

Diplomarbeit

Entwicklung und Implementierung von

OBD Funktionen für das AVL Steuergerät

AVL RPEMS

Lukas Raschendorfer

Institut für technische Informatik

Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer

Betreuer: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Graz, im November 2013

In Kooperation mit:

AVL List GmbH

I

Kurzfassung

Um die Entwicklung von neuen Motor- und Antriebskonzepten zu unterstützen hat die

AVL List GmbH eine eigene Motor- bzw. Fahrzeugsteuerung entwickelt, die AVL RPEMS.

Diese Steuerung wird in Motor- und Fahrzeugprototypen verwendet, um neue Funktiona-

litäten zu testen ohne dafür auf die Hilfe eines Industriepartners im Bereich Motorelekt-

ronik angewiesen zu sein.

Eine Funktion, die bisher noch im Funktionsumfang der RPEMS fehlte, war die Möglichkeit

Diagnosetätigkeiten außerhalb der Entwicklungsumgebung durchzuführen – ein Feature,

das besonders bei Systemen in Kundenhand wichtig ist.

Das Ziel dieser Arbeit ist es, eine solche Diagnosefunktion in das RPEMS Softwarepaket zu

integrieren.

In einer Evaluierung werden verschieden Konzepte bezüglich Funktionalität, Kosten und

Wartungsaufwand verglichen, wobei sich eine Implementierung des OBD II Diagnosepro-

tokolls als die praktikabelste Lösung herausstellt.

Die Standards, auf denen OBD II aufbaut werden dann untersucht, um herauszufinden,

welche Teile für diese spezielle Aufgabe relevant sind. Danach wird die Architektur der

bestehenden Software analysiert um die Interfaces zum Diagnosesystem festzulegen und

ein Layout der Diagnosesoftware zu definieren, welches konsistent mit dem Rest des Sys-

tems ist.

Die fertige Implementierung wird erst mit üblichen Diagnosetools getestet und schließlich

noch die Standardkonformität mit Hilfe von automatisierten Tests nachgewiesen.

II

Abstract

To assist the development of engine and drivetrain concepts, AVL List GmbH has devel-

oped its own Engine/Vehicle Control unit, the AVL RPEMS. This unit is used on prototype

engines and vehicles to test new functionality without having to resort to an industry

partner for the control system.

A function that was still missing from the RPEMS system was the ability to do diagnostics

independent from the development environment – a feature especially important for sys-

tems in customer hands. This thesis’ goal is to integrate such a system into the existing

RPEMS software package.

In an evaluation of possible concepts to implement diagnostics, different solutions are

compared in price, functional range, and support effort. From this, an implementation of

the OBD II diagnostic protocol emerges as the most feasible solution.

The standards relating to OBD II are examined to determine which parts are relevant to

this specific task. The architecture of the existing software system is then analyzed to de-

termine the interfaces to the diagnostic system and to define a layout of the diagnostic

module that is consistent with the rest of the system.

The finished implementation is then tested against common diagnostic tools as well as

verified to be compliant with the standard using automated testing.

III

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und in-

haltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

 (Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the de-

clared sources / resources, and that I have explicitly marked all material which has been quoted

either literally or by content from the used sources.

 date (signature)

IV

Table of contents

List of Figures .. VI

List of Tables .. VIII

1 Introduction .. 1

1.1 Motivation and Goal ... 1

1.2 Document Structure .. 2

2 Overview of Diagnostic systems .. 3

2.1 History of OBD ... 3

2.2 Situation in Europe / EOBD .. 4

2.3 Future developments, WWH and UDS ... 5

2.4 OBD II standards ... 5

2.4.1 Applicable standards ... 5

2.4.2 OBD II Connector .. 7

2.4.3 CAN Communication ... 8

2.4.4 The generic tester ... 8

2.4.5 Manufacturer-specific extensions to OBD II .. 9

2.4.6 ISO 15765-2 Transport Protocol (ISO-TP) ... 9

2.4.7 The OBD II standard services in detail .. 11

2.5 The CAN Bus ... 20

3 Concepts ... 27

3.1 Present scenario .. 27

3.2 External data logger ... 27

3.3 AVL specific software solution .. 28

3.4 OBD II Diagnostics Support .. 29

3.5 Rating matrix .. 30

4 Design.. 32

4.1 Specification AVL RPEMS Future ... 32

4.2 Requirements for the OBD II implementation .. 32

4.3 Toolchain .. 33

4.4 Current Architecture of the RPEMS FUTURE System .. 35

V

4.4.1 Task scheduler ... 35

4.4.2 Drivers ... 36

4.4.3 Data Consistency ... 37

5 Implementation ... 40

5.1 Modifications to existing Software .. 40

5.1.1 CAN Software Stack ... 40

5.1.2 EEPROM Driver ... 42

5.2 New Software Modules ... 44

5.2.1 Important Shared OBD variables, constants and calibration tables.......................... 44

5.2.2 The OBD State Machine .. 44

5.2.3 The OBD Remapper ... 45

5.2.4 The OBD Persistent Storage Interface ... 47

5.2.5 The OBD Vehicle Information Interface .. 54

5.2.6 The OBD Debouncer .. 56

5.3 Diagnostics Implementation example .. 57

5.4 Architecture of the OBD subsystem .. 58

5.4.1 Timing ... 58

6 Testing, Results and Outlook .. 61

6.1 Test Setup .. 61

6.2 Early Testing ... 62

6.3 Communication tests ... 63

6.4 Systematic testing ... 65

6.5 Conclusion and Outlook ... 66

Bibliography ... 67

Appendix ... 70

Appendix 1: List of Abbreviations ... 71

Appendix 2: CANoe.DiVa Test Specification .. 72

Appendix 3: CANoe.DiVa Test Results ... 73

Appendix 4: Software Module Block Diagrams .. 74

Appendix 5: Source Code .. 83

VI

List of Figures

Figure 2-1: OBD II standards and OSI Layers .. 6

Figure 2-2: OBD connector schematic (female, facing front) ... 7

Figure 2-3: OBD connector in vehicle ... 7

Figure 2-4: ISO-TP single and multiple frame communication ... 9

Figure 2-5: KWP2000 communication .. 12

Figure 2-6: KWP2000 application layer message ... 12

Figure 2-7: DTC Encoding ... 15

Figure 2-8: ISO 11898 in the OSI model .. 21

Figure 2-9: Schematic of a typical CAN transceiver .. 21

Figure 2-10: Typical CAN Bus signal levels .. 22

Figure 2-11: Composition of a CAN frame .. 23

Figure 2-12: CAN arbitration example ... 23

Figure 2-13: CAN error states .. 25

Figure 3-1: current diagnostic scenario .. 27

Figure 3-2: Data Logger System Overview ... 28

Figure 3-3: Proprietary diagnostic system overview .. 29

Figure 3-4: OBD II diagnostics system overview ... 29

Figure 4-1: AVL RPEMS toolchain .. 33

Figure 4-2: ASCET component hierarchy ... 34

Figure 4-3: RPEMS driver structure .. 36

Figure 4-4: Data becoming inconsistent as result of a race condition .. 37

Figure 4-5: Avoiding the race condition .. 38

Figure 4-6: RTA task priority scheme .. 38

Figure 4-7:cooperative scheduling example ... 39

Figure 5-1: Block diagram of the CAN stack .. 40

Figure 5-2: Block diagram of the modified CAN stack ... 42

Figure 5-3: EEPROM page structure ... 43

Figure 5-4: main OBD state flow diagram .. 45

VII

Figure 5-5: usage of the ASCET variable model by the OBD remapper.. 46

Figure 5-6: OBD persistent storage memory organization ... 48

Figure 5-7: persistent storage element allocation logic ... 49

Figure 5-8: "Clear Memory" Program Flow ... 49

Figure 5-9: "Store DTC" Program Flow .. 50

Figure 5-10: "Read DTC" Program Flow ... 51

Figure 5-11: deferred DTC storing .. 51

Figure 5-12 : Program flow for storing and retrieving FF data ... 53

Figure 5-13: ISO-TP state flow .. 54

Figure 5-14: Debouncer behaviour ... 57

Figure 5-15: Exemplaric implementation of trottle pedal diagnostics... 57

Figure 5-16: OBD software structure ... 58

Figure 5-17: OBD response time .. 60

Figure 6-1: Test Hardware Setup ... 61

Figure 6-2: INCA I Experiment showing data from the OBD remapper 63

Figure 6-3: CANalyzer used for communication tests ... 64

Figure 6-4: Successful DTC readout using the Autel scan tool ... 64

Figure 6-5:Torque App displaying data from OBD II services 02H 03H and 09H 65

Picture sources are indicated in footnotes where appropriate.

Figures without reference were created by the author.

VIII

List of Tables

Table 2-1: OBD connector pinout ... 7

Table 2-2: ISO-TP frame types ... 10

Table 2-3: ISO-TP frame structure ... 10

Table 2-4: Flow Control Flag values .. 11

Table 2-5: Separation Time encoding .. 11

Table 2-6: Physical and Functional Addressing ... 11

Table 2-7: Service 1 Request .. 13

Table 2-8: Service 1 Response ... 13

Table 2-9: Service 1 Supported PIDs Response ... 14

Table 2-10: Service 2 Request ... 14

Table 2-11: Service 2 Response .. 15

Table 2-12: Service 3 Request ... 16

Table 2-13: Service 3 Response .. 16

Table 2-14: Service 4 request .. 16

Table 2-15: Service 4 response ... 16

Table 2-16: Service 4 negative response... 17

Table 2-17: Service 6 request .. 17

Table 2-18: Service 6 Response .. 18

Table 2-19: Service 8 request .. 19

Table 2-20: Service 8 Response .. 19

Table 2-21: Service 9 Request ... 19

Table 2-22: Service 9 Response .. 19

Table 2-23: CAN Bus signal levels .. 22

Table 2-24 : Bit stuffing example ... 24

Table 3-1: Concept rating matrix ... 31

Table 5-1: List of INFOTYPES .. 55

Table 5-2: processes needed to answer an OBD request ... 59

Table 6-1: Test Hardware .. 61

Table 6-2: Test Software .. 62

Introduction 1

Chapter 1

1Introduction

One of the business areas of AVL List GmbH (hereafter AVL) is the development of engines

and engine control strategies for customers (mostly automotive OEMs). In the later phases

of a development project the engine has to run on an engine dynamometer in order to

advance mechanical and thermodynamic development. To actuate the ignition and injec-

tion systems of modern engines, an electronic control unit is required. In production,

ECUs, from e.g. Bosch and Siemens, are used but this is not straightforward possible in the

development phase. Many projects, especially ones with exotic or novel mechatronic con-

cepts or innovative control strategies, require corresponding functions within the control

system. These functions can only be implemented by the ECU vendor – a process associat-

ed with significant costs and lead time - and therefore not suitable for a system in devel-

opment.

For this reason AVL in-house developed a bespoke control unit – the AVL RPEMS Future

(Rapid Prototyping Engine Management System, hereafter RPEMS), a system where AVL

has full control over both hard- and software and is thence able to implement new func-

tions in a short timeframe. Because of the versatility this system provides, it can both be

used as engine management and as VCU (Vehicle Control Unit) for vehicles with alterna-

tive powertrains (e.g. plug-in hybrids)

As a part of development projects, demonstrator vehicles are built on a regular basis and

are used to calibrate and evaluate new engines and strategies in a real-world environment.

These vehicles are not only used by the development engineers but often also by the cus-

tomers and, especially with very innovative concepts, these vehicles get to be presented

on trade shows and conferences.

It lies in the nature of a prototype that every now and then a problem appears that effec-

tively disables the demonstrator vehicle. If there is no developer with the required special-

ized soft- and hardware present it is very difficult to correctly diagnose the problem and, if

possible, get the vehicle working again.

For this reason AVL was looking for a possibility to perform simple diagnostics on a

RPEMS that do not require the deployment of expensive calibration software and trained

experts.

1.1 Motivation and Goal

As a mechanical engineer it may seem surprising for me to take on topic centered almost

entirely on electronics and software. Indeed, an interest and knowledge in these topics is

not very common among students of mechanical engineering, so my limited experience as

Introduction 2

an electronics hobbyist predating my studies at TU Graz was enough to put me in the posi-

tion of “Head of Electronics” on the TU Graz Racing Team1. There, in a steep learning

curve, I came in contact with a number of automotive electronic components and control

systems. This intensified my interest in the topics of electronics and (embedded) software

development, so I began taking courses intended for students of telematics and also con-

tinued to work on applications of electronic systems in motorsport.

Working on the topic of diagnostics at AVL provided the opportunity to get a glimpse of

the development and inner functioning of modern automotive ECUs, after I had been

working with them as end user for some time.

The goal of this thesis was to develop a practical diagnostic solution on the AVL RPEMS

ECU for use in the field while deepening my understanding of automotive embedded sys-

tems development.

The resulting solution should be easy to use, lightweight and robust and enable users to

quickly diagnose problems with RPEMS units on-site. Ultimately, this should reduce down-

time and support workload for the development engineers, because simple defects can be

detected and solved without remote assistance.

1.2 Document Structure

This document describes the design and implementation of the OBD II diagnostic protocol

on the AVL RPEMS in five chapters.

Chapter 2 depicts the historical and technical background of the OBD II protocol and gives

an introduction to the fundamentals of CAN communication and real time systems.

The process leading up the decision to use the OBD II protocol to address the need for di-

agnostics on the RPEMS as well as competing solutions are described in chapter 3.

The existing software and hardware system and the design choices made on that basis are

characterized in chapter 4.

Chapter 5 details the resulting implementation and presents the individual software com-

ponents created for this project.

An exemplary usage scenario, test results and an outlook of possible future work can be

found in chapter 6

1 TU Graz Racing is a student club competing in the international Formula SAE Series and supported by TU
Graz

Overview of Diagnostic systems 3

Chapter 2

2Overview of Diagnostic systems

This chapter gives an overview over current on-board diagnostic systems, focusing on

OBD II, and the associated standards and regulations.

2.1 History of OBD

Contrary to popular opinion it is not European but US authorities who are leading in emis-

sion and OBD legislation. Special attention deserves California’s CARB, which was and still

is leading in the definition of many emission regulations, including OBD.

In 1940 California’s population had already crossed the seven million mark. It is notewor-

thy that at the same time there were already 2.8 million vehicles registered which covered

over 38 billion kilometers per year. [1]

Due to the special geographic and climatic conditions around the city of Los Angeles, it is

especially vulnerable to the “SMOG” phenomenon (a portmanteau of “smoke” and “fog”),

which is described as drastically increased concentration of air pollutants with simultane-

ously occurring decreased vision.

This phenomenon already led to first SMOG occurrences in 1943, which were rather seri-

ous with people suffering from smarting eyes, respiratory discomfort, nausea, and vomit-

ing. [2] Also, visibility was less than a hundred meters.

Shortly thereafter, the “Bureau of Smoke Control” was founded and newer studies sug-

gested that state-wide measures were needed.

In 1959 California‘s Department of Health set statewide quality standards for air quality

including the concentration of sulfur dioxide, nitrogen dioxide, carbon monoxide and par-

ticulate matter.

1960 the “Federal Motor Vehicle Act of 1960” was enacted, which required federal re-

search to address air pollution from motor vehicles. [3]

Already 1961 the first technological solution for emission reduction was presented, the

positive crankcase ventilation (PCV). It made sure that blow-by gasses containing hydro-

carbonate emissions would not be ventilated to the environment uncontrolled but would

be withdrawn from the crankcase and returned to the combustion process together with

fresh air and fuel.

1967 the “California Air Resources Board” merged multiple organizations and elaborated

multiple, at this time, unique emission requirements for motor vehicles. [4]

After a slew of new regulations in the 70s and 80s had been successful in improving air

quality, the focus was set on a new problem – maintaining the emission quality over a ve-

hicle lifetime.

Overview of Diagnostic systems 4

Until then, only the emission behavior of factory-new vehicles had been regulated, but due

to modifications, maintenance, defects or wear it can quickly worsen. Monitoring of the

emission behavior was deemed necessary. There are several possibilities to guarantee

emission quality in the field:

 Periodical tests by the authority

 Self-diagnosing vehicles + control by the executive

 Self-diagnosing vehicles + control by the executive + periodical field tests

After pursuing the first solution with a mandatory bi-annual check in 1984 („CA SMOG

Check Program“), finally the third solution became policy in 1988 when model year (MY)

1994 and later vehicles were required to have on-board computer systems that continu-

ously monitor the emission performance of the vehicle and alert the driver if problems

arose. Additionally, the authorities would do spot checks to ensure the systems were

working as intended.

Integrated diagnostic systems were already required in the Smoke-Check directive from

1984 (OBD-I), which were introduced with the 1988 MY. These Systems should monitor

emission-relevant systems, detect and store malfunctions and also activate a warning light

if they do. The interface for accessing the fault memory was not standardized and was

usually implemented by blink-codes.

The diagnostic system mandated from the MY 1994 (OBD II) required a correlation be-

tween the faults and the actual vehicle emissions. It should not only ensure the correct

function of all involved systems but also monitor the chemical, mechanical, etc. functioning

of all emission related systems by the means of “indirect” tests. An example for this would

be monitoring the catalytic converter efficiency by means of an oxygen sensor both before

and after the converter. [5]

If a fault is detected an OBD II compliant vehicle can not only store the fault itself but also

the boundary conditions at the time of its occurrence.

Additionally, the OBD II standard defined the functional range and interface of a standard-

ized tool (OBD Scan Tool) which is able to communicate with the vehicle’s fault memory

and e.g. display the stored fault codes. Thanks to also standardized fault codes this also

works across vehicle makes and models.

2.2 Situation in Europe / EOBD

Europe did not have legislation requiring standardized OBD up until the 2000s, however

the introduction of increasingly complex microcomputer systems in vehicles necessitated

diagnostic functions e.g. for end-of-line programming and in-shop diagnostics. Some of the

technologies developed for this purpose (K-Line, KWP2000, and CAN) were then integrat-

ed into legislated OBD. Some vehicles, which were also sold on the North American mar-

ket, (mainly from big manufacturers), were already OBD II compliant before this was re-

quired in Europe.

Overview of Diagnostic systems 5

With the introduction of the EURO4 [6] emission regulations, OBD (in the form of EOBD)

became mandatory for new vehicles in Europe starting with model year 2001 (gasoline

engine) and 2004 (Diesel engine). The underlying technical standards, and thus the sup-

ported services and functional range are in all major regards identical to their OBD II

counterparts. The remaining differences are mainly to be found in the mandated monitors.

For example, the idle speed, fuel tank leakage and secondary air system only have to be

monitored under US legislation. [7] With the ratification of newer legislation (Euro 6) the

gap will be closed even further (see also 2.3). [8]

2.3 Future developments, WWH and UDS

In an effort to separate the diagnostic application from the transport protocol (e.g. KWP

2000, CAN/ISO-TP) the standard ISO 14229 - Unified Diagnostic Services (UDS) was creat-

ed. It works partially similar to the OBD II diagnostic services, albeit with a much bigger

functional range. [9] Nevertheless, it has not yet superseded the legacy protocols in OBD

since legislative regulations still require their support.

In contrast to OBD, UDS is session-based. This means that the UDS server (meaning the

ECU) has multiple sessions (states), which offer different services. While the default ses-

sion has to just support session control, ECU reset and fault memory access, other sessions

allow direct access to ECU memory and parameters, programming the ECU’s flash memory

and even establishing an encrypted session for security related tasks.

Another effort currently underway would be the World Wide Harmonized (WWH) – OBD.

It focuses on the separation of regulations regarding OBD from the specific emission regu-

lations. The type of diagnostics performed and the diagnostic interface would be regulated

by WWH-OBD while the emission thresholds would be defined by local legislation. The

standard ISO 27145 has been created for this purpose. The technology used will be UDS

over CAN and other interfaces (e.g. Ethernet), incorporating the existing definitions for

fault codes and data items SAE J1979-DA and SAE J2012-DA to support a smooth transfer

from existing standards. [5]

2.4 OBD II standards

2.4.1 Applicable standards

The function and functionality of OBD II is completely covered by several ISO standards,

most of which are based on SAE standards. Since OBD II supports multiple physical media

(K-Line, PWM, CAN) the standards describing them have to be considered as well. This

thesis only covers diagnostics via CAN, so the relevant standards are:

 ISO 11898 – Controller Area Network

 ISO 15031 – Communication between Vehicle and external equipment for emis-

sions-related diagnostics

Overview of Diagnostic systems 6

 ISO 15765 – Diagnostics on Controller Area Network (CAN)

 SAE J1979-DA – Digital Annex of E/E Diagnostic Test Modes (PID definitions)

 SAE J2012-DA – Diagnostic Trouble Code Definitions

Figure 2-1 shows the relationship between the different standards and also their position
in the OSI model.

Figure 2-1: OBD II standards and OSI Layers2

2 Modified from [22], Figure 2

OSI Layer 7
Application

OSI Layer 6
Presentation

OSI Layer 5
Session

OSI Layer 4
Transport

OSI Layer 3
Network

OSI Layer 1
Physical

OSI Layer 2

Data Link

ISO 15031-5

Emissions-related

diagnostic services

ISO 15031-2,

ISO 15031-5,

ISO 15031-6

Emissions-related

terms, data, DTCs

ISO 15765-2
DoCAN

Transport

protocol
and

network
layer services

ISO 11898-1
CAN

Data link layer

and physical
signalling

ISO 11898-2
CAN

High-speed
medium

access unit

Standardized service

primitive interface

Emissions-related diagnostic services

SAE J1930-DA
Terms, ...

1 : 1

SAE J1979-DA
PIDs, MIDs, RIDs,

INFOTYPES

SAE J2012-DA

DTCs

ISO 15031-1
Emissions OBD

General information
and use case definition

ISO 15765-4
DoCAN

Requirements
for emissions-

related

systems

ISO 14229-2

UDS
Session layer services

ISO15765-4

Overview of Diagnostic systems 7

2.4.2 OBD II Connector

ISO 15031-3 specifies the mechanical and electrical characteristics of a common, manufac-

turer-independent vehicle diagnostics connector with the intention of enabling the owner,

garages and authorities to access any vehicle’s diagnostic systems with a standardized

device. Almost all commercially available testers feature the counterpart as their standard

connector, sometimes with adapters for non-standard connectors (e.g. certain BMW and

Mercedes models predating legislation that mandates the standard connector)

Table 2-1: OBD connector pinout

Pin Function

1 Discretionary 3

2 Bus positive line of SAE J1850 4

3 Discretionary3

4 Chassis ground

5 Signal ground

6 CAN_H line of ISO 15765-4 4

7 K line according to ISO 9141-2 and ISO 14230-4 4

8 Discretionary 3

9 Discretionary 3

10 Bus negative line of SAE J1850 b

11 Discretionary 3

12 Discretionary 3

13 Discretionary 3

14 CAN_L line of ISO 15765-4 4

15 L line according to ISO 9141-2 and ISO 14230-4 4

16 Permanent positive voltage

Figure 2-2: OBD connector schematic (fe-
male, facing front)5

Figure 2-3: OBD connector in vehicle

3 Assignment to this pin is left a t the discretion of the vehicle manufacturer
4 This line may have an alternate assignment besides the diagnostic function
5 Own artwork, based on [24]

Overview of Diagnostic systems 8

Since pin 16 supplies 12 Volts from the car’s battery, testers with moderate power re-

quirements6 supply themselves off the OBD connection and do not need a dedicated power

source.

2.4.3 CAN Communication

As mentioned above, the implementation described in this thesis uses CAN as the physical

medium for diagnostic information which is covered in ISO 15765. There the following

properties are mandated for a diagnostic CAN interface:

 The standard baud rates for diagnostic services via CAN are 250 and 500kBit/s. 7

 The external tester shall be an unterminated node on the bus.

 The CAN message address format can either be 11-bit (standard) or 29-bit (ex-

tended)7

2.4.4 The generic tester

Partly because of the confusion caused by the manufacturer-specific error readout meth-

ods during the OBD I era of emission regulations, OBD II regulations define a generic test-

er, which has to support all of the public (regulated) OBD services, as well as all the regu-

lated communication protocols. This, on one hand, assures the user of such a device, that

the tester will work on any (compliant) vehicle, that it will not damage the vehicle and that

the readouts will be correct. On the other hand, it relieves the developers of the vehicle’s

diagnostic systems of the need to design and test their implementation against multiple,

differently specified, systems. [10]

Since the OBD II implementation on the RPEMS should have the best possible compatibil-

ity, it is assumed that the connected tester does not exceed the functionality described in

[10].

As mentioned above, the generic tester must support all the OBD II standard services –

from the tester’s perspective this means the following minimum functionality: [10]

 Continuously obtaining diagnostic trouble codes (DTCs) from the vehicle, display-

ing either its code, the related descriptive text (specified in SAE J2012-DA), or both

to the user

 Displaying the current values of monitored data (from the data items defined in

SAE J1979-DA) in the required format (e.g. value + unit)

 Displaying the data items in a freeze frame in the SAE J1979-DA specified format

 Results from monitors and tests as described in SAE J1939

6 ISO15031-3 mandates that the 12V supply should be able to source at least 4A, meaning that the test equip-
ment may draw at least 48W of power.
7 The actual speed and address format is determined by the tester during the initialization sequence, only one
combination needs to be supported

Overview of Diagnostic systems 9

 Clearing the DTC, freeze frame and diagnostic test status data and having the user

confirm this operation.

 Displaying OBD status information such as readiness tests and MIL status

2.4.5 Manufacturer-specific extensions to OBD II

Since the OBD II service is mandated on all new vehicles anyway, lots of OEMs have decid-

ed to extend the OBD II services with their own diagnostic services. This is usually done by

defining non-standard PIDs for the standard services (Live Data, Freeze Frame), custom

DTCs or even additional services like component tests. Some of these manufacturer-

specific extensions could possibly add interesting features to the implementation but since

they are only supported by very few and specialized testers and the specifications are hard

to come by and/or very expensive their inclusion was deemed not useful.

2.4.6 ISO 15765-2 Transport Protocol (ISO-TP)

ISO 15765-2 covers the Network Layer (OSI Model Layer 3) services used in diagnostics

via CAN. It describes a network layer protocol for data exchange between nodes on a CAN

network and enables them transmit data in excess of the eight bytes offered by ISO 11898

CAN by segmenting the data if needed:

Figure 2-4: ISO-TP single and multiple frame communication8

8 Taken from [25]

Overview of Diagnostic systems 10

As apparent from Figure 2-4, multiple frame types exist. A “frame” in this context is a sin-

gle CAN message, which encodes the frame type in its first byte.

Table 2-2: ISO-TP frame types

Frame Type
Type
Code

Description

Single 0
This frame type contains the complete payload of the transmission
(up to seven Bytes)

First 1
First frame of a multi-frame segmented transmission (more than
seven bytes). Contains the complete payload size along with the
first bytes of the data.

Consecutive 2 Contains subsequent data of a multi-frame transmission
Flow Con-

trol
3

Response of the receiver to a “First Frame”. It contains the parame-
ters for the transmission of the subsequent frames.

<reserved> 4..15 <reserved>

Table 2-3: ISO-TP frame structure

Bit offset9 0..3 4..7 8..15 16..63

Single 0 Size Data Data Data

First 1 Size Data

Consecutive 2 Index Data Data

Flow 3 FC Flag Block Size Separation Time Data

The “Data” fields in Table 2-3 denote actual “payload” data. Single and consecutive frames

can carry up to seven bytes of data, first frames up to six.

The “Size” field encodes the number of used data bytes (0-7) in single frames, since they

always have a DLC (size) of eight. The unused bytes are padded, usually with 00H or 55H.

Since the type code of the single frame is zero, the complete first byte is identical to <size>

and the frame format can also be interpreted as a simple length-data type encoding.

In a first frame the “size” parameter is allowed to be as high as 4095, its full (unsigned)

range, and denotes the net transmission size, meaning only payload data bytes. This tells

the receiver how many frames it has to expect and how big a buffer it needs to allocate.

Consecutive frames encode an index field into the first byte which can take values between

0 and 15.

The index starts at zero and increments with each frame rolling over to 0 after 15. This

allows the receiver to detect missing (dropped, lost) frames in a transmission. At the start

of a transmission, the first frame is considered the 0th frame and the first consecutive

frame will have the index 1.

9 Motorola format, MSB first

Overview of Diagnostic systems 11

The FC flag encodes a general response (Table 2-4), indicating if the receiver is at all (due

to software or hardware limitations) able to accept a transmission of the size indicated in

the First Frame.

Table 2-4: Flow Control Flag values

FC value Name Description

0 Clear to send Indicates that the receiver is ready for reception

1 Wait

Indicates to the transmitter that the receiver is not yet

ready for reception. The receiver then waits for another

F/C frame.

2 Overflow/abort Indicates that the receiver has to abort the transmission

The “Block Size” (BS) field tells the transmitter how many consecutive frames the receiver

will accept before issuing another flow control frame. This allows receivers to split trans-

missions bigger than their receive buffer size into multiple parts. A value of zero means

that all remaining frames can be sent at once.

The “separation time” (ST) (Table 2-5) tells the transmitter how long it has to wait be-

tween frames to allow the receiver to e.g. run its CAN stacks interrupt code.

Table 2-5: Separation Time encoding

ST Description

0..127 separation time in milliseconds (ms)
F1H..F9H 100..900 microseconds (µs) in 100 µs steps

2.4.7 The OBD II standard services in detail

The services described in ISO 15031-4 are implemented in 10 “services” or “modes” with

an assigned service ID (SID) ranging from 01H to 0AH.

Generally speaking, the services all work in the same way: the tester sends a request and

receives an answer encoded according to ISO 15765-2 from one or more ECUs.

To enable the tester to query either all of the available ECUs or a specific unit, the system

of CAN Message IDs laid out in Table 2-6 is used.

Table 2-6: Physical and Functional Addressing

Sender Receiver CAN Msg. ID Description

Tester All ECUs 07DFH
Functional Addressing – all ECUs listen to
this ID

Tester Specific ECU 07E0H…07E7H
Physical Addressing – Each ECU listens to a
different ID to address it specifically

ECU Tester 07E8H…07EFH
ECU Reply Address – This is the ECU’s phys-
ical address incremented by 08H

Overview of Diagnostic systems 12

The protocol used on the application layer is the KWP2000 (Key Word Protocol 2000)

diagnostic protocol, which is designed so that all communication is initiated by the tester

(Figure 2-5). The tester is therefore referred to as the “client” and the ECU as the “server”.

Communication is started by the tester’s diagnostic application sending a message con-

taining the diagnostic request to ECU over the network. The application layer informs the

diagnostic application on the ECU of the request (indication). The ECU’s response is then

sent back over the network where the tester’s application layer transmits the response to

the tester application (confirm).

Figure 2-5: KWP2000 communication10

Services of the application layer consist of the following parts (Figure 2-6):

 Address information AI

 Service identifier SID

 Parameters, depending on the specific service.

Figure 2-6: KWP2000 application layer message10

Address information is encoded in the message header (CAN ID), the service identifier

(SID) is transmitted in the first byte of the user data11, followed by the parameters.

Depending whether the response is positive or negative, the response user data starts

either with (SID + 40H) or a standard defined error ID (see section Service 04H below).

10 Translated from [9]
11 See ISO 15765-2 Transport Protocol (ISO-TP) (2.4.6), also referred to as “payload”

Address Information User Data

Overview of Diagnostic systems 13

The following sections will detail the services offered by OBD II over CAN, with the first

section, Service 01H, covering many of the fundamentals.

Service 01H
Service 1 provides “live” information. This can be current data from sensors or other

sources, status information about the OBD system and basic capability information. All the

available information is indexed by parameter IDs (PIDs), which are defined in

SAE J1979-DA and referenced by ISO 15031-5.

Table 2-7: Service 1 Request

Byte# Field Example Comment

1 SID 01H live data

2 PID 0CH engine speed

Table 2-7 shows the layout of a request frame. Since the request is only 2 bytes long (SID,

PID), the single frame format is sufficient. The example request is for the engine speed

(rpm), which has the PID 0CH as defined in SAE J1939-DA.

The reply frame shown in Table 2-8 has a similar structure, mirroring the SID and PID

from the request. This theoretically allows a (simpler and more robust) stateless software

design in the tester, as request and response do not need to be correlated. Considering

ISO 15765-4 defines that ECUs shall not respond to unsupported requests (i.e. non-

implemented services, unsupported PIDs), this also makes the protocol more robust

against timing glitches (e.g. responses arriving late).

Table 2-8: Service 1 Response

Byte# Field example comment

1 SID + 40H 41H live data reply

2 PID 0CH engine speed

3
PID Data

35H
3450 rpm

4 E8H

Since the engine speed is encoded in a 16-bit variable, the total transmission (PID, SID,

data) is just 4 Bytes and can be transmitted in a single frame. The size and encoding differs

depending on the PID and can, for later additions to the standard (PID > 65H) exceed the

capacity of a single frame. SAE J1939-DA defines the encoding of PID 0CH as

 (()) ⁄ , effectively meaning that the value is encoded as unsigned 16-

bit integer with a quantization of 0.25 rpm/bit. In this case it would be 35E8H/4 =

13800D/4 = 3450 rpm.

To determine which PIDs a certain ECU supports, the PIDs 00H, 20H, 40H… each return a

32-bit (32D = 20H) bit field, which encodes the support for the 32 PIDs following them. So

Overview of Diagnostic systems 14

PID 00H contains this information for PID 01H to 20H, PID 20H for PID 21H to 40H and so on.

Usually the tester will query 00H first, then, if supported, 20H and so forth. PID 02H is not

supported in service 1.

Table 2-9: Service 1 Supported PIDs Response

Byte# Field example comment

1 SID + 40H 41H live data reply

2 PID 00H Supported PIDs in range 01H..20H

3

PID Data

2CH 2C10 0000H =

1010 1100 0001 0000 0000 0000 0000 0000B

meaning that

PIDs 01H, 03H, 05H, 06H, 0CH are supported

4 10H

5 00H

6 00H

Since, for most services, the tester is required to “know” the supported PIDs it will send a

service 01H request for PID 00H using functional addressing. All ECUs supporting ser-

vice 01H will respond telling the tester not only the supported PIDs but also capacitating it

to enumerate the available ECUs.

Service 02H
Service 02H is mostly identical to service 01H, with the difference that the data included is

not “live” but a snapshot (“freeze frame”) done at a certain point in the past. This point is

usually when a malfunction is detected and an error (“DTC”) is stored in the fault memory.

Service 02H will also provide the error code of the fault that caused the storing of the

freeze frame (PID 02H, which is thus not supported in service 1).

OBD II implementations are only required to store one freeze frame, but it is allowed to

store and retrieve up to 255. Since it is not required, not all testers support the viewing of

additional freeze frames.

Since the ECU may not take a snapshot of all PIDs supported in service 01H, it is required

that the tester queries at least PID 00H to determine the available PIDs in the Freeze

Frame.

The layout of the service 02H request and response frame is almost identical to service 01H,

except that in addition to PID and SID a Freeze Frame number (FFID) has to be supplied.

Table 2-10: Service 2 Request

Byte# Field example comment

1 SID 02H Freeze Frame Data

2 PID 0CH engine speed

3 FFID 00H Freeze Frame #0

Overview of Diagnostic systems 15

Table 2-11: Service 2 Response

Byte# Field example comment

1 SID + 40H 42H Freeze Frame Reply

2 PID 0CH engine speed

3 FFID 00H Freeze Frame #0

4
PID Data

35H
3450 rpm

5 E8H

The valid range for FFID, which corresponds to the number of available Freeze Frames

minus one, cannot be queried. However, if PID 02H (responsible DTC) is queried and the

reported value is 0000H the data reported for this FFID is not valid (no Freeze Frame with

this ID is available).

Service 03H
Service 03H gives access to stored fault codes (diagnostic trouble codes, DTCs). Their

number can be determined by querying service 01H, PID 01H - a maximum of 127 is sup-

ported. The fault codes have a standardized format and meaning, given in SAE J2012-DA

and ISO 15031-6. SAE J2012-DA also specifies certain fault code ranges as “manufacturer

specific”; codes from this range can only be decoded with the knowledge of vehicle make &

model and the manufacturer’s code tables.

Figure 2-7: DTC Encoding

DTCs can only be received “in bulk”; access to individual codes is not possible. Since each

DTC is two bytes in size, a maximum of two DTCs can be encoded in an ISO 15765-2 single

frame transmission. Therefore service 03H replies are usually segmented transmissions.

P 0 1 2 3

Fault Code Digit 3 (0-F)

Subsystem:
0..2 - Fuel & Air Metering
3 - Ignition System
4 - Auxiliary Emission Controls
5 - Vehicle Speed Control & Idle Control
6 - Computer Output Circuit
7..9 - Transmission
A..C - Hybrid Propulsion

Code Type:
0 – ISO/SAE
1 – OEM specific
2 – ISO/SAE
3 – ISO/SAE

System:
0 – Powertrain (P)
1 – Chassis (C)
2 – Body (B)
3 – Network (U)

Fault Code Digit 4 (0-F)

First Byte Second Byte

Two bits each, these
make up the first
nibble

Overview of Diagnostic systems 16

Table 2-12: Service 3 Request

Byte# Field example comment

1 SID 03H Stored DTCs

Table 2-13: Service 3 Response

Byte# Field example comment

1 SID + 40H 43H Stored DTCs Reply

2 numDTC 0EH number of stored DTCs (14)

3
DTC 1

01H
P0123

4 23H

… … … …

28

DTC14
03H

P0328
29 28H

Service 04H
Service 04H is used to clear the ECU’s fault memory. This includes:

 MIL status

 DTCs and number of stored DTCs

 Pending DTCs

 Freeze frame data

 Sensor test data

 Status and results of tests and monitors

 Time and distance counters

Service 04H only provides the possibility for a complete wipe of the fault memory, deleting

specific DTCs or Freeze Frames is not possible. The ECU will respond with a negative re-

sponse message if the memory cannot be cleared for whatever reason.

Table 2-14: Service 4 request

Byte# Field Example Comment

1 SID 04H Clear fault memory

Table 2-15: Service 4 response

Byte# Field Example Comment

1 SID + 40H 44H Clear fault memory response

Overview of Diagnostic systems 17

A negative response frame starts with the NR field, the Negative Response identifier,

which is always 7FH. It is followed by the SID of the service that provoked the negative

response and a Negative Response Code (NRCode). When using ISO 15035 CAN as diag-

nostic connection the only three allowed negative response codes are:

 21H – Busy Repeat Request – The ECU cannot process the request due to load

 22H – Conditions not correct – The requested data is not available under the cur-

rent circumstances

 78H – Request Received Response Pending – The request is supported but the data

is not immediately available.

Table 2-16: Service 4 negative response

Byte# Field Example Comment

1 NR 7FH Negative Response

2 SID 04H Clear Fault Memory

3 NRCode 22H Conditions not Correct

A response code of 22H or 21H aborts the transmission, while 78H means that the response

will be delayed by a maximum of 5000ms. The delay can be extended by re-sending the

negative response frame.

Service 05H
Service 05H provides oxygen sensor test data and is unavailable on implementations which

use the CAN protocol. In these cases it is superseded by service 06H.

Service 06H
Service 6 provides test data from systems that are not /cannot be continuously monitored,

like the catalytic converter.

The request which monitor IDs are supported by a system is similar to the corresponding

request in service 01H. When requesting supported monitor IDs, up to six ranges can be

requested at once, while only one monitor ID is allowed in a regular request.

Table 2-17: Service 6 request

Byte# Field Example Comment

1 SID 06H Monitor Result

2 OBDMID 3DH Purge Flow Monitor

The reply will include one or more monitor test results, depending on which tests are sup-

ported for a given monitor. Each test record contains the monitor and test ID (OBDMID,

S/MDTID) followed by Information about the scaling and unit of the test value as per

SAE J1979-DA. The last six bytes are composed from the actual test result value, and the

associated upper and lower limit, each encoded in 16-bit values. Since the amount of data

Overview of Diagnostic systems 18

requires a segmented transmission, the total number of tests can be derived from the mes-

sage length parameter in the first frame of the transmission. The transmission of the actu-

al value of a test result along with the limits instead of a pass/fail indicator is necessary

since the pass/fail decision depends on all of the tests (one or more might be re-

quired/sufficient). If a test has not been completed at the time of the request, the fields

MINTL, MAXTL and TV read zero.

Table 2-18: Service 6 Response

Byte Field Example Comment

1 SID + 40H 46H Monitor result reply

2

O
B

D
M

ID
R

E
C

1
2

OBDMID 3DH Purge flow monitor

3 TID 01H Test ID

4 UASID 0AH Unit and scaling ID (0.122mV/bit)

5
TV

79H
Test value (7934H = 3.785V)

6 34H

7
MINTL

59H
min. test limit (59A6H = 2.800V)

8 A6H

9
MAXTL

89
max. test limit (89AEH = 4.300V)

10 AE

Service 07H
Service 07H displays “pending” faults. Emission legislation allows certain faults to be “de-

bounced” or “confirmed”, which means, that they may occur multiple times under certain

circumstances before they are confirmed and an entry is generated in the vehicle’s fault

memory (and, depending on the fault, the MIL is lit). Faults that have occurred but not yet

passed this threshold are accessible via this service.

The communication is identical to service 03H, except that a SID of 07H is used.

Service 08H
Service 08H allows the connected tester to control certain on-board systems or tests, for

example actuator tests. As of 10/2011 only two tests were defined in SAE J1979-DA: the

“Evaporative System Leak Test” (not mandated in Europe) and a “Diesel Particulate Filter

Regeneration Request”.

The request which test IDs are supported by a system is similar to the corresponding re-

quest in service 01H.

Both the test request and response frames consist of the SID and the test ID (TID) and can

contain up to 5 bytes of additional data (e.g. for configuring the test).

12 A service 6 response may contain more than one OBDMIDREC, depending on how many tests (TIDs) are
associated with the OBDMID.

Overview of Diagnostic systems 19

Table 2-19: Service 8 request

Byte Field Example Comment

1 SID 08H Request device control

2 TID 02H Particulate filter regeneration

Table 2-20: Service 8 Response

Byte Field Example Comment

1 SID + 40H 48H Request device control reply

2 TID 02H Particulate filter regeneration

Service 09H
Service 9 provides general vehicle information (referred to as “infotypes”), like the VIN

(Vehicle Identification Number), Calibration ID and ECU name.

The request which infotype IDs are supported by a system is similar to the corresponding

request in service 01H.

The vehicle information request frame just contains two data bytes: the SID and the info-

type ID (INFTYP). The response message may contain more than one instance of the re-

quested infotype (e.g. multiple VINs), therefore the third byte contains the number of info-

type instances in the transmission. Since each infotype has a fixed size, the infotype data is

padded with 00H filler bytes.

Table 2-21: Service 9 Request

Byte Field Example Comment

1 SID 09H Request vehicle information

2 INFTYP 0AH ECU name

Table 2-22: Service 9 Response

Byte Field Example Comment

1 SID + 40H 49H Vehicle information reply

2 INFTYP 0AH ECU Name

3 NODI 01H Number of Data Items (1)

4 data 1 45H ‘E’

5 data 2 43H ‘C’

6 data 3 4DH ‘M’

7 data 4 31H ‘1’

8 data 5 2DH ‘-‘

9 data 6 41H ‘A’

10 data 7 56H ‘V’

Overview of Diagnostic systems 20

Byte Field Example Comment

11 data 8 4CH ‘L’

12 data 9 20H ‘ ‘

13 data 10 52H ‘R’

14 data 11 50H ‘P’

15 data 12 45H ‘E’

16 data 13 4DH ‘M’

17 data 14 53H ‘S’

18 data 15 00H

Filler bytes

19 data 16 00H

20 data 17 00H

21 data 18 00H

22 data 19 00H

23 data 20 00H

Service 0AH
Service 10 stores “permanent” DTCs. A DTC usually gets the “permanent” status when it is

confirmed (debounced) and requires the MIL to be lit. It cannot be deleted by service 04H

but is automatically removed when the underlying fault is not detected any more (the re-

moval is debounced, too)

The communication is identical to service 03H, except for the SID of 0AH.

2.5 The CAN Bus

Ever since the introduction of microprocessor-controlled systems in vehicles it was neces-

sary to exchange data between these systems. While the first solutions to this problem

consisted mainly of simple switched lines or analog signals, more complex demands for

off-board diagnostics (e.g. in the workshop) had OEMs looking for manufacturer-

independent solutions for digital data communication.

BOSCH, as one of the leading European manufacturers of electronic control units at the

time, introduced a simple (ISO9141, similar to RS232C/V.24) serial interface.

As the demands on in-car-interconnects rose, BOSCH, together with European OEMs in-

troduced the CAN Bus, which was later standardized as ISO 11898.

The defining properties of CAN as a bus system are:

 Differential signaling

 Speed up to 1 Mbit/s

 Message-oriented event-triggered protocol

 Linear topology

 Multimaster architecture using CSMA/CR

Overview of Diagnostic systems 21

Looking at the OSI Model (ISO 7498-1) for communication systems, ISO 11898 defines

layer 1 (Physical Layer) and layer 2 (Data Link Layer). Layers 3-7 are not defined in

ISO 11898 and are dependent on the specific application.

Figure 2-8: ISO 11898 in the OSI model13

The physical medium for CAN is usually a single twisted pair of wire, optionally shielded,

one wire being the “CAN High” and the other one the “CAN Low” line. Both shielded and

unshielded twisted pair lines are widely used and portray no significant cost impact in

CAN Applications.

Data is transmitted by means of differential signaling, meaning the data is encoded in the

voltage difference between the two wires. This gives the CAN bus excellent immunity

against EMI since interference usually shifts the voltage levels in both conductors of twist-

ed pair wiring (common mode interference) and leaves the differential voltage unaffected.

Figure 2-9: Schematic of a typical CAN transceiver14

13 Redrawn according to [26],[27]
14 Taken from [28]

Physical (1)

Data Link (2)

Network (3)

Transport (4)

Session (5)

Presentation (6)

Application (7)

Logical Link Control (LLC)
 Acceptance Filtering
 Overload notification
 Recovery Management

Medium Access Control (MAC)
 Data encapsulation
 Frame coding (stuffing)
 Error detection/signaling
 Serialization

Physical Signaling
 Bit Encoding
 Bit timing/synchonization

Physical Medium Attachment
 Driver/Receiver characteristics

Medium Dependent Interface
 Connectors/Wires

CAN
Controller

Can
Transceiver

ISO 11898

OSI Layer

mbg613

SLOPE/

STANDBY

1

8

RECEIVER

4

REFERENCE

VOLTAGE

5

DRIVER

PROTECTION

2

7

3

6

VCC

CANH

CANL

GND

Vref

RXD

Rs

TXD

PCA82C251

Overview of Diagnostic systems 22

Figure 2-9 shows the block diagram of a typical High-Speed CAN Transceiver, the

NXP/Philips PCA82C251. It is clearly visible how both transmitter and receiver operate on

the same lines, forcing half-duplex operation. This means that, while any node can both

receive and transmit, it can only do one at a time. The RXD and TXD lines are the digital

serial interface to the microcontroller and usually operate on TTL voltage levels.

The differential side of the CAN Transceiver has two defined states – dominant and reces-

sive. These states are defined by the voltage levels shown in Table 2-23 and Figure 2-10

below.

Table 2-23: CAN Bus signal levels

recessive Dominant

min. typ. max. min. typ. max.

VCANH15 2,5V 7,0V 3,5V 7,0V

VCANL15 -2,0V 2,5V -2,0V 1,5V

VDiff -0,12V 0V 0,012V 1,2V 2,0V 3,0V

Figure 2-10: Typical CAN Bus signal levels

The recessive state, as the name suggests, is the state of the bus when all transmitters are

set passive. Since the transmitter can only push or pull each line in one “direction” (CANL

towards GND, CANH towards VCC), a correctly wired CAN network cannot have transmit-

ters working against each other, leading to possible damage. Also, monitoring the lines

during a transmission allows the transceiver to detect collisions when the line is in its

dominant state despite the transceivers own transmitter being passive.

Transmissions on the CAN bus are datagrams by the name of “frames”; a typical CAN

frame is shown below. Note, that logic one is the recessive state, while logic zero is the

dominant state. Also, the number of bits represents the net length. The physical transmis-

sion may contain additional stuff bits (see Table 2-24).

15 VCANH, VCANL are common-mode voltages, i.e. measured towards the ground of the respective can node.

1,0

1,5

2,0

2,5

3,0

3,5

4,0U [V]

VCANH

VCANL

V D
iff

V D
iff

recessive dominant recessive

Overview of Diagnostic systems 23

Figure 2-11: Composition of a CAN frame16

A transmitter willing to transmit a CAN frame first has to wait for the bus to become reces-

sive for the „Inter Frame Space“ (IFS) time, which is equivalent to three bit times17. Then it

pulls the bus into the dominant state, indicating “Start of Frame” (SOF).

This is followed by eleven bits of message identifier (ID); during this time period the colli-

sion resolution is performed: If the transmitting node detects a “zero” (dominant state)

when transmitting a “one” (recessive state) it stops the transmission by switching to the

recessive state and waits for the next inter frame space to retry. This process is called “ar-

bitration” and integrates a collision resolution with a prioritization mechanism (Carrier

Sense Multiple Access / Collision Resolution – CSMA/CR). Since the logical zero is domi-

nant and “wins” the arbitration, CAN frames with lower ID therefore have higher priority

on the bus system meaning a higher chance of getting transmitted as the next frame.

IFS SOF
ID

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11

Node 1

node 3 loses arbitration
to nodes 1 and 2

Node 3

Node 2

dominant

recessive

node 2 loses arbitration
to node 1

CAN bus

Figure 2-12: CAN arbitration example

The next bit after the ID is the “Remote Transmission Bit” (RTR) which indicates that the

frame is a “Remote Request Frame”. If an extended identifier is used, it becomes the SRR

bit, which is also written dominant and is considered during arbitration.

16 Modified version of [29]
17 “bit time” means the time it takes to transmit a single bit and is calculated as 1/<bit rate >

S
ta

rt
 o

f
fr

a
m

e
1

R
e
m

o
te

 t
ra

n
s
m

is
s
io

n
 b

it

1 0...64

D
a
ta

 f
ie

ld

C
R

C
-D

e
lim

it
e
r

1

re
s
e
rv

e
d

1

Id
e
n
ti
fi
e
r

e
x
te

n
s
io

n
 b

it

1 7

E
n
d
 o

f
fr

a
m

e

A
C

K
-D

e
lim

it
e
r

1

A
C

K
-S

lo
t

1

In
te

r
fr

a
m

e
 s

p
a
c
e

15

C
R

C
C

y
c
lic

 r
e
d
u
n
d
a
n
c
y

c
h
e
c
k
s
u
m

11

ID

M
e
s
s
a
g
e
 i
d
e
n
ti
fi
e
r

Bits 4

D
L
C

D
a
ta

 l
e
n
g
th

 c
o
d
e

1

0

Overview of Diagnostic systems 24

The next bit is the identifier extension bit (IDE); if it is logic one, it indicates that this CAN

frame uses a 29-bit identifier (extended) instead of an eleven-bit (standard) one. If this

would be the case, the IDE Bit is followed by 18 more identifier bits, a replacement RTR bit

and two reserved (dominant) bits. The IDE bit is considered during arbitration. When an

eleven-bit identifier is used, the IDE bit is just followed by one reserved (dominant) bit.

The next four bits, which together with RTR and IDE form the “Control Field”, indicate the

length of the following data section in bytes (DLC). Valid values are 0…8 (Bytes).

The data field consists of the “payload” data (DATA), the actual data that is transmitted by

the CAN frame, and is variable in length, depending on the contents of the DLC field.

The data field is followed by 15 bits of CRC data which uses all the data from SOF to DATA

as input.

A “CRC Delimiter” bit is followed by the acknowledge slot/bit (ACK). Any device on the bus

that correctly received the frame up to this point will pull the bus in the dominant state

and give the transmitter the information that the frame has been received by at least one

node.

After the ACK bit and the “ACK Delimiter Bit” seven recessive bits will follow, those indi-

cate the end of the frame (EOF). After the EOF and an IFS the bus nodes may send another

SOF, starting the next frame.

To make sure that an ID or data sequence consisting of seven consecutive recessive bits

falsely triggers EOF detection, a mechanism called “bit stuffing” is applied to all fields ex-

cept ACK, EOF and the CRC delimiter.

It works by introducing (“stuffing”) an extra bit of inverse polarity after the fifth bit of a

bitstream containing more than five bits of the same polarity, regardless of the polarity of

the next bit in the stream. This can sometimes lead to additional stuffing to be necessary,

as demonstrated in example 2 below.

Table 2-24 : Bit stuffing example

 Example 1 Example 2

Bitstream 01011111010 10100000111101

Stuffed bitstream 010111110010 1010000011111001

Note: 0 = dominant, 1= recessive. Stuff bits are underlined

Besides the standard CAN frame, three “special” frames are specified in the CAN standard:

 Remote Request Frame

 Error Frame

 Overload Frame

Overview of Diagnostic systems 25

A “Remote Request Frame” is a standard frame, in which the RTR bit is set (0) and the “Da-

ta Field” is missing. It indicates to (requests from) another CAN node in the network to

send a standard frame with the indicated ID.

The error frame is used to notify other nodes in the network that a transmission error has

occurred. There are multiple mechanisms to detect errors, e.g. incorrect bit stuffing and

incorrect CRC. If an active network node detects an error, it pulls the bus to the dominant

state for six bit times, starting with the next bit (active error frame). This is detected by

the other nodes on the network which respond themselves by doing the same. Afterwards

the bus is left at the recessive state for eight bits (error frame delimiter) and the commu-

nication restarts with an IFS. Error passive nodes (see below) may only send passive error

frames, which start with six recessive bits so that they can mark their own transmission as

erroneous but cannot disturb the transmission of other nodes. This concept assures that

defects causing transmission errors are confined to the affected node so that it does not

bring down the whole bus.

The overload frame is identical to the (active) error frame; with the exception that the

start of the overload frame is fixed after the last bit of the EOF (i.e. it replaces/overwrites

the IFS)

To prevent a faulty node from blocking the bus by continuously transmitting active error

frames, each node has to implement an error handling and mitigation system.

It is implemented as a state machine consisting of three states, visualized in Figure 2-13:

 Error active (initial state, TX and RX active)

 Error passive (TX and RX active, must not transmit active error frames)

 Bus Off (disconnected from bus)

Figure 2-13: CAN error states

Error Active
reset

Error PassiveREC >= 127 OR
TEC >= 127

REC < 127 AND
TEC < 127

Bus off
Reset *

TEC > 255

*) some implementations have an automatic transition back to this state as specified in the
original BOSCH standard. The ISO implementation does not allow this.

Overview of Diagnostic systems 26

The transition between these states is controlled by the transmit (TEC) and receive (REC)

error counters, which are incremented or decremented according to the following rules:

 Frame received correctly decrement REC by 1

 Receive fault increment REC by 1

 Bit error while sending Error Flag increment REC by 8

 Frame sent correctly decrement TEC by 1

 Transmit fault increment TEC by 8

Concepts 27

Chapter 3

3Concepts

As stated in chapter 1, the goal of this thesis is to integrate diagnostic capabilities into the

RPEMS’ software package. Naturally, diagnostics require not only an ECU that offers the

corresponding capabilities but also an external unit that performs the diagnostics, what

makes it part of the overall diagnostics concept.

Starting with the scenario currently in use, three additional concepts have been developed

and compared on the basis of per-unit deployment cost, maintenance effort and ease-of-

use for the person performing diagnostics.

3.1 Present scenario

Diagnostics are generally performed by monitoring ECU-internal values using the PC-

based software ETAS INCA and a CAN CCP connection.

To interpret the readings, detailed knowledge of the software modules used on the ECU is

needed. Fault events can only be registered / recorded while the PC is connected. Each

additional unit that should have diagnostic abilities requires significant investment in

Hardware and Software Licenses.

Figure 3-1: current diagnostic scenario

Hardware Cost (per unit): high (ETAS CAN card)

Software Cost (per unit): high (ETAS INCA license)

Development effort: none

Maintenance effort: none

Ease of use: low (expert knowledge required for both tools and data analysis)

3.2 External data logger

Each RPEMS could be paired with an external data logger which records CAN data provid-

ed by the ECU. A PC could then be used to download the data from either the logger or the

storage medium it uses (e.g. SD Card) and analyze the data.

The modifications to the RPEMS software would at least include writing the variables and

values intended for logging on the CAN bus. To be human-readable, in most cases a con-

version would need to be performed.

Development PC

CAN Line 0
(CCP, 1000k)

CAN Interface
INCA

AVL RPEMS Future

INCAINCA

Concepts 28

As an example of this class of device the Kvaser Memorator HS/HS and the Vector GL1000.

Both devices are stand-alone loggers need nothing more than a CAN connection and pow-

er. Upon startup, they capture the CAN traffic and save it to an SD Card. Both feature a ring

buffer for continuous long-time recording and configurable event-triggered recording.

Aside from their respective native formats, both loggers (and most competing products)

support standard formats such as CSV18. [11], [12] This allows the data to be read by any

PC with a card reading device and spreadsheet software such as Excel (or even a text edi-

tor). The interpretation of the data however, is still up to the user. Depending on the capa-

bilities of the logger, the data will already be the individual data items in the correct for-

mat or only the raw CAN data, necessitating documentation for conversion.

Figure 3-2: Data Logger System Overview

The hardware cost per unit would be roughly similar to the cost of the ETAS hardware

required for INCA – about $1000. However, no INCA license is needed, instead readily

available software can be used, such as a text editor or excel. Another possibility would be

less expensive generic data analysis software like GEMS GDA pro ($200).

Hardware Cost (per unit): high (CAN logger)

Software Cost (per unit): low (analysis software) to none

Development effort: low (adapt CAN software)

Maintenance effort: low (maintain conversion data or logger configuration)

Ease of use: medium to low (expert knowledge required for data analysis)

3.3 AVL specific software solution

To-be-designed PC Software could replace the basic functionality of ETAS INCA (display

and recording of measurement data) and could also download stored faults from the ECU.

This would waive the need for expensive ETAS hardware and licenses for the diagnostics

PC.

Since PC software development cannot be done by the RPEMS embedded software devel-

opers, it would have to be outsourced to another unit in the company or external contrac-

tor. To estimate the cost for this software solution, it is assumed that the project will con-

tain around 10.000 lines of code (LoC), a typical number for small applications. According

to [13], the development pace for this type of software can be estimated at roughly 2500

LoC/staff month, leading to a 4 man-month development phase for the initial version

18 Comma Separated Values, a format for storing tabular data in plain-text form

Development PC

CAN Line 0
(CCP, 1000k)

AVL RPEMS Future

Data Logger

USB, SD card

Concepts 29

translating to over $10000 in labor cost. If the Software ought to contain “expert

knowledge”, e.g. allowed values and pass/fail thresholds, it has to be continuously adapted

to new functionality on the RPEMS, what considering the many and rapidly evolving ECU

programs would require significant effort and expenditure.

The hardware cost would be a bit lower than in the current scenario, since many available

CAN interfaces are much cheaper than the ETAS interface.

On the ECU side, the amount of changes depends on the architecture of the PC software. If

it were to use CCP, only the fault memory would have to be implemented. If the PC soft-

ware should communicate by a custom protocol, this would have to be implemented, too.

Figure 3-3: Proprietary diagnostic system overview

Hardware Cost (per unit): medium (generic CAN interface)

Software Cost (per unit): medium (high development cost spread over few units)

Development effort: high (implement fault storage and custom protocol)

Maintenance effort: high (maintain ECU and PC side of system)

Ease of use: high (software can be made as end-user friendly as necessary)

3.4 OBD II Diagnostics Support

The OBD II Diagnostic Protocol is implemented as a software module on the RPEMS.

Stored faults and live measurements can be downloaded/displayed using an OBD II/EOBD

compatible tester.

While the initial effort for creating the required ECU software modules is relatively high, it

is only a one-time effort. All the maintenance work (adding new error codes etc.) can be

done by the ECU software developers; since both the communication and the content is

standardized, only one “end” has to be maintained. Compatible devices for data display are

commercially available, as well as software testers for many platforms, including mobile

devices, at a very low cost (starting at about $50). Alternatively, most internet-connected

devices are able to gain diagnostic abilities in a matter of minutes by means of free soft-

ware.

Figure 3-4: OBD II diagnostics system overview

Development PC

CAN Line 0
(CCP, 1000k) Generic

CAN interfaceAVL RPEMS Future

AVL
Software

AVL
Software

OBD II connector

Handheld OBD Tester

CAN Line 3
(OBD II, 500k)

AVL RPEMS Future

Concepts 30

Hardware Cost (per unit): low (generic OBD II tester)

Software Cost (per unit): none (included in hardware cost)

Development effort: high (OBD software module)

Maintenance effort: medium-low (maintain OBD software module integration)

Ease of use: high (every available scanner works, no specialized knowledge needed)

3.5 Rating matrix

The concepts mentioned in 3.1 - 3.4 are summed up in Table 3-1, with the rating criteria

listed for each entry converted tokens, from ⊖⊖ (worst) to ⊕⊕ (best).

With a token sum of +2, the OBD implementation gets the highest overall rating, with the

low per-unit cost as one decisive factor, user-friendliness being the other one.

Therefore it was decided that the diagnostic solution for the AVL RPEMS should be an

OBD II implementation.

Concepts 31

Table 3-1: Concept rating matrix
O

B
D

 I
I

im
p

le
m

en
ta

ti
o

n

ad
d

 m
o

d
u

le
s

fo
r

p
er

si
s-

te
n

t
st

o
ra

ge
 a

n
d

 O
B

D
 I

I

co
m

m
u

n
ic

at
io

n

O
B

D
 c

o
m

p
at

ib
le

 t
es

te
r

/

P
C

-C
A

N
 in

te
rf

ac
e

n
o

n
e

(h
ar

d
w

ar
e

te
st

er
)

o
r

d
ia

gn
o

st
ic

 s
o

ft
w

ar
e

n
o

n
e

⊕

⊕
⊕

⊖
⊖

⊖

⊕
⊕

sp
ec

ia
l s

o
ft

w
ar

e

ad
d

 m
o

d
u

le
s

fo
r

p
er

si
s-

te
n

t
st

o
ra

ge
 a

n
d

 C
A

N

d
at

a
ex

p
o

rt

C
A

N
 –

 P
C

 I
n

te
rf

ac
e

C
u

st
o

m
 A

n
al

ys
is

 S
o

ft
-

w
ar

e

D
ep

en
d

in
g

o
n

 S
o

ft
w

ar
e

fe
at

u
re

s

⊙

⊙

⊖
⊖

⊖
⊖

⊕
⊕

ex
te

rn
al

 lo
gg

er

ad
d

 m
o

d
u

le
 f

o
r

C
A

N
 e

x-

p
o

rt
 o

f
va

ri
ab

le
s

D
at

a
lo

gg
er

w
ir

in
g

d
at

a
an

al
y

si
s

so
ft

w
ar

e
/

d
ri

ve
r

so
ft

w
ar

e

co
m

p
le

te
 E

C
U

 f
ir

m
w

ar
e

d
o

cu
m

en
ta

ti
o

n

⊖
⊖

⊙
/⊕

⊕

⊕

⊖

p
re

se
n

t
sc

en
ar

io

-

E
T

A
S

co
m

p
at

ib
le

 C
A

N

P
C

-C
A

N
 I

n
te

rf
ac

e
(e

.g
.

E
T

A
S

E
S5

8
0

 P
C

M
C

IA

C
ar

d
)

E
T

A
S

IN
C

A

co
m

p
il

ed
 E

C
U

 F
ir

m
w

ar
e

fi
le

s

(H
E

X
 +

 A
2

L
)

co
m

p
le

te
 E

C
U

 f
ir

m
w

ar
e

d
o

cu
m

en
ta

ti
o

n

⊖
⊖

⊖
⊖

⊕
⊕

⊕
⊕

⊖
⊖

SW
 m

o
d

if
ic

at
io

n
s

re
q

u
ir

ed

H
ar

d
w

ar
e

re
q

u
ir

ed

(p
er

 R
P

E
M

S
u

n
it

)

So
ft

w
ar

e
re

q
u

ir
ed

(p
er

 R
P

E
M

S
u

n
it

)

D
o

cu
m

en
ta

ti
o

n
 r

e-

q
u

ir
ed

 f
o

r
d

ia
gn

o
s-

ti
cs

H
W

 C
o

st

SW
 C

o
st

D
ev

el
o

p
m

en
t

M
ai

n
te

n
an

ce

E
as

e
o

f
U

se

Design 32

Chapter 4

4Design

This chapter covers the environment the OBD II software should be integrated into, mean-

ing aspects of the RPEMS hardware, toolchain and existing software that influence the

implementation described in Chapter 5.

4.1 Specification AVL RPEMS Future

The AVL RPEMS Future is the successor to the RPEMS NG (Next Generation) rapid proto-

typing ECU and has been developed to fulfil the needs of modern GDI engine concepts.

Its core is a System on Module (SoM) produced by Phytec based upon Infineon’s TriCore

TC1797 (phyCORE-TC1797), which is mounted on a proprietary motherboard. The moth-

erboard contains the power supply, the required power drivers, signal conditioning, inter-

face components and a number of peripheral devices. The only periphery relevant to this

thesis is the ST M95640-W type EEPROM, which is connected to the SoM by SPI, providing

64kBit of nonvolatile memory.

The main specifications of the phyCORE SoM according to [14] are:

 180MHz MCU clock

 Up to 8Mbyte SRAM

 64MByte Flash

 2 x I²C controllers

 2 x SPI controllers

 2 x RS232 UART with one UART/USB converter

 4 x high-speed CAN interface

 on-board 3,3 V regulators and reset controller

Of the 10 communication channels listed above, the four CAN interfaces and the USB inter-

face of the USB / RS232 converter on the first UART are routed to the ECU main connector.

4.2 Requirements for the OBD II implementation

As presented in Chapter 2, OBD II’s primary focus is monitoring emission-related systems,

which is not the primary objective here. Instead, the focus lies on more general diagnostic

functions, especially:

 Displaying sensor data and other internal values

 Non-volatile incident memory

 Recording boundary conditions to incidents

 Identifying the software/calibration version.

For these reasons the following OBD services were chosen to be implemented:

Design 33

 Service 01H – live data

 Service 02H – freeze frames

 Service 03H – DTC storage

 Service 04H – clear DTCs

 Service 09H – query vehicle information

Since the software package for each RPEMS project is unique (software modules in use,

project specific versions of software modules) the OBD software should be as self-

contained as possible with minimal changes to the environment required. Ideally, it should

only be necessary to import the OBD package into an ASCET library and assign its pro-

cesses to the scheduler to make it work.

The Implementation does not have to be fully OBD II compliant, except for the communica-

tion with the external test tool as it should support any OBD II compliant tester.

Since cooperative multitasking is employed, it is important that the software components

are non-blocking and take up as few CPU time as possible.

4.3 Toolchain

The toolchain used to build the RPEMS software is illustrated in the diagram below:

Figure 4-1: AVL RPEMS toolchain

DAVE is short for Digital Application Virtual Engineer and is a code generator for Infineon

Microcontrollers provided by Infineon. It is designed to help with the generation of driver

and initialization code and is the source of many of the low-level functions inside the

RPEMS Firmware.

ASCET organizes software projects in „databases“. Databases contain a tree structure with

all the software modules inside the database as well as “projects”. Projects contain several

of the software modules inside the database and configuration information that is used to

build the project (Figure 4-2).

DAVE ASCET

generate
Code

RTA/OSEK

cenerate
Code

TASKING

Generate
Code

User Code

Flash Tool

INCA

compile/
link

ECU

RS232

CCP

Design 34

Figure 4-2: ASCET component hierarchy

ASCET supports several different ways of implementing software. The most basic is to

write “raw” C, where no checks additional to those done by the compiler are performed.

However, even in “C” mode, the user code is just the function body and part of a larger,

generated, file that is compiled. ASCET adds the function headers and variable definitions

during code generation to make the implementation compatible with the rest of the envi-

ronment.

Other options of code generation are block diagrams, state diagrams and ESDL, which is a

programming language with a Java-like syntax.

OSEK is a European automotive industry standards effort to produce open system inter-

faces for vehicle electronics. OSEK is an acronym formed from a phrase in German, which

translates as “Open Systems and Corresponding Interfaces for Automotive Electronics”.

The goals of OSEK are to support portability and reusability of software components.

RTA/OSEK is an implementation of a Real Time Operating System based on OSEK stand-

ards, namely AUTOSAR OS SC1 and OSEK/VDX OS V2.2.3. The Code that is generated by it

is also MISRA-C compliant. Its kernel manages task execution, -switching

and -communication and provides optional instrumentation for debugging and timing

analysis.

For this project, Version 5.0.1 has been used.

Tasking VX for TriCore (Version 3.3r1) is used as the macro assembler, C compiler and

linker. It also provides static and runtime libraries to the compiler.

ETAS INCA is a calibration tool that allows reading and writing of internal data (variables,

maps, characteristic curves) on a connected ECU. The communication with the ECU is car-

ried out via Can using the CCP (CAN Calibration Protocol) standard. Since the protocol

works by directly accessing and manipulating the ECU’s memory, INCA needs the compiled

ASCET
Database

Module A

Module B

Module C

Module D

Module A

Module D

Formulae, ...

Project

Function() {…}

Process() {…}

OS Config

Task

Task

Process

Process

Design 35

firmware (.hex file) and a ASAM2 descriptor file containing type information (.a2l file),

which are generated during the compile process.

The “Flash Tool” Software is a small PC Software tool to load compiled firmware onto the

Flash Memory of the TriCore MCU used in the RPEMS. This is done via a serial connection

to the target and is even possible if the firmware currently running on the MCU is non-

responsive.

If a suitable firmware supporting CCP is already flashed on the MCU, it is possible to re-

flash via CAN connection using CCP and INCA on the PC side.

4.4 Current Architecture of the RPEMS FUTURE System

4.4.1 Task scheduler

When starting with a fresh ASCET project for the RPEMS target the only functionality pre-

sent is the one provided by the RTA kernel, the most important of which is the task sched-

uler.

The configuration of the scheduler is directly possible via a GUI provided in ASCETSs pro-

ject editor. The editor is used to define tasks for the scheduler and to assign processes to

tasks.

Typically, there are four types of tasks present in a project:

 Init tasks

 Alarm tasks

 Interrupt tasks

 Software tasks

The Init task is called upon startup and typically contains hardware initialization code. It

offers no scheduling options since it is only called once before the actual scheduling starts.

Several Alarm-type tasks fire periodically at a selectable frequency. Typically there are

tasks present with a period of 0.25, 0.50, 1, 10, 50 and 100 milliseconds. The scheduling

mode is set to cooperative and the highest-frequency task carries the highest priority. All

of the application code processes are assigned to these tasks.

Hardware interrupts are handled by Interrupt-type tasks. Each task is assigned an inter-

rupt vector and has a selectable priority. Usually only one process, the interrupt handler, is

assigned to an interrupt task although it is possible to have multiple processes called by

the interrupt.

The “sync” task is a software task, which means it is can be activated by a system call

somewhere in the application software. The “sync” name is derived from the fact that it is

called synchronous to the revolutions of the combustion engine that is controlled by the

RPEMS. This mode of operation is important for cycle-synchronous processes like injec-

tion, ignition and knock and misfire detection.

Design 36

4.4.2 Drivers

Drivers and the Hardware Software Interface / HAL in general are realized as regular

software modules. The low-level hardware interface that deals directly with the control

registers of the microcontroller is typically comprised of two parts. One part is code gen-

erated by Infineon’s DAvE, which provides appropriately named wrapper functions for

accessing the hardware registers and initialization functions. The second part uses various

processes that reference and call these functions, usually an init process and several cyclic

worker processes.

On top of the driver software there is a remapper process that connects the variables pro-

vided by the low-level driver to application-specific variables performing data conversion

if necessary.

Figure 4-3: RPEMS driver structure

As an example, this is (a simplified version of) how an ADC driver would work:

The low-level driver process is called by the ADC interrupt task and copies the ADC con-

version result register value into global ADC value variables. A periodically called second

process sets the ADC up to capture another sample, therefore setting the sampling fre-

quency.

In a cyclic process the remapper uses the ADC result variables and characteristic curves to

calculate a physical value represented by the digitized value, e.g. temperature or throttle

position and stores the result in another global variable to make it available for e.g. the

load calculation process.

The advantage of this architecture is a high degree of modularization and interchangeabil-

ity. If the source of a certain signal changes, (different ADC channel or from ADC to CAN)

only the remapper(s) have to be adopted, the application software and drivers remain

unchanged. This makes the application software relatively hardware-independent increas-

ing its portability. However, this model of complete abstraction is not ideally suited for all

Remapper Software
Remapper Software
Remapper Software

Low-Level Drivers
Low-Level Drivers
Low-Level Drivers

Remapper Software
Remapper Software

Application Software

Design 37

applications. In chapter 5.1.1 it is shown how the CAN driver has to be modified alongside

with the remapper to provide the functionality needed for the OBD application software.

4.4.3 Data Consistency

With a multitude of processes accessing shared data elements, also known as concurrency

[15], the aspect of data consistency has to be considered, especially in interrupt-driven

systems, where the execution order cannot be predicted during code creation. A common

problem occurring on such systems is that a shared variable is read in multiple locations

in the same process, expecting the result to be the same while an interrupting process

changed the variable, leading to errant, nondeterministic behavior. This type of situation is

known in programming as a “race condition”, defined by the following three

properties: [16]

 Concurrency – at least two control flows are executing in parallel

 Existence of a shared property – a shared “race object” is accessed by the concur-

rent control flows

 Changing of state – at least one of the concurrent control flows alters the state of

the race object

Hence the name race condition, because two processes “race” for access to the race object,

the timing of which determines the outcome of the control flow as illustrated in Figure 4-4.

Figure 4-4: Data becoming inconsistent as result of a race condition

A possible remedy for this situation is, to create working copies for all shared variables at

the beginning of a process and use these private copies for all operations, as demonstrated

in Figure 4-7.

This solution to data consistency is implemented by protected global variables, so-called

“messages”, in ASCET. When using variables declared as messages, copies are automatical-

ly created for each receiving process.

If (x>0)

x=1 x=-1

y=sqrt(x)Process 1

Process 2

Interrupt /
context change

Illegal operation
because process 2
changed x after check

time

Design 38

Figure 4-5: Avoiding the race condition

The message system, however, has a few limitations

 Messages cannot be used in classes

 Messages cannot be used for non-scalar types (arrays, …)

 Messages only offer protection in 1-to-n relations (1 sender, n receivers), for the

case of multiple senders additional resource management is needed to avoid race

conditions leading to the “lost update” problem [17], when concurrent processes

try to change a shared variable.

Messages are used in many of the existing modules of the RPEMS software, although not

exhaustively and consistently. Why this does not lead to problems is apparent when look-

ing at the scheduling algorithm of the RTA/OSEK kernel, taking into account that all pro-

cesses in the RPEMS software are defined as cooperative.

Figure 4-6: RTA task priority scheme19

While cooperative tasks do have the lowest priority, the processes spawned by them will

not be interrupted by of a task with higher priority. The scheduler will wait until the coop-

erative process has finished and interrupt the task to run the higher-priority tasks pro-

19 Taken from [30]

t=x
If (t>0)

x=1 x=-1

y=sqrt(t)Process 1

Process 2

Interrupt /
context change

time

Working copy of x
Is unaffected by
process 2

Design 39

cess(es), then returning to the lower-priority task. In the example below, processes p1 and

p2 belong to Task 1, while processes p3, p4 and p5 belong to Task 2:

Figure 4-7:cooperative scheduling example

While the order in which processes are executed is not predictable on this system, each

process relies on two paradigms:

 A process will not be interrupted by another process, except for interrupts.

 For each task, the processes will be executed in-order, e.g. p1-p2-p3

Since the interrupt-driven driver software is abstracted by scheduled remappers, inter-

rupt processes are also of no concern to the application layer software, only remappers

need to be aware of the possibility of being interrupted.

p1

p2

p3

p4

Pr
oc

es
s

p1

Time
(ms)

p1

p2

p5

p1

p2
...

Task 1
Task 2

Task 1 Task 1
Task 2

p3

p4

p2

p5

Task 1 Task 2 Task 1 Task 2
(cont‘d.)

Task 1
0 10 20

Implementation 40

Chapter 5

5Implementation

This chapter describes the structure and functioning of the OBD II software modules as

well as the changes that had to be made to existing RPEMS software

5.1 Modifications to existing Software

While one of the design aims of the OBD II software was to keep it as self-contained as

possible, some changes to external software were unavoidable. The CAN driver stack had

to be extended with a handshaking mechanism while the EEPROM driver had be config-

ured to allocate additional memory.

5.1.1 CAN Software Stack

Like the other I/O drivers, the CAN Software interface is also composed of a “Low Level”

driver and a remapper.

Figure 5-1: Block diagram of the CAN stack

The TC17xx integrates four hardware CAN interfaces (“nodes”) and 128 memory-mapped

CAN Message object structures (“MObs”), that can be dynamically assigned to the interfac-

es. By setting the ID, acceptance filters and status registers of the MObs, the nodes are con-

figured to listen to the messages their MObs match.

Upon arrival of a new CAN Message, the node that accepted it copies it from the receive

buffer to the “data” field in the corresponding hardware MOb structure.

The “MultiCAN” process periodically copies the contents of the hardware registers of all

MObs configured to receive data into Software MObs. From there MultiCAN copies the

contents of the data field to shared (global) data arrays.

ID:0x7E0 ...

TC17xx
CAN Node x

Receive Buffer

CAN
BUS Hardware

Message Object
Data Structure

Software
Message Object
Data Structure

Shared CAN Data
Array

<phys.Value>
Variables /
Messages

H/W
CAN Stack

10ms cyclic
Process

„CANRemap“ECU Software
Module

Direct access

10ms cyclic process „MultiCAN“

Implementation 41

The “CANremap” process periodically takes the array data and copies it into the appropri-

ate internal ECU variables and messages, thereby being the node where the association

between CAN Data and internal data takes place.

For Internal data that is to be put on the CAN bus, the process works in the exact reverse

order with the exception that MultiCAN also sets a status register of the corresponding

hardware MOb to indicate the message as “to be sent”.

This correlates to the producer-consumer software pattern used in object-oriented pro-

gramming, where the application software and MultiCAN conduct the roles of producer

and consumer and CANremap acts as the pipe.

Using this pattern without a flow control mechanism may result in problems depending on

program timing. [18] The way existing remappers take care of this problem is to act as

what can be described as a single-element LIFO (Last-In-First-Out) buffer, discarding all

but the last element sent by the producer, before the consumer is ready to process the

next element. This solution is viable, since there is no need for synchronization between

producer and consumer and producer data lost between two runs of the consumer, does

not matter, as long as the consumer gets recent data.

The protocol side of OBD II, on the other hand, is entirely dependent on data only being

sent and received in a certain order and a specific number of times (once). Therefore the

CAN stack has to be modified so that end-to-end information about the status of CAN data

(received / read / sending /sent) can be conveyed.

This is accomplished by implementing a simple flow-control mechanism, using binary

semaphores as suggested in [18].

In the receiving direction, the “NEWDAT” bit provided by the hardware CAN stack for each

MOb has to be monitored. It is set whenever the CAN controller copies a new message

from the receive buffer into the MOb and has to be cleared by software. So whenever Mul-

tiCAN sees the NEWDAT bit set, it should copy the data into the receiving array and then

clear the bit to mark it as “read”, while setting a “new data” flag visible to

CANremap/OBD II.

In the transmitting direction a software solution has to be implemented in a way that the

OBD II software can indicate that a message has to be sent. MultiCAN copies the content to

a HW MOb, starts the transmission by setting TXRQ and clears the “ready to send” flag

which has in the meantime blocked the OBD II software from overwriting its own data

before it could be sent. MultiCAN then monitors TXRQ and does not overwrite the HW

MOb before it is cleared, indicating a successful transmission.

This establishes a simple flow control mechanism as depicted in Figure 5-2. Note that

while CANremap is shown as transparent, the information is really passed on through dif-

ferent variables.

Implementation 42

Figure 5-2: Block diagram of the modified CAN stack

As mentioned in chapter 4.4.2 this modification breaks with the idea of complete abstrac-

tion through remappers as the application software requires specific changes to be made

to both underlying levels. This is however, done deliberately for two reasons:

 The changes to the low-level CAN driver take up very few resources and could be

seen as an effort to make it “OBD-ready”. If the OBD functions are not used, the

overhead would be just two unused MObs, a few bytes of variables and a couple of

“if” statements which never branch.

 The CAN driver could be modified so that all MObs support handshaking. However,

since there are 128 Mobs, a few bytes each would accumulate to a considerable

overhead over the original driver while the mechanism is unlikely to be used by

application software other than the OBD server.

5.1.2 EEPROM Driver

The EEPROM driver was built as an extension of the SPI driver developed in [19] and has

so far only been used in an proof-of-concept application. The driver provides access to the

EEPROMs by means of pages, each 16 bytes wide containing 14 bytes user data and two

command/control bytes.

HW CAN
Node

HW-MOb

.TXRQ

HW-MOb

.NEWDAT

MultiCAN

OBD Software

SW-MOb SW-MOb

.DATA .DATA

Flow
Control

Flow
Control

Output Module Input Module

CANRemap

Implementation 43

Figure 5-3: EEPROM page structure20

Pages can be either static or dynamic:

 Static pages are read to RAM from the EEPROM at startup and written back on re-

quest. Accessing them causes neither overhead nor delays, since all read and write

operations take place in RAM. RAM expense is identical to the page total.

 Dynamic pages work by mapping one page in RAM to different physical EEPROM

pages by setting eepDynAdr (the EEP dynamic address). Both writes and reads

(especially across page borders) experience delays since both transfers have to be

requested first and not till after completion of the EEP/SPI cycle the next physical

page can be addressed. RAM expense is constant at the size of one page.

Since the OBD II persistent storage module will need to access a memory area much bigger

than a single page, reading on demand is out of the question for performance reasons,

since the read would at least take () . It would be possible to read the

pages at startup and write them back in the background but that would not offer a

memory advantage over static pages and would also mirror part of the functionality in the

EEPROM driver.

Therefore the use of static pages has been chosen as memory access strategy.

The modifications to the EEPROM driver were thence limited to adding more pages to the

multiplexer in the page selection logic.

20 translated from the EEPROM driver documentation

[1][0] [2] [3] […]

user data
(14 Bytes per page)

Command-Byte
1 = read data from EEPROM
8 = write data to EEPROM

Page-Status (8 Bit)
1 = Data successfully read
8 = Data successfully written
4 = Data read error
128 = Data write Error

eepPage_x[] (uint8)

[…] [14] [15]

Implementation 44

5.2 New Software Modules

5.2.1 Important Shared OBD variables, constants and calibration tables

A number of data elements are shared among multiple modules of the OBD software. The

most important ones are briefly introduced here to aid the understanding of their usage in

the individual software modules:

 EOBDPIDData[] (“Live Data Array”) is an array of 32-bit wide elements indexed by

PID number that stores the current value of the supported PIDs

 EOBDPIDSize[] (“Size Info Array”) is indexed by PID number and contains infor-

mation about how big (how many bytes) the representation of each PID is. This in-

formation is taken from SAE J1979DA:2011 table B2 ff.

 EOBDPIDsAvailable[] (“Service 1 Support Array”) is indexed by PID number and

contains a bit value that has to be set for each PID which should be supported by

the ECU. This is used to build the 00H, 20H, … PIDs

 EOBDFFPIDs[] (“Service 2 Support Array”) stores the PIDs that should be saved

when a freeze frame is captured. While the PIDs have to be arranged consecutively

in the array, they do not need to be in a certain order. This array is a parameter

and can therefore be calibrated at runtime.

5.2.2 The OBD State Machine

The OBD state machine (Figure 5-4) implements the core logic of the OBD protocol. While

it offers no functional advantage to implement as a block diagram in comparison to C, it is

more comprehensible and offers an easy entry point for future modification and expan-

sion.

Upon startup (“idle” state), the state machine listens for new CAN Messages with its func-

tional or physical ID (see Table 2-6) and looks into the message to identify the SID. Then it

changes its state to invoke the appropriate SID handler on the next execution cycle. Some

of the handlers complete in a single cycle and immediately reset the state to “idle”, others

require multiple execution cycles (multi-message replies) and only reset upon completion.

To avoid lock-ups due to e.g. protocol errors, these handlers include internal time-out

mechanisms that reset the state machine to “idle” if they get stuck.

All diagrams associated with the OBD state machine can be found in Appendix 4: Block

Diagram 1ff.

Implementation 45

Figure 5-4: main OBD state flow diagram

5.2.3 The OBD Remapper

As mentioned in chapter 4.4.2, the software architecture of the RPEMS uses the concept of

remappers to abstract hardware registers and driver variables from variables used in the

application software. This offers not only the advantage of a more structured design; it

also enables the use of ASCETs automated conversion between the physical and the im-

plementation domain.

The physical domain in this context means the physical value/meaning of a variable (e.g.

21°C, 31%) while the implementation describes how the value is stored in memory. The

relation between the two defines the limits to the physical values, which can be stored as

well as the quantization and thus the resolution of the data.

These relations are stored in the ASCET project as “formulas”, using the ()

notation as the most complex form, other options being linear (()) and

“identity” (1:1). [20]

One aspect that has to be considered when using formulas is that when used in block dia-

grams only the physical value of a variable can be accessed, while using a variable in C

code only returns the implementation value.

These characteristics of the ASCET variable model are used in the EOBD remapper. In it,

the internal ECU variables, which are to be used in the OBD II module, are copied to the

OBD variables using block diagram specification. Because the OBD variables have been

associated with formulae that implement the value quantization defined in

SAE J1979:2011 table B2 ff., the implementation value of the OBD variables is identical to

the binary value that needs to be loaded in the CAN packets during ISO 15031 communica-

tion.

Idlestartup

Service 01h

Service 02h

OBDII Request /w
SID = 01h received

complete OR
timeout

..
.

complete OR
timeout

OBDII Request /w
SID = 02h received

Implementation 46

Figure 5-5: usage of the ASCET variable model by the OBD remapper

From the more common PIDs (< 40H) some are not representations of ECU internal values,

but contain special information about the OBD service. One that is supported by this im-

plementation would be PID 01H, which contains information about the number of stored

DTCs and the state of the MIL and various OBD tests and is calculated directly in the re-

mapper (see Block Diagram 11: EOBD_remapper EOBD_01_DTC_CNT subdiagram in the

appendix)

Another type of special PID are 00H, 20 H, 40 H … which bit-encode the support for ranges of

32 PIDs each. Since the support for certain PIDs does not usually change during runtime,

the bit patterns for these PIDs are calculated from the Service 1 Support Array during ini-

tialization by the EOBDpopulateArray::update_supported_PIDs_Mode1 function.

Since each of the bitfields encodes if the next one is supported, this is done by walking the

array from end and only marking non-zero bitfields as supported. The full implementation

can be found as Listing 3 in the appendix.

To enable the other OBD Software modules to access the PID Values by their number (and

therefore to enable any kind of generic response) the PID values have to be stored in the

Live Data Array. Since the value that needs to be stored is the implementation value this

needs to be done in C. The following code snippet represents what executed by EOBDpop-

ulateArray::updateEOBDlivedata_100ms – see Listing 5 in the appendix for the full code.

001 #define EOBD_VAL(PID, VAL) EOBDPIDData[PID] = VAL << ((4-EOBDPIDSize[PID]) * 8);

002

003 // EOBD_VAL(0x00, 0);

004 EOBD_VAL(0x01, EOBD_01_DTC_CNT);

005 // EOBD_VAL(0x02, 0);

006 // EOBD_VAL(0x03, 0);

007 EOBD_VAL(0x04, EOBD_04_LOAD_PCT);

008 EOBD_VAL(0x05, EOBD_05_ECT);

009 // EOBD_VAL(0x06, 0);

Listing 5-1: Loading PID Values in the PID Array

Assignment in
EOBD_remapper

RPEMS internal value

Physical Value

Implementation Value

EOBD data item

Physical Value

Implementation Value

Automatic conversion
 on assignment

OBD Data Array

item

item

item

...

Assignment in
EOBDpopulateArray

Implementation 47

5.2.4 The OBD Persistent Storage Interface

Code fragments (C, ESDL, block diagram) can be in one of two containers: a function or a

process.

 Functions can take arguments and provide a return value. They cannot be attached

to tasks.

 Processes do neither take arguments nor provide return values, but they can be at-

tached to tasks.

Each executable module (C, ESDL, block diagram) may either be a regular or a class mod-

ule.

 Regular Modules can only be instantiated once in a project, which means that func-

tion calls can be made by at most one other module. Usually they instantiated at

the project root and called only by the scheduler.

 Class modules can be instantiated multiple times, e.g. by different modules. Alt-

hough the generated code is C, the framework emulates the behavior of C++ class

members with local variables becoming instance variables and public (ASCET:

“exported”) variables become class variables. ASCET classes do, however, not ex-

hibit the other traits of C++ OOP classes like inheritance or derivation.

The DTC Storage Interface Module (EOBD_DTC_Interface) provides access to the EEPROM-

backed nonvolatile memory areas where DTCs and freeze frame data are stored.

The module should be integrated into each software module that needs to store DTCs as

well as in the OBD software to retrieve them. This mandated the use of a class module

(multiple instances) and the use of functions (arguments and return values).

The Storage Interface Module provides the following (public) functions

 Init() performs some one-time tasks to initialize the memory. It only has to be

called once by only one instance.

 EOBD_DTC_MGMT_100ms checks if the EEPROM memory is yet available. When it

is, it restores state variables from it and generally enables memory access.

 StoreDTC() adds an entry (DTC) to the fault memory, which can be read by ser-

vice 03H. The fault code can be specified as well as if the MIL should be turned on

and if a Freeze Frame should be stored. While StoreDTC will not store duplicate

DTCs, it will create multiple freeze frames for the same DTC if requested.

 ClearDTCs() deletes all stored DTCs and Freeze Frames. It is called by service 04H.

 getFFPID() returns the data of a certain PID in a Freeze Frame.

 DTCMessageStream() provides an ISO 15765-2 compatible (see 2.4.6) stream of

CAN messages for service 03H.

 commitToEEP() makes the module write its nonvolatile memory back to the EEP.

All C sources associated with the persistent storage interface are included in Appendix 5:
Listing 7: EOBD_DTC_Interface implementation code

Implementation 48

Memory Organization
During the initialization phase, EOBD_DTC_Interface loads an array of the type uint8*[]

(equal to a uint8**) with the array pointers (uint8*) to the EEPROM pages reserved for

this use. This way the available memory appears as a flat structure that can be program-

matically accessed as a 2D array even if the EEPROM pages are non-consecutive.

The example implementation uses 9 EEPROM pages with a total of 126 bytes of memory

available as storage. Using constants defined in the C header, the memory is segmented

like this:

Page Byte

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
ag

e
N

u
m

b
er

1

St
at

u
s

b
y

te

C
o

m
m

an
d

 B
yt

e

Number of
DTCs

Number of
FFs

first
DTC

MIL
status

first FF

2

DTCs
3
4
5
6

FFs
7
8
9

Figure 5-6: OBD persistent storage memory organization

The DTC storage shows the following characteristics:

 DTCs take up a constant space (2 bytes each).

 DTCs are only cleared as a whole, so memory fragmentation is not possible.

 When the DTC memory is full, it wraps around and the oldest DTC is overwritten.

This mandates, that two values are kept in the nonvolatile memory: the number of DTCs

stored and the position of the oldest one (first DTC). Also, since the memory size is always

a multiple of the DTC size, the full memory can be utilized, creating a ring-type memory.

The FF storage has the following characteristics:

 The space a FF takes up is dependent on the PIDs that are included

 FFs are only cleared as a whole, so memory fragmentation is not possible

 When the FF memory is full the oldest FF will be overwritten.

As with the DTCs the number of stored FFs and the index of the oldest one have to be

stored in nonvolatile memory. Since the composition of a FF can be calibrated via the Ser-

vice 2 Support Array, the size and maximum number of freeze frames is variable and re-

calculated on startup and only stored in RAM. Since the memory size is likely not a multi-

ple of the FF size, there is always some unused memory (worst case:

 () ⁄ is unused when one FF takes up just over half the available

memory). The rest of the memory creates a ring with (()

 ()) elements.

Implementation 49

Figure 5-7: persistent storage element allocation logic

Clearing the DTC & FF memory
To clear the persistent memory, resetting the pointers to the start and zeroing the element

counts is sufficient. If new elements are stored, the old ones will be overwritten. To over-

write the complete FF and DTC memory, a calibration parameter (EOBD_DTCFullerease)

can be set.

In contrast to the other functions dependent on the EEPROM Memory, this one does not

check the memory availability. This is done externally in the service 04H logic to enable the

service to abort and send a negative response (see Memory Organization) if it is not avail-

able.

Figure 5-8: "Clear Memory" Program Flow

Get next DTC/FF ID

NUM_ELEMNTS =
MAX_ELEMENTS *

*) MAX_ELEMETS is determined from ELEMENT_SIZE and available
memory

no

Increase
NUM_ELEMENTS

Next Index =
NUM_ELEMENTS

Increase
FIRST_ELEMENT

index **

yes

**) this includes wrap-around at (first element index) > MAX_ELEMENTS

Next index =
(FIRST_ELEMENT – 1)

MAX_ELEMENTS

ELEMENT_SIZE

NUM_ELEMENTS

NUM_ELEMENTS = MAX_ELEMENTS

ELEMENT_SIZE

FIRST_ELEMENT Next Index

FIRST_ELEMENTNext Index

Most recent element

Unused memory

Clear DTC storage,
Clear FF storage

Set:
MIL = off

numDTC = 0
firstDTC = 0
numFF = 0
firstFF = 0

„DTC Full Erease“
calibrated?

return

Commit DTC
memory and FF

memory to EEPROM

no

Zero DTC memory,
Zero FF memory

yes

Implementation 50

Storing and retrieving a DTC
When a new DTC should be stored, the code checks the DTC memory if that DTC is already

there to keep a reoccurring error from flooding the DTC memory. If the DTC is not found,

the index of the next available DTC slot is requested from the memory management (see

Memory Organization) and then translated in an address (page number and offset) in the

DTC memory block. Subsequently, the 16-bit DTC is split into two bytes and written at this

location.

The MIL request is honored even if the DTC is a duplicate.

Finally, commitToEEP() is called to save the changed RAM content to the EEPROM.

Figure 5-9: "Store DTC" Program Flow

To retrieve a certain DTC from the fault memory, first the absolute position of the DTC is

determined in the ring memory (may be different to its relative position due to overflow-

ing of the ring see Figure 5-6) and then the page number and offset are requested from

memory management.

Finally, two bytes are read from this location and assembled to form the 16-bit DTC.

Store DTC

return

DTC Memory ready?
no

MIL requested?

yes

Set MIL

yes

Duplicate DTC?

no

Commit DTC
memory to EEPROM

yes

Get address of next
DTC location*

no

Decode address to
page and byte offset

Write 2-byte DTC to
DTC memory

*) this also does the bookkeeping on the number of DTCs and
the pointer positions in the ring memory

Implementation 51

Figure 5-10: "Read DTC" Program Flow

Deferred DTC storing
While slow calls to e.g. CAN and EEPROM drivers have been avoided, writing to the fault

memory can consume significant time, especially compared to the system’s fastest time-

bases (0.25 to 1ms). To avoid deadline misses if the DTC interface is to be used in a mod-

ule that runs on such a quick timebase, storing of DTCs and FFs can be deferred (see Fig-

ure 5-11).

Figure 5-11: deferred DTC storing

To do so, the function StoreDTCdeferred() can be called, which takes the same arguments

as the regular Store DTC function but just copies the arguments to global class variables,

what causes the management function running in the 100ms grid to take over actually

Read DTC

Return DTC code

DTC Memory
ready?

Request valid?

yes

no

Get address of DTC
from index

yes

Decode address to
page and byte offset

Read 2 bytes &
assemble to DTC

no

Return 0

OBD DTC
management

process

„fast“
process

time

„Store DTC“ Event

Deferred exec.

Implementation 52

storing the DTC or FF. This is not without disadvantage: while the up to 100ms offset in

the FF data are negligible (the PID data is only refreshed in 100ms intervals, anyways), the

function is prone to race conditions causing “lost data” effects. This happens when

StoreDTCdeferred() is called multiple times between two executions of the management

function, where the DTC in the arguments of the last call will be the only one actually

stored with the rest discarded.

Storing and retrieving Freeze Frame Data
A freeze frame is a snapshot of a number of PIDs and the DTC that caused the freeze frame

to be captured. The PIDs included in a freeze frame are a subset of the ones available in

service 01H and are set via the service 2 support array. To determine the total size of a

freeze frame and thus the number of FFs that fit in the available EEPROM memory, this

array is walked and the corresponding entries from the PID size Array are added together.

When a new FF needs to be stored, the function first requests the ID of the next available

FF from memory management and then requests the memory address of the start of the

FF with this ID. Then first the DTC is written, followed by all of the PIDs listed in the ser-

vice 2 support array. After each byte, the memory address is incremented and retranslated

in a page number and offset, since the PID boundaries do not necessarily match the page

boundaries.

To retrieve a PID from a stored freeze frame, the PIDs location in the memory blob, con-

taining the FF, has to be determined. Since the PIDs are stored in the same order they ap-

pear in the service 2 support array, this array is walked, adding up the PID sizes from the

PID size array, until the PID is found in the service 2 support array. Then, using this byte

offset and the FF ID, the memory location of the PID can be requested from memory man-

agement. Finally, the PIDs data is read and assembled to give the PID value.

Implementation 53

Figure 5-12 : Program flow for storing and retrieving FF data

Store FF

Memory ready

return

no

Get next FF ID *

yes

*) this also does the bookkeeping on the number of FFs and the pointer
positions in the ring memory

Set FF pointer to
memory position of

FF start

Write responsible
DTC **

Read PID from
Service 2 Support
array and PID size
from PID size array

Write PID byte from
Live Data Array **

**) this includes increasing the FF pointer and recalculating the page and
byte offset values

Set EEPROM Pages
to write-back to the

EEP (commit)

Bytes written =
PID size

no

PID = 0 ***

no

yes

yes

***) A PID value of 0 is used as array delimiter

Read

Memory ready ?

Return PID

yes

PID is multiple
of 0x20 ?

Calculate from
Service 2 Support

Arrayyes

Get next PID from
Service 2 Support

Array
Get PID size from PID
Size Array and add to

memory offset

no

Get memory offset
of FF start

Get PID size from PID size
array;

read and assemble PID
data **

PID =
requested PID? no

yes

Return 0

no

Implementation 54

Answering a Service 03H request with a ISO-TP data stream
Since the response to any service 03 H request with more than 2 DTCs in the fault memory

will result in a transmission payload of more than 7 bytes, an implementation of the ISO-

TP protocol as described in chapter 2.4.6 is required.

The chosen implementation is a state machine (Figure 5-13) which is started when the

OBD state machine detects a Service 03 H request. The OBD state machine then periodically

calls the ISO-TP state machine until its return value indicates that the transfer is complete.

“Complete” in this context also includes “aborted”, since the client has no means of restart-

ing the transfer in case of a problem. This can only be done by the master (in this case, the

tester) from the OBD idle state.

To avoid blocking or excessive execution time, no active wait states are included in the

state machine. If a resource is not ready or the host requests a transmission interruption,

processing is deferred to the next call of the state machine, where the condition is re-

evaluated.

Figure 5-13: ISO-TP state flow

5.2.5 The OBD Vehicle Information Interface

Service 09H, as described in 2.4.7, provides general Information about the vehicle and con-

trol unit connected to the tester.

Per SAE J1979-DA:2011-10 there are 10 standardized INFOTYPES available when using

Diagnostics over CAN, summarized in Table 5-1. Evident from this table, only three INFO-

TYPEs need to be supported in this service 09H implementation:

 00H: list of supported ITIDs

 04H: calibration IDs

 0AH: ECU Name

ITID 00H and 0AH are completely static, meaning they don’t change between different

software versions. The CALID, however, should be indicative of the exact software ver-

sion, meaning that it should be different for each build. In production, this would be e.g.

setup

Service 3 Request
received

Single
Frame

First Frame

NUM_DTC <= 2

NUM_DTC >2

finished

wait for
Flow

Control
Frame

Consecutive
Frame

F/C: abort OR timeout

F/C: OK

Block complete

Transfer complete

F/C: Wait

Block not complete

Implementation 55

the build number or the release ID of a certain software build for a specific vehicle. In de-

velopment, there are often multiple versions in use at the same time and multiple versions

may be flashed during a working day. Manually assigning CALIDs to these builds would

mean a significant overhead for the developers, as the data has to be manually changed for

each build and a database of CALIDs has to be maintained.

Therefore it is reasonable to have the CALID generated automatically so that it is both

unique and easily identifiable by the developer.

The way this is achieved in this implementation is to use the time and date of the build. It

is easy to cross-reference it to the file date of the firmware files on the PC and is human-

readable. To integrate the time and date into the ANSI C predefined macros __DATE__ and

__TIME__ are used, which are supported by all standard-compliant C compilers [21] and

thus also by the tasking compiler used in the RPEMS toolchain. The resultant CALID is vis-

ible in Figure 6-5.

Table 5-1: List of INFOTYPES 21

ITID Name Short Relevance for Implementation

00H Supported INFOTYPES - Must be supported

02H
Vehicle Identification

Number
VIN

N/A: vehicles are changing prototypes

or engines on testbeds

04H Calibration ID CALID
Relevant: Identifying the software ver-

sion is an important use-case

06H
Calibration Verification

Numbers
CVN

N/A: anti-tampering measures are not

important for this application

08H
In-use Performance

Tracking
- N/A: Monitors are not supported

0AH ECU Name ECUNAME
Relevant: can be useful to identify the

RPEMS in a multi-ECU environment

0BH
In-use Performance

Tracking
- N/A: Monitors are not supported

0DH Engine Serial Number ESN N/A: ECU is not tied to a specific engine

0FH
Exhaust Regulation Or

Type Approval Number
EROTAN

N/A: not relevant and usually not ex-

istent on prototypes

10H Protocol Identification -
N/A: only relevant for UDS implemen-

tations

Since all INFOTYPEs (except 00H) need to be transferred in multiple ISO-TP segments be-

cause of their size, an ISO-TP module similar to the one outlined in Figure 5-13 is imple-

mented.

21 Based on [31]

Implementation 56

All code associated with the Vehicle Information Interface can be found in Appendix 5:

Listing 7: EOBD_DTC_Interface implementation code

5.2.6 The OBD Debouncer

The modules described in 5.2.1 - 5.2.6 make up the OBD core system, meaning the parts of

the software that enable the RPEMS software to communicate with standardized test

equipment and which generate and store the data that is provided.

The substantially bigger part of an OBD implementation seeking legislative approval, is the

conforming application of the extensive number of monitors and error thresholds to make

sure that emission-relevant condition is reliably detected while minimizing the number of

false positives.22

The implementation described here does have a different goal; nevertheless, a system gat-

ing the creation of DTCs and FFs is required to prevent flooding of the fault memory.

A reasonably simple implementation of such a system is the EOBD_debouncer class mod-

ule. The EOBD_debouncer class gates logic (Boolean) signals that control e.g. the creation

of a DTC and takes three parameters:

 The short term (DebST) parameter controls how often the condition has to be de-

tected consecutively, which is used to filter short-term glitches

 The long term (DebLT) parameter controls how often a condition debounced with

the DebST parameter has to be detected to enable the output signal. The Boolean

output (return value) does not latch; it only generates a single pulse. A continuous-

ly appearing condition would therefore, even with DebLT = 1, cause a single pulse

(and e.g. a single DTC entry).

 The AutoReArm parameter controls if the debouncer should reset after creating

the pulse. If the parameter were logical false it would not generate another pulse.

Figure 5-14 shows an example of EOBD_debouncer behavior over time.

The C source of EOBD_debouncer is listed under Appendix 5:

22 On systems for the US market, OBD takes up about 30% of the overall time needed for ECU calibration

Implementation 57

Listing 1 : EOBD_infotype_interface implementation code

 Figure 5-14: Debouncer behaviour

5.3 Diagnostics Implementation example

Figure 5-15 shows a typical way of adding OBD II diagnostic capability to other software

modules. The top flowchart shows the conversion of an ADC result (adc0_6) to the throttle

pedal position (aped1) in the ADC remapper. KLFWG1 represents characteristic curve,

mapping ADC (and this sensor output) voltage to a pedal value between 0% and 100%.

In this case, the valid range for the sensor voltage is 1.0V to 4.0V. If the voltage is outside

this range (comparison in the lower left) once (debLT =1) for at least 100ms (debST =

100cycles at 1ms intervals) the debouncer calls “StoreDTC” from the imported

EOBD_DTC_interface class with the DTC code P0120 (Throttle/Pedal Position Sen-

sor/Switch "A" Circuit Malfunction). A freeze frame is not stored and the MIL is not lit

(store_FF and enables_MIL are false).

Figure 5-15: Exemplaric implementation of trottle pedal diagnostics

Output

Number of detections

Input
0

1

0

2

1

0

1

DebST

DebLT

Implementation 58

5.4 Architecture of the OBD subsystem

Figure 5-16 shows how the OBD software modules interface with each other and the rest

of the RPEMS software. The run_NNms functions are attached to the respective cyclic tasks

in the task scheduler. The modules shaded in grey are existing RPEMS software elements

the OBD software interacts with.

Figure 5-16: OBD software structure

The EOBD module represents the OBD state machine from 5.2.2, which also integrates the

DTC and Infotype interface. To gain access to the CAN bus, the EOBD module imports the

relevant data elements from the RPEMS’ CAN software stack.

To provide recent data to the OBD system, EOBDremap converts supported variables from

other software modules to the format required by OBD every 100ms. After the conversion,

it calls EOBDpopulateArray, which has access to the main OBD arrays and copies the re-

mappers’ converted data items there.

Any RPEMS software that wants to use the diagnostic system just imports

EOBD_DTC_Interface (and optionally EOBD_debounce) to use their public functions to

store DTCs and freeze frames.

5.4.1 Timing

In the OBD II standards, the time P2CAN is defined as the maximum response time to any

request. The response time is defined as the time between reception of an OBD II request

and the response in form of an ISO_TP single- or first frame. P2CAN,max is 50 milliseconds,

+data_item

any_RPEMS_module

+run_100ms()

+EOBD_data_items

EOBDremap

+populateArray()

EOBDpopulateArray

+run_10ms()

+EOBD_dataArrays[]

EOBD

*

1
+ClearDTCs()
+StoreFF()
+StoreDTC()
+getDTCs()

+numDTCs
+numFF
+MILstatus

EOBD_DTC_Interface

+getInfotype()

EOBD_Infotype_Interface

1

1

1 1

1

11

1

*
1

+CAN_data

RPEMS_CAN_driver1

1

-diagnostics_enabled_funtion()

any_RPEMS_module

+debounce()

EOBD_debounce

*

1

Implementation 59

which means that every tester should wait for an response at least 50ms while no ECU

should take longer than 50ms to respond.[22]

Since data is passed between multiple processes running in the 10ms grid, a few measures

have to be taken to make sure this deadline is met. The processes involved in producing

the response (in the order data passes through them during an OBD request/response)

are listed in Table 5-2.

process in module::process notation task Description

MultiCAN::receiveNode3_10ms _10ms get CAN request data from MOb

CANremap::receive_10ms _10ms
remap CAN request data and perform

flow control

EOBD::EOBD_handler_10ms _10ms
parse request and craft response

(x2/x3)23

CANremap::transmit_10ms _10ms
remap response data and perform flow

control

MultiCAN::transmitNode3_10ms _10ms load response data in CAN MOb

Table 5-2: processes needed to answer an OBD request

The time needed for the CAN data to be moved between the bus and the corresponding

MObs can be considered as nearly instant (<0,5ms at 500kBit/s), so the response time

depends mainly on the number of executions of the _10ms task necessary to complete the

operation.

Figure 5-17 shows the best and worst case scenario of how the order of execution of pro-

cesses inside a task can affect the total time to completion of an OBD II request. The

grayed-out blocks represent processes which cannot do useful work during the respective

execution cycle.

In Figure 5-17 A, the processes are optimally arranged inside the task; in the first and third

run, multiple processing steps can be executed because the interdependent processes

were called in the correct order by the task scheduler. Figure 5-17 B is the worst-case sce-

nario – each processing step has to be executed in a subsequent call of the _10ms task. No

speedup is possible since no two processes are executed in the correct order and so the

P2CAN deadline is missed by at least 20ms.

23 This step takes more than one cycle. During the first execution the OBD state machine will change its state
depending on the request. For single-frame responses, the response is created during the second execution.
When a multi-frame response is required, one additional cycle is required to setup the ISO_TP state machine.

Implementation 60

Figure 5-17: OBD response time

Server
(ECU) Bus

Client
(test tool)send

requestreceive request

max. 10ms

10ms

10ms

P
2

C
A

N

10ms

10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

10ms

[…]

Timeout

(A) (B)

Server
(ECU) Bus

Client
(test tool)send

requestreceive request

max. 10ms

10ms

10ms

<10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

send response receive
response

P
2

C
A

NMultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

MultiCAN::receiveNode3_10ms
CANremap::receive_10ms
EOBD::EOBD_handler_10ms
CANremap::transmit_10ms
MultiCAN::transmitNode3_10ms

Testing, Results and Outlook 61

Chapter 6

6Testing, Results and Outlook

6.1 Test Setup

The setup which was used during development and testing is laid out in Figure 6-1; Details

are listed in Table 6-1 and Table 6-2. For the use with standard OBD testers an adapter

harness had to be manufactured to provide power to the tester and to allow the connec-

tion of a third node to the CAN bus connected to CAN node 3 on the RPEMS.

Figure 6-1: Test Hardware Setup

Table 6-1: Test Hardware

Item Description

12V Power Supply 230V mains voltage to 12VDC / 3A regulated power supply

AVL RPEMS Future
RPEMS Future, HW Version 1.3, VCU Configuration24, modified to

have a termination resistor on CAN interface 3

CAN Interface INCA
ETAS ES580 PCMCIA to CAN Interface (identical to vector CANCar-

dXL), with Type 251 Transceiver Cable (82C251Tranceiver Chip)

CAN Interface CAN-

alyzer + CANoe

vector CANcaseXL or vector VN1610 (depending on application

due to licensing limitations)

OBD Tester 1
Autel Maxiscan MS509 OBD II/EOBD diagnostic tester with built-in

DTC database

OBD Tester 2 Generic ELM327-based OBD-to-Bluetooth Interface

24 RPEMS in VCU configuration do not have their high-power and high-voltage output drivers populated, as
they do not have to drive injectors and ignition coils

OBD Tester

Vehicle-side OBD
Connector with

Termination Resistor

CAN Line 3
(OBD, 500k)

12V Power Supply
Development PC

CAN Interface
CANalyzer + CANOe

CAN Line 0
(CCP, 1000k)

CAN Interface
INCA

AVL RPEMS Future

Testing, Results and Outlook 62

Table 6-2: Test Software

Vendor Product Name Functions

ETAS ASCET 5.2.2 Software Specification

ETAS INCA 7.0.0/14

Firmware flashing

Parameterization

Runtime Variable Monitoring

Vector CANalyzer 7.6.27 Interactive sending and receiving of CAN data

Vector CANoe 8.1
Run automated test cases

Software OBD Tester

Vector CANoe.DiVa 3.1 SP1
Generate automated tests for OBD II Imple-

mentations

6.2 Early Testing

ASCET 5.2 only supports the software development cycle up to the build process, there are

no testing or debugging facilities integrated.

Limited debugging can be done by using INCA; after flashing a new software file on the

ECU, INCA can establish a CCP connection and use the A2L25 file generated by ASCET.

This provides access to the values of all data items marked for calibration in ASCET. If the

value in question has been marked as “Parameter”, it can also be changed, which serves as

a limited method to provide stimulus. The limitations of this method are:

 There is no way to slow down, pause, or single-step execution

 Since the CCP protocol runs as a regular process on the RPEMS, the highest possi-

ble resolution is one execution of a given process, intermediate values cannot be

viewed

 Due to an unconfirmed bug in the handling of parameters, they cannot be used

with class modules that have more than one instance

 Since the CCP protocol is implemented in software on the ECU, it cannot be used if

the CAN modules or the initialization is not working correctly or if another soft-

ware module hangs.

The first module to be implemented was EOBD_remap to test the value conversion using

formulas, which could easily be confirmed by having the values displayed in INCA.

25 An ASAP2 description file (also called A2L) contains all information on the relevant data

objects in the ECU such as characteristics (parameters, characteristic curves and maps), real

and virtual measurement variables and variant dependencies. Information is needed for each
of these objects, such as memory address, storage structure, data type and conversion rules
for converting them into physical units.[32]

Testing, Results and Outlook 63

Figure 6-2: INCA I Experiment showing data from the OBD remapper

The next milestones were the modified CAN software and the foundations of the OBD state

machine. The first real challenge was the persistent storage interface, because of its im-

plementation in C. Variables declared in C code are not added to the A2L file, therefore

helper variables had to be introduced to monitor them. Also, simple bugs like boundary

violations or null-pointer exceptions were hard to debug because they crashed the ECU

which disabled CCP.

6.3 Communication tests

Early communication tests were carried out by sending hand-crafted CAN packets mimick-

ing an OBD tester using Vector CANalyzer. Once the OBD software was able to send mean-

ingful responses, most tests were carried out using the Autel standalone scan tool, which

supports most functions implemented. Only the “ECU Name” Infotype and multiple freeze

frames are not supported; these functions were tested using the App Torque on an LG

Nexus 4 Android smartphone and the ELM327 Bluetooth interface. The adapter harness,

as mentioned above, enabled the connection of CANalyzer as third node on the bus to trace

the communication between tester and ECU and helped working out, at which point it

went wrong.

Figure 6-3 shows an unsuccessful connection attempt of the tester (repeat “02 01 0C …“

messages) in the trace window and faux ECU responses (ID 7E8) in the generator window.

Figure 6-4 shows the Autel MaxiScan displaying the DTC code P0666 after successfully

reading four DTCs (top right display corner) from the persistent storage interface.

Testing, Results and Outlook 64

Figure 6-3: CANalyzer used for communication tests

Figure 6-4: Successful DTC readout using the Autel scan tool

Testing, Results and Outlook 65

Figure 6-5:Torque App displaying data from OBD II services 02H 03H and 09H

6.4 Systematic testing

While working data displays on the testers show that the implementation works in princi-

ple, it does not show that it is really compliant to the standards. The testers only represent

“good case” tests, since they should always produce valid requests and are usually, aiding

robustness, very tolerant regarding violations by the ECU’s implementation.

Also, even all possible valid and supported combinations of SID, PID, etc… would present a

large number of test cases, taking a lot of time to go through.

A more systematic approach is to use a tool that automatically generates test cases, runs

them and analyzes the responses.

A software tool that does this is CANoe.DiVa26, an extension to Vector’s CANoe ECU soft-

ware development environment designed to test implementations of diagnostic services.

“DiVa is a CANoe extension for automated testing of diagnostic software implementations in

ECUs. Reproducible test cases are generated based on an ECU diagnostic description.” [23]

DiVa has a built-in description of the standard services based on the standards mentioned

in chapter 2.4 and generated over 400 test cases applicable to this implementation (see

Appendix 2: CANoe.DiVa Test Specification).

The first test run indeed found a lot of implementation problems which had left the testers

unfazed; only 48% of the tests resulted in a pass.

Most of the errors were due to a wrong ISO-TP header format and a couple of builds later,

these kinks were ironed out and CANoe reported a pass rate of 100% (see Appendix 3:

CANoe.DiVa Test Results), confirming the compliance of the protocol implementation.

26 DiVa = Diagnostics Validation

Testing, Results and Outlook 66

6.5 Conclusion and Outlook

The OBD software module has been implemented successfully and has proofed its func-

tioning in several test environments.

Once integrated, with little configuration, it allows viewing live data, e.g. from sensors. To

take advantage of all provided functionality some work has to be invested by the individu-

al modules’ to define diagnostic thresholds and conditions to store DTCs and Freeze

Frames.

Not all OBD services were supported, mostly because the effort required for their calibra-

tion would exceed their usefulness (Monitors and Tests). A possible area of future work

would be the inclusion of a multi-tiered fault memory distinguishing between sporadic

and confirmed faults (service 07H).

Another goal for optimization could be the further reduction of the memory footprint of

the OBD II module; the current version is optimized for ease of use and readability, which

wastes some memory in the layout of the main data and configuration arrays.

During the writing of this thesis, a second project has been started to integrate an SD-card

interface into the RPEMS hardware, so that the unit can store extended logging data on

board, which should extend the diagnostic abilities of the system even further. A combina-

tion with the OBD module would be beneficial, e.g. for marking the acquired data on the SD

card when OBD events happen.

Testing, Results and Outlook 67

Bibliography

[1] California Enviromental Protection Agency Air Resources Board, “Key Events in the
History of Air Quality in California,” 2012. [Online]. Available:
http://www.arb.ca.gov/html/brochure/history.htm. [Accessed: 05-Jul-2013].

[2] W. Grant, Autos, smog, and pollution control: the politics of air quality management
in California. Edward Elgar Publishing Company, 1995.

[3] J. E. Krier and E. Ursin, Pollution and Policy: A Case Essay on California and Federal
Experience with Motor Vehicle Air Pollution, 1940-1975. University of California
Press, 1977.

[4] T. Schneider, Air Pollution in the 21st Century: Priority Issues and Policy. Elsevier,
1999.

[5] K. Beiter, C. Rätz, and O. Garnatz, “Gesetzliche On-Board-Diagnose und ODX,” in
Diagnose in mechatronischen Fahrzeugsystemen III : neue Verfahren für Test, Prüfung
und Diagnose von E/E-Systemen im Kfz, 2010, pp. 44–56.

[6] European Parliament, Directive 98/69/EC of the European Parliament and of the
Council of 13 October 1998 relating to measures to be taken against air pollution by
emissions from motor vehicles and amending Council Directive 70/220/EEC. EU: EUR-
Lex, 1998.

[7] D.-I. F. Albrecht, D.-I. M. Krauß, and D.-I. G. Meder, “Der neue Sechszylindermotor
mit 3 l Hubraum von BMW für die ULEV-Abgasgesetzgebung und OBD,” MTZ - Mot.
Zeitschrift, vol. 61, no. 11, pp. 750–757, Nov. 2000.

[8] European Parliament, Regulation (EC) No 715/2007 of the European Parliament and
of the Council of 20 June 2007 on type approval of motor vehicles with respect to
emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on
access to vehicle repair and mai. EU, 2007.

[9] W. Zimmermann and R. Schmidgall, Bussysteme in der Fahrzeugtechnik: Protokolle,
Standards und Softwarearchitektur, vol. 2010. Vieweg+Teubner Verlag, 2010.

[10] ISO International Organization for Standardization, “ISO 15031-4: Communication
between vehicle and external equipment for emissions-related diagnostics — Part
4: External test equipment,” 2005.

[11] Kvaser Inc., “Kvaser Memorator Light HS.” [Online]. Available:
http://www.kvaser.com/index.php?option=com_php&Itemid=259&eaninput=7330
130005136&lang=en&product=Kvaser Memorator Light HS.

[12] Vector Informatik, “Vector GL1000 Series Logger.” [Online]. Available:
http://vector.com/vi_gllogger_de.html#!../vi_gllogger_gl1000_iframe_de.html.
[Accessed: 11-Dec-2013].

Testing, Results and Outlook 68

[13] S. McConnell, Software Estimation: Demystifying the Black Art: Demystifying the
Black Art, vol. 2009. O’Reilly Media, Inc., 2009.

[14] Phytec Europe, “phyCORE-TC1796 / TC1797 / TC1793 product overview.” [Online].
Available: http://www.phytec.eu/europe/products/modules-overview/cutting-
edge-soms/product-details/p/phycore-tc1796tc1797.html. [Accessed: 20-Aug-
2013].

[15] E. W. Dijkstra, “Cooperating sequential processes,” in in The origin of concurrent
programming, New York: Springer-Verlag New York, Inc., 2002, pp. 65–138.

[16] R. C. Seacord, Secure Coding in C and C++ (Google eBook). Pearson Education, 2005,
p. 368.

[17] P. Mandl, Grundkurs Betriebssysteme: Architekturen, Betriebsmittelverwaltung,
Synchronisation, Prozesskommunikation (Google eBook). Springer DE, 2009.

[18] Q. Li and C. Yao, Real-Time Concepts for Embedded Systems. 2003.

[19] W. Müller, “Entwicklung von Klopfregelfunktionen für das RPEMS NG Steuergerät,”
2009.

[20] ETAS GmbH, Ascet v5.2 Manual. 2007.

[21] ISO/IEC, ISO/IEC 9899:201x Programming languages — C. 2011.

[22] ISO International Organization for Standardization, “ISO 15031-5: Communication
between vehicle and external equipment for emissions-related diagnostics — Part
5: Emissions-related diagnostic services,” 2011.

[23] Vector Informatik, “CANoe.DiVa - Automated Testing of the Diagnostic Protocol in
ECUs.” [Online]. Available: http://vector.com/vi_canoediva_en.html. [Accessed: 27-
Nov-2013].

[24] ISO International Organization for Standardization, “ISO 15031-3: Communication
between vehicle and external equipment for emissions-related diagnostics — Part
3: Diagnostic connector and related electrical circuits, specification and use,” 2004.

[25] ISO International Organization for Standardization, “ISO 15765-2: Diagnostics on
Controller Area Networks (CAN) — Part 3: Implementation of unified diagnostic
services (UDS on CAN),” 2004.

[26] ISO International Organization for Standardization, “ISO 11898-2: Controller area
network (CAN) — Part 2: High-speed medium access unit,” 2003.

[27] ISO International Organization for Standardization, “ISO 11898-1: Data link layer
and physical signalling; Road vehicles — Controller area network (CAN),” 2003.

[28] NXP Semiconductor, “PCA82C251 CAN transceiver for 24 V systems,” no. August.
2011.

Testing, Results and Outlook 69

[29] User: Fröstel, “File:CAN telegramm 2.0A.svg - Wikimedia Commons.” [Online].
Available: http://commons.wikimedia.org/wiki/File:CAN_telegramm_2.0A.svg.

[30] ETAS GmbH, Ascet v5.2 Reference Guide. 2007.

[31] SAE Society for Automotive Engineers, “SAE J1979-DA,” 2011.

[32] Vector Informatik, “Description Files for Internal ECU Parameters.” [Online].
Available: http://vector.com/vi_datadescription_ecu1_en.html. [Accessed: 10-Nov-
2013].

Appendix 70

Appendix

Appendix 1: List of Abbreviations .. 71

Appendix 2: CANoe.DiVa Test Specification ... 72

Appendix 3: CANoe.DiVa Test Results .. 73

Appendix 4: Software Module Block Diagrams ... 74

Appendix 5: Source Code ... 83

Appendix 71

Appendix 1: List of Abbreviations

ADC Analog to Digital Converter

ASCET Advanced Simulation and Control Engineering Tool

CALID Calibration ID

CAN Controller Area Network

CARB California Air Resources Board

CCP CAN Calibration Protocol

CSMA/CR Carrier Sense Multiple Access / Collision Resolution

DAVE Digital Application Virtual Engineer

DTC Diagnostic Trouble Code

ECU Engine Control Unit

EEPROM Electrically Erasable Programmable ROM

EMI Electromagnetic Interference

EMS Engine Management System

EOBD European On Board Diagnostics

ESDL Embedded Systems Description Language

FF Freeze Frame

GDI Gasoline Direct Injection

ID Identifier

INCA Integrated Calibration and Acquisition System

ITID InfoType ID

KWP Key Word Protocol

MCU Micro Controller Unit

MIL Malfunction Indicator Light

MOb Message Object

MY Model Year

OBD On Board Diagnostics

OSI Open Systems Interconnect

PID Parameter ID

RPEMS Rapid Prototyping Engine Management System

SID Service ID

SoM System on Module

SPI Serial Peripheral Interface a.k.a. Four-Wire-Bus

TID Test ID

TP Transport Protocol

Appendix 72

Appendix 2: CANoe.DiVa Test Specification

DiVa Test Specification

Table of contents

ECU Specification

Tests (401 generated)

1 Powertrain Diagnostic Data (139 tests)

1.1 Read Supported PIDs (1 test)

1.2 Read PIDs (138 tests)

2 Monitored Systems (89 tests)

2.1 Read Supported MIDs (2 tests)

2.2 Read MIDs (87 tests)

3 System, Test or Component (10 tests)

3.1 Read Supported TIDs (1 test)

3.2 Read TIDs (9 tests)

4 Vehicle Information (20 tests)

4.1 Read Supported Info Types (1 test)

4.2 Read Info Types (19 tests)

5 Fault Memory (143 tests)

5.1 Emission-Related Diagnostic Trouble Codes (1 test)

5.1.1 Request Emission-Related DTCs (1 test)

5.2 Freeze Frame Data (139 tests)

5.2.1 Read Supported PIDs (1 test)

5.2.2 Read Freeze Frame Data (138 tests)

5.3 Emission-Related Diagnostic Trouble Codes Detected During Current or Last Completed Driving Cycle (1 test)

5.3.1 Request Emission-Related DTCs (1 test)

5.4 Request Emission-Related Diagnostic Trouble Codes with Permanent Status (1 test)

5.4.1 Request Emission-Related DTCs (1 test)

5.5 Clear/Reset Emission-Related Diagnostic Information (1 test)

5.5.1 Clear Emission-Related DTCs (1 test)

5.6 Active Fault Memory test (0 tests)

5.6.1 Test Emission-Related DTCs (0 tests)

6 Transport Layer (0 tests)

ECU Specification

ECUInfo [OBD]
File

Version 1.20

DBOemaN

SCITSONGAID_NOMMOCtnairaV

Appendix 73

Appendix 3: CANoe.DiVa Test Results

Report CANoe.DiVa TestModule

Test passed

General Test Information

Test Engineer

Windows Login Name: Luke

Test Setup

)2PS(06.1.8eoNAC:noisreV

gfc.DBO\someDeoNAC\1.8\eoNAC\rotceV\stnemucoD\cilbuP\sresU\:C:noitarugifnoC

Configuration Comment:

Test Module Name: RPEMS2

Test Module File: C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.vxt

Last modification of Test Module

File:

2013-11-21, 18:24:22

Test Module Library (CAPL): C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.callback.can

Test Module Library (CAPL): C:\Users\Luke\Dropbox\Diplomarbeit\DiVa\RPEMS2.001.can

Windows Computer Name: LUKE-HP

Nodelayer Module osek_tp: OSEK_TP (VC10, Version 5.20.51, Build 51), C:\Program Files (x86)\

Vector CANoe 8.1\Exec32\osek_tp.dll

Nodelayer Module DiVa: DiVaTestExtension, C:\Program Files (x86)\Vector CANoe 8.1\Exec32\DiVa\DiVa.dll

Diagnostic Specification:

avid.2SMEPR/aViD/tiebramolpiD/xobporD/ekuL/sresU/:C:tcejorPaViD

DiVa Configuration: Config

DBO:emaNUCE

SCITSONGAID_NOMMOC:tnairaVUCE

Specification Version: 1.20

TestModuleGenerationTime: 2013-11-21T17:24:21.048

Start Timings

P2 Time: 150ms

P2* Time: 2000ms

S3 Time: 5000ms

EcuTimings: This are only the start Timings. P2 and P2* will change as specified by the response of session control services.

P2 Time Metrics

P2Time Average: 37ms

P2Time Min.: 30ms

P2Time Max.: 50ms

Test Overview

Test begin: 2013-11-21 19:21:33 (logging timestamp 3359.266915)

Test end: 2013-11-21 19:23:46 (logging timestamp 3492.568527)

Statistics

104sesactsetforebmunllarevO

sesactsetllafo%001104sesactsetdetucexE

sesactsetllafo%00sesactsetdetucexetoN

sesactsetdetucexefo%001104dessapsesactseT

sesactsetdetucexefo%00gninrawhtiwsesactseT

sesactsetdetucexefo%00deliafsesactseT

Appendix 74

Appendix 4: Software Module Block Diagrams

List of Block Diagrams

Block Diagram 1: EOBD state machine main Diagram .. 75

Block Diagram 2: EOBD state machine idle state subdiagram ... 75

Block Diagram 3: EOBD state machine SID 1 subdiagram ... 76

Block Diagram 4: EOBD state machine SID 2 subdiagram ... 76

Block Diagram 5: EOBD state machine SID 3 subdiagram ... 77

Block Diagram 6: EOBD state machine SID 4 subdiagram ... 77

Block Diagram 7: EOBD state machine SID 9 subdiagram ... 78

Block Diagram 8: EOBD state machine invalid SID subdiagram ... 78

Block Diagram 9: EOBD_DTC_Interface test program ... 79

Block Diagram 10 : EOBD_remapper main diagram... 80

Block Diagram 11: EOBD_remapper EOBD_01_DTC_CNT subdiagram .. 81

Block Diagram 12: EOBD_remapper init subdiagram .. 81

Block Diagram 13: EOBD_debouncer .. 82

Appendix 75

Block Diagram 1: EOBD state machine main Diagram

Block Diagram 2: EOBD state machine idle state subdiagram

Appendix 76

Block Diagram 3: EOBD state machine SID 1 subdiagram

Block Diagram 4: EOBD state machine SID 2 subdiagram

Appendix 77

Block Diagram 5: EOBD state machine SID 3 subdiagram

Block Diagram 6: EOBD state machine SID 4 subdiagram

Appendix 78

Block Diagram 7: EOBD state machine SID 9 subdiagram

Block Diagram 8: EOBD state machine invalid SID subdiagram

Appendix 79

Block Diagram 9: EOBD_DTC_Interface test program

Appendix 80

Block Diagram 10 : EOBD_remapper main diagram

Appendix 81

Block Diagram 11: EOBD_remapper EOBD_01_DTC_CNT subdiagram

Block Diagram 12: EOBD_remapper init subdiagram

Appendix 82

Block Diagram 13: EOBD_debouncer

Appendix 83

Appendix 5: Source Code

List of Listings

Listing 1 : EOBD_infotype_interface implementation code ... 84

Listing 2: EOBD_infotype_interface header code ... 89

Listing 3: EOBD_remap::update_supported_PIDs_Mode1() implementation code 89

Listing 4: EOBDpopulateArray::data_update_100ms() header code ... 90

Listing 5: EOBDpopulateArray::data_update_100ms implementation Code ... 90

Listing 6: EOBD_DTC_Interface header code ... 91

Listing 7: EOBD_DTC_Interface implementation code ... 92

Listing 8: EOBD_bytesplit implementation code ... 109

Listing 9:EOBD_assemble_canArray implementation code .. 109

Listing 10: CANremap OBD transmit code .. 109

Listing 11:CANremap receive Code .. 110

Appendix 84

Listing 1 : EOBD_infotype_interface implementation code

001 static uint8 msg_pos,inftyp_len,inftyp_num;

002 uint8 inftyp_idx, inftyp_pos, i;

003 static uint8 cf_wait_count, cf_block_count,cf_index;

004

005

006 // mandatory pattern: (pad with '')

007 // "XXXn-YYYYYYYYYYYYYYY"

008 static char *EOBD_ECUNAME1 = "ECM\0-AVL RPEMS VCU\0\0";

009 //char EOBD_ECUNAME2[] = "ECM\0-EngineControl\0\0";

010

011 /*

012 Automated Build Time generation:

013 __date__ will expand to a 11-digit string like "Nov 15 2013"

014 __time__ will expand to a 8-digit string like "13:28:23"

015 CALID is 16 characters wide:

016 "1234567890123456" */

017 static char *EOBD_CALID1 = "RPEMS_08012013_2";

018 static char *EOBD_CALID2 = "Date:" __DATE__; //adjacent strings are automagically

concatenated

019 static char *EOBD_CALID3 = "Time:" __TIME__ "\0\0\0";

020

021 static char *EOBD_CALID[3];

022 EOBD_CALID[0] = EOBD_CALID1;

023 EOBD_CALID[1] = EOBD_CALID2;

024 EOBD_CALID[2] = EOBD_CALID3;

025

026 static char *EOBD_ECUNAME[1];

027 EOBD_ECUNAME[0] = EOBD_ECUNAME1;

028

029 // check if NEW RX Message = 0x02 0x09 0xYY (Service 9 request)

030 // This resets the state machine

031 // HINT: CANRX[0] is 2 for physical Addressing!

032

033 if (CANRX[0] &&

034 CANRX[1] == 0x02 &&

035 CANRX[2] == 0x09)

036 {

037 StreamStatus = sm_setup;

038 CANRX[0] = 0; //message = read

039 inftyp = CANRX[3];

040 streamSize = 0;

041 }

042

043 /************************************

044 State Machine

045 ************************************/

Appendix 85

046

047 switch(StreamStatus)

048 {

049 /*********************SETUP*********************/

050 case sm_setup:

051

052 //determine stream size

053 switch (inftyp)

054 {

055 case 0x00:

056 // supported INFTYPs

057 StreamStatus = sm_single;

058 streamSize = 6; //SID + ITID + 4

059 break;

060 case 0x04:

061 my_inftyp = EOBD_CALID;

062 inftyp_len = 16;

063 inftyp_num = sizeof(EOBD_CALID)/sizeof(EOBD_CALID[0]);

064 //SID+ITID+NODI + n*(INFTYP)

065 streamSize = (inftyp_num * inftyp_len) + 3;

066 //abort if CALID is not defined

067 if (streamSize > 3)

068 StreamStatus = sm_first;

069 else

070 StreamStatus = sm_finished;

071 break;

072 case 0x0A:

073 my_inftyp = EOBD_ECUNAME;

074 inftyp_len = 20;

075 inftyp_num = sizeof(EOBD_ECUNAME)/sizeof(EOBD_ECUNAME[0]);

076 //SID+ITID+NODI + n*(INFTYP)

077 streamSize = (inftyp_num * inftyp_len) + 3;

078 //abort if CALID is not defined

079 if (streamSize > 3)

080 StreamStatus = sm_first;

081 else

082 StreamStatus = sm_finished;

083 break;

084 default:

085 //no other INFTYPs are supported

086 StreamStatus = sm_finished;

087 }

088

089 break;

090

091 /*********************Single Frame*********************/

092 case sm_single:

Appendix 86

093 //this only supports INFTYPs up to 0x1F

094 //{TXen}[PCI][0x49][#ITID = 0x00][4-Byte INFTYP][0x55]

095 CANTX[1] = ISO15765_SF | (streamSize & 0xFF);

096 CANTX[2] = 0x49; //SID 9 Response

097 CANTX[3] = 0x00; //INFTYP 0x00

098 CANTX[4] = 0x10; //support 0x04 (CALID)

099 CANTX[5] = 0x40; //support 0x0A (ECUNAME)

100 CANTX[6] = 0x00; //no support 0x11 - 0x18

101 CANTX[7] = 0x00; //no support 0x19 - 0x20

102 CANTX[8] = 0x55; //padding

103 CANTX[0] = 1; //transmit

104

105 StreamStatus = sm_finished;

106 break;

107

108 /*********************First Frame*********************/

109 case sm_first:

110 //{TXen}[PCI][PCI][0x49][#ITID][4 bytes INFTYP]

111 CANTX[1] = ISO15765_FF | ((streamSize >>8) & 0x0F); //highest nibble

112 CANTX[2] = streamSize & 0xFF; //lower two nibbles

113 CANTX[3] = 0x49; //service 9 Response

114 CANTX[4] = inftyp;

115 CANTX[5] = inftyp_num;

116 CANTX[6] = my_inftyp[0][0];

117 CANTX[7] = my_inftyp[0][1];

118 CANTX[8] = my_inftyp[0][2];

119

120 CANTX[0] = 1;

121

122 msg_pos = 6;

123 StreamWaitCounter = 0; //reset timeout

124 StreamStatus = sm_wait_FC; //now wait for the flow control frame

125 break;

126

127 /*********************Flow Control*********************/

128 case sm_wait_FC:

129

130 //wait max 2s (200 * 10ms) for F/C frame

131 if (StreamWaitCounter++ == 200)

132 {

133 StreamStatus = sm_finished;

134 break;

135 }

136

137 if (CANRX[0] == 2&&

138 (CANRX[1] & ISO15765_FC) == ISO15765_FC) //is this a new FC frame?

139 {

Appendix 87

140 CANRX[0] = 0; //ok, we got this

141

142 //===Status===

143 // 0 = OK, go ahead

144 // 1 = WAIT; Tester not ready, wait for another F/C frame

145 // 2 = OVERFLOW; Tester buffer too small. Nothing we can do about that.

146 // N_USDATA.confirm(OVERFLW) is carried out by returning true (=finished)

147 // 3+ = Reserved. Not supported.

148

149 if ((CANRX[1] & 0x0F) == 1)

150 {

151 break;

152 }

153

154 if ((CANRX[1] & 0x0F) >= 2)

155 {

156 StreamStatus = sm_finished;

157 break;

158 }

159

160 //===Block Size:====

161 //0x00: no further F/C just send the rest

162 //0x01-0xFF: nuber of frames before the next F/C negotiation

163

164 Stream_BS = CANRX[2];

165

166 //===Separation Time:===

167 //0x00-0x7F (127d) 0..127ms

168 //0x80-0xF0 -reserved-

169 //0xF1-0xF9 100..900s

170 //0xFA-0xFF -reserved-

171 //since this code does run every 10ms, we can only do multiples of 10ms

ST.

172 //<=11ms: no wait; 11-20ms= wait 1 cycle etc...

173

174 Stream_ST = CANRX[3];

175 if (Stream_ST < 127)

176 Stream_ST = Stream_ST/10;

177 else if ((Stream_ST > 0xF0) && (Stream_ST < 0xFA))

178 Stream_ST = 0;

179 else

180 Stream_ST = 12;

181

182 cf_wait_count = 0;

183 cf_block_count = 0;

184 if (msg_pos == 6)

185 cf_index = 1; //after the First Frame

Appendix 88

186 else

187 cf_index = 0;

188

189 StreamStatus = sm_CF;

190 }

191 break;

192

193 /*********************Consecutive Frame*********************/

194 case sm_CF:

195 //wait lockout

196 if (cf_wait_count++ == Stream_ST)

197 cf_wait_count = 0; //reset wait cycle counter

198 else

199 break; //wait for next exec cycle

200

201

202 for (i=0; i<7; i++)

203 {

204 inftyp_idx = (msg_pos - 3)/inftyp_len;

205 inftyp_pos = (msg_pos - 3)%inftyp_len;

206 CANTX[i+2] = my_inftyp[inftyp_idx][inftyp_pos];

207 msg_pos++;

208 if (msg_pos == streamSize)

209 break;

210 }

211

212 CANTX[1] = ISO15765_CF | cf_index; //PCI

213 CANTX[0] = 1; //transmit

214

215 cf_index = ++cf_index%16; //0,1..15,0,1,...

216 cf_block_count++;

217

218 if (msg_pos == streamSize)

219 {

220 //transfer complete

221 StreamStatus = sm_finished;

222 break;

223 }

224

225 if (Stream_BS && (cf_block_count == Stream_BS))

226 {

227 //reached the Block Size Limit - wait for next F/C Frame

228 StreamWaitCounter = 0; //reset timeout

229 StreamStatus = sm_wait_FC;

230 }

231 break;

232

Appendix 89

233 case sm_finished:

234 return true;

235

236 default:

237 StreamStatus = sm_finished;

238 }

239

240 return false; //transmission not yet finished

Listing 2: EOBD_infotype_interface header code

1 char **my_inftyp;

2

3 //-----ISO15765-----

4 #define ISO15765_SF 0x00

5 #define ISO15765_FF 0x10

6 #define ISO15765_CF 0x20

7 #define ISO15765_FC 0x30

Listing 3: EOBD_remap::update_supported_PIDs_Mode1() implementation code

01 uint32 capa_bitfield;

02 uint8 i,j, done, PID_TOP;

03

04 EOBD_max_PID = sizeof(EOBDPIDsAvailable)/sizeof(EOBDPIDsAvailable[0]);

05

06 #define PID_RANGE 0x20

07

08 PID_TOP = (EOBD_max_PID/PID_RANGE) * 0x20; //must be multiple of 0x20

09

10 i = PID_TOP;

11 done = 0;

12

13

14 while (!done)

15 {

16 capa_bitfield = 0x00000000;

17

18 for (j=1; j<=PID_RANGE; j++)

19 {

20 //do not check out of bounds of PIDsAvailable array

21 if (EOBDPIDsAvailable[i + j] && ((i+j) < (EOBD_max_PID +1)))

22 {

23 capa_bitfield |= (1 << (PID_RANGE-j));

24 }

25 }

26 if (capa_bitfield)

Appendix 90

27 {

28 EOBDPIDData[i] = capa_bitfield;

29 EOBDPIDsAvailable[i] = 1;

30 }

31

32 if (i == 0)

33 {

34 done = 1;

35 }

36 else

37 {

38 i-=PID_RANGE;

39 }

40 }

Listing 4: EOBDpopulateArray::data_update_100ms() header code

#define EOBD_VAL(PID, VAL) EOBDPIDData[PID] = VAL << ((4-EOBDPIDSize[PID]) * 8);

Listing 5: EOBDpopulateArray::data_update_100ms implementation Code

001 /**

002 * This puts the EOBD Mode 1 PID Values ("Live data") into a PID-indexed *

003 * array. The values are assigned in EOBDremap. *

004 * *

005 * To add/remove supported PIDs, edit the Data of EOBDPIDsAvailable *

006 **/

007

008 // EOBD_VAL(0x00, 0);

009 EOBD_VAL(0x01, EOBD_01_DTC_CNT);

010 // EOBD_VAL(0x02, 0);

011 // EOBD_VAL(0x03, 0);

012 EOBD_VAL(0x04, EOBD_04_LOAD_PCT);

013 EOBD_VAL(0x05, EOBD_05_ECT);

014 // EOBD_VAL(0x06, 0);

[…]

018 // EOBD_VAL(0x0A, 0);

019 EOBD_VAL(0x0B, EOBD_0B_MAP);

020 EOBD_VAL(0x0C, EOBD_0C_RPM);

021 EOBD_VAL(0x0D, EOBD_0D_VSS);

022 // EOBD_VAL(0x0E, 0);

023 // EOBD_VAL(0x0F, 0);

024 // EOBD_VAL(0x10, 0);

025 EOBD_VAL(0x11, EOBD_11_TP);

026 // EOBD_VAL(0x12, 0);

[…]

Appendix 91

035 // EOBD_VAL(0x1B, 0);

036 EOBD_VAL(0x1C, 0x07); //OBD support: EOBD, OBD II

037 // EOBD_VAL(0x1D, 0);

[…]

042 // EOBD_VAL(0x22, 0);

043 EOBD_VAL(0x23, EOBD_23_FRP);

044 // EOBD_VAL(0x24, 0);

[…]

058 // EOBD_VAL(0x32, 0);

059 EOBD_VAL(0x33, EOBD_33_BARO);

060 // EOBD_VAL(0x34, 0);

[…]

073 // EOBD_VAL(0x41, 0);

074 EOBD_VAL(0x42, EOBD_42_VPWR);

075 // EOBD_VAL(0x43, 0);

[…]

078 // EOBD_VAL(0x46, 0);

079 EOBD_VAL(0x47, EOBD_47_TP_B);

080 // EOBD_VAL(0x48, 0);

[…]

155 // EOBD_VAL(0x93, 0);

Listing 6: EOBD_DTC_Interface header code

01 //--- EEP Memory Map --> see init()---

02 #define EOBD_EEP_SIZE 9

03 #define EOBD_EEP_DTC_SIZE 4

04 #define EOBD_EEP_FF_SIZE 5

05

06 uint8* EEP_EOBD_mem[EOBD_EEP_SIZE];

07

08 #define getbyte(A, B) (((A) >> ((B)*8)) & 0xFF)

09

10 //---All Pages -----

11 #define EEP_CMD 1

12 #define EEP_STATUS 0

13 #define EEP_PAGESIZE 14

14

15 //----Page0-----

16 #define EEP_EOBD_NUMDTC 2

17 #define EEP_EOBD_NUMFF 3

18 #define EEP_EOBD_FIRSTDTC 4

19 #define EEP_EOBD_MIL 5

20 #define EEP_EOBD_FIRSTFF 6

21

22 //-----DTCs----

Appendix 92

23 #define DTC_STARTPAGE 1

24 #define MAX_DTC ((EOBD_EEP_DTC_SIZE * EEP_PAGESIZE) / 2)

25

26 //----FFs----

27 #define FF_STARTPAGE 5

28

29 //-----EEP-----

30 #define EEP_WRITE 8

31 #define EEP_READ 1

32 #define EEP_READOK 1

33 #define EEP_WRITEOK 8

34 #define EEP_READERR 4

35 #define EEP_WRITEERR 128

36

37 //-----ISO15765-----

38 #define ISO15765_SF 0x00

39 #define ISO15765_FF 0x10

40 #define ISO15765_CF 0x20

41 #define ISO15765_FC 0x30

Listing 7: EOBD_DTC_Interface implementation code

001 /**

002 * This is pseudo-file compiled from all the c-functions in EOBD_DTC_Interface *

003 * Since ASCET only allows editing of the function BODY, the function wrappers *

004 * have been added by hand to show the name and arguments of each function, *

005 * replacing ASCET-specific types by more general ones such as "uint" and "bool" *

006 * the modifier "private" indicates that the function is declared private in ASCET *

007 * and can only be called from inside EOBD_DTC_Interface as "self::some_function()" *

008 ***/

009

010 void StoreDTC(EOBD_DTC_SystemID System, uint Code, bool enables_MIL, bool store_ff)

011 {

012 int _tmpDTC;

013 int _commit = 0;

014

015 if (EOBD_memRdy)

016 {

017 _tmpDTC = (System << 14) | (Code & 0x3FFF);

018

019 if (enables_MIL)

020 {

021 EOBD_MILStatus = true;

022 _commit = 1;

023 }

024

025 if (store_FF)

Appendix 93

026 {

027 self.StoreFF(_tmpDTC);

028 _commit = 1;

029 }

030

031 if(!self.checkForDuplicateDTC(_tmpDTC))

032 {

033 _nextDTCIdx = self.insertNewDTC();

034

035 _memPage = self.getDTCpage(_nextDTCIdx);

036 _memOffset = self.getDTCoffset(_nextDTCIdx);

037

038 EEP_EOBD_mem[_memPage][_memOffset] = (_tmpDTC >> 8) & 0xFF;

039 EEP_EOBD_mem[_memPage][_memOffset+1] = _tmpDTC & 0xFF;

040

041 _commit = 1;

042 }

043

044 if (_commit)

045 self.commitToEEP();

046 }

047 }

048

049 /**/

050

051 void StoreFF(uint DTC)

052 {

053 uint8 i,j, current_PID,mem_offset,_p,_o,_f;

054

055 if (_EOBD_memRdy)

056 {

057 //get next "free" frame / memory location

058 _f = self.insertNewFF();

059 mem_offset = self.getFFTotalOffset(_f,0);

060

061 //write the responsible DTC

062 _p = self.getFFpage(mem_offset);

063 _o = self.getFFoffset(mem_offset++);

064 EEP_EOBD_mem[_p][_o] = (DTC >> 8) & 0xFF;

065

066 _p = self.getFFpage(mem_offset);

067 _o = self.getFFoffset(mem_offset++);

068 EEP_EOBD_mem[_p][_o] = DTC & 0xFF;

069

070 //Dump the PIDs in the FF Memory Area

071 for (i=0; EOBDFFPIDs[i]; i++)

072 {

Appendix 94

073 current_PID = EOBDFFPIDs[i];

074

075 //for each PID, write the bytes

076 for (j=0;j<EOBDPIDSize[current_PID];j++)

077 {

078 _p = self.getFFpage(mem_offset);

079 _o = self.getFFoffset(mem_offset++);

080 //the PID Data is left-aligned in a 32 bit field -> MSB = (uint32)>>24 !

081 EEP_EOBD_mem[_p][_o] = getbyte(EOBDPIDData[current_PID],(3-j));

082 }

083 }

084

085 //self.commitToEEP();

086 }

087 }

088

089 /**/

090

091 void clearDTCs()

092 {

093 //since DTCs cannot be deletet individually, it is OK to just zero their count.

094 //No management of the actual DTC storage has to be done.

095

096 int i,j;

097

098 EOBD_numDTC = 0;

099 _EOBD_firstDTCIdx = 0;

100 EOBD_MILStatus = false;

101 EOBD_numFF = 0;

102 _EOBD_firstFFIdx = 0;

103

104 //If the Paramater is selected, the memory Area is "formatted".

105 //if(EOBD_DTCFullerease == true)

106 {

107 for (i = 0; i < EOBD_EEP_SIZE; i++)

108 {

109 for (j = 2; j<16; j++)

110 {

111 EEP_EOBD_mem[i][j] = 0;

112 }

113 }

114 passed_FE = true;

115 }

116

117 //immediately commit, so errors don't "come back"

118 self.commitToEEP();

119 }

Appendix 95

120

121 /**/

122

123 void commitToEEP()

124 {

125 //commits Data from RAM to EEP

126

127 uint8 i;

128

129 EEP_EOBD_mem[0][EEP_EOBD_NUMDTC] = EOBD_numDTC;

130 EEP_EOBD_mem[0][EEP_EOBD_FIRSTDTC] = _EOBD_firstDTCIdx;

131 EEP_EOBD_mem[0][EEP_EOBD_MIL] = EOBD_MILStatus;

132 EEP_EOBD_mem[0][EEP_EOBD_NUMFF] = _EOBD_numFF;

133 EEP_EOBD_mem[0][EEP_EOBD_FIRSTFF] = _EOBD_firstFFIdx;

134

135 for (i=0; i<EOBD_EEP_SIZE; i++)

136 {

137 EEP_EOBD_mem[i][EEP_CMD] = EEP_WRITE;

138 }

139 }

140

141 /**/

142

143 void EOBD_DTC_MGMT_100ms()

144 {

145 // copy EEP stuff to RAM as soon as the EEP becomes available

146 // and skip the block after that (!_EOBD:memRdy)

147

148 if((!EOBD_memRdy) && self.DTCMemCheck())

149 {

150 EOBD_numDTC = EEP_EOBD_mem[0][EEP_EOBD_NUMDTC];

151 _EOBD_firstDTCIdx = EEP_EOBD_mem[0][EEP_EOBD_FIRSTDTC];

152 EOBD_MILStatus = EEP_EOBD_mem[0][EEP_EOBD_MIL];

153 EOBD_numFF = EEP_EOBD_mem[0][EEP_EOBD_NUMFF];

154 _EOBD_firstFFIdx = EEP_EOBD_mem[0][EEP_EOBD_FIRSTFF];

155

156 EOBD_memRdy = true;

157 }

158

159 DTCrunning += 1;

160

161 sizeof_0 = self.getFFSpecialPID(0x00);

162 sizeof_1 = self.getFFSpecialPID(0x20);

163 sizeof_2 = self.getFFSpecialPID(0x40);

164 sizeof_3 = self.getFFSpecialPID(0x80);

165 }

166

Appendix 96

167 /**/

168

169 void init()

170 {

171 //This maps "real" EEP Pages in the EOBD Memory Map

172 //The EEP Pages don't need to be consecutive.

173

174 uint8 i;

175

176 EEP_EOBD_mem[0] = eepPage_2; //bookkeeping

177 EEP_EOBD_mem[1] = eepPage_3; // DTCs 0-6

178 EEP_EOBD_mem[2] = eepPage_4; // DTCs 7-13

179 EEP_EOBD_mem[3] = eepPage_5; // DTCs 14-20

180 EEP_EOBD_mem[4] = eepPage_6; // DTCs 21-27

181 EEP_EOBD_mem[5] = eepPage_7; // FF Data

182 EEP_EOBD_mem[6] = eepPage_8; // FF Data

183 EEP_EOBD_mem[7] = eepPage_9; // FF Data

184 EEP_EOBD_mem[8] = eepPage_10; // FF Data

185

186

187 //calculate the Size of a EOBD FF

188 //it is the sum of the PID sizes contained in it + 2 Bytes for the associated DTC

189

190 _EOBD_FFSize = 2;

191

192 for (i=0; EOBDFFPIDs[i]; i++)

193 {

194 _EOBD_FFSize += EOBDPIDSize[EOBDFFPIDs[i]];

195 }

196

197 //calculate the maximum amount of FFs that can be stored in the allocated memory

198 //this might be 0 if the list of PIDs is too long

199

200 _EOBD_MaxFF = (EOBD_EEP_FF_SIZE*EEP_PAGESIZE)/_EOBD_FFSize;

201 }

202

203 /**/

204

205 bool DTCMessageStream(uint8[] CANRXData, uint8[]CANTXData)

206 {

207 uint16 tmp_dtc;

208 uint8 i;

209

210 static uint8 cf_wait_count, cf_block_count, half_dtc_pending, half_dtc_byte,

cf_index;

211

212 // check if NEW RX Message = 0x01 0x02 (Service 2 request)

Appendix 97

213 // This resets the state machine

214 // HINT: CANRXData[0] is 2 for physical Adressing!

215

216 if (CANRXData[0] &&

217 CANRXData[1] == 0x01 &&

218 CANRXData[2] == 0x03)

219 {

220 StreamStatus = sm_setup;

221 CANRXData[0] = 0; //message = read

222 }

223

224 /************************************

225 State Machine

226 ************************************/

227

228 switch(StreamStatus)

229 {

230 /*********************SETUP*********************/

231 case sm_setup:

232 //we can transmit up to 2 complete DTCs in a SF, for

233 //more we have to do a segmented transfer

234 if (_EOBD_numDTC <= 2)

235 {

236 StreamStatus = sm_single;

237 DTCStreamNumDTC = _EOBD_numDTC;

238 }

239 else

240 StreamStatus = sm_first;

241 break;

242

243 /*********************Single Frame*********************/

244 case sm_single:

245 //{TXen}[PCI][0x43][#DTC][DTC1L][DTC1H][DTC2l][DTC2H][0x55]

246 CANTXData[1] = ISO15765_SF | (2 + DTCStreamNumDTC * 2);

247 CANTXData[2] = 0x43; //SID 3 Response

248 CANTXData[3] = DTCStreamNumDTC;

249 for (i=0;i < DTCStreamNumDTC; i++)

250 {

251 tmp_dtc = self.ReadDTCFromEEP(i);

252 CANTXData[4 + 2*i] = (tmp_dtc >> 8) & 0xFF;

253 CANTXData[5 + 2*i] = tmp_dtc & 0xFF;

254 }

255 CANTXData[8] = 0x55;

256 CANTXData[0] = 1;

257

258 StreamStatus = sm_finished;

259 break;

Appendix 98

260

261 /*********************First Frame*********************/

262 case sm_first:

263 //{TXen}[PCI][PCI][0x43][#DTC][DTC1L][DTC1H][DTC2l][DTC2H]

264 DTCStreamNumDTC = _EOBD_numDTC;

265 DTCStreamLen = 2 + DTCStreamNumDTC * 2; //1DTC = 2 bytes + [0x43][#DTC]

266 CANTXData[1] = ISO15765_FF | ((DTCStreamLen >>8) & 0x0F); //highest

nibble

267 CANTXData[2] = DTCStreamLen & 0xFF; //lower two nibbles

268 CANTXData[3] = 0x43; //service 3 Response

269 CANTXData[4] = DTCStreamNumDTC;

270

271 DTCStreamNextDTC = 0;

272 for (i=0;i < 2; i++)

273 {

274 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++);

275 CANTXData[5 + 2*i] = (tmp_dtc >> 8) & 0xFF; //MSB first

276 CANTXData[6 + 2*i] = tmp_dtc & 0xFF;

277 }

278 CANTXData[0] = 1; //transmit

279

280 half_dtc_pending = 0; // we have to do that here, since F/C can also ba

after a "half" DTC

281 cf_index = 1; //this is the 0th frame...

282

283 StreamWaitCounter = 0; //reset timeout

284 StreamStatus = sm_wait_FC; //now wait for the flow control frame

285 break;

286

287 /*********************Flow Control*********************/

288 case sm_wait_FC:

289

290 //wait max 2s (200 * 10ms) for F/C frame

291 if (StreamWaitCounter++ == 200)

292 {

293 StreamStatus = sm_finished;

294 break;

295 }

296

297 if (CANRXData[0] == 2&&

298 (CANRXData[1] & ISO15765_FC) == ISO15765_FC) //is this a new FC

frame?

299 {

300 CANRXData[0] = 0; //ok, we got this

301

302 //===Status===

303 // 0 = OK, go ahead

304 // 1 = WAIT; Tester not ready, wait for another F/C frame

Appendix 99

305 // 2 = OVERFLOW; Tester buffer too small. Nothing we can do about

that.

306 // N_USDATA.confirm(OVERFLW) is carried out by returning true

(=finished)

307 // 3+ = Reserved. Not supported.

308

309 if ((CANRXData[1] & 0x0F) == 1)

310 {

311 break;

312 }

313

314 if ((CANRXData[1] & 0x0F) >= 2)

315 {

316 StreamStatus = sm_finished;

317 break;

318 }

319

320

321 //===Block Size:====

322 //0x00: no further F/C just send the rest

323 //0x01-0xFF: nuber of frames before the next F/C negotiation

324

325 Stream_BS = CANRXData[2];

326

327 //===Separation Time:===

328 //0x00-0x7F (127d) 0..127ms

329 //0x80-0xF0 -reserved-

330 //0xF1-0xF9 100..900s

331 //0xFA-0xFF -reserved-

332 //since this code does run every 10ms, we can only do multiples of 10ms ST.

333 //<=11ms: no wait; 11-20ms= wait 1 cycle etc...

334

335 Stream_ST = CANRXData[3];

336 if (Stream_ST < 127)

337 Stream_ST = Stream_ST/10;

338 else if ((Stream_ST > 0xF0) && (Stream_ST < 0xFA))

339 Stream_ST = 0;

340 else

341 Stream_ST = 12;

342

343 cf_wait_count = 0;

344 cf_block_count = 0;

345 if (DTCStreamNextDTC == 2)

346 cf_index = 1; //after the First Frame

347 else

348 cf_index = 0;

349

350 StreamStatus = sm_CF;

Appendix 100

351 }

352 break;

353

354 /*********************Consecutive Frame*********************/

355 case sm_CF:

356 //wait lockout

357 if (cf_wait_count++ == Stream_ST)

358 cf_wait_count = 0; //reset wait cycle counter

359 else

360 break; //wait for next exec cycle

361

362 //try to write up to 3 DTC in Message - if there is a half DTC pending,

363 //offset them by 1 byte to leave room for that.

364 //if the end of the DTCs is reached before, break out of the loop

365 for (i=0;i < 3; i++)

366 {

367 if (DTCStreamNumDTC == DTCStreamNextDTC)

368 break; //no more DTCs to send, maybe a half one

369

370 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++);

371 CANTXData[2 + 2*i + half_dtc_pending] = (tmp_dtc >> 8) & 0xFF; //MSB

First

372 CANTXData[3 + 2*i + half_dtc_pending] = tmp_dtc & 0xFF;

373

374 }

375

376 //is there still "half" a DTC to transmit?

377 if (half_dtc_pending)

378 {

379 CANTXData[2] = half_dtc_byte;

380 half_dtc_pending = 0;

381 }

382 //we didnt have a half left so we produce one if needed

383 else if (!(DTCStreamNumDTC == DTCStreamNextDTC))

384 {

385 tmp_dtc = self.ReadDTCFromEEP(DTCStreamNextDTC++);

386 CANTXData[8] = (tmp_dtc >> 8) & 0xFF; //MSB first

387 half_dtc_byte = tmp_dtc & 0xFF;

388 half_dtc_pending = 1;

389 }

390

391 CANTXData[1] = ISO15765_CF | cf_index; //PCI

392 CANTXData[0] = 1; //transmit

393

394 cf_index = ++cf_index%16; //0,1..15,0,1,...

395 cf_block_count++;

396

Appendix 101

397 if ((DTCStreamNumDTC == DTCStreamNextDTC) & !half_dtc_pending)

398 {

399 //transfer complete

400 StreamStatus = sm_finished;

401 break;

402 }

403

404 if (Stream_BS && (cf_block_count == Stream_BS))

405 {

406 //reached the Block Size Limit - wait for next F/C Frame

407 StreamWaitCounter = 0; //reset timeout

408 StreamStatus = sm_wait_FC;

409 }

410

411 break;

412

413 case sm_finished:

414 return true;

415

416 default:

417 StreamStatus = sm_finished;

418 }

419

420 return false; //transmission not yet finished

421 }

422

423 /**/

424

425 getFFPID(uint frame, uint PID, uint8[] CANTXdata)

426 {

427 //-->See headers!!

428

429 uint32 _tmpPID =0;

430 uint8 i,current_PID,mem_offset,_p,_o;

431

432 if (_EOBD_memRdy)

433 {

434 mem_offset = 0;

435 _tmpPID = 0;

436

437 switch (PID)

438 {

439 case 0x00:

440 case 0x20:

441 case 0x40:

442 case 0x60:

443 case 0x80:

Appendix 102

444 _tmpPID = self.getFFSpecialPID(PID);

445 if (_tmpPID)

446 {

447 //only set current_PID if the returned value (supported PIDs) is

non-zero

448 //empty support bitfields will be reported as not supported and

therefore wil not be responded to

449 current_PID = PID;

450 }

451 break;

452

453 default:

454 if (PID == 0x02)

455 {

456 //PID 0x02 is the FF DTC, which is at offset 0

457 current_PID = 0x02;

458 }

459 else

460 {

461 //the first 2 bytes are for the FF DTC

462 mem_offset = 2;

463 //calculate the PID memory position inside a FF

464 //this assumes that the PID exists - The tester is required by

ISO15031

465 //to query this information before making a request.

466

467 current_PID = 0;

468 for (i=0; EOBDFFPIDs[i]; i++) //traverse until we hit a 0

469 {

470 current_PID = EOBDFFPIDs[i];

471 if (current_PID == PID)

472 break;

473 else

474 {

475 mem_offset += EOBDPIDSize[current_PID];

476

477 //if the next PID in the list is 0 and the current is

not the one we

478 //want, it is not in the list, therefore not supported

479 if (EOBDFFPIDs[i+1] == 0)

480 {

481 //indicate that the PID is not in the list

482 current_PID = 0;

483 }

484 }

485 }

486

487 }

Appendix 103

488

489 //only if supported

490 if(current_PID)

491 {

492 //get the "real" position of the data in the FF/DTC Memory blob

493 mem_offset = self.getFFTotalOffset(frame,mem_offset);

494

495 //bytewise assemble PID from EEP Memory

496 for (i=0;i<EOBDPIDSize[PID];i++)

497 {

498 _p = self.getFFpage(mem_offset);

499 _o = self.getFFoffset(mem_offset);

500 _tmpPID <<= 8;

501 _tmpPID |= EEP_EOBD_mem[_p][_o] & 0xFF;

502 mem_offset++;

503 }

504 }

505 }

506

507 if (current_PID || (PID == 0))

508 {

509 //left-align PID data int the CAN Msg

510

511 CANTXdata[1] = ISO15765_SF | (EOBDPIDSize[PID] + 3);

512 CANTXdata[2] = 0x42; //0x02 + 0x40

513 CANTXdata[3] = PID;

514 CANTXdata[4] = frame;

515 CANTXdata[5] = 0x55;

516 CANTXdata[6] = 0x55;

517 CANTXdata[7] = 0x55;

518 CANTXdata[8] = 0x55;

519

520 for(i=0; i < EOBDPIDSize[PID]; i++)

521 {

522 CANTXdata[i+5] = (_tmpPID >> ((EOBDPIDSize[PID] - 1-i)*8)) & 0xFF;

523 }

524

525 CANTXdata[0] = 1;

526 }

527 else

528 {

529 CANTXdata[0] = 0;

530 }

531 }

532 }

533

534 /**/

Appendix 104

535

536 uint getDTCpage(uint DTCAdr)

537 {

538 //zero-indexed!

539 //The DTCAdr Argument is the ABSOLUTE Adress of the DTC in the DTC Storage

540 //Memory space. It does not account for wrap-around etc.

541

542 if (DTCAdr <= MAX_DTC)

543 return (((DTCAdr) / (EEP_PAGESIZE/2)) + DTC_STARTPAGE);

544 else

545 return 1;

546 }

547

548 /**/

549

550 uint getDTCoffset(uint DTCAdr)

551 {

552 //zero-indexed!

553 //The DTCAdr Argument is the ABSOLUTE Adress of the DTC in the DTC Storage

554 //Memory space. It does not account for wrap-around etc.

555 //(EEP_PAGESIZE/2) = number of DTCs (2 byte) per Page - works only for even page

sizes!

556 // .. * 2 converts the DTC number inside the page to the byte offset

557 // add 2 since the usable offsets start at 2. (0,1) are command & control.

558

559 if (DTCAdr <= MAX_DTC)

560 return (((DTCAdr) % (EEP_PAGESIZE/2) * 2) + 2);

561 else

562 return 2;

563 }

564

565 /**/

566

567 uint getFFTotalOffset(uint frame, uint mem_offset)

568 {

569 // get the page on which a certain memory location (offset)

570 // within a certain frame# (frame) resides

571

572 uint8 total_offset, real_frame;

573

574

575 //calculate real frame locaion

576 real_frame=((_EOBD_firstFFIdx + frame) % _EOBD_MaxFF);

577

578 total_offset = real_frame * _EOBD_FFSize + mem_offset;

579

580 return (total_offset);

Appendix 105

581 }

582

583 /**/

584

585 bool DTCMemCheck(void)

586 {

587 int i;

588 int _memOK = 1;

589

590 for (i=0; i < EOBD_EEP_SIZE; i++)

591 {

592 if (!(EEP_EOBD_mem[i][EEP_STATUS] & (EEP_READOK|EEP_WRITEOK)))

593 _memOK = 0;

594 }

595

596 if (_memOK)

597 return true;

598 else

599 return false;

600 }

601

602 /**/

603

604 bool checkForDuplicateDTC(uint DTC)

605 {

606 uint16 i, _tmp_adr, _tmp_DTC;

607 int _found = 0;

608

609 for (i=0; i < EOBD_numDTC; i++)

610 {

611 _tmp_adr = self.findDTC(i);

612 _memPage = self.getDTCpage(_tmp_adr);

613 _memOffset = self.getDTCoffset(_tmp_adr);

614 _tmp_DTC = ((EEP_EOBD_mem[_memPage][_memOffset])<<8) |

(EEP_EOBD_mem[_memPage][_memOffset+1]);

615

616 DTCLookupTmpDTC = _tmp_DTC;

617 DTClookupiterations = i+1;

618

619 if (_tmp_DTC == DTC)

620 return true;

621 }

622

623 DTCLookupNotFound += 1;

624

625 return false;

626 }

Appendix 106

627

628 /**/

629

630 uint insertNewDTC(void)

631 {

632 //Rollover logic:

633 //The DTCs are stored in a "ring"

634 //_numDTC is the actual number of saved DTCs

635 //internally, the DTCs are stored on a zero-based index

636 //if _numDTC (the number of stored DTCs) reaches MAX_DTC, the oldest DTCs get

overwritten.

637 //_numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0

638

639 uint8 _next_free;

640

641 if (EOBD_numDTC >= MAX_DTC)

642 {

643 _next_free = _EOBD_firstDTCIdx++;

644 _EOBD_firstDTCIdx %= MAX_DTC;

645 }

646 else

647 {

648 _next_free = _EOBD_numDTC++;

649 }

650

651 return _next_free;

652 }

653

654 /**/

655

656 uint insertNewFF(void)

657 {

658 //Rollover logic:

659 //The DTCs are stored in a "ring"

660 //_numDTC is the actual number of saved DTCs

661 //internally, the DTCs are stored on a zero-based index

662 //if _numDTC (the number of stored DTCs) reaches MAX_DTC, the oldest DTCs get

overwritten.

663 //_numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0

664

665 uint8 _next_free;

666

667 if (EOBD_numDTC >= MAX_DTC)

668 {

669 _next_free = _EOBD_firstDTCIdx++;

670 _EOBD_firstDTCIdx %= MAX_DTC;

671 }

672 else

Appendix 107

673 {

674 _next_free = _EOBD_numDTC++;

675 }

676

677 return _next_free;

678 }

679

680 /**/

681

682 uint findDTC(uint DTCnum)

683 {

684 // Rollover logic:

685 // The DTCs are stored in a "ring"

686 // _numDTC is the actual number of saved DTCs

687 // internally, the DTCs are stored on a zero-based index

688 // if _numDTC (the number of stored DTCs) is MAX_DTC, the oldest DTCs got

overwritten.

689 // _numDTCs then stays at MAX_DTC and _firstDTCIdx starts moving from 0 - So the

"real"

690 // DTC Address is offset by _firstDTCIdx and wraps around the top.

691

692 int _real_adr;

693

694 if (_EOBD_numDTC >= MAX_DTC)

695 {

696 _real_adr = (DTCnum + _EOBD_firstDTCIdx) % MAX_DTC;

697 }

698 else

699 {

700 _real_adr = (DTCnum);

701 }

702

703 return _real_adr;

704 }

705

706 /**/

707

708 uint ReadDTCFromEEP(int DTCnum)

709 {

710 uint16 _tmp_adr, _tmp_DTC;

711

712 if(EOBD_memRdy)

713 {

714 if (DTCnum < EOBD_numDTC)

715 {

716 _tmp_adr = self.findDTC(DTCnum);

717 _memPage = self.getDTCpage(_tmp_adr);

718 _memOffset = self.getDTCoffset(_tmp_adr);

Appendix 108

719

720 _tmp_DTC = ((EEP_EOBD_mem[_memPage][_memOffset])<<8) |

(EEP_EOBD_mem[_memPage][_memOffset+1]);

721 return _tmp_DTC;

722 }

723 else

724 return 0;

725 }

726 else

727 return 0;

728 }

729

730 /**/

731

732 uint getFFpage(uint abs_mem_offset)

733 {

734 return ((abs_mem_offset / EEP_PAGESIZE) + FF_STARTPAGE);

735 }

736

737 /**/

738

739 uint getFFoffset(uint abs_mem_offset)

740 {

741 //add 2, since the usable offsets start at 2.

742 //0,1 are status/command bytes

743

744 return ((abs_mem_offset % EEP_PAGESIZE) + 2);

745 }

746

747 /**/

748

749 uint getFFSpecialPID(uint PID)

750 {

751 uint8 i;

752 uint32 tmp_pid = 0;

753

754 switch (PID)

755 {

756 //case 0x00,0x20,0x40,0x60,0x80:

757 //these PIDs bit-encode the other available PIDs

758 //so we walk through the EOBDFFPIDs list and set the bits accordingly

759 case 0x00:

760 //PID 2 is always supported

761 tmp_pid = 0x40000000;

762 case 0x20:

763 case 0x40:

764 case 0x60:

Appendix 109

765 case 0x80:

766 // The last byte of EOBDFFPIDs has to be 0, or this will hang

767 for (i=0; EOBDFFPIDs[i]; i++)

768 {

769 //if PID is within the PID's encoded range (PID+1...PID+0x20)

770 //flip on a bit at it's relative position (MSB = bit0)

771 if ((EOBDFFPIDs[i] > PID) && (EOBDFFPIDs[i] <= (PID + 0x20)))

772 {

773 tmp_pid |= 1<<(32 - EOBDFFPIDs[i] + PID);

774 }

775

776 //if at least one PID above the current range exists,

777 //set the last bit to indicate that another PID index is available.

778 if(EOBDFFPIDs[i] > (PID + 0x20))

779 tmp_pid |= 0x00000001;

780 }

781 break;

782 default:

783 break;

784 }

785

786 return tmp_pid;

787 }

Listing 8: EOBD_bytesplit implementation code

01 return (value >> (numbyte*8)) & 0x000000FF;

Listing 9:EOBD_assemble_canArray implementation code

01 //the CANarrayPtr Argument provides a pointer to the Array's

02 //Memory Location when connected to the GET port of an Array

03

04 CANarrayPtr[0] = NewData;

05 CANarrayPtr[1] = Data0;

06 CANarrayPtr[2] = Data1;

07 CANarrayPtr[3] = Data2;

08 CANarrayPtr[4] = Data3;

09 CANarrayPtr[5] = Data4;

10 CANarrayPtr[6] = Data5;

11 CANarrayPtr[7] = Data6;

12 CANarrayPtr[8] = Data7;

Listing 10: CANremap OBD transmit code

01 /***

02 * EOBD TxMOb 0x7E8

Appendix 110

03 **/

04 if (EOBD_TXCAN[0]) //NewMsg Flag

05 {

06 DataT96[0] = EOBD_TXCAN[1];

07 DataT96[1] = EOBD_TXCAN[2];

08 DataT96[2] = EOBD_TXCAN[3];

09 DataT96[3] = EOBD_TXCAN[4];

10 DataT96[4] = EOBD_TXCAN[5];

11 DataT96[5] = EOBD_TXCAN[6];

12 DataT96[6] = EOBD_TXCAN[7];

13 DataT96[7] = EOBD_TXCAN[8];

14

15 EOBD_TXCAN[0] = 0;

16 EOBD_TXFlag = 1;

17 }

Listing 11:CANremap receive Code

01 /***

02 * ID 7DFh - EOBD Functional RX Address

03 **/

04

05 if (EOBD_RXFlag_F)

06 {

07 EOBD_RXCAN[1] = DataR112[0];

08 EOBD_RXCAN[2] = DataR112[1];

09 EOBD_RXCAN[3] = DataR112[2];

10 EOBD_RXCAN[4] = DataR112[3];

11 EOBD_RXCAN[5] = DataR112[4];

12 EOBD_RXCAN[6] = DataR112[5];

13 EOBD_RXCAN[7] = DataR112[6];

14 EOBD_RXCAN[8] = DataR112[7];

15 EOBD_RXCAN[0] = 1; //NewMsg Flag

16 EOBD_RXFlag_F = 0;

17 }

18

19 /***

20 * ID 7Enh - EOBD Physical RX Address

21 **/

22

23 if (EOBD_RXFlag_P)

24 {

25 EOBD_RXCAN[1] = DataR113[0];

26 EOBD_RXCAN[2] = DataR113[1];

27 EOBD_RXCAN[3] = DataR113[2];

28 EOBD_RXCAN[4] = DataR113[3];

Appendix 111

29 EOBD_RXCAN[5] = DataR113[4];

30 EOBD_RXCAN[6] = DataR113[5];

31 EOBD_RXCAN[7] = DataR113[6];

32 EOBD_RXCAN[8] = DataR113[7];

33 EOBD_RXCAN[0] = 2; //NewMsg Flag

34 EOBD_RXFlag_P = 0;

35 }

