
 

Diplomarbeit 

Entwicklung und Implementierung von 

OBD Funktionen für das AVL Steuergerät 

AVL RPEMS 

Lukas Raschendorfer 

 

 

Institut für technische Informatik 

Technische Universität Graz 

Vorstand: O. Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer 

 

Betreuer: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner 

 

Graz, im November 2013 

  



 

In Kooperation mit: 

AVL List GmbH 

 
 



I 

Kurzfassung 

Um die Entwicklung von neuen Motor- und Antriebskonzepten zu unterstützen hat die 

AVL List GmbH eine eigene Motor- bzw. Fahrzeugsteuerung entwickelt, die AVL RPEMS. 

Diese Steuerung wird in Motor- und Fahrzeugprototypen verwendet, um neue Funktiona-

litäten zu testen ohne dafür auf die Hilfe eines Industriepartners im Bereich Motorelekt-

ronik angewiesen zu sein. 

Eine Funktion, die bisher noch im Funktionsumfang der RPEMS fehlte, war die Möglichkeit 

Diagnosetätigkeiten außerhalb der Entwicklungsumgebung durchzuführen – ein Feature, 

das besonders bei Systemen in Kundenhand wichtig ist. 

Das Ziel dieser Arbeit ist es, eine solche Diagnosefunktion in das RPEMS Softwarepaket zu 

integrieren. 

In einer Evaluierung werden verschieden Konzepte bezüglich Funktionalität, Kosten und 

Wartungsaufwand verglichen, wobei sich eine Implementierung des OBD II Diagnosepro-

tokolls als die praktikabelste Lösung herausstellt. 

Die Standards, auf denen OBD II aufbaut werden dann untersucht, um herauszufinden, 

welche Teile für diese spezielle Aufgabe relevant sind. Danach wird die Architektur der 

bestehenden Software analysiert um die Interfaces zum Diagnosesystem festzulegen und 

ein Layout der Diagnosesoftware zu definieren, welches konsistent mit dem Rest des Sys-

tems ist.  

Die fertige Implementierung wird erst mit üblichen Diagnosetools getestet und schließlich 

noch die Standardkonformität mit Hilfe von automatisierten Tests nachgewiesen. 

 

  



II 

Abstract 

To assist the development of engine and drivetrain concepts, AVL List GmbH has devel-

oped its own Engine/Vehicle Control unit, the AVL RPEMS. This unit is used on prototype 

engines and vehicles to test new functionality without having to resort to an industry 

partner for the control system.  

A function that was still missing from the RPEMS system was the ability to do diagnostics 

independent from the development environment – a feature especially important for sys-

tems in customer hands. This thesis’ goal is to integrate such a system into the existing 

RPEMS software package. 

In an evaluation of possible concepts to implement diagnostics, different solutions are 

compared in price, functional range, and support effort. From this, an implementation of 

the OBD II diagnostic protocol emerges as the most feasible solution. 

The standards relating to OBD II are examined to determine which parts are relevant to 

this specific task. The architecture of the existing software system is then analyzed to de-

termine the interfaces to the diagnostic system and to define a layout of the diagnostic 

module that is consistent with the rest of the system. 

The finished implementation is then tested against common diagnostic tools as well as 

verified to be compliant with the standard using automated testing. 
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Chapter 1 

1Introduction 

One of the business areas of AVL List GmbH (hereafter AVL) is the development of engines 

and engine control strategies for customers (mostly automotive OEMs). In the later phases 

of a development project the engine has to run on an engine dynamometer in order to 

advance mechanical and thermodynamic development. To actuate the ignition and injec-

tion systems of modern engines, an electronic control unit is required. In production, 

ECUs, from e.g. Bosch and Siemens, are used but this is not straightforward possible in the 

development phase. Many projects, especially ones with exotic or novel mechatronic con-

cepts or innovative control strategies, require corresponding functions within the control 

system. These functions can only be implemented by the ECU vendor – a process associat-

ed with significant costs and lead time - and therefore not suitable for a system in devel-

opment. 

For this reason AVL in-house developed a bespoke control unit – the AVL RPEMS Future 

(Rapid Prototyping Engine Management System, hereafter RPEMS), a system where AVL 

has full control over both hard- and software and is thence able to implement new func-

tions in a short timeframe. Because of the versatility this system provides, it can both be 

used as engine management and as VCU (Vehicle Control Unit) for vehicles with alterna-

tive powertrains (e.g. plug-in hybrids) 

As a part of development projects, demonstrator vehicles are built on a regular basis and 

are used to calibrate and evaluate new engines and strategies in a real-world environment. 

These vehicles are not only used by the development engineers but often also by the cus-

tomers and, especially with very innovative concepts, these vehicles get to be presented 

on trade shows and conferences. 

It lies in the nature of a prototype that every now and then a problem appears that effec-

tively disables the demonstrator vehicle. If there is no developer with the required special-

ized soft- and hardware present it is very difficult to correctly diagnose the problem and, if 

possible, get the vehicle working again. 

For this reason AVL was looking for a possibility to perform simple diagnostics on a 

RPEMS that do not require the deployment of expensive calibration software and trained 

experts. 

1.1 Motivation and Goal 

As a mechanical engineer it may seem surprising for me to take on topic centered almost 

entirely on electronics and software. Indeed, an interest and knowledge in these topics is 

not very common among students of mechanical engineering, so my limited experience as 
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an electronics hobbyist predating my studies at TU Graz was enough to put me in the posi-

tion of “Head of Electronics” on the TU Graz Racing Team1. There, in a steep learning 

curve, I came in contact with a number of automotive electronic components and control 

systems. This intensified my interest in the topics of electronics and (embedded) software 

development, so I began taking courses intended for students of telematics and also con-

tinued to work on applications of electronic systems in motorsport. 

Working on the topic of diagnostics at AVL provided the opportunity to get a glimpse of 

the development and inner functioning of modern automotive ECUs, after I had been 

working with them as end user for some time.  

The goal of this thesis was to develop a practical diagnostic solution on the AVL RPEMS 

ECU for use in the field while deepening my understanding of automotive embedded sys-

tems development.  

The resulting solution should be easy to use, lightweight and robust and enable users to 

quickly diagnose problems with RPEMS units on-site. Ultimately, this should reduce down-

time and support workload for the development engineers, because simple defects can be 

detected and solved without remote assistance. 

1.2 Document Structure 

This document describes the design and implementation of the OBD II diagnostic protocol 

on the AVL RPEMS in five chapters. 

Chapter 2 depicts the historical and technical background of the OBD II protocol and gives 

an introduction to the fundamentals of CAN communication and real time systems. 

The process leading up the decision to use the OBD II protocol to address the need for di-

agnostics on the RPEMS as well as competing solutions are described in chapter 3. 

The existing software and hardware system and the design choices made on that basis are 

characterized in chapter 4. 

Chapter 5 details the resulting implementation and presents the individual software com-

ponents created for this project. 

An exemplary usage scenario, test results and an outlook of possible future work can be 

found in chapter 6 

  

                                                             
1 TU Graz Racing is a student club competing in the international Formula SAE Series and supported by TU 
Graz 
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Chapter 2 

2Overview of Diagnostic systems 

This chapter gives an overview over current on-board diagnostic systems, focusing on 

OBD II, and the associated standards and regulations. 

2.1 History of OBD 

Contrary to popular opinion it is not European but US authorities who are leading in emis-

sion and OBD legislation. Special attention deserves California’s CARB, which was and still 

is leading in the definition of many emission regulations, including OBD. 

In 1940 California’s population had already crossed the seven million mark. It is notewor-

thy that at the same time there were already 2.8 million vehicles registered which covered 

over 38 billion kilometers per year. [1] 

Due to the special geographic and climatic conditions around the city of Los Angeles, it is 

especially vulnerable to the “SMOG” phenomenon (a portmanteau of “smoke” and “fog”), 

which is described as drastically increased concentration of air pollutants with simultane-

ously occurring decreased vision. 

This phenomenon already led to first SMOG occurrences in 1943, which were rather seri-

ous with people suffering from smarting eyes, respiratory discomfort, nausea, and vomit-

ing. [2] Also, visibility was less than a hundred meters. 

Shortly thereafter, the “Bureau of Smoke Control” was founded and newer studies sug-

gested that state-wide measures were needed. 

In 1959 California‘s Department of Health set statewide quality standards for air quality 

including the concentration of sulfur dioxide, nitrogen dioxide, carbon monoxide and par-

ticulate matter. 

1960 the “Federal Motor Vehicle Act of 1960” was enacted, which required federal re-

search to address air pollution from motor vehicles. [3] 

Already 1961 the first technological solution for emission reduction was presented, the 

positive crankcase ventilation (PCV). It made sure that blow-by gasses containing hydro-

carbonate emissions would not be ventilated to the environment uncontrolled but would 

be withdrawn from the crankcase and returned to the combustion process together with 

fresh air and fuel. 

1967 the “California Air Resources Board” merged multiple organizations and elaborated 

multiple, at this time, unique emission requirements for motor vehicles. [4] 

After a slew of new regulations in the 70s and 80s had been successful in improving air 

quality, the focus was set on a new problem – maintaining the emission quality over a ve-

hicle lifetime. 
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Until then, only the emission behavior of factory-new vehicles had been regulated, but due 

to modifications, maintenance, defects or wear it can quickly worsen. Monitoring of the 

emission behavior was deemed necessary. There are several possibilities to guarantee 

emission quality in the field: 

 Periodical tests by the authority 

 Self-diagnosing vehicles + control by the executive 

 Self-diagnosing vehicles + control by the executive + periodical field tests 

After pursuing the first solution with a mandatory bi-annual check in 1984 („CA SMOG 

Check Program“), finally the third solution became policy in 1988 when model year (MY) 

1994 and later vehicles were required to have on-board computer systems that continu-

ously monitor the emission performance of the vehicle and alert the driver if problems 

arose. Additionally, the authorities would do spot checks to ensure the systems were 

working as intended. 

Integrated diagnostic systems were already required in the Smoke-Check directive from 

1984 (OBD-I), which were introduced with the 1988 MY. These Systems should monitor 

emission-relevant systems, detect and store malfunctions and also activate a warning light 

if they do. The interface for accessing the fault memory was not standardized and was 

usually implemented by blink-codes. 

The diagnostic system mandated from the MY 1994 (OBD II) required a correlation be-

tween the faults and the actual vehicle emissions. It should not only ensure the correct 

function of all involved systems but also monitor the chemical, mechanical, etc. functioning 

of all emission related systems by the means of “indirect” tests. An example for this would 

be monitoring the catalytic converter efficiency by means of an oxygen sensor both before 

and after the converter. [5] 

If a fault is detected an OBD II compliant vehicle can not only store the fault itself but also 

the boundary conditions at the time of its occurrence.  

Additionally, the OBD II standard defined the functional range and interface of a standard-

ized tool (OBD Scan Tool) which is able to communicate with the vehicle’s fault memory 

and e.g. display the stored fault codes. Thanks to also standardized fault codes this also 

works across vehicle makes and models. 

2.2 Situation in Europe / EOBD 

Europe did not have legislation requiring standardized OBD up until the 2000s, however 

the introduction of increasingly complex microcomputer systems in vehicles necessitated 

diagnostic functions e.g. for end-of-line programming and in-shop diagnostics. Some of the 

technologies developed for this purpose (K-Line, KWP2000, and CAN) were then integrat-

ed into legislated OBD. Some vehicles, which were also sold on the North American mar-

ket, (mainly from big manufacturers), were already OBD II compliant before this was re-

quired in Europe. 
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With the introduction of the EURO4 [6] emission regulations, OBD (in the form of EOBD) 

became mandatory for new vehicles in Europe starting with model year 2001 (gasoline 

engine) and 2004 (Diesel engine). The underlying technical standards, and thus the sup-

ported services and functional range are in all major regards identical to their OBD II 

counterparts. The remaining differences are mainly to be found in the mandated monitors.  

For example, the idle speed, fuel tank leakage and secondary air system only have to be 

monitored under US legislation. [7] With the ratification of newer legislation (Euro 6) the 

gap will be closed even further (see also 2.3). [8] 

2.3 Future developments, WWH and UDS 

In an effort to separate the diagnostic application from the transport protocol (e.g. KWP 

2000, CAN/ISO-TP) the standard ISO 14229 - Unified Diagnostic Services (UDS) was creat-

ed. It works partially similar to the OBD II diagnostic services, albeit with a much bigger 

functional range. [9] Nevertheless, it has not yet superseded the legacy protocols in OBD 

since legislative regulations still require their support. 

In contrast to OBD, UDS is session-based. This means that the UDS server (meaning the 

ECU) has multiple sessions (states), which offer different services. While the default ses-

sion has to just support session control, ECU reset and fault memory access, other sessions 

allow direct access to ECU memory and parameters, programming the ECU’s flash memory 

and even establishing an encrypted session for security related tasks.  

Another effort currently underway would be the World Wide Harmonized (WWH) – OBD. 

It focuses on the separation of regulations regarding OBD from the specific emission regu-

lations. The type of diagnostics performed and the diagnostic interface would be regulated 

by WWH-OBD while the emission thresholds would be defined by local legislation. The 

standard ISO 27145 has been created for this purpose. The technology used will be UDS 

over CAN and other interfaces (e.g. Ethernet), incorporating the existing definitions for 

fault codes and data items SAE J1979-DA and SAE J2012-DA to support a smooth transfer 

from existing standards. [5] 

2.4 OBD II standards 

2.4.1 Applicable standards 

The function and functionality of OBD II is completely covered by several ISO standards, 

most of which are based on SAE standards. Since OBD II supports multiple physical media 

(K-Line, PWM, CAN) the standards describing them have to be considered as well. This 

thesis only covers diagnostics via CAN, so the relevant standards are: 

 ISO 11898 – Controller Area Network 

 ISO 15031 – Communication between Vehicle and external equipment for emis-

sions-related diagnostics 
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 ISO 15765 – Diagnostics on Controller Area Network (CAN) 

 SAE J1979-DA – Digital Annex of E/E Diagnostic Test Modes (PID definitions) 

 SAE J2012-DA – Diagnostic Trouble Code Definitions 

Figure 2-1 shows the relationship between the different standards and also their position 
in the OSI model. 

  

Figure 2-1: OBD II standards and OSI Layers2  

 

                                                             
2 Modified from [22], Figure 2 
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2.4.2 OBD II Connector 

ISO 15031-3 specifies the mechanical and electrical characteristics of a common, manufac-

turer-independent vehicle diagnostics connector with the intention of enabling the owner, 

garages and authorities to access any vehicle’s diagnostic systems with a standardized 

device. Almost all commercially available testers feature the counterpart as their standard 

connector, sometimes with adapters for non-standard connectors (e.g. certain BMW and 

Mercedes models predating legislation that mandates the standard connector) 

Table 2-1: OBD connector pinout 

Pin Function 

1 Discretionary 3 

2 Bus positive line of SAE J1850 4 

3 Discretionary3 

4 Chassis ground 

5 Signal ground 

6 CAN_H line of ISO 15765-4 4 

7 K line according to ISO 9141-2 and ISO 14230-4 4 

8 Discretionary 3 

9 Discretionary 3 

10 Bus negative line of SAE J1850 b 

11 Discretionary 3 

12 Discretionary 3 

13 Discretionary 3 

14 CAN_L line of ISO 15765-4 4 

15 L line according to ISO 9141-2 and ISO 14230-4 4 

16 Permanent positive voltage 

 

 

Figure 2-2: OBD connector schematic (fe-
male, facing front)5 

 

 

Figure 2-3: OBD connector in vehicle 

                                                             
3 Assignment to this pin is left a t the discretion of the vehicle manufacturer 
4 This line may have an alternate assignment besides the diagnostic function 
5 Own artwork, based on [24]  
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Since pin 16 supplies 12 Volts from the car’s battery, testers with moderate power re-

quirements6 supply themselves off the OBD connection and do not need a dedicated power 

source. 

2.4.3 CAN Communication 

As mentioned above, the implementation described in this thesis uses CAN as the physical 

medium for diagnostic information which is covered in ISO 15765. There the following 

properties are mandated for a diagnostic CAN interface: 

 The standard baud rates for diagnostic services via CAN are 250 and 500kBit/s. 7 

 The external tester shall be an unterminated node on the bus. 

 The CAN message address format can either be 11-bit (standard) or 29-bit (ex-

tended)7 

2.4.4 The generic tester 

Partly because of the confusion caused by the manufacturer-specific error readout meth-

ods during the OBD I era of emission regulations, OBD II regulations define a generic test-

er, which has to support all of the public (regulated) OBD services, as well as all the regu-

lated communication protocols. This, on one hand, assures the user of such a device, that 

the tester will work on any (compliant) vehicle, that it will not damage the vehicle and that 

the readouts will be correct. On the other hand, it relieves the developers of the vehicle’s 

diagnostic systems of the need to design and test their implementation against multiple, 

differently specified, systems. [10] 

Since the OBD II implementation on the RPEMS should have the best possible compatibil-

ity, it is assumed that the connected tester does not exceed the functionality described in 

[10]. 

As mentioned above, the generic tester must support all the OBD II standard services – 

from the tester’s perspective this means the following minimum functionality: [10] 

 Continuously obtaining diagnostic trouble codes (DTCs) from the vehicle, display-

ing either its code, the related descriptive text (specified in SAE J2012-DA), or both 

to the user 

 Displaying the current values of monitored data (from the data items defined in 

SAE J1979-DA) in the required format (e.g. value + unit) 

 Displaying the data items in a freeze frame in the SAE J1979-DA specified format 

 Results from monitors and tests as described in SAE J1939 

                                                             
6 ISO15031-3 mandates that the 12V supply should be able to source at least 4A, meaning that the test equip-
ment may draw at least 48W of power. 
7 The actual speed and address format is determined by the tester during the initialization sequence, only one 
combination needs to be supported 



Overview of Diagnostic systems  9 

 Clearing the DTC, freeze frame and diagnostic test status data and having the user 

confirm this operation. 

 Displaying OBD status information such as readiness tests and MIL status 

2.4.5 Manufacturer-specific extensions to OBD II 

Since the OBD II service is mandated on all new vehicles anyway, lots of OEMs have decid-

ed to extend the OBD II services with their own diagnostic services. This is usually done by 

defining non-standard PIDs for the standard services (Live Data, Freeze Frame), custom 

DTCs or even additional services like component tests. Some of these manufacturer-

specific extensions could possibly add interesting features to the implementation but since 

they are only supported by very few and specialized testers and the specifications are hard 

to come by and/or very expensive their inclusion was deemed not useful. 

2.4.6 ISO 15765-2 Transport Protocol (ISO-TP) 

ISO 15765-2 covers the Network Layer (OSI Model Layer 3) services used in diagnostics 

via CAN. It describes a network layer protocol for data exchange between nodes on a CAN 

network and enables them transmit data in excess of the eight bytes offered by ISO 11898 

CAN by segmenting the data if needed:  

  

Figure 2-4: ISO-TP single and multiple frame communication8 

                                                             
8 Taken from [25] 
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As apparent from Figure 2-4, multiple frame types exist. A “frame” in this context is a sin-

gle CAN message, which encodes the frame type in its first byte. 

Table 2-2: ISO-TP frame types 

Frame Type 
Type 
Code 

Description 

Single 0 
This frame type contains the complete payload of the transmission 
(up to seven Bytes) 

First 1 
First frame of a multi-frame segmented transmission (more than 
seven bytes). Contains the complete payload size along with the 
first bytes of the data. 

Consecutive 2 Contains subsequent data of a multi-frame transmission 
Flow Con-

trol 
3 

Response of the receiver to a “First Frame”. It contains the parame-
ters for the transmission of the subsequent frames. 

<reserved> 4..15 <reserved> 
 

Table 2-3: ISO-TP frame structure 

Bit offset9 0..3 4..7 8..15 16..63 

Single 0 Size Data Data Data 

First 1 Size Data 

Consecutive 2 Index Data Data 

Flow 3 FC Flag Block Size Separation Time Data 

 

The “Data” fields in Table 2-3 denote actual “payload” data. Single and consecutive frames 

can carry up to seven bytes of data, first frames up to six. 

The “Size” field encodes the number of used data bytes (0-7) in single frames, since they 

always have a DLC (size) of eight. The unused bytes are padded, usually with 00H or 55H. 

Since the type code of the single frame is zero, the complete first byte is identical to <size> 

and the frame format can also be interpreted as a simple length-data type encoding. 

In a first frame the “size” parameter is allowed to be as high as 4095, its full (unsigned) 

range, and denotes the net transmission size, meaning only payload data bytes. This tells 

the receiver how many frames it has to expect and how big a buffer it needs to allocate. 

Consecutive frames encode an index field into the first byte which can take values between 

0 and 15. 

The index starts at zero and increments with each frame rolling over to 0 after 15. This 

allows the receiver to detect missing (dropped, lost) frames in a transmission. At the start 

of a transmission, the first frame is considered the 0th frame and the first consecutive 

frame will have the index 1. 

                                                             
9 Motorola format, MSB first 
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The FC flag encodes a general response (Table 2-4), indicating if the receiver is at all (due 

to software or hardware limitations) able to accept a transmission of the size indicated in 

the First Frame. 

Table 2-4: Flow Control Flag values 

FC value Name Description 

0 Clear to send Indicates that the receiver is ready for reception 

1 Wait 

Indicates to the transmitter that the receiver is not yet 

ready for reception. The receiver then waits for another 

F/C frame. 

2 Overflow/abort Indicates that the receiver has to abort the transmission 

 

The “Block Size” (BS) field tells the transmitter how many consecutive frames the receiver 

will accept before issuing another flow control frame. This allows receivers to split trans-

missions bigger than their receive buffer size into multiple parts. A value of zero means 

that all remaining frames can be sent at once. 

The “separation time” (ST) (Table 2-5) tells the transmitter how long it has to wait be-

tween frames to allow the receiver to e.g. run its CAN stacks interrupt code. 

Table 2-5: Separation Time encoding 

ST Description 

0..127 separation time in milliseconds (ms) 
F1H..F9H 100..900 microseconds (µs) in 100 µs steps 

2.4.7 The OBD II standard services in detail 

The services described in ISO 15031-4 are implemented in 10 “services” or “modes” with 

an assigned service ID (SID) ranging from 01H to 0AH. 

Generally speaking, the services all work in the same way: the tester sends a request and 

receives an answer encoded according to ISO 15765-2 from one or more ECUs.  

To enable the tester to query either all of the available ECUs or a specific unit, the system 

of CAN Message IDs laid out in Table 2-6 is used. 

Table 2-6: Physical and Functional Addressing 

Sender Receiver CAN Msg. ID Description 

Tester All ECUs 07DFH 
Functional Addressing – all ECUs listen to 
this ID 

Tester Specific ECU 07E0H…07E7H 
Physical Addressing – Each ECU listens to a 
different ID to address it specifically 

ECU Tester 07E8H…07EFH 
ECU Reply Address – This is the ECU’s phys-
ical address incremented by 08H  
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The protocol used on the application layer is the KWP2000 (Key Word Protocol 2000) 

diagnostic protocol, which is designed so that all communication is initiated by the tester 

(Figure 2-5). The tester is therefore referred to as the “client” and the ECU as the “server”.  

Communication is started by the tester’s diagnostic application sending a message con-

taining the diagnostic request to ECU over the network. The application layer informs the 

diagnostic application on the ECU of the request (indication). The ECU’s response is then 

sent back over the network where the tester’s application layer transmits the response to 

the tester application (confirm). 

 

Figure 2-5: KWP2000 communication10 

Services of the application layer consist of the following parts (Figure 2-6): 

 Address information AI 

 Service identifier SID 

 Parameters, depending on the specific service. 

 

Figure 2-6: KWP2000 application layer message10 

Address information is encoded in the message header (CAN ID), the service identifier 

(SID) is transmitted in the first byte of the user data11, followed by the parameters. 

Depending whether the response is positive or negative, the response user data starts 

either with (SID + 40H) or a standard defined error ID (see section Service 04H below). 

                                                             
10 Translated from [9] 
11 See ISO 15765-2 Transport Protocol (ISO-TP) (2.4.6), also referred to as “payload” 

Address Information User Data
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The following sections will detail the services offered by OBD II over CAN, with the first 

section, Service 01H, covering many of the fundamentals. 

Service 01H 
Service 1 provides “live” information. This can be current data from sensors or other 

sources, status information about the OBD system and basic capability information. All the 

available information is indexed by parameter IDs (PIDs), which are defined in 

SAE J1979-DA and referenced by ISO 15031-5.  

Table 2-7: Service 1 Request 

Byte# Field Example Comment 

1 SID 01H live data 

2 PID 0CH engine speed 

 

Table 2-7 shows the layout of a request frame. Since the request is only 2 bytes long (SID, 

PID), the single frame format is sufficient. The example request is for the engine speed 

(rpm), which has the PID 0CH as defined in SAE J1939-DA. 

The reply frame shown in Table 2-8 has a similar structure, mirroring the SID and PID 

from the request. This theoretically allows a (simpler and more robust) stateless software 

design in the tester, as request and response do not need to be correlated. Considering 

ISO 15765-4 defines that ECUs shall not respond to unsupported requests (i.e. non-

implemented services, unsupported PIDs), this also makes the protocol more robust 

against timing glitches (e.g. responses arriving late). 

Table 2-8: Service 1 Response 

Byte# Field example comment 

1 SID + 40H 41H live data reply 

2 PID 0CH engine speed 

3 
PID Data 

35H 
3450 rpm 

4 E8H 

 

Since the engine speed is encoded in a 16-bit variable, the total transmission (PID, SID, 

data) is just 4 Bytes and can be transmitted in a single frame. The size and encoding differs 

depending on the PID and can, for later additions to the standard (PID > 65H) exceed the 

capacity of a single frame. SAE J1939-DA defines the encoding of PID 0CH as 

       ((     )   )  ⁄ , effectively meaning that the value is encoded as unsigned 16-

bit integer with a quantization of 0.25 rpm/bit. In this case it would be 35E8H/4 = 

13800D/4 = 3450 rpm. 

To determine which PIDs a certain ECU supports, the PIDs 00H, 20H, 40H… each return a 

32-bit (32D = 20H) bit field, which encodes the support for the 32 PIDs following them. So 
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PID 00H contains this information for PID 01H to 20H, PID 20H for PID 21H to 40H and so on. 

Usually the tester will query 00H first, then, if supported, 20H and so forth. PID 02H is not 

supported in service 1. 

Table 2-9: Service 1 Supported PIDs Response 

Byte# Field example comment 

1 SID + 40H 41H live data reply 

2 PID 00H Supported PIDs in range 01H..20H 

3 

PID Data 

2CH 2C10 0000H =  

1010 1100 0001 0000 0000 0000 0000 0000B 

meaning that  

PIDs 01H, 03H, 05H, 06H, 0CH are supported 

4 10H 

5 00H 

6 00H 

 

Since, for most services, the tester is required to “know” the supported PIDs it will send a 

service 01H request for PID 00H using functional addressing. All ECUs supporting ser-

vice 01H will respond telling the tester not only the supported PIDs but also capacitating it 

to enumerate the available ECUs.  

Service 02H 
Service 02H is mostly identical to service 01H, with the difference that the data included is 

not “live” but a snapshot (“freeze frame”) done at a certain point in the past. This point is 

usually when a malfunction is detected and an error (“DTC”) is stored in the fault memory. 

Service 02H will also provide the error code of the fault that caused the storing of the 

freeze frame (PID 02H, which is thus not supported in service 1). 

OBD II implementations are only required to store one freeze frame, but it is allowed to 

store and retrieve up to 255. Since it is not required, not all testers support the viewing of 

additional freeze frames. 

Since the ECU may not take a snapshot of all PIDs supported in service 01H, it is required 

that the tester queries at least PID 00H to determine the available PIDs in the Freeze 

Frame. 

The layout of the service 02H request and response frame is almost identical to service 01H, 

except that in addition to PID and SID a Freeze Frame number (FFID) has to be supplied. 

Table 2-10: Service 2 Request 

Byte# Field example comment 

1 SID 02H Freeze Frame Data 

2 PID 0CH engine speed 

3 FFID 00H Freeze Frame #0 

 



Overview of Diagnostic systems  15 

Table 2-11: Service 2 Response 

Byte# Field example comment 

1 SID + 40H 42H Freeze Frame Reply 

2 PID 0CH engine speed 

3 FFID 00H Freeze Frame #0 

4 
PID Data 

35H 
3450 rpm 

5 E8H 

 

The valid range for FFID, which corresponds to the number of available Freeze Frames 

minus one, cannot be queried. However, if PID 02H (responsible DTC) is queried and the 

reported value is 0000H the data reported for this FFID is not valid (no Freeze Frame with 

this ID is available). 

Service 03H 
Service 03H gives access to stored fault codes (diagnostic trouble codes, DTCs). Their 

number can be determined by querying service 01H, PID 01H - a maximum of 127 is sup-

ported. The fault codes have a standardized format and meaning, given in SAE J2012-DA 

and ISO 15031-6. SAE J2012-DA also specifies certain fault code ranges as “manufacturer 

specific”; codes from this range can only be decoded with the knowledge of vehicle make & 

model and the manufacturer’s code tables. 

 

Figure 2-7: DTC Encoding 

 

DTCs can only be received “in bulk”; access to individual codes is not possible. Since each 

DTC is two bytes in size, a maximum of two DTCs can be encoded in an ISO 15765-2 single 

frame transmission. Therefore service 03H replies are usually segmented transmissions.  

P 0 1 2 3

Fault Code Digit 3  (0-F)

Subsystem:
0..2 - Fuel & Air Metering
3 - Ignition System
4 - Auxiliary Emission Controls
5 - Vehicle Speed Control & Idle Control
6 - Computer Output Circuit
7..9 - Transmission
A..C - Hybrid Propulsion

Code Type:
0 – ISO/SAE 
1 – OEM specific
2 – ISO/SAE
3 – ISO/SAE

System:
0  – Powertrain (P)
1  – Chassis (C)
2 – Body (B)
3 – Network (U)

Fault Code Digit 4 (0-F)

First Byte Second Byte

Two bits each, these 
make up the first 
nibble
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Table 2-12: Service 3 Request 

Byte# Field example comment 

1 SID 03H Stored DTCs 

 

Table 2-13: Service 3 Response 

Byte# Field example comment 

1 SID + 40H 43H Stored DTCs Reply 

2 numDTC 0EH number of stored DTCs (14) 

3 
DTC 1 

01H 
P0123 

4 23H 

    
… … … … 

    
28 

DTC14 
03H 

P0328 
29 28H 

Service 04H 
Service 04H is used to clear the ECU’s fault memory. This includes: 

 MIL status 

 DTCs and number of stored DTCs 

 Pending DTCs 

 Freeze frame data 

 Sensor test data 

 Status and results of tests and monitors 

 Time and distance counters 

Service 04H only provides the possibility for a complete wipe of the fault memory, deleting 

specific DTCs or Freeze Frames is not possible. The ECU will respond with a negative re-

sponse message if the memory cannot be cleared for whatever reason. 

Table 2-14: Service 4 request 

Byte# Field Example Comment 

1 SID 04H Clear fault memory 

 

Table 2-15: Service 4 response 

Byte# Field Example Comment 

1 SID + 40H 44H Clear fault memory response 
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A negative response frame starts with the NR field, the Negative Response identifier, 

which is always 7FH. It is followed by the SID of the service that provoked the negative 

response and a Negative Response Code (NRCode). When using ISO 15035 CAN as diag-

nostic connection the only three allowed negative response codes are: 

 21H – Busy Repeat Request – The ECU cannot process the request due to load 

 22H – Conditions not correct – The requested data is not available under the cur-

rent circumstances 

 78H – Request Received Response Pending – The request is supported but the data 

is not immediately available. 

Table 2-16: Service 4 negative response 

Byte# Field Example Comment 

1 NR 7FH Negative Response 

2 SID 04H Clear Fault Memory 

3 NRCode 22H Conditions not Correct 

 

A response code of 22H or 21H aborts the transmission, while 78H means that the response 

will be delayed by a maximum of 5000ms. The delay can be extended by re-sending the 

negative response frame. 

Service 05H 
Service 05H provides oxygen sensor test data and is unavailable on implementations which 

use the CAN protocol. In these cases it is superseded by service 06H. 

Service 06H 
Service 6 provides test data from systems that are not /cannot be continuously monitored, 

like the catalytic converter. 

The request which monitor IDs are supported by a system is similar to the corresponding 

request in service 01H. When requesting supported monitor IDs, up to six ranges can be 

requested at once, while only one monitor ID is allowed in a regular request. 

Table 2-17: Service 6 request 

Byte# Field Example Comment 

1 SID 06H Monitor Result 

2 OBDMID 3DH Purge Flow Monitor 

 

The reply will include one or more monitor test results, depending on which tests are sup-

ported for a given monitor. Each test record contains the monitor and test ID (OBDMID, 

S/MDTID) followed by Information about the scaling and unit of the test value as per 

SAE J1979-DA. The last six bytes are composed from the actual test result value, and the 

associated upper and lower limit, each encoded in 16-bit values. Since the amount of data 
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requires a segmented transmission, the total number of tests can be derived from the mes-

sage length parameter in the first frame of the transmission. The transmission of the actu-

al value of a test result along with the limits instead of a pass/fail indicator is necessary 

since the pass/fail decision depends on all of the tests (one or more might be re-

quired/sufficient). If a test has not been completed at the time of the request, the fields 

MINTL, MAXTL and TV read zero. 

Table 2-18: Service 6 Response 

Byte Field Example Comment 

1 SID + 40H 46H Monitor result reply 

2 

O
B

D
M

ID
R

E
C

1
2
 

OBDMID 3DH Purge flow monitor 

3 TID 01H Test ID 

4 UASID 0AH Unit and scaling ID (0.122mV/bit) 

5 
TV 

79H 
Test value (7934H = 3.785V) 

6 34H 

7 
MINTL 

59H 
min. test limit (59A6H = 2.800V) 

8 A6H 

9 
MAXTL 

89 
max. test limit (89AEH = 4.300V) 

10 AE 

Service 07H 
Service 07H displays “pending” faults. Emission legislation allows certain faults to be “de-

bounced” or “confirmed”, which means, that they may occur multiple times under certain 

circumstances before they are confirmed and an entry is generated in the vehicle’s fault 

memory (and, depending on the fault, the MIL is lit). Faults that have occurred but not yet 

passed this threshold are accessible via this service. 

The communication is identical to service 03H, except that a SID of 07H is used. 

Service 08H 
Service 08H allows the connected tester to control certain on-board systems or tests, for 

example actuator tests. As of 10/2011 only two tests were defined in SAE J1979-DA: the 

“Evaporative System Leak Test” (not mandated in Europe) and a “Diesel Particulate Filter 

Regeneration Request”. 

The request which test IDs are supported by a system is similar to the corresponding re-

quest in service 01H.  

Both the test request and response frames consist of the SID and the test ID (TID) and can 

contain up to 5 bytes of additional data (e.g. for configuring the test). 

                                                             
12 A service 6 response may contain more than one OBDMIDREC, depending on how many tests (TIDs) are 
associated with the OBDMID. 
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Table 2-19: Service 8 request 

Byte Field Example Comment 

1 SID 08H Request device control 

2 TID 02H Particulate filter regeneration 

 

Table 2-20: Service 8 Response 

Byte Field Example Comment 

1 SID + 40H 48H Request device control reply 

2 TID 02H Particulate filter regeneration 

Service 09H 
Service 9 provides general vehicle information (referred to as “infotypes”), like the VIN 

(Vehicle Identification Number), Calibration ID and ECU name. 

The request which infotype IDs are supported by a system is similar to the corresponding 

request in service 01H.  

The vehicle information request frame just contains two data bytes: the SID and the info-

type ID (INFTYP). The response message may contain more than one instance of the re-

quested infotype (e.g. multiple VINs), therefore the third byte contains the number of info-

type instances in the transmission. Since each infotype has a fixed size, the infotype data is 

padded with 00H filler bytes.  

Table 2-21: Service 9 Request 

Byte Field Example Comment 

1 SID 09H Request vehicle information 

2 INFTYP 0AH ECU name 

 

Table 2-22: Service 9 Response 

Byte Field Example Comment 

1 SID + 40H 49H Vehicle information reply 

2 INFTYP 0AH ECU Name 

3 NODI 01H Number of Data Items (1) 

4 data 1 45H ‘E’ 

5 data 2 43H ‘C’ 

6 data 3 4DH ‘M’ 

7 data 4 31H ‘1’ 

8 data 5 2DH ‘-‘ 

9 data 6 41H ‘A’ 

10 data 7 56H ‘V’ 
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Byte Field Example Comment 

11 data 8 4CH ‘L’ 

12 data 9 20H ‘  ‘ 

13 data 10 52H ‘R’ 

14 data 11 50H ‘P’ 

15 data 12 45H ‘E’ 

16 data 13 4DH ‘M’ 

17 data 14 53H ‘S’ 

18 data 15 00H 

Filler bytes 

19 data 16 00H 

20 data 17 00H 

21 data 18 00H 

22 data 19 00H 

23 data 20 00H 

Service 0AH 
Service 10 stores “permanent” DTCs. A DTC usually gets the “permanent” status when it is 

confirmed (debounced) and requires the MIL to be lit. It cannot be deleted by service 04H 

but is automatically removed when the underlying fault is not detected any more (the re-

moval is debounced, too) 

The communication is identical to service 03H, except for the SID of 0AH. 

2.5 The CAN Bus 

Ever since the introduction of microprocessor-controlled systems in vehicles it was neces-

sary to exchange data between these systems. While the first solutions to this problem 

consisted mainly of simple switched lines or analog signals, more complex demands for 

off-board diagnostics (e.g. in the workshop) had OEMs looking for manufacturer-

independent solutions for digital data communication. 

BOSCH, as one of the leading European manufacturers of electronic control units at the 

time, introduced a simple (ISO9141, similar to RS232C/V.24) serial interface. 

As the demands on in-car-interconnects rose, BOSCH, together with European OEMs in-

troduced the CAN Bus, which was later standardized as ISO 11898. 

The defining properties of CAN as a bus system are: 

 Differential signaling 

 Speed up to 1 Mbit/s  

 Message-oriented event-triggered protocol 

 Linear topology 

 Multimaster architecture using CSMA/CR 
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Looking at the OSI Model (ISO 7498-1) for communication systems, ISO 11898 defines 

layer 1 (Physical Layer) and layer 2 (Data Link Layer). Layers 3-7 are not defined in 

ISO 11898 and are dependent on the specific application. 

  

Figure 2-8: ISO 11898 in the OSI model13 

The physical medium for CAN is usually a single twisted pair of wire, optionally shielded, 

one wire being the “CAN High” and the other one the “CAN Low” line. Both shielded and 

unshielded twisted pair lines are widely used and portray no significant cost impact in 

CAN Applications. 

Data is transmitted by means of differential signaling, meaning the data is encoded in the 

voltage difference between the two wires. This gives the CAN bus excellent immunity 

against EMI since interference usually shifts the voltage levels in both conductors of twist-

ed pair wiring (common mode interference) and leaves the differential voltage unaffected.  

 

Figure 2-9: Schematic of a typical CAN transceiver14 

                                                             
13 Redrawn according to [26],[27] 
14 Taken from [28] 
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Figure 2-9 shows the block diagram of a typical High-Speed CAN Transceiver, the 

NXP/Philips PCA82C251. It is clearly visible how both transmitter and receiver operate on 

the same lines, forcing half-duplex operation. This means that, while any node can both 

receive and transmit, it can only do one at a time. The RXD and TXD lines are the digital 

serial interface to the microcontroller and usually operate on TTL voltage levels. 

The differential side of the CAN Transceiver has two defined states – dominant and reces-

sive. These states are defined by the voltage levels shown in Table 2-23 and Figure 2-10 

below. 

Table 2-23: CAN Bus signal levels 

 
recessive Dominant 

min. typ. max. min. typ. max. 

VCANH15  2,5V 7,0V  3,5V 7,0V 

VCANL15 -2,0V 2,5V  -2,0V 1,5V  

VDiff -0,12V 0V 0,012V 1,2V 2,0V 3,0V 

 

  

Figure 2-10: Typical CAN Bus signal levels 

The recessive state, as the name suggests, is the state of the bus when all transmitters are 

set passive. Since the transmitter can only push or pull each line in one “direction” (CANL 

towards GND, CANH towards VCC), a correctly wired CAN network cannot have transmit-

ters working against each other, leading to possible damage. Also, monitoring the lines 

during a transmission allows the transceiver to detect collisions when the line is in its 

dominant state despite the transceivers own transmitter being passive. 

Transmissions on the CAN bus are datagrams by the name of “frames”; a typical CAN 

frame is shown below. Note, that logic one is the recessive state, while logic zero is the 

dominant state. Also, the number of bits represents the net length. The physical transmis-

sion may contain additional stuff bits (see Table 2-24). 

                                                             
15 VCANH, VCANL are common-mode voltages, i.e. measured towards the ground of the respective can node. 
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Figure 2-11: Composition of a CAN frame16 

A transmitter willing to transmit a CAN frame first has to wait for the bus to become reces-

sive for the „Inter Frame Space“ (IFS) time, which is equivalent to three bit times17. Then it 

pulls the bus into the dominant state, indicating “Start of Frame” (SOF). 

This is followed by eleven bits of message identifier (ID); during this time period the colli-

sion resolution is performed: If the transmitting node detects a “zero” (dominant state) 

when transmitting a “one” (recessive state) it stops the transmission by switching to the 

recessive state and waits for the next inter frame space to retry. This process is called “ar-

bitration” and integrates a collision resolution with a prioritization mechanism (Carrier 

Sense Multiple Access / Collision Resolution – CSMA/CR). Since the logical zero is domi-

nant and “wins” the arbitration, CAN frames with lower ID therefore have higher priority 

on the bus system meaning a higher chance of getting transmitted as the next frame. 

IFS SOF
ID

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11

Node 1

node 3 loses arbitration 
to nodes 1 and 2

Node 3

Node 2

dominant

recessive

node 2 loses arbitration 
to node 1

CAN bus

 

Figure 2-12: CAN arbitration example 

The next bit after the ID is the “Remote Transmission Bit” (RTR) which indicates that the 

frame is a “Remote Request Frame”. If an extended identifier is used, it becomes the SRR 

bit, which is also written dominant and is considered during arbitration. 

                                                             
16 Modified version of [29] 
17 “bit time” means the time it takes to transmit a single bit and is calculated as 1/<bit rate > 
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The next bit is the identifier extension bit (IDE); if it is logic one, it indicates that this CAN 

frame uses a 29-bit identifier (extended) instead of an eleven-bit (standard) one. If this 

would be the case, the IDE Bit is followed by 18 more identifier bits, a replacement RTR bit 

and two reserved (dominant) bits. The IDE bit is considered during arbitration. When an 

eleven-bit identifier is used, the IDE bit is just followed by one reserved (dominant) bit. 

The next four bits, which together with RTR and IDE form the “Control Field”, indicate the 

length of the following data section in bytes (DLC). Valid values are 0…8 (Bytes). 

The data field consists of the “payload” data (DATA), the actual data that is transmitted by 

the CAN frame, and is variable in length, depending on the contents of the DLC field. 

The data field is followed by 15 bits of CRC data which uses all the data from SOF to DATA 

as input. 

A “CRC Delimiter” bit is followed by the acknowledge slot/bit (ACK). Any device on the bus 

that correctly received the frame up to this point will pull the bus in the dominant state 

and give the transmitter the information that the frame has been received by at least one 

node.  

After the ACK bit and the “ACK Delimiter Bit” seven recessive bits will follow, those indi-

cate the end of the frame (EOF). After the EOF and an IFS the bus nodes may send another 

SOF, starting the next frame. 

To make sure that an ID or data sequence consisting of seven consecutive recessive bits 

falsely triggers EOF detection, a mechanism called “bit stuffing” is applied to all fields ex-

cept ACK, EOF and the CRC delimiter. 

It works by introducing (“stuffing”) an extra bit of inverse polarity after the fifth bit of a 

bitstream containing more than five bits of the same polarity, regardless of the polarity of 

the next bit in the stream. This can sometimes lead to additional stuffing to be necessary, 

as demonstrated in example 2 below. 

Table 2-24 : Bit stuffing example 

 Example 1 Example 2 

Bitstream 01011111010 10100000111101 

Stuffed bitstream 010111110010 1010000011111001 

Note: 0 = dominant, 1= recessive. Stuff bits are underlined 

 

Besides the standard CAN frame, three “special” frames are specified in the CAN standard: 

 Remote Request Frame 

 Error Frame 

 Overload Frame 
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A “Remote Request Frame” is a standard frame, in which the RTR bit is set (0) and the “Da-

ta Field” is missing. It indicates to (requests from) another CAN node in the network to 

send a standard frame with the indicated ID. 

The error frame is used to notify other nodes in the network that a transmission error has 

occurred. There are multiple mechanisms to detect errors, e.g. incorrect bit stuffing and 

incorrect CRC. If an active network node detects an error, it pulls the bus to the dominant 

state for six bit times, starting with the next bit (active error frame). This is detected by 

the other nodes on the network which respond themselves by doing the same. Afterwards 

the bus is left at the recessive state for eight bits (error frame delimiter) and the commu-

nication restarts with an IFS. Error passive nodes (see below) may only send passive error 

frames, which start with six recessive bits so that they can mark their own transmission as 

erroneous but cannot disturb the transmission of other nodes. This concept assures that 

defects causing transmission errors are confined to the affected node so that it does not 

bring down the whole bus. 

The overload frame is identical to the (active) error frame; with the exception that the 

start of the overload frame is fixed after the last bit of the EOF (i.e. it replaces/overwrites 

the IFS) 

To prevent a faulty node from blocking the bus by continuously transmitting active error 

frames, each node has to implement an error handling and mitigation system. 

It is implemented as a state machine consisting of three states, visualized in Figure 2-13:  

 Error active (initial state, TX and RX active) 

 Error passive (TX and RX active, must not transmit active error frames)  

 Bus Off (disconnected from bus) 

 

Figure 2-13: CAN error states 

Error Active
reset

Error PassiveREC >= 127 OR
TEC >= 127

REC < 127 AND
TEC < 127

Bus off
Reset *

TEC > 255

*) some implementations have an automatic transition back to this state as specified in the 
original BOSCH standard. The ISO implementation does not allow this. 
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The transition between these states is controlled by the transmit (TEC) and receive (REC) 

error counters, which are incremented or decremented according to the following rules: 

 Frame received correctly    decrement REC by 1 

 Receive fault     increment REC by 1 

 Bit error while sending Error Flag  increment REC by 8 

 Frame sent correctly     decrement TEC by 1 

 Transmit fault     increment TEC by 8 
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Chapter 3 

3Concepts 

As stated in chapter 1, the goal of this thesis is to integrate diagnostic capabilities into the 

RPEMS’ software package. Naturally, diagnostics require not only an ECU that offers the 

corresponding capabilities but also an external unit that performs the diagnostics, what 

makes it part of the overall diagnostics concept. 

Starting with the scenario currently in use, three additional concepts have been developed 

and compared on the basis of per-unit deployment cost, maintenance effort and ease-of-

use for the person performing diagnostics. 

3.1 Present scenario 

Diagnostics are generally performed by monitoring ECU-internal values using the PC-

based software ETAS INCA and a CAN CCP connection.  

To interpret the readings, detailed knowledge of the software modules used on the ECU is 

needed. Fault events can only be registered / recorded while the PC is connected. Each 

additional unit that should have diagnostic abilities requires significant investment in 

Hardware and Software Licenses. 

 

Figure 3-1: current diagnostic scenario 

Hardware Cost (per unit): high (ETAS CAN card)  

Software Cost (per unit): high (ETAS INCA license) 

Development effort: none 

Maintenance effort: none 

Ease of use: low (expert knowledge required for both tools and data analysis) 

3.2 External data logger 

Each RPEMS could be paired with an external data logger which records CAN data provid-

ed by the ECU. A PC could then be used to download the data from either the logger or the 

storage medium it uses (e.g. SD Card) and analyze the data. 

The modifications to the RPEMS software would at least include writing the variables and 

values intended for logging on the CAN bus. To be human-readable, in most cases a con-

version would need to be performed. 

Development PC

CAN Line 0
(CCP, 1000k)

CAN Interface
INCA

AVL RPEMS Future

INCAINCA
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As an example of this class of device the Kvaser Memorator HS/HS and the Vector GL1000. 

Both devices are stand-alone loggers need nothing more than a CAN connection and pow-

er. Upon startup, they capture the CAN traffic and save it to an SD Card. Both feature a ring 

buffer for continuous long-time recording and configurable event-triggered recording. 

Aside from their respective native formats, both loggers (and most competing products) 

support standard formats such as CSV18. [11], [12] This allows the data to be read by any 

PC with a card reading device and spreadsheet software such as Excel (or even a text edi-

tor). The interpretation of the data however, is still up to the user. Depending on the capa-

bilities of the logger, the data will already be the individual data items in the correct for-

mat or only the raw CAN data, necessitating documentation for conversion.  

  

Figure 3-2: Data Logger System Overview 

The hardware cost per unit would be roughly similar to the cost of the ETAS hardware 

required for INCA – about $1000. However, no INCA license is needed, instead readily 

available software can be used, such as a text editor or excel. Another possibility would be 

less expensive generic data analysis software like GEMS GDA pro ($200). 

 

Hardware Cost (per unit): high (CAN logger)  

Software Cost (per unit): low (analysis software) to none 

Development effort: low (adapt CAN software) 

Maintenance effort: low (maintain conversion data or logger configuration) 

Ease of use: medium to low (expert knowledge required for data analysis) 

3.3 AVL specific software solution 

To-be-designed PC Software could replace the basic functionality of ETAS INCA (display 

and recording of measurement data) and could also download stored faults from the ECU. 

This would waive the need for expensive ETAS hardware and licenses for the diagnostics 

PC.  

Since PC software development cannot be done by the RPEMS embedded software devel-

opers, it would have to be outsourced to another unit in the company or external contrac-

tor. To estimate the cost for this software solution, it is assumed that the project will con-

tain around 10.000 lines of code (LoC), a typical number for small applications. According 

to [13], the development pace for this type of software can be estimated at roughly 2500 

LoC/staff month, leading to a 4 man-month development phase for the initial version 

                                                             
18 Comma Separated Values, a format for storing tabular data in plain-text form 

Development PC

CAN Line 0
(CCP, 1000k)

AVL RPEMS Future

Data Logger

USB, SD card
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translating to over $10000 in labor cost. If the Software ought to contain “expert 

knowledge”, e.g. allowed values and pass/fail thresholds, it has to be continuously adapted 

to new functionality on the RPEMS, what considering the many and rapidly evolving ECU 

programs would require significant effort and expenditure. 

The hardware cost would be a bit lower than in the current scenario, since many available 

CAN interfaces are much cheaper than the ETAS interface. 

On the ECU side, the amount of changes depends on the architecture of the PC software. If 

it were to use CCP, only the fault memory would have to be implemented. If the PC soft-

ware should communicate by a custom protocol, this would have to be implemented, too. 

 

Figure 3-3: Proprietary diagnostic system overview 

Hardware Cost (per unit): medium (generic CAN interface)  

Software Cost (per unit): medium (high development cost spread over few units)  

Development effort: high (implement fault storage and custom protocol) 

Maintenance effort: high (maintain ECU and PC side of system) 

Ease of use: high (software can be made as end-user friendly as necessary) 

3.4 OBD II Diagnostics Support 

The OBD II Diagnostic Protocol is implemented as a software module on the RPEMS. 

Stored faults and live measurements can be downloaded/displayed using an OBD II/EOBD 

compatible tester. 

While the initial effort for creating the required ECU software modules is relatively high, it 

is only a one-time effort. All the maintenance work (adding new error codes etc.) can be 

done by the ECU software developers; since both the communication and the content is 

standardized, only one “end” has to be maintained. Compatible devices for data display are 

commercially available, as well as software testers for many platforms, including mobile 

devices, at a very low cost (starting at about $50). Alternatively, most internet-connected 

devices are able to gain diagnostic abilities in a matter of minutes by means of free soft-

ware. 

 

Figure 3-4: OBD II diagnostics system overview 

Development PC

CAN Line 0
(CCP, 1000k) Generic

CAN interfaceAVL RPEMS Future

AVL
Software

AVL
Software

OBD II connector

Handheld OBD Tester

CAN Line 3
(OBD II, 500k)
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Hardware Cost (per unit): low (generic OBD II tester)  

Software Cost (per unit): none (included in hardware cost) 

Development effort: high (OBD software module) 

Maintenance effort: medium-low (maintain OBD software module integration)  

Ease of use: high (every available scanner works, no specialized knowledge needed) 

3.5 Rating matrix 

The concepts mentioned in 3.1 - 3.4 are summed up in Table 3-1, with the rating criteria 

listed for each entry converted tokens, from ⊖⊖ (worst) to ⊕⊕ (best). 

With a token sum of +2, the OBD implementation gets the highest overall rating, with the 

low per-unit cost as one decisive factor, user-friendliness being the other one. 

Therefore it was decided that the diagnostic solution for the AVL RPEMS should be an 

OBD II implementation. 
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Table 3-1: Concept rating matrix 
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Chapter 4 

4Design 

This chapter covers the environment the OBD II software should be integrated into, mean-

ing aspects of the RPEMS hardware, toolchain and existing software that influence the 

implementation described in Chapter 5. 

4.1 Specification AVL RPEMS Future 

The AVL RPEMS Future is the successor to the RPEMS NG (Next Generation) rapid proto-

typing ECU and has been developed to fulfil the needs of modern GDI engine concepts.  

Its core is a System on Module (SoM) produced by Phytec based upon Infineon’s TriCore 

TC1797 (phyCORE-TC1797), which is mounted on a proprietary motherboard. The moth-

erboard contains the power supply, the required power drivers, signal conditioning, inter-

face components and a number of peripheral devices. The only periphery relevant to this 

thesis is the ST M95640-W type EEPROM, which is connected to the SoM by SPI, providing 

64kBit of nonvolatile memory. 

The main specifications of the phyCORE SoM according to [14] are: 

 180MHz MCU clock 

 Up to 8Mbyte SRAM 

 64MByte Flash 

 2 x I²C controllers 

 2 x SPI controllers 

 2 x RS232 UART with one UART/USB converter 

 4 x high-speed CAN interface 

 on-board 3,3 V regulators and reset controller 

Of the 10 communication channels listed above, the four CAN interfaces and the USB inter-

face of the USB / RS232 converter on the first UART are routed to the ECU main connector. 

4.2 Requirements for the OBD II implementation 

As presented in Chapter 2, OBD II’s primary focus is monitoring emission-related systems, 

which is not the primary objective here. Instead, the focus lies on more general diagnostic 

functions, especially: 

 Displaying sensor data and other internal values 

 Non-volatile incident memory 

 Recording boundary conditions to incidents 

 Identifying the software/calibration version. 

For these reasons the following OBD services were chosen to be implemented: 
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 Service 01H – live data 

 Service 02H – freeze frames 

 Service 03H – DTC storage 

 Service 04H – clear DTCs 

 Service 09H – query vehicle information 

Since the software package for each RPEMS project is unique (software modules in use, 

project specific versions of software modules) the OBD software should be as self-

contained as possible with minimal changes to the environment required. Ideally, it should 

only be necessary to import the OBD package into an ASCET library and assign its pro-

cesses to the scheduler to make it work. 

The Implementation does not have to be fully OBD II compliant, except for the communica-

tion with the external test tool as it should support any OBD II compliant tester. 

Since cooperative multitasking is employed, it is important that the software components 

are non-blocking and take up as few CPU time as possible. 

4.3 Toolchain 

The toolchain used to build the RPEMS software is illustrated in the diagram below: 

 

Figure 4-1: AVL RPEMS toolchain 

DAVE is short for Digital Application Virtual Engineer and is a code generator for Infineon 

Microcontrollers provided by Infineon. It is designed to help with the generation of driver 

and initialization code and is the source of many of the low-level functions inside the 

RPEMS Firmware. 

ASCET organizes software projects in „databases“. Databases contain a tree structure with 

all the software modules inside the database as well as “projects”. Projects contain several 

of the software modules inside the database and configuration information that is used to 

build the project (Figure 4-2). 
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Figure 4-2: ASCET component hierarchy 

ASCET supports several different ways of implementing software. The most basic is to 

write “raw” C, where no checks additional to those done by the compiler are performed. 

However, even in “C” mode, the user code is just the function body and part of a larger, 

generated, file that is compiled. ASCET adds the function headers and variable definitions 

during code generation to make the implementation compatible with the rest of the envi-

ronment. 

Other options of code generation are block diagrams, state diagrams and ESDL, which is a 

programming language with a Java-like syntax. 

OSEK is a European automotive industry standards effort to produce open system inter-

faces for vehicle electronics. OSEK is an acronym formed from a phrase in German, which 

translates as “Open Systems and Corresponding Interfaces for Automotive Electronics”. 

The goals of OSEK are to support portability and reusability of software components. 

RTA/OSEK is an implementation of a Real Time Operating System based on OSEK stand-

ards, namely AUTOSAR OS SC1 and OSEK/VDX OS V2.2.3. The Code that is generated by it 

is also MISRA-C compliant. Its kernel manages task execution, -switching 

and -communication and provides optional instrumentation for debugging and timing 

analysis. 

For this project, Version 5.0.1 has been used.  

Tasking VX for TriCore (Version 3.3r1) is used as the macro assembler, C compiler and 

linker. It also provides static and runtime libraries to the compiler. 

ETAS INCA is a calibration tool that allows reading and writing of internal data (variables, 

maps, characteristic curves) on a connected ECU. The communication with the ECU is car-

ried out via Can using the CCP (CAN Calibration Protocol) standard. Since the protocol 

works by directly accessing and manipulating the ECU’s memory, INCA needs the compiled 
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firmware (.hex file) and a ASAM2 descriptor file containing type information (.a2l file), 

which are generated during the compile process.  

The “Flash Tool” Software is a small PC Software tool to load compiled firmware onto the 

Flash Memory of the TriCore MCU used in the RPEMS. This is done via a serial connection 

to the target and is even possible if the firmware currently running on the MCU is non-

responsive. 

If a suitable firmware supporting CCP is already flashed on the MCU, it is possible to re-

flash via CAN connection using CCP and INCA on the PC side. 

4.4 Current Architecture of the RPEMS FUTURE System 

4.4.1 Task scheduler 

When starting with a fresh ASCET project for the RPEMS target the only functionality pre-

sent is the one provided by the RTA kernel, the most important of which is the task sched-

uler. 

The configuration of the scheduler is directly possible via a GUI provided in ASCETSs pro-

ject editor. The editor is used to define tasks for the scheduler and to assign processes to 

tasks. 

Typically, there are four types of tasks present in a project: 

 Init tasks 

 Alarm tasks 

 Interrupt tasks 

 Software tasks 

The Init task is called upon startup and typically contains hardware initialization code. It 

offers no scheduling options since it is only called once before the actual scheduling starts. 

Several Alarm-type tasks fire periodically at a selectable frequency. Typically there are 

tasks present with a period of 0.25, 0.50, 1, 10, 50 and 100 milliseconds. The scheduling 

mode is set to cooperative and the highest-frequency task carries the highest priority. All 

of the application code processes are assigned to these tasks. 

Hardware interrupts are handled by Interrupt-type tasks. Each task is assigned an inter-

rupt vector and has a selectable priority. Usually only one process, the interrupt handler, is 

assigned to an interrupt task although it is possible to have multiple processes called by 

the interrupt. 

The “sync” task is a software task, which means it is can be activated by a system call 

somewhere in the application software. The “sync” name is derived from the fact that it is 

called synchronous to the revolutions of the combustion engine that is controlled by the 

RPEMS. This mode of operation is important for cycle-synchronous processes like injec-

tion, ignition and knock and misfire detection. 
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4.4.2 Drivers 

Drivers and the Hardware Software Interface / HAL in general are realized as regular 

software modules. The low-level hardware interface that deals directly with the control 

registers of the microcontroller is typically comprised of two parts. One part is code gen-

erated by Infineon’s DAvE, which provides appropriately named wrapper functions for 

accessing the hardware registers and initialization functions. The second part uses various 

processes that reference and call these functions, usually an init process and several cyclic 

worker processes. 

On top of the driver software there is a remapper process that connects the variables pro-

vided by the low-level driver to application-specific variables performing data conversion 

if necessary. 

 

Figure 4-3: RPEMS driver structure 

As an example, this is (a simplified version of) how an ADC driver would work: 

The low-level driver process is called by the ADC interrupt task and copies the ADC con-

version result register value into global ADC value variables. A periodically called second 

process sets the ADC up to capture another sample, therefore setting the sampling fre-

quency. 

In a cyclic process the remapper uses the ADC result variables and characteristic curves to 

calculate a physical value represented by the digitized value, e.g. temperature or throttle 

position and stores the result in another global variable to make it available for e.g. the 

load calculation process. 

The advantage of this architecture is a high degree of modularization and interchangeabil-

ity. If the source of a certain signal changes, (different ADC channel or from ADC to CAN) 

only the remapper(s) have to be adopted, the application software and drivers remain 

unchanged. This makes the application software relatively hardware-independent increas-

ing its portability. However, this model of complete abstraction is not ideally suited for all 
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applications. In chapter 5.1.1 it is shown how the CAN driver has to be modified alongside 

with the remapper to provide the functionality needed for the OBD application software.  

4.4.3 Data Consistency 

With a multitude of processes accessing shared data elements, also known as concurrency 

[15], the aspect of data consistency has to be considered, especially in interrupt-driven 

systems, where the execution order cannot be predicted during code creation. A common 

problem occurring on such systems is that a shared variable is read in multiple locations 

in the same process, expecting the result to be the same while an interrupting process 

changed the variable, leading to errant, nondeterministic behavior. This type of situation is 

known in programming as a “race condition”, defined by the following three 

properties: [16] 

 Concurrency – at least two control flows are executing in parallel 

 Existence of a shared property – a shared “race object” is accessed by the concur-

rent control flows 

 Changing of state – at least one of the concurrent control flows alters the state of 

the race object 

Hence the name race condition, because two processes “race” for access to the race object, 

the timing of which determines the outcome of the control flow as illustrated in Figure 4-4. 

 

Figure 4-4: Data becoming inconsistent as result of a race condition 

A possible remedy for this situation is, to create working copies for all shared variables at 

the beginning of a process and use these private copies for all operations, as demonstrated 

in Figure 4-7. 

This solution to data consistency is implemented by protected global variables, so-called 

“messages”, in ASCET. When using variables declared as messages, copies are automatical-

ly created for each receiving process. 
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Figure 4-5: Avoiding the race condition 

The message system, however, has a few limitations 

 Messages cannot be used in classes 

 Messages cannot be used for non-scalar types (arrays, …) 

 Messages only offer protection in 1-to-n relations (1 sender, n receivers), for the 

case of multiple senders additional resource management is needed to avoid race 

conditions leading to the “lost update” problem [17], when concurrent processes 

try to change a shared variable. 

Messages are used in many of the existing modules of the RPEMS software, although not 

exhaustively and consistently. Why this does not lead to problems is apparent when look-

ing at the scheduling algorithm of the RTA/OSEK kernel, taking into account that all pro-

cesses in the RPEMS software are defined as cooperative. 

 

Figure 4-6: RTA task priority scheme19 

While cooperative tasks do have the lowest priority, the processes spawned by them will 

not be interrupted by of a task with higher priority. The scheduler will wait until the coop-

erative process has finished and interrupt the task to run the higher-priority tasks pro-

                                                             
19 Taken from [30] 
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cess(es), then returning to the lower-priority task. In the example below, processes p1 and 

p2 belong to Task 1, while processes p3, p4 and p5 belong to Task 2: 

 

Figure 4-7:cooperative scheduling example 

While the order in which processes are executed is not predictable on this system, each 

process relies on two paradigms: 

 A process will not be interrupted by another process, except for interrupts. 

 For each task, the processes will be executed in-order, e.g. p1-p2-p3 

Since the interrupt-driven driver software is abstracted by scheduled remappers, inter-

rupt processes are also of no concern to the application layer software, only remappers 

need to be aware of the possibility of being interrupted. 
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Chapter 5 

5Implementation 

This chapter describes the structure and functioning of the OBD II software modules as 

well as the changes that had to be made to existing RPEMS software 

5.1 Modifications to existing Software 

While one of the design aims of the OBD II software was to keep it as self-contained as 

possible, some changes to external software were unavoidable. The CAN driver stack had 

to be extended with a handshaking mechanism while the EEPROM driver had be config-

ured to allocate additional memory. 

5.1.1 CAN Software Stack 

Like the other I/O drivers, the CAN Software interface is also composed of a “Low Level” 

driver and a remapper. 

 

Figure 5-1: Block diagram of the CAN stack 

The TC17xx integrates four hardware CAN interfaces (“nodes”) and 128 memory-mapped 

CAN Message object structures (“MObs”), that can be dynamically assigned to the interfac-

es. By setting the ID, acceptance filters and status registers of the MObs, the nodes are con-

figured to listen to the messages their MObs match. 

Upon arrival of a new CAN Message, the node that accepted it copies it from the receive 

buffer to the “data” field in the corresponding hardware MOb structure. 

The “MultiCAN” process periodically copies the contents of the hardware registers of all 

MObs configured to receive data into Software MObs. From there MultiCAN copies the 

contents of the data field to shared (global) data arrays. 
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The “CANremap” process periodically takes the array data and copies it into the appropri-

ate internal ECU variables and messages, thereby being the node where the association 

between CAN Data and internal data takes place. 

For Internal data that is to be put on the CAN bus, the process works in the exact reverse 

order with the exception that MultiCAN also sets a status register of the corresponding 

hardware MOb to indicate the message as “to be sent”. 

This correlates to the producer-consumer software pattern used in object-oriented pro-

gramming, where the application software and MultiCAN conduct the roles of producer 

and consumer and CANremap acts as the pipe. 

Using this pattern without a flow control mechanism may result in problems depending on 

program timing. [18] The way existing remappers take care of this problem is to act as 

what can be described as a single-element LIFO (Last-In-First-Out) buffer, discarding all 

but the last element sent by the producer, before the consumer is ready to process the 

next element. This solution is viable, since there is no need for synchronization between 

producer and consumer and producer data lost between two runs of the consumer, does 

not matter, as long as the consumer gets recent data. 

The protocol side of OBD II, on the other hand, is entirely dependent on data only being 

sent and received in a certain order and a specific number of times (once). Therefore the 

CAN stack has to be modified so that end-to-end information about the status of CAN data 

(received / read / sending /sent) can be conveyed. 

This is accomplished by implementing a simple flow-control mechanism, using binary 

semaphores as suggested in [18]. 

In the receiving direction, the “NEWDAT” bit provided by the hardware CAN stack for each 

MOb has to be monitored. It is set whenever the CAN controller copies a new message 

from the receive buffer into the MOb and has to be cleared by software. So whenever Mul-

tiCAN sees the NEWDAT bit set, it should copy the data into the receiving array and then 

clear the bit to mark it as “read”, while setting a “new data” flag visible to 

CANremap/OBD II. 

In the transmitting direction a software solution has to be implemented in a way that the 

OBD II software can indicate that a message has to be sent. MultiCAN copies the content to 

a HW MOb, starts the transmission by setting TXRQ and clears the “ready to send” flag 

which has in the meantime blocked the OBD II software from overwriting its own data 

before it could be sent. MultiCAN then monitors TXRQ and does not overwrite the HW 

MOb before it is cleared, indicating a successful transmission. 

This establishes a simple flow control mechanism as depicted in Figure 5-2. Note that 

while CANremap is shown as transparent, the information is really passed on through dif-

ferent variables. 
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Figure 5-2: Block diagram of the modified CAN stack 

As mentioned in chapter 4.4.2 this modification breaks with the idea of complete abstrac-

tion through remappers as the application software requires specific changes to be made 

to both underlying levels. This is however, done deliberately for two reasons: 

 The changes to the low-level CAN driver take up very few resources and could be 

seen as an effort to make it “OBD-ready”. If the OBD functions are not used, the 

overhead would be just two unused MObs, a few bytes of variables and a couple of 

“if” statements which never branch. 

 The CAN driver could be modified so that all MObs support handshaking. However, 

since there are 128 Mobs, a few bytes each would accumulate to a considerable 

overhead over the original driver while the mechanism is unlikely to be used by 

application software other than the OBD server. 

5.1.2 EEPROM Driver 

The EEPROM driver was built as an extension of the SPI driver developed in [19] and has 

so far only been used in an proof-of-concept application. The driver provides access to the 

EEPROMs by means of pages, each 16 bytes wide containing 14 bytes user data and two 

command/control bytes. 
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Figure 5-3: EEPROM page structure20 

Pages can be either static or dynamic: 

 Static pages are read to RAM from the EEPROM at startup and written back on re-

quest. Accessing them causes neither overhead nor delays, since all read and write 

operations take place in RAM. RAM expense is identical to the page total. 

 Dynamic pages work by mapping one page in RAM to different physical EEPROM 

pages by setting eepDynAdr (the EEP dynamic address). Both writes and reads 

(especially across page borders) experience delays since both transfers have to be 

requested first and not till after completion of the EEP/SPI cycle the next physical 

page can be addressed. RAM expense is constant at the size of one page. 

Since the OBD II persistent storage module will need to access a memory area much bigger 

than a single page, reading on demand is out of the question for performance reasons, 

since the read would at least take (        )       . It would be possible to read the 

pages at startup and write them back in the background but that would not offer a 

memory advantage over static pages and would also mirror part of the functionality in the 

EEPROM driver. 

Therefore the use of static pages has been chosen as memory access strategy. 

The modifications to the EEPROM driver were thence limited to adding more pages to the 

multiplexer in the page selection logic. 

                                                             
20 translated from the EEPROM driver documentation 

[1][0] [2] [3] […]

user data
(14 Bytes per page)

Command-Byte
1 = read data from EEPROM
8 = write data to EEPROM

Page-Status (8 Bit)
1 = Data successfully read
8 = Data successfully written
4 = Data read error
128 = Data write Error

eepPage_x[ ] ( uint8 )

[…] [14] [15]
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5.2 New Software Modules 

5.2.1 Important Shared OBD variables, constants and calibration tables 

A number of data elements are shared among multiple modules of the OBD software. The 

most important ones are briefly introduced here to aid the understanding of their usage in 

the individual software modules: 

 EOBDPIDData[] (“Live Data Array”) is an array of 32-bit wide elements indexed by 

PID number that stores the current value of the supported PIDs 

 EOBDPIDSize[] (“Size Info Array”) is indexed by PID number and contains infor-

mation about how big (how many bytes) the representation of each PID is. This in-

formation is taken from SAE J1979DA:2011 table B2 ff. 

 EOBDPIDsAvailable[] (“Service 1 Support Array”) is indexed by PID number and 

contains a bit value that has to be set for each PID which  should be supported by 

the ECU. This is used to build the 00H, 20H, … PIDs 

 EOBDFFPIDs[] (“Service 2 Support Array”) stores the PIDs that should be saved 

when a freeze frame is captured. While the PIDs have to be arranged consecutively 

in the array, they do not need to be in a certain order. This array is a parameter 

and can therefore be calibrated at runtime.  

5.2.2 The OBD State Machine 

The OBD state machine (Figure 5-4) implements the core logic of the OBD protocol. While 

it offers no functional advantage to implement as a block diagram in comparison to C, it is 

more comprehensible and offers an easy entry point for future modification and expan-

sion. 

Upon startup (“idle” state), the state machine listens for new CAN Messages with its func-

tional or physical ID (see Table 2-6) and looks into the message to identify the SID. Then it 

changes its state to invoke the appropriate SID handler on the next execution cycle. Some 

of the handlers complete in a single cycle and immediately reset the state to “idle”, others 

require multiple execution cycles (multi-message replies) and only reset upon completion. 

To avoid lock-ups due to e.g. protocol errors, these handlers include internal time-out 

mechanisms that reset the state machine to “idle” if they get stuck. 

All diagrams associated with the OBD state machine can be found in Appendix 4: Block 

Diagram 1ff. 
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Figure 5-4: main OBD state flow diagram 

5.2.3 The OBD Remapper 

As mentioned in chapter 4.4.2, the software architecture of the RPEMS uses the concept of 

remappers to abstract hardware registers and driver variables from variables used in the 

application software. This offers not only the advantage of a more structured design; it 

also enables the use of ASCETs automated conversion between the physical and the im-

plementation domain. 

The physical domain in this context means the physical value/meaning of a variable (e.g. 

21°C, 31%) while the implementation describes how the value is stored in memory. The 

relation between the two defines the limits to the physical values, which can be stored as 

well as the quantization and thus the resolution of the data. 

These relations are stored in the ASCET project as “formulas”, using the  ( )   
     

     
   

notation as the most complex form, other options being linear ( ( )       ) and 

“identity” (1:1). [20] 

One aspect that has to be considered when using formulas is that when used in block dia-

grams only the physical value of a variable can be accessed, while using a variable in C 

code only returns the implementation value. 

These characteristics of the ASCET variable model are used in the EOBD remapper. In it, 

the internal ECU variables, which are to be used in the OBD II module, are copied to the 

OBD variables using block diagram specification. Because the OBD variables have been 

associated with formulae that implement the value quantization defined in 

SAE J1979:2011 table B2 ff., the implementation value of the OBD variables is identical to 

the binary value that needs to be loaded in the CAN packets during ISO 15031 communica-

tion. 

Idlestartup

Service 01h
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OBDII Request /w
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timeout

..
.
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timeout

OBDII Request /w
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Figure 5-5: usage of the ASCET variable model by the OBD remapper 

From the more common PIDs (< 40H) some are not representations of ECU internal values, 

but contain special information about the OBD service. One that is supported by this im-

plementation would be PID 01H, which contains information about the number of stored 

DTCs and the state of the MIL and various OBD tests and is calculated directly in the re-

mapper (see Block Diagram 11: EOBD_remapper EOBD_01_DTC_CNT subdiagram in the 

appendix) 

Another type of special PID are 00H, 20 H, 40 H … which bit-encode the support for ranges of 

32 PIDs each. Since the support for certain PIDs does not usually change during runtime, 

the bit patterns for these PIDs are calculated from the Service 1 Support Array during ini-

tialization by the EOBDpopulateArray::update_supported_PIDs_Mode1 function. 

Since each of the bitfields encodes if the next one is supported, this is done by walking the 

array from end and only marking non-zero bitfields as supported. The full implementation 

can be found as Listing 3 in the appendix. 

To enable the other OBD Software modules to access the PID Values by their number (and 

therefore to enable any kind of generic response) the PID values have to be stored in the 

Live Data Array. Since the value that needs to be stored is the implementation value this 

needs to be done in C. The following code snippet represents what executed by EOBDpop-

ulateArray::updateEOBDlivedata_100ms – see Listing 5 in the appendix for the full code. 

 

001 #define EOBD_VAL(PID, VAL) EOBDPIDData[PID] = VAL << ((4-EOBDPIDSize[PID]) * 8); 

002 

003 // EOBD_VAL(0x00, 0); 

004 EOBD_VAL(0x01, EOBD_01_DTC_CNT); 

005 // EOBD_VAL(0x02, 0); 

006 // EOBD_VAL(0x03, 0); 

007 EOBD_VAL(0x04, EOBD_04_LOAD_PCT); 

008 EOBD_VAL(0x05, EOBD_05_ECT); 

009 // EOBD_VAL(0x06, 0); 
 

Listing 5-1: Loading PID Values in the PID Array 

Assignment in 
EOBD_remapper

RPEMS internal value

Physical Value

Implementation Value

EOBD data item

Physical Value

Implementation Value

Automatic conversion
 on assignment

OBD Data Array

item

item

item

...

Assignment in
EOBDpopulateArray
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5.2.4 The OBD Persistent Storage Interface 

Code fragments (C, ESDL, block diagram) can be in one of two containers: a function or a 

process. 

 Functions can take arguments and provide a return value. They cannot be attached 

to tasks. 

 Processes do neither take arguments nor provide return values, but they can be at-

tached to tasks.  

Each executable module (C, ESDL, block diagram) may either be a regular or a class mod-

ule. 

 Regular Modules can only be instantiated once in a project, which means that func-

tion calls can be made by at most one other module. Usually they instantiated at 

the project root and called only by the scheduler. 

 Class modules can be instantiated multiple times, e.g. by different modules. Alt-

hough the generated code is C, the framework emulates the behavior of C++ class 

members with local variables becoming instance variables and public (ASCET: 

“exported”) variables become class variables. ASCET classes do, however, not ex-

hibit the other traits of C++ OOP classes like inheritance or derivation. 

The DTC Storage Interface Module (EOBD_DTC_Interface) provides access to the EEPROM-

backed nonvolatile memory areas where DTCs and freeze frame data are stored. 

The module should be integrated into each software module that needs to store DTCs as 

well as in the OBD software to retrieve them. This mandated the use of a class module 

(multiple instances) and the use of functions (arguments and return values). 

The Storage Interface Module provides the following (public) functions 

 Init() performs some one-time tasks to initialize the memory. It only has to be 

called once by only one instance. 

 EOBD_DTC_MGMT_100ms checks if the EEPROM memory is yet available. When it 

is, it restores state variables from it and generally enables memory access.  

 StoreDTC() adds an entry (DTC) to the fault memory, which can be read by ser-

vice 03H. The fault code can be specified as well as if the MIL should be turned on 

and if a Freeze Frame should be stored. While StoreDTC will not store duplicate 

DTCs, it will create multiple freeze frames for the same DTC if requested. 

 ClearDTCs() deletes all stored DTCs and Freeze Frames. It is called by service 04H. 

 getFFPID() returns the data of a certain PID in a Freeze Frame. 

 DTCMessageStream() provides an ISO 15765-2 compatible (see 2.4.6) stream of 

CAN messages for service 03H. 

 commitToEEP() makes the module write its nonvolatile memory back to the EEP.  

All C sources associated with the persistent storage interface are included in Appendix 5: 
Listing 7: EOBD_DTC_Interface implementation code 



Implementation  48 

Memory Organization 
During the initialization phase, EOBD_DTC_Interface loads an array of the type uint8*[] 

(equal to a uint8**) with the array pointers (uint8*) to the EEPROM pages reserved for 

this use. This way the available memory appears as a flat structure that can be program-

matically accessed as a 2D array even if the EEPROM pages are non-consecutive. 

The example implementation uses 9 EEPROM pages with a total of 126 bytes of memory 

available as storage. Using constants defined in the C header, the memory is segmented 

like this: 
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Figure 5-6: OBD persistent storage memory organization 

The DTC storage shows the following characteristics: 

 DTCs take up a constant space (2 bytes each). 

 DTCs are only cleared as a whole, so memory fragmentation is not possible. 

 When the DTC memory is full, it wraps around and the oldest DTC is overwritten. 

This mandates, that two values are kept in the nonvolatile memory: the number of DTCs 

stored and the position of the oldest one (first DTC). Also, since the memory size is always 

a multiple of the DTC size, the full memory can be utilized, creating a ring-type memory. 

The FF storage has the following characteristics: 

 The space a FF takes up is dependent on the PIDs that are included 

 FFs are only cleared as a whole, so memory fragmentation is not possible 

 When the FF memory is full the oldest FF will be overwritten. 

As with the DTCs the number of stored FFs and the index of the oldest one have to be 

stored in nonvolatile memory. Since the composition of a FF can be calibrated via the Ser-

vice 2 Support Array, the size and maximum number of freeze frames is variable and re-

calculated on startup and only stored in RAM. Since the memory size is likely not a multi-

ple of the FF size, there is always some unused memory (worst case: 

      (         )  ⁄    is unused when one FF takes up just over half the available 

memory). The rest of the memory creates a ring with      (      (         ) 

      (  ) ) elements.  
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Figure 5-7: persistent storage element allocation logic 

Clearing the DTC & FF memory 
To clear the persistent memory, resetting the pointers to the start and zeroing the element 

counts is sufficient. If new elements are stored, the old ones will be overwritten. To over-

write the complete FF and DTC memory, a calibration parameter (EOBD_DTCFullerease) 

can be set. 

In contrast to the other functions dependent on the EEPROM Memory, this one does not 

check the memory availability. This is done externally in the service 04H logic to enable the 

service to abort and send a negative response (see Memory Organization) if it is not avail-

able. 

  

Figure 5-8: "Clear Memory" Program Flow 
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Storing and retrieving a DTC 
When a new DTC should be stored, the code checks the DTC memory if that DTC is already 

there to keep a reoccurring error from flooding the DTC memory. If the DTC is not found, 

the index of the next available DTC slot is requested from the memory management (see 

Memory Organization) and then translated in an address (page number and offset) in the 

DTC memory block. Subsequently, the 16-bit DTC is split into two bytes and written at this 

location. 

The MIL request is honored even if the DTC is a duplicate.  

Finally, commitToEEP() is called to save the changed RAM content to the EEPROM. 

 

Figure 5-9: "Store DTC" Program Flow 

 

To retrieve a certain DTC from the fault memory, first the absolute position of the DTC is 

determined in the ring memory (may be different to its relative position due to overflow-

ing of the ring see Figure 5-6) and then the page number and offset are requested from 

memory management. 

Finally, two bytes are read from this location and assembled to form the 16-bit DTC. 
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Figure 5-10: "Read DTC" Program Flow 

Deferred DTC storing 
While slow calls to e.g. CAN and EEPROM drivers have been avoided, writing to the fault 

memory can consume significant time, especially compared to the system’s fastest time-

bases (0.25 to 1ms). To avoid deadline misses if the DTC interface is to be used in a mod-

ule that runs on such a quick timebase, storing of DTCs and FFs can be deferred (see Fig-

ure 5-11). 

  

Figure 5-11: deferred DTC storing 

To do so, the function StoreDTCdeferred() can be called, which takes the same arguments 

as the regular Store DTC function but just copies the arguments to global class variables, 
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storing the DTC or FF. This is not without disadvantage: while the up to 100ms offset in 

the FF data are negligible (the PID data is only refreshed in 100ms intervals, anyways), the 

function is prone to race conditions causing “lost data” effects. This happens when 

StoreDTCdeferred() is called multiple times between two executions of the management 

function, where the DTC in the arguments of the last call will be the only one actually 

stored with the rest discarded. 

Storing and retrieving Freeze Frame Data 
A freeze frame is a snapshot of a number of PIDs and the DTC that caused the freeze frame 

to be captured. The PIDs included in a freeze frame are a subset of the ones available in 

service 01H and are set via the service 2 support array. To determine the total size of a 

freeze frame and thus the number of FFs that fit in the available EEPROM memory, this 

array is walked and the corresponding entries from the PID size Array are added together. 

When a new FF needs to be stored, the function first requests the ID of the next available 

FF from memory management and then requests the memory address of the start of the 

FF with this ID. Then first the DTC is written, followed by all of the PIDs listed in the ser-

vice 2 support array. After each byte, the memory address is incremented and retranslated 

in a page number and offset, since the PID boundaries do not necessarily match the page 

boundaries. 

To retrieve a PID from a stored freeze frame, the PIDs location in the memory blob, con-

taining the FF, has to be determined. Since the PIDs are stored in the same order they ap-

pear in the service 2 support array, this array is walked, adding up the PID sizes from the 

PID size array, until the PID is found in the service 2 support array. Then, using this byte 

offset and the FF ID, the memory location of the PID can be requested from memory man-

agement. Finally, the PIDs data is read and assembled to give the PID value.  
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Figure 5-12 : Program flow for storing and retrieving FF data 
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Answering a Service 03H request with a ISO-TP data stream 
Since the response to any service 03 H request with more than 2 DTCs in the fault memory 

will result in a transmission payload of more than 7 bytes, an implementation of the ISO-

TP protocol as described in chapter 2.4.6 is required. 

The chosen implementation is a state machine (Figure 5-13) which is started when the 

OBD state machine detects a Service 03 H request. The OBD state machine then periodically 

calls the ISO-TP state machine until its return value indicates that the transfer is complete. 

“Complete” in this context also includes “aborted”, since the client has no means of restart-

ing the transfer in case of a problem. This can only be done by the master (in this case, the 

tester) from the OBD idle state. 

To avoid blocking or excessive execution time, no active wait states are included in the 

state machine. If a resource is not ready or the host requests a transmission interruption, 

processing is deferred to the next call of the state machine, where the condition is re-

evaluated.  

 

 

Figure 5-13: ISO-TP state flow 

5.2.5 The OBD Vehicle Information Interface  

Service 09H, as described in 2.4.7, provides general Information about the vehicle and con-

trol unit connected to the tester. 

Per SAE J1979-DA:2011-10 there are 10 standardized INFOTYPES available when using 

Diagnostics over CAN, summarized in Table 5-1. Evident from this table, only three INFO-

TYPEs need to be supported in this service 09H implementation: 

 00H: list of supported ITIDs 

 04H: calibration IDs 

 0AH: ECU Name 

ITID 00H and 0AH are completely static, meaning they don’t change between different 

software versions.  The CALID, however, should be indicative of the exact software ver-

sion, meaning that it should be different for each build. In production, this would be e.g. 
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the build number or the release ID of a certain software build for a specific vehicle. In de-

velopment, there are often multiple versions in use at the same time and multiple versions 

may be flashed during a working day. Manually assigning CALIDs to these builds would 

mean a significant overhead for the developers, as the data has to be manually changed for 

each build and a database of CALIDs has to be maintained. 

Therefore it is reasonable to have the CALID generated automatically so that it is both 

unique and easily identifiable by the developer.  

The way this is achieved in this implementation is to use the time and date of the build. It 

is easy to cross-reference it to the file date of the firmware files on the PC and is human-

readable. To integrate the time and date into the ANSI C predefined macros __DATE__ and 

__TIME__ are used, which are supported by all standard-compliant C compilers [21] and 

thus also by the tasking compiler used in the RPEMS toolchain. The resultant CALID is vis-

ible in Figure 6-5. 

Table 5-1:  List of INFOTYPES 21 

ITID Name Short Relevance for Implementation 

00H Supported INFOTYPES - Must be supported 

02H 
Vehicle Identification 

Number 
VIN 

N/A: vehicles are changing prototypes 

or engines on testbeds 

04H Calibration ID CALID 
Relevant: Identifying the software ver-

sion is an important use-case 

06H 
Calibration Verification 

Numbers 
CVN 

N/A: anti-tampering measures are not 

important for this application 

08H 
In-use Performance 

Tracking 
- N/A: Monitors are not supported 

0AH ECU Name ECUNAME 
Relevant: can be useful to identify the 

RPEMS in a multi-ECU environment 

0BH 
In-use Performance 

Tracking 
- N/A: Monitors are not supported 

0DH Engine Serial Number ESN N/A: ECU is not tied to a specific engine 

0FH 
Exhaust Regulation Or 

Type Approval Number  
EROTAN 

N/A: not relevant and usually not ex-

istent on prototypes 

10H Protocol Identification - 
N/A: only relevant for UDS implemen-

tations 

 

Since all INFOTYPEs (except 00H) need to be transferred in multiple ISO-TP segments be-

cause of their size, an ISO-TP module similar to the one outlined in Figure 5-13 is imple-

mented. 

                                                             
21 Based on [31] 
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All code associated with the Vehicle Information Interface can be found in Appendix 5: 

Listing 7: EOBD_DTC_Interface implementation code  

5.2.6 The OBD Debouncer 

The modules described in 5.2.1 - 5.2.6 make up the OBD core system, meaning the parts of 

the software that enable the RPEMS software to communicate with standardized test 

equipment and which generate and store the data that is provided. 

The substantially bigger part of an OBD implementation seeking legislative approval, is the 

conforming application of the extensive number of monitors and error thresholds to make 

sure that emission-relevant condition is reliably detected while minimizing the number of 

false positives.22 

The implementation described here does have a different goal; nevertheless, a system gat-

ing the creation of DTCs and FFs is required to prevent flooding of the fault memory. 

A reasonably simple implementation of such a system is the EOBD_debouncer class mod-

ule. The EOBD_debouncer class gates logic (Boolean) signals that control e.g. the creation 

of a DTC and takes three parameters: 

 The short term (DebST) parameter controls how often the condition has to be de-

tected consecutively, which is used to filter short-term glitches 

 The long term (DebLT) parameter controls how often a condition debounced with 

the DebST parameter has to be detected to enable the output signal. The Boolean 

output (return value) does not latch; it only generates a single pulse. A continuous-

ly appearing condition would therefore, even with DebLT = 1, cause a single pulse 

(and e.g. a single DTC entry). 

 The AutoReArm parameter controls if the debouncer should reset after creating 

the pulse. If the parameter were logical false it would not generate another pulse. 

Figure 5-14 shows an example of EOBD_debouncer behavior over time. 

The C source of EOBD_debouncer is listed under Appendix 5:   

                                                             
22 On systems for the US market, OBD takes up about 30% of the overall time needed for ECU calibration 
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Listing 1 : EOBD_infotype_interface implementation code  

 

 Figure 5-14: Debouncer behaviour 

5.3 Diagnostics Implementation example 

Figure 5-15 shows a typical way of adding OBD II diagnostic capability to other software 

modules. The top flowchart shows the conversion of an ADC result (adc0_6) to the throttle 

pedal position (aped1) in the ADC remapper. KLFWG1 represents characteristic curve, 

mapping ADC (and this sensor output) voltage to a pedal value between 0% and 100%.  

In this case, the valid range for the sensor voltage is 1.0V to 4.0V. If the voltage is outside 

this range (comparison in the lower left) once (debLT =1) for at least 100ms (debST = 

100cycles at 1ms intervals) the debouncer calls “StoreDTC” from the imported 

EOBD_DTC_interface class with the DTC code P0120 (Throttle/Pedal Position Sen-

sor/Switch "A" Circuit Malfunction). A freeze frame is not stored and the MIL is not lit 

(store_FF and enables_MIL are false). 

 

 

Figure 5-15: Exemplaric implementation of trottle pedal diagnostics 
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5.4 Architecture of the OBD subsystem 

Figure 5-16 shows how the OBD software modules interface with each other and the rest 

of the RPEMS software. The run_NNms functions are attached to the respective cyclic tasks 

in the task scheduler. The modules shaded in grey are existing RPEMS software elements 

the OBD software interacts with. 

 

 

Figure 5-16: OBD software structure 

 

The EOBD module represents the OBD state machine from 5.2.2, which also integrates the 

DTC and Infotype interface. To gain access to the CAN bus, the EOBD module imports the 

relevant data elements from the RPEMS’ CAN software stack. 

To provide recent data to the OBD system, EOBDremap converts supported variables from 

other software modules to the format required by OBD every 100ms. After the conversion, 

it calls EOBDpopulateArray, which has access to the main OBD arrays and copies the re-

mappers’ converted data items there. 

Any RPEMS software that wants to use the diagnostic system just imports 

EOBD_DTC_Interface (and optionally EOBD_debounce) to use their public functions to 

store DTCs and freeze frames. 

5.4.1 Timing 

In the OBD II standards, the time P2CAN is defined as the maximum response time to any 

request. The response time is defined as the time between reception of an OBD II request 

and the response in form of an ISO_TP single- or first frame. P2CAN,max is 50 milliseconds, 
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which means that every tester should wait for an response at least 50ms while no ECU 

should take longer than 50ms to respond.[22] 

Since data is passed between multiple processes running in the 10ms grid, a few measures 

have to be taken to make sure this deadline is met. The processes involved in producing 

the response (in the order data passes through them during an OBD request/response) 

are listed in Table 5-2. 

 

process in module::process notation task Description 

MultiCAN::receiveNode3_10ms _10ms get CAN request data from MOb 

CANremap::receive_10ms _10ms 
remap CAN request data and perform 

flow control 

EOBD::EOBD_handler_10ms _10ms 
parse request and craft response 

(x2/x3)23 

CANremap::transmit_10ms _10ms 
remap response data and perform flow 

control 

MultiCAN::transmitNode3_10ms _10ms load response data in CAN MOb 

Table 5-2: processes needed to answer an OBD request 

The time needed for the CAN data to be moved between the bus and the corresponding 

MObs can be considered as nearly instant (<0,5ms at 500kBit/s), so the response time 

depends mainly on the number of executions of the _10ms task necessary to complete the 

operation. 

Figure 5-17 shows the best and worst case scenario of how the order of execution of pro-

cesses inside a task can affect the total time to completion of an OBD II request. The 

grayed-out blocks represent processes which cannot do useful work during the respective 

execution cycle. 

In Figure 5-17 A, the processes are optimally arranged inside the task; in the first and third 

run, multiple processing steps can be executed because the interdependent processes 

were called in the correct order by the task scheduler. Figure 5-17 B is the worst-case sce-

nario – each processing step has to be executed in a subsequent call of the _10ms task. No 

speedup is possible since no two processes are executed in the correct order and so the 

P2CAN deadline is missed by at least 20ms. 

                                                             
23 This step takes more than one cycle. During the first execution the OBD state machine will change its state 
depending on the request. For single-frame responses, the response is created during the second execution. 
When a multi-frame response is required, one additional cycle is required to setup the ISO_TP state machine. 
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Figure 5-17: OBD response time 
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Chapter 6 

6Testing, Results and Outlook 

6.1 Test Setup 

The setup which was used during development and testing is laid out in Figure 6-1; Details 

are listed in Table 6-1 and Table 6-2. For the use with standard OBD testers an adapter 

harness had to be manufactured to provide power to the tester and to allow the connec-

tion of a third node to the CAN bus connected to CAN node 3 on the RPEMS.  

  

Figure 6-1: Test Hardware Setup 

Table 6-1: Test Hardware 

Item Description 

12V Power Supply 230V mains voltage to 12VDC / 3A regulated power supply 

AVL RPEMS Future 
RPEMS Future, HW Version 1.3, VCU Configuration24, modified to 

have a termination resistor on CAN interface 3 

CAN Interface INCA 
ETAS ES580 PCMCIA to CAN Interface (identical to vector CANCar-

dXL), with Type 251 Transceiver Cable (82C251Tranceiver Chip) 

CAN Interface CAN-

alyzer + CANoe 

vector CANcaseXL or vector VN1610 (depending on application 

due to licensing limitations) 

OBD Tester 1 
Autel Maxiscan MS509 OBD II/EOBD diagnostic tester with built-in 

DTC database 

OBD Tester 2 Generic ELM327-based OBD-to-Bluetooth Interface  

 

                                                             
24 RPEMS in VCU configuration do not have their high-power and high-voltage output drivers populated, as 
they do not have to drive injectors and ignition coils 
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Table 6-2: Test Software 

Vendor Product Name Functions 

ETAS ASCET 5.2.2 Software Specification 

ETAS INCA 7.0.0/14 

Firmware flashing 

Parameterization 

Runtime Variable Monitoring 

Vector CANalyzer 7.6.27 Interactive sending and receiving of CAN data 

Vector  CANoe 8.1 
Run automated test cases 

Software OBD Tester 

Vector CANoe.DiVa 3.1 SP1 
Generate automated tests for OBD II Imple-

mentations 

6.2 Early Testing 

ASCET 5.2 only supports the software development cycle up to the build process, there are 

no testing or debugging facilities integrated. 

Limited debugging can be done by using INCA; after flashing a new software file on the 

ECU, INCA can establish a CCP connection and use the A2L25 file generated by ASCET. 

This provides access to the values of all data items marked for calibration in ASCET. If the 

value in question has been marked as “Parameter”, it can also be changed, which serves as 

a limited method to provide stimulus. The limitations of this method are: 

 There is no way to slow down, pause, or single-step execution 

 Since the CCP protocol runs as a regular process on the RPEMS, the highest possi-

ble resolution is one execution of a given process, intermediate values cannot be 

viewed 

 Due to an unconfirmed bug in the handling of parameters, they cannot be used 

with class modules that have more than one instance 

 Since the CCP protocol is implemented in software on the ECU, it cannot be used if 

the CAN modules or the initialization is not working correctly or if another soft-

ware module hangs. 

The first module to be implemented was EOBD_remap to test the value conversion using 

formulas, which could easily be confirmed by having the values displayed in INCA. 

                                                             
25 An ASAP2 description file (also called A2L) contains all information on the relevant data 

objects in the ECU such as characteristics (parameters, characteristic curves and maps), real 

and virtual measurement variables and variant dependencies. Information is needed for each 
of these objects, such as memory address, storage structure, data type and conversion rules 
for converting them into physical units.[32] 
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Figure 6-2: INCA I Experiment showing data from the OBD remapper 

The next milestones were the modified CAN software and the foundations of the OBD state 

machine.  The first real challenge was the persistent storage interface, because of its im-

plementation in C. Variables declared in C code are not added to the A2L file, therefore 

helper variables had to be introduced to monitor them. Also, simple bugs like boundary 

violations or null-pointer exceptions were hard to debug because they crashed the ECU 

which disabled CCP. 

6.3 Communication tests 

Early communication tests were carried out by sending hand-crafted CAN packets mimick-

ing an OBD tester using Vector CANalyzer. Once the OBD software was able to send mean-

ingful responses, most tests were carried out using the Autel standalone scan tool, which 

supports most functions implemented. Only the “ECU Name” Infotype and multiple freeze 

frames are not supported; these functions were tested using the App Torque on an LG 

Nexus 4 Android smartphone and the ELM327 Bluetooth interface. The adapter harness, 

as mentioned above, enabled the connection of CANalyzer as third node on the bus to trace 

the communication between tester and ECU and helped working out, at which point it 

went wrong. 

Figure 6-3 shows an unsuccessful connection attempt of the tester (repeat “02 01 0C …“ 

messages) in the trace window and faux ECU responses (ID 7E8) in the generator window.   

Figure 6-4 shows the Autel MaxiScan displaying the DTC code P0666 after successfully 

reading four DTCs (top right display corner) from the persistent storage interface.  
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Figure 6-3: CANalyzer used for communication tests 

 

 

Figure 6-4: Successful DTC readout using the Autel scan tool 
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Figure 6-5:Torque App displaying data from OBD II services 02H  03H and 09H 

6.4 Systematic testing 

While working data displays on the testers show that the implementation works in princi-

ple, it does not show that it is really compliant to the standards. The testers only represent 

“good case” tests, since they should always produce valid requests and are usually, aiding 

robustness, very tolerant regarding violations by the ECU’s implementation.  

Also, even all possible valid and supported combinations of SID, PID, etc… would present a 

large number of test cases, taking a lot of time to go through. 

A more systematic approach is to use a tool that automatically generates test cases, runs 

them and analyzes the responses.  

A software tool that does this is CANoe.DiVa26, an extension to Vector’s CANoe ECU soft-

ware development environment designed to test implementations of diagnostic services.  

“DiVa is a CANoe extension for automated testing of diagnostic software implementations in 

ECUs. Reproducible test cases are generated based on an ECU diagnostic description.” [23] 

DiVa has a built-in description of the standard services based on the standards mentioned 

in chapter 2.4 and generated over 400 test cases applicable to this implementation (see 

Appendix 2: CANoe.DiVa Test Specification). 

The first test run indeed found a lot of implementation problems which had left the testers 

unfazed; only 48% of the tests resulted in a pass. 

Most of the errors were due to a wrong ISO-TP header format and a couple of builds later, 

these kinks were ironed out and CANoe reported a pass rate of 100% (see Appendix 3:  

CANoe.DiVa Test Results), confirming the compliance of the protocol implementation. 

                                                             
26 DiVa = Diagnostics Validation 
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6.5 Conclusion and Outlook 

The OBD software module has been implemented successfully and has proofed its func-

tioning in several test environments. 

Once integrated, with little configuration, it allows viewing live data, e.g. from sensors. To 

take advantage of all provided functionality some work has to be invested by the individu-

al modules’ to define diagnostic thresholds and conditions to store DTCs and Freeze 

Frames. 

Not all OBD services were supported, mostly because the effort required for their calibra-

tion would exceed their usefulness (Monitors and Tests). A possible area of future work 

would be the inclusion of a multi-tiered fault memory distinguishing between sporadic 

and confirmed faults (service 07H). 

Another goal for optimization could be the further reduction of the memory footprint of 

the OBD II module; the current version is optimized for ease of use and readability, which 

wastes some memory in the layout of the main data and configuration arrays. 

During the writing of this thesis, a second project has been started to integrate an SD-card 

interface into the RPEMS hardware, so that the unit can store extended logging data on 

board, which should extend the diagnostic abilities of the system even further. A combina-

tion with the OBD module would be beneficial, e.g. for marking the acquired data on the SD 

card when OBD events happen. 
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Appendix 1: List of Abbreviations 

ADC Analog to Digital Converter 

ASCET Advanced Simulation and Control Engineering Tool 

CALID Calibration ID 

CAN Controller Area Network 

CARB California Air Resources Board 

CCP CAN Calibration Protocol 

CSMA/CR Carrier Sense Multiple Access / Collision Resolution 

DAVE  Digital Application Virtual Engineer 

DTC Diagnostic Trouble Code 

ECU Engine Control Unit 

EEPROM  Electrically Erasable Programmable ROM 

EMI Electromagnetic Interference 

EMS Engine Management System 

EOBD European On Board Diagnostics 

ESDL Embedded Systems Description Language 

FF Freeze Frame 

GDI Gasoline Direct Injection 

ID Identifier 

INCA  Integrated Calibration and Acquisition System 

ITID InfoType ID 

KWP Key Word Protocol 

MCU Micro Controller Unit 

MIL Malfunction Indicator Light 

MOb Message Object 

MY Model Year 

OBD On Board Diagnostics 

OSI Open Systems Interconnect 

PID Parameter ID 

RPEMS Rapid Prototyping Engine Management System 

SID Service ID 

SoM System on Module 

SPI Serial Peripheral Interface a.k.a. Four-Wire-Bus 

TID Test ID 

TP Transport Protocol 
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Appendix 2: CANoe.DiVa Test Specification 

 

  

DiVa Test Specification

Table of contents

ECU Specification

Tests (401 generated)

1 Powertrain Diagnostic Data (139 tests)

1.1 Read Supported PIDs (1 test)

1.2 Read PIDs (138 tests)

2 Monitored Systems (89 tests)

2.1 Read Supported MIDs (2 tests)

2.2 Read MIDs (87 tests)

3 System, Test or Component (10 tests)

3.1 Read Supported TIDs (1 test)

3.2 Read TIDs (9 tests)

4 Vehicle Information (20 tests)

4.1 Read Supported Info Types (1 test)

4.2 Read Info Types (19 tests)

5 Fault Memory (143 tests)

5.1 Emission-Related Diagnostic Trouble Codes (1 test)

5.1.1 Request Emission-Related DTCs (1 test)

5.2 Freeze Frame Data (139 tests)

5.2.1 Read Supported PIDs (1 test)

5.2.2 Read Freeze Frame Data (138 tests)

5.3 Emission-Related Diagnostic Trouble Codes Detected During Current or Last Completed Driving Cycle (1 test)

5.3.1 Request Emission-Related DTCs (1 test)

5.4 Request Emission-Related Diagnostic Trouble Codes with Permanent Status (1 test)

5.4.1 Request Emission-Related DTCs (1 test)

5.5 Clear/Reset Emission-Related Diagnostic Information (1 test)

5.5.1 Clear Emission-Related DTCs (1 test)

5.6 Active Fault Memory test (0 tests)

5.6.1 Test Emission-Related DTCs (0 tests)

6 Transport Layer (0 tests)

ECU Specification

ECUInfo [ OBD ]
File

Version 1.20

DBOemaN

SCITSONGAID_NOMMOCtnairaV
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Appendix 3: CANoe.DiVa Test Results 

 

  

Report CANoe.DiVa TestModule

Test passed

General Test Information

Test Engineer

Windows Login Name: Luke

Test Setup

)2PS(06.1.8eoNAC:noisreV

gfc.DBO\someDeoNAC\1.8\eoNAC\rotceV\stnemucoD\cilbuP\sresU\:C:noitarugifnoC

Configuration Comment:

Test Module Name: RPEMS2

Test Module File: C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.vxt

Last modification of Test Module

File:

2013-11-21, 18:24:22

Test Module Library (CAPL): C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.callback.can

Test Module Library (CAPL): C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.001.can

Windows Computer Name: LUKE-HP

Nodelayer Module osek_tp: OSEK_TP (VC10, Version 5.20.51, Build 51), C:\Program Files (x86)\

Vector CANoe 8.1\Exec32\osek_tp.dll

Nodelayer Module DiVa: DiVaTestExtension, C:\Program Files (x86)\Vector CANoe 8.1\Exec32\DiVa\DiVa.dll

Diagnostic Specification:

avid.2SMEPR/aViD/tiebramolpiD/xobporD/ekuL/sresU/:C:tcejorPaViD

DiVa Configuration: Config

DBO:emaNUCE

SCITSONGAID_NOMMOC:tnairaVUCE

Specification Version: 1.20

TestModuleGenerationTime: 2013-11-21T17:24:21.048

Start Timings

P2 Time: 150ms

P2* Time: 2000ms

S3 Time: 5000ms

EcuTimings: This are only the start Timings. P2 and P2* will change as specified by the response of session control services.

P2 Time Metrics

P2Time Average: 37ms

P2Time Min.: 30ms

P2Time Max.: 50ms

Test Overview

Test begin: 2013-11-21 19:21:33 (logging timestamp 3359.266915)

Test end: 2013-11-21 19:23:46 (logging timestamp 3492.568527)

Statistics

104sesactsetforebmunllarevO

sesactsetllafo%001104sesactsetdetucexE

sesactsetllafo%00sesactsetdetucexetoN

sesactsetdetucexefo%001104dessapsesactseT

sesactsetdetucexefo%00gninrawhtiwsesactseT

sesactsetdetucexefo%00deliafsesactseT
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Appendix 4: Software Module Block Diagrams 
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Block Diagram 1: EOBD state machine main Diagram 

 

 

Block Diagram 2: EOBD state machine idle state subdiagram 
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Block Diagram 3: EOBD state machine SID 1 subdiagram 

 

 

Block Diagram 4: EOBD state machine SID 2 subdiagram 
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Block Diagram 5: EOBD state machine SID 3 subdiagram 

 

 

Block Diagram 6: EOBD state machine SID 4 subdiagram 
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Block Diagram 7: EOBD state machine SID 9 subdiagram 

 

 

Block Diagram 8: EOBD state machine invalid SID subdiagram 
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Block Diagram 9: EOBD_DTC_Interface test program 
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Block Diagram 10 : EOBD_remapper main diagram 
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Block Diagram 11: EOBD_remapper EOBD_01_DTC_CNT subdiagram 

 

 

Block Diagram 12: EOBD_remapper init subdiagram 
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Block Diagram 13: EOBD_debouncer 

 

  



Appendix  83 

Appendix 5: Source Code 

List of Listings 

Listing 1 : EOBD_infotype_interface implementation code ........................................................................... 84 

Listing 2: EOBD_infotype_interface header code ............................................................................................... 89 

Listing 3: EOBD_remap::update_supported_PIDs_Mode1() implementation code ............................. 89 

Listing 4: EOBDpopulateArray::data_update_100ms() header code ......................................................... 90 

Listing 5: EOBDpopulateArray::data_update_100ms implementation Code ......................................... 90 

Listing 6: EOBD_DTC_Interface header code ....................................................................................................... 91 

Listing 7: EOBD_DTC_Interface implementation code ..................................................................................... 92 

Listing 8: EOBD_bytesplit  implementation code ........................................................................................... 109 

Listing 9:EOBD_assemble_canArray implementation code ........................................................................ 109 

Listing 10: CANremap OBD transmit code ........................................................................................................ 109 

Listing 11:CANremap receive Code ...................................................................................................................... 110 

  



Appendix  84 

Listing 1 : EOBD_infotype_interface implementation code 

001 static uint8 msg_pos,inftyp_len,inftyp_num; 

002 uint8  inftyp_idx, inftyp_pos, i; 

003 static uint8 cf_wait_count, cf_block_count,cf_index; 

004  

005  

006 // mandatory pattern: (pad with '') 

007 //                           "XXXn-YYYYYYYYYYYYYYY" 

008 static char *EOBD_ECUNAME1 = "ECM\0-AVL RPEMS VCU\0\0"; 

009 //char EOBD_ECUNAME2[] = "ECM\0-EngineControl\0\0"; 

010  

011 /* 

012 Automated Build Time generation: 

013 __date__ will expand to a 11-digit string like "Nov 15 2013" 

014 __time__ will expand to a 8-digit string like "13:28:23" 

015 CALID is 16 characters wide: 

016                            "1234567890123456" */ 

017 static char *EOBD_CALID1 = "RPEMS_08012013_2"; 

018 static char *EOBD_CALID2 = "Date:" __DATE__; //adjacent strings are automagically 

concatenated 

019 static char *EOBD_CALID3 = "Time:" __TIME__ "\0\0\0"; 

020  

021 static char *EOBD_CALID[3]; 

022 EOBD_CALID[0] = EOBD_CALID1; 

023 EOBD_CALID[1] = EOBD_CALID2; 

024 EOBD_CALID[2] = EOBD_CALID3; 

025  

026 static char *EOBD_ECUNAME[1]; 

027 EOBD_ECUNAME[0] = EOBD_ECUNAME1; 

028  

029 // check if NEW RX Message = 0x02 0x09 0xYY .... (Service 9 request) 

030 // This resets the state machine  

031 // HINT: CANRX[0] is 2 for physical Addressing! 

032  

033 if (CANRX[0] && 

034     CANRX[1] == 0x02 && 

035     CANRX[2] == 0x09) 

036 { 

037     StreamStatus = sm_setup; 

038     CANRX[0] = 0; //message = read 

039     inftyp = CANRX[3]; 

040     streamSize = 0; 

041 } 

042  

043 /************************************ 

044             State Machine 

045 ************************************/ 
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046  

047 switch(StreamStatus) 

048 { 

049 /*********************SETUP*********************/ 

050     case sm_setup: 

051  

052         //determine stream size 

053         switch (inftyp) 

054         { 

055             case 0x00: 

056                 // supported INFTYPs 

057                 StreamStatus = sm_single; 

058                 streamSize = 6; //SID + ITID + 4 

059                 break; 

060             case 0x04: 

061                 my_inftyp = EOBD_CALID; 

062                 inftyp_len = 16; 

063                 inftyp_num = sizeof(EOBD_CALID)/sizeof(EOBD_CALID[0]); 

064                 //SID+ITID+NODI + n*(INFTYP) 

065                 streamSize = (inftyp_num * inftyp_len) + 3; 

066                 //abort if CALID is not defined 

067                 if (streamSize > 3) 

068                     StreamStatus = sm_first; 

069                 else 

070                     StreamStatus = sm_finished; 

071                 break; 

072             case 0x0A: 

073                 my_inftyp = EOBD_ECUNAME; 

074                 inftyp_len = 20; 

075                 inftyp_num = sizeof(EOBD_ECUNAME)/sizeof(EOBD_ECUNAME[0]); 

076                 //SID+ITID+NODI + n*(INFTYP) 

077                 streamSize = (inftyp_num * inftyp_len) + 3; 

078                 //abort if CALID is not defined 

079                 if (streamSize > 3) 

080                     StreamStatus = sm_first; 

081                 else 

082                     StreamStatus = sm_finished; 

083                 break; 

084             default: 

085                 //no other INFTYPs are supported 

086                 StreamStatus = sm_finished; 

087         } 

088          

089     break; 

090          

091 /*********************Single Frame*********************/     

092     case sm_single: 
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093         //this only supports INFTYPs up to 0x1F 

094         //{TXen}[PCI][0x49][#ITID = 0x00][4-Byte INFTYP][0x55] 

095         CANTX[1] = ISO15765_SF | (streamSize & 0xFF); 

096         CANTX[2] = 0x49; //SID 9 Response 

097         CANTX[3] = 0x00; //INFTYP 0x00 

098         CANTX[4] = 0x10; //support 0x04 (CALID) 

099         CANTX[5] = 0x40; //support 0x0A (ECUNAME) 

100         CANTX[6] = 0x00; //no support 0x11 - 0x18 

101         CANTX[7] = 0x00; //no support 0x19 - 0x20 

102         CANTX[8] = 0x55; //padding 

103         CANTX[0] = 1;   //transmit 

104          

105         StreamStatus = sm_finished; 

106         break; 

107      

108 /*********************First Frame*********************/ 

109     case sm_first: 

110         //{TXen}[PCI][PCI][0x49][#ITID][4 bytes INFTYP] 

111         CANTX[1] = ISO15765_FF | ((streamSize >>8) & 0x0F); //highest nibble 

112         CANTX[2] = streamSize & 0xFF; //lower two nibbles 

113         CANTX[3] = 0x49; //service 9 Response 

114         CANTX[4] = inftyp; 

115         CANTX[5] = inftyp_num; 

116         CANTX[6] = my_inftyp[0][0]; 

117         CANTX[7] = my_inftyp[0][1]; 

118         CANTX[8] = my_inftyp[0][2]; 

119  

120         CANTX[0] = 1; 

121          

122         msg_pos = 6; 

123         StreamWaitCounter = 0; //reset timeout 

124         StreamStatus = sm_wait_FC; //now wait for the flow control frame 

125         break; 

126  

127 /*********************Flow Control*********************/ 

128     case sm_wait_FC: 

129          

130         //wait max 2s (200 * 10ms) for F/C frame 

131         if (StreamWaitCounter++ == 200) 

132         { 

133             StreamStatus = sm_finished; 

134             break; 

135         } 

136  

137         if (CANRX[0] == 2&& 

138             (CANRX[1] & ISO15765_FC) == ISO15765_FC) //is this a new FC frame? 

139         { 
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140             CANRX[0] = 0;   //ok, we got this 

141  

142             //===Status=== 

143             // 0 = OK, go ahead 

144             // 1 = WAIT; Tester not ready, wait for another F/C frame 

145             // 2 = OVERFLOW; Tester buffer too small. Nothing we can do about that. 

146             // N_USDATA.confirm(OVERFLW) is carried out by returning true (=finished) 

147             // 3+ = Reserved. Not supported. 

148  

149             if ((CANRX[1] & 0x0F) == 1) 

150             { 

151                 break;  

152             } 

153  

154             if ((CANRX[1] & 0x0F) >= 2) 

155             { 

156                 StreamStatus = sm_finished; 

157                 break; 

158             } 

159              

160             //===Block Size:==== 

161             //0x00: no further F/C just send the rest 

162             //0x01-0xFF: nuber of frames before the next F/C negotiation 

163  

164             Stream_BS = CANRX[2]; 

165  

166             //===Separation Time:=== 

167             //0x00-0x7F (127d) 0..127ms 

168             //0x80-0xF0 -reserved- 

169             //0xF1-0xF9 100..900s 

170             //0xFA-0xFF -reserved- 

171             //since this code does run every 10ms, we can only do multiples of 10ms 

ST. 

172             //<=11ms: no wait; 11-20ms= wait 1 cycle etc... 

173  

174             Stream_ST = CANRX[3]; 

175             if (Stream_ST < 127) 

176                 Stream_ST = Stream_ST/10; 

177             else if ((Stream_ST > 0xF0) && (Stream_ST < 0xFA)) 

178                 Stream_ST = 0; 

179             else 

180                 Stream_ST = 12; 

181              

182             cf_wait_count = 0; 

183             cf_block_count = 0; 

184             if (msg_pos == 6) 

185                 cf_index = 1; //after the First Frame 
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186             else 

187                 cf_index = 0; 

188              

189             StreamStatus = sm_CF; 

190         } 

191         break; 

192          

193 /*********************Consecutive Frame*********************/ 

194     case sm_CF: 

195         //wait lockout 

196         if (cf_wait_count++ == Stream_ST) 

197             cf_wait_count = 0; //reset wait cycle counter 

198         else 

199             break;  //wait for next exec cycle 

200          

201          

202         for (i=0; i<7; i++) 

203         { 

204         inftyp_idx = (msg_pos - 3 )/inftyp_len; 

205         inftyp_pos = (msg_pos - 3 )%inftyp_len; 

206         CANTX[i+2] = my_inftyp[inftyp_idx][inftyp_pos]; 

207         msg_pos++; 

208         if (msg_pos == streamSize) 

209             break; 

210         } 

211          

212         CANTX[1] = ISO15765_CF | cf_index; //PCI 

213         CANTX[0] = 1; //transmit 

214          

215         cf_index = ++cf_index%16; //0,1..15,0,1,... 

216         cf_block_count++; 

217          

218         if (msg_pos == streamSize) 

219         { 

220             //transfer complete 

221             StreamStatus = sm_finished; 

222             break; 

223         } 

224          

225         if (Stream_BS && (cf_block_count == Stream_BS)) 

226         { 

227             //reached the Block Size Limit - wait for next F/C Frame 

228             StreamWaitCounter = 0; //reset timeout 

229             StreamStatus = sm_wait_FC; 

230         } 

231         break; 

232          
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233     case sm_finished: 

234         return true; 

235          

236     default: 

237         StreamStatus = sm_finished; 

238 } 

239  

240 return false; //transmission not yet finished 

 

Listing 2: EOBD_infotype_interface header code 

1 char **my_inftyp; 

2  

3 //-----ISO15765----- 

4 #define ISO15765_SF 0x00 

5 #define ISO15765_FF 0x10 

6 #define ISO15765_CF 0x20 

7 #define ISO15765_FC 0x30 

 

Listing 3: EOBD_remap::update_supported_PIDs_Mode1() implementation code 

01 uint32 capa_bitfield; 

02 uint8 i,j, done, PID_TOP; 

03  

04 EOBD_max_PID = sizeof(EOBDPIDsAvailable)/sizeof(EOBDPIDsAvailable[0]); 

05  

06 #define PID_RANGE 0x20 

07  

08 PID_TOP = (EOBD_max_PID/PID_RANGE) * 0x20; //must be multiple of 0x20 

09  

10 i = PID_TOP; 

11 done = 0; 

12  

13  

14 while (!done) 

15 { 

16      capa_bitfield = 0x00000000; 

17       

18      for (j=1; j<=PID_RANGE; j++) 

19      { 

20          //do not check out of bounds of PIDsAvailable array 

21          if (EOBDPIDsAvailable[i + j] &&  ((i+j) < (EOBD_max_PID +1))) 

22          { 

23              capa_bitfield |= (1 << (PID_RANGE-j)); 

24          } 

25      } 

26      if (capa_bitfield) 
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27      { 

28          EOBDPIDData[i] = capa_bitfield; 

29          EOBDPIDsAvailable[i] = 1; 

30      } 

31       

32      if (i == 0) 

33      { 

34          done = 1; 

35      } 

36      else 

37      { 

38          i-=PID_RANGE; 

39      } 

40 } 

 

Listing 4: EOBDpopulateArray::data_update_100ms() header code 

#define EOBD_VAL(PID, VAL) EOBDPIDData[PID] = VAL << ((4-EOBDPIDSize[PID]) * 8); 

 

Listing 5: EOBDpopulateArray::data_update_100ms implementation Code 

001 /************************************************************************** 

002 * This puts the EOBD Mode 1 PID Values ("Live data") into a PID-indexed   * 

003 * array. The values are assigned in EOBDremap.                            * 

004 *                                                                         * 

005 * To add/remove supported PIDs, edit the Data of EOBDPIDsAvailable        * 

006 **************************************************************************/ 

007  

008 // EOBD_VAL(0x00, 0); 

009 EOBD_VAL(0x01, EOBD_01_DTC_CNT); 

010 // EOBD_VAL(0x02, 0); 

011 // EOBD_VAL(0x03, 0); 

012 EOBD_VAL(0x04, EOBD_04_LOAD_PCT); 

013 EOBD_VAL(0x05, EOBD_05_ECT); 

014 // EOBD_VAL(0x06, 0); 

[…] 

018 // EOBD_VAL(0x0A, 0); 

019 EOBD_VAL(0x0B, EOBD_0B_MAP); 

020 EOBD_VAL(0x0C, EOBD_0C_RPM); 

021 EOBD_VAL(0x0D, EOBD_0D_VSS); 

022 // EOBD_VAL(0x0E, 0); 

023 // EOBD_VAL(0x0F, 0); 

024 // EOBD_VAL(0x10, 0); 

025 EOBD_VAL(0x11, EOBD_11_TP); 

026 // EOBD_VAL(0x12, 0); 

[…] 
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035 // EOBD_VAL(0x1B, 0); 

036 EOBD_VAL(0x1C, 0x07); //OBD support: EOBD, OBD II 

037 // EOBD_VAL(0x1D, 0); 

[…] 

042 // EOBD_VAL(0x22, 0); 

043 EOBD_VAL(0x23, EOBD_23_FRP); 

044 // EOBD_VAL(0x24, 0); 

[…] 

058 // EOBD_VAL(0x32, 0); 

059 EOBD_VAL(0x33, EOBD_33_BARO); 

060 // EOBD_VAL(0x34, 0); 

[…] 

073 // EOBD_VAL(0x41, 0); 

074 EOBD_VAL(0x42, EOBD_42_VPWR); 

075 // EOBD_VAL(0x43, 0); 

[…] 

078 // EOBD_VAL(0x46, 0); 

079 EOBD_VAL(0x47, EOBD_47_TP_B); 

080 // EOBD_VAL(0x48, 0); 

[…] 

155 // EOBD_VAL(0x93, 0); 

 

Listing 6: EOBD_DTC_Interface header code 

01 //--- EEP Memory Map --> see init()--- 

02 #define EOBD_EEP_SIZE 9 

03 #define EOBD_EEP_DTC_SIZE 4 

04 #define EOBD_EEP_FF_SIZE 5 

05  

06 uint8* EEP_EOBD_mem[EOBD_EEP_SIZE]; 

07  

08 #define getbyte(A, B) (((A) >> ((B)*8)) & 0xFF) 

09  

10 //---All Pages ----- 

11 #define EEP_CMD 1 

12 #define EEP_STATUS 0 

13 #define EEP_PAGESIZE 14 

14  

15 //----Page0----- 

16 #define EEP_EOBD_NUMDTC   2 

17 #define EEP_EOBD_NUMFF    3 

18 #define EEP_EOBD_FIRSTDTC 4 

19 #define EEP_EOBD_MIL       5 

20 #define EEP_EOBD_FIRSTFF  6 

21  

22 //-----DTCs---- 
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23 #define DTC_STARTPAGE 1 

24 #define MAX_DTC ((EOBD_EEP_DTC_SIZE * EEP_PAGESIZE) / 2) 

25  

26 //----FFs---- 

27 #define FF_STARTPAGE 5 

28  

29 //-----EEP----- 

30 #define EEP_WRITE 8 

31 #define EEP_READ  1 

32 #define EEP_READOK  1 

33 #define EEP_WRITEOK 8 

34 #define EEP_READERR  4 

35 #define EEP_WRITEERR 128 

36  

37 //-----ISO15765----- 

38 #define ISO15765_SF 0x00 

39 #define ISO15765_FF 0x10 

40 #define ISO15765_CF 0x20 

41 #define ISO15765_FC 0x30 

 

Listing 7: EOBD_DTC_Interface implementation code 

001 /**************************************************************************************** 

002 *   This is pseudo-file compiled from all the c-functions in EOBD_DTC_Interface         * 

003 *   Since ASCET only allows editing of the function BODY, the function wrappers         * 

004 *   have been added by hand to show the name and arguments of each function,            * 

005 *   replacing ASCET-specific types by more general ones such as "uint" and "bool"       * 

006 *   the modifier "private" indicates that the function is declared private in ASCET     * 

007 *   and can only be called from inside EOBD_DTC_Interface as "self::some_function()"    * 

008 *****************************************************************************************/ 

009  

010 void StoreDTC(EOBD_DTC_SystemID System, uint Code, bool enables_MIL, bool store_ff) 

011 { 

012     int _tmpDTC; 

013     int _commit = 0; 

014  

015     if (EOBD_memRdy) 

016     { 

017         _tmpDTC = (System << 14) | (Code & 0x3FFF); 

018  

019         if (enables_MIL) 

020         { 

021             EOBD_MILStatus = true; 

022             _commit = 1; 

023         } 

024  

025         if (store_FF) 



Appendix  93 

026         { 

027             self.StoreFF(_tmpDTC); 

028             _commit = 1; 

029         } 

030          

031         if(!self.checkForDuplicateDTC(_tmpDTC)) 

032         { 

033             _nextDTCIdx = self.insertNewDTC(); 

034  

035             _memPage = self.getDTCpage(_nextDTCIdx); 

036             _memOffset = self.getDTCoffset(_nextDTCIdx); 

037  

038             EEP_EOBD_mem[_memPage][_memOffset] = (_tmpDTC >> 8) & 0xFF; 

039             EEP_EOBD_mem[_memPage][_memOffset+1] = _tmpDTC & 0xFF; 

040              

041             _commit = 1; 

042         } 

043  

044         if (_commit) 

045             self.commitToEEP(); 

046     } 

047 } 

048  

049 /**************************************************************************/ 

050  

051 void StoreFF(uint DTC) 

052 { 

053     uint8 i,j, current_PID,mem_offset,_p,_o,_f; 

054  

055     if (_EOBD_memRdy) 

056     {    

057         //get next "free" frame / memory location 

058         _f = self.insertNewFF();     

059         mem_offset = self.getFFTotalOffset(_f,0); 

060  

061         //write the responsible DTC 

062         _p = self.getFFpage(mem_offset); 

063         _o = self.getFFoffset(mem_offset++); 

064         EEP_EOBD_mem[_p][_o] = (DTC >> 8) & 0xFF; 

065  

066         _p = self.getFFpage(mem_offset); 

067         _o = self.getFFoffset(mem_offset++); 

068         EEP_EOBD_mem[_p][_o] = DTC & 0xFF; 

069          

070         //Dump the PIDs in the FF Memory Area 

071         for (i=0; EOBDFFPIDs[i]; i++) 

072         { 
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073             current_PID = EOBDFFPIDs[i]; 

074  

075             //for each PID, write the bytes 

076             for (j=0;j<EOBDPIDSize[current_PID];j++) 

077             { 

078                 _p = self.getFFpage(mem_offset); 

079                 _o = self.getFFoffset(mem_offset++); 

080         //the PID Data is left-aligned in a 32 bit field -> MSB = (uint32)>>24 ! 

081                 EEP_EOBD_mem[_p][_o] = getbyte(EOBDPIDData[current_PID],(3-j)); 

082             } 

083         } 

084          

085         //self.commitToEEP(); 

086     } 

087 } 

088  

089 /**************************************************************************/ 

090  

091 void clearDTCs() 

092 { 

093     //since DTCs cannot be deletet individually, it is OK to just zero their count. 

094     //No management of the actual DTC storage has to be done. 

095  

096     int i,j; 

097  

098     EOBD_numDTC = 0; 

099     _EOBD_firstDTCIdx = 0; 

100     EOBD_MILStatus = false; 

101     EOBD_numFF = 0; 

102     _EOBD_firstFFIdx = 0; 

103  

104     //If the Paramater is selected, the memory Area is "formatted". 

105     //if(EOBD_DTCFullerease == true) 

106     { 

107         for (i = 0; i < EOBD_EEP_SIZE; i++) 

108         { 

109             for (j = 2; j<16; j++)   

110             { 

111                 EEP_EOBD_mem[i][j] = 0; 

112             } 

113         } 

114         passed_FE = true; 

115     } 

116  

117     //immediately commit, so errors don't "come back" 

118     self.commitToEEP(); 

119 } 
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120  

121 /**************************************************************************/ 

122  

123 void commitToEEP() 

124 { 

125     //commits Data from RAM to EEP 

126  

127     uint8 i; 

128  

129     EEP_EOBD_mem[0][EEP_EOBD_NUMDTC] = EOBD_numDTC; 

130     EEP_EOBD_mem[0][EEP_EOBD_FIRSTDTC] = _EOBD_firstDTCIdx; 

131     EEP_EOBD_mem[0][EEP_EOBD_MIL] = EOBD_MILStatus; 

132     EEP_EOBD_mem[0][EEP_EOBD_NUMFF] = _EOBD_numFF; 

133     EEP_EOBD_mem[0][EEP_EOBD_FIRSTFF] = _EOBD_firstFFIdx; 

134  

135     for (i=0; i<EOBD_EEP_SIZE; i++) 

136     { 

137         EEP_EOBD_mem[i][EEP_CMD] = EEP_WRITE; 

138     } 

139 } 

140  

141 /**************************************************************************/ 

142  

143 void EOBD_DTC_MGMT_100ms() 

144 { 

145     // copy EEP stuff to RAM as soon as the EEP becomes available 

146     // and skip the block after that (!_EOBD:memRdy) 

147  

148     if((!EOBD_memRdy) && self.DTCMemCheck()) 

149     { 

150         EOBD_numDTC =       EEP_EOBD_mem[0][EEP_EOBD_NUMDTC]; 

151         _EOBD_firstDTCIdx = EEP_EOBD_mem[0][EEP_EOBD_FIRSTDTC]; 

152         EOBD_MILStatus =    EEP_EOBD_mem[0][EEP_EOBD_MIL]; 

153         EOBD_numFF =        EEP_EOBD_mem[0][EEP_EOBD_NUMFF]; 

154         _EOBD_firstFFIdx =  EEP_EOBD_mem[0][EEP_EOBD_FIRSTFF]; 

155  

156         EOBD_memRdy = true; 

157     } 

158  

159     DTCrunning += 1; 

160  

161     sizeof_0 = self.getFFSpecialPID(0x00); 

162     sizeof_1 = self.getFFSpecialPID(0x20); 

163     sizeof_2 = self.getFFSpecialPID(0x40); 

164     sizeof_3 = self.getFFSpecialPID(0x80); 

165 } 

166  
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167 /**************************************************************************/ 

168  

169 void init() 

170 { 

171     //This maps "real" EEP Pages in the EOBD Memory Map 

172     //The EEP Pages don't need to be consecutive. 

173  

174     uint8 i; 

175  

176     EEP_EOBD_mem[0] = eepPage_2;    //bookkeeping 

177     EEP_EOBD_mem[1] = eepPage_3;    // DTCs 0-6 

178     EEP_EOBD_mem[2] = eepPage_4;    // DTCs 7-13 

179     EEP_EOBD_mem[3] = eepPage_5;    // DTCs 14-20 

180     EEP_EOBD_mem[4] = eepPage_6;    // DTCs 21-27 

181     EEP_EOBD_mem[5] = eepPage_7;    // FF Data 

182     EEP_EOBD_mem[6] = eepPage_8;    // FF Data 

183     EEP_EOBD_mem[7] = eepPage_9;    // FF Data 

184     EEP_EOBD_mem[8] = eepPage_10;   // FF Data 

185  

186  

187    //calculate the Size of a EOBD FF 

188    //it is the sum of the PID sizes contained in it + 2 Bytes for the associated DTC 

189  

190     _EOBD_FFSize = 2; 

191  

192     for (i=0; EOBDFFPIDs[i]; i++) 

193     { 

194         _EOBD_FFSize += EOBDPIDSize[EOBDFFPIDs[i]]; 

195     } 

196  

197     //calculate the maximum amount of FFs that can be stored in the allocated memory 

198     //this might be 0 if the list of PIDs is too long 

199  

200     _EOBD_MaxFF = (EOBD_EEP_FF_SIZE*EEP_PAGESIZE)/_EOBD_FFSize; 

201 } 

202  

203 /**************************************************************************/ 

204  

205 bool DTCMessageStream(uint8[] CANRXData, uint8[]CANTXData) 

206 { 

207     uint16 tmp_dtc; 

208     uint8 i; 

209  

210     static uint8 cf_wait_count, cf_block_count, half_dtc_pending, half_dtc_byte, 

cf_index; 

211  

212     // check if NEW RX Message = 0x01 0x02 .... (Service 2 request) 
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213     // This resets the state machine  

214     // HINT: CANRXData[0] is 2 for physical Adressing! 

215  

216     if (CANRXData[0] && 

217         CANRXData[1] == 0x01 && 

218         CANRXData[2] == 0x03) 

219     { 

220         StreamStatus = sm_setup; 

221         CANRXData[0] = 0; //message = read 

222     } 

223  

224     /************************************ 

225                 State Machine 

226     ************************************/ 

227  

228     switch(StreamStatus) 

229     { 

230     /*********************SETUP*********************/ 

231         case sm_setup: 

232             //we can transmit up to 2 complete DTCs in a SF, for   

233             //more we have to do a segmented transfer 

234             if (_EOBD_numDTC <= 2) 

235             { 

236                 StreamStatus = sm_single; 

237                 DTCStreamNumDTC = _EOBD_numDTC; 

238             } 

239             else 

240                 StreamStatus = sm_first; 

241             break; 

242              

243     /*********************Single Frame*********************/     

244         case sm_single: 

245             //{TXen}[PCI][0x43][#DTC][DTC1L][DTC1H][DTC2l][DTC2H][0x55] 

246             CANTXData[1] = ISO15765_SF | (2 + DTCStreamNumDTC * 2); 

247             CANTXData[2] = 0x43; //SID 3 Response 

248             CANTXData[3] = DTCStreamNumDTC; 

249             for (i=0;i < DTCStreamNumDTC; i++) 

250             { 

251                 tmp_dtc = self.ReadDTCFromEEP(i); 

252                 CANTXData[4 + 2*i] = (tmp_dtc >> 8) & 0xFF; 

253                 CANTXData[5 + 2*i] = tmp_dtc & 0xFF; 

254             } 

255             CANTXData[8] = 0x55; 

256             CANTXData[0] = 1; 

257              

258             StreamStatus = sm_finished; 

259             break; 
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260          

261     /*********************First Frame*********************/ 

262         case sm_first: 

263             //{TXen}[PCI][PCI][0x43][#DTC][DTC1L][DTC1H][DTC2l][DTC2H] 

264             DTCStreamNumDTC = _EOBD_numDTC; 

265             DTCStreamLen = 2 + DTCStreamNumDTC * 2; //1DTC = 2 bytes + [0x43][#DTC] 

266             CANTXData[1] = ISO15765_FF | ((DTCStreamLen >>8) & 0x0F); //highest 

nibble 

267             CANTXData[2] = DTCStreamLen & 0xFF; //lower two nibbles 

268             CANTXData[3] = 0x43; //service 3 Response 

269             CANTXData[4] = DTCStreamNumDTC; 

270              

271             DTCStreamNextDTC = 0; 

272             for (i=0;i < 2; i++) 

273             { 

274                 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++); 

275                 CANTXData[5 + 2*i] = (tmp_dtc >> 8) & 0xFF; //MSB first 

276                 CANTXData[6 + 2*i] = tmp_dtc & 0xFF; 

277             } 

278             CANTXData[0] = 1; //transmit 

279              

280             half_dtc_pending = 0; // we have to do that here, since F/C can also ba 

after a "half" DTC 

281             cf_index = 1; //this is the 0th frame... 

282  

283             StreamWaitCounter = 0; //reset timeout 

284             StreamStatus = sm_wait_FC; //now wait for the flow control frame 

285             break; 

286  

287     /*********************Flow Control*********************/ 

288         case sm_wait_FC: 

289              

290             //wait max 2s (200 * 10ms) for F/C frame 

291             if (StreamWaitCounter++ == 200) 

292             { 

293                 StreamStatus = sm_finished; 

294                 break; 

295             } 

296  

297             if (CANRXData[0] == 2&& 

298                 (CANRXData[1] & ISO15765_FC) == ISO15765_FC) //is this a new FC 

frame? 

299             { 

300                 CANRXData[0] = 0;   //ok, we got this 

301  

302                 //===Status=== 

303                 // 0 = OK, go ahead 

304                 // 1 = WAIT; Tester not ready, wait for another F/C frame 
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305                 // 2 = OVERFLOW; Tester buffer too small. Nothing we can do about 

that. 

306                 // N_USDATA.confirm(OVERFLW) is carried out by returning true 

(=finished) 

307                 // 3+ = Reserved. Not supported. 

308  

309                 if ((CANRXData[1] & 0x0F) == 1) 

310                 { 

311                     break;  

312                 } 

313  

314                 if ((CANRXData[1] & 0x0F) >= 2) 

315                 { 

316                     StreamStatus = sm_finished; 

317                     break; 

318                 } 

319                  

320                  

321                 //===Block Size:==== 

322                 //0x00: no further F/C just send the rest 

323                 //0x01-0xFF: nuber of frames before the next F/C negotiation 

324  

325                 Stream_BS = CANRXData[2]; 

326  

327                 //===Separation Time:=== 

328                 //0x00-0x7F (127d) 0..127ms 

329                 //0x80-0xF0 -reserved- 

330                 //0xF1-0xF9 100..900s 

331                 //0xFA-0xFF -reserved- 

332                 //since this code does run every 10ms, we can only do multiples of 10ms ST. 

333                 //<=11ms: no wait; 11-20ms= wait 1 cycle etc... 

334  

335                 Stream_ST = CANRXData[3]; 

336                 if (Stream_ST < 127) 

337                     Stream_ST = Stream_ST/10; 

338                 else if ((Stream_ST > 0xF0) && (Stream_ST < 0xFA)) 

339                     Stream_ST = 0; 

340                 else 

341                     Stream_ST = 12; 

342                  

343                 cf_wait_count = 0; 

344                 cf_block_count = 0; 

345                 if (DTCStreamNextDTC == 2) 

346                     cf_index = 1; //after the First Frame 

347                 else 

348                     cf_index = 0; 

349                  

350                 StreamStatus = sm_CF; 
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351             } 

352             break; 

353              

354     /*********************Consecutive Frame*********************/ 

355         case sm_CF: 

356             //wait lockout 

357             if (cf_wait_count++ == Stream_ST) 

358                 cf_wait_count = 0; //reset wait cycle counter 

359             else 

360                 break;  //wait for next exec cycle 

361  

362             //try to write up to 3 DTC in Message - if there is a half DTC pending, 

363             //offset them by 1 byte to leave room for that. 

364             //if the end of the DTCs is reached before, break out of the loop 

365             for (i=0;i < 3; i++) 

366             { 

367                 if (DTCStreamNumDTC == DTCStreamNextDTC)  

368                     break; //no more DTCs to send, maybe a half one 

369              

370                 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++); 

371                 CANTXData[2 + 2*i + half_dtc_pending] = (tmp_dtc >> 8) & 0xFF; //MSB 

First 

372                 CANTXData[3 + 2*i + half_dtc_pending] = tmp_dtc & 0xFF;  

373                  

374             } 

375              

376             //is there still "half" a DTC to transmit? 

377             if (half_dtc_pending) 

378             { 

379                 CANTXData[2] = half_dtc_byte; 

380                 half_dtc_pending = 0; 

381             } 

382             //we didnt have a half left so we produce one if needed 

383             else if (!(DTCStreamNumDTC == DTCStreamNextDTC)) 

384             { 

385                 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++); 

386                 CANTXData[8] = (tmp_dtc >> 8) & 0xFF; //MSB first 

387                 half_dtc_byte = tmp_dtc & 0xFF; 

388                 half_dtc_pending = 1; 

389             } 

390              

391             CANTXData[1] = ISO15765_CF | cf_index; //PCI 

392             CANTXData[0] = 1; //transmit 

393              

394             cf_index = ++cf_index%16; //0,1..15,0,1,... 

395             cf_block_count++; 

396              
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397             if ((DTCStreamNumDTC == DTCStreamNextDTC) & !half_dtc_pending) 

398             { 

399                 //transfer complete 

400                 StreamStatus = sm_finished; 

401                 break; 

402             } 

403              

404             if (Stream_BS && (cf_block_count == Stream_BS)) 

405             { 

406                 //reached the Block Size Limit - wait for next F/C Frame 

407                 StreamWaitCounter = 0; //reset timeout 

408                 StreamStatus = sm_wait_FC; 

409             } 

410              

411             break; 

412              

413         case sm_finished: 

414             return true; 

415              

416         default: 

417             StreamStatus = sm_finished; 

418     } 

419  

420     return false; //transmission not yet finished 

421 } 

422  

423 /**************************************************************************/ 

424  

425 getFFPID(uint frame, uint PID, uint8[] CANTXdata) 

426 { 

427     //-->See headers!! 

428  

429     uint32 _tmpPID =0; 

430     uint8 i,current_PID,mem_offset,_p,_o; 

431  

432     if (_EOBD_memRdy) 

433     { 

434         mem_offset = 0; 

435         _tmpPID = 0; 

436  

437         switch (PID) 

438         { 

439             case 0x00: 

440             case 0x20: 

441             case 0x40: 

442             case 0x60: 

443             case 0x80: 
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444                 _tmpPID = self.getFFSpecialPID(PID); 

445                 if (_tmpPID) 

446                 { 

447                     //only set current_PID if the returned value (supported PIDs) is 

non-zero 

448                     //empty support bitfields will be reported as not supported and 

therefore wil not be responded to 

449                     current_PID = PID; 

450                 } 

451                 break; 

452  

453             default: 

454                 if (PID == 0x02) 

455                 { 

456                     //PID 0x02 is the FF DTC, which is at offset 0 

457                     current_PID = 0x02; 

458                 } 

459                 else 

460                 { 

461                     //the first 2 bytes are for the FF DTC 

462                     mem_offset = 2;  

463                     //calculate the PID memory position inside a FF 

464                     //this assumes that the PID exists -  The tester is required by 

ISO15031 

465                     //to query this information before making a request. 

466  

467                     current_PID = 0; 

468                     for (i=0; EOBDFFPIDs[i]; i++) //traverse until we hit a 0 

469                     { 

470                         current_PID = EOBDFFPIDs[i]; 

471                         if (current_PID == PID) 

472                             break; 

473                         else 

474                         { 

475                             mem_offset += EOBDPIDSize[current_PID]; 

476                              

477                             //if the next PID in the list is 0 and the current is 

not the one we  

478                             //want, it is not in the list, therefore not supported 

479                             if (EOBDFFPIDs[i+1] == 0) 

480                             { 

481                                 //indicate that the PID is not in the list 

482                                 current_PID = 0;  

483                             } 

484                         } 

485                     } 

486                      

487                 } 
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488                  

489                 //only if supported 

490                 if(current_PID) 

491                 { 

492                     //get the "real" position of the data in the FF/DTC Memory blob 

493                     mem_offset = self.getFFTotalOffset(frame,mem_offset);    

494                          

495                     //bytewise assemble PID from EEP Memory 

496                     for (i=0;i<EOBDPIDSize[PID];i++) 

497                     { 

498                         _p = self.getFFpage(mem_offset); 

499                         _o = self.getFFoffset(mem_offset); 

500                         _tmpPID <<= 8; 

501                         _tmpPID |= EEP_EOBD_mem[_p][_o] & 0xFF; 

502                         mem_offset++; 

503                     } 

504                 } 

505         } 

506          

507         if (current_PID || (PID == 0)) 

508         { 

509             //left-align PID data int the CAN Msg 

510              

511             CANTXdata[1] = ISO15765_SF | (EOBDPIDSize[PID] + 3); 

512             CANTXdata[2] = 0x42; //0x02 + 0x40 

513             CANTXdata[3] = PID; 

514             CANTXdata[4] = frame; 

515             CANTXdata[5] = 0x55; 

516             CANTXdata[6] = 0x55; 

517             CANTXdata[7] = 0x55; 

518             CANTXdata[8] = 0x55; 

519              

520             for(i=0; i < EOBDPIDSize[PID]; i++) 

521             { 

522                 CANTXdata[i+5] = (_tmpPID >> ((EOBDPIDSize[PID] - 1-i)*8)) & 0xFF; 

523             } 

524              

525             CANTXdata[0] = 1; 

526         } 

527         else 

528         { 

529             CANTXdata[0] = 0; 

530         } 

531     } 

532 } 

533  

534 /**************************************************************************/ 
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535  

536 uint getDTCpage(uint DTCAdr) 

537 { 

538     //zero-indexed! 

539     //The DTCAdr Argument is the ABSOLUTE Adress of the DTC in the DTC Storage 

540     //Memory space. It does not account for wrap-around etc. 

541  

542     if (DTCAdr <= MAX_DTC) 

543         return (((DTCAdr) / (EEP_PAGESIZE/2)) + DTC_STARTPAGE); 

544     else  

545         return 1; 

546 } 

547      

548 /**************************************************************************/ 

549  

550 uint getDTCoffset(uint DTCAdr) 

551 { 

552     //zero-indexed! 

553     //The DTCAdr Argument is the ABSOLUTE Adress of the DTC in the DTC Storage 

554     //Memory space. It does not account for wrap-around etc. 

555     //(EEP_PAGESIZE/2) = number of DTCs (2 byte) per Page - works only for even page 

sizes! 

556     // .. * 2 converts the DTC number inside the page to the byte offset 

557     // add 2 since the usable offsets start at 2. (0,1) are command & control. 

558  

559     if (DTCAdr <= MAX_DTC) 

560         return (((DTCAdr) % (EEP_PAGESIZE/2) * 2) + 2); 

561     else  

562         return 2; 

563 } 

564  

565 /**************************************************************************/ 

566  

567 uint getFFTotalOffset(uint frame, uint mem_offset) 

568 { 

569     // get the page on which a certain memory location (offset)  

570     // within a certain frame# (frame) resides 

571  

572     uint8 total_offset, real_frame; 

573  

574  

575     //calculate real frame locaion 

576     real_frame=((_EOBD_firstFFIdx + frame) % _EOBD_MaxFF); 

577  

578     total_offset = real_frame * _EOBD_FFSize + mem_offset; 

579  

580     return (total_offset); 
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581 } 

582  

583 /**************************************************************************/ 

584  

585 bool DTCMemCheck(void) 

586 { 

587     int i; 

588     int _memOK = 1; 

589  

590     for (i=0; i < EOBD_EEP_SIZE; i++) 

591     { 

592         if (!(EEP_EOBD_mem[i][EEP_STATUS] & (EEP_READOK|EEP_WRITEOK))) 

593             _memOK = 0; 

594     } 

595  

596     if (_memOK) 

597         return true; 

598     else 

599         return false; 

600 } 

601  

602 /**************************************************************************/ 

603  

604 bool checkForDuplicateDTC(uint DTC) 

605 { 

606     uint16 i, _tmp_adr, _tmp_DTC; 

607     int _found = 0; 

608  

609     for (i=0; i < EOBD_numDTC; i++) 

610     { 

611         _tmp_adr = self.findDTC(i); 

612         _memPage = self.getDTCpage(_tmp_adr); 

613         _memOffset = self.getDTCoffset(_tmp_adr); 

614         _tmp_DTC = ((EEP_EOBD_mem[_memPage][_memOffset])<<8) | 

(EEP_EOBD_mem[_memPage][_memOffset+1]); 

615          

616         DTCLookupTmpDTC = _tmp_DTC; 

617         DTClookupiterations = i+1; 

618  

619         if (_tmp_DTC == DTC) 

620             return true; 

621     } 

622  

623     DTCLookupNotFound += 1; 

624  

625     return false; 

626 } 
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627  

628 /**************************************************************************/ 

629  

630 uint insertNewDTC(void) 

631 { 

632     //Rollover logic: 

633     //The DTCs are stored in a "ring" 

634     //_numDTC is the actual number of saved DTCs 

635     //internally, the DTCs are stored on a zero-based index 

636     //if _numDTC (the number of stored DTCs) reaches MAX_DTC, the oldest DTCs get 

overwritten. 

637     //_numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0 

638  

639     uint8 _next_free; 

640  

641     if (EOBD_numDTC >= MAX_DTC) 

642     { 

643         _next_free   = _EOBD_firstDTCIdx++; 

644         _EOBD_firstDTCIdx %= MAX_DTC; 

645     } 

646     else 

647     { 

648         _next_free = _EOBD_numDTC++; 

649     } 

650  

651     return _next_free; 

652 } 

653  

654 /**************************************************************************/ 

655  

656 uint insertNewFF(void) 

657 { 

658     //Rollover logic: 

659     //The DTCs are stored in a "ring" 

660     //_numDTC is the actual number of saved DTCs 

661     //internally, the DTCs are stored on a zero-based index 

662     //if _numDTC (the number of stored DTCs) reaches MAX_DTC, the oldest DTCs get 

overwritten. 

663     //_numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0 

664  

665     uint8 _next_free; 

666  

667     if (EOBD_numDTC >= MAX_DTC) 

668     { 

669         _next_free   = _EOBD_firstDTCIdx++; 

670         _EOBD_firstDTCIdx %= MAX_DTC; 

671     } 

672     else 
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673     { 

674         _next_free = _EOBD_numDTC++; 

675     } 

676  

677     return _next_free; 

678 } 

679  

680 /**************************************************************************/ 

681  

682 uint findDTC(uint DTCnum) 

683 { 

684     // Rollover logic: 

685     // The DTCs are stored in a "ring" 

686     // _numDTC is the actual number of saved DTCs 

687     // internally, the DTCs are stored on a zero-based index 

688     // if _numDTC (the number of stored DTCs) is MAX_DTC, the oldest DTCs got 

overwritten. 

689     // _numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0 - So the 

"real" 

690     // DTC Address is offset by _firstDTCIdx and wraps around the top. 

691  

692     int _real_adr; 

693  

694     if (_EOBD_numDTC >= MAX_DTC) 

695     { 

696         _real_adr = (DTCnum + _EOBD_firstDTCIdx) % MAX_DTC; 

697     } 

698     else 

699     { 

700         _real_adr = (DTCnum); 

701     } 

702  

703     return _real_adr; 

704 } 

705  

706 /**************************************************************************/ 

707  

708 uint ReadDTCFromEEP(int DTCnum) 

709 { 

710     uint16 _tmp_adr, _tmp_DTC; 

711  

712     if(EOBD_memRdy) 

713     { 

714         if (DTCnum < EOBD_numDTC) 

715         { 

716             _tmp_adr = self.findDTC(DTCnum); 

717             _memPage = self.getDTCpage(_tmp_adr); 

718             _memOffset = self.getDTCoffset(_tmp_adr); 
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719          

720             _tmp_DTC = ((EEP_EOBD_mem[_memPage][_memOffset])<<8) | 

(EEP_EOBD_mem[_memPage][_memOffset+1]); 

721             return _tmp_DTC; 

722         } 

723         else 

724             return 0; 

725     } 

726     else 

727         return 0; 

728 } 

729  

730 /**************************************************************************/ 

731  

732 uint getFFpage(uint abs_mem_offset) 

733 { 

734     return ((abs_mem_offset / EEP_PAGESIZE) + FF_STARTPAGE); 

735 } 

736  

737 /**************************************************************************/ 

738  

739 uint getFFoffset(uint abs_mem_offset) 

740 { 

741     //add 2, since the usable offsets start at 2. 

742     //0,1 are status/command bytes 

743  

744     return ((abs_mem_offset % EEP_PAGESIZE) + 2); 

745 } 

746  

747 /**************************************************************************/ 

748  

749 uint getFFSpecialPID(uint PID) 

750 { 

751     uint8 i;  

752     uint32 tmp_pid = 0; 

753  

754     switch (PID) 

755     { 

756         //case 0x00,0x20,0x40,0x60,0x80: 

757         //these PIDs bit-encode the other available PIDs 

758         //so we walk through the EOBDFFPIDs list and set the bits accordingly 

759         case 0x00: 

760             //PID 2 is always supported 

761             tmp_pid = 0x40000000; 

762         case 0x20: 

763         case 0x40: 

764         case 0x60: 
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765         case 0x80: 

766             // The last byte of EOBDFFPIDs has to be 0, or this will hang 

767             for (i=0; EOBDFFPIDs[i]; i++) 

768             { 

769                 //if PID is within the PID's encoded range (PID+1...PID+0x20) 

770                 //flip on a bit at it's relative position (MSB = bit0) 

771                 if ((EOBDFFPIDs[i] > PID) && (EOBDFFPIDs[i] <= (PID + 0x20))) 

772                 { 

773                     tmp_pid |= 1<<(32 - EOBDFFPIDs[i] + PID); 

774                 } 

775  

776                 //if at least one PID above the current range exists, 

777                 //set the last bit to indicate that another PID index is available.  

778                 if(EOBDFFPIDs[i] > (PID + 0x20)) 

779                     tmp_pid |= 0x00000001; 

780             } 

781             break; 

782         default: 

783             break; 

784     } 

785  

786     return tmp_pid; 

787 } 

 

Listing 8: EOBD_bytesplit  implementation code 

01 return  (value >> (numbyte*8)) & 0x000000FF; 

 

Listing 9:EOBD_assemble_canArray implementation code 

01 //the CANarrayPtr Argument provides a pointer to the Array's  

02 //Memory Location when connected to the GET port of an Array 

03  

04 CANarrayPtr[0] = NewData; 

05 CANarrayPtr[1] = Data0; 

06 CANarrayPtr[2] = Data1; 

07 CANarrayPtr[3] = Data2; 

08 CANarrayPtr[4] = Data3; 

09 CANarrayPtr[5] = Data4; 

10 CANarrayPtr[6] = Data5; 

11 CANarrayPtr[7] = Data6; 

12 CANarrayPtr[8] = Data7; 

Listing 10: CANremap OBD transmit code 

01 /*************************************************************************** 

02 * EOBD TxMOb 0x7E8 
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03 ****************************************************************************/ 

04 if (EOBD_TXCAN[0]) //NewMsg Flag 

05 { 

06  DataT96[0] = EOBD_TXCAN[1]; 

07  DataT96[1] = EOBD_TXCAN[2]; 

08  DataT96[2] = EOBD_TXCAN[3]; 

09  DataT96[3] = EOBD_TXCAN[4]; 

10  DataT96[4] = EOBD_TXCAN[5]; 

11  DataT96[5] = EOBD_TXCAN[6]; 

12  DataT96[6] = EOBD_TXCAN[7]; 

13  DataT96[7] = EOBD_TXCAN[8]; 

14   

15  EOBD_TXCAN[0] = 0; 

16  EOBD_TXFlag = 1; 

17 } 

 

Listing 11:CANremap receive Code 

01 /*************************************************************************** 

02 * ID 7DFh - EOBD Functional RX Address 

03 ****************************************************************************/ 

04  

05 if (EOBD_RXFlag_F) 

06 { 

07  EOBD_RXCAN[1]     = DataR112[0]; 

08  EOBD_RXCAN[2]     = DataR112[1]; 

09  EOBD_RXCAN[3]     = DataR112[2]; 

10  EOBD_RXCAN[4]     = DataR112[3]; 

11  EOBD_RXCAN[5]     = DataR112[4]; 

12  EOBD_RXCAN[6]     = DataR112[5]; 

13  EOBD_RXCAN[7]     = DataR112[6]; 

14  EOBD_RXCAN[8]     = DataR112[7]; 

15  EOBD_RXCAN[0]     = 1;  //NewMsg Flag 

16  EOBD_RXFlag_F     = 0; 

17 } 

18  

19 /*************************************************************************** 

20 * ID 7Enh - EOBD Physical RX Address 

21 ****************************************************************************/ 

22  

23 if (EOBD_RXFlag_P) 

24 { 

25  EOBD_RXCAN[1]     = DataR113[0]; 

26  EOBD_RXCAN[2]     = DataR113[1]; 

27  EOBD_RXCAN[3]     = DataR113[2]; 

28  EOBD_RXCAN[4]     = DataR113[3]; 
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29  EOBD_RXCAN[5]     = DataR113[4]; 

30  EOBD_RXCAN[6]     = DataR113[5]; 

31  EOBD_RXCAN[7]     = DataR113[6]; 

32  EOBD_RXCAN[8]     = DataR113[7]; 

33  EOBD_RXCAN[0]     = 2;  //NewMsg Flag 

34  EOBD_RXFlag_P     = 0; 

35 } 

 


