthesis-based approach with one that is based on
HMMs and Artificial Neural Networks (ANNs) [MDDR03]. Their results showed
that the DTW-based approach was inferior. Nevertheless, they emphasized the
advantage that the DTW-approach neither requires an initial segmentation of
the corpus, nor already trained models to perform such an initial alignment. As
a consequence they proposed to use the DTW-approach to perform the initial
alignment and to perform a refinement with the HMM/ANN approach.

Another interesting approach published recently that uses DTW is presented
in [GSCB10]. This segmentation system is based on unsupervised acoustical
clustering via DTW and Gaussian mixture models. The authors further apply
boundary refinement techniques after the core segmentation. The refinement
method applied depends on the phonetic classes of the adjacent phones. For
subsequent vowels, the acoustic similarity of consecutive frames is used to refine
the boundary in an iterative procedure. For boundaries with plosive or silence
phones the differential energy is used (for the plosives, a shorter window length is
applied than for the silences). For other phones, the differential energy and the
differential zero crossing rate is used. With their method, the authors achieve
84.7% of the boundaries to be within 20ms tolerance on the TIMIT corpus.

Several DTW-based segmentation systems have been proposed in the past.
However, none of them was able to outperform the best HMM-based approaches
discussed in the next section.

3.2.2 HMM-based speech segmentation systems
In [TW94], an automatic segmentation system called Aligner, that uses the
HMM-based forced alignment approach, was introduced. A phonetic tran-
scription and pronunciation variants are derived from the text via a pronun-
ciation dictionary containing more than 113000 entries. Segmentation is done
via HMM-based forced alignment. The extracted features are MFCCs with a
10ms frame shift: 12 cepstral coefficients and their derivatives as well as the
delta energy (the energy itself is not included). The authors evaluated their
approach on the TIMIT corpus. Comparisons of the boundaries with the man-
ually labeled TIMIT test set was not straightforward as the resulting phone
sequences of the aligner differed from then manual TIMIT transcriptions in one
out of three times. With doing a symbol mapping based on a heuristic using
phonetic features, however, they achieved around 72% agreement with the test
set for a tolerance of 16ms and about 91% agreement for a tolerance of 32ms.

The Munich Automatic Segmentation system [Sch99] (MAUS) is another
example for a HMM-based segmentation system. The framework generates a
lattice of pronunciation variants before doing the forced alignment with speaker-
independent models of the target-language. An iterative version of MAUS
(see [Sch04]) is also available. In this version, the first segmentation is used
to re-train the acoustical models. The resulting models better fit the target
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speaker and be used segment the corpus again. The re-training and segmenta-
tion is repeated until convergence of the boundaries is achieved.

The system in [Hos09] provides, to my knowledge, the best-reported results
on the TIMIT database (93.36% agreement within 20ms). In this approach,
transition-dependent states as well as additional features are used to improve a
baseline system. This baseline system consists of an HMM/ANN hybrid that is
trained on the TIMIT training set. Nevertheless this system required the exact
realized phoneme sequence to be known to achieve its considerable results (it
includes the ability to work with pronunciation variation based on a dictionary
and on rules, but no results are reported for this case).

In [MGF08], embedded training with a flat start approach is used as a first
iteration. Subsequently, isolated unit training is performed with the initial
segmentation result. Notable is that they use no hand-labeled bootstrap infor-
mation for training the models. In isolated unit training, each HMM is trained
separately using the labeled data corresponding to the trained model, in con-
trast to embedded training, where all HMMs are trained simultaneously using
all the data and a segmentation is done implicitly during training. They achieve
an accuracy of 83.56% on the TIMIT test set (for the 20ms interval).

The framework presented in [OCB10] is a segmentation system that aims
at being applicable to under-resourced languages too. The authors use acoustic
models based on articulatory features and argue that these models generalise
better across languages. In a first step, a forced-alignment of the given transcrip-
tion and given speaker-independent models is done. No phone models are used
in this step. Instead the authors use models trained on the place and manner
of articulation (see section 2.1.1). When using speaker-independent models, the
utterance to segment and the models do not necessarily use the same phone set.
Thus, when using phone models, some phones in the unknown utterance may
lack a corresponding phone model. This problem is usually solved by mapping
such phones to similar models. In the mentioned work, however, this problem
does not occur. The given phonetic transcription of the utterances to segment
is converted to two streams containing their articulatory feature transcription
first. By doing so, an implicit mapping between the phone set of the given
speaker-independent models and the phone set of the utterances to segment
is done. Of course, models for all possible articulatory feature values for the
place and manner of articulation are needed in that case, but this is easier to
achieve, as the space for each of the two features is quite limited. Further, the
use of models based on articulatory features ensures that more data per model
is available in the subsequent embedded re-estimation step than in the case of
phone-based models. The authors evaluate their system in two ways. They com-
pare a segmentation based on the articulatory feature models with one based on
phone models. Both model sets are trained and applied on the TIMIT corpus.
The phone based models perform better in this task. The second task is the
segmentation of a corpus with a different target language and a different phone
set. Monophone models for the target language are bootstrapped using a seg-
mentation based on manner and place models trained on the source language.
They perform better than monophones that resulted from training using a flat-
start approach. This work indicates that the approach of mapping to broader
phonetic categories like place and manner of articulation can help when dealing
with under-resourced languages. The result that phone-based models produce
more accurate segmentations than articulatory feature-based models indicate
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that the mapping may be improved further.
A typical state-of-the-art HMM-based speech segmentation system includes

the following modules:

Feature extraction. Features like MFCCs or PLPs are usually used as basic
input data for further processing as known from ASR applications. These
features are frequently combined with their delta- and acceleration coeffi-
cients. In ASR systems, it is common to extract them at a period of 10ms
using a window size of 25ms. The choices for ASR systems may, however,
not match the needs of segmentation systems perfectly. For example,
the time resolution of the forced alignment is limited by the frame shift
of the extracted features. The usage of additional features may improve
the accuracy too. Both adaptations are implemented in good systems
like [Hos09].

Pronunciation variation modeling. The application of the speech segmen-
tation system is not limited to cases where the realized phone sequence
of the utterances is known exactly in advance. Often, linguistic resources
provide the text along with the recorded utterances. In some cases, they
are created by giving the speakers the text they should read during the
recordings in advance. Such situations are, for example, the recordings
of corpora like the one used in this thesis (ADABA). Another example is
the creation of audio books. In other cases, recorded utterances are tran-
scribed textually at a later time. An example are recordings of telephone
conversations. The process of transcribing the recordings orthographically
is much faster than performing a manual phonetic transcription. In the
described scenarios the realized phone sequence is not known explicitly
and some means for dealing with variation from the canonical pronun-
ciation is needed. This can be done by a comprehensive pronunciation
dictionary containing multiple variants, by the usage of variation rules,
or by relaxing the constraints of the forced alignment in a way so that
the detection of additional, previously unknown, variants is possible (as
explained in section 3.3 and 3.4).

Initial segmentation. A HMM-based segmentation system uses forced align-
ment to determine the boundaries. The way in which the initial HMMs
are obtained is crucial for the segmentation performance. An improve-
ment over a simple flat-start approach either requires an existing segmen-
tation of a part of the utterances to bootstrap the acoustic models, or
existing models that can be used to perform an initial segmentation (e.g.
speaker-independent models). It should be noted here, that, while for
ASR applications context-dependent models are preferred, for automatic
segmentation also context-independent monophone models are used fre-
quently [TGG03].

HMM-based forced alignment. Once HMMs that fit the data to segment
are available, forced alignment can be performed by the Viterbi-algorithm.
The search space is constrained to the expected pronunciation variants.
During decoding, the variant and the boundaries that result in the maxi-
mum likelihood alignment are inferred.
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Boundary correction. Additional algorithms to correct the boundaries after
forced alignment can further improve the segmentation result. These al-
gorithms assume that the boundaries found by the forced alignment are
somewhere in the region around the true phone boundaries. They try to
move the boundaries closer to their optimum, often by exploiting addi-
tional features. See, for example,[KC02] for such a system.

Iterative retraining After a forced alignment and further corrections a rea-
sonably good segmentation should be the result. This segmentation, how-
ever, can now be used to train new HMMs that could subsequently be
used for another segmentation iteration which should now be better and
can again serve as basis for training new HMMs. Additional steps, such
as pronunciation variation generation or boundary correction are also re-
peated if desired. See the approaches in [RP05], [KC02], and [MGF08] as
examples where this concept is applied.

Apart from HMM- and template-based approaches, other segmentation sys-
tems have been proposed as well. An example is [vSS99], which explicitly detects
the boundaries between phones by using edge detectors on various features. The
detection is optimized for each diphone or alternatively for each diphone class.
The list of segmentation systems mentioned in this chapter is not exhaustive,
however, the described methods should give a good insight into the various
ideas that have been developed so far. For a more detailed analysis of different
segmentation systems, refer to [TGG03] and [Hos00].

3.3 Phone classification
In this thesis, the term phone recognition is used for the task of phonetically
labeling all feature vector frames belonging to an utterance when no prior in-
formation is given and no constraints are applied. Sometimes this is also called
frame classification. The term phone classification will be used for the task
of labeling phones, assuming that the boundaries are known in advance. The
figures 3.2(a) and 3.2(b) illustrate the difference.

The input for a phone classifier is a sequence of acoustic feature vectors that
belong to one particular phone and the output is the phonetic label of this phone.
A phone recognizer, on the other hand, labels all of its input feature vectors and
thus finds the labeling as well as the boundaries. Due to this, an unconstrained
phone recognizer’s performance is typically worse than that of a phone classifier.
A reasonably good speaker-independent phone recognizer would imply a good
labeling of all frames and thus a good segmentation. However, the best speaker-
independent phone recognizers still have error rates of about 25%. Additional
knowledge helps to improve accuracy. Usually, for ASR and segmentation ap-
plications, constraints are applied. A language model is used in typical ASR
systems to restricts the search. For segmentation systems, the given phonetic
transcription (optionally with alternative pronunciation variants) facilitates the
automatic alignment.

Unconstrained phone recognition can directly support a speech segmenta-
tion and labeling system in finding the label identities as well as the boundaries
between the phones. Phone classification, in contrast, could serve as an addi-
tional step after finding the boundaries to perform fine label classification. In
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Figure 3.2: Phone recognition and phone classification.
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this thesis, phone recognition and phone classification based on ANNs, with a
focus on vowels, is analysed. It is further investigated how this classification
may support an existing HMM-based segmentation system.

3.4 Existing approaches for modeling pronunci-
ation variation

The actual pronunciation of an utterance often differs from the canonical pho-
netic transcription. As mentioned in section 3.3, the phonetic transcription of
realized pronunciation in speech signal should be known to achieve reasonable
performance in a phonetic alignment task, due to imperfect recognition results
of unconstrained phone recognizers.

The modeling of pronunciation variation has been addressed in several con-
texts. In ASR, the Word Error Rate (WER) can be reduced by incorporating
models of pronunciation variation. Modeling pronunciation variation is usually
done at word or at phone level, but can also be done with articulatory features
(e.g. [BOW07]). A good survey of literature to pronunciation variation was done
several years ago in [SC99]. The authors decide to classify the approaches along
four characteristics:

• the type of pronunciation variation

• the information sources used

• the information representation

• the level of modeling

For the type of pronunciation variation, they distinguish between intra-
speaker and inter-speaker variation. Intra-speaker variation covers alternative
pronunciations of words by the same speaker, e.g. due to co-articulation effects.
Inter-speaker variation covers differences between several speakers of the same
language, e.g. based on their dialect or sociolinguistic factors. A speech seg-
mentation system for regional variants has to deal with intra- and inter-speaker
variation as the canonical transcription is commonly based on a single standard
variant.

The authors further mention information sources as a distinctive character-
istic of different approaches. In ASR, a distinction between knowledge-based
and data-driven methods for modeling pronunciation variation can be made.
Their main distinction is the starting point for handling pronunciation vari-
ation, whether this is the speech signal (data-driven) or linguistic knowledge
(knowledge-based). In knowledge-based approaches, phonological rules are used
to determine possible pronunciations. In the phonetic alignment step, all the
generated variants are then considered. In data-based approaches, a manual or
an automatic phonetic transcription is done and this transcription is considered
in the phonetic alignment in addition to the canonical phonetic transcription.
As manual transcriptions are time-consuming, the automatic solution is widely
used. The automatic phonetic transcription may be smoothed in advance to
limit the creation of incorrect variants [Wes03]. The whole approach could
appear a little unorthodox as a phone recognizer is first used to generate alter-
native pronunciation variants and subsequently used to chose from all variants.
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However, in [Wes03], it is argued that this approach is able to actually model
pronunciation variation. The author achieves improvements when smoothing
the automatic phonetic transcription with D-trees before adding the variants to
the recognizer, even if this recognizer is not the same one that was used for the
automatic phonetic transcription.

As the third feature to classify methods for pronunciation variation model-
ing, the authors of [SC99] use the information representation in the systems.
They distinguish between systems that formalize the knowledge and subse-
quently generate the pronunciation variants and systems that directly use the
variants without an explicit formalization. The information extracted from the
data may be formalized in a more abstract way e.g. as rewrite rules. This can
be done by aligning the canonical transcription with the transcription extracted
from the data by a dynamic programming algorithm and deriving abstract rules
from this alignment.

As the last criteria, [SC99] distinguishes at which level in an ASR system
the modeling the pronunciation variation is done: in the lexicon, the acoustic
models or the language model.

Most approaches that model pronunciation variation aim to improve the
performance of an ASR system. However, variation modeling that is able to
predict the realized phonetic transcription clearly can help to improve the per-
formance of an automatic segmentation system too, especially when applied to
data that may contain non-canonical pronunciations. For this thesis, dealing
with pronunciation variation is of particular importance as the analyzed corpus
contains regional language variants. The next chapter describes the used speech
database in detail.
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Chapter 4

The pronunciation
dictionary ÖAWB and the
phonetic database ADABA

The corpus that is analyzed in this thesis is the Austrian Phonetic Database
(Österreichische Aussprachedatenbank, ADABA) that is provided along with
the Pronouncing Dictionary of Austrian German (Österreichisches Aussprache-
wörterbuch ÖAWB/AGPD) [Muh07, Muh08]. The focus of the dictionary is
the Austrian variety of German. The dictionary contains around 42000 tran-
scriptions of common words for Austrian German. For almost 13000 entries,
transcriptions for the Austrian, the German and the Swiss standard variety are
included. All these entries are isolated words (with a few exceptions). Au-
dio recordings of six speakers are provided along with the transcriptions: two
speakers from Austria, two from Germany and two from Switzerland, for each
country a male and a female one. The Austrian speakers were determined in
an extensive selection process, the Swiss and the German speakers were pro-
fessional speakers of the radio stations Südwestfunk in Germany and DRS in
Switzerland.

The transcriptions in the database are manually obtained narrow phonetic
transcriptions for each of the six spoken versions of a recorded word. Even
though the dictionary itself claims that the transcriptions are not narrow, from
a technical point of view they are, due to the large phonetic alphabet used in
comparison with the the phonetic alphabet used in typical speech processing
applications for German. This means that the transcriptions, in theory, are
close to the actual realization of the words by the selected speakers. They
do not necessarily comply with some standard transcription. However, as no
officially acknowledged pronunciation standard for Austria exists, the approach
of transcribing representative speakers is practical. The dictionary claims to
represent a media presentation standard which is reflected in the selection of
the six speakers.

17 transcribers were involved in the transcription process. When taking dia-
critics into account, more than 140 different phones can be found in the phonetic
transcriptions. Some of them, however, occur very rarely. A reason for the large
phonetic alphabet could be that the transcribers of the database did not restrict
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Speaker Different phones Different phones (min. occurrence=5)
AT_M 143 86
AT_W 149 92
DE_M 140 90
DE_W 146 92
CH_M 139 81
CH_W 134 79

Table 4.1: Number of different symbols for each speaker in the ADABA and the
number of phones that occur at least 5 times.

themselves to a particular phone set but used the unrestricted IPA symbol set
(containing many diacritics and suprasegmentials) instead. Another reason may
be that insufficient consistency was achieved among the 17 transcribers. This
and other drawbacks have lead to some criticism in the literature after publica-
tion. In [Ehr09], a summary on this issue is given. The author’s main points
are inconsistencies, the used diacritics, wrong transcriptions and the usage of
multiple correct transcriptions for the Austrian variant. She also criticizes the
selection process for the Austrian speakers as being intransparent and heavily
biased as the female speaker for the Austrian variant was a main supporter of
the project too. The selection process of the Austrian speakers, however, is
explained in the dictionary, where it is further mentioned, in which stages the
female speaker was involved (in the pre-selection process). The final selection
from 8 male and 9 female candidates was done by a listening survey via internet
with 480 participants. As the selected female speaker is the head speaker of the
Austrian public broadcaster and thus has many years of professional speaking
experience, it is not unlikely that she is elected via such a survey.

Despite the criticized points, the project can be considered as the first at-
tempt to provide a pronunciation dictionary for regional varieties of German
from a pluricentric perspective and for Austrian German in particular on a
large scale. In addition, the audio recordings provided in the database make it
a useful resource for speech processing applications.

If only the phones that occur at least 5 times in the corpus are counted, the
total number of different phones is 128, considering the transcriptions of all six
speakers. Table 4.1 shows the number of different symbols for each speaker in
the ADABA. AT is used for the Austrian, DE for the German and CH for the
Swiss speakers, M denotes the male and F the female speakers. Some selected
phone frequency differences between the ADABA and the Duden transcriptions
are shown in table 4.2. One can observe major differences between the varieties
in the usage of phonetic symbols. Further, several phonetic symbols not present
in the Duden are used to emphasize certain pronunciation differences between
the varieties.

A problem encountered with the transcriptions in the database was that
they were not explicitly given for all words of all six speakers. Frequently,
only the male Austrian transcription was complete while the others contained
wildcards referring to another transcription. Table 4.3 shows some examples of
word transcriptions that use wildcards for the Austrian, German and the Swiss
variety. The symbols for the wildcards and their usage are inconsistent and
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Phone Duden ÖAWB AT ÖAWB DE
IPA % % %
[E] 4.02 0.07 2.79
[e] 1.97 2.80 2.65
[efi] 0.00 2.81 0.26
[@] 5.33 1.94 4.64
[9] 0.00 1.89 0.93
[3] 0.00 0.77 0.07
[I] 3.18 0.02 0.65
[i] 3.15 6.47 5.53
[z] 1.54 0.02 1.36

Table 4.2: Relative frequency of selected phones in the phonetic transcriptions
of the Duden and the ÖAWB. Differences in length and stress are ignored for
these numbers.

Variety ADABA line (SAMPA)
AT abbauen [0];[[ap"ba_(o.@\n]]/[[...ba_(on=]]
AT Abenteuer [0];[[a:b@\nto_(e6]]/[[a:bn=...]]
AT zylindrig [0];[[tsi"lindRik]], [[-iC]], [[tsy"lin-]]
DE dagegen [0];[["da:ge:gN=]]-[[da:"..]]/[[+]]-[[da:"...]]
DE dabei [0];[["daba_(e]]-[[da"ba_(e]]/[[-]]-[[+]]
DE Gelegenheit [0];[[g@"le:g@nha_(et_>]]/[[..gN..]]
DE Hubschrauber [0];[["hupSRa_(oba]]/[["hub_0...b6]]
DE Weltmeisterschaft [0];[["vEltma_(estaSaft]]/[[..t6..]]
CH Scheibenwischer [0];[["Sa_(eb@\n%viSa]]/[[..bm=..]]

Table 4.3: Some examples how different wildcards are used in the ADABA
transcriptions.
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ambiguous. Thus an automatic completion of the transcriptions was impossible
without incorporating further knowledge on the syllable and on the language
level. In table 4.3, some problems are indicated. Symbols for placeholders
include hyphens and arbitrary numbers of dots. They can refer to an alternative
variant spoken by the same or by a different speaker. They can appear at the
beginning, in the middle and at the end of a word or at multiple positions.
When placeholders are used, the remaining, explicitly written phone symbols
do not provide sufficient context for an automatic script when considering the
phone level only. The symbols for separating speakers and variants of a word
are not consistent (hyphens, commas, slashes) and sometimes ambiguous.

Nevertheless, some cases were identified where the intended meaning could
be identified unambiguously using the wildcard information only and thus an
automatic expansion via a script was applicable. For the remaining few thou-
sand words, the transcriptions were manually completed by the author in a quite
time-consuming process.

4.1 Characteristics of the Austrian variety in
the ÖAWB

The ÖAWB contains transcriptions of three regional varieties of German with
a clear focus on the Austrian variety. In chapter D of the ÖAWB several char-
acteristics of the Austrian variety are claimed. The ones that are related to the
six speakers of the isolated word corpus are reproduced here:

• the replacement of the vowels [I], [Y] and [U] with their closed forms [i],
[y] and [u]

• a more closed realization of the vowels [E], [O] and [œ]; therefore the sym-
bols [efi], [ofi] and [øfi] are used

• the usage of three different middle-positioned vowels ([@], [9] and [3]),
instead of only using a single schwa-vowel [@]

• the realization of the German diphthongs as [>oe] (and sometimes as [>øfie]),
[>ao] and [>ae] instead of using the Duden symbols [>Oy], [>aU] and [>aI]

• reduced voicing or absence of voicing for the phoneme [z]; thus the symbols
[s] and [s

ˇ
] are used

• a still strong but reduced aspiration of the plosive [t] compared to the
other varieties

• numerous differences when pronouncing certain pre- and suffixes and the
post-vocalic [r]; some of them can also be found in [Bau03], for a detailed
list consider the ÖAWB [Muh07]

The Austrian specifics are reflected in different transcriptions of the ÖAWB
word list. An exception are the diphthongs: Even though the different diphthong
realization is claimed to be a characteristic of the Austrian variety in chapter
D of the ÖAWB, the change of the diphthong symbols is also done for the
transcriptions of the other varieties.
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Chapter 5

Segmentation of the
ADABA corpus

The previous chapter described the ADABA corpus that is used in this thesis.
One goal of this thesis is an automatic segmentation of all six speakers in the
isolated word corpus of the ADABA. During my employment at the company
SYNVO, I worked with the SYNVO segmentation system that is also applied in
this thesis. In this chapter, the segmentation system and necessary adaptations
for the ADABA corpus are explained.

5.1 Choosing a segmentation system
The chosen approach for speech segmentation with pronunciation variants re-
quires the speech signal and the text of the utterance as main input. The text is
then converted to the canonical phonetic transcription by a text analysis module.
This module analyzes the text as a whole and outputs the phonetic transcription
including information on phrasing, stress and intonation. The internal details
of the module are not relevant for this thesis, however, the generated phonetic
transcription is based on the Aussprache-Duden [MI00].

To account for pronunciation variants, rules describing variability of the pro-
nunciation are used. Applied in the segmentation process, this rules generate
multiple pronunciation variants of the text. All generated variants are then con-
sidered in the alignment process. The method describes possible pronunciation
variants as variations to the canonical phonetic transcription of an utterance.
An alternative would be to generate the different variants based on the ortho-
graphic transcription.

The used speech segmentation system is based on the approach described
in [RP05]. In this paper an automatic speech segmentation system for mixed-
lingual prosody databases is developed with the goal of replacing a manual
segmentation process. This system is HMM-based and uses an iterative forced-
alignment approach to successively improve the segmentation quality. Initial-
ization of the HMMs is done with a flat-start approach, using the canonical pho-
netic transcription of the utterances. Thus no initial segmentation is needed.
Subsequently, in each new iteration, embedded re-estimation of the HMMs with
the transcription of the last iteration is done. In the first iteration, the canonical
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phonetic transcription is used. The rule-based approach that is used to model
pronunciation variation is also able to deal with inter-word phenomena.

The segmentation system described in [RP05] was enhanced in the last years.
Initialization is not done with the flat-start approach anymore but by using an
initial segmentation derived from a forced-alignment with speaker-independent
models. This leads to a better initial segmentation. The speaker-independent
models used for the initial segmentation step in this thesis are part of the
SYNVO segmentation system.

In the segmentation system, after each iteration, the segmentation and label-
ing is corrected in a post-alignment step by using additional features. A speech
type segmentation is done to extract features about the voicing or silence of
segments, resulting in the classification of segments as voiced, unvoiced, silence
or irregular. For the voiced segments, a period segmentation is performed. The
details of this period segmentation are explained in [Rom12]. This additional
segmential features are then used as input to the correction step after the forced
alignment. The performed corrections are configurable and depend on the ex-
pected quality of the segmentation after the forced alignment and the expected
quality of the additional features. The possible post-alignment corrections in
the segmentation system are:

Period alignment: The boundaries of voiced segments are aligned with the
period segmentation.

Segment deletion: Very short segments with a small loglikelihood are deleted.

Voicing correction: Voiced plosives can be replaced by their unvoiced coun-
terparts based on the voicing information in the additional features.

Silence correction: Silence segments resulting from the forced alignment are
trimmed to the silence boundaries in the speech type segmentation.

Align speech types: The segment boundaries are aligned with the boundaries
of the speech type segmentation.

Preplosive pause insertion: Plosives are split into two labels: A closure seg-
ment and a burst segment.

Glottal closure correction: Glottal closures resulting from the forced align-
ment are deleted if the speech type segmentation shows no evidence for
them.

Breathing correction: Before and after breath segments, a silence can be
inserted based on the speech type segmentation.

Figure 5.1 shows an overview of the segmentation system.
This system works quite well for the automatic segmentation of corpora.

Moreover, by using just the initial iteration with speaker-independent models
it is possible to segment single utterances for new speakers even if no corpus is
available for these speakers. Needless to say, the segmentation accuracy achieved
by a forced-alignment procedure with speaker-independent models can not be
expected to be as accurate as the iterative procedure that is possible if more
data is available. In combination with the post-aligment boundary correction
step, however, considerable results can be achieved.
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Figure 5.1: Overview of the segmentation system. In the first iteration, the
HMMs are existing speaker-independent HMMs. In subsequent iterations they
are estimated via embedded re-estimation.

The segmentation framework makes use of the Hidden Markov Model Toolkit
(HTK, see [YEG+06]). The speech signal and the canonical phonetic transcrip-
tion of the utterance are assumed to be given (the latter is generated from the
text by the text analysis module). The additional features mentioned above
(the speech type segmentation and the period segmentation) are extracted in
advance. In the first iteration step, acoustic features are extracted from the
speech signal. The feature extraction is performed in every iteration. In the
first iteration, the features have to match the speaker-independent models used.
In the subsequent steps, the features have to match the models trained from
scratch with the data to segment. For further iterations, however, already ex-
tracted features with the same configuration are reused. The acoustic features
in the first iteration are MFCCs with 13 cepstral coefficients (including the 0th
coefficient), delta and acceleration coefficients, resulting in a total number of 39
features. Cepstral mean normalisation is performed on the features. The win-
dow size is 25 milliseconds and the frame shift is 10 milliseconds. For further
iterations, user-configured features can be used. The default is to use MFCCs
with 24 cepstral coefficents, the log energy and their deltas.

In the next step, pronunciation variants of the utterances are generated
according to iteration-specific pronunciation rules. The generated variants are
represented in the Standard Lattice Format (SLF) of HTK. Starting from the
second iteration, bootstrapping and embedded re-estimation of new models is
done. Then, forced alignment is performed using the HTK-tool HVite with
the variant lattice and the features as input. The forced-alignment results in
the maximum-likelihood segmentation and labeling. This segmentation and
labeling is passed to the post-alignment correction that corrects the boundaries
by incorporating the additional features extracted before the iteration loop.
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Figure 5.2: Pronunciation lattice of the word verstehen.

The algorithm described in this chapter is able to perform automatic speech
segmentation of larger corpora as well as of under-resourced material such as
a single utterance. During preliminary experiments it was observed that the
boundaries for the unvoiced segments were significantly better than for the
voiced ones. The speech type features show no new evidence on voiced-voiced
boundaries and thus no further correction in the post-alignment step could be
performed. When the framework is applied to a corpus with regional pronunci-
ation variants as done in this thesis, further difficulties occur. First, pronunci-
ation variation rules specific for the variants are missing and second, the phone
inventory of the segmentation algorithm may not match that of the variants.

5.2 Pronunciation variation modeling
Dealing with variability of speech is essential for a good automatic segmentation
and labeling system. The variability caused by regional variants is not covered
by a standard system that does not model the actual kind of variation. In
section 3.4, two possibilities to deal with pronunciation variation were described:
knowledge-based and data-driven. Generic pronunciation rules model some of
the variation that appears in regional language variants. However, phenomena
that are specific to a variation are not covered by such rules. Therefore, rules
for the new variant have to be identified in advance.

In this thesis, a rule-based system is used. The generic rules from the segmen-
tation framework are extended with variant-specific rules from the literature.
The rule-based system converts the canonical transcription to a variant lattice
which is then used during the forced alignment. The paths though this lattice
represent possible realizations of the utterance. As an example, assume that the
word verstehen (engl. to understand) has the canonical phonetic transcription
/fErSte:@n/ and several pronunciation variants for the first syllable: [fEr], [fE5

“
]

and [f5]. Assume further that the schwa vowel in the last syllable is optional.
Then the pronunciation variant lattice looks like in figure 5.2.

Before the forced alignment is performed, the phone symbols are mapped
to the model names. If a symbol has no corresponding model, a mapping to
a similar model (or a sequence of models, e.g. for diphthongs) is done. The
mapping is performed by a predefined mapping file. This file has entries for all
expected phones and matches them with existing models. If a new phone occurs
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during the segmentation, the user is asked to add a new entry in the mapping
file.

The conversion from the canonical transcription to the variant lattice is done
using so-called two-level rules [Kos83]. Two-level rules build a relation between a
lexical form and a surface form. In this context, the lexical form is the canonical
pronunciation and the surface form is a realized pronunciation. All phones in
two level rules are written in SYNVOPA notation (see appendix A). An example
for a two-level rule is:

’C’/’k’ => ’I’ _ ’#’ ;

This rule is interpreted as follows: On the left side of the operator =>, the
lexical/surface replacement is defined, and on the right side, the context for
the replacement is described. The above rule means that a [ç] (in the lexical
form) preceded by [I] on a word end (here represented by the symbol ’#’) can
optionally be realized as a [k] (in the surface form). This is a common rule
for German pronunciation. For example, the word wenig (meaning few in En-
glish) can be pronounced as [ve:niç] or as [ve:nik]. The first part of the rule
(’C’/’k’) specifies the lexical and the surface forms, separated by the slash
symbol /. In the rule above, this part is followed by the operator => and the
context specification (here ’I’ _ ’#’). In this context string, the symbol _ is
a placeholder for the considered symbol pair from the left side of the operator.
The placeholder is preceded by its left context (here ’I’) and followed by its
right context (here the word boundary symbol ’#’). The symbols used for the
left and right context can also specify the lexical and the surface form, just like
it is done on the left side of the rule. It is thus possible to define a left context
like ’i:’/’I’ which refers to the symbol i: in the lexical and I in the surface
form. The operator defines how the rule is applied. Possible operators are:

=> The modification on the left side implies the specified context. That means
that the replacement is only possible in this context. However, the speci-
fied context also permits other forms. This operator can be used to define
optional replacements.

<= The context implies the modification. No other modification is possible in
this context. The same modification, however, can be triggered by other
contexts.

<=> The modification implies the context and the context implies the modi-
fication. This is a combination of the above operators. It means that the
specified replacement is applied if and only if the given context matches
and that the given context must lead to this and only to this replacement.

Another example for a two-level rule is gemination, i.e. the lengthening of
consonants when they occur doubled in the orthographic transcription. For
example, the rule:

’s’/@ => _ ’#’/? (’s’|’S’|’z’|’Z’);

means that the phone [s] can optionally be deleted at word ends if it is followed
by another word starting with [s], [z], [S] or [Z].

In the segmentation framework, all specified two-level rules are compiled into
a finite state transducer. The transducer is then used to generate pronunciation
variants from the canonical phonetic transcription.
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Speaker Transcription
Austrian female ap"bi:gN

"Austrian male ap"bi:g@n
German female ap"bi:g@n
German male ap"bi:g@n
Swiss female Pa >p.pi:g@n
Swiss male "?a;pi:g9n

Table 5.1: Pronunciation variants of the German word abbiegen.

A data-driven extraction of knowledge for a regional language variant means
that rules should be generated from available data and subsequently applied to
consider new variants. How this is done is highly dependent on which and how
much data is available. In the ADABA corpus used for this thesis, for several
words, more than one pronunciation variant can be observed per region or even
per speaker. For example, the German word abbiegen (to turn [left or right])
has the phonetic transcriptions (according to the ADABA) for the six speakers
as shown in table 5.1 in IPA notation.

From this variant instances it would be possible to derive new variants for
the same word by incorporating for each speaker also the variations that others
made. For example, the ending [gN

"
] that the Austrian female speaker made

could also be considered for the other speakers in an automatic segmentation
and labeling process. Thus one variant for the swiss female speaker would
become: [Pa >p.pi:gN

"
]. Nevertheless, this approach was not applied in this thesis,

as the decision was made to use the Aussprache-Duden transcription instead of
the ADABA transcription as starting point.

To use the initial segmentation framework described here for the ADABA
corpus, some adaptations were necessary. Additionally, in parallel to the work
on this thesis, a software-tool that facilitates the segmentation process was de-
veloped by the author at the company SYNVO. Its development as well as the
adaptations of the initial framework are treated in the next sections.

5.3 Applying the segmenation framework to the
ADABA corpus

The initial segmentation framework is already capable of performing automatic
phonetic alignment of a corpus. Nevertheless, segmenting the ADABA corpus
with this segmentation framework poses some new challenges. The phone set
of the framework is smaller than the ADABA phone set. In chapter 4 it was
mentioned that the ADABA comes with a very narrow transcription, using more
than 140 different phones. Thus, definitions for the additional phones are added.
Further, a mapping of all phones to the phoneset of the speaker independent
models used for the initial segmentation is defined.

The rules of the segmentation framework for generating German pronunci-
ation variants are not optimally suited for the ADABA. One might think that
the narrow phonetic transcriptions of the ADABA corpus make the use of pro-
nunciation variation rules redundant. However, the mentioned drawbacks of
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Figure 5.3: HMM adaptation.

the transcriptions in chapter 4 and manual verification of some transcriptions
of the corpus indicate that the provided phonetic transcriptions should not be
considered as error-free. Consistency among 17 manual transcribers is hard
to achieve, especially when using such a large phone inventory as done in the
ADABA corpus. An automatic approach that starts from a different canonical
phonetic transcription and incorporates pronunciation variation rules can be
consulted in a consistency and correctness check of the manual transcriptions.
Hence well suited pronunciation rules are desirable.

In [Bau03], several systematic differences of Austrian German to the canon-
ical pronunciation were identified. The differences are used in this thesis to
extend the pronunciation rules.

An additional improvement can be achieved when the speaker-independent
HMMs of the first iteration step are adapted to the characteristics of the speaker
of the current corpus. This can be done via a technique called Speaker adapta-
tion. Speaker adaptation uses data of a target speaker and changes the model
parameters to better fit this adaptation data. As opposed to the training of
speaker-dependent models, fewer data is needed to perform speaker adaptation.
Adaptation can be done in supervised or unsupervised mode, depending on the
availability of labeled adaptation data. Supervised adaptation uses the labeled
adaptation data to adapt the models before using them in the decoder. Unsuper-
vised adaptation can be done directly during the decoding. The unsupervised
approach has the advantage that it can be used online during the decoding of a
new speaker without the need for previously available material for this speaker.
Nevertheless, if applicable, the supervised approach leads to better results. As
the automatic phonetic segmentation of corpora is done offline, supervised adap-
tation is the best choice for this task. The approach is implemented using the
HTK, and uses the labeling resulting from the initial segmentation step as a
basis. Figure 5.3 shows the model adaptation steps. The .lab files denote the
segmentation from the initial iteration, using the speaker-independent HMMs.
For details on the adaptation process, see e.g. the HTK book [YEG+06].

As mentioned before, in the framework used for segmentation, speech type
features are used to correct the segmentation boundaries in a post-correction
step. This usually leads to an improvement of the segmentation accuracy. How-
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ever, this approach also had some disadvantages. The movement of boundaries
based on local information only (as opposed to the forced alignment, which al-
ways considers the overall cost of a possible alignment path) can lead to more
serious errors when the speech type segmentation is wrong. While in many cases
the post-correction improves the quality of the segmentation, in some cases, the
segment boundaries are better without this step, after the forced alignment only.
Thus an approach that better combines the forced alignment with its overall cost
minimization on one hand, and the speech type features on the other hand, is
desirable.

Other existing systems, some of them already mentioned in chapter 3, move
away from the traditional way of using a GMM for obtaining the observation
probabilities of a speech frame given a particular model (as it is implemented
in popular speech recognition software, like HTK). Often a HMM/ANN hybrid
is used instead of the HMM/GMM approach (e.g. in [Hos09]). This means that
ANNs are used to estimate the observation probabilities.

This leads to the idea of directly using the speech type features in the forced
alignment step. There these features can be considered as additional observa-
tions and therefore contribute to the observation probabilities. As the HTK tool
HVite is used for the forced alignment, the options to achieve this are to either
use the (limited) capabilities of additional feature streams, to change HTK’s
source code or to re-implement the decoding from scratch. For more flexibility
and due to the lack of documentation for the HTK source code, the last ap-
proach was chosen. The decoding is re-implemented in Java. A token-passing
algorithm (see [YRT89]) was used to allow the forced alignment on a variant
lattice. Attention is paid to be compatible with the HTK formats. Thus the
inputs to the decoder are still a variant lattice in HTK’s SLF format and HMMs
in HTK’s model format, and the output is a HTK label file. When calculating
the observation probabilities for a specific feature frame and model, the speech
type features are now taken into account.

First, for each phone, a probability that the speech type is one of its four
possible values (voiced, unvoiced, irregular or silence) is estimated. During
decoding, when considering each HMM, the observation probability resulting
from the GMM is multiplied with the probability resulting from the speech
type and the phone for the considered HMM. This product can be interpreted
as the joint probability of the two when assuming independence.

5.4 The speech segmentation tool
As an employee at the SYNVO company, the author developed for SYNVO a
speech segmentation tool with a GUI that simplifies the segmentation process.
The tool is also used to perform experiments for this thesis. Therefore, a short
summary on it is given here. The requirements for the tool are:

• port the segmentation framework from a shell script based workflow to
Java, and use of external calls for tools like HTK if appropriate

• automate and simplify the automatic segmentation process of a corpus

• manage utterances and corpora in an explorer-like navigation view
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• display the waveform, spectrogram of utterances; load and display several
labelings of segmented utterances

• implement zoom and scroll functions for the shown utterances

• allow the manual editing and saving of segment labels and their boundaries

• integrate an error-log to simplify debugging of segmentation errors

• manage configurations for segmentations and segmentation iterations

• play/pause/continue the playing of utterances and segments of them

• show the variant lattice and the best selected path during the forced align-
ment

• implement a plugin-mechanism that permits an convenient extension pos-
sibility for the tool

It was decided to develop in Java and to use the Eclipse Rich Client Plat-
form (Eclipse RCP) as basic framework for the software. The Eclipse RCP
allows developers to base their end-user applications on the same framework
as the Eclipse Integrated Development Environment. It contains the following
components [ML05]:

• Eclipse Equinox, an implemenation of the Open Services Gateway inter-
faces (OSGi) specification [WHKL08],

• the eclipse core runtime

• the Standard Widget Toolkit (SWT), a graphical widget toolkit that uses
the platform’s native GUI compontents and thus provides a native look
and feel to the end user

• a plugin-mechanism

• JFace, which adds more abstraction to the SWT and provides components
like dialogs, viewers, wizards, etc.

Based on Java and Eclipse RCP, the software can run on multiple operating
systems and only requires the Java Runtime Environment to be installed. To
use the automatic segmentation functionality, however, HTK and Matlab must
be installed.

5.4.1 System architecture
The high-level architecture of the software is shown in figure 5.4. Only the most
important modules are shown. Modules of the software roughly correspond with
Java packages. Some helper classes are spread across multiple packages.

Segmentation control logic: The control logic implements the segmentation
algorithm. Parallel execution of most sub-tasks is possible. The module
is divided into the master control logic and the individual segmentation
subtasks.
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Figure 5.4: The main modules of the segmentation tool.

Commands: Contains classes for the sub-steps of one segmentation it-
eration. This can be the feature extraction step, the embedded
re-estimation step or the post-processing step of the segmentation
framework.

Data model: Representation of resources used in the software, like utterances,
corpora, etc.

IO: Parsers and writers of different file formats such as HTK label files, HTK
model files, feature files, etc.

GUI: Consists of the submodules

Commands: Contains executable Eclipse RCP Command classes that
implement actions triggered by the GUI.

Views: Eclipse RCP Views for displaying data without providing editor
capabilities. An example is the view for the pronunciation lattice.

Editors: Eclipse RCP Editors such as the Utterance editor that is respon-
sible for displaying the waveform, spectrogram and label annotations
an that permits the editing of label boundaries.

Navigations: Eclipse RCP views such as the CorpusExplorer that dis-
plays the different corpora and utterances.

Tools and helper classes: Several general purpose classes, e.g. for audio
playback or logging functionality.

A central part of the software is the Utterance editor. It displays the acousti-
cal waveform, the spectrogram and different label annotations. Zoom functions
for the waveform in horizontal and vertical direction are implemented. Differ-
ent labelings (i.e. segmentations) can be loaded for an utterance. A user can
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Figure 5.5: The segmentation software SYVNO Corpus Workbench. The corpus
AT_M is loaded and its utterances are listed on the left. One utterance is shown
in the editor along with a phonetic segmentation and the spectrogram. The
phonetic labels are in SYNVOPA notation.

select individual segments (phones) and listen to them. The segments and their
boundaries can be edited. The user can explore the waveform, the spectrogram
and the fundamental frequency curve and compare different segmentations.

5.4.2 Usage
Figure 5.5 shows a screenshot of the software. A corpus is loaded and its ut-
terances are listed in the Corpus explorer on the left. The currently opened
utterance (MADRID_AT_M_1) is displayed in the main area of the program. A
segmentation is loaded and the phone segment a is selected. The spectrogram
is displayed at the bottom of the program’s window.
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Chapter 6

Vowel classification

The previous chapters explain how to build a speech segmentation system and
how this system can handle pronunciation variation. Nevertheless, some men-
tioned problems when dealing with regional pronunciation variants remain. The
standard phone inventory of the segmentation system may not be appropriate
for the variant considered. The pronunciation variation module may not detect
certain phone variants due the limited number of phone models. If only few
data per phone is available for a regional variant, no new phone models can be
trained and no general pronunciation rules can be extracted from the data. In
this case, a phone classifier can help in supporting the detection of the right pro-
nunciation variant. Preliminary experiments showed that the system described
in chapter 5 is able to deal quite well with consonants of regional variants given
the standard phone inventory and pronunciation rules. For vowels, however,
there is room for improvement. Therefore, the focus of the phone classification
system will be on vowels.

6.1 Articulatory features for classification
Several studies propose that the use of knowledge of the speech production pro-
cess should be able to improve the performance of speech processing systems.
In [KFL+07] a comprehensive overview of work on incorporating speech produc-
tion knowledge into ASR systems is given. Articulatory features as described
in section 2.1.1 are examples for speech production based features. They have
a direct relation to the phonetic content of an utterance and promise to be very
helpful for speech processing applications. The drawback is, however, that they
usually can not be observed directly.

In [Kir99] an attempt is made to incorporate articulatory features in ASR,
including a pilot study for small and large vocabulary recognition. A number
of independent multilayer perceptrons (MLPs) is used to estimate five different
articulatory features: voicing, manner of articulation, place of articulation, the
relative position of the tongue on the front-back axis and lip rounding.

For vowels, the articulatory features are the tongue position and the lip
rounding. The tongue position is described by the terms tongue backness and
tongue height. These features are reflected in the axes of the IPA vowel quadri-
lateral In figure 6.1, the vowel quadrilateral as defined by the IPA is shown.
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Figure 6.1: Vowel chart according to the International Phonetic Association.
The vowels to the left of a point are unrounded, the ones to the right are
rounded.

The descriptions along the axes of the IPA chart indicates that the location
of the vowels in the chart is related to the tongue position. The x-axis is labeled
with the three positions Front, Central and Back, the y-axis is labeled with the
four positions Open, Open-mid, Close-mid and Close. The tongue height thus
ranges from close to open, the backness from front to back. The lip rounding is
not directly indicated by the position in the chart. If, however, a rounded and
an unrounded vowel exist for one position, the right one is always the rounded
version and the left one is unrounded. The chart represents a quite abstract
description of the tongue’s position as the absolute and relative positions are
not covered exactly [AC99].

Classifying vowels by using the isolated acoustic signal segment for that
vowel only (i.e. without having the context) is difficult. Even humans make
confusions in this case [PB52].

The acoustic features formants have been described in section 2.4.2. There
is an interesting relation between the articulatory features tongue position and
the formants. [Joo48] noted that there is a notable match between the vowel
quadrilateral and the first two formants. Example ranges for formant values
of various speakers are shown in table 6.1. The table shows typical values
of the first two formants for some vowels. The values are based on the work
in [Wee06] and are reproduced here to give an idea of the formant range for
different vowels. The differences between male and female speakers can clearly
be observed. Additionally, there is a high inter-speaker variability, also between
speakers of the same sex. The high variability together with the problems
of their robust estimation makes formants not optimally suited to use as sole
features for a vowel classification task. They can, however, be used as additional
features.

If the first two formant frequencies F1 and F2 are plotted (F2 on the x-axis
and F1 on the y-axis, running from right to left and top to down for increasing
values), the similarity to the IPA vowel quadrilateral becomes obvious. Some-
times the difference of the two formants (F2 − F1) is used instead of F2 on the
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Vowel F1 (male) F1 (female) F2 (male) F2 (female)
u 275–361 305–448 560–748 578–842
a 696–921 692–1047 1244-1478 1333–1695
o 392–557 457–608 692–961 857–1109
A 642–723 596–964 988–1218 1023–1386
ø 357–505 443–579 1385–1675 1529–1917
i 255–318 268–374 1984–2390 2060–2873
y 248–348 282–436 1504–1846 1391–2134
e 357–509 435–559 1748–2198 1950–2642
Y 388–499 397–549 1307–1639 1630–1900
E 502–645 495–787 1679–2024 1897–2326
O 395–531 462–785 662–837 690–1010
I 353–429 369–511 1888–2269 2217–2636

Table 6.1: Typical ranges for the first two formants (extracted from 10 male
and 10 female speakers from [Wee06]).

x-axis. An example for such a plot can be found in the evaluation section of
this thesis in figure 7.4.

It has already been mentioned that a direct observation of articulatory fea-
tures is usually not feasible. Nevertheless, databases exist, where such features
have been recorded in addition to the acoustic signals by means of a laryngo-
graph and/or an electromagnetic articulograph. An example is the MOCHA
database [WH00]. For many applications, however, direct measurement is not
practical. Therefore, prior to the usage of articulatory vowel features in a speech
processing application, these features must be estimated from the acoustic sig-
nal. The relation between the acoustic speech signal and the articulatory fea-
tures can be non-linear and non-unique [NAE08].

The estimation of the articulatory features tongue position and lip rounding
is a feature-transformation with dimensionality reduction. Acoustic features,
which usually have more than 10 dimensions (such as MFCCs) are transformed
to articulatory features with three dimensions (tongue height, tongue backness
and lip rounding). It is hypothesized that the new features allow for a better
classification of the vowels as they a) represent production-oriented principal
components of the phone and b) have a straightforward interpretation in the
articulatory space.

6.2 The multilayer perceptron
For different experiments performed in this thesis a so-called multilayer percep-
tron (MLP) is used. A MLP is a special kind of an artificial neural network
(ANN). ANNs are computational models inspired by the structure of the hu-
man brain and are used in machine learning. They are structured as directed
graphs where the node elements are called neurons or perceptrons. A neuron
transforms a linear combination of its input values to an output value by means
of a so-called activation function. The coefficients of the linear combination are
called weights.
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Figure 6.2: Multilayer perceptron with one hidden layer.

A MLP is a feedforward ANN consisting of several layers. The nodes in
each layer share the same inputs. Two subsequent layers are fully connected,
i.e. each output node of the first layer is connected to each input node of the
next layer. Figure 6.2 shows a MLP with four input units, five hidden units and
one output unit.

Design parameters of an MLP are the number of layers, the number of nodes
in each layer and the activation function for the nodes. Parameters that are
adapted during the learning phase of an MLP are the set of all neurons’ weights
and biases.

MLPs are often applied to machine learning problems that require super-
vised learning. This means that during training, input examples are presented
to the inputs and corresponding target examples are presented to the outputs.
Thus correctly labeled examples are needed for supervised learning. For unsu-
pervised learning problems, on the other hand, no labeled examples are needed.
Unsupervised learning finds patterns or clusters in the data.

MLPs can approximate arbitrary non-linear functions between inputs and
outputs. The output nodes have a continuous value range. This makes MLPs
well suited for regression problems, where the target value space is continuous.
However, they may also be applied to classification problems, where the target
value space is discrete. In this case, the network is designed in a way that each
output node estimates the a-posteriori probability for a particular class (and all
output values sum up to one).

Training an MLP is an iterative process. During each training step, the
weights are adapted in a way that the error between its output values and the
presented target values decreases. The process is repeated until a previously
specified stopping-criteria is satisfied. The error is measured via an objective
function. During training, the goal is to minimize the objective function.

Once trained, the MLP is usually applied to new input data, i.e. data, that
has not been presented during training. A well-performing MLP should be able
to generalize to new data. This means that the output values for previously
unseen input values are a good approximation of the true target values. This
implies that the MLP does not just memorize the training examples but learns
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Figure 6.3: Topology of an autoassociative neural network.

an underlying function instead. The effect of a lack in generalization by only
memorizing the training examples is commonly referred to as overfitting. To
ensure proper generalization, a subset of the data, the evaluation set, is left
out from the minimization of the objective function in the training process.
Then, after each iteration step, the objective function is not only evaluated on
the training set, but also on the evaluation set to estimate the performance
of the MLP on unseen data. When, after several steps of training, the error
on the evaluation set increases, the training is stopped to prevent overfitting.
Nevertheless it is possible that overfitting on the evaluation set takes place, as it
is not completely left out during training but used to evaluate the performance
after each step, even if the influence of the evaluation set during optimization
should be weak. Therefore another independent subset of the data, called the
test set, is left out to assess the performance of different MLP that have finished
training.

The selection of a proper minimization algorithm is another important as-
pect when training an MLP. An algorithm called standard backpropagation in
combination with gradient descent for optimization is often used for this pur-
pose. However, in many cases, other non-linear optimization techniques, like for
example scaled conjugate gradient, might be more helpful [Sar97].

A special flavor of neural networks are so-called autoassociative neural net-
works [Kra92]. Figure 6.3 shows the basic topology of such a network.

These networks are able to learn in an unsupervised manner. No problem-
specific labeled examples for the outputs are needed to train them. Instead,
during training, the input values are presented to the inputs and the outputs of
the network. Thus the network learns to map the input values to themselves.
The network must have the same number of output nodes as it has input nodes.
Of course, the fact that the network is able to predict the same values that are
given as inputs does not make much sense alone. The interesting capability of
autoassociative neural networks lie in their hidden layers. Such a network has at
least three hidden layers. The middle one is the one with the smallest number of
nodes in the network and thus enforces a compression of the input data before
the mapping to the output nodes is done. It has been shown that these networks
are able to perform a nonlinear principal component analysis [Kra91]. The
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reduced data components are present at the outputs of the middle hidden layer
nodes. The number of nodes in this layer determines the number of nonlinear
principal components. Thus these networks are well suited for dimensionality
reduction.

In this thesis, articulatory features that were mentioned in section 2.1.1
and 6.1 are estimated by using an MLP. It is analyzed whether they can help
in analyzing the ADABA corpus and if they can be used to improve a speech
segmentation system. In addition, an autoassociative neural network is used to
estimate non-linear principal components of acoustic features. These principal
components are then compared to the articulatory features. The next section
explains the feature estimation in detail.

6.3 Feature transformation using a multilayer
perceptron

Artificial neural networks have been used successfully in many machine learning
and pattern recognition applications. For details on ANNs, refer to e.g. [Bis96].
In this work, it is proposed to use a MLP for the transformation of an acous-
tic feature stream (e.g. MFCCs) to articulatory features. For vowels, the ar-
ticulatory features are tongue height, tongue backness and lip rounding, for
consonants, they are manner and place of articulation.

The motivation of experimenting with a MLP for the estimation of articu-
latory features is as follows: The mapping between the acoustic and the artic-
ulatory space is considered to be non-linear [NAE08]. MLPs are able to deal
well with regression problems for arbitrary non-linear target functions. Fur-
ther, other studies suggest the application of MLPs for this task too. In the
work [MNEW+10], trajectory mixture density networks (TMDNs), feedforward
artificial neural networks (FF-ANNs), support vector regression (SVR), autore-
gressive artificial neural networks (AR-ANNs) and distal supervised learning
(DSL) are evaluated on the task of what the authors call speech-inversion, i.e.
recovering articulatory information from the speech signal. In this study, a FF-
ANN performs best for estimating vocal tract variables from acoustics. The
authors mention that the inferred features contain estimation noise. Thus the
recovered articulatory traces should be smoothed somehow in a postprocessing
step. These traces are a time series of articulatory parameters and contain un-
certainty. Additional information is available from physical constraints: Due to
physical limitations, the actual articulatory traces are not able to change faster
as around 15Hz. This information can be incorporated to reduce the uncertainty.
In the cited study, a Kalman-filter is used for the smoothing. Kalman-filtering is
a typical solution for the problem described, i.e. a physical model that predicts
the values in addition with a series of uncertain measurements.

Using ANNs for articulatory feature estimation is the application of a super-
vised learning method. For a supervised learning approach, correctly labeled
training data is required. For the current task this would require a training
set of examples that have time-aligned articulatory features on the audio sig-
nal. In many cases, however, such data is not available because the articulatory
features are not directly observable (for this reason a ANN is used to estimate
them). Thus the only possibilities are either to use training data that comes
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with recorded articulatory features as mentioned above or to derive the target
values approximately from a previous phonetic segmentation. For practical rea-
sons, the latter approach was chosen for this thesis. When using this approach,
one has to bear in mind that the phonetic label stays the same for the entire
phone segment, while the articulatory features are likely to change.

In related work where articulatory feature estimation is done by ANNs, of-
ten a separate MLP with only one output node is used for each feature (e.g.
in [Kir99]). This is partly motivated by the reduced complexity of each indi-
vidual network, partly by the argument, that independent features are modeled
better by independent MLPs. As in this thesis a strong focus is on articulatory
vowel features, it is checked if this assumptions still hold. For vowels, there
are only the three articulatory features tongue height, tongue backness and lip
rounding. The MLP is not expected to become too complex when using only
three output nodes. Further, the independence of the features, particularly the
two for the tongue position, can be questioned. Open vowels are more restricted
in the range of their horizontal tongue position than closed vowels, which can
easily be seen when looking at the IPA vowel quadrilateral in figure 6.1. Thus
there is obviously a dependence between these two features. Preliminary exper-
iments showed that a single MLP with three output nodes is well suited for this
task and therefore, this approach was chosen.

6.4 Classification
Estimating the articulatory features results in probabilities for the different
articulatory feature classes if discrete features are used, or in points in a contin-
uous feature space if continuous articulatory feature values are used. In either
case, in order to perform phone classification, the estimated articulatory fea-
tures must be combined to result in a single phonetic label. This can be done
in various ways. If a continuous feature space is used, a possibility is to mea-
sure the distance to each possible phone of the considered phone inventory in
the articulatory feature space. As this distance can be measured for each fea-
ture frame, averaging over the phone’s length can be done. An alternative to
simple averaging is to model the time trajectories in the articulatory feature
space. This could be done via a DTW-comparison with a reference phone in the
articulatory feature space or with HMMs trained on the articulatory features.
Another option to combine the estimated articulatory features to phones is to
use MLPs again. This approach is chosen in [Kir99]. The inputs are the proba-
bilities of discrete articulatory features and the targets are the probabilities for
the different phonetic classes.

In this thesis, however, the used feature space for vowels is continuous. The
outputs of the articulatory-feature MLP define a geometric point in this fea-
ture space. The reference phonetic classes (the vowels) can be defined as points
in this space too. Trajectories in this space are interpreted as estimations of
the movements of the articulators tongue position and lip rounding. They may
carry important information about the phonetic quality, especially for diph-
thongs. For single vowels, however, we have the hypothesis that the average
position in this feature space is a sufficiently good estimation for the perceived
vowel class. If this assumption holds, this approach has the advantage that it is
not necessary to have a trajectory model for each possible vowel in this feature
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space. Further, if it is assumed that the feature space is euclidean and that
geometric distances in this articulatory space are correlated to different percep-
tions of vowel quality, then no modeling of the articulatory feature distribution
needs to be done and vowels can be identified by comparing the euclidean dis-
tances to the nominal vowel positions and choosing the closest one to label the
vowel. The reference models reduce to points represented by the nominal values
(or the means/medians) of a vowel class. Variation to this points represents
perceptional difference and the closest reference point can be assumed to define
the vowel class. The euclidean distance is calculated as follows:

de =

√√√√ n∑
i=1

(xi − µi)2

xi represents the ith articulatory feature component of the considered feature
value and µi is the mean or nominal value of this component for the considered
vowel class. However, if the vowel clusters are assumed to have different vari-
ability, another distance measure like the Mahalanobis distance might be used
as well:

dm =
√

(x− µ)T ·Σ−1 · (x− µ)

In this equation, µ represents the mean value vector of the respective vowel
class and Σ equals the covariance matrix of this vowel’s articulatory feature
values. The Mahalnanobis distance accounts for different covariance matrices
of the individual classes when calculating the distance. For example, consider
the following situation: An observed point has the same euclidean distance to
two cluster centers. One of this clusters has a large variance whereas the other
one has a relatively small variance with most of the cluster samples close to the
mean. Then the Mahalanobis distance to the cluster with the large variance
is shorter than for the cluster with the small variance. In this thesis, it is
experimented with both distance measures.
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Chapter 7

Evaluation

In the previous chapters, the speech segmentation system and the approach for
phone classification were described. They are used to perform various experi-
ments on the ADABA speech corpus to evaluate their usefulness. The prepa-
ration of the evaluation, the experiments and their results are described in this
chapter.

7.1 Setup
The experiments make use of the ADABA corpus described in chapter 4. This
database is useful for the scope of this thesis due to its large isolated word corpus
of three regional varieties of German and its included phonetic transcription.
A drawback of the ADABA corpus is that only a transcription, but no manual
segmentation is available, i.e. the exact alignment of the phone sequence with
the signal is unknown. For evaluation purposes, however, a manual segmenta-
tion of at least some entries is needed. Further it is necessary to quantify the
deviation from the reference segmentation. The manual reference segmentation
and remarks on evaluation measures is described in this section.

7.1.1 Reference data preparation
Thus, to create an evaluation set for experiments, 25 words of each speaker were
selected. The total of 150 words were re-transcribed and segmented manually
by the author. Manual segmentation is a laborious process as many boundaries
need to be moved by hand and the corresponding segments need to be listened
to repeatedly. Further, the main criteria to set the phone boundaries for the
individual segments is the subjective impression of the listener. Therefore and
if no systematic process is followed, a manual segmentation tends to be more
inconsistent than an automatic one. To ensure a higher level of consistency,
guidelines for the manual segmentation process are established. These are de-
fined as follows:

• General rules

– For periodic segments, the period boundaries are defined to be lo-
cated at the local negative maximum of the repetitive signal part.
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The boundaries of voiced segments should be aligned with the pe-
riod boundaries.

• Unvoiced plosives

– They start after exceeding a certain silence floor.
– They end at the period boundary before the first period of the next

phone, if applicable.
– Preplosive pauses are removed if they occur after silences.

• Voiced plosives

– They start at the first period boundary of the plosive.
– They end at the period boundary before the first period of the next

phone, if applicable.
– Preplosive pauses: They cover all breathy periods before the first

period of the plosive.

• Voiced/Voiced boundaries

– They are always set at a period boundary.
– They are always set close to the center of the spectral transition

region between the two voiced phones.

• Voiced/Unvoiced boundaries

– They are always set at a period boundary.
– They are set close to the center of the spectral transition region

between the two phones.
– If some periods at the boarder of the periodic part of the signal are

deformed, this periods are part of the unvoiced phone.
– If there is a mixture region, the boundary is set in the middle of it.

• Unvoiced/Unvoiced boundaries

– The boundaries are set in the middle of the spectral transition region
or at the spectral transition point.

• Voiced/Silence boundaries

– They are set in the middle of the breathy region.
– They are set at the last period boundary.

• Unvoiced/Silence boundaries

– They are set at the transition point to the silence floor.
– They are set at the point where perception is not possible anymore.

• Silence/Silence boundaries

– Such boundaries are not allowed. Consecutive silence segments are
merged to a single one: Pre-plosive pauses are merged into neighbor-
ing silence segments.
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In addition to the segment boundaries, the phone labels are changed too
during the manual segmentation. A close manual phonetic transcription is per-
formed, i.e. the actual realization of each phone (its surface form) is tran-
scribed. Especially for vowels and when using a large phone set, consistency is
not easy to achieve among multiple iterations of manual labelings. Repeated
cross-comparisons of segments need to be done. To facilitate this task, a set of
reference phones for several vowels for each speaker is defined. They are used
for the perceptive comparisons during the manual transcription. The following
procedure is used to find these reference phones:

1. All phones in the given phonetic transcription that have no corresponding
speaker-independent model in the segmentation framework are mapped to
similar phones.

2. An initial segmentation for the corpus using the speaker-independent mod-
els and the available transcription is performed. For the purpose of ob-
taining reference vowels, the ADABA transcription is used.

3. For each reference vowel, the five phones with the highest loglikelihood
after the forced alignment are identified. This is independently done for
each speaker.

4. Different people listen to all the identified examples and each of them
judges them with a subjective score (0, 1 or 2, where 2 is the best). For
this thesis, the adviser and the author perform the scoring.

5. The phones with the highest overall score are defined as reference phones
for the respective vowel.

The reference vowels are identified by this procedure. It is applied for the
cardinal vowels ([i], [e], [E], [a], [A],[O], [o], [u]), the rounded front vowels and the
schwa. It is expected that other vowels can be interpolated from these vowels.

With the resulting reference phones, the manual relabeling is performed by
the author by listening to the segments and comparing it with the reference
phones. For this process, the segmentation tool described in section 5.4 is used.

7.1.2 Evaluation measurement
The automatic segmentation system is evaluated by comparing its results to
the manual labelings. In automatic segmentation, manual segmentations often
serve as a gold standard. Nevertheless, different human labelers produce differ-
ent segmentation boundaries and different labels. As a consequence, usually the
intra-human difference is considered as an upper boundary that an automatic
system can achieve. For example, in [Hos09], the intra-human boundary agree-
ment was reported to lie between 93.5% and 96% within 20ms, depending on
the conventions used for the labeling.

The criteria used for the evaluation of the automatically determined segment
boundaries is the percentage of agreement with the manual segment boundaries
on the test set. The agreement is reported with respect to a certain interval.
Frequently, a 20ms interval is used, as done in various studies mentioned in
chapter 3. In this thesis, several intervals, among them 20ms, will be used to
report agreement with the manual alignment.
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7.1.3 Phonetic distance measurement
Just like the segment boundaries, the phonetic labels need to be evaluated with
respect to the manually labeled test set. Therefore a distance measure between
phonetic transcriptions is needed. The Levenshtein distance is a string-edit
distance which is based on a dynamic programming algorithm. It allows for
the efficient computation of the best overall alignment between two strings by
using insertion-, deletion- and substitution-costs. It does not only provide the
alignment, but can also be used to measure the distance between two strings.
Thus it is also applicable to compare two phonetic transcriptions.

In phone and vowel classification experiments, a relabeling of the phones
in the transcription is done, without changing the boundaries. Therefore only
substitutions of symbols are expected for such an experiment. In this case the
number of substitutions is equivalent to the Levenshtein distance.

The number of substitutions between the automatic and the manual pho-
netic transcription, however, may not be the best choice for a distance measure
in this case. Consider the example where two vowel classifiers transcribe a vowel
that has the correct transcription [e]. The first classifier transcribes it as [E] and
the second one transcribes it as [u]. The number of substitutions increases by
1 in either case even though one would consider the second mismatch as more
severe. Therefore a better distance measure that considers the phonetic simi-
larity of the substitution is desired. Phonetic similarity can easily be observed
in the articulatory feature space. A phonetic distance therein provides a more
appropriate distance measure than the number of substitutions.

The phonetic distance measure used is simply the euclidean distance in the
articulatory vowel feature space with the dimensions backness, openness and
roundness. The three feature values are defined over a range from -1 to 1.

7.2 Experiments
Several experiments are performed and evaluated for this thesis:

• Automatic segmentation of the ADABA isolated word speech corpus for
all six speakers

• Training and evaluating MLPs as articulatory feature estimators, espe-
cially for vowels

• Analysis of the vowel distributions of the ADABA using MLPs and for-
mants

• Comparing the performance of MLPs and HMMs on a vowel classification
task

• Analyzing the diphthong realizations of the six speakers

• Analysing the voicing of serveral consonants

• Integrating MLPs for articulatory feature estimation in the segmentation
algorithm and evaluating the performance
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Figure 7.1: Segmentation results after the first iteration, compared with the
manual segmentation.

7.2.1 Segmentation
One goal of this thesis is the automatic phonetic segmentation of the ADABA
isolated word speech corpus. Furthermore, this segmentation serves as a basis
for the phone classification experiments. The automatic segmentation is done
with the tool and the framework described in chapter 5. Pronunciation rules and
phone mappings are adapted to the ADABA. The segmentation is performed
using the transcription provided with the ADABA as well as with the standard
pronunciation. The standard pronunciation is obtained by using the text analy-
sis module of the segmentation framework and is based on the transcription in
the Aussprache-Duden [MI00]. Around 95% of the entries in the isolated word
corpus of the ADABA can be transcribed with the text analysis module. The
remaining words are ignored in all experiments. While the ADABA already pro-
vides a narrow phonetic transcription of the recordings, the Aussprache-Duden
only offers the canonical phonetic transcription. As the ADABA is a corpus
containing regional language variants, pronunciation variation with respect to
the canonical transcription is expected. To account for the expected variation,
more pronunciation rules were used when using the Duden transcription as a
basis.

Pronunciation variation for regional language variants of German has al-
ready been investigated in [Bau03] with the goal of improving ASR for regional
varieties of German. In this work, the Austrian and the German variety of
German is analyzed on a large telephone corpus. The rules identified there are
used in this thesis to create alternative pronunciation variants when performing
segmentation of the ADABA corpus based on the Duden transcription.

Several iterations of the segmentation algorithm are applied to the isolated
word corpus of the ADABA:
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• the initial segmentation where the speaker-independent HMMs are used,

• a segmentation where the speaker-independent models are adapted to the
current speaker and

• several additional segmentation iterations, where the models for the seg-
mentation are trained from scratch on the data of the previous iteration.

The segmentation is done for all six speakers separately. Evaluation is done
with respect to the manually segmented test set. The segmentation based on the
Duden transcription with pronunciation variants using the speaker-independent
models adapted to the current speaker turns out to perform best. Figure 7.1
shows the results of the segmentation based on the Duden transcription after
the iteration where the models are adapted to the current speaker. In this
figure, the results for the speaker AT_M are shown. Agreement with the manual
segment boundaries is reported on intervals of 2, 5, 7, 10, 15, 20, 30 and 50ms.
A common reported result is the number of boundaries that are within 20ms of
the manually derived segment boundaries. In this case, 88.12% of the utterances
fulfill this condition. Boundaries where the manual phonetic transcription differs
from the automatic one are ignored in the comparison. For speaker AT_M, 94.1%
of all boundaries could be used for the comparison.

7.2.2 Training MLPs for articulatory feature extraction
The resulting segmentation is used as a basis for the training of different MLPs.
Feature vectors that correspond to vowel segments serve as inputs for the MLP
training. The target values that are presented to the MLP outputs during
training are derived from the phonetic labels. That means that for all feature
vectors that correspond to a phone segment, the target values are the nominal
values that this phone has in the articulatory feature space.

A continuous, normalized features space is defined over the articulatory fea-
tures tongue backness, openness, and roundness. Figure 7.2 shows the reference
values of the first two features for the cardinal vowels [i], [e], [E], [a], [A],[O], [o]
and [u] in the IPA vowel quadrilateral. The values for each of the three features
range from −1 to +1, where −1 specifies the minimum and +1 the maximum
value of the feature. Thus every feature frame of an /a/ has the nominal values
[0, 1,−1] (50% backness, 100% openness and 0% roundness) in this feature space.
The continuous feature space approach is chosen due to the continuous nature
of the anatomically possible tongue positions. If a rounded and an unrounded
version of a vowel position in the IPA chart exists, the rounded one is defined
as 1 (100% rounded) and the unrounded one as -1 (0% rounded). If only one
version of a vowel exists, the roundness target value is set to 0 (50% rounded).
The target values for all vowel frames used during training are determined by
their position in the IPA vowel chart and by their roundness property.

The MLP training requires an existing phonetic segmentation to infer the
target values of the articulatory features. To account for minor errors of this
segmentation, only feature vectors at the core 30% of the vowels are used for the
training. In addition to reducing the influence of segmentation errors, this has
the advantage that transition regions to the previous and subsequent phone are
not used. In this transition regions, the articulatory feature values are expected
to be unstationary and quite far away from the nominal target values.
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When using an MLP for articulatory feature estimation, many degrees of
freedom exist. Preliminary experiments are performed for

• a different number of hidden units

• a different number of hidden layers

• different types of input features

• a different number of context frames

• normalized and unnormalized input features

Evaluation of the informal experiments was done using the prediction error
of the different models on an evaluation set. No significant differences were
observed whether MFCCs or PLPs were used as input features. Experiments
were performed with frame shifts shorter than 10ms but this just generated
more similar training data and did not improve the results. Analysis window
lengths of 25 and 33 ms turned out to perform best. A combination of features
with short and long analysis windows did not further improve the results. We
also incorporated context frames (the frames immediately before and after the
analyzed frame). The optimal number of context frames was determined to be
4 for the left and the right context respectively. We did not observe differences
dependent on whether we used normalized or unnormalized input features.

Another architectural choice is number of MLPs to use for articulatory fea-
ture estimation. One possibility is to use a seperate MLP for each articulatory
feature, another one is to have only one MLP with as many output nodes as
articulatory features exist (3 for vowels). Using a seperate MLP per articulatory
feature assumes independence between these features. Seperate MLPs also have
lower complexity than one MLP that estimates different features at the same
time.

For this thesis, the approach with a single MLP is chosen for the articulatory
features of vowels as the features for tongue position and mouth shape used are
not independent of each other. Furthermore, there are only three articulatory
features that are estimated and thus the complexity of the MLP is expected
to be manageable. For consonants, seperate MLPs for the place and manner
features are used.

The features finally used are 13 MFCCs with delta and acceleration coeffi-
cients. The 0th cepstral coefficient is included and cepstral mean normalization
is performed. All features are extracted at a frame shift of 10ms and with a
33ms analysis window. Two hidden layers are used with 67 and 100 nodes, re-
spectively. The input features of the training set are normalized to zero mean
and unity variance. The input features of the evaluation set, the test set and all
future inputs are also normalized to the mean and variance of the training set.
Four left and four right context frames are used for each feature vector, which
leads to a total of 351 inputs to the MLP.

With the vowel set from the Duden transcription and the utterances limited
to the ones where a Duden transcription was available, a total of around 2.7
million feature vector frames are available after a segmentation. 600000 feature
vectors are used for training the multi-speaker MLP and 100000 for the speaker-
dependent MLPs. 50% of these feature vectors are used as training set, 25% as
evaluation set and 25% as test set. Using more than 600000 is hardly possible
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due to memory limitations when using a 39 dimensional feature vector with 4
left- and 4 right-context frames. Thus only a subset of the available data is used.
The selection of this subset is done by randomly shuffling a list of all available
utterances. Then this list is traversed in sequence and the feature vectors of
all occurring vowels are selected until the desired number of feature vectors is
available. The resulting set is then partitioned into training set, evaluation set
and test set. Due to the fact that some vowels are represented in the corpus
more often than others, the amount of how often certain vowels appear in the
training set is limited to achieve a more balanced training data set.

Six MLPs are trained, one for each speaker. An additional MLP is trained
with data from all six speakers. The MLP processing is done with a neural
network processing toolkit from the SYNVO company. For the hidden units, a
hyperbolic tangent activation function is used. The output units have a linear
activation function. Scaled conjugate gradient is used as optimization algorithm
for the MLP parameters.

7.2.3 Formant extraction
Formants for all the vowels in the corpus are extracted using the program
Praat [Boe01]. The Burg algorithm (see e.g. [PTVF07]) is used to compute
the LPC coefficients. The recommended settings from the manual were chosen:
a maximum of 5 formants and a maximum formant frequency of 5000 Hz for
the male and 5500 Hz for the female speaker. Formants are extracted every 2
ms using a window length of 25 ms. Pre-emphasis is applied above 50 Hz with
6 dB/octave. The analysis is automated via a Praat script and performed for
all six speakers.

The figures 7.3(a) and 7.3(b) show the distribution of the first three for-
mants for the Austrian male and female speaker respectively. Considering the
speaker AT_M, one can see that the first formant has one narrow peek around
300 Hz. This is because all the vowels with the exception of /a/ have their first
formant around this value. The variation for the second formant is larger. It
distinguishes between front-, mid- and back-vowels.

7.2.4 Vowel cluster analysis of the ADABA corpus
To get an overview of the distribution of the vowels in the formant and in the
articulatory feature space, clusters of the different vowels are plotted. In these
plots, each cluster is visualized by an ellipse. The center of the ellipse represents
the mean value µ of the respective vowel and the radius of the half axes is a
multiple of the standard deviation s in the direction of the first two principal
components of all the vowel’s data points in the feature or formant space.

Figure 7.4 is showing such a vowel cluster plot for the formants of speaker
AT_M. In this plot, the radius of the half axes represents the (single) standard
deviation (s) in the direction of the first two principal components. The simi-
larity of the position of the mean vowel formants in the acoustic space to the
IPA vowel quadrilateral in figure 6.1 can clearly be observed. Nevertheless the
relative distances in the plot can not be compared with those in the vowel
quadrilateral. For example, the relative gap between [a:] and the other vowels
is significantly greater than the other distances, which is not the case in the
IPA vowel quadrilateral. Further, the variance of the individual vowel clusters
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Figure 7.3: Distribution of the first three formants (from top to bottom) for the
Austrian male and female speaker.

62



−2600 −2400 −2200 −2000 −1800 −1600 −1400 −1200 −1000 −800 −600

−1200

−1000

−800

−600

−400

−200

0

200

−F2/Hz

−F
1/

H
z

AT
M

formants

a:

Ii:
o:u:

@E:e:
O

U

6

Figure 7.4: Formant clusters for the speaker AT_M. The ellipses show the area
that is in µ+ 1s. Vowel labels are in SYNVOPA notation.

is quite high which leads to substantial overlaps between the individual clusters
(assuming the normal distribution, only 68% of the feature points lie within one
standard deviation from the mean).

When vowel clusters are plotted for the articulatory features estimated by
an MLP, however, the result is different. Figure 7.5 shows the vowel cluster
plot with articulatory features estimated by a MLP for all six speakers of the
ADABA corpus. The result clearly differs from the formant cluster plot in
figure 7.4. Now the radius of the half axes represents two times the standard
deviation (s) in the direction of the first two principal components. The vowels
/a:/, /I/, /i:/, /o:/, /u:/, /@/, /E:/, /e:/, /O/, /U/, /5/ are shown, i.e. the long
vowels and vowels that are not distinguished by the length marker : (/O/, /U/,
/5/ and /@/). The filled dots next to the vowel labels represent the predicted
vowel cluster means. The crosses represent the nominal vowel target positions
derived from the IPA vowel quadrilateral which were presented as target values
during training. The cluster plots only show the first two dimensions, the third
one is omitted to be compatible with the IPA vowel quadrilateral.

Considering that the half axes of the ellipses equal 2 ∗ s for the articulatory
feature clusters whereas in the formant case they equal 1∗s, it is obvious that the
separability of the vowels is much better when using the articulatory features.
They are thus better suited as features for classification than the formants.

As an example, consider figure 7.5(a), where the vowel clusters for the
speaker AT_M are displayed. In many regions, the vowels can be distinguished
easily. For some clusters, however, significant overlaps exist. For example, there
is a large overlap between the [e:] and the [E:] cluster for this speaker. The clus-
ter for the [@] is the largest one and thus indicates that the schwa-phone shows
most variation, which is no surprise, as it is a reduced vowel and only occurs in
unstressed positions.

In figure 7.5(c) the vowel clusters for the speaker DE_M are shown. One
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Figure 7.5: Vowel clusters for the six speakers. The ellipses show the area that
is in µ+ 2s. Vowel labels are in SYNVOPA notation.
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can observe some differences to the speaker AT_M, like a slightly larger overlap
between /e:/ and /I/. The most significant difference, however, is that the
overlap between /e:/ and /E:/ is smaller than the respective one for the speaker
AT_M.

When comparing the vowel clusters for the two female speakers, one can
observe the same phenomenon (figure 7.5(b) for speaker AT_W and figure 7.5(d)
for speaker DE_W). For speaker DE_W the overlap between [e:] and [E:] is smaller
than for speaker AT_W. The two speakers from Switzerland neither show this
overlap (figure 7.5(e) and 7.5(f)).

This leads to the idea that the two speakers of the Austrian standard variety
in general have a higher confusion between the two phones [e:] and [E:] than the
two speakers of the German and the Swiss standard variety. The Aussprache-
Duden [MI00] also states that the phone [E:] can sometimes be pronounced as
[e:]. In the current analysis, this can apparently be observed more often for the
two speakers of Austrian German.

Of course it is not possible to generalize from these four speakers to a differ-
ence that is characteristic for the respective standard variety. Nevertheless this
observation leads to a hypothesis that can be evaluated in a broader study using
the same methodology. It must be noted that the labels [e:] and [E:] correspond
to the Duden standard transcription that is the same for all six speakers. This
transcription is chosen as it is desired to compare the individual speakers and
the individual regional variants with respect to the same basis, which is the
canonical phonetic transcription. Thus it will also be possible to verify certain
claims of the ÖAWB and the ADABA corpus.

The knowledge of the high degree of overlapping between the two phones
[e:] and [E:] can also be used to improve results for these particular speakers
in a speech segmentation and phone classification task. This phenomenon was
observed only for the speakers AT_M and AT_W.

An concrete example for a vowel that is transcribed /E:/ according to the
Aussprache-Duden is given in figures 7.6(a) and 7.6(b). It can clearly be seen
that, when pronouncing the word Dänen (the Danish), the speaker AT_M realizes
the vowel somewhere between the nominal /E:/ and the nominal /e:/ whereas
the speaker DE_M realizes it close to the nominal position.

The observed overlap supports the idea of adding an additional vowel be-
tween /E:/ and /e:/ as it was done in the ADABA transcription. In the cor-
responding dictionary ÖAWB it is argued that the phones /E/, /œ/ and /O/
are generally realized more open in the Austrian standard variety. The analysis
with the MLP does not support this claim for /œ/ and /O/ but does support
the ÖAWB for the mid-open front vowel /E/. In the ADABA corpus, however,
all vowels that have the transcription /E:/ or /E/ in the Aussprache-Duden, are
transcribed as this mid-open vowel [efi] for the Austrian speakers. Informal ex-
periments with the MLP showed that segments, where a vowel [efi] would make
sense according to the MLP were especially the vowels labeled as long mid-open
front vowel (/E:/) in the Aussprache-Duden.

Another interesting observation can be made for the speaker CH_W. The MLP
analysis for the swiss female speaker shows an overlap between the vowels /e:/
and /I/ that is significantly larger than for the other speakers. Informal listening
experiments confirmed that many /e:/ vowels spoken by speaker CH_W are indeed
perceived more closed or even identified as /I/. For speaker CH_W, one may
further notice that there is greater confusability between the vowels /@/ and
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the speaker CH_W.

/E:/ due to a larger variance of both vowels. Figure 7.7 shows the distribution
of the feature backness for the vowel /@/ and the speaker CH_W visualized by a
histogram with 30 classes. The distribution is asymmetric and has a negative
skewness. There is a group of schwa-Vowels that tend to be located more in the
front section than the peak of the distribution. Some schwa-Vowels are realized
closer to the front vowels /e:/ and /E:/.

The vowel clusters plotted in figure 7.5(f) show only the mean and the vari-
ance of the data but not their actual distribution. If the distribution is not
Gaussian, the diagram may be misleading. Many of the mean cluster values in
the plots have an offset to their nominal position (indicated by the crosses) that
was used as target during the MLP training. When looking at figure 7.7, how-
ever, one notices that the peak of the distribution is clearly around the nominal
tongue backness value of the schwa-vowel (0.25) while the mean is located closer
to the front vowels. An interpretation is that many schwa-vowels are articulated
very clearly and close to the nominal position but others are actually realized
as front vowels and just mis-labeled as schwa (because this is their canonical
transcription). The mean of the clearly articulated schwa-vowels is right at the
nominal schwa-position. Due to this non-Gaussian distributions a classifier that
uses the means and variances of the whole vowel cluster will not perform best.
Instead it is a better idea to use the nominal target value of the cluster means
for classification.

MLP trained on all six speakers

In the previous experiment, six different MLPs were trained, each one on the
data of one speaker only. With this method, the vowels space of each speaker
could be analyzed separately, and some interesting phenomena could be iden-
tified, like the overlap of /E:/ and /e:/ for two speakers. The question arises
whether this method allows for the comparison of one speaker with another as
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different MLPs are used for their analysis. The hope was that such a compar-
ison is possible as the target value space is the same during training and as
phonetically similar data is used (the isolated word list from the ADABA cor-
pus). Nevertheless, to obtain more evidence, a new MLP is trained on data of
all six speakers with the same target value space. This MLP is then applied to
the speakers individually. The MLP has the same topology (two hidden layers,
a hyperbolic tangent hidden activation function and a linear output function),
but more data is used: For each speaker 100000 feature frames as for the in-
dividual MLPs, thus resulting in a total of 600000 feature frames. Like in the
previous experiment, half of the feature frames is used as training set, 25% is
used as evaluation set and 25% are reserved as test set. Figure 7.8 shows the
resulting vowel cluster plot for all six speakers.

It can be seen that the distributions of the vowels are very similar and that
the described phenomena are basically the same. The overlap between /E:/
and /e:/ is significantly larger for speaker AT_M and AT_W than for the other
speakers. The partial congruence between /I/ and /e:/ of speaker CH_W can still
be observed.

Combining MFCCs and formants

While the MLP-approach with MFCC features showed better separability of
the vowel clusters than an approach based on the three formants only, the
clear relationship of average formant positions and the vowel quadrilateral is
obvious. Although they show higher variability as well as they suffer from some
misdetections, they are, in general, a good hint for a vowel’s position based on
a few dimensions only.

This leads to the idea of adding the automatically extracted formants as
inputs for the MLP. Thus a new MLP is trained that has as inputs the MFCC
features and the first five formants. The formants are automatically extracted
with a Praat script as mentioned in section 7.2.3. No manual corrections on the
extracted formants are performed. Again, 4 left and 4 right context features
are applied and all features of the training set are normalized to zero mean and
unity variance. The evaluation set and the test set is also normalized based on
the mean and variance of the training set.

The result is shown in figure 7.9 for the speaker AT_M. The figure shows
the predictions on the test set. It can be seen that the incorporation of the
formants leads to a (small) improvement of the separability when compared
to figure 7.5(a). The clusters overlap a little less, except for the described
phenomenon for /E:/ and /e:/, which can still be observed. Therefore, a com-
bination of MFCCs and formants is recommended for usage in vowel classifier
systems where this is applicable.

Vowel clusters with Autoassociative ANNs

Vowel cluster analysis is also performed based on autoassociative neural net-
works. The number of hidden layers is three. The outputs of the units of the
middle layer of the AANN are used as reduced feature space. Several different
AANN architectures are trained. We varied the number of hidden units in the
middle layer (3 and 5), the number of hidden units in the first and third hidden
layer (50, 150 and 350) and experimented with two different types of acoustic
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Figure 7.8: Vowel clusters for the six speakers evaluated with the MLP trained
on data of all speakers. The ellipses show the area that is in µ + 2s. Vowel
labels are in SYNVOPA notation.
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Figure 7.9: Vowel clusters for the speaker AT_M when combining MFCCs and
formants. The ellipses show the area that is in µ + 2s. Vowel labels are in
SYNVOPA notation.

features (MFCCs and PLPs). The outer two hidden layers are chosen to have
a hyperbolic tangent hidden activation function and the middle layer is given a
linear activation function. The middle hidden layer activation function is cho-
sen by keeping in mind that the outputs of this layer, even if they are not the
final outputs of the network, represent the outputs of the non-linear principal
component analysis. As a comparison with the conventional ANN is intended,
using the same output function is a good choice. The chosen ANN had MFCCs
as input features, one left and one right context frame, 3 hidden units in the
middle hidden layer and 150 hidden units in each of the two outer hidden layers
respectively.

In general, the AANNs need more time for training as their target values have
much more dimensions. Without normalizing, training did not even converge.
To cope with the larger increased complexity, it is further necessary to restrict
the number of left- and right-context feature vectors to two instead of four.
Further we tried to use no context frames at all for this kind of network, as the
analyzed non-linear principal components in this structure try to reproduce the
input features. Trying to predict the context frames from the reduced feature
set in addition to the actually analyzed frame can be thought of being quite
difficult.

After training, the input features are passed to the respective AANN and
the outputs of the middle hidden layer are treated as outputs and analyzed. A
correlation analysis with the outputs of the normal ANN is done. The Pearson
product-moment correlation coefficient is calculated for the different target vec-
tors of the two networks. We found correlations with an r-value greater than
0.75 between the backness and the height feature of the conventional MLP and
two different principal component features extracted from the AANN (0.81 and
0.77) when using the inputs with one context frame left and right. Due to the
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Figure 7.10: Two non-linear principal components as represented by an Au-
toassociative Neural Network for the speaker AT_M. The ellipses show the vowel
cluster areas in µ+ 1s.

large sample size, these correlations are highly significant.
The two non-linear principal components with the highest correlation are

plotted in figure 7.10. Although there are slight differences, the similarity of the
vowel cluster centers to the formant space and to the articulatory feature space
is obvious. Thus the AANN estimated the most representative components of
the vowels to be similar to the articulatory features backness and openness.
Furthermore, the AANN clusters show a higher overlap between the vowels [o:],
[u:] and [U] than between other clusters. During the manual transcriptions for
the experiments, a higher confusion between these vowels was observed.

7.2.5 Vowel classification experiment
The performance of the vowel MLPs is evaluated in a phone classification task.
Phone classification is performed on all vowels of the manually segmented and
labeled testset for each speaker. The labels of the vowel segments are replaced
with the classification result. Diphthongs are excluded due to their special
characteristics. They can not be represented by a single nominal point in the
articulatory feature space, but instead build a trajectory therein. No further
restrictions on pronunciation variants are applied for this experiment. The
classification of a vowel is done by averaging its articulatory feature outputs over
time and determining the euclidean distance to all reference vowel coordinates
in the target feature space. The vowel with the minimum euclidean distance to
the average articulatory feature output is the classification result.

To evaluate the performance, a re-classification of the vowels is also done
with HMMs. The HMMs used are speaker-independent and speaker-dependent
ones. The speaker-independent models are the HMMs used in the first iteration
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Speaker PDHMMSI PDHMMSD PDMLP 6 PDMLP 1
AT_M 0.859 0.753 0.609 0.633
AT_W 0.779 0.748 0.709 0.737
DE_M 0.669 0.482 0.834 0.817
DE_W 0.912 0.801 0.746 0.757
CH_M 0.801 0.682 0.679 0.732
CH_W 0.707 0.699 0.747 0.739

Table 7.1: Vowel classification results: mean phonetic distances (PD) to the
reference transcriptions (substituted vowels only) for classification with speaker-
independent HMMs (HMMSI), speaker-dependent HMMs (HMMSD), the MLP
trained on all six speakers (MLP6) and the MLP trained on the analyzed speaker
only (MLP1).

Speaker PDHMMSI PDHMMSD PDMLP 6 PDMLP 1
AT_M 0.511 0.386 0.297 0.339
AT_W 0.456 0.401 0.225 0.359
DE_M 0.456 0.259 0.229 0.323
DE_W 0.491 0.390 0.268 0.310
CH_M 0.549 0.383 0.236 0.296
CH_W 0.455 0.412 0.246 0.293

Table 7.2: Vowel classification results: mean phonetic distances (PD) to the
reference transcriptions (all vowels) for classification with speaker-independent
HMMs (HMMSI), speaker-dependent HMMs (HMMSD), the MLP trained on
all six speakers (MLP6) and the MLP trained on the analyzed speaker only
(MLP1).

in segmentation system from chapter 3. Thus they were trained on a large corpus
containing many different speakers, however, all of them were Austrians. The
speaker-dependent HMMs used are from the next iteration in the system from
chapter 3. They thus result from the adaptation of the speaker-independent
models to the data of the respective speaker. They are expected to show better
performance, just like speaker-dependent models do in speech recognition. The
results of the classifications are shown in tables 7.1 and 7.2.

Two numbers are reported for each speaker and each classifier. The first
one is the mean phonetic distance of all substituted vowels to their respective
nominal position. This measure does not consider the vowels that have the same
label as in the manual reference transcription and thus reports the distance for
vowels that are labeled incorrectly by the respective classifier. The second mea-
sure also considers the correctly classified vowels and reports the mean phonetic
distance to the nominal position over all vowels. It may be a little surprising
that the MLP trained on all speakers performs better on each speaker than the
MLPs trained on the respective speaker. A reason for this may be the larger
amount of training data that is used for MLP6.

It can be seen that the MLPs show considerable performance when compared
tho the HMMs. While the speaker-dependent HMM in some cases shows better
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performance when considering the substituted vowels only, the first MLP is
superior when considering all classified vowels. For three speakers (AT_M, DE_M
and DE_W), however, the difference between the models HMMSI and MLP6 is too
small to be statistically significant at a 95% confidence level (using Student’s
t-test). Nevertheless this experiment shows that the MLPs can not only be used
for a vowel cluster analysis, but also in a phone classification task.

7.2.6 Integrating MLPs and forced alignment
Traditional forced alignment for speech recognition or speech segmentation is
usually done using some framework (e.g. HTK, like in the framework used in this
thesis) which performs a Viterbi-search over a lattice of states in phone models.
Modeling is done by a HMM/GMM approach, where transition probabilities
between states are constant and observation probabilities for a particular feature
vector input is modeled by a GMM.

If one wants to improve accuracy by incorporating additional information
from a different modeling approach, the options are limited when using an ex-
isting framework. It is generally not possible or easy to inject additional in-
formation to the forced alignment algorithm of HTK. The only options are to
incorporate additional features in the models and thus also use them during
the decoding, or to do make use of the additional information after the forced
alignment. In this post-decoding step, the alignment is adjusted according to
the additional information.

To achieve greater flexibility, the decoding algorithm of HTK is replaced with
a custom version programmed in Java. The decoding algorithm is a token pass-
ing algorithm [YRT89] that is applied on the lattice of possible pronunciation
variants. When calculating the observation probabilities, the GMM probability
of the original algorithm is replaced with a combination of the probabilities es-
timated by the GMM and the MLPs. The combination is done using the law of
total probability with the GMM observation probability and the outputs of four
different MLPs. One MLP is used to estimate whether the current observation
belongs to a vowel or a consonant, one is used to estimate the vowel articula-
tory features and two are used to estimate the consonant articulatory features
place and manner. When the articulatory features are estimated via MLPs, a
distance to the nominal articulatory feature value of the considered phone can
be calculated. For the vowel MLP, however, this only makes sense when the
considered phone is a vowel. The same applies to the consonant MLP.

pobs = pGMM ·
n∑

i=1
(P (ph ∈ Ci) · pMLPCi

Ci is the broad phonetic class, ph is the phone symbol, pGMM is the GMM
observation probability desnsity and pMLPCi

is the observation probability den-
sity from the MLP of the respective broad phonetic class Ci. Ci can be vowel,
consonant or silence in this experiment.

The MLPs for articulatory features have a linear output function estimating
the position in an articulatory feature space. This position must be mapped
to a probability density. The estimation is done using a simple exponential
probability distribution:

Pvowel = e−d
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where d is the distance to the respective vowel class center. For the speaker AT_M,
the integration described here leaded to an improvement of the segmentation
accuracy to 88.7% within 20ms.

7.2.7 Diphthongs
For the vowel cluster analysis diphthongs are excluded due to their articulatory
feature dynamics. They describe trajectories in the articulatory feature space
that range from the starting to ending vowel of the diphthong. They can not be
modeled by a single cluster that assumes a Gaussian distribution, as it is done for
individual vowels. Therefore the diphthong articulatory features are modeled as
mixture models in the articulatory feature space for the analysis. A GMM with
16 mixture components is used for each diphthong. The parameters of the model
are estimated using the Expectation-Maximization (EM) algorithm [DLR77]. A
maximum number of 100 iterations is performed.

Figure 7.11 shows the resulting distributions of the three diphthongs /aU</,
/aI</ and /Oy

<
/ for the speakers AT_M and DE_M. An interpretation of the distribu-

tions is that their centers reveal the main articulation locations that are relevant
for the diphthongs. It can be seen that these main articulation locations are
usually constituted by two or three dominant clusters. Some of this regions have
significantly higher density than others, meaning that they represent more time
frames of the diphthongs. The transition regions between these clusters show a
lower density. Figure 7.12 shows diphthong realizations by the female speakers
from Austria and Germany. In figure 7.13, the articulatory feature distributions
of the diphthongs realized by the Swiss speakers is plotted.

The figures show that no systematic differences between the starting and
ending points of the diphthongs exist between the varieties. Some speakers,
however, have the focus on different regions than others when articulating a
diphthong (e.g. the speakers DE_M and AT_W focus more on the beginning when
pronouncing the diphthong /aU</).

7.2.8 Voiced consonants
During informal listening tests, some consonant realizations by the Austrian
speakers were perceived as less voiced then the pronunciations of the other
speakers. Therefore, an experiment is performed where the average voicing
of several consonants is quantified using the period segmentation of the audio
signals. The experiment is based on the automatic phonetic segmentation from
section 7.2.1. The voiced consonants /z/, /Z/, /b/, /d/ and /g/ are analyzed.
For each of the considered consonants, the corresponding voicing information is
obtained from the period segmentation. Where a consonant has multiple types
of speech in the period segmentation (voiced, unvoiced, silence or irregular),
each speech type is counted with the respective fraction of occurrence.

Table 7.3 lists the results of the analysis. Only the voiced and unvoiced
fractions are shown, the fractions labeled as silence or irregular are omitted.
For the reported consonants, the results clearly show a trend to reduced voicing
by the Austrian speakers in relation to the other speakers. The reduction is
most significant for the consonants /z/ and /Z/.
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Figure 7.11: Diphthongs of the Austrian (left) and the German (right) male
speakers.
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Figure 7.12: Diphthongs of the Austrian (left) and the German (right) female
speakers.
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Figure 7.13: Diphthongs of the Swiss male (left) and the Swiss female (right)
speakers.
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/z/ /Z/ /b/ /d/ /g/
v u v u v u v u v u
% % % % % % % % % %

AT_M 4.9 93.9 19.1 77.9 5.3 49.7 10.5 57.7 6.1 69.9
AT_W 10.5 81.7 19.4 71.0 29.5 15.0 30.2 25.6 28.8 30.6
DE_M 45.9 44.8 57.5 31.9 52.7 9.6 51.9 11.8 47.2 22.5
DE_W 39.8 50.4 37.0 58.3 34.7 15.7 43.1 19.9 31.1 33.9
CH_M 29.3 65.1 34.9 54.9 54.6 10.0 58.6 14.2 56.7 18.1
CH_W 31.6 65.6 32.1 62.9 44.7 12.7 45.8 20.6 38.6 26.6

Table 7.3: Consonant voicing. The u-columns denote unvoiced, the v-columns
voiced realizations in percent.

7.3 Discussion
According to the ÖAWB there are several pronunciation characteristics of the
Austrian variety of German (see section 4.1). Some of these claims can be tested
with the results of the experiments in this thesis.

Pronunciation of /e/ and /E/: There is evidence from the experiments that
the /e/–/E/ pronunciation of the Austrian speakers differ from the other
two varieties. The ÖAWB claims that the phonetic distance between these
two vowels is smaller in the Austrian variety and thus introduces the vowel
[efi]. According to the vowel cluster analysis this is supported by the data.

Diphthongs: The ÖAWB and the Duden use different phonetic symbols for
the German diphthongs. It remains unclear whether the different symbols
are used to emphasize characteristics of the Austrian variety. In chapter
D of the ÖAWB it is said so, in the phonetic transcriptions, however,
the same diphthong symbols are used for all varieties. The analysis of
the articulatory features for diphthongs [>oe], [>ao] and [>ae] support the
change of the diphthong-endpoint symbols when compared to the Duden
transcription. The experiment indicates that this is not specific to the
Austrian speakers.

Pronunciation of voiced consonants: According to the analysis, the pro-
nunciation by the two Austrian speakers is much less voiced on average.
In the ÖAWB it is claimed that the phone /z/ in the Austrian variety is
less voiced. The experiments confirmed this and showed the same phe-
nomenon for other consonants as well.

Different schwa-symbols: There is no evidence from the analysis that the
Austrian speakers realize three different versions of the schwa vowel as
claimed in the ÖAWB. The experiments show similar distributions for the
schwa articulatory features for all speakers. Nevertheless, the variance of
the schwa is the highest of all vowels. Therefore a finer distinction into
several symbols may be possible, however, the experiments suggest that a
narrower schwa-transcription can not be used to emphasize characteristics
of a certain variety.
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Pronunciation of /o/ and /O/: The ÖAWB claims that the vowel /O/ is re-
alized more closed. This is not supported by the vowel cluster analysis.

Vowels /I/ and /U/: The experiments do not show more overlap between /I/
and /i/ or /U/ and /u/ for the Austrian speakers than for the German
and the Swiss ones.

Other differences: Several other phonetic characteristics of the Austrian va-
riety are claimed by the ÖAWB. They are not analyzed in this thesis.

The analysis shows that some phonetic claims in the ÖAWB are supported
by the experiments in this thesis. These experiments do not use any phonetic
transcriptions from the ÖAWB but instead only use the audio recordings along
with its Duden-transcription.
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Chapter 8

Conclusion and outlook

In this thesis, automatic phonetic segmentation and labeling of the isolated
word corpus of the ADABA corpus was done for all six speakers of three re-
gional language variants (the German in Austria, Germany and Switzerland).
The segmentation used no hand-labeled bootstrap data and achieved a high
accuracy (>88% within 20ms) for segmentation with pronunciation variants.
Based on this segmentation, an analysis of the vowels was performed using an
MLP-based approach. The method proved useful for estimating the articulatory
features of the vowels, allowing better separability than the formants. A supple-
mentary experiment showed that the articulatory vowel features backness and
openness are closely related to the first two non-linear principal components that
an autoassociative ANN estimates from the acoustic features. In a phone clas-
sification experiment the MLPs performed slightly better than a HMM/GMM
classifier. The articulatory feature approach allowed a comparison of the vowel
pronunciation of the six speakers. Analysis with the vowel MLPs revealed some
interesting properties of the regional variants, especially of the Austrian variety.
All experiments did not rely on phonetic claims of the ÖAWB or the ADABA
transcriptions. Instead, only the canonical phonetic transcription (based on the
Aussprache-Duden) was used along with the audio recordings. The results of
the experiments support several claims of the pronunciation dictionary ÖAWB.
In addition, a method to integrate a phone classifier output based on MLPs into
an existing forced-alignment based segmentation system was presented.
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Appendix A

Phonetic alphabets

In this appendix, the phonetic alphabets used during this thesis are listed. The
first listed symbol set is the IPA chart containing the international phonetic
alphabet. It is followed by the IPA number chart, which assigns numbers to all
IPA symbols. Next, the SAMPA Austria is shown, which was generated during
the ADABA project. Finally the SYNVOPA, the phonetic alphabet used in the
company SYNVO is listed.
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              THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e∏ Ø o

E { ‰ ø O

a ”
å

I Y U

�Front�                       Central                           �Back

Close

Close-mid

Open-mid

Open

Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

œ

ò

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p  b t  d Ê  ∂ c  Ô k  g q  G /
Nasal m µ n = ≠ N –
Trill ı r R
Tap or Flap     v |  «
Fricative F  B f   v T  D  s   z S  Z ß  Ω ç  J x  V X  Â ©  ? h  H
Lateral
fricative Ò  L
Approximant √ ®  ’ j ˜
Lateral
approximant l   ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial ∫ Bilabial ’ Examples:

˘ Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar ˙ Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

≤ Alveolar lateral Ï Uvular s’ Alveolar fricative

 " Primary stress

 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long              e…
 Ú Half-long       eÚ

  * Extra-short     e*
˘ Minor (foot) group

≤ Major (intonation) group

 . Syllable break    ®i.œkt
   ≈  Linking (absence of a break)

          TONES AND WORD ACCENTS
       LEVEL CONTOUR

e _or â Extra
high e

ˆ

 or ä     Rising

e! ê   High e$ ë     Falling

e@ î   Mid e% ü High
rising

e~ ô   Low efi ï Low
rising

e— û Extra
low e&  ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS     Diacritics may be placed above a symbol with a descender, e.g. N(
  9 Voiceless                n9    d9   ª Breathy voiced      bª  aª   1 Dental                     t 1 d1
  3 Voiced                 s3  t 3   0 Creaky voiced       b0  a0   ¡ Apical                     t ¡ d¡
 Ó Aspirated             tÓ dÓ   £ Linguolabial          t £   d£      4 Laminal                  t 4 d4
  7 More rounded     O7  W Labialized             tW dW   ) Nasalized                      e)
  ¶ Less rounded      O¶  ∆ Palatalized            t∆  d∆  ˆ Nasal release                dˆ
  ™ Advanced           u™  ◊ Velarized              t◊  d◊  ¬ Lateral release              d¬
  2 Retracted            e2  ≥ Pharyngealized     t≥   d≥  } No audible release        d}
     · Centralized         e·  ù Velarized or pharyngealized      :
  + Mid-centralized  e+   6 Raised                  e6         ( ®6    = voiced alveolar fricative)

  ̀ Syllabic              n`   § Lowered              e§       ( B§  = voiced bilabial approximant)

  8 Non-syllabic       e8   5 Advanced Tongue Root          e5
 ± Rhoticity             ´± a±   ∞ Retracted Tongue Root           e∞

∑    Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w    Voiced labial-velar approximant   » Voiced alveolar lateral flap

Á     Voiced labial-palatal approximant Í Simultaneous  S  and   x
Ì     Voiceless epiglottal fricative

 ¿      Voiced epiglottal fricative
Affricates and double articulations
can be represented by two symbols

 ÷      Epiglottal plosive
 joined by a tie bar if necessary.

kp  ts

(

(



              THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
NUMBER CHARTCONSONANTS (PULMONIC)

 

Close

Close-mid

Open-mid

Open

Front Central Back

Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

301 309•

•

•

• •

•

•

••

•

•

317 318 316 308

307

306

305 313

302

303

304

325 324

312

310

311 314

315

321319 320

397 323

395326

322

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive 101  102 103  104 105  106 107  108 109  110 111  112 113

Nasal 114 115         116 117 118 119 120

Trill 121         122 123

Tap or Flap 184         124 125

Fricative 126  127 128   129 130  131 132  133 134  135 136  137 138  139 140  141 142  143 144  145 146  147

Lateral
fricative 148  149

Approximant 150         151 152 153 154

Lateral
approximant         155 156 157 158

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

176 Bilabial 160 Bilabial 401 Examples:

177 Dental 162 Dental/alveolar
101
 + 401 Bilabial

178 (Post)alveolar 164 Palatal
103
 + 401 Dental/alveolar

179 Palatoalveolar 166 Velar
109
 + 401 Velar

180 Alveolar lateral 168 Uvular
132
 + 401 Alveolar fricative

501 Primary stress

502 Secondary stress

ÆfoUn´"tIS´n
503 Long              e…
504 Half-long       eÚ
505 Extra-short     e*
507 Minor (foot) group

508 Major (intonation) group

506 Syllable break    ®i.œkt
509 Linking (absence of a break)

          TONES AND WORD ACCENTS
       LEVEL CONTOUR

512 519 Extra
high 524 529   Rising

513 520    High 525 530   Falling

514 521    Mid 526 531
High
rising

515 522    Low 527 532
Low
rising

516 523
Extra
low 528 533

Rising-
falling

517 Downstep 510 Global rise

518 Upstep 511 Global fall

© 2005 IPA

  DIACRITICS     Diacritics may be placed above a symbol with a descender, e.g. 119 + 402B

402A Voiceless           n9   d9   405 Breathy voiced     bª  aª   408 Dental                  t 1 d1
403 Voiced               s3  t 3   406 Creaky voiced      b0  a0   409 Apical                  t ¡ d¡
404 Aspirated           tÓ dÓ   407 Linguolabial         t £   d£   410 Laminal               t 4 d4
411 More rounded    O7   420 Labialized            tW dW   424 Nasalized                   e)
412 Less rounded     O¶   421 Palatalized           t∆  d∆   425 Nasal release             dˆ
413 Advanced          u™   422 Velarized             t◊  d◊   426 Lateral release           d¬
414 Retracted           e2   423 Pharyngealized    t≥   d≥   427 No audible release     d}
415 Centralized        e·   428 Velarized or pharyngealized       209

416 Mid-centralized e+   429 Raised                  e6         ( ®6    = voiced alveolar fricative)

431 Syllabic             n`   430 Lowered              e§       ( B§  = voiced bilabial approximant)

432 Non-syllabic      e8   417 Advanced Tongue Root          e5
419 Rhoticity         327  a±   418 Retracted Tongue Root           e∞

169   Voiceless labial-velar fricative 182  183 Alveolo-palatal fricatives

170   Voiced labial-velar approximant  181 Alveolar lateral flap

171   Voiced labial-palatal approximant  175 Simultaneous  S  and   x
172    Voiceless epiglottal fricative

174   Voiced epiglottal fricative
   Affricates and double articulations
   can be represented by two symbols           433    (509)

173   Epiglottal plosive
    joined by a tie bar if necessary.



SAMPA Austria
p  p 101
b  b 102
t  t 103
d  d 104
t'  ʈ 105
d'  ɖ 106
c  c 107
J\  ɟ 108
k  k 109
g  ɡ 110
q  q 111
G\  ɢ 112
?  ʔ 113
m  m 114
F  ɱ 115
n  n 116
n'  ɳ 117
J  ɲ 118
N  ŋ 119
N\  ɴ 120
B\  ʙ 121
r  r 122
R  ʀ 123
4  ɾ 124
r'  ɽ 125
p\  ɸ 126
B  β 127
f  f 128
v  v 129
T  θ 130
D  ð 131
s  s 132
z  z 133
S  ʃ 134
Z  ʒ 135
s'  ʂ 136
z'  ʐ 137
C  ç 138
j\  ʝ 139
x  x 140
G  ɣ 141
X  χ 142
R\  ʁ 143
X\  ħ 144
?\  ʕ 145
h  h 146
h\  ɦ 147
K  ɬ 148
K\  ɮ 149
P  ʋ 150
v\  ʋ 150

r\  ɹ 151
r\'  ɻ 152
j  j 153
M\  ɰ 154
l  l 155
l'  ɭ 156
L  ʎ 157
L\  ʟ 158
b_<  ɓ 160
d_<  ɗ 162
J\_<  ʄ 164
g_<  ɠ 166
G\_<  ʛ 168
W  ʍ 169
w  w 170
H  ɥ 171
H\  ʜ 172
>\  ʡ 173
<\  ʢ 174
x\  ɧ 175
O\  ʘ 176
|\  ǀ 177
!\  ǃ 178
=\  ǂ 179
|\|\  ǁ 180
l\  ɺ 181
s\  ɕ 182
z\  ʑ 183
_>  ʼ 401
_(  ͡ 433
'  ̢
t\  ʇ
S\  ʆ
k\  ʞ
5  ɫ
C\  ʗ

i  i 301
e  e 302
E  ɛ 303
a  a 304
A  ɑ 305
O  ɔ 306
o  o 307
u  u 308
y  y 309
2  ø 310
9  œ 311
&  ɶ 312
Q  ɒ 313
V  ʌ 314

7  ɤ 315
M  ɯ 316
1  ɨ 317
}  ʉ 318
I  ɪ 319
Y  ʏ 310
U  ʊ 321
@  ə 322
8  ɵ 323
6  ɐ 324
{  æ 325
3  ɜ 326
3\  ɞ 395
@\  ɘ 397
"  ˈ 501
%  ˌ 502
:  ː 503
:\  ˑ 504
_X  ̆ 505
.  . 506
|  | 507
||  || 508
-\  ˘ 509
<R>  ↗ 510
</>  ↗ 510
<F>  ↘ 511
<\>  ↘ 511
_T  ̋ 512
_H  ́ 513
_M  ̄ 514
_L  ̀ 515
_B  ̏ 516
!  ↓ 517
<!>  ↓ 517
^  ↑ 518
<^>  ↑ 518
<T>  ˥ 519
<H>  ˦ 520
<M>  ˧ 521
<L>  ˨ 522
<B>  ˩ 523
_L_H  ̌ 524
_/  ̌ 524
_R  ̌ 524
_H_L  ̂ 525
_\  ̂ 525
_F  ̂ 525
_R_F  528
E\  ʚ
i\  ɩ

_0  ̥ 402A
_v  ̬ 403
_h  ʰ 404
_t  ̤ 405
_k  ̰ 406
_N  ̼ 407
_d  ̪ 408
_a  ̺ 409
_m  ̻ 410
_O  ̹ 411
_c  ̜ 412
_+  ̟ 413
_-  ̠ 414
_"  ̈ 415
_x  ̽ 416
_A  ̘ 417
_q  ̙ 418
`  ˞ 419
#  ˞ 419
@`  ɚ 327
_w  ʷ 420
_j  ʲ 421
_G  ˠ 422
_?\  ˤ 423
~  ̃ 424
_n  ⁿ 425
_l  ˡ 426
_}  ̚ 427
_e  ̴ 428
l_e  ɫ 209
_r  ̝ 429
_o  ̞ 430
=  ̩ 431
_^  ̯ 432
_h\  ʱ
_y  ʸ
_s  ˢ
_x'  ˣ
_?  ˀ
_?'  ˁ
_r\  ʴ
_r'  ʳ
_r\'  ʵ
_R\  ʶ
dz  ʣ
dZ  ʤ
dz\  ʥ
ts  ʦ
tS  ʧ
ts\  ʨ



SYNVO Phonetic Alphabet (SYNVOPA)
Number IPA SYNVOPA Example

101 p p Spatz ["Spat<s]
102 b b Ball ["bal]
103 t t Stier ["Sti:r]
104 d d dann ["dan]
105
106
107 c c
108
109 k k Skandal [skan"da:l]
110 g g Gast ["gast]
111
112
113 P ? beamtet [b@"Pamt@t]
114 m m Mast ["mast]
115 M F
116 n n Naht ["na:t]
117
118 ñ J agneau, vigne [año], [viñ(@)]
119 N N lang ["laN]
120
121
122 r r Rast ["rast]
123 ö R rue, venir [öy], [v(@)ni:ö]
124 R 4
125
126
127 B B cabra, Habana ["kaBra], [a"Bana]
128 f f Fass ["fas]
129 v v was ["vas]
130 T T thin, breath ["TIn], ["breT]
131 ð D this, breathe ["ðIs], ["bri:ð]
132 s s Hast ["hast]
133 z z Hase ["ha:z@]
134 S S Schal ["Sa:l]
135 Z Z Genie [Ze"ni:]
136
137
138 ç C ich ["PIç]
139
140 x x Bach ["bax]
141 G G viga, burgo ["biGa], [burGo]
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Number IPA SYNVOPA Example

142 X X
143 K * [ha:0@]
144
145
146 h h hat ["hat]
147
148 ì K
149
150
151 ô P
152
153 j j ja ["ja:]
154
155 l l Last ["last]
156
157 L L figlio ["fi:Lo]
158
160
162
164
166
168
169 û M
170 w w well ["wel]
171 4 H huile, nuire [4il(@)], [n4i:ö(@)]
172
173
174
175
176
177
178
179
180
181
182
183
184

2



Number IPA SYNVOPA Example

301 i i vital [vi"ta:l]
302 e e Methan [me"ta:n]
303 E E hätte ["hEt@]
304 a a hat ["hat]
305 A A bât, pâte [bA], [pAt(@)]
306 O O Post ["pOst]
307 o o Moral [mo"ra:l]
308 u u kulant [ku"lant]
309 y y Mykene [my"ke:n@]
310 ø 2 Ökonom [Pøko"no:m]
311 œ 9 göttlich ["gœtlIç]
312 Œ &
313 6 Q pot ["ph6t] 1

314 2 V cut, much ["kh2t], ["m2t
<
S]

315 7 7
316 W W
317 1 1
318 0 0
319 I I bist ["bIst]
320 Y Y füllt ["fYlt]
321 U U Pult ["phUlt]
322 @ @ halte ["halt@]
323 8 8
324 5 6 Ober ["Po:b5]
325 æ q hat ["hæt]
326 3 3 bird, furs ["b3rd], ["f3rz] 2

395
397 9 5
401 t’ t‘ Ejective
402A n

˚
n_0 Voiceless

403 s
ˇ

s_v Voiced
404 kh k_h kalt ["khalt] Aspirated
405
406
407
408
409
410
411 O» O_) More rounded

1 British English
2 American English

3



Number IPA SYNVOPA Example

412 O– O_( Less rounded
413 uff u_+ Advanced
414 e

¯
e_- Retracted

415 ë e_" Centralized
416
417
418
419
420 tw t_w Labialized
421 tj t_j Palatalized
422 tG t_G Velarized

tK t_* Uvularized
423
424 Ẽ ˜E matin [matẼ] Nasalized
425
426
427
428
429 efi e_> Raised
430 efl e_< Lowered
431 n

"
=n baden ["ba:dn

"
] Syllabic

432 u
“

ˆu aktuell [ak"tu
“

El] Non-syllabic
433 t<s t_s Zahl ["t<sa:l] Affricates
501 " ’ (apostrophe) Primary stress
502  , (comma) Secondary stress
503 a: a: Bahn ["ba:n] Long
504
505
506 . - (hyphen) Syllable boundary
507
508 Ş # (hash) Phrase boundary
509 a<u a_u Haut ["ha<ut] Linking (absence of a break)

t_c t Unvoiced preplosive closure
d_c d Voiced preplosive closure
/ (slash) Speech pause

(space) Word boundary
() ( ) petit [p(@)ti] Optional phone

[ ] [1] Syllable stress tag
{ } #{P:0} Phrase boundary tag
<xxx> <150> IPA number tag
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