
Master Thesis

Keyword Spotting for Emergency

conducted at the

Signal Processing and Speech Communication Lab

Graz University of Technology

by

Andreas Zehetner

Supervisors:

Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Dipl.-Ing. Dr. techn. Martin Hagmüller

Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Assessor/Examiner:

Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

WS 2013

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort, Datum Unterschrift

Abstract

Keyword spotting (KWS) represents an important component of speech signal proces-

sing. This thesis aims to detect the occurrence of individual keywords in a continuous

audio signal. In doing so, two approaches can be distinguished. Some approaches use pho-

netic or syllabic models for their speech models based on Hidden Markov Models. These

algorithms require a specific model for each language. Because the KWS algorithm should

be independent of the language or dialect used, another type of algorithm was selected,

namely pattern matching. In this process, the keyword is recorded once and serves as

reference (template) in the subsequent detection process. The algorithm compares the

current audio data to the template on the basis of different distance measures such as

dynamic time warping or euclidan distance, among others. A keyword is considered de-

tected if the distance between the template and the current audio data, represented by

mel frequency cepstral coeffiecients, is below a certain threshold. Additionally, a rhythm

detection algorithm that detects handclapping is developed. Like in the keyword spot-

ting method, a reference rhythm is recorded and serves as template in the subsequent

detection process. Both algorithms are implemented in Matlab and tested on recorded

databases with regard to their recognition and false alarm rate. The KWS database was

recorded with three different background noise levels, four different distances between

speaker and recording device and ten different speakers. It consists of 480 keywords. The

KWS algorithm is evaluated on this database and has a recognition rate of 54.4% and a

precision of 97.8%. Additionally, a performance curve, i.e. recall vs. precision, with diffe-

rent settings of the thresholds is presented. The rhythm database was recorded with two

different background noise levels and four different distances between speaker and device.

It consists of 256 rhythms. The rhythm detection algorithm evaluated on this database

has a recognition rate of 79.7% and precision of 99.5%.

Kurzfassung

Signalwortdetektion (keyword spotting) stellt einen wichtigen Bereich der Sprachsignal-

verarbeitung dar. Dabei soll das Auftreten von einzelnen Signalwörtern in einem kontinu-

ierlichen Audiosignal detektiert werden. Hierbei können zwei verschiedene Herangehens-

weisen unterschieden werden. Zum einen Algorithmen, welche auf Phonem-, Triphon- oder

Silbenmodellen als grundlegendes Sprachmodell basieren mit anschließender Verarbeitung

mittels Hidden Markov Modellen. Diese Algorithmen benötigen aber für jede Sprache ein

eigenes Modell. Da der KWS Algorithmus unabhängig von der gewählten Sprache oder

Dialekt sein soll, wurde ein anderer Weg gewählt, der des Referenzmuster-Vergleichs. Dazu

wird das zu detektierende Signal einmal aufgenommen und dient anschließend als Refe-

renz. Der Algorithmus vergleicht nun mittels verschiedener Methoden, wie etwa Dynamic

Time Warping, Euklidische Distanz u.a., das aktuelle Audiosignal mit der Referenz. Ein

Signalwort gilt nun dann als detektiert, wenn mittels der eingesetzten Methoden eine aus-

reichende Übereinstimmung zwischen Referenz und aktuellem Audiosignal, repräsentiert

durch mel frequency cepstral coefficients, errechnet worden ist. Zusätzlich wird ein Algo-

rithmus entwickelt, welcher den Rhythmus von Händeklatschen detektiert. Auch hier wird

der gewünschte Rhythmus einmal mittels Klatschen aufgenommen und dient anschließend

als Referenz. Beide Algorithmen wurden in Matlab implementiert und anhand von er-

stellten Datenbanken hinsichtlich ihrer Erkennungs- und Fehlalarmrate ausgewertet. Die

KWS Datenbank wurde mit drei verschiedenen Lautstärken des Hintergrundgeräusches,

vier verschiedenen Distanzen zwischen Sprecher und Aufnahmegerät und zehn verschiede-

nen Sprechern aufgenommen. Sie beinhaltet 480 mal das Signalwort. Der KWS Algorith-

mus erzielt auf dieser Datenbank eine Erkennungsrate von 54.4% und eine Genauigkeit

von 97.8%. Zusätzlich werden Performance-Kurven, d.h. Erkennungsrate vs. Genauigkeit,

mit verschiedenen Schwellwerten, aufgenommen. Die Rhythmus Datenbank wurde mit

zwei verschiedenen Hintergrundgeräuschszenarien und vier verschiedenen Distanzen er-

stellt und beinhaltet 256 mal den Rhythmus. Der Rhythmus Erkennungs Algorithmus

erreicht eine Erkennungsrate von 79.7% und eine Genauigkeit von 99.5%.

Danksagung

Ein großer Dank gilt meinen beiden Betreuern Franz Pernkopf und Martin Hagmüller

für die Betreuung und Unterstützung bei dieser Arbeit sowie den Besprechungen, bei

denen sie wertvolle Beiträge leisteten. Weiters danken möchte ich Franz Stieger für die

Kooperation bei der Erstellung der Datenbanken und die Zusammenarbeit mit Claus

Zotter. Ein großer Dank geht an meine Freundin Khulan, die bei der Simulation der

Datenbanken sehr geholfen hat. Vielen Dank an Annika Flaake für das unglaublich rasche

Gegenlesen dieser Arbeit. Zum Abschluss gilt mein größter Dank meinen Eltern, Regina

und Josef, die mir dieses Studium und eine wunderschöne Zeit in Graz ermöglicht haben.

Graz, Oktober 2013 Andreas Zehetner

Contents

List of Abbreviations 8

1 Introduction 10
1.1 Keyword Spotting Methods . 11

1.2 App 112 - Motivation and Problem Statement 13

1.3 Requirements of the App112 . 13

1.4 Organization and Aim of this Work . 14

2 App112 - System Design 16

3 Keyword Spotting Algorithm 19
3.1 Quality Check of Reference Recording . 19

3.1.1 AAAD . 20

3.1.2 NAD . 21

3.1.3 AZCR . 22

3.2 Background Noise Classification . 24

3.3 Keyword Spotting Algorithm . 26

3.3.1 Mel Frequency Cepstral Coefficients 27

3.3.2 VAD . 31

3.3.3 DTW . 32

3.3.4 ED and CC . 37

3.3.5 Final combinations of ED, CC and DTW 39

4 Rhythm Detection Algorithm 40
4.1 AAAR . 40

4.2 Implementation . 41

5 Experimental Results 43
5.1 Performance Measure . 43

6

5.2 Keyword Spotting Results . 44

5.2.1 Database for KWS . 44

5.2.2 Performance depending on Keyword 45

5.2.3 Performance depending on Speaker 46

5.2.4 Performance depending on Background Noise and different Combi-

nations of ED, CC, DTW and VAD 47

5.2.5 Final Performance results on KWS Database 48

5.3 Rhythm Detection Results . 52

5.3.1 Database for Rhythm Detection . 52

5.3.2 Performance depending on Frame-size and Hop-size 52

5.3.3 Performance depending on Background Noise 53

5.3.4 Final Performance results on Rhythm Database 54

6 Conclusion 57

A File Directory 59

B Experimental Set-Up for KWS database recording 61

C Experimental Set-Up for Rhythm Detection database recording 63

List of Figures 65

List of Tables 67

List of References 69

List of Abbreviations

AAA Average Absolute Amplitude

AAAD Average Absolute Amplitude Difference

AAAR Average Absolute Amplitude Ratio

ASR Automatic Speech Recognition

AZCR Amendatory Zero-Crossing Rate

BNC Background Noise Classification

CC Cross-Correlation

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

ED Euclidian Distance

FFT Fast Fourier Transform

FIR Finite Impulse Response

FN False Negatives

FP False Positives

FT Fourier Transform

GUI Graphical User Interface

HIST Histogram of Amplitudes

HMM Hidden Markov Model

KWS Keyword Spotting

LPC Linear Predictive Coding

MA Moving Average

MFCC Mel Frequency Cepstral Coefficients

NAD Noise Activity Detection

ORC Other Room with Closed door

ORO Other Room with Open door

8

P Precision

PLP Perceptual Linear Predictive

R Recall

SNR Signal to Noise Ratio

TP True Positives

VAD Voice Activity Detection

VP Voice Preemphasising

ZCR Zero-Crossing Rate

1
Introduction

Automatic speech recognition (ASR) is the ability of a computer to convert an audio

speech signal, captured by a microphone, to a set of words. One goal is to allow the

interaction between humans and computers using speech. ASR is done in a vast number

of applications including voice user interfaces such as voice dialling, call routing or speech-

to-text processing. The motivation behind ASR is to improve the human-computer inter-

action or to build up systems that can process spoken language as efficiently as humans.

Since the number of mobile devices like smartphones, tablets or laptops is increasing for

years, more and more effort is put into development of ASR systems for these applications

[1], [2].

The advantages of using speech instead of a graphical user interface (GUI) such as a

mouse or a keyboard are numerous. Speech is natural for humans and needs no training.

Specially elderly people have problems to tag along with new technologies. Moreover

interacting with a computer using speech can be faster and more intuitive. Another ad-

vantage is that the user does not have to be in front of the device. The user can control

the device such as a smartphone or a laptop from far distance using ASR [3].

An important branch of ASR systems is keyword spotting (KWS). KWS can be found

in a variety of different applications that do not require the knowledge of the whole content

of an utterance such as the detection of a keyword in conversational speech monitoring, i.e.

10

1 Introduction

surveillance applications. Other examples are telecommunications services, i.e. automatic

operator services, or voice command detection. Different methods for KWS were developd

in the last decades. Although KWS is not novel, there are still many open research

questions.

1.1 Keyword Spotting Methods
KWS can be defined as the task of identifying the occurrence of certain keywords in

an arbitrary speech signal. While in speech recognition an occasional unknown word

punctuates a stream of known words, in KWS a typically small number of keywords

is to be recognized among a large number of words. KWS approaches try to detect

these specific keywords within other words, sounds and noises without modelling the non-

keywords. Therefore, some KWS approaches use individual models for the keywords and

filler or garbage models for non-keywords. As depicted in Figure 1.1, these models are

usually based on hidden Markov models (HMM), as can be seen for example in [4], [5] and

[6]. If the vocabulary is small, the keyword models are typically based on word models. If

there are many keywords as for instance in task independent models, the keyword models

are based on subword models such as syllabic or phonetic models. Since the filler models

aim to cover a wide variety of non-keywords, they are usually based on phonetic or syllabic

models [7].

Figure 1.1: KWS based on HMMs using keyword and filler models.

Some KWS approaches try to determine the boundaries of the keywords, i.e. the be-

ginning and the ending of the keyword, in a continuous audio stream in a first step. One

way to do so is to build up a codebook. Each entry of the codebook should represent an

acoustic characteristic of the signal. Therefore a vector quantization (VQ) is performed

11

1 Introduction

over a training database to construct the codebook. A keyword is defined as a specific

conjunction of these codebook entries, i.e. an ordered set of acoustic characteristics. The

detection of the keyword boundaries is performed by the detection of these characteristics.

Once the boundaries of the keyword are detected using VQ, a recognition process based

on HMMs begins. Therefore, the acoustic representation returned from the VQ stage is

aligned with subword units represented by HMMs representing the given keyword. If the

probability of the keyword represented by HMMs exceeds a specific threshold an alarm is

triggered [8].

Approaches based on HMMs are widely used in KWS and are accurate for a variety of

tasks. However, HMMs are computational expensive and language specific training data

is necessary to train the parameters of the model. An alternative approach for KWS is

presented in [9]. The introduced method extend the notion of discriminative large margin

and kernel methods to the task of KWS.

Another strategy is to analyze and search through the word lattice of a speech recognizer

to detect the occurences of a keyword [10] [11]. Thereby the audio signal gets indexed

using speech recognition to generate a phonetic representation of each audio file, i.e. a

lattice of phoneme hypotheses. KWS means now rapidly locating all sub-paths in the

lattice set that match the representation of the query string. If the confidence between

the query string and the template exceeds a certain threshold, a keyword is detected.

These systems rely on speech recognizers and suffer from high error rates, especially when

the speech is not clean [11], [12].

However, all these methods usually need some representative amount of training data

to train the parameters. To overcome this drawback, other techniques such as dynamic

time warping (DTW) have been used [13]. DTW finds an optimal alignment between

two time-dependent sequences, i.e. the reference and the test sequence. Therefore it is

a widely used method for pattern matching [14]. The KWS algorithm presented in this

thesis should be independent of the language or dialect used for KWS. Also the keyword

should be selected by the user. Therefore HMMs are not optimal, since they require a

specific model for each different language. On the other hand DTW is a simple pattern

matching algorithm. For this reason, we execute DTW, among other methods, for KWS

in this thesis.

12

1 Introduction

1.2 App 112 - Motivation and Problem Statement
A new safety solution is going to be introduced by a German company. It consists of

an app for a smartphone. The aim of the app is to recognize a specific keyword said by

a specific person. In case of emergency, one can say this personalized keyword. If the

keyword is detected by the KWS algorithm an alarm is triggerd and the app calls for

help, for example calls a relative. Such systems are useful for elderly people and institu-

tions such as the Red Cross. To set up this app, the user needs to record a personalized

keyword once. This recording serves as reference token and is identified afterwards in the

continuous audio recording via pattern matching. Therefore, an algorithm which detects

this specific keyword in continuously uttered speech and in different situations without

learning and with a single reference recording has to be developed. Moreover, an algo-

rithm that detects a specific rhythm clapped by the user in case of emergency has been

developed. The basic set-up is similar to KWS. One needs to clap and record the personal-

ized rhythm. In daily life the algorithm detects this rhythm in the continuous audio signal.

Figure 1.2 shows the GUI of the so called App112. By pressing the red button with

the microphone sign in the middle, the detection is activated and the algorithm starts to

monitor the continuous audio stream for spotting the keyword/rhythm. In case one says

the keyword/claps the rhythm, the algorithm detects it and an alarm is raised. The SOS

button in the bottom right corner will activate the alarm immediately without any KWS

or rhythm detection.

1.3 Requirements of the App112
The KWS algorithm is developed for a private company. This company already introduced

other speech processing apps for smartphones or tablets. Hence, a basic framework exists.

Therefore, there are some requirements or constraints from the company which had to be

considered in the development process.

Speech model The private company wants to sell the App112 in different countries with

different languages. Hence, the App112 should be able to process without adaptation

to different languages. So the simplest approach is to work with keyword templates.

In case of HMMs this is more difficult.

10s blocks The processing of the audio signal in 10s blocks and the classification of these

10s blocks with background noise classification (BNC) is a requirement, since the

company introduced already other speech processing apps and these apps process

with a 10s blocking and 2s overlap.

13

1 Introduction

Figure 1.2: GUI of the App112.

MFCC The used framework of the private company already introduced MFCC with a

frame- and hop-size of 32ms and 16ms, respectively.

Weighted performance The weighting of recall and precision of 1 : 3 to calculate the

performance is determined by the private company, since false alarms are costly and

should be avoided.

Databases Since the KWS algorithm should be tested on different keywords, own databases

are recorded.

1.4 Organization and Aim of this Work
In this thesis, a KWS and a rhythm detection algorithm is presented. Since the algo-

rithms have to run on a smartphone, emphasis is put on real-time processing and low

energy consumption. Moreover the algorithms are used in the App112, which should be

usable in different countries. Therefore, the KWS algorithm should work independently

of the used language.

The thesis is organized in two main parts. In the first part the theory for the KWS

and rhythm detection and the implementation is presented. This part consists of Chapter

2, 3 and 4. Chapter 2 introduces the overall system design of the App112. The sys-

tem consists of different methods for KWS, BNC and quality measures for the reference

14

1 Introduction

recording. These methods are introduced in Chapter 3. Moreover the combination of the

single methods for KWS is described in this chapter. Chapter 4 presents the method and

its implementation used for the rhythm detection algorithm, namely the average absolute

amplitude ratio (AAAR).

The second block covers the experimental results of both algorithms. In Chapter 5

the used databases for the empirical evaluation of the KWS algorithm and the rhythm

detection algorithm are presented. Moreover this chapter provides an introduction to the

evaluation of both algorithms via recall and precision. Finally, performance results are

presented. The algorithms are evaluated depending on different background noise scenar-

ios and different distances between user and microphone. Moreover, the performance of

the KWS algorithm is determined depending on the gender of the speaker and different

keywords.

15

2
App112 - System Design

Figure 2.1 shows the overall system of the App112 for KWS and rhythm detection. Ba-

sically it consists of three main parts, namely, reference recording, KWS and rhythm

detection. When launching App112, one needs to record a personalized keyword first

(e.g. ”Help emergency!”). After that, the quality of the recorded keyword and of the

audio recording is measured automatically. Therefore, the following methods are used:

• average absolute amplitude difference (AAAD)

• noise activity detection (NAD)

• amendatory zero-crossing rate (AZCR)

Details about measuring the quality are provided in Section 3.1. If the quality is too bad

due to background noise or the keyword does not meet certain requirements, one needs

to repeat the reference recording until the quality is satisfactory. If the quality check is

successful the reference is played to the user and the user has to confirm the reference for

KWS. Then the audio recording of the keyword is saved and is used as reference for the

KWS algorithm.

16

2 App112 - System Design

reference recording

calculate ED, CC,
DTW and VAD

KWS-reference
recording

start App112

start keyword spotting

audio
data

alarm

alarm
detection
with BNC

does not meet
conditions

quality check

save reference

good quality

bad
quality

meet
conditions

calculate AAAR between
rhythm-reference and

current audio data

start rhythm detection

audio
data

alarm

alarm
detection

does not meet
condition

meet
condition

rhythm-reference
recording

Figure 2.1: Overall system of the App112.

The KWS algorithm calculates the following three different criteria for measuring the

distance between the recorded template and the current audio data:

• euclidian distance (ED)

• cross-correlation (CC)

• dynamic time warping (DTW)

Moreover a voice activity detection (VAD) is implemented to reduce the number of false

alarms. We discovered that in different situations a different combination of these methods

improves the performance. Therefore, we use BNC to classify the background noise into

the three categories silence, noise or high noise. Depending on the classification a different

combination of the criterias used for KWS is taken for the final limit check.

In case the used combination of the criteria meet certain requirements, i.e. exceed/is

below a threshold, an alarm is triggered. Otherwise, the algorithm processes the next

chunk of audio data. More details are in Chapter 3. However, only audio data chunks

17

2 App112 - System Design

with sufficient average amplitude level are analyzed. Therefore, the average absolute am-

plitude (AAA) of the audio data is calculated. If this AAA exceeds a threshold, the KWS

is started, otherwise the App112 remains in a sleeping mode without KWS.

The rhythm detection algorithm works in a similar way. After recording a reference,

i.e. clapping a certain rhythm, the recording of the rhythm is saved and used for the

rhythm detection algorithm. The quality check procedure is similar as above. The rhythm

detection algorithm calculates the AAAR of the current audio signal and compares it to

the AAAR of the recorded rhythm reference. If the difference between both AAARs is

below a certain threshold, an alarm is triggered. Otherwise, the algorithm processes the

next chunk of audio data. Again, the AAA of the audio signal has to be above a certain

level. Otherwise the AAAR is not calculated. More details for the rhythm detection are

provided in Chapter 4.

18

3
Keyword Spotting Algorithm

This chapter shows the implementation of the KWS algorithm. First, the quality mea-

sures for the reference recording get introduced. If the reference recording satisfies the

quality criterias, KWS is activated. Therefore, ED, CC, DTW and VAD are introduced.

Depending on the BNC a different combination of these methods is taken for the final

detection process.

3.1 Quality Check of Reference Recording
To set up the app, one needs to record a personalized keyword in a first step. This specifies

the reference for KWS in the continuous audio record. To ensure a good recognition

performance, the reference, i.e. the template, is of essential importance. On the one

hand, the quality of the audio recording is crucial. Therefore, AAAD is calculated to

detect possible transient noise sources such as the slamming of a door or a window. NAD

is calculated to detect stationary noise such as a fan or traffic noise. On the other hand, the

keyword itself is important. To ensure that the keyword has sufficient phonetic structure,

AZCR is calculated.

19

3 Keyword Spotting Algorithm

3.1.1 AAAD

Figure 3.1 depicts the steps for calculating the AAAD. First, the AAA of the audio signal

x[n] is calculated, i.e. sum up the absolute value of the audio signal over a frame-size of

25ms. The hop-size is 5ms. The AAA is

AAA[n] =
1

N

(n−1)HS+N∑
i=(n−1)HS+1

|x[i]|, 1 ≤ n ≤M, (3.1)

where fs is the sampling frequency, N = 0.025fs is the number of samples per frame,

HS = 0.05fs is the hop-size in samples, and M = SL−N
HS

+1, with SL as the total number of

samples in the utterance. In the following step, the absolute differences between adjacent

absolute amplitude values are determined

AAAD∗[n] = |AAA[n+ 1]− AAA[n]|, 1 ≤ n < M. (3.2)

Thereby transient signals become easily detectable. As the absolute amplitude of tran-

sients is changing rapidly, the difference between adjacent AAA values increases. In

contrast, continuous signals such as speech have small changes in the AAA and therefore

the differences are small. Finally, these differences are accumulated over five consecutive

frames with step-size of three. The result is a vector consisting of the AAAD

AAAD[m] =

(m−1)SS+FS∑
i=(m−1)SS+1

AAAD∗[i], 1 ≤ m ≤ L, (3.3)

where SS = 3, FS = 5 and L = M−FS
SS

.

AAA
audio
data

calculate
differences

sum over
differences

AAAD

Figure 3.1: Flow chart of the average absolute amplitude difference.

Figure 3.2 shows the different stages of the AAAD. Figure 3.2 left column shows a

signal without transient noise and in the right column a utterance with transient noise,

i.e. the knocking of a pen onto a table, is presented. Figure 3.2 (a) shows the PCM

audio signal of both signals, whereas in (b) the AAA of the audio signals are depicted.

In (c) the differences between consecutive AAA values are presented. Finally, in (d) the

accumulated differences AAAD are presented. While for the signal without transient

noise the accumulated differences are roughly the same everywhere and do not have a

peak, the AAAD for the utterance including a transient shows a significant peak at the

20

3 Keyword Spotting Algorithm

position where the transient is located. The algorithm uses a threshold, 0.4 here, for

the accumulated differences to detect transients in the background. If transients are

detected, the user needs to repeat the recording. Otherwise the other quality measures

are calculated.

0 50 100 150 200 250 300
0

0.2
0.4
0.6
0.8
1

time→

am
p

li
tu

d
e
→

(b)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

time→

d
iff

er
en

ce
s
→

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1
−0.5

0
0.5
1

time [sec]→

am
p

li
tu

d
e
→

(a)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

time→

ac
cu

m
u

la
te

d
d

iff
er

en
ce

s
→

(d)

0 50 100 150 200 250 300 350 400
0

0.2
0.4
0.6
0.8
1

time→

am
p

li
tu

d
e
→

(b)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

time→

d
iff

er
en

ce
s
→

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1
−0.5

0
0.5
1

time [sec]→

am
p

li
tu

d
e
→

(a)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

time→

ac
cu

m
u

la
te

d
d

iff
er

en
ce

s
→

(d)

Figure 3.2: AAAD for quality measure. Left column shows a signal without transient noise
and right column shows a signal including transient noise. (a) PCM audio
signal. (b) AAA of the audio signal. Frame-size is 25ms and hop-size is 5ms.
(c) AAAD of consecutive AAA values. (d) Accumulated AAAD. Frame-size
is 5 and hop-size is 3.

3.1.2 NAD

To detect stationary noise in the reference recording NAD is implemented. Therefore the

AAA directly before and after the keyword in the reference recording is calculated. Since

the reference recording has to take place in a quiet environment, the AAA is expected to

be very low. If the AAA exceeds a certain threshold, there is background noise in the

recording and the user has to repeat the recording in a more quiet place.

For the reference recording the user has 5s to record the keyword. Afterwards the

frontiers of the keyword are determined within these 5s by calculating the AAA. The

starting point is defined as the first point, where the AAA exceeds a certain threshold

with an additional safety gap of 50ms and the ending point is defined as the last point,

21

3 Keyword Spotting Algorithm

where the AAA exceeds this threshold with an additional safety gap of 160ms. Only

the recording within these boundaries is saved as template for the KWS. To determine

possible background noise in the reference recording, the signal before the starting point

and after the ending point is analyzed. If the AAA of these parts of the recording exceeds a

threshold, there is background noise and the speaker has to repeat the reference recording.

Figure 3.3 shows a reference recording of 5s in length. The blue line represents the audio

signal and the green line the AAA. The starting point of the keyword is the first point,

where the AAA exceeds the threshold of 0.05, marked in red colour in the plot, minus a

safety gap of 50ms. The ending point of the keyword is the last point where the AAA

exceeds this threshold plus a safety gap of 160ms. NAD is averaging the AAA before the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [sec]→

am
p
li
tu
d
e
→

audio signal
average absolute amplitude

Figure 3.3: NAD for reference recording.

starting point and after the ending point. If the NAD exceeds a threshold, the user has

to repeat the reference recording, otherwise the other quality measures are calculated. In

case the NAD of the audio signal is always above the threshold, i.e. starting point and

ending point are 0s and 5s, respectively, the noise is too large and the recording has to

be repeated.

3.1.3 AZCR

The zero-crossing rate (ZCR) denotes the frequency of a signal crossing zero in a frame.

As noise has a lower ZCR than voiceless but higher ZCR than voiced speech, this criterion

is vulnerable to low-frequency noise. To find a remedy of this drawback, we use the AZCR

for the quality check of the reference recording. AZCR is the rate of the signal crossing

a threshold T and −T per frame. This reduces the ZCR of noise in speech pauses and

therefore avoids unreliable ZCR estimates. Figure 3.4 shows the AZCR with threshold T .

22

3 Keyword Spotting Algorithm

Figure 3.4: Amendatory zero-crossing rate.

AZCR is computed as

z[n] =
1

2

∞∑
i=−∞

{|sgn (x[i]− T)− sgn (x[i− 1]− T) |

+ |sgn (x[i] + T)− sgn (x[i− 1] + T) |}w[n− i],
(3.4)

where n = 1, 2, ..., N , w(·) is a rectangular window and sgn(·) is the sign function [15].

We selected a window length for w(·) of 10ms.

The AZCR of the selected keyword, i.e. the sequence of vocals and plosives has to

be sufficiently large. The idea of this quality measure is to disable the use of improper

keywords, i.e. the use of a keyword with just one vocal and no consonants like ”Ah”.

Such keywords would result in a high false alarm rate. Therefore the recorded template

requires some phonetic content, which we measure by the AZCR.

Figure 3.5 shows ZCR and AZCR for two audio recordings. On the left hand side the

speech sequence ”a-ma-ma” and on the right hand side ”a-ka-ka” is depicted. Figure

3.5 (a) shows both PCM audio signals. The ZCR of both sequences is presented in (b)

whereas (c) shows the AZCR. The difference between ZCR and AZCR can be seen at the

beginning and at the end of the audio recording, i.e. the parts in the recording where

there is silence and no speech. As ZCR measures the signal‘s zero crossings, it measures

the ZCR of white noise at silent parts, which provides a flowed impression of the audio

signal. Therefore AZCR is implemented, so the zero crossings at silent parts are zero.

While ”a-ma-ma” has no significant peaks in AZCR because all parts of the sequence

are voiced, ”a-ka-ka” shows evident peaks at the plosives. Immediately prior to the

plosives, there is a short region where the AZCR becomes zero because there always is

a short pause in speech before plosives. Thus, AZCR is a useful measure to measure to

some extent the phonetic content of the keyword. Currently, the keyword requires to have

at least two plosives, i.e. AZCR needs to exceed 40 at two different points with at least

0.2s time difference between them.

If the recorded keyword fulfills this requirement as well as the AAAD and NAD quality

check, it can be checked by the user. In case of acceptance it is saved and used afterwards

23

3 Keyword Spotting Algorithm

0 20 40 60 80 100 120 140 160 180 200 220 240
0

20

40

60

time→

ze
ro

cr
os
si
n
gs
→

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1
−0.5

0

0.5

1

time [sec]→

am
p
li
tu
d
e
→

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240
0

20

40

60

time→

am
en

d
at
or
y
ze
ro

cr
os
si
n
gs
→

(c)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

20

40

60

time→

ze
ro

cr
os
si
n
gs
→

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1
−0.5

0

0.5

1

time [sec]→

am
p
li
tu
d
e
→

(a)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

20

40

60

time→
am

en
d
at
or
y
ze
ro

cr
os
si
n
gs
→

(c)

Figure 3.5: ZCR and AZCR for quality measure. Left column represents (a) PCM audio
signal of ”a-ma-ma”. (b) ZCR of the audio signal. (c) AZCR of the audio
signal. Threshold T is 0.05. Right column shows the same for speech signal
”a-ka-ka”.

as a template in the KWS algorithm. Otherwise the speaker needs to repeat the reference

recording.

3.2 Background Noise Classification
During the process of KWS, the audio signal is processed in frames of 10s in length at

a sampling rate of fs = 16kHz. Each frame is classified into one of the following three

categories: silence, noise or high noise. Depending on the category of the audio frame

a different combination of ED, CC, DTW and VAD is used to detect the keyword. The

classifier is based on the histogram of amplitudes (HIST) in the 10s frame.

For each of the 10s blocks a histogram is calculated, i.e. the distribution of the am-

plitudes is analyzed. Therefore, the absolute value of the amplitudes are classified into

one of 100 uniformly distributed bins from 0 to 1. The result is a vector HIST [n] with

n = 1, 2..., 100 containing the frequency of observations of the different amplitudes. Fig-

ure 3.6 shows the resulting histograms of silence and high noise audio signals. Most of the

data points have small amplitudes in silence as can be seen in Figure 3.6(a), hence the

distribution showing in the histogram is concentrated at the first few bins. In contrast, in

high noise the distribution of the amplitudes changes to higher values, see Figure 3.6(b).

24

3 Keyword Spotting Algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9
·104

amplitude→

fr
eq
u
en

cy
→

(a) silence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

amplitude →

fr
eq
u
en

cy
→

(b) high noise

Figure 3.6: Histogram of amplitudes of silence and high noise.

Thus, to classify the 10s audio signal the frequency count in the first bin is divided

by the total number of audio samples in the 10s block, i.e. the probability of the first

percentile p1(x) is used

p1(x) =
samples x[n] < 0.01

total # samples
=

samples x[n] < 0.01

160000
. (3.5)

Depending on p1(x), the block is classified to:

silence: if 0.80 ≤ p1(x)

noise: if 0.45 ≤ p1(x) < 0.80

high noise: if p1(x) < 0.45

Figure 3.7 shows the p1(x) values of the single audio files of the KWS database.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10s blocks →

p 1
(x
)
→

silence
noise
high noise

Figure 3.7: p1(x) of the database used for KWS.

25

3 Keyword Spotting Algorithm

3.3 Keyword Spotting Algorithm
The energy of the audio signal is calculated continuously in the energy detector in Figure

3.8. If the energy is below a threshold, no KWS is processed. If the energy exceeds this

threshold, the continuous audio signal is blocked into frames of 10s in length with 2s

overlap. Each of these frames is processed as depicted in Figure 3.8.

First, the digitized audio data is voice preemphasised (VP) to flatten the spectrum of

the audio signal. This is done by filtering the signal with a first-order FIR filter. Equation

(3.6) shows the filter, the value of a is 0.95 [16]

H(z) = 1− az−1. (3.6)

The keyword spotting is performed via pattern matching of the current audio signal and

the reference recording in the cepstral domain. Therefore the Mel Frequency Cepstral Co-

efficients (MFCC) are calculated for the current audio signal and the reference recording.

Empirically we observed that 17 MFCC features are sufficient for good performance. The

frame-length for calculating the MFCC is 32ms with 16ms overlap, as required (see Sec-

tion 1.3). The nth signal frame is represented by a MFCC feature vector xn. Now ED, CC

and DTW distances between the template and the current audio signal are determined

and normed by dividing by moving average (MA) filter. This results in scaled ED, CC

and DTW values. To reduce false alarms a voice activity detection (VAD) is introduced

which classifies each frame into speech or non-speech. At the same time, the background

noise is classified via HIST. Depending on the output of the classification, i.e. silence,

noise or high noise, a different combination of the scaled criteria ED, CC or DTW and

VAD is taken for alarm detection. This combination depends on the BNC using HIST.

Therefore, the distance measures are thresholded and combined by Boolean operator.

VP

current
audio data

MFCC

MFCC
DTW

ED

CC

MA

MA

MA

scaled
DTW

scaled
ED

scaled
CC

alarm detection
alarm

HIST

template MFCC

template MFCC

template MFCC

Energy
detector

1/x

1/x

1/x

VAD

Figure 3.8: Overall system for KWS.

26

3 Keyword Spotting Algorithm

3.3.1 Mel Frequency Cepstral Coefficients

Calculating MFCCs is a common technique of feature extraction in speech recognition

systems. In this thesis MFCCs are selected because they are less prone to noise and

resembles the human auditory system, since human hearing is based on frequency analysis

[16]. Human speech can be described by a so-called source-filter model. This model

consists of two components:

• the excitation source is related to the glottis and is responsible for the fundamental

frequency in voiced speech or provides white noise in unvoiced or mixed speech,

• the filter is related to the (time-varying) vocal tract consisting of mouth, tongue

and nasal cavity. The vocal tract acts as a filter and shapes the excitation.

A frequency domain representation of a speech signal x[n] is depicted in Figure 3.9. The

bold line represents the spectral envelope due to filtering with the vocal tract. F1, F2 and

F3 are the formant frequencies of human speech. The position of these formants is an

important cue for the human auditory system as well as for ASR.

F0 is the fundamental frequency or spectral fine structure, i.e. the spectral harmonics,

due to the glottis, i.e. the source excitation. F0 is less important for speech recognition

than the formant frequencies, since it only determines the pitch. The idea is to separate

the source component from the filter component, since for speech recognition only the

filter characteristic is of interest. One approach is to calculate MFCC [17].

Figure 3.9: Source-Filter model of speech signals.

Figure 3.10 shows the calculation process for MFCCs. In a first step, the audio signal

is divided into blocks of usually 20-30ms in length. Within this time period, speech can

be assumed as stationary. There is a trade-off between time and frequency resolution.

The longer the blocks, the better the frequency resolution. On the other hand, the blocks

27

3 Keyword Spotting Algorithm

x[n]

Frame Blocking

Windowing

DFT

Mel Filter Banks

Log of Spectrum

DCT

MFCC

Figure 3.10: MFCC calculation.

should be short enough to capture the local spectra properties. To minimize edge effects

caused by discontinuities in the signal at the beginning and ending of the blocks, each

block is windowed, i.e. the time signal x[n] is multiplied by a window function w[n]. This

is usually done with a hamming window, see Equation (3.7) and Figure 3.11

w[n] = 0.54− 0.46 cos

(
2πn

L− 1

)
, 0 ≤ n < L. (3.7)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples n →

w
e
ig
h
ti
n
g
w
(n

)
→

Figure 3.11: Hamming window for MFCC calculation.

28

3 Keyword Spotting Algorithm

After framing and windowing the time sequence, s[n] is transformed to the frequency

domain via discrete Fourier transform (DFT) efficiently implemented as fast Fourier trans-

form (FFT), i.e.

S[k] =
K−1∑
n=0

s[n]e−2πj kn
K , k = 0, 1, ..., K − 1, (3.8)

where S[k] is the K-point FFT spectrum of one windowed speech frame. Now the mel

filter bank consisting of M triangular shaped band pass filters is applied to the spectrum,

so that perceptual important frequency regions are merged together

X[m] =

K
2
−1∑

k=0

|S[k]|2|Hm[k]|, 1 ≤ m ≤M, (3.9)

where |Hm[k]| denotes the frequency magnitude response of the mth mel filter. This

reduces the number of frequency bins. Here the number of summation points is just K
2

since half of the FFT spectrum is a mirror image of the other half.

Afterwards the so-called mel spectrum is compressed by a logarithmic function

Xln[m] = ln(X[m]). (3.10)

Finally, the output of the logarithmic function is decorrelated using a Discrete Cosine

Transform (DCT), i.e. converting the log mel spectrum back to time. The first few

coefficients of this last stage are grouped together as a feature vector. The kth MFCC can

be expressed as

MFCC[k] =

√
2

M

M∑
m=1

Xln[m] cos

(
πk(m− 0.5)

M

)
, 1 ≤ k ≤ p, (3.11)

where M is the number of triangular band pass filters for the mel filter bank and p is the

order of the mel scale cepstrum, typically between 12 and 20 coefficients [16], [17].

Mel Filter Bank

To calculate MFCCs, a mel filter bank is needed. This filter bank mimics the auditory

system and is determined by listening tests. Therefore the proband has to judge the

ratio between two tones with different pitches. Doubling or halving of the perceptual

pitch means doubling or halving of the new frequency scale called mel scale (because this

scale is based on the melody). The mel scale is a non-linear frequency scale, which has

29

3 Keyword Spotting Algorithm

approximately linear frequency spacing below 1000Hz and a logarithmic spacing above

1000Hz as shown in Figure 3.12(a). The conversion from linear frequency scale f in Hz

to mel scale is done according to the following equation

mel(f) = 2595 log

(
1 +

f

700

)
. (3.12)

The filter bank is now realized with a series of triangular band pass filters as depicted in

Figure 3.12(b). The filters overlap in such a way that the lower boundary of one filter is

situated at the centre frequency of the previous filter and the upper boundary is located

at the centre frequency of the next filter. The maximum response of the filter, i.e. the

top vertex of a filter, equals the centre frequency of the filter.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

500

1,000

1,500

2,000

2,500

3,000

linear frequency [Hz] →

m
el

fr
eq
u
en

cy
[m

el
]
→

(a) mel vs. linear frequency

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

linear frequency [Hz] →

w
ei
th
in
g
→

(b) mel filter bank

Figure 3.12: MFCC. (a) Relationship between linear and mel frequency. (b) Triangular
band pass filters for MFCC calculation.

If fL and fH , in mel, are the lower and upper ends of the frequency range covered by

the entire filter bank, the centre frequency fCm in mel of the mth filter can be determined

by

fCm = fL +
m(fH − fL)

M + 1
, 1 ≤ m ≤M, (3.13)

where M is the number of triangular filters in the range between fL and fH [16], [18].

30

3 Keyword Spotting Algorithm

3.3.2 VAD

To optimize the performance of the KWS algorithm while increasing the computational

complexity just slightly, a VAD was implemented. In speech most of the energy is in low

frequency regions while noise has also energy in higher frequency regions. For example

white noise has a flat power spectral density. The introduced VAD uses this property

to distinguish between speech and noise. Figure 3.13(a) represents MFCCs for speech

and Figure 3.13(b) for noise. It can be seen that most of the energy in Figure 3.13(a) is

located at low frequencies, i.e. low MFCCs, while Figure 3.13(b) has a roughly flat energy

distribution.

0

5

10

15

20

0

200

400

600

800
−10

−8

−6

−4

−2

0

2

4

6

8

#MFCC →← time

am
pl

itu
de

 →

(a) speech

0

5

10

15

20

0

200

400

600

800
−5

−4

−3

−2

−1

0

1

2

#MFCC →← time

am
pl

itu
de

 →

(b) noise

Figure 3.13: VAD for KWS. (a) In a speech audio signal most energy is located in lower
energy regions. (b) Noisy signals also have energy in higher frequency regions.

We assume a time signal x[n] which is represented in the cepstral domain. The result

is a matrix X[m, c] where m relates to the time in samples and c relates to the number

of MFCCs. The VAD algorithm calculates the magnitude ratio between high and low

frequencies to distinguish between speech and noise. Therefore, the first L MFCCs are

summed up over a time period T in samples and the following L MFCCs as well and the

ratio is

ratioVAD =

T∑
m=1

2L∑
c=L+1

X[m, c]

T∑
m=1

L∑
c=1

X[m, c]

. (3.14)

If ratioVAD is smaller than a certain threshold, the VAD classifies the frame as speech,

otherwise as noise.

31

3 Keyword Spotting Algorithm

3.3.3 DTW

DTW is a technique used to find an optimal alignment between two time-dependent

signals. These signals are warped in a non-linear fashion to match each other. Figure

3.14 represents two time-dependet sequences x[n] and y[n]. The two sequences are similar,

although y[n] has little changes in amplitude and time compared to x[n]. Intuitively, DTW

tries to warp y[n] in such a way that the alignment points, marked with an arrow, become

congruent. The more similar x[n] and y[n] are, the less the DTW has to warp y[n] and

vice versa. DTW is a common technique in ASR, data mining and information retrieval.

Figure 3.14: Alignment of two signals via DTW.

Cost Matrix

We assume two sequences x = [x1, x2, ..., xN] and y = [y1, y2, ..., yM] with lengthN,M ∈ N.

Furthermore, we assume a feature space F , so that xn, ym ∈ F for n ∈ [1 : N] and

m ∈ [1 : M]. To compare two feature points x and y in the feature space F a local cost

measure or local distance measure is needed. This cost measure is defined as

c : F × F → R≥0. (3.15)

If xn and ym are similar to each other, i.e. the distance between them is small, the

cost function c(xn, ym) will usually decrease. Otherwise, the cost will increase. Now

all distances between each pair of elements of x and y are calculated. The result is a

cost matrix C ∈ RN×M defined by C[n,m] = c(xn, ym) shown in Figure 3.15. Here the

Manhatten distance, i.e. the absolute value of the distance was taken. Regions with low

distance are marked dark and regions with high distance are marked in a bright color.

The goal is to find an alignment between x and y with minimal cost, i.e. to find a warping

path p through the cost matrix C with minimal overall cost, i.e. minimal distance.

32

3 Keyword Spotting Algorithm

Figure 3.15: Cost matrix between the sequences x and y using Manhatten Distance, taken
from [19].

Warping Path

After calculating the cost matrix, a warping path is calculated with minimal overall cost.

This warping path is a sequence p = [p1, p2, ..., pL] with pl = [nl,ml] ∈ [1 : N] × [1 : M]

for l ∈ [1 : L] which aligns the sequences x and y by assigning each element xnl
of x to an

element yml
of y. The warping path needs to fulfill three conditions:

boundary condition p1 = [1, 1] and pL = [N,M], i.e. the first element x1 of x and y1

of y and the last element xN of x and yM of y are aligned together. The alignment

refers to the entire sequences x and y.

monotonicity condition n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤ mL, i.e. requirement

for faithfull timing: if an element of x precedes a second one, this should also hold

for the corresponding elements in y, and vice versa.

step-size condition pl+1−pl ∈ {[1, 0], [0, 1], [1, 1]} for l ∈ [1 : L−1], i.e. the path has to

be continuous. No element xn of x and ym of y can be omitted and no replications

in the alignment are allowed, i.e. all index pairs in the warping path are pairwise

distinct.

Figure 3.16 shows four potential warping paths. 3.16(a) meets all three conditions. Thus

it is a possible warping path. In 3.16(b) the boundary condition is violated since it is

not starting in point [1, 1] and ending in [9, 7], i.e. not all elements are aligned together.

In 3.16(c) the monotonicity condition is violated since the warping path goes from point

[5, 5] to [6, 4], i.e. it is going back in time in y-direction. Finally, the warping path in

33

3 Keyword Spotting Algorithm

3.16(d) violates the step-size condition because it is jumping from [4, 3] to [7, 4], i.e. two

elements in x are omitted.

(a) (b) (c) (d)

Figure 3.16: Different warping paths for DTW. (a) Correct warping path. (b) Boundary
condition is violated. (c) Monotonicity condition is violated. (d) Step-size
condition is violated. Taken from [19].

Optimal Warping Path

To find an optimal warping path p̂, the total cost function cp(x, y) defined as

cp(x, y) =
L∑
l=1

c(xnl
, yml

) (3.16)

needs to be minimized. The optimal warping path between x and y has minimal total

cost among all possible warping paths, i.e. the DTW distance between x and y is defined

as the total cost of the optimal warping path p̂

DTW (x, y) = cp̂(x, y)

= min{cp(x, y) | p is an (N,M)-warping path}.
(3.17)

To determine the optimal warping path, one can calculate all possible warping paths and

take the one with the smallest total cost, but this will lead to a computational complexity

which is exponential in the length of x and y. Thus, another algorithm is taken which is

O(N ·M) and based on dynamic programming. Therefore the accumulated cost matrix

D[N,M] is introduced

D[n,m] = DTW (x[1 : n], y[1 : m]), (3.18)

with x[1 : n] = [x1, x2, ..., xn] for n ∈ [1 : N] and y[1 : m] = [y1, y2, ..., ym] for m ∈ [1 : M].

34

3 Keyword Spotting Algorithm

D[N,M] fulfills following conditions:

D[n, 1] =
n∑
k=1

c(xk, y1), n ∈ [1 : N], (3.19)

D[1,m] =
m∑
k=1

c(x1, yk), m ∈ [1 : M], and (3.20)

D[n,m] = min

D[n− 1,m− 1] + wc(xn, ym)

D[n− 1,m] + c(xn, ym)

D[n,m− 1] + c(xn, ym),

(3.21)

for 1 ≤ n ≤ N and 1 ≤ m ≤ M . If the prior cell is D[n − 1,m − 1] sometimes the

distance c(xn, ym) is weighted with w = 2, because the diagonal step could be replaced

by one step to the right side and one step upward [20]. Moreover D[N,M] can be cal-

culated recursively. Thereby the matrix is extended by an additional row and column,

i.e. D[n, 0] = ∞ for n ∈ [1 : N], D[0,m] = ∞ for m ∈ [1 : M] and D[0, 0] = 0, so that

Equation (3.21) holds for n ∈ [1 : N] and m ∈ [1 : M]. Now D[N,M] can be calculated

in a column-wise fashion. The calculation of the mth column only requires the storage of

the (m− 1)th column, which implies a storage requirement of O(N). Similarly, D[N,M]

can be calculated in a row-wise fashion, which implies a storage requirement of O(M). In

total there is a computation complexity of O(N ·M). After the accumulated cost matrix

D[N,M] has been calculated, the optimal path p̂ is determined in a reversed order of the

indices starting with pL = [N,M]. The calculation process is as follows

pl−1 =

[1,m− 1] if n = 1

[n− 1, 1] if m = 1

argmin{D[n− 1,m− 1],D[n− 1,m],D[n,m− 1]} otherwise,

(3.22)

where the lexicographically smallest pair is taken, if argmin is not unique. Figure 3.17

shows the optimal warping path p̂ in the cost matrix of Figure 3.15 and the accumulated

cost matrix.

The DTW distance between the MFCCs xi of the template consisting of i = 1, ..., I

frames and the MFCCs of the current audio signal is calculated for a block length of

I frames using the absolute distance for cost function c(xn, ym). It has been empirically

observed that during reference recording hyper-articulation happens and the speaker talks

slower than in general situations. Hence, we limit the block length to I frames. After

processing time frame n, depicted in Figure 3.18 with red lines, the next time frame n+ 1

is processed, marked with green lines, with a step-size of 0.1I [21].

35

3 Keyword Spotting Algorithm

(a) Cost matrix C (b) Accumulated cost matrix D

Figure 3.17: Optimal warping path determined from the accumulated cost matrix, taken
from [19].

Figure 3.18: Implementation of DTW for KWS.

To norm the DTW distance, a MA is calculated for each vector

MADTW[n] =

1
n

n∑
i=1

DTW [i] if n ≤ N

1
N

n−1∑
i=n−N

DTW [i] if N < n
, (3.23)

with N = 20. Afterwards the DTW vector is divided by its MA to receive the scaled

DTW distance depicted in Figure 3.19. The smaller the DTW distance is, the more

similar the current audio data is compared to the template. The position of the keyword

is clearly visible because of the significant decrease of the DTW distance. Finally, the

normed distance is compared to a threshold, i.e. if it is below a certain threshold, the

36

3 Keyword Spotting Algorithm

values of a vector DTWbit are set to 1

DTWbit[n] =

1 if DTW [n] ≤ TDTW

0 otherwise
(3.24)

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time →

n
or
m
ed

D
T
W

d
is
ta
n
ce

→
Dynamic Time Warping

DTW

Figure 3.19: DTW values for KWS.

3.3.4 ED and CC

The ED between two vectors x = [x1, x2, ..., xN] and y = [y1, y2, ..., yN] is defined as

d(x, y) =

√√√√ N∑
i=1

(xi − yi)2. (3.25)

The CC is a measurement of the similarity between two signals. Equation (3.26) shows

the CC for the discrete functions x[n] and y[n]

rxy[n] = (x ? y)[n] = lim
N→∞

1

2N

N∑
m=−N

x∗[m]y[n+m], (3.26)

where x∗[n] denotes the complex conjugate of x[n]. Since Equation (3.26) form a con-

volution between x[n] and y[n] without mirroring y[n] there is a simple and easy way to

calculate CC between two signals. If the spectra of the signals are calculated, the convo-

37

3 Keyword Spotting Algorithm

lution will turn into a multiplication [22], [23]. Therefore CC is realized by elementwise

multiplication of the MFCC matrix X[m, c] of the template and Y[m, c] of the current

audio data and accumulation afterwards.

For calculation of ED and CC each 10s audio frame is blocked into frames of length

I with step-size 0.1I similar to the DTW calculation. Now ED and CC is calculated

between the MFCC of each frame Y[m, c] and the MFCC X[m, c] of the template. This

results in two vectors containing ED and CC values. To norm these vectors, a MA is

calculated, similar to Equation (3.23) for DTW. The ED and CC is scaled by their MA.

This resulting ED and CC are depicted in Figure 3.20. The existence of the keyword

is noticeable because of the decrease of ED and the peak in CC respectively. Finally,

these normed values are compared to a threshold. The smaller ED is or the bigger CC

is, the more similar the current audio frame is compared to the template. If ED is below

a certain threshold or if CC exceeds a certain threshold, the values of a vector EDbit or

CCbit are set to 1

EDbit[n] =

1 if ED[n] ≤ TED

0 otherwise,
(3.27)

CCbit[n] =

1 if CC[n] ≥ TCC

0 otherwise.
(3.28)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time →

n
or
m
ed

E
D

→

ED

(a)

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

time →

n
or
m
ed

C
C

→

CC

(b)

Figure 3.20: Scaled (a) ED and (b) CC values for KWS.

38

3 Keyword Spotting Algorithm

3.3.5 Final combinations of ED, CC and DTW

In the end there are four sequences, i.e. EDbit[n], CCbit[n], DTW1bit[n] and DTW2bit[n],

per 10s audio frame. These sequences containing 1, where a (possible) keyword is detected

and 0 otherwise. Now different Boolean combinations of these criteria are possible:

logical and can be achieved by elementwise multiplication of the corresponding se-

quences, e.g. an alarm should only be raised if ED and CC detect the key-

word, so the final bit sequence can be determined by elementwise multiplication

of EDbit[n] · CCbit[n].

After calculating the final bit sequence, an additional criterion can be used to reduce false

alarms, namely, VAD. If this is used, VAD classifies each block resulting in an alarm in the

final bit sequence. If the VAD classifies this audio frame as speech, the alarm is triggered.

Otherwise the next audio frame is processed. The nomenclature of the combination used

is for example ED-CC-DTW-VAD, which means ED and CC and (DTW1 or DTW2) and

VAD.

39

4
Rhythm Detection Algorithm

The implementation of the rhythm detection algorithm is explained in detail in this chap-

ter. First, one needs to record a personalized rhythm. This rhythm should consist of

at least three claps and at most six claps. If it has less than three claps, there will be

many false alarms. On the other hand, if it has more than six claps, the reproduction of

the rhythm is difficult and the recognition rate decreases. After recording this reference

rhythm, i.e. the template, it is detected in the continuous audio signal.

4.1 AAAR
For detecting the rhythm the AAAR is introduced. Figure 4.1 shows the steps for comput-

ing the AAAR. In the first step, the absolute value of the audio signal is determined and

summed over a frame-size of 25ms with a hop-size of 15ms. This results in the AAA, see

Section 3.1.1. Afterwards the ratio between two consecutive energy values is calculated

AAAR[n] =
AAA[n+ 1]

AAA[n]
. (4.1)

If the energy is changing slightly, the ratio is low. If there are strong variations between

adjacent energy values, the ratio increases. Thus, calculating the ratio supresses sig-

nals with relative constant energy, i.e. speech, and emphasises transient signals such as

clapping or knocking. The output of these calculations is a sequence of ratio values.

40

4 Rhythm Detection Algorithm

AAA
audio
data

calculate
ratio

find k highest
maxima

calculate distances
between peak positions

(k-1)
distances

Figure 4.1: Flow chart of the average absolute amplitude ratio.

In a next step, the k highest maxima are determined, i.e. peak position and value. The

output of this stage are k peak positions and k peak values. k depends on the number of

claps in the reference recording.

Finally, all k peak values have to exceed a certain threshold Tpeak. If not all k values

pass this check, the next chunk of audio data is processed. If all k values exceed the

threshold, the distances between their peak positions are calculated

AAARdistance[m] = peakposition[m+ 1]− peakposition[m], m = 1, ..., k − 1. (4.2)

The output are k − 1 distances between the single peaks [24].

4.2 Implementation
The implementation of the rhythm detection algorithm is depicted in Figure 4.2. First,

the audio data is again blocked in frames of 10s in length with 2s overlap. Afterwards

the AAAR is calculated as described in Section 4.1. Figure 4.3 shows an audio signal in

(a). From this, the AAA is calculated and depicted in (b). Finally, (c) shows the AAAR.

There are significant peaks in the AAAR where the claps are situated.

audio data

blocking AAAR
calculate difference
between template
and current data

AAAR distances
of template

limit check alarm

Figure 4.2: Implementation of the rhythm detection algorithm.

Subsequently, the signal is blocked into frames of the same length as the template

with a step-size of 0.1 ∗ LTemplate as depicted in Figure 4.4. In each of these frames, k

maxima are determined. In this example, there are 4 maxima marked with a red circle.

Where k is equal to the number of claps in the reference recording. If all maxima exceed a

threshold Tpeak = 2, the difference between the single peak positions is calculated resulting

in AAARdistance,current[m], otherwise the next audio frame, marked in green colour, is

processed.

41

4 Rhythm Detection Algorithm

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

time→

am
p
li
tu
d
e
→

(b)

0 1 2 3 4 5 6 7 8 9 10
−1
−0.5

0

0.5

1

time [sec]→

am
p
li
tu
d
e
→

(a)

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

4

time→

A
A
A
R
→

(c)

Figure 4.3: AAAR of an audio signal. (a) PCM audio signal. (b) AAA of the audio
signal. Frame-size is 25ms. Hop-size is 10ms. (c) AAAR, i.e. ratio between
consecutive AAA values.

Figure 4.4: Implementation of the AAAR for rhythm detection.

Finally, the differences of the peak positions of the current audio data are compared to

the differences of the peak positions of the template by calculating the absolute difference

AAARfinal =
k−1∑
m=1

|AAARdistances,current[m]− AAARdistances,template[m]|, (4.3)

where k is the number of maxima, i.e. claps. If this final difference is below a certain

threshold TAAAR = 8k, i.e. the differences of the peak positions are similar between

current audio data and template, an alarm is triggered.

42

5
Experimental Results

In this chapter performance measures are presented. Moreover the used databases for

KWS and rhythm detection are introduced. Finally, some performance results are pre-

sented for the KWS algorithm and the rhythm detection algorithm.

5.1 Performance Measure
The performance is measured via recall (R) and precision (P)

R =
TP

TP + FN
· 100 in [%], and (5.1)

P =
TP

TP + FP
· 100 in [%], (5.2)

where TP are the true positives, i.e. the number of correct alarms. FN are the false

negatives, i.e. the number of missing alarms and FP are the false positives, i.e. the

number of false alarms. Therefore recall is a measurement of how many correct keywords

are detected of all possible keywords, i.e. R = 100% means that all keywords that

occurred are detected, R = 50% means that just half of all keywords are detected correctly.

Precision measures how many correct alarms occurred compared to all alarms. P = 100%

means all alarms are correct alarms, P = 50% means half of the alarms are correct, the

other ones are false alarms.

43

5 Experimental Results

Furthermore, we define the performance P̂ as

P̂ =
wRR + wPP

wR + wP
, (5.3)

where wR and wP is the weighting factor for recall and precision respectively. This is a

requirement by the company, see Section 1.3. The combination of the distance measures

is based on P̂.

5.2 Keyword Spotting Results
This section shows the performance of the KWS algorithm. First, different keywords are

analyzed. Afterwards the best keyword is selected for a more detailed examination of the

algorithm with background noise and different combinations of ED, CC, DTW and VAD.

5.2.1 Database for KWS

To evaluate the KWS algorithm, a database was recorded. This database consists of 10

different speakers in 3 different background noise scenarios and 4 different distances to

the microphone. In total there are 12 recordings per speaker, i.e. 3 background noise

scenarios with 4 different distances. In particular, the distance between speaker and

microphone was 1m, 5m, and speaker was in an adjacent room to the recording device

with either open or closed door. The background noise, i.e. television, was always in a

distance of about 1m to the device. On each recording the speaker has to say the keyword

(”Aktiviere Notruf!”) 4 times. In total 480 keywords embedded in continuous audio data

are recorded. Table 5.1 presents the mean a-posteriori signal to noise ratio SNRpost and

the standard deviation σ of SNRpost for the different background noise scenarios and the

different distances between microphone and speaker. SNRpost is determined as follows:

SNRpost[n] = 10 log

(
E{|x[n]|2}
E{|w[n]|2}

)
, in [dB], (5.4)

where E{·} is the expectation operator. x[n] = s[n] + w[n], where s[n] is the speech

signal and w[n] is the noise signal. More details about the database can be found in the

Appendix B.

44

5 Experimental Results

silence noise high noise
SNRpost σ SNRpost σ SNRpost σ

1m 18.4 8.6 8.2 7.0 6.9 4.8
5m 21.5 6.7 6.3 6.6 4.3 2.7

ORO 15.7 8.0 5.2 7.2 3.5 3.6
ORC 4.3 3.5 1.5 4.5 -0.3 4.7

Table 5.1: SNRpost in [dB] of different background noise scenarios for the KWS database.
ORO is other room with open door, i.e. the user was in an other room than
the smartphone. ORC is other room with closed door. The distance between
smartphone and noise source, i.e. television, was always 1m.

5.2.2 Performance depending on Keyword

Since the recognition rate of the KWS algorithm depends on the used keywords, different

keywords are analyzed. In Figure 5.1 two keywords with different characteristics (”Ak-

tiviere Notruf ” and ”Hilfe Notruf ”) are evaluated using the KWS algorithm. Therefore,

speakers said the keywords two times in different situations. Afterwards this database is

analyzed with the KWS algorithm. Each datapoint in Figure 5.1 represents the result of

the KWS algorithm with different threshold settings. Table 5.2 displays the settings of

the KWS algorithm and the database.

parameter name value
used combination ED-CC-DTW

probands 5 male, 4 female
age 22 - 80 years

#audio recordings 27
#keywords 54

#MFCC bins 17
TDTW 0.6 - 0.8
TED 0.6 - 0.8
TCC 1.2 - 1.4

Table 5.2: Settings for comparison of different keywords.

The keywords have different performance characteristics. ”Aktiviere Notruf ” has by

trend a higher precision but is more difficult to detect, i.e. it has a lower recall, whereas

”Hilfe Notruf ” has a higher recall but therefore causes more false alarms, i.e. lower

precision. Since the KWS algorithm should have as little false alarms as possible, i.e.

high precision, the keyword ”Aktiviere Notruf ” is taken to set up a database as described

in Section 5.2.1 and in the Appendix B for further testing.

45

5 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

recall →

p
re
ci
si
o
n
→

Aktiviere Notruf
Hilfe Notruf

Figure 5.1: Comparison of recall and precision of two different keywords.

parameter name value
used combination ED-CC-DTW
#audio recordings 12 per proband

#keywords 48 per proband
#MFCC bins 17

TDTW 0.75
TED 0.75
TCC 1.3

Table 5.3: Settings for comparison of different speakers.

5.2.3 Performance depending on Speaker

The database consists of 10 different speakers. Figure 5.2 shows the result of the KWS

algorithm according to the different speakers. The settings for simulation are presented in

Table 5.3. There are no significant differences between male and female speakers. Table

5.4 presents the averaged results of male and female speakers.

male female

R [%] 55.4 53.8
P [%] 94.3 97.0

Table 5.4: Experimental results depending on gender.

46

5 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

recall →

p
re
ci
si
o
n
→

male speaker
female speaker

Figure 5.2: Comparison of recall and precision of different speakers.

parameter name value
#audio recordings 40 per situation

#keywords 160 per situation
#MFCC bins 17

TDTW 0.75
TED 0.75
TCC 1.3
TVAD 0.6

Table 5.5: Settings for comparison of ED, CC, DTW and VAD.

5.2.4 Performance depending on Background Noise and different
Combinations of ED, CC, DTW and VAD

Different combinations of ED, CC, DTW and VAD are evaluated on the database. There-

fore, the database was split into three parts silence, noise and high noise to find the best

combination for each background noise situation. The settings of the simulation are shown

in Table 5.5.

Table 5.6 presents the results of this experiment. The first three columns show the

results of the different background situations, whereas in the last column the results of

the full database, i.e. silence, noise and high noise together is presented. One can see that

recall is decreasing while precision is increasing from top to bottom, because the more

criteria are used, the less false alarms are produced. On the other hand, the correctly

detected alarms also decrease. The results are also shown in Figure 5.3. One can clearly

distinguish between the different background noise scenarios, since the performance is

47

5 Experimental Results

decreasing with higher background noise.

Furthermore, the results of ED, CC, DTW and VAD are weighted with Equation (5.3)

and wR = 1, wP = 3, i.e. precision is more important than recall, since false alarms

should be avoided. Table 5.7 shows the performances of the different combinations. Now

for each background noise situation the maximum performance is selected, marked with

green color in the table. If no BNC takes place, only one combination can be used for all

background noise situations. Therefore, the combination with the maximum performance

on the database, ED-CC-DTW, is used, although this combination does not have optimal

performance in each background situation. To remedy this drawback, BNC is imple-

mented as described in Section 3.2. Now for each background noise scenario a different

combination can be used with optimal performance, marked with green colour in Table

5.7. Depending on the classification of the background noise using HIST, an optimal

combination is used. The final performance is presented in the next section.

Combination
Silence Noise High Noise Combined
R P R P R P R P

ED 80.0 84.2 65.0 54.5 49.4 44.9 64.8 59.9
DTW 87.5 99.3 66.3 76.8 40.0 68.8 64.6 83.3
CC 93.8 92.0 70.0 35.1 61.3 27.6 75.0 43.0

ED-CC 80.0 99.2 57.5 79.3 43.8 61.4 60.4 80.8
ED-DTW 75.6 100.0 58.1 92.1 32.5 83.9 55.4 93.7
CC-DTW 84.4 99.3 60.0 85.7 37.5 79.0 60.6 89.8

ED-CC-DTW 75.6 100.0 53.8 95.6 32.5 89.7 54.0 96.3
ED-VAD 67.5 84.4 51.9 55.0 31.9 48.6 50.4 63.0

DTW-VAD 73.1 99.2 56.3 79.7 31.9 75.0 53.8 86.3
CC-VAD 80.6 92.8 53.8 41.2 41.9 35.6 58.8 52.6

ED-CC-VAD 68.1 99.1 45.6 80.2 30.6 68.1 48.1 84.6
ED-DTW-VAD 64.4 100.0 47.5 92.7 24.4 95.1 45.4 96.5
CC-DTW-VAD 72.5 99.2 50.0 87.9 30.0 84.2 50.8 92.1

ED-CC-DTW-VAD 64.4 100.0 43.8 95.9 24.4 97.5 44.2 98.1

Table 5.6: Experimental results of the KWS algorithm with different ED, CC, DTW and
VAD combinations depending on the noise scenario. R and P in [%].

5.2.5 Final Performance results on KWS Database

Finally, the KWS algorithm is tested on the database with and without BNC. If no

classification takes place, only one combination can be used for all different background

scenarios. If HIST is calculated, each 10s audio frame of an audio recording is classified

into one of the following three categories silence, noise or high noise and depending on the

output of the classifier a different ED, CC, DTW and VAD combination is used. Table

5.8 shows the settings for this experiment. Table 5.9 presents the results of the database

48

5 Experimental Results

Combination
Silence Noise High Noise Combined

P̂ P̂ P̂ P̂

ED 83.2 57.1 46.0 61.1
DTW 96.4 74.2 61.6 78.6
CC 92.5 43.8 36.0 51.0

ED-CC 94.4 73.9 57.0 75.7
ED-DTW 93.9 83.6 71.0 84.1
CC-DTW 95.6 79.3 68.6 82.5

ED-CC-DTW 93.9 85.1 75.4 85.7
ED-VAD 80.2 54.2 44.4 59.9

DTW-VAD 92.6 73.8 64.2 78.2
CC-VAD 89.8 44.3 37.2 54.1

ED-CC-VAD 91.4 71.6 58.7 75.5
ED-DTW-VAD 91.1 81.4 77.4 83.7
CC-DTW-VAD 92.5 78.4 70.7 81.8

ED-CC-DTW-VAD 91.1 82.9 79.2 84.7

Table 5.7: Weighted Performance of the different combinations (wR = 1 and wP = 3).
The best combination in each background noise scenario is marked with green
color.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

recall →

p
re
ci
si
o
n
→

silence
noise
high noise

Figure 5.3: Comparison of recall and precision in different situations and different ED,
CC, DTW and VAD combinations.

for different distances between speaker and smartphone and different background noise

scenarios using no BNC and BNC, respectively. Table 5.10 presents the combined results

of the different background noise scenarios for the final evaluation and compares it to the

results without BNC.

49

5 Experimental Results

parameter name value
#audio recordings 40 per situation

#keywords 160 per situation
#MFCC bins 17

TDTW 0.75
TED 0.75
TCC 1.3
TVAD 0.6
THIST1 0.45
THIST2 0.8

Table 5.8: Settings for evaluation of the KWS.

(a)

Silence Noise High Noise
ED-CC-DTW ED-CC-DTW ED-CC-DTW

1m 5m ORO ORC 1m 5m ORO ORC 1m 5m ORO ORC

R 90.0 87.5 80.0 45.0 75.0 72.5 55.0 12.5 55.0 35.0 35.0 5.0
P 100.0 100.0 100.0 100.0 93.8 96.7 95.7 100.0 95.7 87.5 100.0 40.0

P̂ 97.5 96.9 95.0 86.3 89.1 90.6 85.5 78.1 85.5 74.4 83.8 31.3

(b)

Silence Noise High Noise
DTW ED-CC-DTW ED-CC-DTW-VAD

1m 5m ORO ORC 1m 5m ORO ORC 1m 5m ORO ORC

R 95.0 97.5 95.0 57.5 75.0 67.5 50.0 15.0 42.5 27.5 27.5 5.0
P 100.0 100.0 97.4 100.0 96.8 96.4 95.2 100.0 100.0 84.6 100.0 100.0

P̂ 98.8 99.4 96.8 89.4 91.3 89.2 83.9 78.8 85.6 70.3 81.9 76.3

Table 5.9: Final results of the KWS algorithm on different distances and different back-
ground noises. (a) Without BNC. (b) With BNC. R and P are in [%] and
wR = 1 and wP = 3. ORO is other room with open door, i.e. the user was in
an other room than the smartphone. ORC is other room with closed door. The
distance between smartphone and noise source, i.e. television, was always 1m.

It can be seen that the performance improves in all background noise scenarios if BNC

is used. The differences in recall and precision between the results of the KWS algorithm

without BNC in each background noise scenario, in Table 5.6, and the final results with

BNC, in Table 5.9(b), are due to different classifications of single audio frames.

Moreover, in Figure 5.4 the performance curves of the KWS algorithm with and without

BNC are presented. The settings for the evaluation to determine the performance curves

are presented in Table 5.11. Each point on the curve corresponds to a different setting

of the thresholds. It can be seen that BNC improves the precision. Whereas the BNC

has an adverse effect on recall, i.e. the recall is decreasing compared to the recall without

50

5 Experimental Results

(a)

silence noise high noise combined
ED-CC-DTW ED-CC-DTW ED-CC-DTW

R 75.6 53.8 32.5 54.0
P 100.0 95.6 89.7 96.3

P̂ 93.9 85.1 75.4 85.7

(b)

silence noise high noise combined
DTW ED-CC-DTW ED-CC-DTW-VAD

R 85.6 51.9 25.6 54.4
P 99.3 96.5 95.3 97.8

P̂ 95.9 85.4 77.9 86.9

Table 5.10: Final results of the KWS algorithm. (a) Without BNC just one combination
can be taken for all different background noise scenarios. (b) With BNC the
best combination for each background noise scenario can be taken. R and P
are in [%] and wR = 1 and wP = 3.

BNC. But because more emphasis is put on precision, BNC is implemented. Moreover

BNC reduces the computational costs, since not all criteria have to be calculated all the

time.

40 42 44 46 48 50 52 54 56 58 60
90

91

92

93

94

95

96

97

98

99

100

recall →

p
re
ci
si
on

→

without BNC

with BNC

Figure 5.4: Final performance curves of the KWS algorithm. R and P are in [%].

51

5 Experimental Results

parameter name value
#audio recordings 40 per situation

#keywords 160 per situation
#MFCC bins 17

TDTW 0.55 - 0.95
TED 0.55 - 0.95
TCC 1.2 - 1.7
TVAD 0.6
THIST1 0.45
THIST2 0.8

Table 5.11: Settings to determine the precision-recall curve of the KWS.

5.3 Rhythm Detection Results
The rhythm detection algorithm is also evaluated on a database. The results relating to

different frame- and hop-sizes, different signals, i.e. clapping or knocking, and different

background noise scenarios are presented in this section. But before the database is

introduced.

5.3.1 Database for Rhythm Detection

The performance of the rhythm detection algorithm is evaluated using a database con-

sisting of 128 audio samples, i.e. 64 audio samples with clapping and 64 audio samples

with knocking. In each audio sample, the rhythm is clapped/knocked 2 times. In par-

ticular, the distance between speaker and microphone was 1m, 3m, 5m, and speaker was

in an adjacent rrom to the recording device with closed door. The background noise, i.e.

television, was always in a distance of 1m to the device, similar to the KWS database.

More details about the database can be found in the Appendix C. The performance was

measured using recall and precision as introduced in Section 5.1. Table 5.12 presents the

mean a-posteriori SNR, SNRpost (see Equation 5.4) with s[n] is the signal containing the

rhythm and w[n] is the noise signal, and its standard deviation σ for different background

noise scenarios and the different signals clapping and knocking.

5.3.2 Performance depending on Frame-size and Hop-size

For calculating the AAA of the audio signal, different frame- and hop-sizes can be used.

Table 5.13 shows the results of the rhythm detection algorithm using different frame- and

hop-sizes. The settings of the simulation are presented in Table 5.14. It can be seen that

recall is decreasing with higher frame-size while precision is increasing. On the other

hand, recall is increasing with a higher hop-size while precision is falling. To find an

52

5 Experimental Results

Distance
Clapping Knocking

Silence Noise Silence Noise
SNRpost σ SNRpost σ SNRpost σ SNRpost σ

1m 27.7 4.2 16.6 2.3 35.6 7.0 16.1 2.8
3m 35.1 4.7 16.3 4.8 24.0 6.6 8.7 1.3
5m 32.1 2.1 15.0 1.5 24.4 1.8 9.9 2.0

ORC 24.5 2.7 8.5 2.0 27.4 8.3 10.7 1.3

Table 5.12: SNRpost in [dB] of different background noise scenarios and distances for the
rhythm detection database. ORC is other room with closed door, i.e. the
person was in an other room than the smartphone. The distance between
smartphone and noise source, i.e. television, was always 1m.

optimal solution for the frame- and hop-size, the performance P̂ is determined using the

Equation (5.3) with wR = 1 and wP = 3. Again the focus is a low false alarm rate. Now

the combination with the highest performance, marked in green, is choosen for further

processing.

Hop-size [ms]
5 10 15

Frame-size [ms] R P P̂ R P P̂ R P P̂
10 73.4 100.0 93.4 - - - - - -
15 72.7 100.0 93.2 96.9 93.2 94.1 - - -
20 69.5 100.0 92.4 93.8 96.0 95.4 97.7 70.6 77.4
25 64.8 100.0 91.2 93.0 99.2 97.6 97.7 84.5 87.8

Table 5.13: Experimental results of different frame-sizes and hop-sizes for AAAR calcula-
tion. R and P are in [%] and wR = 1 and wP = 3. The best combination is
marked with green color.

5.3.3 Performance depending on Background Noise

To evaluate the performance depending on the background noise, the database is split into

two parts, i.e. silence and noise. Table 5.15 presents the settings for the algorithm. In

Table 5.16 the experimental results are presented. One can see that there are no significant

changes in precision but that recall is dependent on the background noise. This is due

parameter name value
database clapping
reference clapping
TAAAR 32
Tpeak 2

Table 5.14: Settings for simulation with different frame- and hop-sizes.

53

5 Experimental Results

parameter name value
database clapping, knocking
reference clapping, knocking
TAAAR 32
Tpeak 2

frame-size 25ms
hop-size 10ms

Table 5.15: Settings for evaluation with different background noise scenarios.

template database
Silence Noise Combined
R P R P R P

clapping clapping 100.0 100.0 85.9 98.2 93.0 99.2
knocking knocking 93.8 100.0 45.3 100.0 69.5 100.0
clapping knocking 93.8 100.0 39.1 100.0 66.4 100.0
knocking clapping 100.0 100.0 84.4 98.2 92.2 99.2

Table 5.16: Experimental results in different background noise scenarios and different tem-
plate and database signals. R and P are in [%].

to the calculation process of AAAR. If there is background noise, the AAA increases and

therefore the AAAR peaks that are needed for the detection of the rhythm are too small.

As a result, they fall under the threshold and are disregarded for further calculations.

Hence recall is decreasing. On the other hand, precision stays nearly the same because

the background noise can be seen as stationary compared to clapping/knocking. Hence,

the AAAR peaks do not exceed the threshold TAAAR and the chunk of audio data is

processed. Therefore, no false alarms occur.

Table 5.16 shows that in silence recall and precision are independent of the excitation

signal, i.e. clapping or knocking. In contrast, in noisy environments recall of the knocking

database is decreasing more strongly compared to the clapping database. This is due to

the more quiet and low-frequency sound of knocking, which is masked more easily in

background noise. On the other hand, the performance is independent of the used signal

in the reference recording, since the detection process is only based on the distances

between the peaks and hence independent of the acoustical characteristics of the signal.

5.3.4 Final Performance results on Rhythm Database

In Table 5.17 the results of the rhythm detection algorithm depending on the noise are

presented. The settings of this experiment are presented in Table 5.18.

Moreover, the rhythm detection algorithm is evaluated on the combined database using

the clapping reference, i.e. clapping and knocking database in silence and noise. In

total there are 128 different audio samples consisting of 256 rhythms. The results are

54

5 Experimental Results

(a)

Silence Noise
1m 3m 5m ORC 1m 3m 5m ORC

R 100.0 100.0 100.0 100.0 100.0 81.25 100.0 62.5
P 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.91

P̂ 100.0 100.0 100.0 100.0 100.0 95.3 100.0 83.8

(b)

Silence Noise
1m 3m 5m ORC 1m 3m 5m ORC

R 100.0 93.8 100.0 81.3 81.3 31.3 25.0 18.8
P 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

P̂ 100.0 98.4 100.0 95.3 95.3 82.8 81.3 79.7

Table 5.17: Final results of the rhythm detection algorithm. Clapped reference is taken for
both tables. (a) Clapping database. (b) Knocking database. R and P are in
[%] and wR = 1 and wP = 3.

parameter name value
database clapping and knocking
reference clapping
TAAAR 32
Tpeak 2

frame-size 25ms
hop-size 10ms

Table 5.18: Settings for the rhythm detection.

presented in Table 5.19. The first column shows the results in silence. In the second

column the results in a noisy environment are presented. There are 64 different audio

samples consisting of 128 rhythms in both background noise scenarios. The last column

shows the overall performance of the rhythm detection algorithm on the whole database,

with 128 audio samples. Attention should be paid to the high overall precision of 99.5%,

i.e. there are only 0.5% false alarms.

Figre 5.5 presents performance curves with different settings of the thresholds TAAAR

and Tpeak. Each point on a performance curve corresponds to a different setting of the

silence noise combined
R 96.9 62.5 79.7
P 100.0 98.8 99.5

P̂ 99.2 89.7 94.6

Table 5.19: Results of the rhythm detection algorithm. R and P are in [%] and wR = 1
and wP = 3.

55

5 Experimental Results

parameter name value
database clapping and knocking
reference clapping
TAAAR 20 - 200
Tpeak 1, 1.5, 2, 3

frame-size 25ms
hop-size 10ms

Table 5.20: Settings for the rhythm detection to determine the performance curves.

threshold TAAAR. The settings for the simulation of the curves are presented in Table

5.20. The blue curve is simulated with a threshold Tpeak of 1, the green curve with a

threshold Tpeak of 1.5, the red curve with a threshold Tpeak of 2 and the black curve with

a threshold Tpeak of 3. All maxima of AAAR less than this Tpeak are not considered in

the detection process, see Chapter 4. Therefore with an increasing Tpeak the precision is

getting better, while the recall decreases, because the maxima of AAAR do not exceed

TAAAR and are rejected in the rhythm detection process.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

recall →

p
re
ci
si
o
n
→

Tpeak = 1

Tpeak = 1.5

Tpeak = 2

Tpeak = 3

Figure 5.5: Performance curves of the rhythm detection algorithm. R and P are in [%].

56

6
Conclusion

This thesis describes a keyword spotting and a rhythm detection algorithm. Both algo-

rithms were developed with particular emphasis on real-time processing and low energy

consumption on a smartphone. The KWS algorithm is based on pattern matching, since

it should work for personalized keywords, without any statistical model such as hidden

Markov models. Hence it can be used for different languages without the need of adapting

the speech model. Only the template pattern has to be individually recoreded. The algo-

rithm detects the occurrence of a specified keyword that has been recorded beforehand. A

single reference recording is enough to start the keyword spotting or the rhythm detection.

First, the audio data is blocked into frames of 10s in length. Then it is transformed into

frequency domain using mel frequency cepstral coefficients. Afterwards three distance

measures, i.e. euclidian distance, cross-correlation and dynamic time warping are used to

determine the similarities between the reference, i.e. the template, and the current audio

data. Each block is classified into one of the following three classes: silence, noise, high

noise using a histogram of the amplitudes. Depending on the background noise, a differ-

ent combination of the distance measures and additional voice activity detection is used

to detect the keyword by comparing the distance values to a threshold. Since a low false

alarm rate is more important than a high recognition rate, the combination used for each

background noise category is determined by calculating the performance with a weighting

of recall to precision of 1 to 3. Then the combination with the highest performance in

each background noise category is implemented for the final keyword spotting algorithm.

57

6 Conclusion

For rhythm detection the average absolute amplitude ratio is introduced. Thereby

the ratio of adjacent average absolute amplitude values is calculated, which emphasises

transient signals such as clapping or knocking and suppresses continuous signals such as

speech. Afterwards the distances between the single peak positions in the average abso-

lute amplitude ratio are calculated and compared to the template. An alarm is triggered

if the distances do not exceed a certain deviation. Since the algorithm is working in time

domain, it does not require any transformation. Consequently, it has very low computa-

tional and energy costs.

The keyword spotting algorithm is tested on different databases concerning the used

keyword, different background noise scenarios and different speakers. The final keyword

spotting database consists of 10 different speakers recorded in 12 different situations. In

total there are 120 audio recordings consisting of 4 times the keyword, i.e. in total 480

times the keyword (”Aktiviere Notruf!”). To evaluate the rhythm detection algorithm,

a rhythm database was recorded. There are 8 different situations each with 8 different

recordings for clapping and knocking. In total there are 64 recordings consisting of 128

times the clapped rhythm and 64 recordings consisting of 128 times the knocked rhythm.

Both algorithms were developed and tested in Matlab using the signal processing toolbox

and the voicebox. After receiving satisfactory simulation results, they were translated

into C code for processing on smartphones and tablets. As a result, both algorithms can

be executed on smartphones in real time. The overall performance for keyword spotting

is a recall of 54.4% and a precision of 97.8%. The rhythm detection algorithm achieves

a recall of 79.7% and a precision of 99.5%. In particular, the rhythm detection is more

robust in noisy and for distance, i.e. other room closed door) scenarios.

At the same time, the conclusion of this thesis can also be regarded as an outlook for

further development. Instead of MFCCs, other features such as linear predictive coding

(LPC), perceptual linear predictive (PLP) or delta and delta-delta features of the MFCCs

can be used. Investigations can also be conducted in the classification of background noise.

Statistical models of the background noise could lead to a more sophisticated system.

58

A
File Directory

Name Description
AEDcalc .m-function to calculate AAAD for reference recording quality check
AERcalc .m-function to calculate AAAR for rhythm detection algorithm
AZCcalc .m-function to calculate AZCR for reference recording quality check
Corrcalc .m-function to calculate CC for KWS algorithm
DTWcalc .m-function to calculate DTW for KWS algorithm
EDcalc .m-function to calculate ED for KWS algorithm

HISTcalc .m-function to calculate HIST for background noise classification
MAcalc .m-funciton to calculate MA for KWS algorithm
maxcalc .m-funtion to calculate k highest maxima for rhythm detection algorithm
VADcalc .m-function to calculate VAD for KWS algorithm
KWS DA .m-script to simulate the finished KWS algorithm with HIST

KWS DA crit .m-script to simulate the KWS algorithm without HIST
to determine the results of the single criterias

Rhythm DA .m-script to simulate rhythm detection algorithm

Table A.1: Matlab files

59

A File Directory

Name Description
KWS results Presents recall and precision of the KWS algorithm on the used

database with different combinations of ED, CC, DTW and VAD.
Via recall weight and precision weight the emphasis of recall and
precision can be changed to find the best combination.

KWS results single Presents recall and precision of the final KWS algorithm
on the used database split up into the different background noise
scenarios and the different distances between speaker and
microphone. Moreover the SNRpost of the database is presented.

Rhythm results Presents recall and precision of the rhythm detection algorithm
on the rhythm database with different settings of frame- and hop-
size for AAAR. Via recall weight and precision weight the emphasis
of recall and precision can be changed to find the best setting for
hop- and framesize.

Rhythm results single Presents recall and precision of the final rhythm detection algorithm
on the database. Split up into the different signals, background noise
scenarios and distances between user and microphone. Moreover the
SNRpost of the database is presented.

Table A.2: Excel files

60

B
Experimental Set-Up for KWS

database recording

To evaluate the KWS algorithm a database consisting of 120 audio samples (including 480

times the keyword) was recorded. The recording took place in a closed room (living room,

eating room) and the recording device is a smartphone. Further details of the set-up are

described in the following.

speakers:

• sex: 5 male, 5 female

• age: 1x 10-20 years, 1x 20-30 years, 2x 30-60 years, 1x 60+ years

distances: distance between speaker and phone

• 1m

• 5m

• other room with open door (i.e. speaker was in an other room than the smart-

phone)

• other room with closed door

61

B Experimental Set-Up for KWS database recording

background noise:

• silence: some low noise due to open doors.

• low noise: smartphone was 1m next to a television running at low volume.

• high noise: smartphone was1m next to a television running at high volume.

nomenclature of recordings: sex - age - situation - background noise

• male → M, female → W

• 1m → 01m, 5m → 05m

• other room open door → 0AR

• other room closed door → ARG

• silence → SIL, low noise → 0HG, high noise → HG+

• example: male, 25 years, other room with open door, low noise→M25 0AR 0HG

procedure of recording:

• each audio recording is about 2 min

• each person had to do all 4 different distances with the 3 different background

noises

• there are 12 audio recordings per person (4x silence in all situations, 4x low

noise in all situations, 4x high noise in all situations)

• in each of these 12 audio recordings, the proband had to say the keyword 4

times (after about 30s, 60s, 90s and 120s)

Checklist for audio recording:
proband: Max Muster, 107 years Check

1m, Silence

5m, Silence

other room open door, silence

other room closed door , silence

1m, low noise

5m, low noise

other room open door, low noise

other room closed door, low noise

1m, high noise

5m, high noise

other room open door, high noise

other room closed door, high noise

62

C
Experimental Set-Up for Rhythm

Detection database recording

To evaluate the rhythm detection algorithm a database consisting of 128 audio samples

(including 256 times the rhythm) was recorded. The recording took place in a closed

room (living room, eating room) and was done with a smartphone. Further details are

described below.

signal:

• clapping with hands

• knocking on the table

distances: distance between proband and phone

• 1m

• 3m

• 5m

• other room with closed door (i.e. the speaker was in an other room than the

smartphone)

63

C Experimental Set-Up for Rhythm Detection database recording

background noise:

• silence: some low noise due to open doors.

• low noise: smartphone was 1m next to a television running at low volume

nomenclature of recordings: situation - signal - background noise - number of record

• 1m → 1m, 3m → 3m, 5m → 5m

• other room closed door → ARG

• clapping → kla, knocking → klo

• silence → stille, low noise → tv

• example: clapping, other room with closed door, with noise 3rd record→ ARG-

kla-tv3

procedure of recording:

• each audio recording is about 2min

• 4 different distances and 2 different background noises→ 8 different situations

• in each of these 8 situations there are 8 recordings

• there are 64 audio recordings for clapping and 64 audio recordings for knocking

(8x 1m, 8x 3m, 8x 5m, 8x other room with closed door, each with and without

background noise)

• in each of these 64 audio recordings, the rhythm is clapped/knocked 2 times

(after about 50s and 100s)

64

List of Figures

1.1 KWS based on HMMs using keyword and filler models. 11

1.2 GUI of the App112. 13

2.1 Overall system of the App112. 16

3.1 Flow chart of the average absolute amplitude difference. 19

3.2 AAAD for quality measure. 20

3.3 NAD for reference recording. 21

3.4 Amendatory zero-crossing rate. 22

3.5 ZCR and AZCR for quality measure. 23

3.6 Histogram of amplitudes of silence and high noise. 24

3.7 p1(x) of the database used for KWS. 25

3.8 Overall system for KWS. 26

3.9 Source-Filter model of speech signals. 27

3.10 MFCC calculation. 27

3.11 Hamming window for MFCC calculation. 28

3.12 MFCC. 30

3.13 VAD for KWS. 31

3.14 Alignment of two signals via DTW. 31

3.15 Cost matrix between the sequences. 32

3.16 Different warping paths for DTW. 33

3.17 Optimal warping path determined from the accumulated cost matrix. . . . 35

3.18 Implementation of DTW for KWS. 36

3.19 Scaled DTW values for KWS. 37

3.20 Scaled ED and CC values for KWS. 38

4.1 Flow chart of the average absolute amplitude ratio. 41

4.2 Implementation of the rhythm detection algorithm. 41

4.3 AAAR of an audio signal. 42

4.4 Implementation of the AAAR for rhythm detection. 42

65

LIST OF FIGURES

5.1 Comparison of recall and precision of two different keywords. 46

5.2 Comparison of recall and precision of different speakers. 47

5.3 Comparison of recall and precision in different situations and different ED,

CC, DTW and VAD combinations. 49

5.4 Final performance curves of the KWS algorithm. 51

5.5 Final performance curves of the rhythm detection algorithm. 56

66

List of Tables

5.1 SNRpost in [dB] of different background noise scenarios for the KWS database. 44

5.2 Settings for comparison of different keywords. 45

5.3 Settings for comparison of different speakers. 46

5.4 Experimental results depending on gender. 46

5.5 Settings for comparison of ED, CC, DTW and VAD. 47

5.6 Experimental results of the KWS algorithm with different ED, CC, DTW

and VAD combinations depending on the noise scenario. 48

5.7 Weighted Performance of the different combinations. 49

5.8 Settings for evaluation of the KWS. 50

5.9 Results of the KWS algorithm on different distances and different back-

ground noises. 50

5.10 Final results of the KWS algorithm. 51

5.11 Settings to determine the precision-recall curve of the KWS. 52

5.12 SNRpost in [dB] of different background noise scenarios and distances for

the rhythm detection database. 52

5.13 Experimental results of different frame-sizes and hop-sizes for AAAR cal-

culation. 53

5.14 Settings for evaluation with different frame- and hop-sizes. 53

5.15 Settings for evaluation with different background noise scenarios. 54

5.16 Experimental results in different background noise scenarios and different

template and database signals. 54

5.17 Results of the rhythm detection algorithm on splitted database. 55

5.18 Settings for the rhythm detection. 55

5.19 Results of the rhythm detection algorithm. 55

5.20 Settings for the rhythm detection to determine the performance curves. . . 55

A.1 Matlab files . 59

A.2 Excel files . 60

67

List of References

[1] Huan, X. ; Acero, A. ; Hon, H.-W.: Spoken Language Processing: A Guide to

Theory, Algorithm and System Development. Prentice Hall PTR, NJ, 2001.

[2] Kepuska, V. ; Klein, T.B.: A novel Wake-Up-Word speech recognition system,

Wake-Up-Word recognition task, technology and evaluation. In: Nonlinear Analysis

71, 2009, 2009, S. 2772–2789.

[3] Cole, R. ; Mariani, J. ; Uszkoreit, H. ; Varile, G.B. ; Zaenen, A. ; Zampolli,

A. ; Zue, V.: Survery of the State of the Art in Human Language Technology.

Cambridge University Press and Giardini, 1997.

[4] Benayed, Y. ; Fohr, D. ; Haton, J-P ; Chollet, G.: Confidence measures for

keyword spotting using support vector machines. In: IEEE International Conference

on Acoustics, Speech, and Signal Processing., 2003, vol. 1, S. 588–591.

[5] Ketabdar, H. ; Vepa, J. ; Bengio, S. ; Bourlard, H.: Posterior based keyword

spotting with a priori thresholds. In: Proceedings of Interspeech, 2006.

[6] Rose, R.C. ; Paul, D.B.: A hidden Markov model based keyword recognition

system. In: International Conference on Acoustics, Speech, and Signal Processing.,

1990, vol. 1, S. 129–132.

[7] Lleida, E. ; Marino, J.B. ; Salaverda, J. ; Bonafonte, A. ; Martinez, A.:

Out of vocabulary word spotting modeling and rejection for keyword spotting. In:

EUROSPEECH, 1993, S. 1265–1268.

[8] Bahi, H. ; Benati, N.: A new keyword spotting approach. In: International

Conference on Multimedia Computing and Systems, 2009, S. 77–80.

[9] Keshet, J. ; Grangier, D. ; Bengio, S.: Discriminative keyword spotting. In:

Proceedings of Workshop on Non-Linear Speech Processsing, 2007.

68

LIST OF REFERENCES

[10] Yu, P. ; Seide, F.: Fast Two-Stage Vocabulary-Independent Search In Sponta-

neous Speech. In: IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2005, vol. 1, S. 481–484.

[11] Seide, F. ; Yu, P. ; Ma, C. ; Chang, E.: Vocabulary-independent search in

spontaneous speech. In: IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2004, vol. 1, S. 253.

[12] Ordelman, R. ; Jong, F. de ; Larson, M.: Enhanced Multimedia Content Access

and Exploitation Using Semantic Speech Retrieval. In: IEEE International Confer-

ence on Semantic Computing, 2009, S. 521–528.

[13] Bridle, J.: An efficient elastic-template method for detecting given words in running

speech. In: Proceedings British Acoustic Society Meeting, 1973, S. 1–4.

[14] Guo, H. ; Huang, D. ; Zhao, X.: An algorithm for spoken keyword spotting via

subsequence DTW. In: IEEE International Conference on Network Infrastructure

and Digital Content, 2012, S. 573–576.

[15] Zhao, H. ; Zhao, L. ; Zhao, K. ; Wang, G.: Voice Activity Detection Based on

Distance Entropy in Noisy Environment. In: International Joint Conference on INC,

IMS and IDC, 2009, S. 1364–1367.

[16] Bin Amin, T. ; Mahmood, I.: Speech recognition using dynamic time warping. In:

International Conference on Advances in Space Technologies, 2008, S. 74–79.

[17] Logan, B.: Mel frequency cepstral coefficients for music modeling. In: International

Symposium on Music Information Retrieval, 2000.

[18] Fastl, H. ; Zwicker, E.: Psycho-Acoustics. Facts and Models. Springer, Heidelberg,

2007.

[19] Müller, M.: Information Retrieval for Music and Motion. Springer, Berlin Heidel-

berg, 2007.

[20] Kroschel, K. ; Rigoll, G. ; Schuller, B.: Statistische Informationstechnik.

Signal- und Mustererkennung, Parameter- und Signalabschätzung. Springer, Berlin

Heidelberg, 2011.

[21] Barakat, M. S. ; Ritz, C.H. ; Stirling, D.A.: Keyword spotting based on the

analysis of template matching distances. In: International Conference on Signal

Processing and Communication Systems, 2011, S. 1–6.

69

LIST OF REFERENCES

[22] Kammyer, K.-D. ; Kroschel, K.: Digitale Signalverarbeitung. Filterung und Spek-

tralanalyse mit Matlab-Übungen. Vieweg+Teubner, Wiesbaden, 2009.

[23] Kiencke, U. ; Jäkel, H.: Signale und Systeme. Oldenbourg Wissenschaftsverlag,

München, 2008.

[24] Lesser, N. ; Ellis, D.P.W.: Clap detection and discrimination for rhythm ther-

apy. In: IEEE International Conference on Acoustics, Speech, and Signal Processing,

2005, vol. 3, S. 37–40.

70

	List of Abbreviations
	Introduction
	Keyword Spotting Methods
	App 112 - Motivation and Problem Statement
	Requirements of the App112
	Organization and Aim of this Work

	App112 - System Design
	Keyword Spotting Algorithm
	Quality Check of Reference Recording
	AAAD
	NAD
	AZCR

	Background Noise Classification
	Keyword Spotting Algorithm
	Mel Frequency Cepstral Coefficients
	VAD
	DTW
	ED and CC
	Final combinations of ED, CC and DTW

	Rhythm Detection Algorithm
	AAAR
	Implementation

	Experimental Results
	Performance Measure
	Keyword Spotting Results
	Database for KWS
	Performance depending on Keyword
	Performance depending on Speaker
	Performance depending on Background Noise and different Combinations of ED, CC, DTW and VAD
	Final Performance results on KWS Database

	Rhythm Detection Results
	Database for Rhythm Detection
	Performance depending on Frame-size and Hop-size
	Performance depending on Background Noise
	Final Performance results on Rhythm Database

	Conclusion
	File Directory
	Experimental Set-Up for KWS database recording
	Experimental Set-Up for Rhythm Detection database recording
	List of Figures
	List of Tables
	List of References

