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Abstract

GE Healthcare Austria & Co OG is a manufacturer of ultrasound diagnostic equip-
ment and worldwide leader in the area of 3D/4D-ultrasound. The headquarters in
Zipf/Upper Austria is a global "Center of Excellence" inside the GE Healthcare
concern. Because there are many different applications of ultrasound, various
types of probes and consoles are being developed. Each specific application re-
quires an optimal pairing of these components. Therefore, the decoupling of probe
and console is desirable in order to handle different pairings. The purpose of this
thesis is selection and integration of the controller, which is needed for driving the
stepper motor of a mechanic volume probe. The controller should be integrated
into the probe, not into the console. So it is possible to use the probe on con-
soles without an integrated motor controller. First of all, different stepper motor
controller-ICs should be compared. Then the selected IC should be integrated in a
mechanic volume probe. Therefore, the needed peripheral electronics also have to
be developed. Furthermore, a prototype of this probe will be built. This prototype
should be checked with respect to image quality and electromagnetic compatibil-
ity (EMC). Finally, suggestions for improving the image quality should be worked
out if needed and the design has to be verified and validated. The project handling
of the implementation and the connected project management are also part of this
master’s thesis.



Kurzfassung

GE Healthcare Austria GmbH & Co OG ist Spezialist für diagnostische Ultra-
schallsysteme und Weltmarktführer im Bereich 3D/4D-Ultraschall. Der Unter-
nehmenssitz in Zipf/Oberösterreich ist globales „Center of Excellence“ innerhalb
des GE Healthcare Konzerns. Da es für die Ultraschalltechnologie zahlreiche An-
wendungen gibt, werden verschiedene Sonden und Konsolen entwickelt, um je-
weils die optimale Paarung dieser Komponenten bereitstellen zu können. Eine
Entkopplung von Sonde und Konsole ist aus diesem Grund erstrebenswert, um
verschiedene Paarungen anbieten zu können. Zweck dieser Arbeit sind Auswahl
und Einbindung der Steuerung, die benötigt wird, um den Schrittmotor einer me-
chanischen Volumensonde zu betreiben. Diese Steuerung soll nicht in die Konso-
le, sondern in die Sonde integriert werden, um die Sonde auch auf Konsolen ohne
Motorsteuerung betreiben zu können. Es sollen zunächst verschiedene, am Markt
erhältliche Motor-Drive-Controller-ICs verglichen werden. Der so ausgewählte
IC soll dann in eine mechanische Volumensonde integriert werden. Hierfür muss
die nötige Peripherieelektronik entwickelt werden. Als nächster Schritt wird ein
Prototyp der Sonde gebaut. Der Prototyp soll hinsichtlich Bildqualität und elek-
tromagnetischer Verträglichkeit (EMV) untersucht werden. Abschließend sollen,
falls nötig, Verbesserungsvorschläge für die Bildqualität erarbeitet und das De-
sign verifiziert und validiert werden. Die Abwicklung der Implementierung und
das damit verbundene Projektmanagement ist ebenfalls Teil dieser Arbeit.
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1 Introduction

Ultrasound can be used for many different applications. GE Healthcare uses it in medical
equipment for the diagnosis of different diseases, the supervision of pregnancies and other
examinations concerning women’s health. There are many different types of examinations
which require different examination tools.
GE Healthcare Austria & Co OG is a manufacturer of ultrasound diagnostic and worldwide
leader in the area of 3D/4D-ultrasound. The headquarters in Zipf/Upper Austria is a global
"Center of Excellence" inside the GE Healthcare concern. The plant in Zipf is specialized in
the women’s health segment. Caused by the big diversity of examinations in this segment,
different probes and consoles are developed. Each specific application requires an optimal
pairing of these components. Therefore, the decoupling of probe and console is desirable in
order to handle different pairings.
The purpose of this thesis is selection and integration of the controller, which is needed for
driving the stepper motor of a mechanic volume probe. The controller should be integrated
into the probe, not into the console. So it is possible to use the probe on consoles without
an integrated motor controller. In every actual volume probe solution the motor controller is
located on the console-side.
Additionally, the control interface should be standardized to be usable for prospective probe
development projects. Therefore, some driver-ICs with different interfaces should be com-
pared. Then the selected driver-IC should be integrated in a mechanic volume probe. The
needed peripheral electronics, especially the needed microcontroller (µC) for signal conver-
sion, also has to be selected. Furthermore, a prototype of this probe should be built. This
prototype should be checked according to image quality and electromagnetic compatibility
(EMC).
Finally, suggestions for improvements according to image quality should be worked out if
needed and the design has to be verified and validated. The project handling of the implemen-
tation and the connected project management are also part of this master’s thesis.

2 Initial Situation

The actual motor controller is located on the console-side. A µC receives the reference values
of the SIN- and COS-current, which should flow through the motor windings under the control
of a supervising µC. The received values are compared to the measured current values and the
new actuating values are set. This is called "closed loop current regulation". The same type of
regulation should be used in the probe-sided motor control solution.
The power supply can generate voltages from -36 V to +36V. These voltages are needed to
supply both half-bridges of a bipolar motor’s windings. This type of power supply should be
replaced by a simpler solution.
An advantage of the actual motor controller is that at the console-side, there is much space
available. Hence, there is no installation space problem.
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2.1 GE Healthcare

GE Healthcare is a division of GE Technology Infrastructure, which is itself a division of
General Electric (GE). It employs more than 46,000 people worldwide and is headquartered
in Little Chalfont, Buckinghamshire, United Kingdom.
GE Healthcare Austria is specialist for diagnostic ultrasound systems and worldwide leader in
3D/4D-ultrasound. The plant in Zipf/Upper Austria is a global "Center of Excellence" inside
the GE Healthcare concern.
The actual field of activity of GE Healthcare Austria can be divided into the system-side and
the probe-side.

2.1.1 Systems/Consoles

Source: http://www3.gehealthcare.com/en/Products/Categories/Ultrasound/Voluson/Voluson_E8,
06/FEB/2014

Figure 1: Voluson E8 Expert

To give an overview of all consoles which were/are developed in Zipf here is list of the current
console series:

• Voluson E8 Expert

• Voluson E6

• Voluson S8

• Voluson S6

2



Source: http://www.gehealthcare.com/usen/ultrasound/voluson/signature_series/voluson.html,
06/FEB/2014

Figure 2: Voluson i

• Voluson P8

• Voluson i

• Voluson e

• Voluson 730

2.1.2 Probes

Also there are different probes which were/are developed in Zipf. Here is a list of the current
probe projects:

• IC5-9-D

• IC5-9-RS

• RAB4-8-D

• RAB4-8-RS

• RAB6-D

• RM6C

• eM6C

3



Source: http://www.medcorpllc.com/ge-rab6-d-probe.html, 06/FEB/2014

Figure 3: RAB6-D Probe

2.2 General Information about Ultrasound Probes

The basic principle of ultrasound imaging is quite simple. A piezo-electric element generates
an acoustic wave with frequencies in the range of few megahertz. This wave passes through
several layers of the examined object, gets reflected and returns to the piezo element. The re-
turning wave generates an electric signal, which gives an image of the examined body region
after processing.
However, there are difficulties in the development of ultrasound probes. Many different phys-
ical effects influence the wave passing through the examined body. Another difficulty results
from the space problem. Probes which are introduced vaginal or rectal must not exceed pre-
defined dimensions. This requires a high degree of miniaturization of the used components in
a probe. Additionally, there are several laws that define boundary conditions, for example the
maximal surface temperature or that the used surface materials have to be biocompatible.
These are just a few of the boundaries concerning the development of an ultrasound probe.

2.3 Motive of this Project

A problem of the actual solution is that the cable between console and probe is very long (ap-
proximately 2.5 m) and the relative high motor current (approximately 2 A) flowing through
the cable causes electromagnetic fields. These fields influence the signal lines of the piezo
elements and the image quality can suffer if the signal lines are not shielded or another protec-
tion technology is used. A probe-sided motor controller would just need the DC-power supply
lines and three lines for a serial peripheral interface (SPI), which do not require additional
filtering.
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In general, the number of wires in the cable should be minimized. This becomes possible
when the motor controller does not have to send current measurement values through the ca-
ble. Also the number of high-current wires can be reduced from four (two for SIN, two for
COS) to two (voltage supply, ground).

3 Systems Engineering

In order to rise the development speed and ensure a project’s success, it is convenient to use
a predefined development methodology. There are different methods for different types of
projects. One of the most popular in engineering development is the systems engineering
method.

3.1 Process Model, Development Method

As defined in one of the components of the systems engineering model, this project should be
developed ’from rough to fine’. This means, that at the beginning of the project all available
boundary conditions are defined and in the following steps the details increase.
In general, all possible variants should be considered in the beginning of the project. In the
following steps only the right variants will remain for further development. When the methods
of systems engineering are used the right way, the best variant will be the remaining one at the
end of the project.
With the developing project both the degree of detail and the overall project maturity will rise.
In systems engineering this means to think in project phases.
For the specific project phases there are methods, which help to solve problems as efficiently
as possible. One of them is called problem solution cycle.
These are the main components of systems engineering.

3.2 Project Management

The project has started in mid-July 2013. To achieve the standard duration for master’s theses
of approximately six months, the project was determined to be finished at the end of February
2014.

3.2.1 Project Plan

To get a better feeling for the actual status, the project is divided into five phases. At the end
of each phase there has to be a result. Based on this result more detailed project milestones of
the following phases are defined.

3.2.2 Phase 1: Project Start

• Familiarization

5



Source: [1]

Figure 4: Components of Systems Engineering
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• Literature research

• Definition of boundary conditions

• Setting up communication with other departments inside GE Healthcare Austria

– Systems Engineering

– Software Engineering

– Probes Manufacturing

– New Product Introduction (NPI)

• Comparison of preselected motor control driver-ICs

• Selection of further motor control driver-ICs

• Comparison of different µCs

Result Phase 1: Two motor driver-ICs selected

3.2.3 Phase 2: Evaluation

• Order evaluation boards of the driver-ICs

• Selection of a µC

• Assemble the test equipment

• Interface implementations

• Functional tests of the driver-ICs

Result Phase 2: One driver-IC and one µC selected

3.2.4 Phase 3: Implementation & Integration

• Selection of adaptable probes

• Build space analysis of the selected probes

• Detailed definition of the interface between motor controller and console

• Design of mechanical parts

• Printed Circuit Board (PCB) Prototyping

– Selection of peripheral parts for the driver-IC and the µC

– Draft of the schematics

– Draft of the board layout

Result Phase 3: Motor controller board ordered

7



3.2.5 Phase 4: Firmware Completion & Electromagnetic Compatibility (EMC)

• Firmware completion (error event handling, safety features)

• Preparing a console for testing issues

• Build up the prototype probe with integrated motor controller board

• Integration tests

• EMC measurements

• Documentation

Result Phase 4: Options for signal quality improvement and miniaturization

3.2.6 Phase 5: Documentation

• Finalize documentation

• Project completion

4 Motor Control

4.1 General Motor Data

Source: [2]

Figure 5: Picture of a Stepper Motor

The used motors are called "steppers" or "hybrid motors". There are two basic wiring meth-
ods: unipolar and bipolar. In ultrasound probes the bipolar method is used because it requires
fewer wires. The difference between these methods can be explained by simple examples.

8



Source: ST Microelectronics Application Note AN4158

Figure 6: Basic two-phase bipolar Stepper Motor Function Principle

Source: http://www.engineersgarage.com/articles/stepper-motors?page=5, 07/OCT/2013

Figure 7: Basic two-phase unipolar Stepper Motor Function Principle

When the electromagnetic field changes in a specific way, the rotor makes one full step. The
most common count of full steps is 200 for one rotation. This means, that the rotor turns
1.8◦/step. To let the rotor turn clockwise (seen from the shaft end), the polarity sequence in
figure ten has to be applied.

9



Source: [2]

Figure 8: Section through a Stepper Motor

Source: [2]

Figure 9: Step Angle
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Source: FL25STH48-1204A Motor Data Sheet

Figure 10: Polarity Sequence

4.2 Microstepping

For applications where exact positioning is needed, the count of steps provided by the me-
chanical construction of a stepper motor is not enough. Fortunately, it is possible to make the
steps as fine as needed with electric methods. This can be done by microstepping.
The optimal phase currents should be sinusoidal. It is not possible to generate absolutely per-
fect sinusoidal phase currents with a µC and a driver-IC, but the degree of discretization can
be very high. Thus, the phase current looks almost sinusoidal.

4.3 Pulse Width Modulation (PWM)

The discretization of the phase currents can be done by PWM. Many µCs have integrated
PWM-modules which can generate these signals. These signals have to get amplified by a
driver-IC to supply an appropriate current to the motor windings.
The average current fed to the winding is controlled by turning the switch between supply and
winding on and off at a high frequency. The longer the switch is turned on in relation to the
off period the higher is the power supplied to the winding.
The PWM switching frequency has to be much higher than what would affect the winding.
Typical switching frequencies for motors range from a few kHz to a few tens of kHz. The
higher the frequency is, the more sinusoidal is the motor current. An upper boundary for
the frequency is the needed calculation time performed in the µC. The selected frequency
should be chosen as high as possible, but not higher than what would exceed the needed
calculations duration.

11



Source: ST Microelectronics Application Note AN4158

Figure 11: Principle of Microstepping

Source: Allegro A4986 Data Sheet

Figure 12: Discretization of the Phase Current (here: quarter-step-mode)

4.4 Electrical Boundary Conditions

4.4.1 Supply Voltages

On the side of the console there is a power supply unit (PSU), which generates a regulated
output voltage of 12 V. This voltage should be used to supply the motor controller board. As a
result, the maximum current is mainly limited by this voltage and the impedance of the system.
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Source: http://en.wikipedia.org/wiki/Pulse-width_modulation, 08/OCT/2013

Figure 13: PWM Principle

Imax =
USupply

Z
(1)

To supply the control logic of the board, a regulated voltage of 3.3 V is needed. It can be
provided by a standard linear regulator.

4.4.2 Reference Signals

The reference values of the SIN- and the COS-current are transferred alternately per SPI at a
frequency of 50 kHz. This means that a pair of new values is transferred at a rate of 25 kHz.
In general a SPI consists of the following four lines:

• Serial Data Input (SDI)

• Serial Data Output (SDO)

• Serial Clock (SCK)

• Slave Select/Chip Select (SS)
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In this case, the SDO line is not needed because signals, such as error messages, can be trans-
ferred over another interface. In the following, the SPI between the console-side and the motor
controller board is called SPI1.
The communication between the supervising µC and the µC on the motor controller board is
word-wide. One word consists of 16 bits. The structure of these words can be explained by
an example.

Figure 14: SPI1 Word Data Format

• Bit 15
0 ... SIN-value
1 ... COS-value

• Bits 14-3
The reference value is transferred as an unsigned 12 bit integer number. The transfer of
the value starts with bit 14, the most significant bit (MSB). The last bit of this group (bit
3) is called the least significant bit (LSB).
0x000 ... maximal negative value
0x800 ... zero value
0xFFF ... maximal positive value

• Bits 2-0
These bits are used for parity-checking.
101...SIN-value was transferred successfully
010...COS-value was transferred successfully

This control interface was selected because the three signal lines are easy accessible and there
have to be no changes on the console-side.

4.5 Mechanical Boundary Conditions

The main boundary condition is the space available in an ultrasound probe. As a result, the
motor controller board has to be as small as possible. Furthermore, there are different types of
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ultrasound probes as mentioned in the introduction: abdominal, rectal, vaginal, and others. To
minimize the amount of different parts just one motor controller board should get developed
which fits into all different probe types. To find an optimal solution, all probes have to get
investigated according to free spaces.
Some probes (e.g. RM6C, RRE) do not offer any available free space. The motor controller
board can not get integrated into these probes.

4.5.1 Probes with free Spaces

RAB
The most capable probes for the integration of the motor controller board are the RAB-probes.
There are two possible locations:

• Space between motor and body (1)

• Space between motor and multiplexer-boards (MUX-boards) (2)

Space (1) is a free room with the dimensions 36x20x7 mm. The disadvantage of this space is
that the assembly process has to be changed.
Space (2) would be ideal to mount the motor-controller-board because the assembly process
of the probe just needs minimal adaption and the board does not have to be very flat. So there
is place for electrolyte capacitors and other higher parts.

RIC
In RIC-probes, the available space is small but well proportioned. The free space in the shaft
in front of the motor can be used to house the motor controller board. There are just the rod or
the rope, which is connected to the mechanical parts in the probe head, and the flexes.

RNA
At the opposite side of the volume compensation tube, there is a cubic space of 40x20x4.5
mm available.

RSP
There is enough space for an additional board. The board can be fixed at the carrier block.

RSM
With an additional carrier, the motor controller board can be integrated.

4.6 Thermal Boundary Conditions

The surface temperature of an ultrasound probe must not exceed the predefined limit of 43◦C.
Due to the fact that many heat-sources are already installed in ultrasound probes and that most
of the probes are operated at the upper temperature limits, an additional heat source must be as
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low as possible. As a result, the used components must be selected according to performance,
build space and also heat dissipation.

4.7 µC

To convert the signals coming from the SPI and to generate the control signals for the driver-IC
a µC is needed. There is a broad range of available µCs on the market. To ease the selection,
the following boundary conditions can be defined:

• Small package

• Low dissipation

• 3.3 V supply voltage

• 2 SPIs

• 2 PWM channels

• 16 or 32 bit wide data path

• 2 Analog-to-digital converter (ADC) channels

• Internal oscillator

Within these boundary conditions the dsPIC33EP256MC202 [3] µC from Microchip is a
good choice.
For evaluation issues, there has to be a quick solution. To avoid designing an extra evaluation
board for the dsPIC33EP256MC202, a different µC with the same functions and an already
existing evaluation board can be used. The dsPIC33FJ128MC802 [4] from Microchip offers
all the needed functions except the small package, but for evaluation issues a bigger package
is acceptable.
The selected evaluation board is called Microstick II [5].

4.8 Motor Control Methods

There are basically three methods to control a stepper motor, which are listed and described
below.

4.8.1 Open Loop - Fixed Voltage Control

In classic voltage control, the rated motor voltage is applied to the windings.
When a higher voltage power supply is used, such as 24V, the motor rated voltage
is reduced by the use of a chopper, which is implemented with the Pulse Width
Modulation (PWM) module.
Stepper motors are designed to run reliably at the rated current, as instructed
by the manufacturer. The rated motor voltage is based on that current and the
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Source:

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en556208,
04/NOV/2013

Figure 15: Microstick II

winding resistance. However, the voltage across the motor can be higher than
that, as long as the current is kept at all times at the rated value or lower. [6]

4.8.2 Open Loop - Fixed Current Control

When using fixed voltage control, the motor is driven with the rated voltage, which
allows the current to rise from zero to the rated current value in a fixed amount of
time. At a certain motor speed, which depends on the motor inductance and the
drive voltage, the current will not rise fast enough through the motor coil to reach
the rated motor current and torque will be lost. This presents a problem when
higher speeds are required by the system.
As the motor speeds up, the step time is getting smaller and the current amplitude
is falling more and more, until the rotor eventually stalls. To overcome this prob-
lem, the easiest solution is to increase the drive voltage as the motor speeds up in
order to have a maximum current amplitude equal to the rated motor current and
extend the maximum torque versus speed range. [6]

4.8.3 Closed Loop Current Control

A simple control loop is used for controlling the current amplitude. The maximum
amplitude of the current in both motor windings is sampled during one complete
sine wave. If the maximum current amplitude is lower than the desired value, the
drive voltage is increased gradually by adjusting the PWM duty cycle until the
desired current amplitude is reached. If the current is too high the duty cycle is
decreased, but not less than the initial value corresponding to the rated motor
voltage.
As long as the drive voltage is higher than the rated motor voltage, this method
provides an extended speed range over the classic open loop approach. Another
advantage of using this algorithm is that there is no need to retune for different
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motors. [6]

The motor torque is proportional to the current. This can be reached by sampling the current
amplitude more often than just at every end of a sine wave. When the current measurement
gets triggered at the PWM frequency, a good result can be achieved.

4.9 Bridge Con�gurations

Basically, there are two types of bridges that can be used to drive one winding of a stepper
motor. Both configurations have advantages and disadvantages.

Properties of a Half-Bridge Con�guration

• Four FETs for two phases

• Positive and negative supply voltage + ground

Properties of a Full-Bridge Con�guration

• Eight FETs for two phases

• Positive supply voltage + ground

As defined in the boundary conditions +12 V are available. For this reason the use of a full-
bridge is appropriate.

4.10 Decay Modes

4.10.1 Fast Decay Mode

This mode is active when the voltage across the de-energized winding is reversed,
which produces a fast current drop. For this reason this mode is called "fast decay
mode".
The advantage of using this method is that the decaying current is flowing through
the MOSFET body diodes only briefly, until the MOSFET turns ON. The MOS-
FET has a lower ON-resistance and thus, the dissipated power will be much lower,
which presents an advantage to the overall system power dissipation.
Another advantage of the fast decay mode is the simplicity of the current feedback
circuit, since motor current can be read from the shunt resistor at all times. When
the winding is driven, the current is positive. While the current is dropping during
fast decay mode, the current will be negative since the voltage is reversed across
the winding. Therefore, current is available on the shunt resistor at all times.
With a slight variation on the drive signals, we have something called "reverse
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decay mode". Reverse decay mode behaves like fast decay mode until the cur-
rent reaches zero, at which point it forces the current in the opposite direction.
For short decay times though, until the current reaches zero, this is not an issue.
If reverse decay is continued after the current has dropped to zero, then nega-
tive current will be generated when a positive current is desired, and vice versa.
Reverse decay generates the lowest possible dissipated power in the fast decay
configuration. [6]

Source: [6]

Figure 16: Left: Fast Decay, Right: Fast Decay (Reverse)

4.10.2 Slow Decay Mode

Slow decay is entered by shorting the motor winding when it is not driven by the
supply voltage. This is achieved by keeping one of the drive MOSFETs (Q2A)
opened at all times.
Current measurement is not possible in slow decay modes with the shunt resistor
circuit used for current sensing. This is because in slow decay modes, current is
not flowing through the shunt resistor since it recirculates through the motor and
MOSFETs or diodes. [6]

With this knowledge it becomes clear that one of the fast decay modes has to be used when
a constant current control loop should be implemented. Additionally, in fast decay (reverse)
mode the least power gets dissipated.
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Source: [6]

Figure 17: Slow Decay Mode

4.11 Current Measurement

Caused by the usage of a full-bridge configuration, the winding current can just be measured
in the following way.

Current measurement in the full-bridge configuration brings up some challenges.
First of all, the measuring shunt resistor is located between the ground and the
low side MOSFETs, which means that no current will be visible unless there is a
path opened between DC_BUS and ground. The path can either be one high-side
MOSFET plus the opposite low-side MOSFET, or the body diodes of the same
MOSFETs when they are turned OFF.
When the motor winding is energized, the shunt current will always be positive,
regardless of the current direction in the motor winding. Whenever the winding is
in fast decay, the shunt current will be negative. In all slow decay modes there is
no current flowing through the shunt resistor. [6]
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4.12 Low-pass Filtering

For the best positioning results at low speeds, the motor currents should be sinusoidal.
To achieve the best result, PWM period resolution and PWM frequency should be as high
as possible. Optimizing these parameters brings better results but there will always be small
ripples without additional filters.
The simplest way to get rid of the PWM-caused ripple is to add low-pass filters between the
driver-IC and the motor windings. The order of the filter, which has to be used, depends on
the requirements on the image quality. There will be less distortions in the image when there
is a better filter. Therefore, different filtering solutions should be evaluated in the prototyping
phase.
Additionally, the inertia of the whole power train helps to make the operation of the motor
smoother.

5 Evaluation of available Driver-ICs on the Market

5.1 Boundary Conditions

• Small package

• Low dissipation

• 3.3 V logic supply voltage

• Integrated field effect transistors (FETs)

• PWM interface or SPI

• Min. 2 A peak current

• Full-bridge configuration

• Up to 30 V operation voltage range

5.2 Interfaces

5.2.1 PWM Interface

The standard-solution to control a stepper motor is to send low-power PWM-signals and am-
plify them with the driver. For the purposes of this project, the best fitting driver with the
PWM interface is the DRV8841 from Texas Instruments.
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5.2.2 SPI

Since there are several driver ICs, which are controlled via SPI and the interface to the console-
side is SPI, also one of these drivers has to be evaluated. The intention is to control the driver-
IC directly from the console-side via high-level-commands. In this configuration the µC on
the probe-side would not be needed.
The L6470 from ST Microelectronics fits best to the requirements.

5.3 Comparison of the Drivers

Package Size
Both of the selected ICs are available in a Shrink Small-Outline Package (SSOP) with 28 pins.
This is the smallest package available.

Dissipation
The generated heat must be transferred away from the IC. There are many different options
for heat sinking. The most common are:

• Thermal connection at the IC’s bottom (thermal pad)

• Additional cooling body mounted on the IC’s top

– Cooling body without fan

– Cooling body with fan

– Water cooled body

• Heat conduction through the pins

The most powerful option would be an additional cooling body, but due to the space bound-
aries this option should not be used. The least powerful would be heat sinking through the
pins, because the used package has very small pins. Using this method, the cooling perfor-
mance would be inadequate. A thermal pad at the IC’s bottom delivers the optimal cooling
performance compromise and is also quite simple.
The driver data sheets deliver the total power dissipation information.

Driver Total Power Dissipation Test Conditions
L6470 5 W 25 ◦C Ambient Temperature [7]
DRV8841 4.8 W Value approximated by Equation 2 in Data Sheet [8]

Table 1: Power Dissipation

The power dissipation values vary because of the temperature dependency of the FETs. The
total dissipated power rises with rising ambient temperature.
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5.4 Evaluation Boards

To test the driver ICs, boards with peripheral electronic parts (bypass capacitors, resistors, ...)
are needed. Most of the IC suppliers offer evaluation boards.

5.4.1 L6470 Evaluation Board

Source: [9]

Figure 18: EVAL6470H

Functions and Interfaces [9]

• SPI 10 Pin Header

• Power Connector Screw Terminal

• Motor Phase Screw Terminals

• Measurement Loops

• Test Software

• 1/128 Microsteps
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Figure 19: DRV8841 Evaluation Board

5.4.2 DRV8841 Evaluation Board

Functions and Interfaces [10]

• PWM Input Interfaces

• Current Level Interfaces

• Jumpers for the Reference Voltage Source

• Jumper for the Decay Mode

• USB Connector

• Power Connector Screw Terminal

• Motor Phase Screw Terminals

• Measurement Loops

• Test Software

• Microstepping Resolution controlled by µC
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5.5 Microstepping Functions

L6470 Microstepping Functions
With this IC a microstepping resolution of 128 microsteps can be realized. The command
actualization can be performed with the following timing specifications:

The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous
serial communication between the host microprocessor (always master) and the
L6470 (always slave).
The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial
data output (SDO) pins. When CS is high, the device is unselected and the SDO
line is inactive (high-impedance).
The communication starts when CS is forced low. The CK line is used for syn-
chronization of data communication.
All commands and data bytes are shifted into the device through the SDI input,
most significant bit first. The SDI is sampled on the rising edges of the CK.
All output data bytes are shifted out of the device through the SDO output, most
significant bit first. The SDO is latched on the falling edges of the CK. When a
return value from the device is not available, an all zero byte is sent.
After each byte transmission the CS input must be raised and be kept high for at
least tdisCS in order to allow the device to decode the received command and put
the return value into the SHIFT register. [9]

Source: [9]

Figure 20: SPI1 Timing Diagram

Most of the commands consist of three bytes. Additionally, there always has to be some
time between commands. The following calculation gives the maximal actualization rate for
commands:

T SCK_min =
1

f SCK_max
=

1
5MHz

= 200ns (2)

T Command_min = 3 · (8 ·T SCK_min +T disCS_min) = 3 · (8 ·200ns+800ns) = 7.2µs (3)
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f Command_max =
1

T Command_min
=

1
7.2µs

≈ 139kHz. (4)

This frequency can be compared to a PWM update frequency.

DRV8841 Microstepping Functions
The big advantage of this IC is that the degree of microstepping is controlled by the µC. Also
the PWM update frequency is set by the µC but there is a limit of 100 kHz.

5.6 Final Selection

Both of the selected driver ICs are available in a SSOP with 28 pins. So they are equal accord-
ing to build space requirements.
The total power dissipation varies with the ambient temperature and is mostly proportional to
the current level for both of the driver-ICs.
They are also equal according to logic supply voltage, peak current and bridge configuration.
The driver-IC from STMicroelectronics offers a fully integrated solution, which can control a
motor without an additional µC. The disadvantage of this IC is, that not all boundary con-
ditions can be held. For direct motor control the console-side has to get adapted, because
the L6470 driver only can be operated when the supervising µC on the console-side sends
high-level motor control commands.
The most important factor is the microstepping resolution. The L6470 driver offers a max-
imal resolution of 128 microsteps, the DRV8841 driver does not have a limit concerning the
degree of microstepping. An advantage of the L6470 driver would be the higher PWM update
rate, but the SPI1 update rate is just 25 kHz.
With this knowledge it is obvious that the DRV8841 driver IC has to be selected.

5.7 Supervision Functions

5.7.1 Overcurrent Protection

An analog current limit circuit on each FET limits the current through the FET by
removing the gate drive. If this analog current limit persists for longer than the
OCP time, all FETs in the H-bridge will be disabled and the nFAULT pin will be
driven low. The device will remain disabled until either nRESET pin is applied,
or VM is removed and re-applied.
Overcurrent conditions on both high and low side devices; i.e., a short to ground,
supply, or across the motor winding will all result in an overcurrent shutdown.
Note that overcurrent protection does not use the current sense circuitry used for
PWM current control, and is independent of the ISENSE resistor value or VREF
voltage. [8]

When the nFAULT pin is driven low, the µC will pass through a failure message to the console-
side.
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5.7.2 Thermal Shutdown

If the die temperature exceeds safe limits, all FETs in the H-bridge will be dis-
abled and the nFAULT pin will be driven low. Once the die temperature has fallen
to a safe level operation will automatically resume. [8]

5.7.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pins falls below the undervoltage lockout
threshold voltage, all circuitry in the device will be disabled and internal logic
will be reset. Operation will resume when VM rises above the UVLO threshold.
[8]

The typical UVLO threshold is 7.8 V.

5.7.4 Thermal Protection

The DRV8841 has thermal shutdown (TSD) as described above. If the die tem-
perature exceeds approximately 150◦C, the device will be disabled until the tem-
perature drops to a safe level.
Any tendency of the device to enter TSD is an indication of either excessive power
dissipation, insufficient heatsinking, or too high ambient temperature. [8]

5.7.5 Stall Detection

The concept for stall detection in ultrasound probes is a quite simple one. A hall-sensor detects
the angular position of the rotor and sends a signal to the supervising µC on the console-side.
This signal has to be sent in a specific time window. When the signal is sent outside this time
window, the µC interprets this error as stall and a restart routine is initialized.

6 Signal Processing

6.1 Integrated Development Environment (IDE)

Microchip offers a IDE especially for their devices. The actual version is called MPLAB X.
This IDE can be combined with different compilers, offering the possibility to use freeware or
special compilers for Microchip devices.

6.2 Compiler

There are several freeware compilers. The disadvantage of freeware compilers is that they
are designed for numerous processors. As a result, it is possible that the same compiled code
does not give the same performance on different devices. To receive optimal results, special
compilers for Microchip devices are needed.
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Source: [11]

Figure 21: Hall Signal

For the evaluation µC (dsPIC33FJ128MC802) the compiler C30 from Microchip can be used.
The prototyping µC (dsPIC33EP256MC202) is newer than the one used for evaluation issues.
The C30 compiler does not support this device but Microchip offers the XC16 compiler too.
The used assembler version is called ASM30.

6.3 Firmware

There are different methods to write firmware. The easiest way is to use a high-level language
like C or C++ and let the compiler do the rest. Another method is to program the firmware on
assembler level. This means that the programmer uses the processor’s instruction set to write
programs.
According to performance, programming on assembler level is often better because the pro-
grammer just uses the best suited instructions. It is possible that high level compilers add
instructions which are not needed.
The advantage of using high-level languages is the programming comfort. The programmer
can use the same language for many different devices.
The most important firmware parts can be found in the chapter "List of Code-Listings" in the
appendix.
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6.3.1 Firmware for the Evaluation of the L6470 IC

The usage of this driver-IC brings some competitions with it. First of all, there are the high-
level operation commands via SPI. The most important commands for this project are:

• SetParam(PARAM,VALUE)

• GetParam(PARAM)

• Run(DIR,SPD)

• Move(DIR,N_STEP)

• SoftStop()

• HardStop()

• SoftHiZ()

• HardHiZ()

For evaluation purposes, the µC on the console-side cannot be adapted. So the driving signals
have to be generated by an additional µC. The problem is the calculation of these driving sig-
nals. The reference values of the SIN- and COS-current are transferred via SPI. This can be
explained by the following figure.

Figure 22: Current Vectors

The number of microsteps, which is needed to reach a certain angular position within an
incremental time step, is calculated using the following equations:

nµSteps = NµSteps ·
∆ϕ

2 ·π
(5)
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∆ϕ = ϕnew−ϕold = arcsin
[

SINnew

RES/2

]
−arcsin

[
SINold

RES/2

]
(6)

With these equations, and under consideration of the quadrants of the SIN- and COS-current-
values, the angles of the current pointers can be calculated. The magnitude of the reference
pointer is for evaluation issues always one. Although these calculations are trivial, some
follow-up problems have to be solved. The selected µC is designed for the calculation of
integers. It is also possible to calculate floating point values, but the calculations lasts too long
for the timing specifications of the SPI1-module (TSPI1_Cycle = 20µs).
The solution of this problem is a first-order Taylor series approximation.

arcsin
[

SINi

RES/2

]
∼=

SINi

RES/2
+1/6 ·

[
SINi

RES/2

]3

+3/40 ·
[

SINi

RES/2

]5

+ ... (7)

To keep the calculation simple, just the first term of the Taylor series approximation is used.

arcsin
[

SINi

RES/2

]
∼=

SINi

RES/2
(8)

The value which has to be set in the SPEED-register of the driver-IC, can be calculated/ap-
proximated by following equation:

SPEED = N ·NµSteps ·
228 ·250

109 · SINnew−SINold

RES/2
(9)

With this value and the knowledge of the rotational direction resulting from the old and new
SIN- and COS-reference values the Run(DIR,SPD)-method can be executed.
It is clear that this variant responds slowly to changes coming from the supervising µC be-
cause of the signal conversion. Furthermore, current regulation is not possible.
Without the adaption of the interface between the supervising µC on the console-side and the
motor drive controller, this driver cannot be used.

6.3.2 Firmware for the Evaluation of the DRV8841 IC

Because of the PWM-interface between µC and driver-IC, the driver-IC reacts immediately
to changes coming from the µC. The only thing that is done in the driver-IC is the amplification
of the PWM signals. This enables high dynamic operation of the motor, which is needed for
several examination modes.
The operation of this driver-IC is quite simple. Every transferred value via SPI1 can be directly
interpreted as SIN- or COS-duty cycle. This means that the transferred value is compared to a
maximal value and the duty cycle can be calculated by a simple division. The division factor
depends on the resolution of the transferred values and the ADC-resolution.

ADC_RESOLUT ION_FACTOR =
ADC_RESOLUT ION_MAX

ADC_RESOLUT ION
(10)
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Another advantage results from the chosen operation mode of the PWM module. It is called
complementary mode. This means that the module’s low channel always is the inverse of the
high channel. When a current value of zero is desired, the duty cycle has to be 50%. For the
maximal positive value the duty cycle is 100%. The maximal negative value can be reached
by setting the duty cycle to 0%. So it can be seen that the added offset does not have to be
removed.
More details can be found in the code listings in the appendix.

6.3.3 Prototype Firmware

The prototype firmware is quite similar to the evaluation firmware of the DRV8841. The used
µCs are similar but not equal. This means that some registers have different names, or that
initialization routines have to be done in different ways.
A big advantage is the higher oscillator frequency of the prototyping µC. This also makes
higher PWM frequencies possible.
For more details see the code listings in the appendix.

7 Prototyping

7.1 Console Simulation

The number of consoles, which can be used for evaluation issues, is very small. But there are
several adapter boards and other devices, which are able to simulate different functions of a
console.

7.1.1 SPI Simulation

One of this adapter boards is able to simulate the SPI, which sends the current reference values
for the motor-drive-controller.

The needed software for the operation of this adapter board was developed for Windows
XP. To be able to operate the board with Windows 7 the application has to be compiled for
Windows 7. To do this Microsoft Visual Studio 2008 Professional can be used.

7.1.2 Power Supply Simulation

To simulate the PSU located on the console, a common laboratory PSU is used. It offers three
different stabilized voltages with current limitation. Then, it is possible to supply the console
simulation board, the motor-driver-controller-board and an additional device if needed.
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Figure 23: SPI Simulation Board

Figure 24: Power Supply Unit
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7.2 Schematics

For prototyping issues, many different development tools are available. The use of freeware-
tools would be the best way to keep development costs low. Most of the development tool
vendors offer freeware versions of their products. The disadvantage of these versions is that
not all functions are available.
For schematics design, a freeware-version of EAGLE meets this project’s requirements best.
The used version is 6.5.0.
The complete schematics can be found in the appendix.

7.3 PCB Prototyping

In addition to schematics design, EAGLE offers a module for PCB design. The disadvantage
of the freeware-version is that the maximal count of signal layers is two. So another tool has
to be used.
Most of the electrical engineers at GE Healthcare use the Cadence Suite for PCB design.
Additionally, most of the time there is an unused license at the site in Zipf.

7.3.1 Position Plans

To get a very small board, both sides are used for the placement of parts.

Position Plan Bottom Layer
At this side of the board big components like the inductors and big ceramic capacitors for
filtering are located. It makes sense to use this side of the board because it is uncertain whether
the filters are needed for the final version of the motor-drive-controller.

Figure 25: Position Plan Bottom Layer
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Position Plan Top Layer
All other parts are located on the top layer of the board. The jumper positions can be changed
to test different functions of the board. There are the following test configurations:

• Motor current comes from the console

• Motor current comes from the probe-sided motor-drive-controller

– Filters on

– Filters off

Figure 26: Position Plan Top Layer

7.3.2 Signal Layers

For small boards it is necessary to place the components as close as possible. In this project’s
case, both sides of the board are used. With a rising amount of components, the number of
signal lines also rises. One difficulty in miniaturization is the placement of these lines. When
there is not enough space to place all lines on one layer, additional signal layers can be added.
For this prototype two additional layers are used.

Signal Colors

• Ground

• +3.3 V

• +12 V

• Motor Lines
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Layer 2: Ground Layer
This layer was added to have a ground potential with low impedance.

Figure 27: Layer 2: Ground Layer

Layer 3: Signal Layer
The main purpose of this layer is linking the components located on the surface. Furthermore,
this layer is used to distribute the logic supply voltage of 3.3 V, the ground signal and the
motor lines.

Figure 28: Layer 3: Signal Layer
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7.4 In-Circuit Programming/Debugging

There always has to be a way to program and debug a µC (at least one time). On the µC-
evaluation board (Microstick II) the circuitry for programming and debugging is integrated.
The use of the same solution for the prototype board would not be ideal because of the build
space requirements. So a different solution has to be found. The best build-space saving way
is to use an external device like the PICkit 3 from Microchip.

Source: [12]

Figure 29: PICkit 3 Programming/Debugging Topology

7.5 Low Voltage Di�erential Signaling (LVDS)

For different components of an ultrasound probe the common transmission technology be-
tween console and probe is LVDS. Also for the SPI of the motor-drive-controller this technol-
ogy should be used.
The SPI consists of three signals lines:

• Serial Data Input (SDI)

• Serial Clock (SCK)

• Slave Select (SS)

As a result, six signal lines are needed in the cable:

• SDI+

• SDI-

36



• SCK+

• SCK-

• SS+

• SS-

7.6 Current Measurement Topology

Figure 30: Current Measurement
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7.6.1 Ampli�cation Topology

There is a boundary condition for the topology of the current measurement coming from the
console-side. The maximal current flowing through a motor winding should be 2.3 A.

Imax = 2.3A (11)

The value of the shunt resistor should be as small as possible to minimize dissipation.

RShunt = 0.1Ω (12)

This gives the following voltage drop at the shunt resistor:

UShunt =±0.23V (13)

To avoid negative voltages at the ADC-module of the µC, half of the logic supply voltage is
added to the measured voltage.

UOffset =
ULogic_Supply

2
=

3.3V
2

= 1.65V (14)

With this data the voltage amplification of the operation amplifier can be calculated.

AU =
Uout

U in
=

ULogic_Supply−UOffset

UShunt
=

1.65V
0.23V

= 7.17≈ 7.2 (15)

For an ideal, non-inverting operational amplifier the following configuration results:

AU = 7.2 = 1+
Rf

RN
(16)

→ Rf

RN
= 6.2 (17)

The offset voltage can be realized with a voltage divider.

RVoltage_Divider =
ULogic_Supply ·R100−UShunt_Offset ·R100

UShunt_Offset
=

3.3V ·100Ω−0.23V ·100Ω

0.23V
≈ 1335Ω

(18)

7.7 Filter Topologies

As described in the section ’Low-pass Filtering’, different filter topologies should be evalu-
ated.
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7.7.1 Motor Winding acts as Low-pass Filter

The easiest was to smooth the motor current is to use the inductance of the motor winding as
low-pass filter. The evaluation of the image quality will give feedback about the performance
of this topology. The action of the motor inductance can be explained by the following equa-
tions.

uL = L · di
dt

(19)

By integrating this equation in time, the following result can be found for the motor current:

i =
1
L
·
∫

uLdt (20)

The inductance of the motor winding has an averaging character. The measured results also
show this effect.

Figure 31: Motor Current without additional Filter, 1

7.7.2 Motor Winding with Second Order Filter

There are different types of filters. The most common ones are RC, RL and LC. For our issues
there has to be a minimum power dissipation. As a result, the usage of RC and RL does not
make sense. Furthermore, there is a difference between real and ideal parts. For example, an
ideal inductor would have no serial resistances. So there can never be an ideal LC-topology
but the behavior is quite similar.
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Figure 32: Motor Current without additional Filter, 2

To realize this filter two inductors and one capacitor are added. This gives a second order fil-
ter. Second order means that after the cutoff-frequency the magnitude drops -40 dB/decade.
By choosing the part parameters, the cutoff frequency of the filter can be set.

Figure 33: Second Order Filter

This configuration is symmetrical. To be able to calculate the part parameters, just one half of
the filter can be used. This gives a simple LC-configuration.

The cutoff-frequency can be calculated by the following equation.

f Cutoff =
1

2 ·π ·
√

L · C2
(21)
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Figure 34: Half of Second Order Filter

Calculation Example

L = 330µH (22)
C = 3.3µF (23)

(24)

f Cutoff =
1

2 ·π ·
√

L · C2
=

1
2 ·π ·

√
330µH ·1.65µF

≈ 6821Hz (25)

Figure 35: Motor Current with additional Second Order Filter
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As expected, the measured data shows that the PWM ripple is nearly removed. By using
the Fast Fourier Transformation (FFT) it can be seen that there are still ripples at the PWM
frequency but the magnitudes are very small.

7.7.3 Motor Winding with Fourth Order Filter

The next logic step is to increase the degree of the filter for a bigger amplitude drop above
the cutoff frequency. The addition of a second filter stage gives a fourth order filter, which
means a drop of -80 dB/decade in the Bode-plot.

Figure 36: Fourth Order Filter

This configuration is symmetrical, too. Hence, just half of the filter has to be calculated.

Figure 37: Half of Fourth Order Filter

The part parameters of the second filter stage should differ to the first level.
For this reason, the inductance of the second filter level is just ten percent of the first level’s
inductance. To achieve the same cutoff-frequency for both levels, the capacitor of the second
stage has to be ten times higher than in the first stage.
The evaluation of the ultrasonic image quality shows which degree of filtering is needed.

8 Current Control

8.1 Frequency Response

To get the possibility of current control the frequency response of the motor winding and the
filters has to be considered. Therefore, the current reference values transferred via SPI have to
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Figure 38: Motor Current with additional Fourth Order Filter

be adapted with a digital filter.

8.1.1 Motor Current Sinus Frequency Calculation

First of all, the sinus frequency of the motor current has to be calculated. This can be done by
different ways. Two very simple ways should be explained by the following equations.

Search for repeated Values
The simplest way of finding the motor current sinus frequency is to look for repeated values.
This becomes possible because the transferred values result from look-up tables.

f Sinus =
f Sample

NSamples/Period
(26)

Calculation with the Arc Cosine-Function
As a second, calculation-intense option the cosine-function can be used to calculate the motor
current sinus frequency. This can be done with the following equations:

yk-1 = A · cos(−ω +φ) = A · cos(ω) · cos(φ)+A · sin(ω) · sin(φ) (27)
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Figure 39: Motor Sinus Frequency Calculation, Method 1

yk = A · cos(φ) (28)

yk+1 = A · cos(ω +φ) = A · cos(ω) · cos(φ)−A · sin(ω) · sin(φ) (29)

yk-1 + yk+1 = 2 ·A · cos(ω) · cos(φ) = 2 · yk · cos(ω) (30)

→ f Sinus_k-1 =
f Sample

2 ·π
·arccos

(
yk-2 + yk

2 · yk-1

)
(31)

Figure 40: Motor Sinus Frequency Calculation, Method 2

8.1.2 Frequency Response Values

With the knowledge of the motor current sinus frequency and the part parameters of the filter
components the frequency response of the system can be calculated. A very simple option to
realize this would be the usage of look-up tables.
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8.2 Controller Selection

To achieve the desired parameters for the closed loop current control, a few calculations have
to be done. With the knowledge of motor parameters, like winding resistance, inductance
and rated current the controller design is quite simple. For this application the use of two
PI-controllers, one for each winding, is a good choice.
First of all, the transfer function of one motor winding is needed.

Motor Transfer Function

Figure 41: Motor Winding Schematics

V ·u = i(t) ·RS +L · di(t)
dt

(32)

The Laplace-transformation of the equation above is:

V ·u(s) = i(s) ·RS +L · i(s) · s (33)

As a result, the transfer function of one motor winding is:

GM =
i(s)
u(s)

=
V

L · s+RS
(34)

Controller Transfer Function [13]
As mentioned before, a PI-controller fits best to the requirements. The generalized continuous
transfer function of such a controller is:

GPI(t) =
i(t)
e(t)

= KP ·
[

e(t)+
1

T N
·
∫ t

0
e(τ)dτ

]
(35)

The Laplace-transformation for this equation is:

GPI(s) =
i(s)
e(s)

=
KP

T N
·
(

1+T N · s
s

)
(36)

Now the controller parameters KP and TN can be found by using the boundary conditions.

K = KP/T N (37)
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T N = L/RS (38)

This gives the continuous controller equation:

GPI(s) = K ·
(

1+L/RS · s
s

)
(39)

Discretization of the Transfer Functions
For the discretization of the transfer functions the so called "‘Tustin"’-discretization should be
used to achieve simple results.

G =
K
RS

(40)

p1 = L+RS ·
T Sample

2
(41)

p2 = L−RS ·
T Sample

2
(42)

GPI
∗(z) = GPI(s)

∣∣
s= 2

TSample
· z−1

z+1
= K ·

2·L·(z−1)
RS·T Sample·(z+1) +1

2·L·(z−1)
RS·T Sample·(z+1)

= G ·
(

p1 · z− p2

z−1

)
(43)

GM
∗(z) = GM(s)

∣∣
s= 2

TSample
· z−1

z+1
=

V/RS

L/RS · 2
T Sample

· z−1
z+1 +1

=
V ·

T Sample
2 · (z+1)

p1 · z− p2
(44)

Closed Loop Transfer Function
The system transfer function can be calculated the following way:

Figure 42: Current Control Block Diagram

GLoop
∗(z) =

GPI
∗(z) ·GM

∗(z)
1+GPI∗(z) ·GM∗(z)

=
1

1
G·V ·

2
T Sample

· z−1
z+1 +1

(45)

GLoop(s) =
1

RS
K·V · s+1

(46)
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Discrete Controller Implementation

GPI
∗(z) = G ·

(
p1 · z− p2

z−1

)
= G

[
p1 ·

z
z−1

− p2 ·
z

z · (z−1)

]
=

u(z)
e(z)

(47)

→ u(z) = GPI
∗(z) · e(z) (48)

u(z) = u(z) · (z−1)
(z−1)

= u(z) · z
z−1

−u(z) · z
z · (z−1)

t ........... duk−uk-1 (49)

For the discrete gain, a multiplication factor of 4 is used in order to get more
resolution from fixed point calculations by avoiding underflows. [6]

G0 = 4 · K
RS

(50)

→ uk = G0 · p1ek−G0 · p2 · ek-1 +uk-1 (51)

This equation is the basic for the controlling algorithm.

Anti-Windup

Limiting the controller output leads to a problem called accumulator wind-up.
The output is saturated but the PI integrator accumulator keeps counting and
grows until it eventually saturates. When the error is returning from the satu-
ration area, the accumulator value is much higher than normal for that specific
error value and, as a result, the system response slows. To prevent this effect, the
accumulator also has to be compensated. [6]

This can be done by the addition of the so-called "anti-windup gain" GW in the differences
equation.

acck = G0 · p1ek−G0 · p2 · ek-1 +acck-1−GW · (acck-1−uk-1) (52)

Phase Advance

By changing the value of the anti-windup gain, different controller behaviors are
achieved. For low speeds, it is good to have a small gain so that the current tracks
the reference as precise as possible. At higher speeds, when the DC_BUS voltage
is not strong enough to bring the current to the reference value and the fast decay
rate is not sufficient to bring the current down in the allocated time frame for one
step, the anti-windup gain helps to change the phase of the current, thereby allow-
ing transition to higher speeds, which otherwise could not be reached. Keeping
the anti-windup gain low will result in the motor eventually stalling as the speed
increases. [6]
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Source: [6]

Figure 43: Low Anti-Windup Gain

Source: [6]

Figure 44: High Anti-Windup Gain

The high anti-windup gain forces the controller output voltage to exit saturation
sooner and therefore changes the phase of the winding current relative to the de-
sired current. With this phase advance, the current has enough time to rise into the
winding before the rotor pole reaches the energized stator pole. Further increas-
ing the speed, the current amplitude keeps dropping until it eventually changes
phase forced by the back-EMF. At this point, the current amplitude will begin to
rise again and the phase advance and motor back-EMF work together to keep the
motor running. [6]

The motor torque at 2400 RPM is strong enough to operate the motor under a light
load. As a comparison, the maximum speed achieved in the open loop control
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modes with the same motor is around 200 RPM.
The current waveform reference plays an important role here. If it is closer to a
sine wave, the current will follow it better and the motor will have better torque. At
high speeds, it is best to use the smallest possible microsteps, in order to obtain
the best motor torque. However, at high speeds, the microstep changing rate
becomes faster than the output frequency of 40 kHz. The dsPIC DSC device might
also run out of time to execute all of the step changes if they are very fast. For
these reasons, a value of approximately 20 µs for one microstep is implemented as
the lower limit for one microstep time, regardless of the microstepping resolution
used. This means the top speed is higher for low resolution modes, such as full,
half or quarter step, and lower for high resolution microstepping. [6]

Source: [6]

Figure 45: Phase Advance

8.3 ADC Triggering

The chosen hardware setup causes a few difficulties. Caused by the full-bridge configuration
and the fast-decay operation mode, low-pass filtering of the current flowing through the shunt
resistor does not help to deliver correct values to the ADC module at any time. Correct values
can only be sampled by setting the correct ADC triggering point for each PWM period.
To be able to adjust the triggering points, the reference values transferred via SPI have to be
filtered digitally.
With this PT1-filtered reference values the triggering points can be calculated. Closer informa-
tion about the triggering points can be found in the SPI1 interrupt subroutine in the appendix.
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Source: http://commons.wikimedia.org/wiki/File:Pt1-controller-symbol-1.svg, 23/FEB/2014

Figure 46: PT1 Element

Calculation Example
By choosing the desired rise time of a step response, all needed parameters can be calculated.

T Sample = 25µs (53)
RS = 1.8Ω (54)
L = 1.1mH (55)

T rise = 70µs (56)
(57)

K = 3 · RS

T rise ·V
= 3 · 1.8Ω

70µs ·12V
= 6428.57

Ω

V s
(58)

G =
K
RS

=
6428.57 Ω

V s
1.8Ω

= 3571.425
1

V s
(59)

G0 = 4 · K
RS

= 4 ·
6428.57 Ω

V s
1.8Ω

= 14285.7
1

V s
(60)

p1 = L+RS ·
T Sample

2
= 1.1mH +1.8Ω · 25µs

2
= 0.0011225H (61)

p2 = L−RS ·
T Sample

2
= 1.1mH−1.8Ω · 25µs

2
= 0.0010775H (62)

Example for an anti-windup gain for "low speeds":

GW = 500 (63)

Example for an anti-windup gain for "high speeds":

GW = 17000 (64)

The following differences equation should be used for low speeds.

acck ≈ 16 · ek−15 · ek-1 +acck-1−500 · (acck-1−uk-1) (65)
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8.4 Stability

To check the stability of the system, the loop transfer function of the system has to be trans-
formed into the q-area.
To approximate the q-transfer function, the following formula can be used.

GLoop
#(q)≈ GLoop(s)

∣∣
s=q ·

(
1−q ·

T Sample

2

)
(66)

GLoop
#(q)≈ 1

RS
K·V ·q+1

·
(

1−q ·
T Sample

2

)
(67)

According to the expression above, the system is stable. This can be seen by two criterions:
[14]

• The numerator’s degree equals the denominator’s degree.

• There are just denominators polynomials with a negative real part.

9 Evaluation of the Image Quality

The main criterion for the quality of a motor controller is the resulting image quality. The
goal of this project is to get a motor controller which provides at least the same image quality
as the console-sided controller.
There are many different modes for volume imaging. To keep the number of tests small,
the most critical mode should be chosen for evaluation purposes. It is called "Doppler Color
Mode".

9.1 Electromagnetic Compatibility

Most of the image distortions result from electromagnetic coupling effects. To give an overview,
here is a list of the most common coupling mechanisms:

• Galvanic coupling

• Capacitive coupling

• Inductive coupling

• Waveguide coupling

• Radiation coupling
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9.1.1 Possible Solutions for EMC Problems

A common method to get rid of coupling effects is to cover a board with copper foil and
connect this foil to ground. This method can be used for the reduction of coupling effects
between different boards. When the EMC-problem is board-internal, this method will not
work.
For board-internal problems there are different design improvements.

• Shorten wire lengths

• Avoid conductor loops

• Add ground layers

• ...

9.2 Test Results

9.2.1 Test Con�guration 1

Test Setup, Settings

• Probe: RAB6-D

• Console: Voluson E8 Expert

• PSU: HAMEG HM7042-5

• PWM frequency: 40 kHz

• Open loop voltage control

• No filters

Test Results
The operation of the probe is possible. The stepper motor performs the required moves without
current control. Distortions can be seen in any mode of operation.

Possible Improvements

• Higher PWM frequency

• Higher degree of low-pass filter

• Closed loop current control
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9.2.2 Test Con�guration 2

Test Setup, Settings

• Probe: RAB6-D

• Console: Voluson E8 Expert

• PSU: HAMEG HM7042-5

• PWM frequency: 100 kHz

• Open loop voltage control

• No filters

Figure 47: B-Image without additional Filter

Test Results
The image quality rises with the PWM frequency but there are still distortions in the B-image.
The driver is operated at the maximal PWM frequency. This makes a higher PWM frequency
than 100 kHz impossible.
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Possible Improvements

• Higher degree of low-pass filter

9.2.3 Test Con�guration 3

Test Setup, Settings

• Probe: RAB6-D

• Console: Voluson E8 Expert

• PSU: HAMEG HM7042-5

• PWM frequency: 100 kHz

• Open loop voltage control

• Second order filter

Figure 48: B-Image with Second Order Filter
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Figure 49: Doppler Color Mode, Second Order Filter
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Test Results
There are less distortions in the B-image but they are not gone entirely.

Possible Improvements

• Higher degree of low-pass filter

9.2.4 Test Con�guration 4

Test Setup, Settings

• Probe: RAB6-D

• Console: Voluson E8 Expert

• PSU: HAMEG HM7042-5

• PWM frequency: 100 kHz

• Open loop voltage control

• Fourth order filter

Test Results
The console-sided and probe-sided motor-drive-controllers deliver the same B-image quality.
Also in the critical "Doppler Color Mode" the image quality is the same.

Possible Improvements

• Usage of smaller filter parts

10 Design Veri�cation and Validation

10.1 Supply Voltage

To be able to run the motor at the required high speeds and additional mechanical load, the
supply voltage has to be higher. 30 V should be an adequate voltage.

10.2 PCB

10.2.1 Motor Lines

The smallest voltage drop can be achieved when the high-current lines are as wide as possi-
ble. In the current PCB design there is not enough space available for wider motor lines. In
further PCB designs this should be considered.
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10.2.2 Board Thickness

For better stability and because of the jumpers and other evaluation equipment the board is
thicker than necessary. For a repetition part the board can be much thinner.

10.3 Evaluation Parts

The following components are not needed for a repetition part:

• Several jumpers

• Utility Pad

• LED1_Blue, LED2_Blue, T1, T2, R3, R4

• Motor current input pads

• GND-pad next to the LVDS-pads

• R5

• R14, R15

10.4 SPI, LVDS

The currently used quad LVDS line-receiver offers four signal output channels. The SPI
that is used needs three lines, where just the SDI- and the SCK-lines are operated at high
frequencies. The frequency of the SS-line is much lower. That is why this line does not have
to be transferred via LVDS. As a result, just two LVDS-channels are needed.

10.5 Current Regulation Feature of the Driver-IC

The used driver-IC offers a current regulation feature. This feature is not needed because
the current regulation function is performed by the µC. The only thing, which has to be done,
is to set the four driver input pins to ground. By connecting these pins directly to ground,
four GPIO-pins at the µC are free. This gives the possibility to use a smaller µC with less
GPIO-pins or to use these pins for other functions.

10.6 Operational Ampli�ers

The used µC offers internal operational amplifiers. This function can also be used instead
of the separate operational amplifier used in the prototype configuration.
One operational amplifier needs three pins. The selected µC offers up to three operational
amplifiers.
When the internal operational amplifiers of the µC should not be used, the selected operational
amplifier can be replaced by a smaller one with just two channels. A good choice would be
the MCP6022 from Microchip.
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11 Conclusion and Forecast

The goal of this project is to build a board that is able to drive several motors in ultrasound
probes. With the boundary conditions, which were defined at the start of the project, this
would not have been possible anyway. As mentioned in the design verification, the supply
voltage has to be higher. As a result, a probe-sided motor-drive-controller does not work for
any probe without the adaption of the PSU on the console-side.
When the PSU has to be adapted anyway, one of those which provide a positive and a neg-
ative voltage should be used. This makes a half-bridge configuration possible and eases the
needed current control significantly.
According to the space problem in ultrasound probes, the actual prototype has to be adapted.
In the actual design there are jumpers and other parts, which are not necessary for a repetition
part. By reducing the number of components, a board can be built, which fits into all se-
lected probes.
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Formula Symbol List

Symbol Description Unit
∆ϕ Angle between two current Pointers rad
τ Time s
acc Accumulator Value 1
e Current Error A
f Frequency Hz
i Time dependent Current A
n Counting Number 1
p Pole Constant H
q Complex Variable 1/s
s Laplace Variable 1/s
t Time s
u Duty Cycle Value 1
z Discrete Variable 1
COS Cosine Value 1
G Transfer Function / Constant 1 / More possible Values
I Current A
K Constant More possible Values
L Inductance H
N Number of Sinus Cycles for one Revolution 1
NµSteps Number of µSteps for one Sinus Cycle 1
R Resistance Ω

RES Resolution of the Reference Values 1
SIN Sinus Value 1
SPEED 32 Bit Driver-IC Register Value 1
T Period Duration s
U Voltage V
V DC Voltage V
VM Motor Voltage V
Z Impedance Ω
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Formula Symbol List Subindizes

µSteps µSteps for one Sinus Cycle
disCS Disable Cable Select
f Follower
k Control Variable
max Maximal Value
min Minimal Value
new New Value
old Old Value
peak Peak Value
L Inductance
M Motor
N Connected to negative Voltage / Reset Time
P Proportional
PhA, PhB Phase A, B
PI Proportional Integral
Ref Reference Value
S Serial
SCK Serial Clock
Shunt For Measurement
U Voltage Amplification
W Windup
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List of Acronyms

Acronym Description
µC Microcontroller
ADC Analog-to-digital Converter
DAC Digital-to-analog Converter
DIR Direction
ESR Equivalent serial Resistance
EMC Electromagnetic Compatibility
FET Field Effect Transistor
FFT Fast Fourier Transformation
GE General Electric
GND Ground
GPIO General Purpose Input/Output
HiZ High Impedance
IC Integrated Circuit
IDE Integrated Development Environment
LSB Least significant Bit
LVDS Low Voltage Differential Signaling
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MSB Most significant Bit
MUX Multiplexer
N_STEP Number of Steps
NPI New Product Introduction
PARAM Parameter
PCB Printed Circuit Board
PLL Phase Locked Loop
PSU Power Supply Unit
PWM Pulse Width Modulation
RAB Real-time, abdominal
RIC Real-time, intracavitary
RM6C Real-time, 6 MHz, convex
RNA Real-time, neonatal
RSM Real-time, small Parts, musculoskeletal
RSP Real-time, small Parts
SCK Serial Clock
SDI Serial Data Input
SDO Serial Data Output
SOIC Solid Oxide Integrated Circuit
SPD Speed
SPI Serial Peripheral Interface
SS Slave Select/Chip Select
SSOP Shrink Small-Outline Package
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Code-Listings

Evaluation Firmware for ST L6470 + Microchip
dsPIC33FJ128MC802

General Initialization

1 // Settings

#define VERSION_NUMBER 0

3

// Current Value + Offset

5 #define SPI1_data_mask 0x7FF8

#define ContPatternMask (0x7FFF - SPI1_data_mask) // for 3Bit Check

Mask 0x0007

7 // SPI Transmission Parity Check

#define SinContPattern 0x0005 // Reference Value SIN: 101

9 #define CosContPattern 0x0002 // Reference Value COS: 010

#define SPI_Reset_Time 100 // Reset Recovery Time

11 #define RESOLUTION 4096

13 // Function Prototypes

void Init_SPI1(void);

15 void Init_SPI2(void);

void Write_SPI2(short command);

17

void Delay_ms (unsigned int delay);

19 void Delay_us(unsigned int usec);

void Delay(void);

21 int Sign(int x);

signed int GetDirection(int sin_or_cos_value , signed int oldSIN , signed

int oldCOS , signed int newVALUE);

23 int GetQuadrant(signed int SIN , signed int COS);

25 void SetParam(unsigned int param , unsigned int value_byte_2 , unsigned

int value_byte_1_and_0);

void Run(unsigned char direction , unsigned int speed_byte_2 , unsigned

int speed_byte_1_and_0);

27 void ResetDevice(void);

void SoftStop(void);

29 void HardStop(void);

void SoftHiZ(void);

31 void HardHiZ(void);

33 // Interrupt Subroutines

void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void);

35 void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI2Interrupt(void);

Port Initialization

1 #include <p33FJ128MC802.h>
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3 void Init_Ports(void)

{

5 // Port A

PORTA = 0;

7 LATA = 0;

// Data Direction Registers Configuration

9 // TRISBit = 1 --> Input , TRISBit = 0 --> Output

TRISAbits.TRISA0 = 0; // RED LED output

11

// Port B

13 PORTB = 0;

LATB = 0;

15 // Data Direction Registers Configuration

TRISBbits.TRISB12 = 1; // SDI1

17 TRISBbits.TRISB13 = 1; // SCK1

TRISBbits.TRISB14 = 1; // SS1

19 TRISBbits.TRISB15 = 0; // SDO1

21 // Data Direction Registers Configuration

TRISBbits.TRISB2 = 1; // SDI2

23 TRISBbits.TRISB3 = 0; // SDO2

TRISBbits.TRISB4 = 0; // SCK2

25 TRISBbits.TRISB7 = 0; // SS2

}

Initialization of the SPI1 Module

#include <p33FJ128MC802.h>

2

void Init_SPI1(void)

4 {

// Assign SPI1 -Registers

6 RPINR20bits.SDI1R = 12;

RPINR20bits.SCK1R = 13;

8 RPINR21bits.SS1R = 14;

RPOR7bits.RP15R = 7;

10

// Clear Buffer Register

12 SPI1BUF = 0x0000;

14 IFS0bits.SPI1IF = 0;

IEC0bits.SPI1IE = 1; //SPI1 Event Interrupt

16 IPC2bits.SPI1IP = 4; //SPI1 Datentransfer

18 // Configuration of SPI1CON1

SPI1CON1bits.MSTEN = 0; // Slave Mode selected

20 SPI1CON1bits.DISSCK = 0; // just for Master Mode

SPI1CON1bits.DISSDO = 1; // no SDO in Slave Mode

22 SPI1CON1bits.MODE16 = 1; // 16 Bit Bandwidth

SPI1CON1bits.SMP = 0; // in Slave Mode always 0
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24 SPI1CON1bits.SSEN = 1; // SS1 active for Slave Mode

26 // Definition of Clock Priority and Data Exchange

SPI1CON1bits.CKE = 0; // Data Exchange on CLK idle to CLK active

28 SPI1CON1bits.CKP = 0; // CLK idle=0, CLK active =1

30 // Configuration of SPI1STAT

SPI1STATbits.SPISIDL = 0; // SPI continues working in Idle Mode

32 IPC2bits.SPI1IP = 4; // SPI1 Data Transfer

// IPC2bits.SPI1EIP = 4; // SPI1 Error

34 IFS0bits.SPI1IF = 0;

// IFS0bits.SPI1EIF = 0;

36 SPI1STATbits.SPIROV = 0; // Clear Error Flag

IEC0bits.SPI1IE = 1; // SPI1 Event Interrupt

38 // IEC0bits.SPI1EIE = 1; // SPI1 Error Interrupt

// while (PORTBbits.RB14 == 0); // activate , when SS is high

40 SPI1STATbits.SPIEN = 1; // Switch SPI1 Module on

}

Initialization of the SPI2 Module

1 #include <p33FJ128MC802.h>

3 void Init_SPI2(void)

{

5 // Assign SPI2 -Registers

RPINR22bits.SDI2R = 2; // Serial data input to RP2 = Pin 6

7 RPOR1bits.RP3R = 0b01010; // SDO2 mapped to RP3

RPINR22bits.SCK2R = 4; // Serial clock to RP4 = Pin 11

9 RPOR2bits.RP4R = 0b01011; // SCK2 mapped to RP4

RPINR23bits.SS2R = 7; // Slave selecto to RP7 = Pin 16

11 RPOR3bits.RP7R = 0b01100; // SS2 mapped to RP7

13 /* The following code shows the SPI register configuration for

Master mode */

IFS2bits.SPI2IF = 0; // Clear the Interrupt Flag

15 IFS2bits.SPI2EIF = 0; // Clear the error interrupt flag

IEC2bits.SPI2IE = 0; // Disable the Interrupt

17 IPC8bits.SPI2IP = 4; // SPI2 Priority

19 // SPI1CON1 Register Settings

SPI2CON1bits.DISSCK = 0; // Internal Serial Clock is Enabled

21 SPI2CON1bits.DISSDO = 0; // Data output is enabled

23 // SDO2 pin is controlled by the module

SPI2CON1bits.MODE16 = 0; // Communication is byte -wide (8 bits)

25 SPI2CON1bits.CKE = 0; // Serial output data changes on transition

from Idle clock state to active clock state

SPI2CON1bits.CKP = 0; // Idle state for clock is a low level; //

active state is a high level

27 SPI2CON1bits.MSTEN = 1; // Master mode enabled
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SPI2CON1bits.SMP = 0; // Input data sampled at middle of data

output time

29 SPI2CON1bits.PPRE = 0b010; // Primary prescale 4:1

SPI2CON1bits.SPRE = 0b110; // Secondary prescale 2:1

31 SPI2CON2 = 0x0000;

SPI2STATbits.SPIEN = 1; // Enable SPI module

33

// Interrupt Controller Settings

35 IFS2bits.SPI2IF = 0; // Clear the Interrupt Flag

IFS2bits.SPI2EIF = 0; /// Clear the error interrupt flag

37 IEC2bits.SPI2IE = 1; // Enable the Interrupt

39 Write_SPI2 (0x0000); // Write data to be transmitted

}

SPI1 Interrupt Service Routine

#include "p33FJ128MC802.h"

2 #include "init.h"

#include <dsp.h>

4

void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void)

// Duration: approx. 620 ns

6 {

// LATAbits.LATA0 = 1; // Switch RED LED on

8

extern volatile signed int refSIN , refCOS;

10 extern volatile int oldDIR;

extern volatile char MotorDriver_STOP;

12 signed int buffered_Data;

extern volatile char SPI_ERROR;

14 signed int oldSIN = 0, oldCOS = 0;

signed int deltaSIN = 0, deltaCOS = 0;

16 int newDIR;

18 buffered_Data = SPI1BUF;

// Compute received Data

20 if (SPI_ERROR == 0)

{

22 MotorDriver_STOP = 0;

oldSIN = refSIN;

24 oldCOS = refCOS;

26 // Parity Check

if (buffered_Data > 0) // SIN

28 {

if (( buffered_Data & ContPatternMask)== SinContPattern) //

Parity check

30 {

buffered_Data = buffered_Data & SPI1_data_mask; //

Separation of data and check bits
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32 buffered_Data = buffered_Data >> 3;

refSIN = buffered_Data - (RESOLUTION / 2);

34 deltaSIN = refSIN - oldSIN;

newDIR = GetDirection (0, oldSIN , oldCOS , refSIN);

36 if(oldDIR != newDIR) HardStop ();

if(newDIR != -1) Run(newDIR , deltaSIN , 0x0000);

38 oldDIR = newDIR;

}

40 else

{

42 SPI_ERROR = 1;

refSIN = 0;

44 refCOS = 0;

MotorDriver_STOP = 1;

46 }

}

48 else // COS

{

50 if (( buffered_Data & ContPatternMask)== CosContPattern) //

Parity check

{

52 buffered_Data = buffered_Data & SPI1_data_mask; //

Separation of data and check bits

buffered_Data = buffered_Data >> 3;

54 refCOS = buffered_Data - (RESOLUTION / 2);

deltaCOS = refCOS - oldCOS;

56 newDIR = GetDirection (1, oldSIN , oldCOS , refCOS);

if(oldDIR != newDIR) HardStop ();

58 if(newDIR != -1) Run(newDIR , deltaCOS , 0x0000);

oldDIR = newDIR;

60 }

else

62 {

SPI_ERROR = 1;

64 refSIN = 0;

refCOS = 0;

66 MotorDriver_STOP = 1;

}

68 }

}

70 SPI1STATbits.SPIROV = 0; // Received overflow flag: no overflow has

occured

IFS0bits.SPI1IF = 0; // Clear SPI1 interrupt flag

72 IFS0bits.SPI1EIF = 0; // Clear SPI1 error interrupt flag

74

// LATAbits.LATA0 = 0; // Switch RED LED off

76 }

78 // Returns the new direction calculated by the transmitted value

signed int GetDirection(int sin_or_cos_value , signed int oldSIN , signed

int oldCOS , signed int newVALUE)
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80 {

int oldQuadrant = GetQuadrant(oldSIN , oldCOS);

82

if(sin_or_cos_value == 0) // SIN

84 {

if(( oldQuadrant == 1) || (oldQuadrant == 4))

86 {

if(( newVALUE - oldSIN) > 0) return 1;

88 else return 0;

}

90 if(( oldQuadrant == 2) || (oldQuadrant == 3))

{

92 if(( newVALUE - oldSIN) < 0) return 1;

else return 0;

94 }

}

96 else // COS

{

98 if(( oldQuadrant == 3) || (oldQuadrant == 4))

{

100 if(( newVALUE - oldCOS) > 0) return 1;

else return 0;

102 }

if(( oldQuadrant == 1) || (oldQuadrant == 2))

104 {

if(( newVALUE - oldCOS) < 0) return 1;

106 else return 0;

}

108 }

return -1;

110 }

112 // Returns the quadrant (1, 2, 3, 4) calculated by SIN , COS

int GetQuadrant(signed int SIN , signed int COS)

114 {

if((SIN >= 0) & (COS > 0)) return 1; // Q1

116 if((SIN > 0) & (COS <= 0)) return 2; // Q2

if((SIN <= 0) & (COS < 0)) return 3; // Q3

118 if((SIN < 0) & (COS >= 0)) return 4; // Q4

else return 0; // SIN = 0, COS = 0

120 }

Evaluation Firmware for TI DRV8841 + Microchip
dsPIC33FJ128MC802

General Initialization

// Settings

2 #define VERSION_NUMBER 0
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4 // Current Value + Offset

#define SPI1_data_mask 0x7FF8

6 #define ContPatternMask (0x7FFF - SPI1_data_mask) // for 3 bit parity

check 0x0007

// SPI Transmission Check Pattern

8 #define SinContPattern 0x0005 // for reference value SIN 101

#define CosContPattern 0x0002 // for reference value COS 010

10 #define SPI_Reset_Time 100

12 #define AI0 LATBbits.LATB7

#define AI1 LATBbits.LATB4

14 #define BI0 LATBbits.LATB3

#define BI1 LATBbits.LATB2

16

#define TABLE_SIZE 256 // sinewave look -up table size

18

// Function Prototypes

20 void Init_SPI1(void);

void Init_PWM(void);

22 void Init_Timer1(void);

void Init_ADC(void);

24 void SetPWM(void);

void UpdateTimer1(void);

26 void Measure_Current(void);

28 void Delay_ms (unsigned int delay);

void Delay_us(unsigned int usec);

30 void Delay(void);

32 // Interrupt Subroutines

void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void);

34 void __attribute__ (( __interrupt__ , no_auto_psv)) _T1Interrupt(void);

void __attribute__ (( __interrupt__ ,auto_psv)) _ADC1Interrupt(void);

36 void __attribute__ (( __interrupt__ ,no_auto_psv)) _MPWM1Interrupt(void);

void __attribute__ (( __interrupt__ ,no_auto_psv)) _MPWM2Interrupt(void);

Port Initialization

1 #include <p33FJ128MC802.h>

#include "init.h"

3

void Init_Ports(void)

5 {

// Port A

7 PORTA = 0;

LATA = 0;

9 // Data Direction Registers Configuration

// TRISBit = 1 --> Input , TRISBit = 0 --> Output

11 TRISAbits.TRISA0 = 0; // RED LED output

TRISAbits.TRISA1 = 1; // ADC Input

13
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// Port B

15 PORTB = 0;

LATB = 0;

17 // System Side

// Data Direction Registers Configuration

19 TRISBbits.TRISB12 = 1; // SDI1

TRISBbits.TRISB13 = 1; // SCK1

21 TRISBbits.TRISB14 = 1; // SS1

23 // Driver Side

TRISBbits.TRISB15 = 1; // nFAULT

25 TRISBbits.TRISB2 = 0; // BI1

TRISBbits.TRISB3 = 0; // BI0

27 TRISBbits.TRISB4 = 0; // AI1

TRISBbits.TRISB7 = 0; // AI0

29 TRISBbits.TRISB8 = 0; // BIN1

TRISBbits.TRISB9 = 0; // BIN2

31 TRISBbits.TRISB10 = 0; // AIN1

TRISBbits.TRISB11 = 0; // AIN2

33 }

Initialization of the SPI1 Module

1 #include <p33FJ128MC802.h>

3 void Init_SPI1(void)

{

5 // Assign SPI1 -Registers

RPINR20bits.SDI1R = 12;

7 RPINR20bits.SCK1R = 13;

RPINR21bits.SS1R = 14;

9

// Clear Buffer Register

11 SPI1BUF = 0x0000;

13 IFS0bits.SPI1IF = 0;

IEC0bits.SPI1IE = 1; // SPI1 event interrupt

15 IPC2bits.SPI1IP = 4; // SPI1 data transfer

17 SPI1CON1bits.MSTEN = 0; // Slave Mode selected

SPI1CON1bits.DISSCK = 0; // just for master mode

19 SPI1CON1bits.DISSDO = 1; // no SDO in slave mode

SPI1CON1bits.MODE16 = 1; // 16 bit bandwidth

21 SPI1CON1bits.SMP = 0; // always 0 in slave mode

SPI1CON1bits.SSEN = 1; // SS is active

23

SPI1CON1bits.CKE = 0; // Data change CLK idle to CLK active

25 SPI1CON1bits.CKP = 0; // CLK idle=0, CLK active =1

27 SPI1STATbits.SPISIDL = 0; // SPI continues working in idle mode

IPC2bits.SPI1IP = 4; // SPI1 data transfer
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29 IFS0bits.SPI1IF = 0;

SPI1STATbits.SPIROV = 0; // Clear error flag

31 IEC0bits.SPI1IE = 1; // SPI1 Event Interrupt

SPI1STATbits.SPIEN = 1; // Switch on SPI module

33 }

Initialization of the PWM Modules

1 #include <p33FJ128MC802.h>

#include "userparameters.h"

3 #include "init.h"

5 void Init_PWM(void)

{

7 // Clear Duty Cycle Registers

P1DC3 = 0;

9 P2DC1 = 0;

11 P1TPER = PWM_FCY; // Setup PWM period

P2TPER = PWM_FCY; // Setup PWM period

13

PWM1CON1bits.PMOD3 = 0; // PWM3 -pair is in complementary output

mode

15 PWM1CON1bits.PEN3L = 1; // PWM3L is enabled

PWM1CON1bits.PEN3H = 1; // PWM3H is enabled

17 PWM2CON1bits.PMOD1 = 0; // PWM1 -pair is in complementary output

mode

PWM2CON1bits.PEN1L = 1; // PWM1L is enabled

19 PWM2CON1bits.PEN1H = 1; // PWM1H is enabled

21 PWM1CON2 = 0x0002; // special event postcale 1:1

// updates to the PDCx registers are sync

to the PWM time base

23 // Output overrides via the PxOVDCON

register are sync to the PWM time base

25 PWM2CON2 = 0x0002; // special event postcale 1:1

// updates to the PDCx registers are sync

to the PWM time base

27 // Output overrides via the PxOVDCON

register are sync to the PWM time base

29 // Set Dead Time

P1DTCON1bits.DTAPS = 0;

31 P1DTCON1bits.DTBPS = 0;

P1DTCON1bits.DTA = 10;

33 P1DTCON1bits.DTB = 20;

35 P1DTCON2bits.DTS3A = 0;

P1DTCON2bits.DTS3I = 1;

37
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P2DTCON1bits.DTAPS = 0;

39 P2DTCON1bits.DTBPS = 0;

P2DTCON1bits.DTA = 10;

41 P2DTCON1bits.DTB = 20;

P2DTCON2bits.DTS1A = 0;

43 P2DTCON2bits.DTS1I = 1;

45 // P1SECMP: Special Event Compare Count Register

// Phase of ADC capture set relative to PWM cycle: 0 offset and

counting up

47 P1SECMP = 1;

49 // Pins are controlled by the PWM module

P1OVDCON = 0b0011000000000000;

51 P2OVDCON = 0b0000001100000000;

53 // PWM Prescale 1:1, PWM Postscale 1:1

P1TCON = 0x0000;

55 P2TCON = 0x0000;

57 // Continuous Up/Down Count Mode with Interrupts for Double Update

of Duty Cycle

P1TCONbits.PTMOD = 0b11;

59 P2TCONbits.PTMOD = 0b11;

61 //// Special Event Trigger for ADC

// Select Special Event time base direction such that trigger will

occur

63 // when PWM time base is counting upwards

P1SECMPbits.SEVTDIR = 1;

65 P2SECMPbits.SEVTDIR = 1;

67 // Select PWM Special Event Trigger Output Postscale value to 1:1

PWM1CON2bits.SEVOPS = 0b0000;

69 PWM2CON2bits.SEVOPS = 0b0000;

71 /* Assign special event compare value */

P1SECMPbits.SEVTCMP = 0;

73 P2SECMPbits.SEVTCMP = 0;

75 IFS3bits.FLTA1IF = 0; // Clear FLTA1 interrupt flag

IFS4bits.FLTA2IF = 0; // Clear FLTA2 interrupt flag

77

// Disable immidiate Updates

79 PWM1CON2bits.IUE = 0;

PWM2CON2bits.IUE = 0;

81

// Interrupt Configuration

83 IFS3bits.PWM1IF = 0; // Clear flag

IEC3bits.PWM1IE = 1; // Enable interrupt

85 IFS4bits.PWM2IF = 0; // Clear flag

IEC4bits.PWM2IE = 0; // Disable interrupt
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87

// Set Interrupt Priorities

89 IPC14bits.PWM1IP = 3;

91 // Enable PWM

P1TCONbits.PTEN = 1;

93 P2TCONbits.PTEN = 1;

95 // Set Current Levels to 38%

AI0 = 0;

97 AI1 = 1;

BI0 = 0;

99 BI1 = 1;

}

ADC Initialization

#include <p33FJ128MC802.h>

2 #include "userparameters.h"

#include "init.h"

4

void Init_ADC(void)

6 {

AD1CON1bits.AD12B = 1; // 12-bit ADC operation

8 AD1CON2bits.VCFG = 0b000; // Select AVDD , AVSS as reference supply

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock

10 AD1CON3bits.SAMC = 0; // Auto Sample Time = 0 * TAD

AD1CON3bits.ADCS = 2; // ADC Conversion Clock TAD = TCY * (ADCS +

1) = (1/40M) * 3 =

12 // 75 ns (13.33 MHz)

// ADC Conversion Time for 10-bit Tconv = 12 * TAD = 900 ns (1.1

MHz)

14

// AD1CHS0/AD1CHS123: Analog -to-Digital Input Select Register

16 AD1CHS0bits.CH0SA = 1; // MUXA +ve input selection (AIN1) for CH0

AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (VREF -) for CH0

18 AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for

CH1

AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (VREF -) for

CH1

20

AD1CON2bits.CHPS = 0; // Converts channels CH0

22

// AD1PCFGH/AD1PCFGL: Port Configuration Register

24 AD1PCFGL = 0xFFFF;

// AD1PCFGH = 0xFFFF;

26 AD1PCFGLbits.PCFG1 = 0; // AN1 as Analog Input

28 AD1CON1bits.SIMSAM = 1; // Samples CH0 and CH1 simultaneously

30 AD1CSSLbits.CSS1 = 1; // Select AN1 for input scan
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32 AD1CON1bits.FORM = 0b00; // Data Output Format: Unsigned Integer

34 /* Choose ADC1 trigger source such that MCPWM1 module stops

sampling and

starts conversion */

36 AD1CON1bits.SSRC = 0b011;

AD1CON1bits.ASAM = 1; // ADC Sample Control: Sampling begins

immediately after conversion

38

AD1CON1bits.ADDMABM = 1; // DMA buffers are built in conversion

order mode

40 AD1CON2bits.SMPI = 0; // SMPI must be 0

42 IPC3bits.AD1IP = 1; // Set Interrupt Priority

44 IFS0bits.AD1IF = 0; // Clear the Analog -to -Digital interrupt flag

bit

IEC0bits.AD1IE = 1; // Enable Analog -to -Digital interrupt

46

AD1CON1bits.ADON = 1; // Turn on the ADC

48 }

SPI1 Interrupt Service Routine

#include "p33FJ128MC802.h"

2 #include "init.h"

#include "userparameters.h"

4 #include <dsp.h>

6 void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void)

// Duration: approx.

{

8

extern volatile signed int refSIN , refCOS;

10 extern volatile char MotorDriver_STOP;

signed int buffered_Data;

12 extern volatile char SPI_ERROR;

14 extern volatile int pwmOutSIN , pwmOutCOS; // Temporary variable to

hold PWM duty cycle values during calculations

16 buffered_Data = SPI1BUF;

// Compute received Data

18 if (SPI_ERROR == 0)

{

20 MotorDriver_STOP = 0;

22 // Parity Check

if (buffered_Data > 0) // SIN

24 {
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if (( buffered_Data & ContPatternMask)== SinContPattern) //

Parity check

26 {

buffered_Data = buffered_Data & SPI1_data_mask; //

Separation of data and check bits

28 buffered_Data = buffered_Data >> 3;

refSIN = buffered_Data / 4;

30 if(refSIN < PWM_MAX) pwmOutSIN = refSIN;

else pwmOutSIN = PWM_MAX;

32 }

else

34 {

SPI_ERROR = 1;

36 refSIN = 0;

refCOS = 0;

38 MotorDriver_STOP = 1;

}

40 }

else // COS

42 {

if (( buffered_Data & ContPatternMask)== CosContPattern) //

Parity check

44 {

buffered_Data = buffered_Data & SPI1_data_mask; //

Separation of data and check bits

46 buffered_Data = buffered_Data >> 3;

refCOS = buffered_Data / 4;

48 if(refCOS < PWM_MAX) pwmOutCOS = refCOS;

else pwmOutCOS = PWM_MAX;

50 }

else

52 {

SPI_ERROR = 1;

54 refSIN = 0;

refCOS = 0;

56 MotorDriver_STOP = 1;

}

58 }

SetPWM ();

60 }

62 SPI1STATbits.SPIROV = 0; // Received overflow flag: no overflow has

occured

IFS0bits.SPI1IF = 0; // Clear SPI1 interrupt flag

64 IFS0bits.SPI1EIF = 0; // Clear SPI1 error interrupt flag

}
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Prototype Firmware for TI DRV8841 + Microchip
dsPIC33EP256MC202

General Initialization

1 // General Settings

#define VERSION_NUMBER 0

3

// Oscillator Settings

5 #define F_OSC 130 // Varies between 120 and 140 MHz

#define F_CY F_OSC / 2 // Measured at room temperature without tuning

7

// Current Value + Offset

9 #define SPI1_DATA_MASK 0x7FF8

#define CONT_PATTERN_MASK (0 x7FFF - SPI1_DATA_MASK) // at 3Bit Check

Pattern 0x0007

11 // SPI Transmission Check Pattern

#define SIN_CONT_PATTERN 0x0005 // for Reference SIN: 101

13 #define COS_CONT_PATTERN 0x0002 // for Reference COS: 010

#define SPI_Reset_Time 100 // Time for refreshment at SPI -Reset in

ms

15 #define SPI_RESOLUTION 4096

#define SPI_HALF_RESOLUTION (SPI_RESOLUTION / 2)

17 #define SPI_NEGATIVE_HALF_RESOLUTION (SPI_HALF_RESOLUTION * -1)

#define T_SPI 0.00004 //s, SPI sample time

19

// ADC Settings

21 #define ADC_MAX_RESOLUTION 4096 // Maximal Resolution: 12 Bit

#define ADC_RESOLUTION 1024 // Resolution: 10 Bit

23 #define ADC_HALF_RESOLUTION (ADC_RESOLUTION / 2) // 512

#define ADC_NEGATIVE_HALF_RESOLUTION (ADC_HALF_RESOLUTION * -1) // -512

25 #define ADC_TOLERANCE ADC_HALF_RESOLUTION / 100 // 1% Tolerance

#define ADC_LOWEST_ACCEPTABLE_VALUE (ADC_HALF_RESOLUTION -

ADC_TOLERANCE)

27 #define T_SAMPLE 0.00001 // Value in s, T_SAMPLE ~ 1 / PWM_FCY = 1 /

~100 kHz

29 // Scaling Factors

#define SPI_DIV_ADC_RESOLUTION_FACTOR (SPI_RESOLUTION / ADC_RESOLUTION)

31 #define SPI_DIV_ADC_SHIFT 2

33 // PWM Settings

#define PWM_FCY 95.21484 // Value in kHz , PWM_FCY = FOSC * 1000000 /

ADC_RESOLUTION

35 #define PWM_TPER 1365 // PWM_TPER = FOSC / PWM_FCY

#define PWM_FACTOR (int)(SPI_RESOLUTION / PWM_TPER) // PWM_FACTOR =

SPI_RESOLUTION / PWM_TPER

37 #define PWM_MAX PWM_TPER // Maximal Duty Cycle Value

#define PWM_ZERO PWM_MAX / 2

39 #define PWM_MIN 0 // Minimal Duty Cycle Value

#define PWM_DC_DIFFERENCE_THRESHOLD (PWM_TPER / 200) // Needed for

correct triggering
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41 #define PWM_PHASE2 310 // Needed for synchronization of PWM1 and PWM2

43 // 100% Current (Driver Settings)

#define AI0 0

45 #define AI1 0

#define BI0 0

47 #define BI1 0

49 // C Function Prototypes

void Init_Ports(void);

51 void Init_SPI1(void);

void Init_PWM(void);

53 void Init_ADCs(void);

void Init_Driver(void);

55 void Init_Controller(void);

void Init_Controller_History(void);

57 void Set_ADC_Trigger(void);

int GetQuadrant(signed int SIN , signed int COS);

59 void Init_Timer1(void);

void SecondTickEvent(void);

61

// C Interrupt Subroutines

63 void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void);

void __attribute__ ((interrupt , no_auto_psv)) _AD1Interrupt(void);

65

// Assembler Function Prototypes

67 extern void CALC_PT1_FILTERED_SIN(void);

extern void CALC_PT1_FILTERED_COS(void);

69 extern void CALC_PT1_FILTERED_SIN_PWM(void);

extern void CALC_PT1_FILTERED_COS_PWM(void);

71 extern void CORRECT_SIN(void);

extern void CORRECT_COS(void);

73 extern void CALC_SIN_DC(void);

extern void CALC_COS_DC(void);

75 extern void TEST(void);

Controller Parameters

1 // Control Method Selection

// 0 ... Open Loop Voltage Control

3 // 1 ... Closed Loop Current Control , I-Controller

// 2 ... Closed Loop Current Control , PI-Controller

5 // 3 ... Closed Loop Current Control , I-, Magnitude -Controller

// 4 ... Test

7 #define CONTROL_METHOD 0

9 // Filter Selection

// 0 ... All filters off

11 // 2 ... 2. order filter

// 4 ... 4. order filter

13 #define FILTER_METHOD 4
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15 // Voltage Supply Parameters

#define V 12 // Value in V

17 #define I_MAX 2 // Value in A, Maximal current

19 // Motor Parameters FL20STH42 -1004A

#define R_WINDING 3.5 // Ohm

21 #define R_LINES 0.0 // Ohm

#define L_WINDING 0.001 // H

23 #define R (R_WINDING + R_LINES)

25 // Settings for PT1 Filter Reference Values

#define K_PT1 2

27

// I-Controller Settings

29 #define I_ERROR_GAIN

31 // PI-Controller Settings

#define T_RISE 0.0001 // Value in s, Step function response time

33 #define K_FACTOR 3 // Gain factor for error amplification

#define G_FACTOR 1.0 // Gain factor needed to avoid underflows

Port Initialization

#include <p33Exxxx.h>

2 #include "init.h"

4 void Init_Ports(void)

{

6 // TRISBit = 1 --> Input , TRISBit = 0 --> Output

8 // Port A

PORTA = 0;

10 LATA = 0;

// Data Direction Registers Configuration

12 TRISAbits.TRISA0 = 1; // ADC SIN_RTN Input

TRISAbits.TRISA1 = 1; // ADC COS_RTN Input

14 TRISAbits.TRISA2 = 1; // nFAULT

TRISAbits.TRISA3 = 0; // nSLEEP

16 TRISAbits.TRISA4 = 1; // LVDS Line Receiver OUT 4

18 // Port B

PORTB = 0;

20 LATB = 0;

// Data Direction Registers Configuration

22 TRISBbits.TRISB0 = 1; // nSS1

TRISBbits.TRISB1 = 0; // DECAY

24 TRISBbits.TRISB4 = 0; // nRESET

TRISBbits.TRISB5 = 0; // Utility Pad

26 TRISBbits.TRISB6 = 0; // BI1

TRISBbits.TRISB7 = 1; // SCK1
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28 TRISBbits.TRISB8 = 0; // BI0

TRISBbits.TRISB9 = 1; // SDI1

30 TRISBbits.TRISB10 = 0; // AI1

TRISBbits.TRISB11 = 0; // AI0

32 TRISBbits.TRISB12 = 0; // PWM2H

TRISBbits.TRISB13 = 0; // PWM2L

34 TRISBbits.TRISB14 = 0; // PWM1H

TRISBbits.TRISB15 = 0; // PWM1L

36 }

Initialization of the SPI1 Module

#include <p33Exxxx.h>

2

void Init_SPI1(void)

4 {

PMD1bits.SPI1MD = 0;

6

SPI1STATbits.SPIEN = 1;

8

// Clear Buffer Register

10 SPI1BUF = 0x0000;

12 IEC0bits.SPI1IE = 0; // SPI1 event interrupt

SPI1STATbits.SPIEN = 0; // Switch SPI1 module off

14

SPI1CON1bits.MODE16 = 1; // 16 bit bandwidth

16 SPI1CON1bits.MSTEN = 0; // Slave mode selected

SPI1CON1bits.DISSCK = 0; // Just for master Mode

18 SPI1CON1bits.DISSDO = 1; // no SDO in slave mode

20 SPI1CON1bits.SMP = 0; // in slave mode always 0

SPI1CON1bits.SSEN = 1; // SS1 activ for slave mode

22

SPI1CON1bits.CKE = 0; // Data Change CLK idle to CLK active

24 SPI1CON1bits.CKP = 0; // CLK idle=0, CLK active =1

26 SPI1STATbits.SPISIDL = 0;

IPC2bits.SPI1IP = 6;

28 SPI1STATbits.SPIROV = 0; // Clear error flag

SPI1STATbits.SPIEN = 1;

30

IFS0bits.SPI1IF = 0;

32 IFS0bits.SPI1EIF = 0;

IEC0bits.SPI1IE = 1; // SPI1 event interrupt

34 }

Initialization of the PWM Modules
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#include <p33Exxxx.h>

2 #include "init.h"

4 // Working with independent Time Bases

void Init_PWM(void)

6 {

PDC1 = 0; // Clear Duty Cycle Registers

8 PDC2 = 0;

10 PTPER = PWM_TPER;

12 IOCON1 = 0x0000;

IOCON2 = 0x0000;

14

// Dead Time Settings

16 PWMCON1bits.DTC = 0b00;

PWMCON2bits.DTC = 0b00;

18

DTR1 = 0;

20 DTR2 = 0;

22 ALTDTR1 = 0;

ALTDTR2 = 0;

24

IOCON1bits.PENH = 1; // PWM1 Module controls PWM1H Pin

26 IOCON1bits.PENL = 1; // PWM1 Module controls PWM1L Pin

IOCON2bits.PENH = 1; // PWM2 Module controls PWM2H Pin

28 IOCON2bits.PENL = 1; // PWM2 Module controls PWM2L Pin

IOCON1bits.POLH = 0; // PWM1H Pin is active -high

30 IOCON1bits.POLL = 0; // PWMxL Pin is active -high

IOCON2bits.POLH = 0; // PWM2H Pin is active -high

32 IOCON2bits.POLL = 0; // PWM2L Pin is active -high

IOCON1bits.PMOD = 0b00; // PWM1 I/O Pin Pair is in the

Complementary Output Mode

34 IOCON2bits.PMOD = 0b00; // PWM2 I/O Pin Pair is in the

Complementary Output Mode

IOCON1bits.OVRENH = 0; // PWM1 Generator controls PWM1H Pin

36 IOCON1bits.OVRENL = 0; // PWM1 Generator controls PWM1L Pin

IOCON2bits.OVRENH = 0; // PWM2 Generator controls PWM2H Pin

38 IOCON2bits.OVRENL = 0; // PWM2 Generator controls PWM2L Pin

IOCON1bits.SWAP = 0; // PWMxH and PWMxL Pins are mapped to their

respective Pins

40 IOCON2bits.SWAP = 0;

IOCON1bits.FLTDAT = 0b00; // Values for PWM1H and PWM1L in case of

fault

42 IOCON2bits.FLTDAT = 0b00;

44 PTCON = 0x0000;

46 PTCON2 = 0x0000; // Divide by 1 to generate PWM

48 PWMCON1bits.MDCS = 0; // Master duty cycle is not used
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PWMCON2bits.MDCS = 0;

50 PWMCON1bits.CAM = 0; // Edge -aligned mode is enabled

PWMCON2bits.CAM = 0;

52 PWMCON1bits.ITB = 0; // PTPER register provides timing for this PWM

generator

PWMCON2bits.ITB = 0;

54 PWMCON1bits.TRGIEN = 0; // A trigger event generates an interrupt

request

PWMCON2bits.TRGIEN = 0;

56 PWMCON1bits.CLIEN = 0; // Current limit interrupt is disabled

PWMCON2bits.CLIEN = 0;

58 PWMCON1bits.FLTIEN = 0; // Fault interrupt is disabled

PWMCON2bits.FLTIEN = 0;

60 PWMCON1bits.TRGSTAT = 0; // No trigger interrupt is pending

PWMCON2bits.TRGSTAT = 0;

62 PWMCON1bits.CLSTAT = 0; // No current limit interrupt is pending

PWMCON2bits.CLSTAT = 0;

64 PWMCON1bits.FLTSTAT = 0; // No fault interrupt is pending

PWMCON2bits.FLTSTAT = 0;

66 PWMCON1bits.XPRES = 0; // External pins do not affect PWM operation

PWMCON2bits.XPRES = 0;

68

PDC1 = PTPER / 2; // Initialize as 0 Voltage

70 PDC2 = PTPER / 2; // Initialize as 0 Voltage

72 PTCONbits.SEVTPS = 0; // Special Event Trigger output postscaler

set to 1:2 selection

74 PTCONbits.EIPU = 0; // Update active period register immediately

PWMCON1bits.IUE = 0;

76 PWMCON2bits.IUE = 0;

78 // Interrupt Configuration

IPC23bits.PWM1IP = 4; // Set Interrupt Priorities

80 IFS5bits.PWM1IF = 0; // Clear Flag

IEC5bits.PWM1IE = 0; // Enable Interrupt

82 IPC23bits.PWM2IP = 4;

IFS5bits.PWM2IF = 0;

84 IEC5bits.PWM2IE = 0;

IPC14bits.PSEMIP = 4;

86 IFS3bits.PSEMIF = 0;

IEC3bits.PSEMIE = 1; // Enable special event interrupt

88

// Fault Configuration

90 FCLCON1bits.FLTSRC = 0b00000;

FCLCON2bits.FLTSRC = 0b00000;

92 FCLCON1bits.FLTMOD = 0b11; // Disable fault input

FCLCON2bits.FLTMOD = 0b11;

94

// Phase Shift for PWM2

96 PHASE2 = PWM_PHASE2;

XXIV



98 PTCONbits.PTEN = 1; // Enable PWM module

}

ADC Initialization

1 #include <p33Exxxx.h>

3 // Settings for 10 Bit , 2 Channels

void Init_ADCs(void)

5 {

// Port Configuration

7 ANSELA = 0x0000;

ANSELAbits.ANSA0 = 1;// Ensure AN0/RA0 is analog

9 ANSELAbits.ANSA1 = 1;// Ensure AN1/RA1 is analog

TRISAbits.TRISA0 = 1; // ADC SIN_RTN Input

11 TRISAbits.TRISA1 = 1; // ADC COS_RTN Input

13 AD1CON1bits.AD12B = 0; // 10-bit ADC operation

AD1CON2bits.VCFG = 0b000; // Select AVDD , AVSS as reference supply

15 AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock

AD1CON3bits.SAMC = 0; // Auto Sample Time = 0 * TAD

17

AD1CON1bits.SSRCG = 0;

19 AD1CON1bits.SSRC = 0b011;

21 AD1CON1bits.ASAM = 1; // ADC Sample Control: Sampling begins

immediately after last conversion

23 AD1CON1bits.FORM = 0b00; // Data Output Format: Unsigned Integer

25 AD1CON1bits.SIMSAM = 1; // Simultanous sampling

27 AD1CON2bits.CHPS = 0b01; // Converts channels CH0 , CH1

AD1CON2bits.BUFM = 0; // Single 16-Word Result Buffer

29

AD1CHS0bits.CH0SA = 0b00001; // Channel 0 positive input is AN1

31 AD1CHS0bits.CH0NA = 0; // Select Vref - for CH0 -ve input

AD1CON2bits.CSCNA = 0; // No input scan

33 AD1CSSH = 0x0000;

AD1CSSL = 0x0000;

35

AD1CHS123bits.CH123SA = 0; // AN0 -> CH1 , AN1 -> CH2

37 AD1CHS123bits.CH123NA = 0b00; // VREFL as negative input

AD1CON2bits.ALTS = 0; // Alternate MUXA , MUXB input select disabled

39

AD1CON3bits.ADCS = 7;

41 // Minimal value for Tad: Tad_min = 117.5 ns

// ADC Conversion Clock Tad=Tcy*(ADCS +1)= (1/65M)*8 = 123ns (8,13

MHz)

43 // ADC Sample Time: Tsamp = 3 * Tad = 369ns

// ADC Conversion Time for 12-bit: Tconv = 14 * Tad = 1.72 us

XXV



45

AD1CON4bits.ADDMAEN = 0; // Conversion results stored in ADCxBUF0

register

47

AD1CON2bits.SMPI = 0; // Interrupt is generated after every sample

49

IPC3bits.AD1IP = 4; // Set Interrupt Priority

51

IFS0bits.AD1IF = 0; // Clear the Analog -to -Digital interrupt flag

bit

53 IEC0bits.AD1IE = 1; // Enable Analog -to -Digital interrupt

55 AD1CON1bits.ADON = 1; // Turn on the ADC

}

Timer1 Initialization

#include <p33Exxxx.h>

2

void Init_Timer1(void)

4 {

T1CON = 0; // Timer reset

6 IFS0bits.T1IF = 0; // Reset Timer1 interrupt flag

IPC0bits.T1IP = 3; // Timer1 Interrupt priority level=4

8 IEC0bits.T1IE = 1; // Enable Timer1 interrupt

10 PR1 = 0xFDE8; // Timer1 period register = 65000000 / 1000

= 65000

T1CONbits.TCS = 0; // Clock = F_CY

12

T1CONbits.TON = 1; // Enable Timer1 and start the counter

14 }

SPI1 Interrupt Service Routine

#include <p33Exxxx.h>

2 #include "init.h"

4 void __attribute__ (( __interrupt__ , no_auto_psv)) _SPI1Interrupt(void)

// Duration: approx.

{

6 // LATBbits.LATB5 = 1; // Set Utility Pad high

8 extern volatile signed int refSIN , refCOS;

extern volatile signed int refSIN_PT1 , refCOS_PT1;

10 extern volatile unsigned int refSIN_PWM , refCOS_PWM;

12 signed int buffered_Data;

signed int temp = 0;
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14 extern volatile unsigned char SPI_ERROR;

extern volatile int MotorDriver_STOP;

16 extern volatile int SPI_DEADMAN_FLAG;

18 buffered_Data = SPI1BUF;

20 // Compute received Data

if (SPI_ERROR == 0)

22 {

SPI_DEADMAN_FLAG = 0;

24

// Parity Check

26 if (buffered_Data > 0) // SIN: D15 = 0

{

28 MotorDriver_STOP = 0;

if (( buffered_Data & CONT_PATTERN_MASK)== SIN_CONT_PATTERN)

// Parity check

30 {

// Separation of data and check bits

32 buffered_Data = buffered_Data & SPI1_DATA_MASK;

temp = (buffered_Data >> 3); // Remove parity bits

34 refSIN_PWM = temp / PWM_FACTOR;

refSIN = temp - SPI_HALF_RESOLUTION; // Remove offset

36 CALC_PT1_FILTERED_SIN ();

38 // Check Boundaries

if(refSIN_PT1 > SPI_HALF_RESOLUTION - 1)

40 {

refSIN_PT1 = SPI_HALF_RESOLUTION - 1;

42 }

if(refSIN_PT1 < SPI_NEGATIVE_HALF_RESOLUTION)

44 {

refSIN_PT1 = SPI_NEGATIVE_HALF_RESOLUTION;

46 }

48 CALC_PT1_FILTERED_SIN_PWM ();

PDC1 = refSIN_PWM;

50 }

else

52 {

SPI_ERROR = 1;

54 refSIN = 0;

refCOS = 0;

56 MotorDriver_STOP = 1;

}

58 }

else if(buffered_Data == 0) // STOP

60 {

MotorDriver_STOP = 1;

62 refSIN = 0;

refCOS = 0;

64 PDC1 = PWM_ZERO;
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PDC2 = PWM_ZERO;

66 }

else // COS: D15 = 1

68 {

MotorDriver_STOP = 0;

70 if (( buffered_Data & CONT_PATTERN_MASK) == COS_CONT_PATTERN

) // Parity check

{

72 // Separation of data and check bits

buffered_Data = buffered_Data & SPI1_DATA_MASK;

74 temp = (buffered_Data >> 3); // Remove parity bits

refCOS_PWM = temp / PWM_FACTOR;

76 refCOS = temp - SPI_HALF_RESOLUTION; // Remove offset

CALC_PT1_FILTERED_COS ();

78

// Check Boundaries

80 if(refCOS_PT1 > SPI_HALF_RESOLUTION - 1)

{

82 refCOS_PT1 = SPI_HALF_RESOLUTION - 1;

}

84 if(refCOS_PT1 < SPI_NEGATIVE_HALF_RESOLUTION)

{

86 refCOS_PT1 = SPI_NEGATIVE_HALF_RESOLUTION;

}

88

CALC_PT1_FILTERED_COS_PWM ();

90 PDC2 = refCOS_PWM;

}

92 else

{

94 SPI_ERROR = 1;

refSIN = 0;

96 refCOS = 0;

MotorDriver_STOP = 1;

98 }

}

100 Set_ADC_Trigger ();

}

102

SPI1STATbits.SPIROV = 0; // Received overflow flag: no overflow has

occured

104

IFS0bits.SPI1IF = 0; // Clear SPI1 interrupt flag

106 IFS0bits.SPI1EIF = 0; // Clear SPI1 error interrupt flag

108 // LATBbits.LATB5 = 0; // Set Utility Pad low

}

110

void Set_ADC_Trigger(void)

112 {

// LATBbits.LATB5 = 1; // Set Utility Pad high

114
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extern volatile signed int refSIN_PT1 , refCOS_PT1;

116 extern volatile signed int refSIN_PT1_PWM , refCOS_PT1_PWM;

118 int quadrant = GetQuadrant(refSIN_PT1 , refCOS_PT1);

120 if(refSIN_PT1_PWM >= PWM_MAX) refSIN_PT1_PWM = PWM_MAX;

if(refCOS_PT1_PWM >= PWM_MAX) refCOS_PT1_PWM = PWM_MAX;

122

// int pwm_DC_difference = refSIN_PT1_PWM - refCOS_PT1_PWM;

124

switch(quadrant)

126 {

case 1:

128 {

// LATBbits.LATB5 = 1; // Set Utility Pad high

130 if(refSIN_PT1_PWM >= refCOS_PT1_PWM) SEVTCMP =

refCOS_PT1_PWM / 2;

if(refSIN_PT1_PWM < refCOS_PT1_PWM) SEVTCMP =

refSIN_PT1_PWM / 2;

132 // LATBbits.LATB5 = 0; // Set Utility Pad low

break;

134 }

case 2:

136 {

// LATBbits.LATB5 = 1; // Set Utility Pad high

138 SEVTCMP = PDC1 - 1;

// LATBbits.LATB5 = 0; // Set Utility Pad low

140 break;

}

142 case 3:

{

144 // LATBbits.LATB5 = 1; // Set Utility Pad high

if(refSIN_PT1_PWM >= refCOS_PT1_PWM) SEVTCMP =

refSIN_PT1_PWM / 2 + PWM_ZERO;

146 if(refSIN_PT1_PWM < refCOS_PT1_PWM) SEVTCMP =

refCOS_PT1_PWM / 2 + PWM_ZERO;

// LATBbits.LATB5 = 0; // Set Utility Pad low

148 break;

}

150 case 4:

{

152 // LATBbits.LATB5 = 1; // Set Utility Pad high

SEVTCMP = PDC2 - 1;

154 // LATBbits.LATB5 = 0; // Set Utility Pad low

break;

156 }

case 0:

158 {

refSIN_PT1_PWM = PWM_ZERO;

160 refCOS_PT1_PWM = PWM_ZERO;

SEVTCMP = refSIN_PT1_PWM;

162 break;
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}

164 }

}

166

// Returns the quadrant (1, 2, 3, 4) calculated by SIN , COS

168 int GetQuadrant(signed int SIN , signed int COS)

{

170 if((SIN >= 0) & (COS > 0)) return 1; // Q1

if((SIN > 0) & (COS <= 0)) return 2; // Q2

172 if((SIN <= 0) & (COS < 0)) return 3; // Q3

if((SIN < 0) & (COS >= 0)) return 4; // Q4

174 else return 0; // SIN = 0, COS = 0

}

Timer1 Interrupt Service Routine

1 #include <p33Exxxx.h>

#include "init.h"

3

int milliseconds = 0;

5

// Interrupt is generated every ms

7 void __attribute__ ((interrupt , no_auto_psv)) _T1Interrupt( void )

{

9 // LATBbits.LATB5 = 1; // Set Utility Pad high

IFS0bits.T1IF = 0; // Clear interrupt flag

11

milliseconds ++;

13 if(milliseconds == 1000)

{

15 SecondTickEvent ();

milliseconds = 0;

17 }

19 // LATBbits.LATB5 = 0; // Set Utility Pad low

}

21

void SecondTickEvent(void)

23 {

// LATBbits.LATB5 = 1; // Set Utility Pad high

25

extern volatile int SPI_DEADMAN_FLAG;

27

int i;

29 for(i = 0; i < 1000; i++) Nop();

31 SPI_DEADMAN_FLAG = 1;

33 // LATBbits.LATB5 = 0; // Set Utility Pad low

}
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List of Components

Part Value Package Material Manufacturer Manufacturer Part Nr. Comment
PCB - - FR-4 Beta Layout GmbH - PCB Motor Controller Board

C1 10 nF C0402 Ceramic Taiyo Yuden UMK105BJ103KV-F 0402 Inch Package

C2 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package

C3 10 µF C1210 Ceramic Taiyo Yuden TMK325BJ106MN-T 1210 Inch Package, Maximal Tracelength to VCAP-Pin: 6mm

C4 330 µF PANASONIC_F Aluminium Panasonic EEEFT1V331AP -

C5 330 µF PANASONIC_F Aluminium Panasonic EEEFT1V331AP -

C6 10 µF C1210 Ceramic Taiyo Yuden TMK325BJ106MN-T 1210 Inch Package, Maximal Tracelength to OUT-Pin: 6mm

C7 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 6mm

C8 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to AVDD-Pin: 6mm

C9 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 2mm

C10 4.7 nF C0402 Ceramic Taiyo Yuden UMK105B7472KV-F 0402 Inch Package

C11 470 nF C0402 Ceramic Taiyo Yuden LMK105BJ474MV-F 0402 Inch Package

C12 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package

C13 10 µF C1210 Ceramic Taiyo Yuden TMK325BJ106MN-T 1210 Inch Package, Maximal Tracelength to VCAP-Pin: 6mm

C14 4.7 nF C0402 Ceramic Taiyo Yuden UMK105B7472KV-F 0402 Inch Package

C15 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 6mm

C16 330 µF PANASONIC_F Aluminium Panasonic EEEFT1V331AP -

C17 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to IN-Pin: 6mm

C18 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 6mm

C19 3.3 µF C1210 Ceramic TDK C3225X7R1E335K160AA 1210 Inch Package

C20 22 µF C1206 Ceramic TDK C3216X5R1V226M160AC 1206 Inch Package

C21 22 µF C1206 Ceramic TDK C3216X5R1V226M160AC 1206 Inch Package

C22 3.3 µF C1210 Ceramic TDK C3225X7R1E335K160AA 1210 Inch Package

C23 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 6mm

C24 100 nF C0402 Ceramic TDK C1005X5R1H104K050BB 0402 Inch Package, Maximal Tracelength to VDD-Pin: 6mm

JP1 - JP2Q - Preci-Dip 802-80-004-30-480101 -

JP2 - JP2Q - Preci-Dip 802-80-004-30-480101 -

JP3 - JP2Q - Preci-Dip 802-80-004-30-480101 -

JP4 - JP2Q - Preci-Dip 802-80-004-30-480101 -

JP5 - JP2 - Preci-Dip 800-80-003-30-480101 -

JP6 - JP2 - Preci-Dip 800-80-003-30-480101 -

JP7 - JP2 - Preci-Dip 800-80-003-30-480101 -

JP8 - JP2 - Preci-Dip 800-80-003-30-480101 -

L1 33 µH SM-NE29 - Würth 7447709331 No Standard Package, Data Sheet appended

L2 330 µH SM-NE29 - BI Technologies HM78-60330LFTR No Standard Package, Data Sheet appended

L3 330 µH SM-NE29 - BI Technologies HM78-60330LFTR No Standard Package, Data Sheet appended

L4 33 µH SM-NE29 - Würth 7447709331 No Standard Package, Data Sheet appended

L5 330 µH SM-NE29 - BI Technologies HM78-60330LFTR No Standard Package, Data Sheet appended

L6 330 µH SM-NE29 - BI Technologies HM78-60330LFTR No Standard Package, Data Sheet appended

L7 33 µH SM-NE29 - Würth 7447709331 No Standard Package, Data Sheet appended

L8 33 µH SM-NE29 - Würth 7447709331 No Standard Package, Data Sheet appended

LED1 BLUE CHIP-LED0805 - OSRAM LB QH9G-N1P2-35-1 0402 Inch Package

LED2 BLUE CHIP-LED0805 - OSRAM LB QH9G-N1P2-35-1 0402 Inch Package

R1 0.1 Ω R2512 - Bourns CRM2512-FX-R100ELF 2512 Inch Package

R2 0.1 Ω R2512 - Bourns CRM2512-FX-R100ELF 2512 Inch Package

R3 2 kΩ R0402 - TE Connectivity CRG0402F2K0 0402 Inch Package

R4 2 kΩ R0402 - TE Connectivity CRG0402F2K0 0402 Inch Package

R5 100 Ω R0402 - TE Connectivity CPF0402B100RE1 0402 Inch Package

R6 10 kΩ R0402 - Panasonic ERA2AEB103X 0402 Inch Package

R7 62 kΩ R0402 - TE Connectivity CPF0402B62KE 0402 Inch Package

R8 62 kΩ R0402 - TE Connectivity CPF0402B62KE 0402 Inch Package

R9 10 kΩ R0402 - Panasonic ERA2AEB103X 0402 Inch Package

R10 10 kΩ R0402 - Panasonic ERA2AEB103X 0402 Inch Package

R11 62 kΩ R0402 - TE Connectivity CPF0402B62KE 0402 Inch Package

R12 100 Ω R0402 - TE Connectivity CPF0402B100RE1 0402 Inch Package

R13 100 Ω R0402 - TE Connectivity CPF0402B100RE1 0402 Inch Package

R14 10 Ω R0402 - TE Connectivity CPF0402B10RE 0402 Inch Package

R15 10 Ω R0402 - TE Connectivity CPF0402B10RE 0402 Inch Package

R16 10 kΩ R0402 - Panasonic ERA2AEB103X 0402 Inch Package

R17 62 kΩ R0402 - TE Connectivity CPF0402B62KE 0402 Inch Package

R18 10 kΩ R0402 - Panasonic ERA2AEB103X 0402 Inch Package

R19 1.33 kΩ - - - - -

R20 1.33 kΩ - - - - -

T1 - SOT23 - DiodesZetex BC846A-7-F SOT23 Package

T2 - SOT23 - DiodesZetex BC846A-7-F SOT23 Package

U1 - SOT223 - ON Semiconductor NCV4274AST33T3G SOT223 Package

U2 - SSOP28_300MC - Microchip DSPIC33EP256MC202-H/SS SSOP28 Package

U3 - TSSOP14_MC - Microchip MCP6024-E/ST SSOP14 Package

U4 - 16TSSOP - Maxim MAX9121EUE+ SSOP16 Package

U5 - PWP28_5P18X3P1 - TI DRV8841 SSOP28 Package



Software Tools

Source: https://www.microchip.com/pagehandler/en-us/family/mplabx/, 18/FEB/2014

Figure 50: Microchip MPLAB X Integrated Development Environment

Source: https://www.microchip.com/pagehandler/en-us/devtools/mplabxc/home.html, 18/FEB/2014

Figure 51: Microchip XC16 Compiler

Source: http://ww1.microchip.com/downloads/en/devicedoc/c30_users_guide_51284f.pdf,
18/FEB/2014

Figure 52: Microchip C30 C Compiler

XC16 Compiler Version: v1.20
Assembler Version: ASM30
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Source: http://msdn.microsoft.com/de-DE/vstudio, 18/FEB/2014

Figure 53: Microsoft Visual Studio 2008 Professional

Source: http://www.cadsoft.de/welcome-to-cadsoft/, 18/FEB/2014

Figure 54: EAGLE Schematics Design and PCB Layout

Source: http://www.linear.com/solutions/1083, 18/FEB/2014

Figure 55: LTSpice IV

Source: http://www.cadence.com/products/orcad/pages/default.aspx, 18/FEB/2014

Figure 56: Cadence OrCAD 16.6
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