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Abstract

Noise in the brain – friend or foe? Noise is omnipresent at almost every temporal and
spatial scale in the brain, introducing seemingly undesired variability at virtually
every step of neural computation. In this thesis, rather than studying how noise
could be suppressed and its impact on circuit function could be minimized, the
opposite route is taken: noise is considered as a potential computational resource.

As a basis for investigating various aspects of noise, a software framework for the
simulation and analysis of stochastic networks of spiking neurons is developed. Us-
ing this framework, three key research questions are addressed through a combined
approach of simulation, computational analysis and theory:

First, based on the observation that neurons are inherently stochastic, it is
investigated how probability distributions could be stored in the brain through
stochastic networks of neurons that are able to generate samples from those stored
distributions. Computation times for typical probabilistic inference tasks on these
internally stored distributions are investigated through computer simulations and
the convergence speed of a standard cortical data-based microcircuit model is exam-
ined, showing that convergence occurs quite fast in the range of 100ms of biological
time, which is sufficient for common probabilistic inference tasks.

Second, it is investigated how these internally stored distributions of a net-
work with noise could be programmed to achieve desired computations. To address
this question, generic design principles for constructing stochastic spiking networks,
which autonomously generate heuristic solutions to difficult computational prob-
lems, are developed. By encoding in a stochastic network a distribution which
assigns highest probability to correct solutions, and implementing specific problem
constraints by introducing controlled interactions among neurons, it is shown that
one can solve many different problems from the class of Constraint Satisfaction
Problems. The resulting computational capabilities of networks of spiking neurons
to solve well-known NP-hard problems such as 3-SAT and the Traveling Salesman
Problem are demonstrated in computer simulations.

Third, it is studied how stochastic microcircuits in the cortex can learn to iso-
late input component features and autonomously form a suitable representation of
high-dimensional spike input streams. A biologically motivated stochastic winner-
take-all (WTA) circuit motif, the so called Sparse WTA microcircuit motif with
soft lateral inhibition, is proposed, where several neurons can spike simultaneously
to explain the current input. By theoretical analysis and simulations, the circuit is
shown to acquire through spike-timing dependent plasticity (STDP) the capability
to extract and represent multiple salient features from complex inputs and to be-
come temporally selective at the same time. This suggests that STDP installs in
ubiquitous microcircuit motifs with noise a powerful operation that could explain
some of the remarkable computational capabilities of a generic cortical column.

Altogether, the results of this thesis represent important contributions to the un-
derstanding of basic principles of stochastic computations and learning in networks
of spiking neurons.
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Zusammenfassung

Rauschquellen im Gehirn – Freund oder Feind? Rauschen ist ein allgegenwärtiges
Phänomen, welches auf fast jeder zeitlichen und räumlichen Skala im Gehirn be-
obachtet werden kann, und scheinbar unerwünschte Variabilität in praktisch jeder
Stufe neuronaler Berechnung erzeugt. Anstatt zu untersuchen wie Rauschen unter-
drückt und seine Auswirkungen auf die Funktion eines Netzwerks minimiert werden
könnten, wird in dieser Arbeit der entgegengesetzte Weg beschritten: Rauschen wird
als potentielle Ressource für Berechnungen in neuronalen Netzwerken betrachtet.

Als Grundlage für die Untersuchung verschiedener Aspekte wird ein Software-
Framework für die Simulation und Analyse von stochastischen Netzwerken von Spi-
king Neuronen entwickelt. Darauf basierend werden drei wichtige Forschungsfragen
durch einen kombinierten Ansatz aus Simulation, Computeranalyse und Theorie
behandelt.

Zuerst wird untersucht, wie Wahrscheinlichkeitsverteilungen im Gehirn durch
stochastische Netzwerke von Neuronen gespeichert werden können, in einer Art
und Weise die es Netzwerken ermöglicht, effizient Stichproben (samples) aus ge-
speicherten Verteilungen zu erzeugen. Berechnungszeiten für typische Operationen
auf diesen intern gespeicherten Verteilungen werden durch Computersimulationen
untersucht, und die Konvergenzgeschwindigkeit eines datenbasierten Standardmo-
dells einer kortikalen Kolumne analysiert. Es wird gezeigt, dass die Konvergenz zu
einer stationären Verteilung innerhalb von wenigen 100 ms biologischer Zeit erfolgt,
sodass typische probabilistische Inferenzoperationen auf sehr kurzen Zeitskalen aus-
geführt werden können.

Zweitens wird untersucht, wie diese intern gespeicherten Verteilungen eines
Netzwerks mit Rauschen programmiert werden könnten, um gewünschte Berech-
nungen zu ermöglichen. Um diese Frage zu beantworten, werden generische Design-
Prinzipien für die Konstruktion stochastischer Spiking Netze, welche autonom heu-
ristische Lösungen für schwierige Rechenprobleme erzeugen können, entwickelt. Die
Programmierung einer Verteilung erfolgt so, dass korrekten Lösungen eines Pro-
blems die höchste Wahrscheinlichkeit zugeordnet wird, und konkrete Randbedin-
gungen eines Problems durch gezielte Interaktionen zwischen Neuronen implemen-
tiert werden. Es wird gezeigt, dass auf diese Weise viele Probleme aus der Klasse der
Constraint-Satisfaction-Probleme mit Neuronalen Netzen lösbar sind. Die daraus
resultierenden rechnerischen Fähigkeiten von Spiking Neuronalen Netzen hinsicht-
lich des Lösens bekannter NP-schwerer Probleme wie 3-SAT oder dem Traveling
Salesman Problem werden in Computersimulationen gezeigt.

Drittens wird die Frage gestellt, wie stochastische Netze im Gehirn lernen
können, verschiedene Komponenten eines Eingangssignals zu isolieren und autonom
eine geeignete Darstellung von hochdimensionalen Spike Trains zu bilden. Ein biolo-
gisch motiviertes stochastisches Netzwerkmotiv wird vorgeschlagen: das so genannte
Sparse Winner-Take-All (SWTA) Motiv mit schwacher lateraler Inhibition, in dem
mehrere Neuronen gleichzeitig feuern können, um gemeinsam ein Eingangssignal
zu erklären. Mittels theoretischer Analyse und Netzwerksimulationen wird gezeigt,
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dass solche Netze durch Spike-Timing Dependent Plasticity (STDP) die Fähigkeit
erwerben, mehrere Aspekte eines hochdimensionalen Eingangssignals zugleich zu
extrahieren und zu repräsentieren, sowie zeitliche Selektivität für verschiedene Pha-
sen eines Eingangsmusters zu entwickeln. Diese Ergebnisse deuten darauf hin, dass
STDP in einem allgegenwärtigen Netzwerkmotiv des Gehirns eine leistungsfähige
Rechenoperation installiert, die einige der bemerkenswerten Rechenfähigkeiten einer
generischen kortikalen Kolumne erklären konnte.

Insgesamt stellen die Ergebnisse dieser Arbeit wichtige Beiträge zum
Verständnis stochastischer Berechnungen und Lernvorgänge in Spiking Neurona-
len Netzwerken dar.
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Chapter 1

Introduction

Quantum mechanics at its fundamental level states that nature is inherently ran-
dom and therefore unpredictable. Due to random processes governing nature, noise
is an inevitable phenomenon influencing everything around us: from the interaction
of physical particles to the decisions we make. The brain, arguably the most so-
phisticated product of evolution, enable us not only to handle such inherently noisy
environment with ease, but it also enables us to solve problems, make art, experi-
ence emotions and make decisions, although not always the right ones. Ironically,
to deal with noise and uncertainty this magnificent and most complex information
processing system known in the universe is made of billions of noisy and unreliable
components - neurons (Faisal et al., 2008). Remarkably, neurons self-organize in net-
works and use spikes (action potentials) for asynchronous communication through
trillions of equally noisy and unreliable synapses in order to perform complex in-
formation processing functions that lie at the heart of human intelligence. Still, a
theory that explains how exactly neurons are connected and how they self-organize
in order for these complex functions to arise is missing.

Learning a new song, reminding yourself of all the nice places you have visited
last summer, or simply planning the shortest and the safest path while crossing
the street, are examples of simple and typical situations we deal with during our
lives. Although people take those actions of learning, remembering and inference
for granted, the basic understanding of how the brain actually stores, recalls or
processes information, and how it combines it in real time with sensory input in a
manner that is consistent with the noisy nature of its computing elements is not
known. One hypothesis supported by numerous recent studies is that many of these
complex brain functions involve probabilistic inference through sampling (Griffiths
and Tenenbaum, 2006; Vul et al., 2009; Gershman et al., 2009), which suggests that
networks of neurons process information in the form of probability distributions.
This is an interesting perspective as it does not view noise as a source of undesired
variability in neural responses but rather as a potential resource for stochastic
computations in a network of neurons that stores probability distributions. On the
other hand it raises the question how complex distributions could be represented
and stored in large and diverse networks of neurons such that they could be later
used for knowledge extraction and inference.

Typically a large enough brain network, such as a cortical microcircuit, which
potentially gives rise to some useful computational function contains a large num-
ber of neurons of different types connected in some functional units. These neurons
might form some small motifs and the network might be seen as composed of many
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different frequently occurring small network motifs. For example it is known that
winner-take-all (WTA) circuits constitute a ubiquitous motif of cortical microcir-
cuits (Douglas and Martin, 2004). If one tries to understand such networks in terms
of the probability distributions they embody, interesting questions arise: How does
a specific network motif shape the complex distribution embodied by the large net-
work? Is there some principle for constructing networks with certain functional
properties such as problem solving capabilities? Answering these questions would
obviously significantly advance our understanding of how the brain can store com-
plex knowledge and perform inference with it.

Probably the most fascinating and important property of the brain is its plastic-
ity (Fregnac, 2003), due to which we can learn or acquire new knowledge and skills
throughout our life, but through which we can also forget. For example, information
memorized in a short time, if of crucial importance, could be remembered for a life
time, while some existing knowledge if not repeated on a regular basis could easily
get partially or completely lost. When learning a new skill or acquiring some new
piece of information, networks in the brain are self-organizing in order to maintain
useful representations and computational functions. Consequently, during learning
networks are constantly adapting and, as a consequence, internally stored distri-
butions are changing. A fundamental question is what the mechanisms governing
these network changes are. More precisely, what are the mechanisms that are ac-
tivated during acquisition of new skills to shape the internally stored distributions
such that useful new computational operations can emerge?

The brain computes in a massively parallel and asynchronous manner, in stark
contrast to a traditional computer architecture. Furthermore, it does so without
a global clock and memory and by using only ”simple” computational units. The
power of such parallel cognitive architecture is unrivaled by the most powerful super-
computer. Therefore, from the perspective of Computer Science, providing answers
to the above questions in the form of general principles for understanding compu-
tations in such a highly parallel architecture could open the door to very efficient,
clever and fast implementations of computational algorithms for various problems
that could bring human level intelligence or general problem solving capabilities to
desktop computers.

In this thesis, with the above goals in mind, principles underlying the computa-
tional function of networks of spiking neurons are investigated from the perspective
that noise is a potential computational resource, rather than a nuisance. The key
contributions made by this thesis are: a) A new software framework for the sim-
ulation and analysis of stochastic networks of spiking neurons that was developed
as a foundation for addressing various research questions in the scope of the thesis.
b) An analysis of stochastic computations in a standard model of a cortical col-
umn. This analysis revealed, among other important results, that a cortical column
model is capable of storing probability distributions in a manner that enables very
fast probabilistic inference operations on these distributions. c) A demonstration
of how probability distributions can be systematically manipulated in networks of
spiking neurons with noise to endow them with powerful problem solving capabil-
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ities. d) A new theory for how representations could self-organize in stereotypical
WTA networks of spiking neurons with soft lateral inhibition through synaptic
plasticity. Taken together, these results constitute important contributions to the
understanding of general principles underlying the computational functions of net-
works of stochastic spiking neurons.

1.1 Organization of the Thesis

The results presented in all but last chapter of this thesis are based on three paper
manuscripts written during my PhD studies in collaboration with my supervisor
prof. Wolfgang Maass, prof. Robert Legenstein and my colleague Stefan Haben-
schuss. In each of these chapters only the main findings are presented, while ad-
ditional supporting information, such as derivations and simulation details, can be
found in the Appendix. The last chapter contains description of the simulation
framework developed and used within the scope of this thesis, where the section
on NEVESIM is based on the paper manuscript written in collaboration with my
colleagues Dejan Pecevski and David Kappel.

In Chapter 2, based on the observation that neurons are inherently stochastic,
it is investigated how probability distributions could be stored in the brain through
stochastic networks of neurons that are able to generate samples from those stored
distributions. It is proposed that the stochastic dynamics of biological spiking net-
works with virtually arbitrarily complex dynamics (including short term plasticity,
nonlinear dendritic computations, etc.) can be viewed as Markov Chain Monte
Carlo sampling. These computation times were assessed by adapting the Gelman-
Rubin diagnostics, a method originally developed to assess convergence speed of
Markov Chains in statistics and Machine Learning, for monitoring convergence in
cortical microcircuits. An analysis of the convergence speed of a standard cortical
data-based microcircuit model showed that convergence occurs quite fast in the
range of 100ms of biological time, which is sufficient for common probabilistic in-
ference tasks. Finally, as a first step towards understanding how internally stored
distribution of a network could be programmed to achieve desired computations,
design principles for constructing networks which autonomously generate heuristic
solutions to a Sudoku puzzle were designed and tested through simulations.

In Chapter 3 it is investigated how these internally stored distributions of a
network with noise could be programmed to achieve desired computations. To
address this question, generic design principles for constructing stochastic spiking
networks, which autonomously generate heuristic solutions to difficult computa-
tional problems, are developed. By encoding in a stochastic network a probability
distribution that assigns highest probability to correct solutions, and implementing
specific problem constraints by introducing controlled interactions among neurons,
it is shown that one can solve various problems from the class of Constraint Satis-
faction Problems. The underlying theoretical principle is that one can construct a
network such that in the stationary distribution of network states p(x), the network
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visits states x in proportion to exp(−C ∗#violated constraints) with some positive
constant C. Hence, network states x which correspond to correct solutions occur
particularly often. The resulting computational capabilities of networks of spiking
neurons to solve well-known NP-complete problems such as 3SAT and the Traveling
Salesman Problem are demonstrated in computer simulations.

Chapter 4 addresses the question how stochastic microcircuits in the cortex
can learn to isolate input component features and autonomously form a suitable
representation of high-dimensional spike input streams. A biologically motivated
stochastic WTA circuit motif, the so called Sparse WTA microcircuit motif, with
soft lateral inhibition where several neurons can spike simultaneously, is proposed.
By theoretical analysis and network simulations, the circuit motif is shown to ac-
quire through spike-timing dependent plasticity (STDP) the capability to simulta-
neously extract and represent multiple salient features from complex inputs and to
become temporally selective at the same time. This suggests that STDP installs in
ubiquitous microcircuit motifs with noise a very powerful computational operation
that could explain some of the remarkable computational capabilities of a generic
cortical column.

Chapter 5 provides an overview of a software framework for the simulation and
analysis of stochastic networks of spiking neurons which consists of software tools
I developed or extended for the purpose of the thesis. ZLIB, a library for paral-
lelization and optimization, and CSP2SNN, the framework for automatic porting
of Constraint Satisfaction Problems to Spiking Neural Networks, were developed
by myself in order to facilitate analysis and large scale simulations. PCSIM, a
time step based simulator developed by Dejan Pecevski and Thomas Natschlager,
and NEVESIM, an event based simulator developed by Dejan Pecevski, were used
as a backbone for all simulations and were adapted in order to support specific
simulation requirements of the thesis.
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Stochastic Computations in
Cortical Microcircuit Models

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2.8 Generation of heuristic solutions to constraint satisfaction
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Experimental data from neuroscience suggest that a substantial amount of
knowledge is stored in the brain in the form of probability distributions over network
states and trajectories of network states. We provide a theoretical foundation for
this hypothesis by showing that even very detailed models for cortical microcircuits,
with data-based diverse nonlinear neurons and synapses, have a stationary distribu-
tion of network states and trajectories of network states to which they converge ex-
ponentially fast from any initial state. We demonstrate that this convergence holds
in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits.
We further show that, in the presence of background network oscillations, separate
stationary distributions emerge for different phases of the oscillation, in accordance
with experimentally reported phase-specific codes. We complement these theoret-
ical results by computer simulations that investigate resulting computation times
for typical probabilistic inference tasks on these internally stored distributions, such
as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we
show that the inherent stochastic dynamics of generic cortical microcircuits enables
them to quickly generate approximate solutions to difficult constraint satisfaction
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problems, where stored knowledge and current inputs jointly constrain possible
solutions. This provides a powerful new computing paradigm for networks of spik-
ing neurons, that also throws new light on the way how networks of neurons in the
brain could carry out complex computational tasks such as prediction, imagination,
memory recall and problem solving.

2.1 Introduction

The question whether brain computations are inherently deterministic or inherently
stochastic is obviously of fundamental importance. Numerous experimental data
highlight inherently stochastic aspects of neurons, synapses and networks of neu-
rons on virtually all spatial and temporal scales that have been examined (Allen
and Stevens, 1994; Faisal et al., 2008; Borst, 2010; Yarom and Hounsgaard, 2011;
Clarke, 2012). A clearly visible stochastic feature of brain activity is the trial-to-
trial variability of neuronal responses, which also appears on virtually every spatial
and temporal scale that has been examined (Faisal et al., 2008). This variability
has often been interpreted as side-effect of an implementation of inherently deter-
ministic computing paradigms with noisy elements, and it has been attempted to
show that the observed noise can be eliminated through spatial or temporal averag-
ing. However, more recent experimental methods, which make it possible to record
simultaneously from many neurons (or from many voxels in fMRI), have shown
that the underlying probability distributions of network states during spontaneous
activity are highly structured and multimodal, with distinct modes that resemble
those encountered during active processing. This has been shown through record-
ings with voltage-sensitive dyes starting with (Tsodyks et al., 1999; Kenet et al.,
2003), multi-electrode arrays (Luczak et al., 2009b), and fMRI (Raichle, 2010; Lewis
et al., 2009). It was also shown that the intrinsic trial-to-trial variability of brain
systems is intimately related to the observed trial-to-trial variability in behavior
(see e.g. (Fox et al., 2007)). Furthermore, in (Kelemen and Fenton, 2010) it was
shown that during navigation in a complex environment where simultaneously two
spatial frames of reference were relevant, the firing of neurons in area CA1 rep-
resented both frames in alternation, so that coactive neurons tended to relate to
a common frame of reference. In addition it has been shown that in a situation
where sensory stimuli are ambiguous, large brain networks switch stochastically
between alternative interpretations or percepts, see (Leopold and Logothetis, 1996,
1999; Kim and Blake, 2005). Furthermore, an increase in the volatility of network
states has been shown to accompany episodes of behavioral uncertainty (Karlsson
et al., 2012). All these experimental data point to inherently stochastic aspects
in the organization of brain computations, and more specifically to an important
computational role of spontaneously varying network states of smaller and larger
networks of neurons in the brain. However, one should realize that the approach
to stochastic computation that we examine in this article does not postulate that
all brain activity is stochastic or unreliable, since reliable neural responses can be
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represented by probabilities close to 1.

The goal of this article is to provide a theoretical foundation for understanding
stochastic computations in networks of neurons in the brain, in particular also
for the generation of structured spontaneous activity. To this end, we prove here
that even biologically realistic models C for networks of neurons in the brain have
– for a suitable definition of network state – a unique stationary distribution pC

of network states. Previous work had focused in this context on neuronal models
with linear sub-threshold dynamics (Brémaud and Massoulié, 1996; Borovkov et al.,
2012) and constant external input (e.g. constant input firing rates). However, we
show here that this holds even for quite realistic models that reflect, for example,
data on nonlinear dendritic integration (dendritic spikes), synapses with data-based
short term dynamics (i.e., individual mixtures of depression and facilitation), and
different types of neurons on specific laminae. We also show that these results are
not restricted to the case of constant external input, but rather can be extended to
periodically changing input, and to input generated by arbitrary ergodic stochastic
processes.

Our theoretical results imply that virtually any data-based model C, for net-
works of neurons featuring realistic neuronal noise sources (e.g. stochastic synaptic
vesicle release) implements a Markov process through its stochastic dynamics. This
can be interpreted – in spite of its non-reversibility – as a form of sampling from
a unique stationary distribution pC . One interpretation of pC , which is in princi-
ple consistent with our findings, is that it represents the posterior distribution of
a Bayesian inference operation (Hoyer and Hyvärinen, 2003; Berkes et al., 2011;
Buesing et al., 2011; Pecevski et al., 2011), in which the current input (evidence)
is combined with prior knowledge encoded in network parameters such as synaptic
weights or intrinsic excitabilities of neurons (see (Friston, 2010; Vilares and Kord-
ing, 2011; Fiser et al., 2010; Doya et al., 2007) for an introduction to the “Bayesian
brain”). This interpretation of neural dynamics as sampling from a posterior dis-
tribution is intriguing, as it implies that various results of probabilistic inference
could then be easily obtained by a simple readout mechanism: For example, pos-
terior marginal probabilities can be estimated (approximately) by observing the
number of spikes of specific neurons within some time window (see related data
from parietal cortex (Huk and Shadlen, 2005)). Furthermore, an approximate max-
imal a posteriori (MAP) inference can be carried out by observing which network
states occur more often, and/or are more persistent.

A crucial issue which arises is whether reliable readouts from pC in realistic
cortical microcircuit models can be obtained quickly enough to support, e.g., fast
decision making in downstream areas. This critically depends on the speed of
convergence of the distribution of network states (or distribution of trajectories of
network states) from typical initial network states to the stationary distribution.
Since the initial network state of a cortical microcircuit C depends on past activity,
it may often be already quite “close” to the stationary distribution when a new
input arrives (since past inputs are likely related to the new input). But it is also
reasonable to assume that the initial state of the network is frequently unrelated
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to the stationary distribution pC , for example after drastic input changes. In this
case the time required for readouts depends on the expected convergence speed
to pC from – more or less – arbitrary initial states. We show that one can prove
exponential upper bounds for this convergence speed. But even that does not
guarantee fast convergence for a concrete system, because of constant factors in
the theoretical upper bound. Therefore we complement this theoretical analysis of
the convergence speed by extensive computer simulations for cortical microcircuit
models.

The notion of a cortical microcircuit arose from the observation that “it seems
likely that there is a basically uniform microcircuit pattern throughout the neo-
cortex upon which certain specializations unique to this or that cortical area are
superimposed” (Mountcastle, 1998). This notion is not precisely defined, but rather
a term of convenience: It refers to network models that are sufficiently large to
contain examples of the main types of experimentally observed neurons on spe-
cific laminae, and the main types of experimentally observed synaptic connections
between different types of neurons on different laminae, ideally in statistically rep-
resentative numbers (Douglas and Martin, 2004). Computer simulations of cortical
microcircuit models are practically constrained both by a lack of sufficiently many
consistent data from a single preparation and a single cortical area, and by the avail-
able computer time. In the computer simulations for this article we have focused on
a relatively simple standard model for a cortical microcircuit in the somatosensory
cortex (Haeusler and Maass, 2007) that has already been examined in some vari-
ations in previous studies from various perspectives (Haeusler et al., 2009; Rasch
et al., 2011; Potjans and Diesmann, 2012; Bastos et al., 2012).

We show that for this standard model of a cortical microcircuit marginal prob-
abilities for single random variables (neurons) can be estimated through sampling
even for fairly large instances with 5000 neurons within a few 100 ms of simulated
biological time, hence well within the range of experimentally observed computation
times of biological organisms. The same holds for probabilities of network states for
small sub-networks. Furthermore, we show that at least for sizes up to 5000 neurons
these “computation times” are virtually independent of the size of the microcircuit
model.

We also address the question to which extent our theoretical framework can be
applied in the context of periodic input, for example in the presence of background
theta oscillations (Dragoi and Buzsaki, 2006). In contrast to the stationary input
case, we show that the presence of periodic input leads to the emergence of unique
phase-specific stationary distributions, i.e., a separate unique stationary distribution
for each phase of the periodic input. We discuss basic implications of this result
and relate our findings to experimental data on theta-paced path sequences (Dragoi
and Buzsaki, 2006; Gupta et al., 2012) and bi-stable activity (Jezek et al., 2011) in
hippocampus.

Finally, our theoretically founded framework for stochastic computations in net-
works of spiking neurons also throws new light on the question how complex con-
straint satisfaction problems could be solved by cortical microcircuits (Hinton et al.,
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1984; Davenport et al., 1994). We demonstrate this in a toy example for the pop-
ular puzzle game Sudoku. We show that the constraints of this problem can be
easily encoded by synaptic connections between excitatory and inhibitory neurons
in such a way that the stationary distribution pC assigns particularly high proba-
bility to those network states which encode correct (or good approximate) solutions
to the problem. The resulting network dynamics can also be understood as parallel
stochastic search with anytime computing properties: Early network states provide
very fast heuristic solutions, while later network states are distributed according
to the stationary distribution pC , therefore visiting with highest probability those
solutions which violate only a few or zero constraints.

In order to make the results of this article accessible to non-theoreticians we
present in the subsequent Results section our main findings in a less technical formu-
lation that emphasizes relationships to experimental data. Rigorous mathematical
definitions and proofs can be found in the Methods section, which has been struc-
tured in the same way as the Results section in order to facilitate simultaneous
access on different levels of detail.

2.2 Network states and distributions of network states

A simple notion of network state at time t simply indicates which neurons in the
network fired within some short time window before t. For example, in (Berkes
et al., 2011) a window size of 2 ms was selected. However, the full network state
could not be analyzed there experimentally, only its projection onto 16 electrodes
in area V1 from which recordings were made. An important methodological innova-
tion of (Berkes et al., 2011) was to analyze under various conditions the probability
distribution of the recorded fragments of network states, i.e., of the resulting bit
vectors of length 16 (with a “1” at position i if a spike was recorded during the
preceding 2 ms at electrode i). In particular, it was shown that during development
the distribution over these 216 network states during spontaneous activity in dark-
ness approximates the distribution recorded during natural vision. Apart from its
functional interpretation, this result also raises the even more fundamental ques-
tion how a network of neurons in the brain can represent and generate a complex
distribution of network states. This question is addressed here in the context of
data-based models C for cortical microcircuits. We consider notions of network
states y similar to (Berkes et al., 2011) (see the simple state yS(t) in Figure 2.1C)
and provide a rigorous proof that under some mild assumptions any such model C
represents and generates for different external inputs x associated different internal
distributions pC(y|x) of network states y. More precisely, we will show that for any
specific input x there exists a unique stationary distribution pC(y|x) of network
states y to which the network converges exponentially fast from any initial state.

This result can be derived within the theory of Markov processes on general state
spaces, an extension of the more familiar theory of Markov chains on finite state
spaces to continuous time and infinitely many network states. Another important
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difference to typical Markov chains (e.g. the dynamics of Gibbs sampling in Boltz-
mann machines) is that the Markov processes describing the stochastic dynamics of
cortical microcircuit models are non-reversible. This is a well-known difference be-
tween simple neural network models and networks of spiking neurons in the brain,
where a spike of a neuron causes postsynaptic potentials in other neurons - but not
vice versa. In addition, experimental results show that brain networks tend to have
a non-reversible dynamics also on longer time scales (e.g., stereotypical trajectories
of network states (Abeles et al., 1995; Luczak et al., 2007; Buzsáki, 2010; Luczak
and MacLean, 2012)).

In order to prove results on the existence of stationary distributions pC(y|x)
of network states y, one first needs to consider a more complex notion of network
state yM (t) at time t, which records the history of all spikes in the network C since
time t−Θ (see Figure 1C). The window length Θ has to be chosen sufficiently large
so that the influence of spikes before time t − Θ on the dynamics of the network
after time t can be neglected. This more complex notion of network state then
fulfills the Markov property, such that the future network evolution depends on the
past only through the current Markov state. The existence of a window length
Θ with the Markov property is a basic assumption of the subsequent theoretical
results. For standard models of networks of spiking neurons a value of Θ around
100 ms provides already a good approximation of the Markov property, since this
is a typical time during which a post-synaptic potential has a non-negligible effect
at the soma of a post-synaptic neuron. For more complex models of networks of
spiking neurons a larger value of Θ in the range of seconds is more adequate, in
order to accommodate for dendritic spikes or the activation of GABAB receptors
that may last 100 ms or longer, and the short term dynamics of synapses with
time constants of several hundred milliseconds. Fortunately, once the existence of
a stationary distribution is proved for such more complex notion of network state,
it also holds for any simpler notion of network state (even if these simpler network
states do not fulfill the Markov property), that results when one ignores details of
the more complex network states. For example, one can ignore all spikes before
time t − 2 ms, the exact firing times within the window from t − 2 ms to t, and
whether a neuron fired one or several spikes. In this way one arrives back at the
simple notion of network state from (Berkes et al., 2011).

Theorem 1 (Exponentially fast convergence to a stationary distribution)
Let C be an arbitrary model for a network of spiking neurons with stochastic synap-
tic release or some other mechanism for stochastic firing. C may consist of complex
multi-compartment neuron models with nonlinear dendritic integration (including
dendritic spikes) and heterogeneous synapses with differential short term dynamics.
We assume that this network C receives external inputs from a set of input neurons
i = 1 . . . N which fire according to Poisson processes at different rates xi(t). The
vector x(t) of input rates can be either constant over time (x(t) ≡ x), or generated
by any external Markov process that converges exponentially fast to a stationary
distribution.
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Figure 2.1: (see next page for Figure caption)
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Figure 2.1: Network states and stationary distributions of network states in a cortical mi-
crocircuit model. A. Data-based cortical microcircuit template from (Haeusler and Maass,
2007); c© 2007 by Oxford University Press, reprinted by permission of the authors and
Oxford University Press. B. A small instantiation of this model consisting of 10 net-
work neurons 1, . . . , 10 and 2 additional input neurons i1, i2. Neurons are colored by type
(blue:input, black:excitatory, red:inhibitory). Line width represents synaptic efficacy. The
synapse from neuron 8 to 7 is removed for the simulation described in E. C. Notions of
network state considered in this article. Markov states are defined by the exact timing of
all recent spikes within some time window Θ, shown here for Θ = 50 ms. Simple states
only record which neurons fired recently (0=no spike, 1=at least one spike within a short
window τ , with τ = 10 ms throughout this figure). D. Empirically measured stationary
distribution of simple network states. Shown is the marginal distribution pC(ỹ|x) for a
subset of three neurons 2,7,8 (their spikes are shown in C in black), under two different
input conditions (input pattern 1: i1 firing at 10 Hz and i2 at 50 Hz, input pattern 2:
i1 at 50 Hz and i2 at 10 Hz). The distribution for each input condition was obtained by
measuring the relative time spent in each of the simple states (0,0,0), . . . , (1,1,1) in a single
long trial (100 s). The zero state (0,0,0) is not shown. E. Effect of removing one synapse,
from neuron 8 to neuron 7, on the stationary distribution of network states (input pattern 1
was presented). F. Illustration of trial-to-trial variability in the small cortical microcircuit
(input pattern 1). Two trials starting from identical initial network states yM (0) are shown.
Blue bars at the bottom of each trial mark periods where the subnetwork of neurons 2,7,8
was in simple state (1,1,1) at this time t. Note that the “blue” initial Markov state is
shown only partially: it is actually longer and comprises all neurons in the network (as in
panel C, but with Θ = 1s). G. Two trials starting from a different (“red”) initial network
state. Red bars denote periods of state (1,1,1) for “red” trials. H. Convergence to the
stationary distribution pC in this small cortical microcircuit is fast and independent of the
initial state: This is illustrated for the relative frequency of simple state (1,1,1) within the
first 300 ms after input onset. The blue/red line shows the relative frequency of simple
state (1,1,1) at each time t estimated from many (105) “blue”/“red” trials. The relative
frequency of simple state (1,1,1) rapidly converges to its stationary value denoted by the
symbol ⊳ (marked also in panels D and E). The relative frequency converges to the same
value regardless of the initial state (blue/red).

Then there exists a stationary distribution pC(y|x) of network states y, to which
the stochastic dynamics of C converges from any initial state of the network ex-
ponentially fast. Accordingly, the distribution of subnetwork states ỹ of any subset
of neurons converges exponentially fast to the marginal distribution pC(ỹ|x) of this
subnetwork.

Note that Theorem 1 states that the network embodies not only the joint dis-
tribution pC(y|x) over all neurons, but simultaneously all marginal distributions
pC(ỹ|x) over all possible subsets of neurons. This property follows naturally from
the fact that pC(y|x) is represented in a sample-based manner (Fiser et al., 2010).
As a consequence, if one is interested in estimating the marginal distribution of
some subset of neurons rather than the full joint distribution, it suffices to observe
the activity of the particular subnetwork of interest (while ignoring the remaining
network). This is remarkable insofar, as the exact computation of marginal prob-
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abilities is in general known to be quite difficult (even NP-complete (Koller and
Friedman, 2009)).

Theorem 1 requires that neurons fire stochastically. More precisely, a basic as-
sumption required for Theorem 1 is that the network behaves sufficiently stochastic
at any point in time, in the sense that the probability that a neuron fires in an
interval [t, t+ δt) must be smaller than 1 for any t. This is indeed fulfilled by any
stochastic neuron model as long as instantaneous firing rates remain bounded. It
is also fulfilled by any deterministic neuron model if synaptic transmission is mod-
eled via stochastic vesicle release with bounded release rates. Another assumption
is that long-term plasticity and other long-term memory effects have a negligible
impact on the network dynamics on shorter timescales which are the focus of this
article (milliseconds to a few seconds). Precise mathematical definitions of all as-
sumptions and notions involved in Theorem 1 as well as proofs can be found in
Methods (see Lemma 2 and 3).

An illustration for Theorem 1 is given in Figure 2.1. We use as our running
example for a cortical microcircuit model C the model of (Haeusler and Maass, 2007)
shown in Figure 2.1A, which consists of three populations of excitatory and three
populations of inhibitory neurons on specific laminae. Average strength of synaptic
connections (measured as mean amplitude of postsynaptic potentials at the soma
in mV, and indicated by the numbers at the arrows in Figure 2.1A) as well as the
connection probability (indicated in parentheses at each arrow as % in Figure 2.1A)
are based in this model on intracellular recordings from 998 pairs of identified
neurons from the Thomson Lab (Thomson et al., 2002). The thickness of arrows in
Figure 2.1A reflects the products of those two numbers for each connection. The
nonlinear short-term dynamics of each type of synaptic connection was modeled
according to data from the Markram Lab (Gupta et al., 2000; Markram et al.,
1998). Neuronal integration and spike generation was modeled by a conductance-
based leaky-integrate-and-fire model, with a stochastic spiking mechanism based on
(Jolivet et al., 2006). See Methods for details.

The external input x consists in a cortical microcircuit of inputs from higher
cortical areas that primarily target neurons in superficial layers, and bottom-up
inputs that arrive primarily in layer 4, but also on other layers (details tend to
depend on the cortical area and the species). We model two input streams in a
qualitative manner as in (Haeusler and Maass, 2007). Also background synaptic
input is modeled according to (Haeusler and Maass, 2007).

Figure 2.1B shows a small instantiation of this microcircuit template consisting
of 10 neurons (we had to manually tune a few connections in this circuit to facilitate
visual clarity of subsequent panels). The impact of different external inputs x
and of a single synaptic connection from neuron 8 to neuron 7 on the stationary
distribution is shown in Figure 2.1D and E, respectively (shown is the marginal
distribution pC(ỹ|x) of a subset of three neurons 2,7 and 8). This illustrates that
the structure and dynamics of a circuit C are intimately linked to properties of its
stationary distribution pC(y|x). In fact, we argue that the stationary distribution
pC(y|x) (more precisely: the stationary distribution pC(y|x) for all relevant external
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inputs x) can be viewed as a mathematical model for the most salient aspects of
stochastic computations in a circuit C.

The influence of the initial network state on the first 150 ms of network response
is shown in Figure 2.1F and G for representative trials starting from two different
initial Markov states (blue/red, two trials shown for each). Variability among trials
arises from the inherent stochasticity of neurons and the presence of background
synaptic input. Figure 2.1H is a concrete illustration of Theorem 1: it shows that the
relative frequency of a specific network state (1,1,1) in a subset of the three neurons
2,7 and 8 converges quickly to its stationary value. Furthermore, it converges to
this (same) value regardless of the initial network state (blue/red).

2.3 Stationary distributions of trajectories of network

states

Theorem 1 also applies to networks which generate stereotypical trajectories of net-
work activity (Luczak et al., 2007). For such networks it may be of interest to
consider not only the distribution of network states in a short window (e.g. simple
states with τ = 10 ms, or Θ = 50 ms), but also the distribution of longer trajecto-
ries produced by the network. Indeed, since Theorem 1 holds for Markov states yM

with any fixed window length Θ, it also holds for values of Θ that are in the range of
experimentally observed trajectories of network states (Mazor and Laurent, 2005;
Luczak et al., 2007; Harvey et al., 2012). Hence, a generic neural circuit C auto-
matically has a unique stationary distribution over trajectories of (simple) network
states for any fixed trajectory length Θ. Note that this implies that a neural circuit
C has simultaneously stationary distributions of trajectories of (simple) network
states of various lengths for arbitrarily large Θ, and a stationary distribution of
simple network states. This fact is not surprising if one takes into consideration
that if a circuit C has a stationary distribution over simple network states this
does not imply that subsequent simple network states represent independent draw-
ings from this stationary distribution. Hence the circuit C may very well produce
stereotypical trajectories of simple network states. This feature becomes even more
prominent if the underlying dynamics (the Markov process) of the neural circuit is
non-reversible on several time scales.

2.4 Extracting knowledge from internally stored distri-

butions

We address two basic types of knowledge extraction from a stationary distribu-
tion pC of a network C: the computation of marginal probabilities and maximal
a posteriori (MAP) assignments. Both computations constitute basic inference
problems commonly appearing in real-world applications (Wainwright and Jordan,
2008), which are in general difficult to solve as they involve large sums, integrals,
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or maximization steps over a state space which grows exponentially in the number
of random variables. However, already (Fiser et al., 2010; Buesing et al., 2011)
noted that the estimation of marginal probabilities would become straightforward
if distributions were represented in the brain in a sample-based manner (such that
each network state at time t represents one sample from the distribution). Theo-
rem 1 provides a theoretical foundation for how such a representation could emerge
in realistic data-based microcircuit models on the implementation level: Once the
network C has converged to its stationary distribution, the network state at any
time t represents a sample from pC(y|x) (although subsequent samples are gener-
ally not independent). Simultaneously, the subnetwork state ỹ(t) of any subset of
neurons represents a sample from the marginal distribution pC(ỹ|x). This is par-
ticularly relevant if one interprets pC(y|x) in a given cortical microcircuit C as the
posterior distribution of an implicit generative model, as suggested for example by
(Berkes et al., 2011) or (Buesing et al., 2011; Pecevski et al., 2011).

In order to place the estimation of marginals into a biologically relevant context,
assume that a particular component y1 of the network state y = (y1, . . . , yK) has
a behavioral relevance. This variable y1, represented by some neuron n1, could
represent for example the perception of a particular visual object (if neuron n1 is
located in inferior temporal cortex (Zhang et al., 2011)), or the intention to make
a saccade into a specific part of the visual field (if neuron n1 is located in area LIP
(Shadlen and Newsome, 2001)). Then the computation of the marginal

pC(y1 = 1|x) =
∑

v2∈{0,1},...,vK∈{0,1}

pC(y1 = 1, y2 = v2, . . . , yK = vK |x) (2.1)

would be of behavioral significance. Note that this computation integrates infor-
mation from the internally stored knowledge pC with evidence about a current
situation x. In general this computation is demanding as it involves a sum with
exponentially many terms in the network size K.

But according to Theorem 1, the correct marginal distribution pC(y1|x) is au-
tomatically embodied by the activity of neuron n1. Hence the marginal probability
y1 = 1 can be estimated by simply observing what fraction of time the neuron
spends in the state y1 = 1, while ignoring the activity of the remaining network
(Buesing et al., 2011). In principle, a downstream neuron could gather this infor-
mation by integrating the spike output of n1 over time.

Marginal probabilities of subpopulations, for example pC(y1 = 1, y2 = 0, y3 =
1|x), can be estimated in a similar manner by keeping track of how much time the
subnetwork spends in the state (1,0,1), while ignoring the activity of the remaining
neurons. A downstream network could gather this information, for example, by
integrating over the output of a readout neuron which is tuned to detect the desired
target pattern (1,0,1).

Notably, the estimation of marginals sketched above is guaranteed by ergodic
theory to converge to the correct probability as observation time increases (due
to Theorem 1 which ensures that the network is an ergodic Markov process, see
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Methods). In particular, this holds true even for networks with prominent sequential
dynamics featuring, for example, stereotypical trajectories. However, note that
the observation time required to obtain an accurate estimate may be longer when
trajectories are present since subsequent samples gathered from such a network will
likely exhibit stronger dependencies than in networks lacking sequential activity
patterns. In a practical readout implementation where recent events might be
weighed preferentially this could result in more noisy estimates.

Approximate maximal a posteriori (MAP) assignments to small subsets of vari-
ables y1, . . . , ym can also be obtained in a quite straightforward manner. For
given external inputs x, the marginal MAP assignment to the subset of vari-
ables y1, . . . , ym (with some m ≤ K) is defined as the set of values v̂1, . . . , v̂m

that maximize

∑

vm+1∈{0,1},...,vK∈{0,1}

pC(y1 = v̂1, . . . , ym = v̂m, ym+1 = vm+1, . . . , yK = vK |x) .

(2.2)

A sample-based approximation of this operation can be implemented by keeping
track of which network states in the subnetwork n1, . . . , nm occur most often. This
could, for example, be realized by a readout network in a two stage process: first
the marginal probabilities pC(y1 = v̂1, y2 = v̂2, y3 = v̂3|x) of all 23 = 8 subnetwork
states (0, 0, 0), . . . , (1, 1, 1) are estimated (by 8 readout neurons dedicated to that
purpose), followed by the selection of the neuron with maximal probability. The
selection of the maximum could be achieved in a neural network, for example,
through competitive inhibition. Such competitive inhibition would ideally lead
to a winner-take-all function such that the neuron with the strongest stimulation
(representing the variable assignment with the largest probability) dominates and
suppresses all other readout neurons.

2.5 Estimates of the required computation time

Whereas many types of computations (for example probabilistic inference via the
junction tree algorithm (Wainwright and Jordan, 2008)) require a certain compu-
tation time, probabilistic inference via sampling from an embodied distribution pC

belongs to the class of anytime computing methods, where rough estimates of the
result of a computation become almost immediately available, and are automati-
cally improved when there is more time for a decision. A main component of the
convergence time to a reliable result arises from the time which the distribution of
network states needs to become independent of its initial state y0. It is well known
that both, network states of neurons in the cortex (Arieli et al., 1996) and quick
decisions of an organism, are influenced for a short time by this initial state y0 (and
this temporary dependence on the initial state y0 may in fact have some behavioral
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advantage, since y0 may contain information about preceding network inputs, ex-
pectations, etc.). But it has remained unknown, what range of convergence speeds
for inference from pC is produced by common models for cortical microcircuits C.

We address this question by analyzing the convergence speed of stochastic com-
putations in the cortical microcircuit model of (Haeusler and Maass, 2007). A
typical network response of an instance of the cortical microcircuit model compris-
ing 560 neurons as in (Haeusler and Maass, 2007) is shown in Figure 2.2A. We first
checked how fast marginal probabilities for single neurons converge to stationary
values from different initial network Markov states. We applied the same analysis
as in Figure 2.1H to the simple state (τ = 10 ms) of a single representative neuron
from layer 5. Figure 2.2B shows quite fast convergence of the “on”-state probability
of the neuron to its stationary value from two different initial states. Note that this
straightforward method of checking convergence is rather inefficient, as it requires
the repetition of a large number of trials for each initial state. In addition it is not
suitable for analyzing convergence to marginals for subpopulations of neurons (see
Figure 2.2G).

Various more efficient convergence diagnostics have been proposed in the con-
text of discrete-time Markov Chain Monte Carlo theory (Gelman and Rubin, 1992;
Cowles and Carlin, 1996; Brooks et al., 2010; Gjoka et al., 2010). In the following,
we have adopted the Gelman and Rubin diagnostic, one of the standard methods
in applications of MCMC sampling (Gelman and Rubin, 1992). The Gelman Rubin
convergence diagnostic is based on the comparison of many runs of a Markov chain
when started from different randomly drawn initial states. In particular, one com-
pares the typical variance of state distributions during the time interval [t, 2t] within
a single run (within-variance) to the variance during the interval [t, 2t] between dif-
ferent runs (between-variance). When the ratio R̂ of between- and within-variance
approaches 1 this is indicative of convergence. A comparison of panels B and C of
Figure 2.2 shows that in the case of marginals for single neurons this interpretation
fits very well to the empirically observed convergence speed for two different initial
conditions. Various values between 1.02 (Gjoka et al., 2010) and 1.2 (Kass et al.,
1998; Gelman et al., 2004; Brooks et al., 2010) have been proposed in the literature
as thresholds below which the ratio R̂ signals that convergence has taken place.
The shaded region in Figure 2.2C-G corresponds to R̂ values below a threshold
of 1.1. An obvious advantage of the Gelman-Rubin diagnostic, compared with a
straightforward empirical evaluation of convergence properties as in Figure 2.2B,
is its substantially larger computational efficiency and the larger number of initial
states that it takes into account. For the case of multivariate marginals (see Fig-
ure 2.2G), a straightforward empirical evaluation of convergence is not even feasible,
since relative frequencies of 230 states would have to be analyzed.

Using the Gelman-Rubin diagnostic, we estimated convergence speed for
marginals of single neurons (see Figure 2.2C, mean/worst in Figure 2.2E), and for
the product of the simple states of two neurons (i.e., pairwise spike coincidences)
in Figure 2.2D. We found that in all cases the Gelman-Rubin value drops close to 1
within just a few 100 ms. More precisely, for a typical threshold of 1.2 convergence
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Figure 2.2: (see next page for Figure caption)

times are slightly below 100 ms in Figure 2.2C-E. A very conservative threshold of
1.02 yields convergence times close to 600 ms.

The above simulations were performed in a circuit of 560 neurons, but even-
tually one is interested in the properties of much larger circuits. Hence, a crucial
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Figure 2.2: Fast convergence of marginals of single neurons and more complex quantities in
a cortical microcircuit model. A. Typical spike response of the microcircuit model based on
(Haeusler and Maass, 2007) comprising 560 stochastic point neurons. Spikes of inhibitory
neurons are indicated in red. B. Fast convergence of a marginal for a representative layer
5 neuron (frequency of “on”-state, with τ = 10 ms) to its stationary value, shown for two
different initial Markov states (blue/red). Statistics were obtained for each initial state
from 105 trials. C. Gelman-Rubin convergence diagnostic was applied to the marginals of
all single neurons (simple states, τ = 10 ms). In all neurons the Gelman-Rubin value R̂
drops to a value close to 1 within a few 100 ms, suggesting generally fast convergence of
single neuron marginals (shown are 20 randomly chosen neurons; see panel E for a summary
of all neurons). The shaded area below 1.1 indicates a range where one commonly assumes
that convergence has taken place. D. Convergence speed of pairwise spike coincidences
(simple states (1,1) of two neurons, 20 randomly chosen pairs of neurons) is comparable to
marginal convergence. E. Summary of marginal convergence analysis for single neurons in
C: Mean (solid) and worst (dashed line) marginal convergence of all 560 neurons. Mean/-
worst convergence is reached after a few 100 ms. F. Convergence analysis was applied to
networks of different sizes (500-5000 neurons). Mean and worst marginal convergence of sin-
gle neurons are hardly affected by network size. G. Convergence properties of populations
of neurons. Dotted: multivariate Gelman-Rubin analysis was applied to a subpopulation
of 30 neurons (5 neurons were chosen randomly from each pool). Solid: convergence of a
“random readout” neuron which receives spike inputs from 500 randomly chosen neurons in
the microcircuit. It turns out that the convergence speed of such a generic readout neuron
is even slightly faster than for neurons within the microcircuit (compare with panel E). A
remarkable finding is that in all these cases the network size does not affect convergence
speed.

question is how the convergence properties scale with the network size. To this
end, we compared convergence in the cortical microcircuit model of (Haeusler and
Maass, 2007) for four different sizes (500, 1000, 2000 and 5000). To ensure that
overall activity characteristics are maintained across different sizes, we adopted the
approach of (Haeusler and Maass, 2007) and scaled recurrent postsynaptic potential
(PSP) amplitudes inversely proportional to network size. A comparison of mean
(solid line) and worst (dashed line) marginal convergence for networks of different
sizes is shown in Figure 2.2F. Notably we find that the network size has virtually
no effect on convergence speed. This suggests that, at least within the scope of the
laminar microcircuit model of (Haeusler and Maass, 2007), even very large cortical
networks may support fast extraction of knowledge (in particular marginals) from
their stationary distributions pC(y|x).

In order to estimate the required computation time associated with the es-
timation of marginal probabilities and MAP solutions on small subpopulations
n1, . . . , nm, one needs to know how fast the marginal probabilities of vector-valued
states (y1, . . . , ym) of subnetworks of C become independent from the initial state
of the network. To estimate convergence speed in small subnetworks, we applied a
multivariate version of the Gelman-Rubin method to vector-valued simple states of
subnetworks (Figure 2.2G, dotted lines, evaluated for varying circuit sizes from 500
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to 5000 neurons). We find that multivariate convergence of state frequencies for a
population of m = 30 neurons is only slightly slower than for uni-variate marginals.
To complement this analysis, we also investigated convergence properties of a “ran-
dom readout” neuron which integrates inputs from many neurons in a subnetwork.
It is interesting to note that the convergence speed of such a readout neuron, which
receives randomized connections from a randomly chosen subset of 500 neurons, is
comparable to that of single marginals (Figure 2.2F, solid lines), and in fact slightly
faster.

2.6 Impact of different dynamic regimes on the conver-

gence time

An interesting research question is which dynamic or structural properties of a
cortical microcircuit model C have a strong impact on its convergence speed to
the stationary distribution pC . Unfortunately, a comprehensive treatment of this
question is beyond the scope of this paper, since virtually any aspect of circuit
dynamics could be investigated in this context. Even if one focuses on a single
aspect, the impact of one circuit feature is likely to depend on the presence of other
features (and probably also on the properties of the input). Nonetheless, to lay a
foundation for further investigation, first empirical results are given in Figure 2.3.

As a reference point, Figure 2.3A shows a typical activity pattern and con-
vergence speed of single marginals in the small cortical microcircuit model from
Figure 2.1. To test whether the overall activity of a network has an obvious impact
on convergence speed, we constructed a small network of 20 neurons (10 excitatory,
10 inhibitory) and tuned connection weights to achieve sparse overall activity (Fig-
ure 2.3B). A comparison of panels A and B suggests that overall network activity
has no significant impact on convergence speed. To test whether the presence of
stereotypical trajectories of network states (similar to (Luczak et al., 2007)) has
a noticeable influence on convergence, we constructed a small network exhibiting
strong sequential activity patterns (see Figure 2.3C). We find that convergence
speed is hardly affected, except for the first 200 ms (see Figure 2.3C). Within the
scope of this first empirical investigation, we were only able to produce a significant
slow-down of the convergence speed by building a network that alternated between
two attractors (Figure 2.3D).

2.7 Distributions of network states in the presence of
periodic input

In Theorem 1 we had already addressed one important case where the network C
receives dynamic external inputs: the case when external input is generated by
some Markov process. But many networks of neurons in the brain are also subject
to more or less pronounced periodic inputs (“brain rhythms” (Engel et al., 2001;
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Figure 2.3: Impact of network architecture and network dynamics on convergence speed.
Convergence properties for single neurons (as in Figure 2.2C) in different network archi-
tectures were assessed using univariate Gelman-Rubin analysis. Typical network activity
is shown on the left, convergence speed on the right (solid: mean marginal, dashed: worst
marginal). A. Small cortical column model from Figure 2.1 (input neurons not shown).
B. Network with sparse activity (20 neurons). C. Network with stereotypical trajecto-
ries (50 neurons, inhibitory neurons not shown). Despite strongly irreversible dynamics,
convergence is only slightly slower. D. Network with bistable dynamics (two competing
populations, each comprising 10 neurons). Convergence is slower in this circuit due to
low-frequency switching dynamics between two attractors.

Buzsaki, 2009; Wang, 2010)), and it is known that these interact with knowledge
represented in distributions of network states in specific ways. For instance, it had
been shown in (Dragoi and Buzsaki, 2006) that the phase of the firing of place cells
in the hippocampus of rats relative to an underlying theta-rhythm is related to the
expected time when the corresponding location will be reached. Inhibitory neurons
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in hippocampus have also been reported to fire preferentially at specific phases of
the theta cycle (see e.g. Figure S5 in (Kelemen and Fenton, 2010)). Moreover it
was shown that different items that are held in working memory are preferentially
encoded by neurons that fire at different phases of an underlying gamma-oscillation
in the monkey prefrontal cortex (Siegel et al., 2009) (see (Pipa et al., 2009) for
further evidence that such oscillations are behaviorally relevant). Phase coding was
also reported in superior temporal sulcus during category representation (Turesson
et al., 2012). The following result provides a theoretical foundation for such phase-
specific encoding of knowledge within a framework of stochastic computation in
networks of spiking neurons.

Theorem 2 (Phase-specific distributions of network states) Let C be an
arbitrary model for a network of stochastic spiking neurons as in Theorem 1. As-
sume now that the vector of input rates x(t) has in addition to fixed components
also some components that are periodic with a period L (such that each input neu-
ron i emits a Poisson spike train with an L-periodically varying firing rate xi(t)).
Then the distribution of network states y converges for every phase l (0 ≤ l < L)
exponentially fast to a unique stationary distribution of network states pC,l(y|x) at
this phase l of the periodic network input x.

Hence, a circuit C can potentially store in each clearly separable phase l of an
(externally) imposed oscillation a different, phase-specific, stationary distribution
pC,l(y|x). Below we will address basic implications of this result in the context
of two experimentally observed phenomena: stereotypical trajectories of network
states and bi-stable (or multi-stable) network activity.

Figure 2.4A-D demonstrates the emergence of phase-specific distributions in a
small circuit (the same as in Figure 2.3C but with only one chain) with a built-
in stereotypical trajectory similar to a spatial path sequence generated by hip-
pocampal place cell assemblies (Dragoi and Buzsaki, 2006; Gupta et al., 2012).
Figure 2.4A shows a typical spike pattern in response to rhythmic background
stimulation (spikes from inhibitory neurons in red). The background oscillation
was implemented here for simplicity via direct rhythmic modulation of the spik-
ing threshold of all neurons. Note that the trajectory becomes particularly often
initiated at a specific phase of the rhythm (when neuronal thresholds are lowest),
like in experimental data (Dragoi and Buzsaki, 2006; Gupta et al., 2012). As a
result, different phases within a cycle of the rhythm become automatically associ-
ated with distinct segments of the trajectory. One can measure and visualize this
effect by comparing the frequency of network states which occur at two different
phases, i.e., by comparing the stationary distributions pC,l(y|x) for these two phases.
Figure 2.4B shows a comparison of phase-specific marginal distributions on a small
subnetwork of 3 neurons, demonstrating that phase-specific stationary distributions
may indeed vary considerably across different phases. Convergence to the phase-
specific stationary distributions pC,l(y|x) can be understood as the convergence of
the probability of any given state to a periodic limit cycle as a function of the phase
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l (illustrated in Figure 2.4C). An application of the Gelman-Rubin multivariate di-
agnostic suggests that this convergence takes places within a few cycles of the theta
oscillation (Figure 2.4D).

Theta-paced spatial path sequences in hippocampus constitute a particularly
well-studied example of phase-specific network activity(Dragoi and Buzsaki, 2006).
Our theoretical framework suggests a novel interpretation of these patterns as sam-
ples from a Markov chain with a phase-dependent stationary distribution of network
states induced by the theta-rhythm. A basic prediction of this interpretation is that
two trajectories in successive theta cycles should exhibit significantly stronger simi-
larities than two trajectories from randomly chosen cycles (due to inherent temporal
dependencies of the Markov chain). Two trajectories from distant cycles, on the
other hand, should relate to each other similarly as randomly chosen pairs of tra-
jectories. Evidence for such an effect has been reported recently by (Gupta et al.,
2012), where it was found that “sequences separated by 20 cycles approach random
chance, whereas sequences separated by only a single theta cycle are more likely to
be similar to each other.”

The previously described theoretical framework also provides an interesting new
perspective on multi-stability, a wide-spread phenomenon which has been observed
in various sensory domains (Blake and Logothetis, 2002; Sterzer et al., 2009). Dif-
ferent authors have noted that multi-stability, both on the neuronal and perceptual
level, could be understood as a side effect of sampling from a multi-modal distri-
bution (Hoyer and Hyvärinen, 2003; Buesing et al., 2011; Gershman et al., 2012).
Recent data from hippocampus suggest that oscillations, which had previously re-
ceived little attention in this context, may play an important role here: (Jezek et al.,
2011) found that switching between different attractors (= modes of the stationary
distribution in our terminology) occurs preferentially at a specific phase during the
theta cycle, whereas activity patterns within each cycle preferentially stayed in one
attractor. Hence, the precise timing of switching between modes was found to be
strongly tied to the theta rhythm. Such chunking of information in separate pack-
ages (theta cycles) has been proposed as an important constituent of neural syntax
(Buzsáki, 2010).

In Figure 2.4E we reproduce phase-dependent switching in a simple network
model of bi-stable dynamics (the same network as in Figure 2.3D) in the presence of
a 6 Hz background oscillation. Indeed, we find that switching occurs preferentially
at a specific phase of the oscillation (see Figure 2.4F) when the total firing rate of
the network is lowest. Note that this is consistent with (Jezek et al., 2011) who
found that the separation between representations in different cycles was strongest
at the point of the lowest average firing rate in the population (see Figure 1b in
(Jezek et al., 2011)). This phenomenon can be explained in our model by noting
that the attractors are deeper during periods of high network activity. Conversely,
attractors are more shallow when the population firing rate is lower, leading to an
increased transition probability between attractors. If one takes a closer look at
Proposition 1 and Lemma 1 in Methods one sees that this is also consistent with
our theoretical framework: A lower population firing rate ρ̂ translates into a smaller
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Figure 2.4: (see next page for Figure caption)

contraction factor (1 − ǫΘ), implying a tighter bound on the contraction speed of
state distributions and thus higher transition probabilities to radically different
states from the current (initial) network state.

Altogether, one sees that the presence of background oscillations has relevant
functional implications on multi-stability. In particular, the presence of background
oscillations in multi-stable networks facilitates both exploitation within a cycle and
exploration across cycles: Within a cycle high firing rates force the network into one
of the attractors, thereby avoiding interference with other attractors and facilitating
the readout of a consistent network state. At the end of a cycle low firing rates allow
the network to switch to different attractors, thereby promoting fast convergence
to the stationary distribution. The rhythmic deepening and flattening of attractors
and the resulting phase-specific attractor dynamics could be particularly useful for
the extraction of information from the circuit if downstream networks are phase-
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Figure 2.4: Emergence of phase-specific stationary distributions of network states in the
presence of periodic network input. A. A network with a built-in stereotypical trajectory
is stimulated with a 6 Hz background oscillation. The oscillation (top) is imposed on the
neuronal thresholds of all neurons. The trajectories produced by the network (bottom)
become automatically synchronized to the background rhythm. The yellow shading marks
the three neurons for which the analysis in panels B and C was carried out. The two
indicated time points (green and purple lines) mark the two phases for which the phase-
specific stationary distributions are considered in panels B and D (83 ms and 103 ms into
the cycle, with phase-specific distributions pC,1 and pC,2, respectively). B. The empirically
measured distributions of network states are observed to differ significantly at two different
phases of the oscillation (phases marked in panel A). Shown is for each phase the phase-
specific marginal distribution over 3 neurons (4, 5 and 6), using simple states with τ =
10 ms. The zero state (0,0,0) is not shown. The empirical distribution for each phase φ was
obtained from a single long run, by taking into account the network states at times φ, φ+
T, φ + 2T , etc., with cycle length T = 1

6
s. C. Illustration of convergence to phase-specific

stationary distributions. Shown is the relative frequency of subnetwork state (1,1,0) on the
subset of neurons 4,5 and 6 over time, when the network is started from two different initial
states (red/blue). In each case, the state frequency quickly approaches a periodic limit
cycle. D. Convergence to phase-specific stationary distributions takes place within a few
cycles of the underlying oscillation. Shown is the multivariate Gelman-Rubin convergence
analysis to the phase-specific stationary distribution for two different phases. E. Bi-stable
network under the influence of a 6 Hz background oscillation. F. In response to the periodic
stimulation, transitions between the two attractors (modes) become concentrated around a
specific phase of the distribution.

locked to the same rhythm, as reported, for example, for the interactions between
neurons in hippocampus and prefrontal cortex (Siapas et al., 2005).

2.8 Generation of heuristic solutions to constraint sat-
isfaction problems

Whenever an inhibitory neuron fires, it reduces for a short while the probability of
firing for its postsynaptic targets. In fact, new experimental data (Haider et al.,
2013) show that inhibitory neurons impose quite powerful constraints on pyramidal
cells. But also how pyramidal cells are embedded into their network environment
imposes constraints on local network activity. From this perspective, the resulting
firing patterns of a cortical microcircuit can be viewed as stochastically generated
solutions of an immensely complex constraint satisfaction problem, that is defined
both by external inputs x to the circuit and by the way each excitatory and in-
hibitory neuron is embedded into its circuit environment. Constraint satisfaction
problems are from the computational perspective a particularly interesting class of
problems, because many tasks that a brain has to solve, from the generation of a
percept from unreliable and ambiguous sources to higher level tasks such as memory
recall, prediction, planning, problem solving, and imagination, can be formulated
as constraint satisfaction problems (Kumar, 1992). However, numerous constraint
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satisfaction problems are known to be NP-hard, thereby limiting the applicability
of exact solution strategies. Instead, approximate or heuristic algorithms are com-
monly used in practice (for example evolutionary algorithms (Craenen et al., 2003)).
Here we propose that networks C of spiking neurons with noise have an inherent
capability to solve constraint satisfaction problems in an approximate (heuristic)
manner through their stochastic dynamics. The key principle is that those network
states y, which satisfy the largest number of local constraints, have the highest
probability under the distribution pC(y|x). These constraints are imposed by the
way each neuron of C is embedded into the circuit, and the current external input
x which can selectively activate or deactivate specific constraints.

We have selected a specific constraint satisfaction problem for demonstrating
the capability of networks of spiking neurons to generate rapidly approximate solu-
tions to constraint satisfaction problems through their inherent stochastic dynamics:
solving Sudoku puzzles (see Figure 2.5A). Sudoku is a well-suited example because
it is complex enough to be representative for many problem solving tasks, and lends
itself well to visual interpretation and presentation (but note that we do not aim to
model here how humans solve Sudoku puzzles). The rules of the Sudoku game can
be easily embedded into common models for cortical microcircuits as recurrent net-
works of Winner-Take-All (WTA) microcircuit motifs (Douglas and Martin, 2004).
Each WTA motif is an ensemble of pyramidal cells (on layers 2/3 or 5/6) that are
subject to lateral inhibition (see Figure 2.5B). Each pyramidal cell can in fact be
part of several interlocking WTA motifs (Figure 2.5B, right).

This architecture makes it easy to impose the interlocking constraints of Sudoku
(and of many other constraint satisfaction problems). Each pyramidal cell (or each
local group of pyramidal cells) votes for placing a particular digit into an empty
field of the grid, that is not dictated by the external input x. But this pyramidal
cell is subject to the constraints that only one digit can be placed into this field, and
that each digit 1, . . . , 9 occurs only once in each column, in each row, and in each
3x3 sub-grid. Hence each pyramidal cell is simultaneously part of four inhibitory
subnetworks (WTA motifs).

A specific puzzle can be entered by providing strong input x to those neurons
which represent the given numbers in a Sudoku (Figure 2.5A, left). This initiates
a quite intuitive dynamics: ”Clamped“ neurons start firing strongly, and as a con-
sequence, neurons which code for conflicting digits in the same Sudoku field, the
same row, column or 3x3 sub-grid, become strongly inhibited through di-synaptic
inhibition. In many Sudoku fields this will lead to the inhibition of a large number
of otherwise freely competing neurons, thereby greatly reducing the space of con-
figurations generated by the network. In some cases, inhibition will immediately
quieten all neurons except those associated with a single remaining digit (the only
choice consistent with the givens). In the absence of competition, these uninhibited
neurons will start firing along with the givens, thereby further constraining neigh-
boring neurons. This form of inhibitory interaction therefore implicitly implements
a standard strategy for solving easy Sudokus: checking for fields in which only one
possibility remains. In harder Sudokus, however, this simple strategy alone would



2.8. Generating solutions to constraint satisfaction problems 27

Figure 2.5: (see next page for Figure caption)

be typically insufficient, for example when several possibilities remain in all fields.
In such cases, where inhibition leaves more than one possible digit open, a tentative
digit will be automatically picked randomly by those neurons which happen to fire
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Figure 2.5: Solving Sudoku, a constraint satisfaction problem, through structured interac-
tions between stochastically firing excitatory and inhibitory neurons. A. A “hard” Sudoku
puzzle with 26 given numbers (left). The solution (right) is defined uniquely by the set of
givens and the additional constraints that each digit must appear only once in each row,
column and 3x3 subgrid. B. An implementation of the constraints of the Sudoku game in
a spiking neural network C consists of overlapping WTA circuits. WTA circuits are ubiq-
uitous connection motifs in cortical circuits (Douglas and Martin, 2004). A WTA circuit
can be modeled by a set of M stochastically spiking output neurons zk that are subject
to lateral inhibition (left). The same pyramidal cell can be part of several such WTA mo-
tifs (right). In the Sudoku example, each digit in a Sudoku field is associated with four
pyramidal cells which vote for this digit when they emit a spike. Each such pyramidal cell
participates in four WTA motifs, corresponding to the constraints that only one digit can be
active in each Sudoku field, and that a digit can appear only once in each row, column and
3x3 subgrid. C. A typical network run is shown during the last 1500 ms before the correct
solution was found to the Sudoku from panel A (the total solve time was approximately 3s
in this run, see panel D for statistics of solve times). The network performance (fraction of
cells with correct values) over time is shown at the top. The spiking activity is shown for
3 (out of the 81) WTA motifs associated with the 3 colored Sudoku fields in A and B. In
each of these WTA motifs there are 36 pyramidal cells (9 digits and 4 pyramidal cells for
each digit). Spikes are colored green for those neurons which code for the correct digit in
each Sudoku field (6, 8 and 4 in the example). D. Histogram of solve times (the first time
the correct solution was found) for the Sudoku from panel A. Statistics were obtained from
1000 independent runs. The sample mean is 29 s. E. Average network performance for
this Sudoku converges quickly during the first five seconds to a value of 0.9, corresponding
to 90% correctly found digits (average taken over 1000 runs; shaded area: ±2 standard
deviations). Thereafter, from all possible 981 configurations the network spends most time
in good approximate solutions. The correct solution occurs particularly often, on average
approximately 2% of the time (not shown).

first among its competitors. This ensures that, instead of getting stuck, the net-
work automatically explores potential configurations in situations where multiple
possibilities remain. Altogether, through this combination of constraint enforce-
ment and random exploration, those network states which violate few constraints
(good approximate solutions) are visited with much higher probability than states
with conflicting configurations. Hence, most time is spent in good approximate so-
lutions. Furthermore, from all 981 Sudoku configurations the solving configuration
is visited in this process especially often.

Figure 2.5C shows a typical network run during the last 1.5 seconds (out of a
total simulation time of approximately 3 s) before the correct solution was found
to the Sudoku puzzle from Figure 2.5A. For this simulation we modeled lateral
inhibition in each WTA motif by reciprocally connecting each neuron in the sub-
network to a single inhibitory neuron. For each of the 9 digits in a Sudoku field,
we created an associated local group of four pyramidal cells. This can be seen in
Figure 2.5C, where spike responses of pyramidal cells associated with three different
Sudoku fields are shown (the three colored fields in Figure 2.5A and B). Each field
has 9 possible digits, and each digit has four associated neurons. Hence, for each



2.9. Discussion 29

of the three Sudoku fields (WTA motifs), 9 · 4 = 36 neurons are shown. Spikes
are colored black for those neurons which code for a wrong digit, and green for the
four neurons which code for the correct digit in a Sudoku field (the correct digits
in Figure 2.5C are 6, 8 and 4). The overall performance of the network (fraction
of correctly solved fields) during the last 1.5 seconds before the solution is found is
shown in Figure 2.5C above.

In our simulations we found that the solve time (the time until the correct so-
lution is found for the first time) generally depends on the hardness of the Sudoku,
in particular on the number of givens. For the ”hard“ Sudoku with 26 givens from
Figure 2.5A, solve times are approximately exponentially distributed at an average
of 29 seconds (Figure 2.5D). The average performance during the first five seconds
of a run (obtained from 1000 independent runs) is shown in Figure 2.5E. The plot
shows quick convergence to a (stationary) average performance of approximately
0.9. This demonstrates that the network spends on average most time in approx-
imate solutions with high performance. Among these high-performance solutions,
the correct solution occurs especially often (on average 2% of the time).

2.9 Discussion

A theoretical foundation for memory-based stochastic computation
in cortical microcircuits

We have shown that for common noise models in cortical microcircuits, even cir-
cuits C with very detailed and diverse non-linear neurons and synapses converge
exponentially fast to a stationary distribution pC(y|x) of network states y. This
holds both for external inputs x that consist of Poisson spike trains of a fixed rate,
and for the case where x is periodic, or generated by some Markov process with
a stationary distribution. The same mathematical framework also guarantees ex-
ponentially fast convergence to a stationary distribution of trajectories of network
states (of any fixed time length), thereby providing a theoretical foundation for
understanding stochastic computations with experimentally observed stereotypical
trajectories of network states. These results extend and generalize previous work in
(Brémaud and Massoulié, 1996) and (Borovkov et al., 2012) in two ways. First, pre-
vious convergence proofs had been given only for networks of simplified neurons in
which the (sub-threshold) neuronal integration of pre-synaptic spikes was assumed
a linear process, thereby excluding the potential effects of dendritic non-linearities
or synaptic short-term dynamics. Second, previous work had focused only on the
case where input is provided by neurons with fixed firing rates (a special case of
Theorem 1). In addition we show that these convergence proofs can be derived from
a fundamental property of stochastic spiking networks, that we have formulated as
the Contraction Lemma (Lemma 1 in Methods).

The stationary distribution pC provides an attractive target for investigating the
stochastic computing capabilities of data-based models C for local circuits or larger
networks of neurons in the brain. In contrast to the much simpler case of Boltzmann
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machines with non-spiking linear neurons and symmetric synaptic connections, it is
unlikely that one can attain for cortical microcircuit models C a simple analytical
description of pC . But our computer simulations have shown that this is not nec-
essarily an obstacle for encoding salient constraints for problem solving in pC , and
for merging knowledge that is encoded in pC with online information from external
inputs x in quite fast stochastic computations. In fact, the resulting paradigm for
computations in cortical microcircuits supports anytime computing, where one has
no fixed computation time. Instead, first estimates of computational results can be
produced almost immediately, and can be rapidly communicated to other circuits.
In this way, no processor (circuit) has to idle until other processors have completed
their subcomputations, thereby avoiding the arguably most critical general bottle-
neck of massively parallel computing systems. Instead, each microcircuit C can
contribute continuously to an iterative refinement of a global computation.

Estimates for the computation time of stochastic computations

Our computer simulations for a standard cortical microcircuit model C suggest that
convergence to pC is fast enough to support knowledge extraction from this distribu-
tion pC within a few 100 ms, i.e. within the typical computation time of higher-level
brain computations. These first estimates need to be corroborated by further theo-
retical work and computer simulations. In particular, the relationship between the
structure and dynamics of cortical microcircuits and their convergence speed merits
further investigation. Furthermore, in the case where pC is a multi-modal distribu-
tion there exists an obvious tradeoff between the convergence speed to pC and the
typical duration of staying in an “attractor” (i.e., a region of the state space which
has high probability under pC). Staying longer in an attractor obviously facilitates
the readout of the result of a computation by downstream networks. A number of
experimental data suggest that neuromodulators can move neural circuits (at least
in the prefrontal cortex) to different points on this tradeoff curve. For example it
is argued in (Durstewitz, 2006, 2009) that the activation of D1 receptors through
dopamine deepens all basins of attraction, making it harder for the network state
to leave an attractor. Additional molecular mechanisms that shift the tradeoff be-
tween fast sampling (exploration) and the temporal stability of found solutions are
reviewed in (Arnsten et al., 2012). Another interesting perspective on convergence
speed is that slow convergence may be beneficial for certain computations in spe-
cific brain areas (especially early sensory areas). Slow convergence enlarges the
time span during which the network can integrate information from non-stationary
external inputs (Maass et al., 2002; Nikolic et al., 2009; Klampfl et al., 2012). In
addition the initial state y0 of a network may contain information about preceding
events that are computationally useful. Those considerations suggest that there
exist systematic differences between the convergence speed to pC in different neural
systems C, and that it can be modulated in at least some systems C dependent on
the type of computational task that needs to be solved.

Another important issue is the tradeoff between sampling time and sampling



2.9. Discussion 31

accuracy. In high-level cognitive tasks, for example, it has been argued that “ap-
proximate and quick” sample-based decisions are often better than “accurate but
slow” decisions (Vul et al., 2009; Lieder et al., 2013). Of particular interest in this
context is the analysis of (Lieder et al., 2013) who studied the time-accuracy trade-
off during decision making, under the assumption that the mind performs inference
akin to MCMC sampling. Due to the nature of MCMC sampling, early samples be-
fore convergence (during the burn-in period) are biased towards the initial state of
the system. In the absence of time pressure, the optimal strategy is therefore to wait
and collect samples for a long period of time (in theory indefinitely). In the presence
of even moderate time costs, however, the optimal sampling time can be shown to
be finite, a result which can provide a rational explanation of the anchoring effect
in cognitive science (Lieder et al., 2013) (under time pressure people’s decisions are
influenced by their “initial state”). Notably, the analysis of (Lieder et al., 2013)
was based on the assumption that the MCMC algorithm exhibits geometric con-
vergence, the discrete-time equivalent to the exponential convergence speed proved
in this paper for stochastic spiking networks. Applying a similar analysis to study
optimal time-accuracy tradeoff points in cortical microcircuits therefore presents a
promising avenue for future research.

Which probability distributions can be encoded as a stationary dis-
tribution of some neural circuit?

It had been shown in (Buesing et al., 2011) and (Pecevski et al., 2011) that, under
certain assumptions on the neuron models and circuit structure, in principle every
joint distribution p over discrete-valued random variables can be represented as
a stationary distribution pC of some network C of spiking neurons. Forthcoming
unpublished results suggest that such internal representations of a given distribution
p can even be learned from examples drawn from p. This will provide a first step
towards understanding how the stationary distribution pC of a microcircuit can be
adapted through various plasticity processes to encode salient constraints, successful
solution strategies (rules), and other types of knowledge. This research direction
promises to become especially interesting if one takes into account that knowledge
can not only be encoded in the stationary distribution of network states, but also in
the simultaneously existing stationary distribution of trajectories of network states.

Relationship to attractor networks and transients between attrac-
tors

Attractor neural networks (Hopfield, 1982) were originally deterministic computa-
tional models, where gradient descent leads the network from some given initial
state y0 (the input for the computation) to the lowest point of the attractor (the
output of the computation) in whose basis of attraction y0 lies. The computational
capability of an attractor neural network is substantially larger if its attractor land-
scape can be reconfigured on the fly by external input x, as in (Hopfield and Tank,
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1986) and in the Sudoku example of this article. This usually requires that the
attractors are not programmed directly into the network parameters, but emerge
from some more general computational principles (e.g. constraint satisfaction). At-
tractor neural networks gain additional computational capability if there is some
noise in the system (Rolls and Deco, 2010). This enables the network to leave after
a while suboptimal solutions (Durstewitz and Deco, 2008). Alternative modeling
frameworks for the transient dynamics of neural systems are provided by the liquid
computing model (Maass et al., 2002), and on a more abstract level by sequences
of metastable states in dynamical systems (Rabinovich et al., 2008). Here we pro-
pose to view both transient and attractor dynamics of complex data-based circuits
C from the perspective of probabilistic inference, in particular as neural sampling
(Buesing et al., 2011) (or more abstractly: as MCMC sampling) from their inherent
probability distribution pC over network states (or trajectories of network states),
that serves as the knowledge base of these neural systems.

A new computational framework for analyzing brain activity

We had focused in our computer simulations on the investigation of the stationary
distribution pC for models C of cortical microcircuits. But the results of Theorem 1
and Theorem 2 are of course much more general, and in principle apply to models
C for networks of neurons in the whole brain (Sporns, 2011). This perspective sug-
gests understanding spontaneous brain activity (see (Raichle, 2010)) as sampling
from this global distribution in the absence of external input, and brain computa-
tions with external inputs x as sampling of brain states from conditional distribution
pC(y|x), thereby merging the knowledge base pC of the brain with incoming new
information x. This computational framework could in principle explain how the
brain can merge both types of information in such seemingly effortless manner, a
capability that can only partially be reproduced in artificial devices with current
technology. Large-scale computer simulations will be needed to test the viability of
this hypothesis, in particular the relationship between the known global structure
of the brain network C and properties of its stationary distribution pC , and the
convergence speed to pC . Possibly the brain uses an important trick to speed up
convergence during brain-wide sampling, for example by sampling during any con-
crete brain computation only from a subnetwork C ′ of C: those brain areas that
control variables that are relevant for this computation. Functional connectivity
would be explained from this perspective as opening of communication channels
that support sampling from the (marginal) joint distribution of those variables that
are stored within the functionally connected brain areas. Structured spontaneous
brain activity (Raichle, 2010) would then receive a functional interpretation in terms
of updating these marginal joint distributions on the basis of newly acquired knowl-
edge.
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Stochastic solutions of constraint satisfaction problems as a
paradigm for higher level brain computation

A surprisingly large number of computational tasks that the brain has to solve,
from the formation of a percept from multi-modal ambiguous sensory cues, to pre-
diction, imagination, motor planning, rule learning, problem solving, and memory
recall, have the form of constraint satisfaction problems: A global solution is needed
that satisfies all or most of a set of soft or hard constraints. However, this char-
acterization per se does not help us to understand how the brain can solve these
tasks, because many constraint satisfaction problems are computationally very de-
manding (in fact, often NP-hard (Garey and Johnson, 1979)), even for a fast digital
computer. In the Sudoku example we have shown that the inherent stochastic dy-
namics of cortical microcircuits provides a surprisingly simple method for generating
heuristic solutions to constraint satisfaction problems. This is insofar remarkable,
as this computational organization does not require that specific algorithms are
programmed into the network for solving specific types of such problems (as it is
for example needed for solving Sudoku puzzles according to the ACT-R approach
(Qin et al., 2012)). Rather, it suffices that salient constraints are encoded into the
network (e.g. through learning) in such a way that they make certain firing patterns
of a subset of neurons more or less likely.

Future work will need to investigate whether and how this approach can be
scaled up to larger instances of NP-complete constraint satisfaction problems. For
example, it will be interesting to see whether stochastic networks of spiking neurons
can also efficiently generate heuristic solutions to energy minimization problems
(Boykov et al., 2001) arising in visual processing.

Furthermore, additional research is needed to address suitable readout mecha-
nisms that stabilize and evaluate promising candidate solutions (see (Arnsten et al.,
2012) for an experimentally supported mechanism that might contribute to this
function). This is an important issue since, in its current form, the network will
simply continue the stochastic exploration of heuristic solutions even after it has
found the optimal solution. Therefore, in the absence of additional mechanisms
the network is not able to hold on to (or store) previously found (near-)optimal
solutions. To solve this issue one could consider, for example, one or several net-
works C1, . . . , Ci which generate in parallel heuristic solutions to a given problem.
The output of these networks could then be further processed and integrated by a
readout network Ci+1 which attempts to extract a MAP solution, for example by
adopting a solution from some Cj only if it has higher value than the currently stored
state. Hence, the sampling networks C1, . . . , Ci would have stationary distributions
pCj

(y|x) which encourage exploration and broadly assign probability to many differ-
ent heuristic solutions, whereas the readout network would ideally exhibit a sharply
peaked stationary distribution at the global optimum of the constraint satisfaction
problem. Studying the feasibility of this approach requires further research.
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Relationship to models for probabilistic inference in cognitive sci-
ence

A substantial number of behavioral studies in cognitive science (see e.g. (Griffiths
and Tenenbaum, 2006; Vul and Pashler, 2008; Denison et al., 2009; Gershman et al.,
2012; Tenenbaum et al., 2011)) have arrived at the conclusion that several of the
previously discussed higher level mental operations are implemented through prob-
abilistic inference. Some of the underlying data also suggest that probabilistic
inference is implemented in the brain through some form of sampling (rather than
through arithmetical approaches such as belief propagation (Koller and Friedman,
2009)). But according to (Tenenbaum et al., 2011): “The key research questions are
as follows: What approximate algorithms does the mind use, how do they relate to
engineering approximations in probabilistic AI, and how are they implemented in
neural circuits?” This article contributes to these fascinating questions by providing
a rigorous theoretical foundation for the hypothesis that neural circuits in the brain
represent complex probability distributions pC(y|x) through sampling. In addition,
we have provided evidence that this form of sampling in cortical microcircuits may
be fast enough to facilitate the approximate estimation of marginals or marginal
MAP assignments, which commonly appear in real-world inference tasks, within a
few 100 ms. A major challenge for future work will be to understand also neuronal
plasticity on the implementation level from this perspective. For example, how can
prior knowledge be acquired and integrated into the stationary distribution pC(y|x)
of a realistic circuit C (featuring short-term plasticity, dendritic processing, etc.)
in an autonomous fashion, and in a manner consistent with statistically optimal
learning (Fiser et al., 2010)?

Long-term plasticity and other slower features of network dynamics

In biological networks it is reasonable to assume that the network dynamics unfolds
on a continuum of time scales from milliseconds to days. Our goal in this article
was to focus on stochastic computations on shorter time scales, between a few mil-
liseconds to seconds. To this end we assumed that there exists a clear separation
of time scales between fast and slow dynamical network features, thus allowing us
to exclude the effect of slower dynamical processes such as long-term plasticity of
synaptic weights during these shorter time scales. In network models and experi-
mental setups where slower processes significantly influence (or interfere with) the
dynamics on shorter time scales, it would make sense to extend the concept of a
stationary distribution to include, for example, also the synaptic parameters as ran-
dom variables. A first step in this direction has been made for neurons with linear
sub-threshold dynamics and discretized synapses in (Borovkov et al., 2012).

Deterministic network models and chaos

Deterministic network models such as leaky integrate-and-fire neurons without noise
(no external background noise, no synaptic vesicle noise and no channel noise) vio-
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late the assumptions of Theorem 1 and 2. Furthermore, although realistic neurons
are known to possess various noise sources, the theoretical assumptions could in
principle still fail if the network is not sufficiently stochastic: this would happen,
for example, if there exists some strong input (within the limits of typical input
activity) which entirely overrules the noise, leading to a firing probability 1 in some
time interval [t, t+ δt) during the network simulation. Such deterministic behavior
would correspond to the instantaneous firing rate of a stochastic neuron becom-
ing infinite at some point during that interval (in violation of assumption A2, see
Methods: Scope of theoretical results). From an empirical perspective, a simple
necessary condition for sufficient stochasticity is the presence of trial-to-trial vari-
ability for each single spike produced by a network. Consider, for example, the spike
times generated by a specific neuron in a network simulation, in response to some
fixed input spike train. If there exists a spike which always occurs at the exact same
time during multiple repetitions of this experiment starting from identical initial
states, then the assumptions of Theorem 1 and 2 are obviously violated.

For deterministic (or insufficiently stochastic) networks the question arises
whether convergence to a unique stationary distribution may still occur under ap-
propriate conditions, perhaps in some modified sense. Notably, it has been recently
observed that deterministic networks may indeed lead to apparently stochastic spik-
ing activity (Churchland and Abbott, 2012; Litwin-Kumar and Doiron, 2012). This
apparent stochasticity was linked to chaotic spiking dynamics. This suggests that
chaos may act as a substitute for “real” noise in deterministic networks (similar to
pseudo random-number generators emulating true randomness): Chaotic systems
are sensitive to small perturbances in initial conditions, and may thus exponen-
tially amplify otherwise insignificant noise sources such as ubiquitous thermal noise
(Clarke, 2012). Thus, chaos could play an important role in both emulating and
amplifying stochasticity on the network level.

(Litwin-Kumar and Doiron, 2012) focused their analysis of stochasticity on firing
rate fluctuations and spiking irregularity, and it remains unclear whether these
networks would still appear stochastic if one takes into account full network states
(as in this article). The Gelman-Rubin convergence analysis of population activity
proposed in this paper could be applied to provide some insight into this question.
A more thorough investigation of chaos in the context of our results would also call
for a rigorous theoretical analysis of ergodic properties of chaotic spiking networks.

Further experimentally testable predictions

Our theoretical results demonstrate that every neural system C has a stationary
distribution pC(y|x) of network states y. This can be tested experimentally, for
various behavioral regimes and external inputs x. A first step in this direction has
already been carried out in (Berkes et al., 2011) (see also the discussion in (Okun
et al., 2012)). The hypothesis that pC serves (for “neutral” external inputs x) as
a prior for probabilistic inference through sampling suggests that pC is constantly
modified through prior experience (see (Zhang et al., 2012; Xu et al., 2012) for first



36 Chapter 2. Stochastic Computations in Cortical Microcircuits

results) and learning (see (Lewis et al., 2009) for fMRI data).

Our Theorem 2 suggests in addition that neural systems C that have a prominent
rhythm (such as for example the theta oscillation in the hippocampus) are able
to store several stationary distributions pC,l of network states, one for each clearly
separable phase l of this rhythm. It has already been shown in a qualitative manner
that in some behavioral situations certain states y appear with substantially high
probability at specific phases l of the rhythm (see e.g. (Harris et al., 2003; Buzsaki,
2009; Siegel et al., 2009; Gupta et al., 2012; Turesson et al., 2012)). But a systematic
experimental analysis of phase-dependent distributions of network states in the style
of (Berkes et al., 2011) is missing.

Our Theorem 1 predicts in addition that a generic neural circuit C also has a
stationary distribution over trajectories of network states. The existence of stereo-
typical trajectories of network states in the awake brain has been frequently reported
(see e.g. (Abeles et al., 1995; Jones et al., 2007; Luczak et al., 2007; Zhang et al.,
2012)). But a statistical analysis of the distribution of such trajectories, especially
also during spontaneous activity, is missing. Of particular interest is the relationship
between the distribution of trajectories and the stationary distribution of (simple)
network states. Do some network states y typically have a high probability because
they occur in some high probability trajectory? And how does the distribution of
trajectories change during learning?

The model for problem solving that we have presented in Figure 2.5 suggests that
external constraints have a significant and characteristic impact on the structure
of the stationary distribution pC , by reducing the probability of network states
which are inconsistent with the current constraints x. In principle, this could be
analyzed experimentally. In addition, this model suggests that there may be special
mechanisms that prolong the time span during which a neural system C stays in a
network state y with high probability under pC(y|x), in order to support a readout
of y by downstream networks. These mechanisms need to be revealed through
experiments.

New ideas for neuromorphic computation

The Sudoku example has shown that networks of spiking neurons with noise are
in principle able to carry out quite complex computations. The constraints of
many other demanding constraint satisfaction problems, in fact even of many NP-
complete problems, can be encoded quite easily into circuit motifs composed of
excitatory and inhibitory spiking neurons, and can be solved through the inherent
stochastic dynamics of the network. This provides new computational paradigms
and applications for various energy-efficient implementations of networks of spiking
neurons in neuromorphic hardware, provided they can be equipped with sufficient
amounts of noise. In particular, our results suggest that attractive computational
properties of Boltzmann machines can be ported into spike-based hardware. These
novel stochastic computing paradigms may also become of interest for other types
of innovative computer hardware: Computer technology is approaching during the



2.10. Acknowledgments 37

coming decade the molecular scale, where noise is abundantly available (whether one
wants it or not) and it becomes inefficient to push through traditional deterministic
computing paradigms.

Conclusion

The results of this article show that stochastic computation provides an attractive
framework for the investigation of computational properties of cortical microcir-
cuits, and of networks of microcircuits that form larger neural systems. In particu-
lar it provides a new perspective for relating the structure and dynamics of neural
circuits to their computational properties. In addition, it suggests a new way of
understanding the organization of brain computations, and how they are modified
through learning.
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Networks of neurons in the brain compute and communicate very differently
from transistors in digital computers: with unsynchronized short pulses, called ac-
tion potentials or spikes. But it has remained unknown how difficult computational
problems could be solved in this way. We present here new principles of spike-
based computation with noise that enable networks of spiking neurons to carry
out a very efficient stochastic search in high-dimensional spaces, thereby producing
fast approximate solutions to hard computational problems such as logical infer-
ence (SATISFIABILITY) and planning (TRAVELING SALESMAN PROBLEM).
The underlying computational theory that we present also suggests new methods
for organizing massively parallel computations in novel energy-efficient but noisy
computing hardware.

3.1 Introduction

Despite the astonishing advancements of digital computing in the past decades,
the human brain is still considered the most powerful, versatile and “intelligent”
computing device. Most of the remarkable mental faculties of humans, from imagi-
nation, prediction, and creative problem solving to abstract thought, are unrivaled
by the most powerful supercomputers. This is achieved by the brain with only ∼ 25
Watt of energy consumption (Kandel et al., 1991) (several order of magnitude less
than its most powerful digital counterparts), without the need for a global clock
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through inherently asynchronous communication (Gerstner and Kistler, 2002), and
in spite of powerful noise sources introducing random variability at virtually every
step of neural computation, from spike generation, to action potential propagation,
to synaptic transmission (Faisal et al., 2008). Despite decades of research, however,
it is still largely unknown how complex computations, beyond mere sensory process-
ing, could be implemented in neural circuits on the basis of such noisy asynchronous
computing units.

In this article we present a theoretical framework and four new principles for
circuit design with spiking neurons that demonstrate how the inherent stochasticity
and asynchronous dynamics of neural circuits can be systematically exploited to
solve hard computational problems. We report that the application of this new
theoretical framework leads to a qualitative jump in the computational capabilities
of networks of spiking neurons.

3.2 New design principles for spike-based computation

A spiking neuron responds to stimulation by emitting short pulses, called action
potentials or spikes. Spikes occur asynchronously (in continuous time) and are
communicated to other neurons via inhibitory or excitatory synaptic connections
(Figure 3.1A, top). Biological spiking neurons are inherently noisy (Faisal et al.,
2008). We model the stochastic spiking behavior of a neuron k via an instantaneous
firing probability (or firing rate), ρk(t),

ρk(t) =
1

τ
exp(uk(t)) , (3.1)

the magnitude of which depends on the current membrane potential uk(t) of the
neuron. The membrane potential is defined as the weighted sum of the neuron’s
inputs,

uk(t) = bk +
∑

l

wkl xk(t) . (3.2)

The additional bias term bk represents the intrinsic excitability of neuron k. After
each emitted spike, neuron k enters a refractory period of length τ before it can
re-spike. A spike by neuron k is transmitted via synaptic connections to all post-
synaptic neurons receiving input from neuron k. The effect of a spike on a post-
synaptic neuron l, the so-called post-synaptic potential (PSP), is short-lived and
can be either inhibitory or excitatory, depending on the sign of the synaptic weight
wlk. In general, PSPs can assume complex shapes and the effective duration of
a PSP may depend on various dynamically changing factors. Here we assume for
mathematical tractability a rectangular shape with a fixed length τ = 10ms as
shown in Figure 3.1A, such that xk(t) = 1 if a spike occurred within (t− τ, t], and
xk(t) = 0 otherwise.

The network state at time t is defined as the vector of neural states x(t) =
(x1(t), x2(t), . . . , xN (t)), i.e. only those neurons are set to 1 which fired recently
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(Figure 3.1A, middle). Due to network connectivity some network states x(t) will
naturally occur more often on average than others. Consider the distribution of net-
work states that can be measured empirically by observing network activity over
a long period (Figure 3.1A, bottom). In general networks of spiking neurons, the
resulting long-term distribution will depend on the initial state of the network at
the beginning of the experiment. If the network is sufficiently stochastic, however,
the distribution over network states becomes independent of the initial state. In
networks composed of stochastic neurons of the type (3.1), a sufficient condition for
this to occur is that all excitatory weights in the network are bounded. Note that
when such a unique stationary distribution p(x) exists, it reflects which network
states can be most likely observed after the vanishing of transients (after conver-
gence to equilibrium). In analogy with statistical physics, we define the energy
function of a sufficiently stochastic network as E(x) = − log p(x) + const. Accord-
ing to this definition low energy states correspond to likely network states after
convergence to equilibrium.

We present a set of four new principles of circuit design with spiking neurons.
Principle 1 – the foundation of our framework – states that one should add sufficient
stochasticity to a (possibly otherwise deterministic) network with spiking neurons
so that the network has a unique stationary distribution p(x) of network states
(Figure 3.1A). For stochastic neurons (3.1) adding further noise is obviously not
required. In order to use such a stochastic network to solve a given computational
task, the circuit should then be constructed in such a manner that the stationary
distribution of network states p(x) assumes especially high values for circuit states
that encode good solutions to the computational task. Equivalently, the energy
function E(x) = − log p(x) + const of a circuit should be particularly low for states
x representing solutions to the problem.

Principle 2 states that the energy function E(x) over a set of principal neurons
can be systematically shaped through the use of a few auxiliary circuit motifs (Fig-
ure 3.1B). In particular we present two circuit motifs, the winner-take-all (WTA)
and the OR motif, that can be used to impose powerful higher-order constraints
on the activity of principal neurons in order to encode a variety of hard computa-
tional problems. The WTA circuit motif, applied to some set of principal neurons,
increases the energy (decreases the probability) of all network states where not ex-
actly (i.e. not more and not less than) one principal neuron in the WTA circuit
is active. The OR motif increases the energy of all states where none of the in-
volved principal neurons is active. A third way of systematically shaping energies
is to add bi-directional and symmetric synaptic connections between two neurons
k and l which either increase or decrease the energy of network states where both
involved neurons are active, xk = 1, xl = 1 (via inhibitory or excitatory connections,
respectively).

One important use of the WTA motif is to represent discrete random variables
(RV): Consider a set of K principal neurons, where each neuron codes for one out
of K possible values of a discrete RV. Then, by applying the WTA motif to these
neurons one can ensure that most of the time only one of the principal neurons
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Figure 3.1: (see next page for Figure caption)

is active and, as a result, most of the time the RV has a well-defined value which
can be derived from the current network state. Nevertheless, it may happen that
for some short period of time none (or more than one) of the K neurons is active.
During that period, the value of the represented RV is then considered undefined.
The WTA motif ensures that such periods are very brief when they occur. Various
computational problems, including 3-SAT and TSP, can be represented in terms of
a number of discrete RVs with a finite state space. Hence, the representation of
discrete RVs by WTA circuits is the foundation for the encoding of many problems.
Specific constraints of a problem can be implemented by adding symmetric synaptic
connections among principal neurons, as well as connecting additional WTA and
OR circuits to different subsets of principal neurons (Figure 3.1B).

The systematic design of complex energy landscapes composed of large numbers
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Figure 3.1: Four new principles of circuit design with spiking neurons. A. Unlike tran-
sistors in a digital computer, spiking neurons communicate via brief asynchronous pulses
called spikes (inhibitory/excitatory synaptic connections shown in red/black, connection
line width represents synaptic strength). To study the collective behavior of spiking net-
works, we consider joint network states x(t), a binary vector where all neurons which
fired recently (within the last 10ms) are assigned 1, over time t. The stationary distri-
bution of network states, p(x), reflects which network states can be likely observed af-
ter transients have vanished. We propose that p(x), or equivalently the energy function
E(x) = − log p(x) + const, represents the computational output of a spiking network with
noise (Principle 1). B. The energy function p(x) over a set of principal neurons (white)
can be shaped in a systematic manner by adding circuit motifs (shown in gray). Top row:
Two motifs winner-take-all (WTA) and OR. These circuit motifs constrain activity pat-
terns such that most of the time exactly one (WTA) or at least one (OR) in the set of
connected principal neurons is active. Middle/bottom row: Example network consisting of
two WTA circuits, each representing a discrete random variable (RV) with four possible
values (middle left). Symmetric synaptic connections (only some shown) can be used to
modulate the energies of different joint assignments to these two variables (middle right).
Additional auxiliary circuits can be added (bottom left) to shape the energy landscape
in more complex ways (bottom right). Those network states which violate the fewest of
the imposed constraints have lowest energy (such as the highlighted states 1, a and 4, c).
The energy contributions of different auxiliary circuits sum up linearly. This facilitates the
construction of complex energy landscapes through repeated use of simple circuit motifs
(Principle 2). C. Stochastic search for low energy states is facilitated by the asymmetry
of spike-based signaling. Direct transitions between the two low-energy states 1, a and 4, c
are blocked due to high energy intermediate states (marked in red). An alternative route
goes over a series of states where the value of one or both discrete RVs is briefly undefined
(marked by #). Such “exploratory” periods of undefined RVs occur particularly frequently
(and briefly) in a spiked-based communication scheme (Principle 3). D. In contrast to
traditional stochastic search algorithms, the search process in a physical implementation
cannot be “stopped” when a satisfactory solution has been found. Instead, internal tem-
perature control is proposed as a principled alternative for high-speed computing systems:
each circuit motif detects and reports to a global lock-in neuron whether its constraint is
currently met (OK signals). As soon as all (or most) constraints are met the global lock-in
neuron activates a set of additional circuit motifs which sharpen the existing energy land-
scape (right). This leads to a global reduction of the temperature of the circuit, thereby
reducing exploration and forcing the network to lock into the locally best solution (Principle
4).

of circuit elements calls for an understanding of how circuit elements interact with
each other. For example, what is the joint effect of two auxiliary circuit motifs
which are operating on an overlapping set of principal neurons? Notably, one can
show theoretically that under certain idealized conditions the energy contributions
of circuit motifs sum up linearly. This occurs in particular when a) integration of
synaptic inputs is linear as in (3.2) and b) the total instantaneous synaptic drive
∆uk,i onto a principal neuron k due to the presence of a circuit motif Ci is given
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by,

∆uk,i(t) = ∆Ei({xk = 0,x\k(t)}) − ∆Ei({xk = 1,x\k(t)}) (3.3)

at any point in time during circuit operation. Since the design of large-scale circuits
is greatly facilitated by linear compositionality of individual elements, (3.3) can be
seen as the idealized reference functionality of a circuit motif with energy contri-
bution ∆Ei(x). In practice, such reference can be used to guide circuit design; the
WTA and OR circuit motifs shown in Figure 3.1B were specifically designed to ap-
proximate (3.3). A basic consequence is that the relative energy contribution of any
given circuit motif is practically independent of the presence of other circuit motifs.
This allows one to apply all three types of circuit motifs on different subsets of
principal neurons in a combinatorial fashion to generate a rich diversity of energy
landscapes in a highly controlled fashion. As a result, energy landscapes of im-
portant computational problems can be constructed in a relatively straightforward
manner.

Principles 1 and 2 lay the foundation for implementing massively parallel local
search for low energy states in complex energy landscapes through the intrinsic
dynamics of spiking networks with noise.1 Principle 3 states that this search process
is facilitated by the inherent asymmetry of spike-based signaling (Figure 3.1C).
This is because asymmetric signaling, where a spike is followed by a fixed period
of on-time whereas off -times are subject to random variation, alleviates one of the
practical issues of stochastic local search: the presence of deep local minima in which
the search process gets stuck. The benefits of spike-based signaling are particularly
visible in conjunction with the WTA circuit motif: suppose that some WTA circuit
represents a discrete RV in a computational problem, and each principal neuron in
the WTA circuit represents one possible value of that variable, as described above.
Then the WTA circuit motif permits that sometimes (randomly and briefly) none
of the principal neurons in the WTA is active, and hence the value of the RV is
temporarily undefined (Figure 3.1C, right). When this occurs, most of the time
it has no lasting effect because the previously defined state is quickly restored.
But when the transition to an undefined RV state occurs in two or more WTA
circuits at approximately the same time, the principal neurons in these circuits
are momentarily given the opportunity to reconfigure their states from scratch and
explore radically different state configurations. Although such transitions to brief
periods of undefined RVs occur rarely, their frequency is greatly enhanced through
the asymmetry of spike-based signaling because spikes have a fixed on time and
neurons are therefore bound to switch to an off state on a much more regular basis
(but more briefly) than expected from the energy landscape alone. Indeed one can
show theoretically that, compared with a symmetrized system which samples from

1The search is local in the sense that when the network moves from state x to some other
state x

′ this always occurs through a series of small changes (a series of individual neurons turning
on and off). In addition, the search process is parallel because state changes occur in a highly
distributed manner across the network, thus supporting the efficient exploitation of independent
substructures in the energy landscape.
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the same stationary distribution p(x)2, the stochastic dynamics of noisy spiking
networks is considerably more explorative due to an increased frequency of state
transitions which gap large energy barriers.

Finally, Principle 4 proposes internal, rather than the traditional external, tem-
perature control for regulating stochastic search as part of the spike-based comput-
ing architecture (Figure 3.1D). Temperature control, i.e. the strategic modulation
of the energy landscape according to ET (x) = E(x)/T with some temperature T ,
is an essential ingredient of many stochastic search algorithms (Kirkpatrick et al.,
1983; Michalewicz and Fogel, 2000). High temperatures T generally lead to a flat-
tening of the energy landscape and increased exploration, whereas low temperatures
T correspond to a sharpening of the landscape and increased exploitation and drive
towards (local) energy minima. We propose an internal temperature control mech-
anism capable of a) automatically detecting in-situ when an acceptable solution
has been reached and b) reducing temperature once such a solution has been found,
leading to decreased exploration and a quasi lock-in effect. The key advantage of
such internal temperature control is that solutions are automatically detected and
stabilized which facilitates readout. In particular, in the absence of stabilization
the network may visit solution states arbitrarily briefly and transiently, and thus
solutions may be easily missed by a sloppy readout. In the presence of a lock-in
mechanism, on the other hand, good solutions are maintained and it therefore suf-
fices to check for solutions at irregular intervals. As a practical consequence, the
readout logic may run on a much slower timescale than the spiking dynamics, which
may be particularly beneficial in the context of high-speed neuromorphic simulation
of spiking networks.

3.3 Solving 3-SAT problems

To demonstrate these principles we applied the proposed framework to hard logi-
cal inference problems. As problem instances, hard random 3-SAT problems with
a clauses-to-variables ratio 4.3 near the phase transition (Biere, 2009) are consid-
ered (Figure 3.2). Each clause (constraint) of a 3-SAT formula consists of three
literals, where a literal is either a variable Xi or its negation Xi (Figure 3.2A).
A clause is fulfilled if at least one out of the three literals is true. The goal is to
find an assignment to the variables which satisfies all clauses.3 For hard problems
this typically means finding one out of a handful of solutions in an astronomically
large search space of 2#vars possible assignments. Using Principles 1 and 2, any
3-SAT problem can be encoded in a straightforward manner in a spiking network
by representing each boolean variable by two neurons (Xi/Xi) and a WTA circuit,
and adding for each clause an OR circuit which is linked to the three literals of the

2A symmetrized non-spike-based system which samples from the same stationary distribution
p(x) but in which transitions from on to off occur in the same stochastic manner as transitions
from off to on: a continuous-time variant of Gibbs sampling.

3This is the search variant of the satisfiability problem (Biere, 2009).
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Figure 3.2: Solving logical inference (SATISFIABILITY) problems. A. A 3-SAT problem
consisting of 50 boolean variables and 218 constraints (clauses). Each clause is fulfilled if
at least one out of the three literals is true. For the sketched problem only one assignment
to the variables exists which fulfills all clauses – the goal is to find this solution. A network
implementation based on Principles 1 and 2 is shown below. B. Example network run
during the first 4 seconds of network time (bottom: spike trains of neurons of selected
WTA circuits, top: performance of current network solution over time). C. Example run
in the presence of an additional lock-in circuit: when a solution is found it is automatically
detected and stabilized. D. Average network performance over time in the absence and
presence of lock-in. E. Distribution of wait times, i.e. times until the solution is found
for the first time. F. As expected for hard NP-complete problem instances, simulation
results suggest an exponential increase in wait times for hard random 3-SAT problems with
increasing problem size.

clause (Figure 3.2A). Note that the network states representing correct solutions to
the problem violate the fewest circuit constraints and are therefore assigned partic-
ularly low energies (and high probability) in the energy landscape. In simulations
it is observed that networks constructed in this manner quickly generate good ap-
proximate solutions to the encoded 3-SAT problem, i.e. assignments which meet
many but not all constraints (Figure 3.2B). For hard problems with 50 variables a
correct solution which meets all constraints is usually found for the first time after
a few 100ms to a few seconds of network time (Figure 3.2B,E). Without a lock-in
mechanism the network then continues to search for other potential solutions to the
problem (Figure 3.2B). When a lock-in circuit is added, solutions are automatically
maintained and stabilized (Figure 3.2C). As a result, the average performance of
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the network is considerably enhanced with lock-in. Regarding scalability on hard
random 3-SAT problems, simulations suggest that typical wait times (the time un-
til a solution is found by the network for the first time) scale exponentially with
problem size (Figure 3.2E), as expected for hard NP-complete problem instances.

3.4 Generating solutions to Traveling Salesman Prob-

lems

We further applied the proposed framework to planning problems (Figure 3.3), in
particular instances of the Traveling Salesman Problem (TSP) (Gutin and Punnen,
2002). Given a list of cities and the traveling costs for going from any city i to
any other city j, the goal is to find the least costly (the “shortest”) round-trip
route that visits each city exactly once. The problem can be encoded in a spik-
ing network by representing each step s in the trajectory by a WTA circuit with
Ncities neurons, one for each city (Figure 3.3A). To encourage short routes in the en-
ergy landscape, synaptic weights between two successive steps are chosen inversely
proportional to movement costs, such that low costs map onto strong excitatory
synaptic connections, whereas high costs are represented by low excitatory (or in-
hibitory) connections. The constraint that each city must be visited only once is
enforced by inhibitory connections among neurons coding for the same city at dif-
ferent time steps. Furthermore, to facilitate the search process, Nresting additional
“resting” steps are introduced which allow the salesman to “rest” in a city for one
time step before moving on (Figure 3.3A). Note that in the TSP optimization prob-
lem the optimality of solutions cannot be easily verified, and hence, in contrast to
the 3-SAT application, the objective in this case is not necessarily to recover an
optimal solution, but to find good approximate solutions. We tested the perfor-
mance of the network architecture with respect to this objective on a planar 38-city
problem instance (≈ 1043 unique tours). We find that the network quickly gener-
ates good approximate solutions to the TSP problem: The average performance of
generated network solutions converges within a few seconds to approximately 0.75
(where 1 corresponds to the optimal solution). Furthermore, due to fluctuations
around this stationary value, performances up 0.99 are typically reached within
a few 10s. We also tested Principle 3 (the advantage of asymmetric spike-based
communication) in the described setup. The results are shown in Figure 3.3C-E:
Brief periods of partially undefined network states occur with increased frequency in
the asymmetric spike-based architecture compared with a comparable symmetrized
sampler which samples from the same stationary distribution p(x) (Figure 3.3C).
Moreover, convergence to high-performance solutions (short trajectories) is consid-
erably faster in the spike-based architecture compared to the symmetrized system
(Figure 3.3D). Similar results are obtained for an asymmetric 39-city TSP problem
instance (Figure 3.3E).
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Figure 3.3: Generating approximate solutions to traveling salesman problems (TSP). A.
Network architecture for solving TSP problems. Each step i in the trajectory of the traveling
salesman is represented by a WTA circuit Xi with Ncities neurons (one for each city). The
synaptic weights between two steps are chosen to reflect movement costs between each pair
of cities. The constraint that each city must be visited exactly once is enforced by inhibitory
connections among neurons coding for the same city at different time steps. B. Example
application to a planar 38-city TSP instance. Top: 38-city problem; solution trajectories
generated by the network; optimal solution. Bottom: spike trains of neurons in selected
WTA circuits during the first few seconds of a typical run. Middle: network performance
over time (dark blue: single trial, cyan: average over 100 trials). The network quickly
generates good approximate solutions to the TSP problem. C. Advantage of asymmetric
spike-based signaling (Principle 3). The number of (very brief) exploratory transitions to
network states with partially undefined RVs (where no neuron is active in several WTAs
i such that the value of the corresponding RVs Xi is undefined) is compared between the
asymmetric spike-based system (NS=Neural Sampling) and an otherwise equivalent but
symmetrized non-spiking system (BM=Boltzmann Machine). Intermittent transitions to
exploratory states with more than 3 undefined variables Xi are found to occur up to 80
times more frequently in the spike-based system. D. Convergence is considerably faster
in the spike-based system than in the symmetrized system (shown is for each system the
cumulative mean/max performance as a function of the number of state changes). E. Similar
results are found when the same analysis is repeated for an asymmetric TSP problem with
39 cities.

3.5 Discussion

In summary, we have presented a set of four new principles of circuit design with
spiking neurons which enable the systematic construction of networks of spiking
neurons for solving hard computational problems. In simulations, we have demon-
strated this for two well-known problems, 3-SAT and the Traveling Salesman Prob-
lem. The proposed architecture for solving 3-SAT (and k-SAT) has a particularly
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wide range of potential applications. On the one hand, this is because every de-
cision problem in NP can be reduced to the satisfiability problem (Cook, 1971).
On the other hand, efficient solvers for satisfiability problems are in high demand
in many practical applications, such as model checking and software verification
(Biere, 2009) or haplotyping in genomics (Lynce and Marques-Silva, 2006). Apart
from boolean k-SAT and TSP, a direct application of the proposed framework to
many other important problems such as MAX-CUT, non-boolean k-SAT, the Hamil-
tonian path problem and graph-coloring (Karp, 1972), should be straightforward
to realize and could be examined in simulations in future work. A more ambitious
goal for the future is to examine to what extent the proposed framework can be
realized in practice on current or future neuromorphic hardware. If successful, this
would represent a major breakthrough in the pursuit of a long-standing goal: the
demonstration of powerful problem solving capabilities emerging in brain-inspired
computing hardware.
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Neurons in the cortex are not randomly connected. Instead, they form networks
of stereotypical microcircuit motifs. We study here arguably the most frequently
occurring microcircuit motif: ensembles of pyramidal cells with lateral inhibition. It
was shown previously in winner-take-all (WTA) models of this motif that powerful
Bayesian computations can emerge through synaptic plasticity if one assumes that
at most one pyramidal cell of the ensemble can fire at any moment in time. But new
experimental data show that the lateral inhibition between pyramidal cells in layer
2/3 and layer 5 is not consistent with this model, since several pyramidal cells have
to fire together in order to engage lateral inhibition. Here we propose a modified
computational model for these microcircuit motifs: Sparse WTA (SWTA), where a
certain number of pyramidal cells can fire simultaneously, and which is more consis-
tent with these data. We show that this SWTA model has arguably more powerful
computational capabilities than the traditional WTA model. Whereas pyramidal
cells in a WTA circuit only become selective through synaptic plasticity for specific
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input patterns that are separately presented, the pyramidal cells in a SWTA circuit
are able to become selective for input patterns even if these never occur in isolation,
but are superimposed by other patterns and by noise. Furthermore the neurons in a
SWTA circuit automatically solve the binding problem, since neurons for different
input features fire simultaneously when these features co-occur in the input stream.
Thereby this microcircuit motif acquires the capability to extract and represent mul-
tiple salient features from complex inputs. A remarkable fact is that these codes
for salient features emerge through local synaptic plasticity without any teacher or
rewards. Altogether our theoretical analysis and network simulations suggest that
synaptic plasticity installs in these ubiquitous microcircuit motifs a very powerful
computational operation, that could explain some of the remarkable computational
capabilities of a generic cortical column.

4.1 Introduction

WTA circuits constitute a ubiquitous motif of cortical microcircuits (Douglas
and Martin, 2004). Recently it was shown that spike-timing-dependent plasticity
(STDP) supports the emergence of Bayesian computation in such winner-take-all
(WTA) circuits (Nessler et al., 2013; Habenschuss et al., 2013b; Klampfl and Maass,
2013). But these models assumed that the input to a WTA is explained at any point
in time by a single neuron, and that strong lateral inhibition among pyramidal cells
ensures a basically fixed total output rate of the WTA. These assumptions, however,
may not be suitable in the context of more realistic input streams on the circuit level.
In particular, neurons in any cortical area simultaneously receive synaptic inputs
from a large number of neurons in many other brain areas, and synaptic inputs from
each of these other areas might together encode one or several particular features of
a currently experienced (or mentally considered) scenario. Indeed, if the underlying
circuits are not able to extract and separate those component features, they face the
“combinatorial explosion” problem: for the simplest case of n binary features this
already gives rise to 2n possible combinations of feature values. Therefore, from a
purely computational perspective this makes it very unlikely that neurons in some
brain area specialize in a strict WTA sense, where each possible combination of
salient features of external stimuli is represented by a separate neuron. Instead, to
avoid the combinatorial explosion problem, each neuron likely specializes on some
partial feature of a different component of the input. Since representations in cortex
form in a strongly experience dependent manner, this raises the question how such
component features could emerge through learning. In order for this to happen each
feature should ideally be represented separately in a training sequence where only
this particular feature varies and all other features remain fixed. For example, in
order to learn representations of orientations of line segments in a particular part of
a visual scene, one should ideally train the visual system with a sequence of images
with an edge in all possible orientations at this particular location in a visual scene.
Obviously, if one does not create such special training sequences, an autonomously
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learning system has to learn on its own from presentations of combinations of fea-
tures (e.g. edge orientations at many different positions in a visual scene, possibly
combined in addition with varying local colors, textures, and movement directions)
what the component features are, and at the same time it needs to create neural
codes for each of these component features. Altogether this poses a serious chal-
lenge for most models for learning in biological networks of spiking neurons and
therefore the apparent open question is how neurons that typically receive synaptic
input from a large number of afferent neurons (possibly from several brain areas),
which might simultaneously encode several input features from multiple modalities,
can learn to isolate these component features and form a suitable representation of
their high-dimensional spike input stream.

On a more abstract level, a possible solution to this problem had been proposed
by (Földiak, 1990). There it was shown that even in a scenario where combinations
of features, such as the position of a vertical bar and simultaneously the position
of a horizontal bar that crosses the vertical bar, occur simultaneously in the visual
input (in the form of a cross, consisting of two bars), a network of artificial (non-
spiking) neurons could in principle self-organize and form one family of neurons in
which each neuron represents one possible position of a vertical bar in the scene, and
another family of neurons where each neuron represents one possible position of the
horizontal bar. Note that once such neural codes for each single feature in these more
complex visual scenes (crosses of two bars) have been created, behaviorally relevant
combinations of the two features can then be encoded by downstream neurons that
learn to respond only to a particular combination (an AND-like computational
operation) of two neurons, i.e., to a particular form of a cross. (Földiak, 1990)
had proposed to solve this problem through competitive Hebbian learning with a
relaxed lateral inhibition, that not only allows a single neuron within a competitive
group to provide a high output value in response to a complex stimulus, but allows
a larger number of neurons to respond with a large output value, and thereby to
update their weights according to some Hebbian rule.

But it turned out to be rather difficult to port this learning principle to models
for networks of spiking neurons, with a spike-based learning rule. One interesting
model was proposed by (Lücke and Eggert, 2010), but the resulting spike-based
learning rule turned out to be very complicated, and it is hard to relate this learn-
ing rule to experimental data on synaptic plasticity. In an independent stream of
recent work, a different model for spike-based learning (using a very simple STDP-
like rule, which is consistent with experimental data on synaptic plasticity) was
successfully used in a WTA network of spiking neurons, where only one neuron
was allowed to fire (and update its weights via STDP) at any point in time and
explains the whole input alone (Nessler et al., 2013; Habenschuss et al., 2013a).
However, a generalization to a WTA model where several neurons are allowed to
spike simultaneously turned out to be difficult, because the underlying theory (fit-
ting an implicit generative model in the form of a mixture of distributions to the
actual distribution of spike inputs) does not support such generalization, as the
computational requirements for learning derived from this theory turned out to be
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inconsistent with spiking neural networks.

Here we propose a solution to this problem in the form of a novel theory-driven
model for autonomous learning in spiking WTA networks with soft lateral inhibi-
tion which allows for multiple neurons to respond simultaneously in order to jointly
explain the input. The resulting neuronal response, which in general depends on
the complexity of the input, is sparse and therefore we refer to this model as Sparse
WTA (SWTA). The neural responses in this SWTA network are tuned via simple
STDP-like learning rule in order to maintain an internal representation of its spike
input, which is capable of simultaneously extracting multiple features from the high
dimensional input streams. Our approach relies on statistical first-principles which
guarantee the emergence of useful internal representations for the extraction of hid-
den causes of high-dimensional input streams. Although the mathematical proofs
apply only to an idealized implementation, we show that this simple but biolog-
ically realistic SWTA network implementation, approximates this ideal behavior
in simulations well and that indeed it can enhance the computational properties
of WTA circuits. Moreover, we demonstrate that neurons in an SWTA circuit
can specialize on different time segments of their preferred stimuli, endowing the
emergent population code with additional temporal selectivity to the fine structure
of spatio-temporal spike patterns. Similar effects have been recently reported by
(Luczak et al., 2009a) in rat auditory cortex, where neuronal responses to natural
sounds were shown to exhibit considerable temporal selectivity at the population
level.

In addition to its substantially increased learning and computing capability, the
resulting SWTA model has also a dynamic feature that is more consistent with
recent data on the firing response of such populations of pyramidal cells in vivo.
When presented with complex input composed of several feature components, the
resulting population response will consist of activations of several groups of neu-
rons where each one of these groups code for one of features presented in the input.
Therefore the neurons in SWTA which code for the same or similar feature com-
ponents will tend to fire together and consequently their activity will be correlated
(and the number of such correlated neurons depends on the strength of the soft
lateral inhibition). This is in agreement with (Sakata and Harris, 2009) who found
positive correlation for such pyramidal cells in vivo, especially for close-by pyramidal
cells in layers 2/3. Additionally, according to (Avermann et al., 2012) simultaneous
activation of several pyramidal cells in layer 2/3 or 4 is required in order to acti-
vate lateral inhibition, which is consistent with intrinsic property of SWTA that
several groups of neurons spike simultaneously in response to the complex input.
Altogether, one may propose that such SWTA motif with soft lateral inhibition
provides a better model for the emergent computational operation of populations
of pyramidal cells (which could be located for example in layer 2/3, or in layer 5)
in a cortical microcircuit which is more consistent with experimental data.
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4.2 A model for pyramidal cells with relaxed lateral

inhibition

The brain needs to operate in a noisy and constantly changing environment, but in
addition it also has to deal with complex input consisting of possibly many com-
ponent features each of which could be noisy and individually provide only partial
information about some percept. Furthermore, individual component features may
be superimposed in a nontrivial manner (e.g. combined nonlinearly) and they do
not need to be temporally aligned. Nevertheless, neurons exposed to such complex
input have to work jointly in order to extract relevant information and to cre-
ate sparse and efficient codes for representing the most likely components (“hidden
causes”) of the input. It has been shown in (Nessler et al., 2013; Habenschuss et al.,
2013a) that WTA circuits with lateral inhibition can learn through STDP to ex-
tract the most likely hidden causes from the input in a strict WTA sense (where the
input is explained by only one neuron at a time). Here we show, theoretically and
through simulation, that in a WTA motif with soft lateral inhibition (set according
to theoretical considerations), an STDP-like learning rule enables neurons to learn
to simultaneously extract multiple hidden causes from complex input streams, in
this way increasing significantly its computational power.

We consider a microcircuit WTA motif that produces sparse codes due to soft
lateral inhibition. We refer to this model as Sparse WTA (SWTA). The SWTA motif
consists of M stochastic output spiking neurons (Figure 4.1), which we model in
a similar way as in (Jolivet et al., 2006): the instantaneous spiking probability of a
neuron j depends on its current membrane potential uj ,

p(j spikes in (t, t+ δt]) = δt · 1

τ
exp(γ · uj(t)) , (4.1)

for δt → 0. After emitting a spike, a neuron enters a refractory period of
duration τ (while in the refractory state, the instantaneous spiking probability of
a neuron is zero). Each of these output neurons receives feedforward synaptic
inputs y1(t), .., yN (t) whose contribution to the membrane potential of a neuron j
at time t depends on the synaptic efficiency wij between the input neuron i and
the output neuron j. In addition, each output neuron inhibits all other output
neurons within the SWTA circuit. In biological networks, such lateral inhibition
occurs di-synaptically via intermediate inhibitory neurons. Here we model this for
simplicity by direct inhibitory connections among output neurons (we show later
that the functionality of our model can be implemented also with a pool of inhibitory
neurons). The total inhibitory drive to an output neuron due to lateral inhibition
depends on the number of currently active output neurons and the timing of their
activations. The precise impact of an output neuron k on other output neurons j is
modeled in two different ways. In the theoretically ideal model, whenever neuron
k spikes the output signal zk(t) of neuron k is set to 1 for a period of duration
τ , with τ = 10ms unless otherwise stated (this corresponds to a rectangular post-
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synaptic potential (PSP)). In the more biologically plausible model, the PSP shape
is modeled in a more realistic fashion by a double-exponential function, i.e. the
time course of the output signal zk(t) has a double-exponential shape.

The membrane potential of an output neuron j consists of its intrinsic excitabil-
ity (α), inhibitory signals from other output neurons, and the sum of weighted
inputs,

uj(t) = −α−
∑

k 6=j

zk(t)β +
∑

i

yi(t)wij , (4.2)

where α, β and γ are constants which can be set based on theoretical consider-
ations and further fine-tuned in order to ensure an optimal working regime of the
network.

Although the inhibitory signal is common to all neurons in the circuit, contrary
to the inhibition modeled in (Nessler et al., 2013) it does not normalize the firing
rates of neurons and therefore the total firing rate of the circuit is variable and
depends on the input strength. This has several interesting manifestations. Each
time one of the output neurons spikes, it decreases the membrane potential of all
other neurons with weight β. This results in a reduced probability of spiking for
all other neurons. The extent to which another neuron’s firing activity is affected
by this reduction depends on the current neuron’s membrane potential: generally
speaking, the closer the current neuron’s membrane potential is to a balanced state
(i.e. a membrane potential close to 0), the stronger is the effective influence of
inhibition on its activity. If the inhibition is soft (weak), the decrease will be small
and therefore some other neuron with the same or a similar feature preference will
be very likely to spike despite inhibition. Overall, this enables several neurons (but
still a small fraction of all neurons) to respond to the same input, and thereby results
in the creation of a sparse code. Interestingly, in a natural input scenario where the
number of feature components may vary over time, there will be natural fluctuations
of the number of active output neurons, and consequently also a fluctuation in
inhibition strength. In particular, if one uses smooth PSPs (e.g. with a double
exponential shape), inhibition strength will change smoothly over time. We will see
further below that this facilitates desynchronization among neurons. Altogether,
we will show that this allows the SWTA motif to robustly handle inputs of different
complexity, large variances in input strength and significant delays in inhibitory
signal transmission. It should be noted, however, that the circuit has a feedforward
architecture and, since there is no fixed normalization of firing rates, the inhibition
strength must be tailored according to the expected input strength. In particular,
α and β must be set such that they support a certain dynamic range of the input,
which is determined by the maximum synaptic strengths and complexity of the
input.

In order to learn in an experience-dependent manner and to extract hidden
causes from its input stream, the network uses the following theoretically motivated
simple STDP-like learning rule. The learning rule is triggered at post-synaptic spike
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Figure 4.1: The network model and learning curves. A. SWTA architecture. Spiking
input neurons are feed into a Sparse winner-take-all (SWTA) circuit, where spiking output
neurons of the SWTA circuit compete via soft lateral inhibition in order to jointly explain
the input. The synaptic weights between input and output neurons are updated through
STDP. B. STDP-like learning rule. Learning rule is triggered at every post-synaptic spike of
output neuron, where potentiation occurs only if the presynaptic spike occurs shortly before
the postsynaptic spike and otherwise constant depression takes place. The shape of learning
curve depends on the shape of PSPs at synapses(here α shape PSP was used). C. Weight
potentiation under STDP. The weight update of synapse depends on its current value (red
line is ideal dependence) and parameter θ (here set to 2). However the SWTA model can
successfully learn even when the weight dependence is very noisy (circuits represent samples
from ideal curve with 100% noise).

times t of network neurons j, and changes the synaptic weight wij between the input
neuron yi and the output neuron zj according to,

∆wij(t) = η (yi(t)f(wij) − 1) , (4.3)

where η is a constant learning rate set small enough such that learning takes
place on a longer time scale than typical input presentation, and f(wij) = 1 +
(
√

2wij + θ)−2 is a weight-dependent term. In addition, the function f depends
also on a constant θ which limits the maximum weight update. According to this
learning rule, when the presynaptic neuron yi spikes shortly before the postsynap-
tic neuron this results in long-term potentiation (LTP) which follows the shape of
the PSPs at synapses and is weight dependent. When a post-synaptic spike by j
is not preceded by a presynaptic spike i (e.g. when the pre-synaptic spike comes
after the post-synaptic spike), this results in long term depression (LTD) which is
weight-independent. The learning rule (4.3) can be understood as a local approxi-
mation to the optimal theoretical learning rule (see Methods) which can be derived
from statistical first-principles by optimizing an implicit generative model of the
input statistics. (4.3) approximates the ideal rule by using only locally available
information at the synapse. Nevertheless, it emulates the behavior of the optimal
rule reasonably well in simulations. Moreover, this learning rule has proven to be
quite robust as one can use a noisy version of this learning rule (Figure 4.1C) and
still successfully learn to extract multiple hidden causes.
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Figure 4.2: (Figure caption on the next page)

To illustrate the performance of the described network architecture at extract-
ing multiple hidden causes we run computer simulations in which we exposed the
SWTA circuit to input composed of multiple rate bar patterns which were super-
imposed in a nonlinear fashion (Figure 4.2). Such input composed of overlapping
bars constitutes a well known benchmark for checking whether a model is capable
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Figure 4.2: Extraction of hidden causes. A. Input spike train made of nonlinear super-
position of at most 3 out of 16 different bar rate patterns of 30ms in length which were
repeated at irregular time intervals, where lines of different colors at the top of raster plot
denote different bar patterns shown at particular time. Examples of overlapped bars and
corresponding input that the neurons actually see at different times can be seen at the
top. B. Weights of output neurons in topological representation after SWTA model was
trained on complex input from A. Each neuron specialized on one of bar rate patterns. C.
Response of a SWTA circuit made of 64 output neurons, which receives the input from 64
input neurons, with color bars on top of the raster times of bar pattern presentation are
shown as in A. Spike responses of output neurons are colored and grouped according to
their preferred pattern. The neurons in SWTA are using learned internal representation to
successfully extract patterns from the complex input. D. Correlation between activity of
output neurons and patterns. Each pattern was learned by at least one neuron, and there
are several neurons that specialize on a particular bar pattern. On average activity of a
neuron and corresponding pattern is highly correlated, with an average of 0.78.

of extracting feature components (Földiak, 1990). Here we used a slightly modified
setup where bars are not synchronized (shown at the same time as usual), but are
rather shown at random times, such that at any point of time there is a variable
number of bars which are superimposed nonlinearly and shown to the network.
This is indeed a slightly harder problem as a variable number of component fea-
tures are presented at various times. This challenges the network dynamics as it
requires that inputs of dynamically changing strengths need to handled, but also
because bars which partially overlap with other bars represent a substantial source
of noise. Figure 4.2A displays a short segment of spiking input that was shown to
the SWTA network (colored bars on top of spikes denote the time of presentation
of specific bar pattern). There are in total 16 different rate bar patterns (8 vertical
and 8 horizontal bars from 8x8 grid) of 30ms duration, where each one of them
consists of 64 channels. 8 channels are assigned a 50Hz rate (those corresponding
to the bar) and all others are silent (0Hz). The input was created by randomly
superimposing (through nonlinear combination) at most 3 out of these 16 bar pat-
terns. The considered SWTA network, consisting of 64 input and output neurons,
whose synaptic weights were initialized randomly, was exposed to such input for
120s. During learning each pattern was seen in different combinations with other
bars. Nevertheless output neurons started to specialize on individual bar patterns.
After learning, most of the output neurons developed a specific preference for one
of the patterns (see weights in Figure 4.2C), but also each pattern was picked up
by at least one neuron (see Figure 4.2D). After learning the network was able to
successfully extract bars (hidden causes) when presented with the input composed
of superimposed bars (see Figure 4.2C), which confirms that STDP in fact tuned
the internal representation in SWTA to extract feature components.

In addition to the simulation results shown in Figure 4.2, we report that we
successfully trained the SWTA model in several variations of the described setup:
extracting bar patterns even when those never appeared in isolation, when they
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were synchronized, superimposed with noise, and when there was a higher number
of overlapping patterns (6 and more), as well as when we used frozen instead of
rate patterns and when we were using a noisy version of the learning rule (see
Figure 4.1).

4.3 Theoretical framework for simultaneous extraction

of multiple features from high dimensional input
streams

We have demonstrated in the experiment with overlapping bars (see Figure 4.2)
that the SWTA model can learn to extract and separate hidden causes through
STDP. Here we show that this computational capability that arises from learning
and the use of soft inhibition can be theoretically motivated and supported. We
base our theoretical analysis on the notion of a generative model that is implicitly
implemented in the SWTA circuit. We remark that this approach appears partic-
ularly well-suited because generative models constitute one of the most powerful
paradigms for unsupervised learning and a well known statistical tool for the ex-
traction of hidden causes from high dimensional data. To tackle the problem of
separation of multiple hidden causes we assume that some binary hidden variables
z jointly generate observations represented with observed variables y. The joint
probabilistic model of this graphical model is then given by

p(y,z|W ) = p(z)p(y|z,W ), (4.4)

where the likelihood of data under the assumption that the individual visible vari-
ables are independent given the hidden variables is given as follows

p(y|z,W ) =

N∏

i=1

p(yi|z,W ) (4.5)

Here the non-negative parameters W = [wij ]N×M encode the coupling strength
between observed and hidden variables (indeed, in the network implementation wij

is the synaptic weight between input neuron i and network neuron j). For the prior
distribution on z we assume a form of truncated Gaussian distribution, which for
small values of the prior parameter µ favors sparse activation patterns of the hidden
variables.

p(z) =
1

Z
exp






−(

M∑

j=1

zj − µ)2 / 2σ2






(4.6)

Interestingly, in order to end up with a model which can handle biological con-
straints such as delays of inhibitory signals, the parameter µ needs to be set quite
low (indeed it should be negative), as this favors very sparse activation and ensures
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that neurons can be activated only by strong enough external input, thereby leading
to increased noise robustness.

Given some input data with an empirical data distribution p∗(y), we would like
to adapt parameters W of this model such that it can learn an efficient sparse
code for the representation of high-dimensional input streams. More formally, we
seek to adapt parameters W to match the generative model p(y|W ) to the em-
pirical data distribution p∗(y), or in another words we would like to minimize
the Kullback-Leibler (KL) divergence KL (p∗(y) || p(y|W )). This optimization of
parameters W to minimize KL can be done via Stochastic Online Expectation
Maximization (EM) algorithm (Sato, 1999; Bishop, 2006). Indeed, EM is one of
the most powerful algorithms in machine learning for fitting generative models to
high-dimensional inputs. The optimization via the EM algorithm is done in two
steps: the E-step and M-step. In the E-Step given a new input pattern yt at time
t one draws a sample zt ∼ p(z|yt,W ). In the M-Step a parameter update is per-
formed according to ∆W ∝ ∂W log p(yt,zt|W ). Note that the expected update
〈∆W (y,z|W )〉p(z|y,W)p∗(y)is guaranteed to decrease the KL-divergence between
data and model (if a sufficiently small learning rate is used).

In the following we consider that a spiking neural network may perform an
E-by step automatically sampling through its internal dynamics from p(z|yt,W ).
Additionally, by performing the weight update the network can perform an online M
step. In other words, an application of STDP within this motif can be understood
as stochastic online EM algorithm.

According to the recently developed neural sampling theory (Buesing et al.,
2011), sampling a from desired distribution is carried out automatically by the net-
work of recurrently connected stochastic spiking neurons if the membrane potential
dynamics of all neurons satisfy the neural computability condition (NCC). While it
is unclear whether and how spiking neurons could compute or sample from the com-
plex posterior distribution p(z|y,W ) in an exact manner, here we consider an ap-
proximation (see Methods for details of this approximation) p̃(z|y,W ) ≈ p(z|y,W )
of the form,

p̃(z|y,W ) = exp
{

γ · (zT Rz + yTWz)
}

/norm. (4.7)

where R = [rjk]M×M with rjj = −α, and rjk = −β/2 for j 6= k. An application
of the NCC condition to this distribution yields the required membrane potentials,
which correspond by construction to the previously defined (4.2), where −α can be
interpreted the as intrinsic excitability of neuron, wij as feed-forward weights and
β as recurrent inhibitory weights.

Note that this network will perform only approximate inference as it samples
from the approximate distribution p̃(z|y,W ). Also, neural sampling guarantees
correct sampling from p̃(z|y,W ) only under relatively unrealistic constraints, in
particular constancy of inputs y for a sufficient amount of time, rectangular PSPs
and instantaneous synaptic transmission (zero delay), absolute refractoriness for the
duration of a PSP and direct inhibition between pyramidal cells (no inhibitory neu-
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rons). Despite all these theoretical constraints, however, in simulations we demon-
strate that the network remains nevertheless functional and that it can successfully
learn to extract hidden causes also with more realistic neural dynamics: variable
input, double exponential PSPs, significant delays, short absolute refractoriness,
usage of non-theoretical STDP rules and usage of inhibitory neurons.

Regarding the M-step, the theoretically optimal learning rule is given by ∆W ∝
∂W log p(yt,zt|W ), but it contains non-local terms which are hard to interpret from
a biological point of view. Therefore by using a local approximation of the optimal
learning rule we get the following simple learning rule that emulates the behavior
of the optimal rule reasonably well in simulations:

∆wij = ηzt
j

(
yt

if(wij) − 1
)
, (4.8)

which is in the network implemented by the STDP rule given in (4.3).

4.4 Emergent extraction of time-varying rate patterns

from superpositions in complex input streams

So far we have demonstrated that the SWTA circuit is capable of learning to extract
individual features when exposed to overlapping superpositions of components. Al-
though rate patterns can look drastically different on each trial (temporally but not
spatially) due to the spike variability within different channels, on average they will
have the same number of spikes per channel during some time window. Therefore,
there is no additional information encoded in each channel other than the rate. Here
we challenge the SWTA model with more biological input composed of overlapped
spatio-temporal patterns where each channel has a time varying rate and therefore
contains additional information about pattern timing. For this purpose we create
2 different spatio-temporal patterns (Figure 4.3A, second column) where each pat-
tern of duration 150ms consists of 64 channels with time varying rates. For each
channel we create random rates with an independent Ornstein-Uhlenbeck process,
and limit them to at most 50Hz (Figure 4.3A, first column). Two instantiations of
the same pattern have huge trial to trial variability, both spatially and temporally
(Figure 4.3A, last 2 columns). These two patterns are finally superimposed nonlin-
early (in the same way as previously rate bar patterns) at random times to form a
complex input stream that will be presented to a SWTA circuit consisting of 100
neurons (see Figure 4.3B where colored bars present times of different pattern pre-
sentations). After exposing the network for 100s to such input the output neurons
in a SWTA circuit specialize on a specific pattern but also on a particular time
segment within this pattern (see Figure 4.3C where neurons are grouped according
to pattern preference and ordered according to the mean spiking time within the
preferred pattern). In other words, the SWTA circuit is capable of extracting also
temporal information and producing a population code which reflects the feature
components composing the complex input but also the current temporal position
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within those components. This is indeed a very important and desirable circuit fea-
ture as this provides, for example, a way how to encode time and on-set of a certain
stimulus, but also a way how to compute with sequences of activations, while all
this information can be inferred from population activity. Similar effects have been
recently reported by (Luczak et al., 2009a) in rat auditory cortex, where neuronal
responses to natural sounds were shown to exhibit considerable temporal selectivity
at the population level. The simplest explanation for such temporal selectivity is
that spatio-temporal pattern can be seen as a sequence of very short rate patterns
(sub-patterns) and neurons in the SWTA circuit are picking up those sub-patterns
which are most discriminative and strongest (in terms of the sum of total rates).
It is significant here that SWTA circuit is capable of dealing with a huge number
of those sub-patterns, which can differ substantially in strength. An interesting
property of such a more biological setup is that there will be significant positive
correlation in the co-activation of groups of neurons, where borders between groups
are smooth (Figure 4.3D), in agreement with recent data from (Sakata and Harris,
2009) where positive correlation between pyramidal cells in vivo in layer 2/3 was
found. Note that although in this experiment individual patterns (actually their
segments) do appear in isolation, for demonstration purposes we neglect this as we
focus here on the temporal aspect of the model and we have already shown before
that the network is capable of extracting patterns which never appear in isolation.

4.5 Computational properties of microcircuit motif
with relaxed lateral inhibition

Although the SWTA circuit only approximates the ideal theoretical model for ex-
traction of multiple hidden causes, it is nevertheless capable of performing quite
demanding computational tasks (see Figure 4.2 and Figure 4.3). Indeed, it proves
to be very robust to different biological constraints such as noise, PSP shapes and
inhibition delays. Here, we study in more detail properties of the SWTA circuit
while learning 16 different rate bar patters. More precisely, we look at the speed of
learning, how precisely neurons are assigned to various discovered patterns, and the
influence of the number of output neurons within the circuit as well as the inhibition
delay on the quality of pattern extraction. In order to quantify the performance of
the circuit we measure the average correlation between occurrence of patterns and
activation of neurons which specialized on those patterns (see Methods).

Once the SWTA circuit is exposed to complex input its neurons very quickly
start to specialize on some of the patterns and as a result the average correlation
(i.e. the performance) increases (Figure 4.4A). During the learning process the cir-
cuit recruits more and more available neurons (each specializing on some patterns).
After some time this process converges to an apparently stable regime, where the
average correlation has also converged and the network has learned most of pat-
terns (on average 15.6). Interestingly, the average correlation reaches almost top
performance already after 30s of learning, when each pattern was presented on av-
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Figure 4.3: (Figure caption on the next page)

erage 100 times, indicating fast learning. On the other hand, there is a minimum
number of output neurons needed within the circuit to successfully learn to extract
all the patterns. Due to the soft lateral inhibition, more neurons will specialize
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Figure 4.3: Emergence of population code through STDP. A. Spatio-temporal patterns.
Each spatio-temporal pattern of 150ms length consists of 64 input channels (neurons). The
evolution of the membrane potential for a particular input neuron is generated with an
independent Ornstein-Uhlenbeck process, while the rates for that neuron are calculated as
exp(membrane potential). Example of patterns generated from rates that were presented
to network are shown on the right. Notice the huge trial to trial variability for different
instantiation of same pattern. B. The complex input and network response after learning.
Two previously defined input spatio-temporal patterns of 150ms in length were repeated
and superimposed non-linearly with each other at irregular time intervals (red/blue lines
at top). After extended exposure to these superimposed patterns, output neurons in the
SWTA circuit developed a specific preference for one pattern (red/blue, spike responses of
output neurons are colored according to their preferred pattern and ordered by their mean
spiking time relative to the start of their preferred pattern). In particular, each neuron
specialized on a specific pattern and on a particular time segment within this pattern. C.
The mean spike time with standard deviation for each neuron relative to the beginning
of the preferred pattern. The neurons are grouped according to the preferred pattern and
within the group ordered according to the mean spike time. D. Correlation between activity
of output neurons in SWTA circuit. Neurons are ordered based on pattern preference and
mean spike time within preferred pattern.

on the same pattern and therefore SWTA will need more output neurons than the
number of patterns in order to learn (discover) them all. For the case of 16 bar
patterns, almost top average performance is already achieved with 35 neurons (Fig-
ure 4.4B). Having more neurons does not significantly improve the quality of pattern
extraction but it does recruit more neurons (on average the number of neurons that
specialize on the same pattern increases). Indeed, approximately a third to half
of all neurons will be used by the network to extract patterns while others will
remain “free” (Figure 4.4B). This means that not all neurons are used to encode
information, but only as many of them as needed with respect to the complex input
and inhibition properties (strength, delay). This is generally a desirable property
as it leaves space for learning of new patterns which have not been seen before. To
check whether this is really the case, we first train the SWTA circuit with complex
input consisting of 8 different bar rate patterns, for which the circuit recruits some
number of output neurons. After 10s we present a more complex input consisting of
additional 8 bar rate patterns that were never seen before (so in total all 16 of them
are present in the input after 10s). The free neurons in the network specialize on
these new patterns very quickly (Figure 4.4C). As noted before, inhibition plays an
important role in determining how many neurons are recruited during the special-
ization process. Although the ideal theoretical model assumes ideal inhibition (no
delays), we show here that the SWTA circuit motif is capable of handling significant
inhibitory delays (due to its property that multiple neurons may specialize on the
same pattern). Indeed from the results in Figure 4.4C one sees that SWTA is using
free neurons to overcome inhibition delays: the bigger the delays the more neurons
are recruited. This is a direct consequence of the fact that if inhibition is delayed it
cannot immediately decrease the spiking probability of other neurons and therefore
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more neurons are likely to spike and specialize on the same pattern.

Figure 4.4: Properties of SWTA circuit. A. Correlation dependence of learning time.
Average correlation between patterns presentations and activation of corresponding neurons
calculated based on 10 runs during 120s of learning complex input made by superimposing
at most 3 out of 16 bar rate patterns are denoted with red dots (corresponding line denote
standard deviation). Dashed blue line shows the number of neurons within SWTA circuit
which did not specialize on any of patterns (free neurons), where the SWTA circuit consists
of 100 neurons. B. Correlation dependence of number of neurons in SWTA circuit. Same
as in A: the average correlation is denoted by red dots and free neurons by dashed blue line,
for different sizes of SWTA circuit. C. Learning additional patterns. After 10s of learning
SWTA circuit with input where at most 3 out 8 bar rate patterns were superimposed,
additional (rest) 8 bar rate patterns were added to the input, so that the new input is
made by superimposing 3 out of 16 patterns. The average correlation and free neurons are
denoted as in A. The red line denote average correlation of found patterns. D. Correlation
dependence of inhibition delay. The average correlation and free neurons are denoted as in
A.
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4.6 Discussion

We have presented a theoretical analysis of STDP in biologically realistic network
motifs with relaxed inhibition. Theory and simulation results suggest that this bi-
ologically more realistic SWTA circuits with soft inhibition exhibits in conjunction
with STDP substantially enhanced computational power. In particular, it enables
neurons to develop additional temporal selectivity and to solve difficult tasks such
as the extraction and separation of multiple features from high-dimensional input
streams. We have demonstrated this in computer experiments where the microcir-
cuit motif extracted single features from asynchronous superpositions of rate and
spatio-temporal spike patterns, the latter arguably representing a quite realistic in-
put structure for a cortical column. We showed that learning in this motif is quite
fast and enables neurons within this motif to acquire receptive fields for the extrac-
tion of individual feature components. Interestingly, all this is achieved without
the need for complex learning rules adjusting neural excitabilities. Furthermore,
the spike-based learning rule uses only locally available information. Moreover, we
have also shown that while this microcircuit motif only approximates an underlying
theoretical model for extraction of multiple hidden causes, it is nevertheless very
powerful and robust in spite of deviations from the theoretical dynamics due to var-
ious biological constraints. More precisely, we showed that microcircuit motif can
handle significant inhibition delays and biologically plausible PSP shapes. Since
the SWTA circuit can handle significant inhibition delays this allows to consider
more realistic implementations of lateral inhibition via an inhibitory population,
rather than through direct inhibitory connections among output neurons. Given
the robustness to inhibition delays observed in simulations, such more realistic im-
plementation, in which lateral inhibition occurs via propagation of a spike from
an output neuron to the inhibitory population, the activation of inhibitory neu-
rons and the propagation of a spike back from the inhibitory population to output
neurons, could in principle still work. However there are several potential obsta-
cles. If one simply connects a population of excitatory neurons (output neurons
in SWTA circuit) and an inhibitory population with all-to-all connections, where
the inhibitory population consists simply of one inhibitory neuron, this inhibitory
neuron will inhibit every output neuron in SWTA circuit while in theory it should
inhibit all except the one which activated it. In addition, this single inhibitory
neuron should be infinitely fast (with no refractory period) in order to respond to
each spike from output neurons. The later problem can be somewhat relaxed if
one considers inhibitory populations consisting of multiple neurons, because in that
case there is potentially always some inhibitory neuron which is not refractory and
therefore can be triggered by an incoming spike from an output neuron. On the
other side, the strength of ideal inhibition should be proportional to the number
of active output neurons. This condition is easily violated since inhibitory neurons
are also stochastic and therefore the net inhibition strength seen by other output
neurons has a significant variance and depends nonlinearly on the number of active
output neurons. Note that in order for any such approach to work one has to set the
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excitatory connections (from output neurons to inhibitory neurons) strong enough
such that one spike coming from an output neurons can trigger one inhibitory neu-
ron (but it should not trigger them all). The inhibitory connections (from inhibitory
neurons to excitatory neurons) have to be set according to the theory (depending
on the prior p(z)). Interestingly, most of these problems can be circumvented very
simply by choosing the excitatory connections such that inhibitory neuron can be
triggered only by at least G incoming spikes (or activation of at least G output
neurons), while the inhibitory connections should be set G times stronger than the-
oretically proposed, where G is the number of neurons which should specialize on
the same pattern. Indeed, preliminary simulations with a setup in which inhibitory
population consists of several inhibitory neurons where each one of them needs
several incoming spikes to be triggered showed that such SWTA circuit with quite
realistic implementation of inhibition can successfully learn to solve the problem
almost equally well. We also investigated in preliminary simulations how addi-
tional biological constraints, such as the use of a more common and biologically
plausible STDP rule, influence the capability of an SWTA circuit to extract hid-
den causes. For this we considered an STDP rule which is triggered at every pre-
and post-synaptic spike (the theoretically optimal learning rule is triggered only at
each post-synaptic spike), where the potentiation part of STDP is time- (pairing
difference) and weight dependent (both are exponentially dependent), while the
depression part is only time dependent. Despite the differences between this more
common and the theoretically optimal STDP rule, we found that, with a proper
choice of STDP parameters, the SWTA circuit can nevertheless successfully learn to
extract hidden causes. Clearly, although these preliminary results, which we report
here only verbally, are encouraging, more simulations and a quantitative analysis
are required to corroborate these findings in future work.

In addition to the more abstract models (Földiak, 1990; Lücke and Eggert,
2010), related work includes a recent model for Independent Component Analysis
with spiking neurons (Savin et al., 2010). In this work the authors derived theoret-
ical rules for intrinsic plasticity which, when combined with input normalization,
weight scaling and STDP, enable a neuron to extract one of a set of independent
components of inputs. While closely related in terms of the pursued computational
goal, two key differences to the present work can be identified. First, in contrast to
the present work, no theoretical explanation for the computational role of lateral
inhibition could be provided by (Savin et al., 2010), because theoretical derivations
were limited to the single neuron case. Second, in contrast to (Savin et al., 2010),
the model presented in this article achieves automatic separation of input features
with only two basic circuit components, soft lateral inhibition and STDP, without
the need for weight normalization and intrinsic plasticity.

The proposed learning rule (4.3) is structurally similar to those reported in
(Nessler et al., 2013; Habenschuss et al., 2013a) who studied emergence of feature
representations in a strict WTA setting. This is insofar significant as it raises the
question why the application of almost the same learning rule in one motif leads to
learning and extraction of a single hidden cause and in another to the extraction
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of multiple causes. The answer most likely lies in the interplay between “prior
knowledge” in the model (e.g. in the form of the intrinsic excitability of neurons),
the learning rule and inhibition strength: As there are multiple neurons in the
SWTA model which can spike in response to the same input, each one of them can
adapt its synaptic weights to increase the likelihood of spiking again whenever the
same or a similar input pattern is presented in the future, possibly in conjunction
with other different input components. This is manifested through increased total
input strength to those neurons when the pattern is seen again. But this results
also in increased total inhibition to all other neurons, thereby effectively limiting the
number of winners. As there is no fixed normalization of firing rates (probabilities),
as soon as the input strength caused by a single feature component is strong enough
to trigger the spike in some neuron, the neuron will respond to each pattern which
consists of that particular feature. On average this will force neurons to specialize on
a single feature component. Therefore, after learning, each spike can be interpreted
as indication of a particular feature component.

Altogether, given its increased computational power and robustness to many
biological constraints and noise, as well as its consistency with biological data, the
presented microcircuit model provides a substantial contribution to the understand-
ing of emergent computational operations in stereotypical cortical microcircuits.
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The research done in this thesis required extensive and complex simulations
of large data-driven cortical microcircuits made of complex synapse and neuron
models (Chapter 2), as well as construction of large and complex neural networks
consisting of thousands of neurons that embody distributions with specific proper-
ties (Chapter 3). Thus, construction and simulation together with analysis of those
networks, as well as adaptation of them in order to gain certain properties, required
very specialized software tools. To support those software demands I have devel-
oped new software packages, ZLIB and CSP2SNN, which allow for parallelization,
optimization and automatic creation of large neural networks with specific proper-
ties. Additionally, I have extended the existing neural network simulators, PCSIM
and NEVESIM, with required neuron and synapse models. These tools together
made the simulation framework which was used throughout the research of this
thesis and which enabled for simple and fast simulation, exploration and analysis
of the underlying large neural networks.

As a basis for simulations of neural networks within this thesis the PCSIM and
the NEVESIM simulators were used. PCSIM is a clock-based neural simulation
environment intended for simulation of spiking and analog neural networks with a
support for distributed simulation of large-scale neural networks on multiple ma-
chines. NEVESIM is a software package for event-driven simulation of networks of
spiking neurons which supports simulation of heterogeneous networks with different
types of neurons and synapses.
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As a basis for parallel execution, optimization and analysis of simulated neural
networks, ZLIB and CSP2SNN were used. ZLIB is a parallelization and optimiza-
tion library written in Python with an intuitive and simple user interface which
enables the end user to harvest the power of all connected machines in order to
execute a given set of tasks. CSP2SNN is a software package written in Python on
top of the NEVESIM simulator for porting Constraint Satisfaction Problems (CSP)
to the implementation in Spiking Neural Networks (SNN). CSP2SNN allows for an
automatic mapping of CSP constraints to SNN architecture as well as for a manual
implementation of additional circuit mechanisms.

By combining these tools such as in Chapter 3 for solving CSPs, where
CSP2SNN was used on top of the EVESIM simulator to port required CSP problem
to SNN architecture, and ZLIB was used to explore the dependencies and optimize
the SNN architecture such that it can solve required CSP problem in an optimal
manner, one can get a powerful simulation framework for automatic creation, sim-
ulation, optimization and analysis of spiking neural networks.

The following sections contain an overview and description of the simulation
tools developed for the purpose of this thesis, ZLIB and CSP2SNN, and a short
demonstration of the NEVESIM simulator’s capability to simulate exactly and ef-
ficiently networks of stochastic spiking neurons from the theoretical framework of
neural sampling, which was the basis for most of the work done in this thesis. Note
that additional features and details of the NEVESIM architecture can be found in
the paper.

5.1 CSP2SNN: a framework for implementing Con-
straint Satisfaction Problems in Spiking Neural

Networks

Constructing manually large networks consisting of thousands of neurons with a
specific architecture, which embody distributions with specific properties, capable
of solving certain class of problems such as Constraint Satisfaction Problems can
be a tedious and quite difficult process. For this reason, within the scope of this
thesis CSP2SNN, the framework for porting Constraint Satisfaction Problems to
the Spiking Neural Networks, was developed. CSP2SNN is written in Python on
top of the NEVESIM simulator which is abstracted away so that the end user has
to deal only with a CSP notation and abstract definitions of neurons and synapses,
therefore no knowledge of NEVESIM is required (note that due to the Python
flexibility all the NEVESIM power is still accessible through this framework).

The main feature of CSP2SNN is an automatic mapping of CSP constraints,
both hard and soft, to the SNN architecture, which assumes WTA motifs of neuron
populations that code for a value of associated variables. The automatic mapping
of the constraints is done based on a library of known constraints implementations,
e.g. implementation of unique value or unique var constraint will result with a
WTA motif of underlying neuron populations as in Chapter 2. Therefore the au-
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tomatic mapping feature can be used to convert only CSPs whose constraints are
already known to the library, or one has to extend the library with new constraint
implementation in order to support new constraint. In addition to the automatic
mapping it is possible to manually override or extend automatically created archi-
tecture which allows for the manipulation of the whole architecture on the neural
population level (creation of a neuron population and connections between them,
where the population can consists of only one neuron and therefore one can gain
control at the level of a single neuron as well). The manual mapping is important
for the implementation of additional circuit mechanisms which extend the default
network architecture not defined with constraints, such as the lock-in mechanism
described in Chapter 3.

Architecture

The CSP2SNN framework is divided into four layers: problem definition, con-
straints, architecture and core (see Figure 5.1). This separation makes the CSP2SN
architecture very flexible as it allows for a implementation of many different con-
straints and architectures which can be additionally manually fine-tuned or set, but
also reused. Therefore the real power of the architecture is in its reusability as many
different CSP problems, which are similar in nature in terms of types of constraints
they use, can be basically implemented identically. Indeed, in order to implement
different CSP problem which uses the same set of constraint types as some existing
one, it would be enough to change only the problem database interface for problem
loading and constraints definition (definition of the variables and values they take).

Problem layer

The problem layer consists of classes for database interface and readout mechanism
definition. The database interface allows for loading of a CSP problem from the
database written in different file formats such as CNF notation for 3-SAT problems
(see Chapter 3). In addition the CSP problem can be loaded from database via
Python script which automatically creates an instance of a certain CSP problem.
For example, it is possible to generate automatically problem for 3-SAT with specific
properties( number of clauses and variables, and theirs ratio), which can be checked
automatically for satisfiability with some other 3-SAT solvers such as zchaff software
(Fu et al., 2004)(note that SNN 3-SAT solver presented in Chapter 3 can not make
decision about the satisfiability, but can rather provide close to the optimal solution
or solution if there is such). The class for the readout mechanism allows for a
definition of how exactly the activity of a neuron population is mapped to the
variable values. In this way the user can simply choose whether it wants to use one
to one representation (the population coding), to use multiple neurons to represent
the same value, to use population rate coding or some other mapping.
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Figure 5.1: CSP2SNN architecture. The CSP2SNN framework is build on top of the
NEVESIM simulator and consists of four layers: problem, constraints, architecture and
core. The problem layer provides an access to the database containing definition of prob-
lems and it gives possibility to define how the neural activity is interpreted and read out.
All CSP problems defined based on the same type of constraints can be implemented by
working only on this layer. The constraint layer provides an access to the definition of
the constraints and how they are checked and evaluated, which is needed when implement-
ing a CSP problem which contains a new constraint (note that this is done once for each
new constraint). The architecture layer provides a way to manually define the architecture,
which is useful for implementation of additional mechanisms not covered by the constraints.
Finally, the core layer contains the simulation engine and interface to NEVESIM.

Constraints layer

The constraints layer contains classes for CSP problem definition, which maintains
the list of constraints defining the CSP that will be used for construction of the
corresponding SNN, classes for checking the consistency of all constraints and vari-
ables, and classes for evaluation of the proposed solution (the ratio of satisfied
constraints or the ratio of variables not breaking any of constraints). Each con-
straint consists of a type which describes the relation between the variables taking
part in the constraint, variables’ IDs which take part in the constraint and theirs
values.

Architecture layer

The mechanisms for mapping of CSP to SNN are provided in the architecture
layer and those mechanisms are used to convert a list of constraints defining the
CSP to a neural implementation. This can be done automatically via the library
of known constraints implementations or manually by defining neuron population
names (IDs) and connections between them. Automatic mapping is done by apply-
ing a corresponding constraint implementation for a given constraint from the list
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of constraints. For example, if a constraint is of type unique var the correspond-
ing constraint implementation will take all the neuron populations which code for
different values of considered variable and arrange them into a WTA circuit (an
additional population of inhibitory neurons will be automatically created, to which
each one of these populations will be connected bidirectionally).

Core layer

Finally, the core layer provides the functionality for implementation and simula-
tion of spiking neural network based on specifications provided by the architecture
layer, through SNN and SimEngine classes. The SNN class, which constructs and
simulates the network for a certain time, takes definitions of neural populations
types (the size, neuron type and properties), connections types between popula-
tions (synapse properties and connection probability) as well as other network or
NEVESIM specific properties such as network temperature control parameters used
for temperature scheduling (oscillations, simulated annealing). The final network
constructed by SNN is based on these definition and constraints implementation
architectures. The SimEngine unifies all the classes and theirs functionality by pro-
viding a common place where the constructed network is simulated in a specified
way, the readout of neuron populations is constantly performed, and the proposed
solutions are evaluated and checked for the consistency.

5.2 ZLIB: a library for parallelization and optimization

Large computing resources in a form of cluster or locally connected computers,
nowadays more and more common, are ideal for farming tasks or executing multiple
instances of the same task simultaneously on different machines, e.g. for simulation
of large neural networks or gathering statistics. Moreover, such approach allows
for parameter exploration or search for the optimal setup in a task. In order to
support such simulations, which were essential to this thesis, I have created ZLIB,
the parallelization and optimization library, which essentially provides a command
creation procedure for the execution of scripts via the ssh protocol at all connected
machines sharing the same file system (e.g. RAID storage system). In other words,
ZLIB provides a simple and intuitive way for running multiple copies of a certain
script or putting it in a loop in order to optimize for a target objective function.

ZLIB is written in Python and it abstracts away parallelism and optimization,
such that the end user can focus on solving their problem. It harvests the power
of all connected machines to execute a given set of tasks and at the same time
it takes into account the current and the maximum load of each machine while
trying to equalize the usage of available machines between the users. While getting
an insight in a small subset of parameters dependencies is possible through trying
out all the possible combinations of parameters (with a brute force approach), this
fails for larger subsets of parameters. Therefore the real power of the library is
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in its simple usage and combination with optimization which facilitates a clever
parameter search.

While other libraries for parallelization exists, such as e.g. iPython parallel
(Perez and Granger, 2007), ZLIB offers a unique environment which combines the
functionality for parallel execution, optimization, and automatic organization and
storage of results and their analysis. Furthermore, it allows for control over ma-
chines being used and their loads, and provides an intuitive and simple user interface
which enables rapid usage of the whole framework.

Architecture

The architecture of ZLIB is based on the Command creator class for creation of all
commands that will be executed, a hub for distribution of these commands to the
remote machines, procedures for saving and loading results, and an optimization
module (see Figure 5.2). All these individual modules are put together in templates
in order to provide the desired functionality and a simple interface for the users.

Templates

The end user of ZLIB is exposed to the two templates, main.py and test.py, which
interact in order to implement the desired functionality of parallelization or opti-
mization. While main.py contains only a high level implementation of a loop for the
exploration of a parameter state space and the creation of corresponding commands,
as well as the communication with the remote computers and saving/loading of re-
sults, its main purpose is to provide a central place for the definition of parameters
and their ranges which are to be explored. The main.py will indeed create a central
hub for parallel execution of the other template, test.py, to which it will pass a
specific combination of parameters, where the test.py basically contains the desired
code one wants to execute multiple times, a header which parses parameters, and
a footer which saves the results of execution. The parsing of parameters from com-
mand line is done with Python’s commandparser class, where defining the support
for a command is as simple as naming the parameter and providing its type. Obvi-
ously, all the parameters listed in main.py must be parsed in the header of test.py
and the code must be modified to accept those parameters. Finally, execution re-
sults are saved at the end by using the shelve class from Python, which saves the
results at the location specified by main.py in the form of a dictionary so that they
can be later easily retrieved for analysis.

As there are two main functionalities that ZLIB provides, parallelization and
optimization, there are also two different main.py templates: one for a parallel
execution of desired code and the other for optimization, which is executed in
parallel as well. The main.py for optimization contains, in addition to the definition
of parameters, also the definition of an objective function which is calculated based
on saved results from test.py - the user in principle has to specify only the key
(name) of the results to be loaded.
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Figure 5.2: ZLIB architecture. The architecture of ZLIB consists of several modules en-
capsulated in two templates, the main.py and the test.py, which interact in order to im-
plement the desired functionality. These two templates are connected via the definition of
parameters, which define the state space to be searched. The main.py template contains
an interface to the Command creator class for the creation of all commands that will be
executed, a hub for the distribution of these commands to remote machines via the ssh
protocol, procedures for loading results, and an optimization module (GA). The test.py
template contains procedures for parameter parsing and saving results, and the code that
is to be parallelized (or executed multiple times).

Parameters

The main connection between the main.py and the test.py templates are param-
eters. The same set of parameters that one wants to explore within the original
code should be parsed at the beginning of the test.py while in the main.py ranges
of those parameters should be defined. Each parameter in main.py can be assigned
either of two types, fix or param, where the type fix assumes a parameter which is
not changed during simulations and is defined by the name and value of the param-
eter, while the param type assumes a real parameter defined by the name and a set
of values (defined by the range and resolution) it can take during the simulation.
Discretization of parameter values allows for having a finite number of values and
therefore a finite number of parameter combinations which simplifies the automatic
creation of all possible combinations when applicable. Note that by defining a high
resolution of parameters one indeed approximates a continuous space.

Command creator

The main class for creation of all commands is Command creator, which creates
for each considered combination of parameter values a command that will execute
the target script at a target machine with specific values of parameters. In addi-
tion to the user defined parameters also the following ZLIB parameters are added
automatically by the Command creator : ID, outfolder and results. The Outfolder
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and results parameters organize script results in a specific structure that is easy to
explore and analyze during or after simulations, while the ID parameter is used for
repetition of exactly the same test - using the same parameter values, which can
be useful for simulations of stochastic models in order to obtain e.g. an average
performance.

Hub

A distribution of tasks to the remote machines is done via the hub in an asyn-
chronous manner. The hub keeps track of the load of each machine and accordingly
sends them new tasks as soon as there are free resources at some of them according
to certain criteria. Communication with remote machines is done via ssh proto-
col, through which new tasks are started and through which also each connected
machine is regularly checked (in intervals of several seconds) for the current load
in order to determine the number of new processes that could be run on it. Due
to the use of the ssh protocol the ZLIB is not intended for execution of very short
tasks or for communication between different processes to implement real parallel
execution of some problem, but rather the library is aimed for simulations which
take from minutes to hours to execute.

There are two modes the hub can operate in: equal balance, in which it balances
the load of all connected machines, and priority queue, in which it tries to fill up
machine by machine according to some predefined priority list and depending on
the current load of machines. These two modes allow for multiple users (or a single
user with multiple tests) to simultaneously perform simulations - to share equally
available computational resources. In addition the hub enables the user to define
the maximum number of processes which will run at the same time at all machines
as well as the maximum load per individual machine. Together, asynchronous ex-
ecution of tasks and load-limit per machine allow to connect machines of different
power (different number of CPUs or amount of memory) into one functional com-
putational unit which will be used in an optimal way for the execution of given
tasks.

Optimization

As parallel execution is the default behavior of ZLIB, for a given list of parameters
the Command creator automatically creates all possible combinations of param
type parameters. This behavior is useful for exploration of few parameters within
some range (with finite resolution), but obviously the state space can be easily
blown up and therefore more clever ways of state space exploration are required.
For this reason, on top of this parallel functionality an optimization module is
added which loads and analyzes results during the execution in order to direct
the search in the parameter space in a clever way. While in general the choice of
optimization technique depends on the type and nature of problem, for the purpose
of simulations and optimization within scope of this thesis, a Genetic Algorithm
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(GA) (Whitley, 1994) was chosen as GAs are known to be able to escape local
minima and generate useful solutions to optimization problems. Note that ZLIB can
be extended with any other optimization algorithm as it has a simple and modular
structure which allows for simple extensions. a GA is a heuristic algorithm which
mimics natural selection by using inheritance, mutation, selection, and crossover
in order to generate solutions to optimization problems. While there are many
different variants of GAs, ZLIB contains an implementation of a GA with roulette
based selection and injection of new individuals, where a population consists of
individuals whose chromosome codes for parameter values, where crossover is done
between parameters and mutation is done within each parameter by choosing a new
value of a parameter which is within some range from its the current value.

5.3 Simulation of Neural sampling networks with
NEVESIM

As already pointed out, one marked feature of NEVESIM is its capability to effi-
ciently simulate, through an exact event-driven simulation, neural models derived
from a novel theoretical framework for computation with network of spiking neu-
rons called neural sampling (Buesing et al., 2011; Pecevski et al., 2011; Habenschuss
et al., 2013a). The neural sampling theory gives a new perspective of how biological
networks of neurons can perform probabilistic inference computations, by showing
that, given certain assumptions, their stochastic dynamics can be interpreted as
MCMC sampling. One of the values of this theoretical result is that it creates
a link between many existing probabilistic computational models on a behavioral
and cognitive level, and models of networks of spiking neurons which model brain
computations on a neural level. Furthermore, neural sampling provides a bridge for
porting a large body of useful results from the field of Machine Learning on MCMC
sampling and stochastic computations with artificial neural networks, to the mod-
eling research that uses networks of spiking neurons as more detailed, lower level
models of brain computation. Thus, the capability to simulate neural sampling
models brings an additional value to NEVESIM as a simulation tool. Indeed, it
can be very useful for users that want to explore further the potential of the neural
sampling theory and neural sampling models for elucidating various aspects of the
organization of computation in networks of spiking neurons in the brain.

In order to demonstrate this typical usage of NEVESIM for simulating networks
of spiking neurons that perform neural sampling, we will present in the following
an example simulation demo of such networks. As a first example, we will con-
struct a neural sampling network N that in its stationary dynamics samples from
a probability distribution with second-order interactions in the following form

p(z) =
1

ZN
exp
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bi
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Figure 5.3: NEVESIM simulation example with a simple neural sampling network. A.
A graph of the example neural network with 4 neurons and all-to-all connectivity. As
the neural sampling network corresponds to a probability distribution with second-order
dependencies, the synaptic connections and their weights are symmetric. B. Spiking activity
of the neural network and depiction of the definition of vector of the current values of the
random variables z(t) that represents a sample from the distribution p(z). In continues
time a variable zk is set to 1 if neuron νk spiked in last τ period and otherwise is set to 0.
We used τ = 20ms. C. Comparison between the target probability distribution p(z) (white
bars) and the estimated probability distributions from the simulation of the neural network
with rectangular shaped PSPs (light gray bars) and the neural network with alpha shaped
PSPs (dark gray bars). The bars show the probabilities of all possible assignment of values
to the random variables z1, z2, z3, z4, except the zero assignment (0,0,0,0).

where z = (z1, z2, . . . , zK) is a vector of binary random variables, wij and bi are
the parameters of the distribution and ZN is the normalization constant. The
constructed network N consists of K spiking neurons ν1, ..., νK , one for each random
variable in the distribution. Each neuron νk is a stochastic firing neuron with
a instantaneous firing probability equal to ρk(uk) = 1

τ exp(uk) where uk denotes
the current value of the membrane potential of the neuron. After it spikes, the
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neuron has an absolute refractory period of duration τ during which it is silent.
According to the neural sampling theory, a sufficient condition for the network to
sample from p(z) is that the membrane potential of neuron νk at time t is equal to
uk(t) = bk +

∑K
i=1wkizi(t). Here bk is the bias of the neuron, wki is the strength of

the synaptic connection from neuron νi to νk, and zi(t) is the post-synaptic potential
caused by a firing of the neuron νi that has value 1 during the time interval of
duration τ after a spike of νi, and otherwise value 0. If the network N satisfies the
sufficient condition, then its firing activity in the stationary regime generates, at
any point in continuous time, a correct random sample from the distribution p(z).
The samples are defined by the spikes of the neurons, by setting zk(t) = 1 if and
only if the neuron νk has fired within the preceding time interval (t− τ, t] of length
τ , and otherwise setting zk(t) = 0 (see Fig. 5.3B). A convenient property of neural
sampling, similar to other stochastic systems in MCMC sampling in general, is that
the same network N that samples from p(z) can also estimate marginal posterior
distributions derived from p(z). Marginal posterior distributions are calculated in
probabilistic inference tasks when we have concrete evidence about some of the
random variables, and we want to estimate the probability of some of the unknown
random variables given the evidence.

It is easy to see from their definition that it is possible to simulate the the-
oretically ideal neural sampling models exactly with an event-driven simulation
algorithm. What makes them in particular suitable for very fast implementation is
the rectangular shape of the PSPs. Namely, with a rectangular shape the state of
the network should be updated only at the time of a spike, and at the time when
an EPSP ends, resulting in at most two network state updates per spike, which is
quite efficient.

For implementation in NEVESIM we considered a simple network composed of
4 neurons with absolute refractory period (τ = 20ms). The values for the w and b
parameters were drawn from a normal distribution with mean equal to µ = 0 and
standard deviation σ = 1. The resulting network according to the neural sampling
theory consists of neurons with intrinsic excitability given by bi that are intercon-
nected by symmetric synapses given by wij , see Fig. 5.3A. The spiking activity
of this network is shown in Fig. 5.3B. At any point in time the current values of
the variables z(t) can be read out by looking for each neuron νk whether it fired a
spike in last τ ms (Figure 5.3B) and accordingly assigning a value to the associated
variable zk. According to the neural sampling theory, the empirically estimated dis-
tribution obtained by counting the produced samples from the simulated network
should converge to the target distribution p(z). A comparison between the target
distribution and the estimated distribution calculated from the generated samples
during 1000s of network simulation confirms that the network really samples from
the target distribution (see Figure 5.3C). In addition to using the theoretically ideal
rectangular shapes of the PSPs elicited by the input spikes, we also performed simu-
lations with a network that has piecewise constant spike responses that approximate
an alpha shape PSP. It can be observed that even when using alpha-shaped PSPs as
an approximation of the ideal rectangular PSPs, the estimated distribution by the
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1 net = NeurSamplingNetwork ()

2 nrn_ids= [ net.create( ExpPoissonNeuron (1.0/tau , b[i], tau)) for i in

range(K)]

3 for src_id in nrn_ids:

4 for dest_id in nrn_ids :

5 if src_id != dest_id :

6 syn_factory = CompositeSynapse ( BasicActiveSynapse (w[i,j]),

7 ResetRectSpikeResponse(tau))

8 net.connect (src_id , dest_id , syn_factory )

9 net.simulate (T)

Table 5.1: A code snippet for generic implementation of a neural sampling network in
NEVESIM.

network is very similar to the target distribution (Figure 5.3C), with minor errors
for some assignment of values.

The demonstrated neural sampling network can be implemented in NEVESIM
with a few lines of code given in Code Block 5.1. In the code one assumes that
the network consists of K neurons with refractory period of duration tau. We
additionally assume that the biases of all neurons are given in one dimensional array
b and the synaptic weights in a two dimensional array w. The network is simulated
for T seconds. At the beginning, in the first line of the code, we create a NEVESIM
network object net which is an instance of the NeurSamplingNetwork class, which
will hold all the created network elements, such as the neurons and synapses, and the
connections between them. In the next line we create K neurons via the create

method of the net object. To simplify the code we use here list comprehension
construct in Python which is a convenient way to create a Python list with a for
loop. The return value of the statement in the second line is a Python list with the
IDs of all created neurons. The used neuron type ExpPoissonNeuron to create the
neurons implements a stochastic neuron with an instantaneous firing probability
that is an exponential function of the membrane potential ρ = C exp(u), exactly
as defined in the neural sampling theory. Its constructor accepts three arguments,
where the first argument is the coefficient C in the firing rate function, in this case
set to C = 1/tau, the second argument is the bias of the neuron set to b[i], and the
third argument is the duration of the refractory period set to tau. After the second
line we have two nested for loops which create the synaptic connections between the
neurons. The for loops iterate through the IDs of the created neurons and invoke the
connect method of the net object to create a synaptic connection from the neuron
with ID src_id to the neuron with ID dest_id, by utilizing a so-called synapse
factory object syn_factory (line 8). The utility of the synapse factory object is for
the user to specify all traits of the synaptic connection that is to be created between
the two neurons. In the particular case we specify that we want to have a composite
synapse, which means that the synaptic connection will be composed of two network
elements, the synapse network element and a separate network element for the spike
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response. For the synapse network element we use the type BasicActiveSynapse

which is appropriate for neural sampling, and for the spike response we use the
type ResetRectSpikeResponse which implements a rectangular shaped PSP. Note
that the connect method of the NeurSamplingNetwork class differs from the basic
connect method of the EvSimNetwork class, in that it implements a more complex
functionality of connecting two neurons with a synapse, rather than just connecting
two network elements with an event connection. Other than the rectangular shaped
PSP, NEVESIM also has spike response classes that implement piecewise constant
and piecewise linear shapes of responses, which can be used for approximating other
arbitrary shapes of PSPs, like for example an alpha shape which we also used in our
simulations. In this case, however, having higher precision of PSP shapes requires
more segments in the spike response which comes at a price since it reduces the
efficiency of the simulation.
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B.1 Network states and distributions of network states

Markov states

The Markov state yM(t) (or more explicitly, yM :Θ(t)) of a network at time t is
defined here as the recent history of spike times of all neurons in the network
within the period (t − Θ, t]. The term “Markov” refers to the fact that, under
mild conditions and for a sufficiently long window Θ, the network dynamics of
a neural circuit after time t becomes independent of the network activity at times
≤ t−Θ, given the Markov state yM(t) and the external input x. Hence, the network
dynamics has the Markov property with respect to this state definition.

For each neuron k ∈ 1 . . . K in a neural circuit a spike history of length Θ is
defined as the list of spike times emitted by neuron k within the window (t−Θ, t].
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Spike times are counted relative to the beginning of the window at t − Θ. If m is
the number of spikes within (t− Θ, t] for neuron k, then the list takes the form,

yk
M(t) ≡ (yk,1(t), . . . , yk,m(t)) ∈ R

m , (B.1)

where 0 < yk,1(t) < · · · < yk,m(t) ≤ Θ.
We denote the space of all possible network states of length Θ by SΘ or, when

unambiguous, simply by S. Note that this definition is equivalent to the state
definition in (Borovkov et al., 2012), to which the interested reader is referred for
further formal details (e.g. the associated σ-algebra S of the state space S).

Scope of theoretical results: Required properties of the network and
neuronal noise models

We study general theoretical properties of stochastic spiking circuit models, driven
by some external, possibly vector-valued, input x(t), which could represent for
example input rates in a set of input neurons or injected input currents. Formally,
the input sequence can assume values from any state space Q; a concrete example
is vector-valued input with Q = R

N , where N is the number of input dimensions.
We consider in this article two different noise models for a neuron: In noise

model I, the spike generation is directly modeled as a stochastic process. All net-
work dynamics, including axonal delays, synaptic transmission, short-term synaptic
dynamics, dendritic interactions, integration of input at the soma, etc. can be mod-
eled by a function which maps the Markov state (which includes the recent spike
history of the neuron itself) onto an instantaneous spiking probability. This model
is highly flexible and may account for various types of neuronal noise. In the more
specific noise model II, the firing mechanism of the neuron is assumed to be deter-
ministic, and noise enters its dynamics through stochastic vesicle release at afferent
synaptic inputs. Also combinations of noise models I and II in the same neuron
and circuit can be assumed for our theoretical results, for example neurons with a
generic stochastic spiking mechanism which possess in addition stochastic synapses,
or mixtures of neurons from model I and II in the same circuit.

In noise model I, the instantaneous spiking probability of neuron k at time t is
given by,

lim
δt→0

1

δt
· p(neuron k fires in (t, t+ δt)) = ρk(t) . (B.2)

This instantaneous firing rate ρk(t) = f(yM(t)) at time t is assumed to be bounded
and completely determined by the network’s current Markov state yM :Θ(t), for some
sufficiently large Θ. More precisely, the following four assumptions are made for
noise model I:

A1 Spikes are individual events: We assume that,

lim
δt→0

1

δt
· p(more than one neuron fires in (t, t+ δt)) = 0 , (B.3)
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which is, for example, fulfilled if each neuron has some independent source of
stochasticity.

A2 Bounded rates: The instantaneous firing rates are bounded from above:
0 ≤ ρk(t) ≤ ρ̂k for some ρ̂k < ∞. The ensuing upper bound on the total
network firing rate is denoted by ρ̂, i.e. 0 ≤ ∑K

k=1 ρk(t) ≤ ρ̂. It is assumed
that instantaneous rates are bounded at any time, and in the presence of any
input x(t).

A3 Bounded memory: The firing rates ρk(t) at time t depend on the network’s
past activity only through the history of recent spikes in a finite window
(t − Θ, t] of length Θ. Hence, the direct effect of a spike at time t on future
firing rates of all neurons is limited to a bounded “memory period”, [t, t +
Θ). This bounded memory period Θ can be understood as a lower bound
for Θ during the subsequent convergence proofs (since smaller Θ would violate
the Markov property). In addition to this bounded-memory dependence on
network spikes, ρk(t) may depend on the current input x(t) in any manner
consistent with A2.

A4 Time-homogeneity: The functional mapping from recent spikes and/or in-
put signals x(t) to instantaneous firing rates ρk(t) does not change over time.
In particular, we do not consider long-term plasticity of synaptic weights
and/or excitabilities in this work.

Assumptions A2−A4 can be summarized as follows: Let x(t) ∈ Q and yM :Θ(t) ∈
S be the trajectories of input and network states as defined above. Then there exists
a memory constant Θ and rate bounds 0 ≤ ρ̂k < ∞, such that for each neuron
k there exists a function fk : Q × S → [0, ρ̂k], where ρk(t) = fk(x(t), yM :Θ(t))
for all t. The function fk is time-invariant but otherwise unconstrained, and can
capture complex dynamical effects such as non-linear dendritic interactions between
synaptic inputs or short-term plasticity of synapses.

The input signal x(t) can formally represent any variable which exerts some
arbitrary influence on the instantaneous network dynamics (the neuronal firing
functions fk). In the simplest case, x(t) could be a vector of firing rates controlling
the spiking behavior of a set ofN input neurons i, such that fi(x(t), yM :Θ(t)) = xi(t)
in these neurons. In this case (which we focused on in the main text), input neurons
are formally considered part of the circuit C. Note that in principle, x(t) could also
represent the strength of currents which are injected into a subset of neurons in the
network C, or the recent spiking history of a set of external input neurons (“input
Markov states”). If the input comprises rates or currents, these can be either fixed
(e.g. fixed input firing rates) or dynamically changing (in particular rates which are
either subject to stochastic ergodic dynamics, or periodically changing rates). Below
convergence proofs will be provided for both fixed and dynamic input conditions.
If the input is defined in terms of input Markov states, the dynamic input analysis
is applicable under conditions described further below.
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In noise model II the basic stochastic event is a synaptic vesicle release (in
noise model I it is a spike). Accordingly, the Markov state yM(t) of a network in
noise model II is defined as the list of vesicle release times for each synaptic release
site in the network (instead of spike timings for each neuron). We assume here
that each synaptic release site releases at a given instance t at most one vesicle
filled with neurotransmitters. But a synaptic connection between two neurons may
consist of multiple synaptic release sites (see (Lisman et al., 2007; Branco and
Staras, 2009) and (Borst, 2010) for reviews). Instead of expressing the network
dynamics through an instantaneous firing probability function for each neuron k,
ρk(t) = fk(x(t), yM :Θ(t)) (noise model I), for noise model II the network dynamics is
expressed in terms of instantaneous release probabilities for each synapse k: ψk(t) =
gk(x(t), yM :Θ(t)). Similar to noise model I, it is assumed that there exists a window
length Θ, such that the dynamics of vesicle release at time t is fully determined by
the timing of previous vesicle releases within (t−Θ, t], and hence can be expressed
in terms of a corresponding variation of the definition of a Markov state yM :Θ(t).
The same framework of assumptions applies as in noise model I: vesicle releases are
individual events, and the functions gk are assumed to be bounded from above by
rate constants ψ̂k <∞.

Combinations of noise model I and II are also possible. In this case, the Markov
state yM(t) may contain both spike times and vesicle release times. The assump-
tions of noise model I/II described above apply to the corresponding stochastic
neurons and vesicle releases, respectively. Altogether, note that all three types of
networks (based on model I, II and mixtures of the two) are based on a common
framework of definitions and assumptions: in all cases the dynamics is described
in terms of stochastic components (neurons, synapses) which generate point events
(spikes/vesicle releases) according to instantaneous probabilities which depend on
the recent event history of the network.

Convergence of state distributions

Below, proofs for the existence and uniqueness of stationary distributions of network
states for the considered network models are given. Furthermore, bounds on the
convergence speed to this stationary distribution are provided. To obtain a com-
prehensive picture, convergence is studied under three different input conditions:
constant, stochastic, and periodic input. All proofs are described in detail for noise
model I. The results transfer in a straightforward manner to noise model II and
mixtures of these two models, since the same framework of assumptions applies to
all cases.

Network dynamics as a Markov process

We view the simulation of a cortical microcircuit model, under a given input con-
dition and starting from a given initial network state, as a random experiment.
Formally, we denote the set of all possible outcomes in this random experiment by
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Ω, the set of all considered events by F (i.e. a σ-algebra on Ω), and the probability
measure which assigns a probability to each event in F by P. An outcome is the
result of a single run of the network. An outcome is associated with an assignment
of particular values to all defined random variables. An event is a set of outcomes,
for example the set of all outcomes in which neuron 7 spikes within the first 200
milliseconds of the experiment. Suppose X is a random variable with some state
space (R,R), i.e. X assumes values in R, and R is a set of events on the space R.
Formally, such a random variable X is defined as a map X : Ω → R, which assigns
a value x ∈ R to every possible outcome ω ∈ Ω. To denote the probability that the
random variable X assumes some value in the set B ∈ R, we define the short-hand
PX(B) := P(X ∈ B). Furthermore, if Y is another random variable we use the
notation PX|Y =y(B) := P(X ∈ B|Y = y) for conditional probabilities, and write
even shorter, when unambiguous, PX|y(B). The base probability space (Ω,F,P) is
assumed to be rich enough such that all random variables which are needed in the
following exist.

We define the index set of time T = {t ∈ R : t ≥ 0}, and the stochastic
process (Yt, t ∈ T ), as a description of the stochastic evolution of Markov states
of a network C for t ≥ 0. For each time t ∈ T we define a random variable Yt

(also written Y (t)) representing the Markov state of the network at time t. Yt takes
values on the state space S of all possible Markov states of some fixed duration Θ.
We denote by S the σ-algebra associated with S. The assumptions on the network
described in the previous section imply that the process has the Markov property
for Markov states of any length Θ ≥ Θ, since the future evolution of the process
is then entirely independent of the past, given the current Markov state. For the
subsequent proofs, we therefore assume some Θ ≥ Θ. We also define a random
variable Y of entire sample paths on the measurable space (ST ,ST ), i.e. a map
Y : Ω → ST . Realizations of Y are sample paths (or trajectories), i.e. functions
yM (t), t ∈ T , taking values in S. Since realizations of Y are functions, Y can be
thought of as a random function.

For subsequent proofs the following definition of a transition probability kernel
is essential: A transition probability kernel P on a measurable state space (S,S)
is a function P : S × S → [0, 1], which assigns a probability to the transition from
any point x ∈ S to any set B ∈ S. More precisely, if one fixes a particular “initial
state” x ∈ S, then P(x,B) ≡ Px(B) is a probability measure in its target argument
B, corresponding to the result of applying the transition kernel P to x (in addition,
for each event B ∈ S in the target space, P(x,B) is S-measurable in its source
argument). Stochastic transition matrices of Markov chains are, e.g., transition
probability kernels.

Here we write Ps:t for the transition probability kernel corresponding to pro-
gression of the state of the network C from time s to s+ t, i.e.,

P
s:t(y0, B) := P(Y (s+ t) ∈ B | Y (s) = y0) . (B.4)

We further define the shorthand Pt = P0:t for the progression of duration t starting
from initial time s = 0. Transition kernels can also be applied to probability
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measures φ of initial states y0 (as opposed to single initial states y0). We will
write Ps:tφ to denote the result of applying the kernel Ps:t to an initial probability
measure φ. The result Ps:tφ is again a probability measure, assigning a probability
to any event B ∈ S on the state space according to:

(Ps:tφ)(B) :=

∫

S
P

s:t(y0, B) dφ(y0) , (B.5)

Since Ps:tφ is again a probability measure on the state space (S,S), transition
kernels can be applied sequentially. Note that due to the Markov property one has,
Pr:(t1+t2) φ = P(r+t1):t2 Pr:t1 φ for s ≥ 0, t1, t2 > 0.

Stochastic network dynamics is contracting

Before studying specific input conditions, a few basic key properties of the network
dynamics Y are developed. Let Ps:t be the transition probability kernel correspond-
ing to progression of the network C from time s to s + t. For the proofs below,
transitions to the resting state, Y (s+ t) = 0, will be of particular importance. The
resting state 0 is defined as the “empty” Markov state in which no spikes occurred
within the last Θ time units. The first key observation is the following Proposition:

Proposition 1 Consider the probability Ps:Θ(y0,0), that the process Y will be in
the resting state 0 at time s+ Θ, starting from some initial state y0 ∈ S at time s.
This “return probability” to the resting state is bounded from below by,

P
s:Θ(y0,0) ≥ ǫΘ , (B.6)

where ǫ := e−ρ̂. This holds regardless of the input trajectory x(t) driving the net-
work.

The proposition follows directly from the fact that ρ̂ bounds the sum of all instan-
taneous firing rates in the network. Hence with at least probability e−ρ̂Θ = ǫΘ no
neuron fires within Θ time units (cf. (Borovkov et al., 2012)). In technical terms,
this implies that the stochastic kernel corresponding to a duration of length Θ ful-
fills the Doeblin condition (Doeblin, 1937) – a property which is highly useful for
proving convergence and ergodicity results.

Proposition 1 entails a central contraction property of stochastic networks of
spiking neurons C, which holds in the presence of any input trajectory x(t), and
forms the basis for several subsequent proofs. The following definitions are essential:
We will measure below the difference between any two probability distributions φ1

and φ2 in terms of the total variation ‖ · ‖ of the signed measure µ = φ1 − φ2.
Any such signed measure µ can be expressed in terms of its non-negative and
non-positive components, µ = µ+ − µ−, where µ+ and µ− are both non-negative
measures (but in general no probability measures). The total variation of a signed
measure µ on a measurable space (X,X) is defined as ‖µ‖ = µ+(X)+µ−(X), i.e. the
total mass of its positive and negative components. According to this definition,
‖µ‖ = ‖µ+‖ + ‖µ−‖.
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Lemma 1 (Contraction Lemma) The following strict contraction property
holds for the Markov process Y , for any Θ ≥ Θ, and for any initial probability
measures φ1 and φ2 at any time s ≥ 0:

‖Ps:Θφ1 − P
s:Θφ2‖ ≤ (1 − ǫΘ) · ‖φ1 − φ2‖ . (B.7)

In words: applying the dynamics of the network C for Θ time units is guaranteed
to reduce the distance between any two initial distributions φ1 and φ2 of network
states by a factor 1 − ǫΘ.

Proof: Define the auxiliary measure ν0 as zero everywhere outside 0, and ν0(0) =
ǫΘ. Rewrite φ1 − φ2 = µ = µ+ − µ− in terms of the non-negative measures µ+ and
µ−, such that

‖φ1 − φ2‖ = ‖µ+‖ + ‖µ−‖ , (B.8)

and note that ‖φ1‖ = ‖φ2‖ = 1 implies that ‖µ+‖ = ‖µ−‖. Then

‖Ps:Θφ1 − P
s:Θφ2‖ = ‖Ps:Θµ+ − P

s:Θµ−‖ (B.9)

= ‖(Ps:Θµ+ − ‖µ+‖ · ν0) − (Ps:Θµ− − ‖µ−‖ · ν0)‖ (B.10)

≤ ‖P
s:Θµ+ − ‖µ+‖ · ν0

︸ ︷︷ ︸

≥0 for all events B∈S

‖ + ‖P
s:Θµ− − ‖µ−‖ · ν0

︸ ︷︷ ︸

≥0 for all events B∈S

‖ (B.11)

= ‖Ps:Θµ+‖ − ‖µ+‖ · ‖ν0‖ + ‖Ps:Θµ−‖ − ‖µ−‖ · ‖ν0‖ (B.12)

= (1 − ‖ν0‖) · ‖µ+‖ + (1 − ‖ν0‖) · ‖µ−‖ (B.13)

= (1 − ǫΘ) ·
(
‖µ+‖ + ‖µ−‖

)
(B.14)

= (1 − ǫΘ) · ‖φ1 − φ2‖ . (B.15)

The equality in (B.9) follows from linearity of transition probability kernels. The
transition to (B.11) is an application of the triangle inequality. The transition
to (B.12) uses the fact that both Ps:Θµ+−‖µ+‖·ν0 and Ps:Θµ−−‖µ−‖·ν0 are non-
negative: this follows from Proposition 1, which ensures that the measure Ps:Θµ+

has at least mass ‖µ+‖ · ǫΘ at the resting state 0 and, hence, for any (non-negative)
measure ν,

P
s:Θν ≥ ‖ν‖ · ν0 . (B.16)

Finally, note that (B.13) uses a general property of transition probability kernels
P, which ensures that ‖Pν‖ = ‖ν‖, for any non-negative measure ν. �

Note that the above Contraction Lemma which holds for spiking neural net-
works has some similarities to Lemma 1 in (Maass and Sontag, 1999) who analyzed
artificial analog neural networks in discrete time.
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B.2 Proof of Theorem 1

We divided the precise formulation of Theorem 1 into two Lemmata: Lemma 2 is
a precise formulation for the case where inputs are fixed (e.g. fixed input rates).
Lemma 3 in the next section corresponds to the case where input rates are controlled
by a Markov process. The precise assumptions on the network model required for
both Lemmata are described above (see “Scope of theoretical results”).

Proof of Theorem 1 for fixed input rates

Here we assume that the vector of inputs x(t) provided to the network is kept fixed
during a trial. Concretely, this is for example the case if there is a set of input
neurons whose rates are fixed. In this case, x(t) is a vector of input rates, which
remains constant over time. The input neurons are formally considered part of
the network in this case. Alternatively, a constant x could correspond to constant
currents which are injected into a subset of neurons.

Under constant input conditions, x(t) ≡ x, the dynamics of the process is time-
homogeneous: the transition probability kernels are invariant to time-shifts, i.e.

P
s1:tφ = P

s2:tφ, s1, s2 ≥ 0, t > 0 . (B.17)

Lemma 2 Let x(t) ≡ x. Then the Markov process Y has a unique stationary
distribution π, to which it converges exponentially fast,

‖Pt(y0, ·) − π‖ ≤ 2 · (1 − ǫΘ)t−1 , t ≥ 0 , (B.18)

from any initial Markov state y0 ∈ S.

Proof: Y is clearly non-explosive, aperiodic and stochastically continuous (cf.
(Borovkov et al., 2012)). To prove exponential ergodicity it thus suffices to show
that some skeleton chain is geometrically ergodic (see for example Theorem 18.1
in (Borovkov, 1998)). The skeleton chain YΘn, n ∈ N, with transition probability
kernel PΘ is aperiodic and irreducible and hence has a unique stationary distribution
π. Then, through recursive application of Lemma 1 with φ2 = π,

‖PΘnφ1 − P
Θnπ‖ ≤ (1 − ǫΘ)n · ‖φ1 − π‖ , (B.19)

‖PΘnφ1 − π‖ ≤ 2 · (1 − ǫΘ)n , (B.20)

proving geometric ergodicity of the skeleton chain, and thus exponential ergodicity
of Y . The quantitative convergence bound follows from (B.20) by choosing a sin-
gleton y0 as initial distribution, and using the general fact that for any transition
probability kernel P and distributions φ1 and φ2,

‖Pφ1 − Pφ2‖ ≤ ‖φ1 − φ2‖ , (B.21)
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thus guaranteeing that the total variation distance does not (temporarily) grow
between Θn and Θ(n+ 1). �

Lemma 2 provides a general ergodicity result for the considered class of stochas-
tic spiking networks in the presence of fixed input rates x. The proof relies on two
key properties of stochastic spiking networks: aperiodicity and irreducibility. These
properties can be understood intuitively in the context of Figure 2.1H. If the in-
trinsic network dynamics was not aperiodic, for example, then one might be able
to observe oscillating pattern frequencies over time (as in Figure 2.4C). Lemma 2
proves that this cannot occur in stochastic spiking networks as long as input rates
are fixed. Oscillating pattern frequencies can indeed only emerge when input rates
are themselves periodically changing (see Theorem 2 and Figure 2.4). If the network
dynamics was not irreducible on the other hand, i.e. if there were network states
which are unreachable from some other network states, then pattern frequencies
could potentially be observed to converge to different fixed points for different ini-
tial states (e.g. the two lines in Figure 2.1H settling at different values). This cannot
occur in stochastic spiking networks due to Proposition 1 which guarantees that the
state space is connected through the resting state 0.

Note that, although aperiodicity and irreducibility are well known necessary and
sufficient conditions for ergodicity in discrete time Markov chains on finite state
spaces, they are not sufficient for exponential ergodicity in continuous time Markov
processes on general state spaces (see (Down et al., 1995) for precise definitions
of φ-irreducibility and aperiodicity for such processes). Additional conditions in
this more complex case which ensure exponential ergodicity, such as nonexplosivity,
stochastic continuity and geometric ergodicity of a skeleton chain, have also been
taken into account in the proof for Lemma 2 (i.e. stochastic spiking networks also
meet these additional criteria).

Lemma 2 constitutes a proof for Theorem 1 for fixed input rates x. In the main
text we refer to the stationary distribution of the circuit C under fixed input x as
pC(y|x). The proof above guarantees a stationary distribution for both Markov and
simple states. In the main text y refers to the simple network state yS if not stated
otherwise.

Proof of Theorem 1 for input rates controlled by a Markov process

Fixed input assumptions may often hold for the external input x(t), driving a
stochastic computation in a neural system C, only approximately. Stochastic fluc-
tuations on various spatial and temporal scales may be present in the input. In
addition, inputs may have their own short-term stochastic dynamics: Imagine, for
example, a visual scene of randomly moving dots. Despite the presence of such
short-term dynamical features in the input, in many cases one may still suspect
that network state distributions converge. Indeed, below we generalize the con-
vergence results from the constant case to the quite large class of stochastic (and
stochastically changing) inputs which are generated by a uniformly ergodic Markov
process. Uniform ergodicity is defined as exponential ergodicity (exponentially fast
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convergence to a unique stationary distribution) with convergence constants which
apply uniformly to all initial states (Down et al., 1995) (this holds for example for
the convergence constants in Lemma 2).

Let X be a time-homogeneous input Markov process, in the sense that the in-
put trajectory x(t) provided to the network C is itself generated randomly from a
Markov process X. Let (Q,Q) be the (measurable) state space of X. Then define a
joint input/network Markov process Z on the state space (Q×S, σ(Q×S)), where
σ(·) denotes the σ-algebra generated by ·. Further definitions for Z are analogous
to those introduced for Y .

Lemma 3 If the input process X is uniformly ergodic, then the joint Markov pro-
cess Z has a unique stationary distribution π̂ on the joint input/network state
space, to which convergence occurs exponentially fast, i.e. there exist constants
C <∞, ρ < 1, such that

‖Pt(z0, ·) − π̂‖ ≤ C · ρt , t ≥ 0 , (B.22)

for any initial state z0 of the joint Markov process Z.

Proof: If X and Y were entirely independent processes (if X did not influence
Y ) then the joint process Z would automatically be exponentially ergodic if both
X and Y are. Although in the present case Y is not independent of X, a weaker
version of independence applies: the return probability to the resting state Y (t) = 0
during (t − Θ, t] is at least ǫΘ regardless of the input trajectory of X during that
time. This property can be exploited to show that the distribution of hitting times
to a joint resting state has an exponential bound. It follows that the joint process
is exponentially ergodic. A detailed proof is given in the next section. �

The second part of Theorem 1 (exponentially fast convergence for the case of
external input generated by an ergodic Markov process) follows from Lemma 3.
Note that in the main text we slightly abuse the notation pC(y|x) for the dynamic
case to indicate the stationary distribution over network states y, where x denotes
a specific Markov process controlling the inputs.

Detailed proof of Lemma 3

We have split the proof of Lemma 3 into proofs of four auxiliary claims (Proposi-
tions 2-5). Consider the following variations of Proposition 1, which hold for the
Markov process Z describing the joint dynamics of input and network states. Let
{x(t)} denote a particular input sequence defined for t ≥ 0 (a realization of the
input process X) and y0 ∈ S an initial network Markov state (with Θ ≥ Θ) at time
s ≥ 0. Then

P(Y (s+ Θ) = 0 | Y (s) = y0,X = {x(t)}) ≥ ǫΘ , (B.23)

P(Y (s+ Θ) = 0 | X = {x(t)}) ≥ ǫΘ . (B.24)
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It is easy to show that these properties, together with the fact that X is uni-
formly ergodic, ensure that Z is irreducible and aperiodic. Hence, to prove expo-
nential ergodicity of Z it suffices to show that some skeleton chain is geometrically
ergodic (Down et al., 1995). To that end, we will consider the skeleton chain
ZΘn, n ∈ N and prove geometric ergodicity by showing that the hitting time distri-
bution PτC

(τC) to a small set C on the joint state space Q×S of input and network
states admits an exponential bound.

The hitting time τD to some set D on the input state space Q is defined as

τD = min {n ∈ N
+ : XΘn ∈ D} . (B.25)

For notational convenience we abbreviate in the following τ = τD. Due to uniform
ergodicity of X (which implies Harris recurrence (Down et al., 1995)), there exists
some set D to which the hitting time τ is finite (< ∞) from any initial state, with
probability one (Meyn and Tweedie, 1993). Furthermore, there exists according to
(Down et al., 1995) a small set D and constants κ > 1 and 1 ≤ V <∞, such that

∀x0 ∈ Q : E [κτ | X(0) = x0] < V . (B.26)

This implies that there exists a small set D on the input state space Q which can
not only be reached in finite time from any initial input state x0, but for which
the hitting time distribution to D has also finite mean and variance (and finite
higher-order moments). At least one pair of constants κ and V which fulfills (B.26)
is guaranteed to exist, but in fact the following Proposition shows that one can
specify a particular desired bound on the right-hand side (for reasons which will
become clear later), and find a matching λ on the left-hand side.

Proposition 2 There exists a λ > 1, such that

∀x0 ∈ Q : E [λτ | X(0) = x0] < (1 − ǫΘ)−1/2. (B.27)

Proof: Define v(λ) := E [λτ | X(0) = x0]. Let κ and V be any valid pair of
constants which fulfills (B.26). The trivial case is v(κ) < (1 − ǫΘ)−1/2. In the
remainder of the proof it is assumed that κ is “too large”, such that v(κ) ≥ (1 −
ǫΘ)−1/2. By definition of the exponential function, for any λ > 0,

v(λ) = E [λτ |x0] = E

[
∞∑

n=0

(log λ)nτn

n!
|x0

]

(B.28)

=

∞∑

τ=0

∞∑

n=0

Pτ |x0
(τ)

(log λ)nτn

n!
. (B.29)
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By Tonelli’s theorem, since all summands are non-negative, the order of the double
sum can be exchanged:

v(λ) =

∞∑

n=0

∞∑

τ=0

Pτ |x0
(τ)

(log λ)nτn

n!
(B.30)

=
∞∑

n=0

(log λ)n

n!
E[τn|x0] . (B.31)

Note that E[τn|x0] are the moments of the distribution Pτ |x0
[τ ]. By uniform er-

godicity of X, all moments must exist, and in addition there exists a κ > 1 such
that v(κ) < ∞. It is straightforward to see that the series then converges for all
1 ≤ λ ≤ κ, such that v(λ) is continuous on [1, κ]. Finally, since v(1) = 1 and
v(κ) ≥ (1− ǫΘ)−1/2, by the intermediate value theorem there exists some 1 < λ < κ
such that v(λ) = (1 + (1 − ǫΘ)−1/2)/2. �

Denote by τ (m) the time at which the skeleton chain XΘn visits the small set D
for the m-th time:

τ (m) = min {n ∈ N
+ : ∃ n1 < n2 < · · · < nm ≤ n ∈ N : XΘ·nk

∈ D, k ∈ {1, . . . ,m}}.
(B.32)

Furthermore, denote by δ(m) the time between the (m− 1)-th and m-th visit:

δ(1) := τ (1), (B.33)

δ(m) := τ (m) − τ (m−1), m > 1. (B.34)

According to this definition, one can express the hitting time of degree m as
τ (m) =

∑m
k=1 δ

(k). The following Proposition extends the exponential bound on the
first hitting time to hitting times of higher degrees.

Proposition 3 There exists a λ > 1, such that,

∀x0 ∈ Q : E

[

λτ (m) | X(0) = x0

]

< (1 − ǫΘ)−m/2 . (B.35)

Proof:

E

[

λτ (m) |y0

]

=

∫

dPδ(1...m)|y0
(δ(1...m)) · λ

Pm
k=1 δ(k)

(B.36)

=

∫

dPδ(1)|y0
(δ(1)) · λδ(1)

∫

dPδ(2)|y0,δ(1)(δ(2)) · λδ(2) · · ·

· · ·
∫

dPδ(m)|y0,δ(1...m−1)(δ(m)) · λδ(m)
(B.37)

<
[

(1 − ǫΘ)−1/2
]m

. (B.38)
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Let τC be the hitting time to the small set C = D × 0 on the joint state space
Q× S of input and network states,

τC = min {n ∈ N
+ : XΘn ∈ D,YΘn = 0} . (B.39)

Furthermore, let R be the number of visits to the small set D prior to and
including time τC ,

R = max {m ∈ N
+ : ∃ n1 < n2 < · · · < nm ≤ τC ∈ N : XΘnk

∈ D, k ∈ {1, . . . ,m}}.
(B.40)

Proposition 4 For any input trajectory x(t) and any initial network state y0 ∈ S,

P(R = m | Y (0) = y0,X = {x(t)}) ≤ (1 − ǫΘ)m−1 . (B.41)

This follows from (B.23) and (B.24) which ensure that whenever the input pro-
cess visits the small set D, there is also a small probability that the network is in
the resting state.

Proposition 5 There exists a λ > 1 and a constant W <∞ such that,

∀z0 ∈ (Q× S) : E [λτC | Z(0) = z0] < W . (B.42)

Proof: Let τ = (τ (m), m ∈ N
+). Choose some λ which fulfills Proposition 3.

E [λτC |z0] =

∫

dPτ,R|z0
(τ ,m)λτ (m)

(B.43)

=

∫

dPτ|z0
(τ )

∫

dPX|z0,τ({x(t)})
∞∑

m=1

P(R = m|y0, {x(t)})λτ (m)
(B.44)

≤
∫

dPτ|z0
(τ )

∞∑

m=1

(1 − ǫΘ)m−1λτ (m)
(B.45)

=

∫

dPτ|x0
(τ )

∞∑

m=1

(1 − ǫΘ)m−1λτ (m)
(B.46)

=
∞∑

m=1

(1 − ǫΘ)m−1

∫

dPτ (m)|x0
(τ (m)) · λτ (m)

(B.47)

<

∞∑

m=1

(1 − ǫΘ)m−1(1 − ǫΘ)−m/2 (B.48)

=
∞∑

m=1

(1 − ǫΘ)(m/2)−1 =: W <∞ . (B.49)

�

By Proposition 5, Z is exponentially ergodic (Down et al., 1995). This completes
the proof of Lemma 3.
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Distribution of trajectories of network states

The Markov states yM :Θ(t) are segments of spiking trajectories of length Θ. Hence,
all statements developed above apply to convergence of the distribution over these
(short) spiking trajectories. If one is interested in the convergence of longer trajec-
tories, the simplest option is to choose a larger Θ, since any finite Θ ≥ Θ is admis-
sible, and all convergence results readily extend to trajectories of any finite length.
A limitation of this approach is that the quantitative convergence statements will
suffer from making Θ too large, since convergence rates scale approximately with
ǫΘ (and ǫ ≪ 1). Hence, in practice, empirical convergence tests are required to
make statements about specific circuits.

B.3 Proof of Theorem 2

If the input sequence is periodic with period L, i.e. x(t) = x(t+L) for all t ≥ 0, then
the Markov process Y will be time-periodic, in the sense that transition kernels are
invariant to shifts which are multiples of the period L:

P
s:tφ = P

s+kL:tφ, s ≥ 0, t > 0, k ∈ N . (B.50)

This implies the following result, which is a more precise version of Theorem 2:

Lemma 4 Under periodic input, i.e. x(t) = x(t+ L) for all t ≥ 0 with some L ≥
Θ, the time-periodic Markov process Y with period L has a periodically stationary
distribution π̃l, to which convergence occurs exponentially fast from any initial state.
In particular, for every 0 ≤ l < L there exists a unique stationary distribution π̃l

such that,

‖Pl+Ln(y0, ·) − π̃l‖ ≤ 2 · (1 − ǫΘ)⌊
L
Θ
⌋·n , n ∈ N , (B.51)

from any initial Markov state y0.

Proof: For each 0 ≤ l < L there exists a skeleton chain Yl+Ln, n ∈ N, with transi-
tion probability kernel Pl:L = Pl+L:L = Pl+2L:L = . . . , which is time-homogeneous,
irreducible, and aperiodic and thus has a unique stationary distribution π̃l. An
application of Pl:L, which corresponds to a full period, decreases the total variation

distance to π̃l by at least (1 − ǫΘ)⌊
L
Θ
⌋:

‖Pl:Lφ1 − π̃l‖ = ‖Pl:Lφ1 − P
l:Lπ̃l‖ (B.52)

≤ ‖Pl:Θ⌊L
Θ
⌋φ1 − P

l:Θ⌊L
Θ
⌋π̃l‖ (B.53)

≤ (1 − ǫΘ)⌊
L
Θ
⌋ · ‖φ1 − π̃l‖ . (B.54)

The first inequality follows from the fact that applying the remaining

P
l+Θ⌊L

Θ
⌋:L−Θ⌊L

Θ
⌋ can only further decrease the total variation distance between the

two distributions, according to (B.21). The second inequality is due to Lemma 1.
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Lemma 4 then follows from recursive application of (B.52)-(B.54) for multiple
periods, and choosing a singleton y0 as initial distribution. �

In the main text, we use the notation pC,l(y|x) for a phase-specific stationary
distribution, where x denotes a specific periodic input sequence.

B.4 Relation to previous theoretical work

Previous work on the question whether states of spiking neural networks might con-
verge to a unique stationary distribution had focused on the case where neuronal
integration of incoming spikes occurs in a linear fashion, i.e., linear subthreshold
dynamics followed by a single output non-linearity (Brémaud and Massoulié, 1996;
Borovkov et al., 2012). In addition these earlier publications did not allow for the
experimentally observed short term dynamics of synapses. The earlier publication
(Brémaud and Massoulié, 1996) had studied this question as a special case of the
mathematical framework of non-linear Hawkes processes, a class of mutually ex-
citing point processes (see also (Massoulié, 1998)). The authors had arrived for
the more restricted type of neurons which they considered at exponential conver-
gence guarantees under a similar set of assumptions as in this article, in particular
bounded memory and bounded instantaneous firing rates (and these results can thus
be seen as a special case of Theorem 1, for the case of constant external input).
(Brémaud and Massoulié, 1996) also derived convergence results for linearly inte-
grating neurons with unbounded memory dynamics under a different set of assump-
tions, in particular Lipschitz conditions on the output non-linearity and constraints
on the effective connectivity matrix of the network. Whether such alternative set of
assumptions can be found also in the context of non-linear integration of incoming
spikes (needed e.g. for synaptic short-time dynamics or dendritic non-linearities)
remains an open question.

The recent publication (Borovkov et al., 2012) also focused on neurons with lin-
ear sub-threshold dynamics followed by an output non-linearity (termed there non-
linear Poisson neurons) with static synapses, and extended the convergence results
of (Brémaud and Massoulié, 1996) to networks with Hebbian learning mechanisms.
In addition, an important methodological innovation by (Borovkov et al., 2012) was
the introduction of spike history states (which are equivalent to the Markov states
yM (t) in this article) which allowed them to study convergence in the framework
of general Markov processes (in contrast to point processes in (Brémaud and Mas-
soulié, 1996)). Theorem 1 in this article contains as a special case the convergence
results of (Borovkov et al., 2012) for their Model I (non-linear Poisson neurons in
the absence of Hebbian learning). We note that although (Borovkov et al., 2012)
focused on neurons with linear sub-threshold dynamics (and required that firing
rates are strictly greater than 0), their method of proof for Model I could be readily
extended to cover also non-linear sub-threshold dynamics to yield the first part of
our Theorem 1 (the case where inputs have constant firing rates).

We are not aware of previous work that studied convergence in spiking networks
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with dynamic synapses, or in the presence of stochastic or periodic inputs (see the
second part of Theorem 1 concerning Markov processes as input, and Theorem 2).
We further note that our method of proof builds on a new and rather intuitive
intermediate result, Lemma 1 (Contraction Lemma), which may be useful in its
own right for two reasons. On the one hand it provides more direct insight into
the mechanisms responsible for convergence (the contraction between any two dis-
tributions). On the other hand, it holds regardless of the input trajectory x(t),
and hence has in fact an even larger scope of applicability than Theorem 1 and 2.
Hence, Lemma 1 could be, for example, applied to study non-stationary evolutions
of state distributions in response to arbitrary input trajectories.

B.5 Extracting knowledge from internally stored dis-

tributions

A key advantage of sample-based representations of probability distributions is that
probabilities and expected values are in principle straightforward to estimate: To
estimate the expected value Ep(y)[g(y)] of a function g(y) under a distribution p(y)

from a number of samples y1, . . . , yT , simply apply the function to each sample and
compute the time average 1

T

∑T
t=1 g(y

t). As long as the samples yt are distributed
according to p(y), either independently drawn, or as the result of an ergodic Markov
chain/process with stationary distribution p(y), this estimate is guaranteed to con-
verge to the correct value as one increases the number of samples (Gray, 2009),
i.e. limT→∞

1
T

∑T
t=1 g(y

t) = Ep(y)[g(y)]. Estimates based on a finite observation
window represent an approximation to this exact value.

Under the mild assumptions of Theorem 1 the dynamics of a stochastic spiking
network in response to an input x are exponentially ergodic and there exists a
unique stationary distribution pC(y|x), according to which network states y(t) are
distributed. Hence, the expected value EpC(y|x)[g(y)] of any function g(y) under the
stationary distribution pC(y|x) can be estimated by computing the sample-based
time average

1

T

∫ T

0
g(y(t)) dt . (B.55)

This approach can also be used to estimate marginal probabilities, since prob-
abilities can be expressed as expected values, for example,

pC(y1 = 1|x) = EpC(y|x)[δ(y1, 1)] , or (B.56)

pC(y1 = 1, y2 = 0, y3 = 1|x) = EpC(y|x)[δ(y1, 1) · δ(y2, 0) · δ(y3, 1)] , (B.57)

where δ(a, b) = 1 if a = b and 0 otherwise. Hence, in order to estimate the prob-
ability pC(y1 = 1|x) it suffices to measure the relative time the neuron spends

in its active state, i.e. 1
T

∫ T
0 δ(y1, 1) dt. Similarly, to estimate the probability

pC(y1 = 1, y2 = 0, y3 = 1|x) it is sufficient to keep track of the relative frequency of

the pattern (1, 0, 1), by computing 1
T

∫ T
0 δ(y1, 1) · δ(y2, 0) · δ(y3, 1) dt.
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B.6 Simulations of data-based cortical microcircuit

models

All simulations of microcircuit models for Figures 2.1-2.4 were carried out in PCSIM
(Pecevski et al., 2009). A time step of 1 ms was chosen throughout. Further analysis
of spike trains was performed in Python (van Rossum and Drake, 2001).

Stochastic neuron model

A stochastic variation of the leaky integrate-and-fire model with conductance-based
integration of synaptic inputs was used, for both excitatory and inhibitory neurons.
Sub-threshold dynamics of the membrane potential u(t) was defined according to a
standard leaky integration model with conductance-based synapses (Gerstner and
Kistler, 2002), using passive membrane parameters R = 60 MΩ, C = 0.35 nF and
a resting potential Vresting = −60 mV. At simulation start, initial potentials were
randomly chosen from [−65,−55] mV. Reversal potentials for excitatory synapses
and inhibitory synapses were set to 0 mV and −75 mV, respectively. Neuronal noise
was modeled by a voltage-dependent instantaneous probability of firing (instead of
a fixed threshold) (Jolivet et al., 2006),

p(neuron spikes in [t, t+ δt))

δt
=

1

τs
e(u(t)−ϑ)/δu, (B.58)

for δt → 0, with parameters τs = 19 ms, δu = 4 mV taken from (Jolivet et al.,
2006). In contrast to (Jolivet et al., 2006) we used a non-adaptive threshold, ϑ =
−45 mV. After a spike, a neuron enters an absolute refractory period of 3 ms.
Thereafter, the membrane is reset to the resting potential and leaky integration is
continued. Altogether, the resulting neuronal spiking mechanism is consistent with
the theoretical noise model I described in equation (B.2).

Note that Theorem 1 also holds for substantially more complex multi-
compartment neuron models incorporating, for example, data on signal integration
in the dendritic tuft of pyramidal cells (Larkum, 2013; Jiang et al., 2013), and data
on Ca-spikes in pyramidal cells on layer 5 (Larkum, 2012), but we have not yet
integrated these into the simulated microcircuit model because of a lack of coherent
quantitative data for all the neuron types involved.

Synaptic short-term plasticity

The short-term dynamics of synapses in all data-based simulations was modeled
according to (Maass and Markram, 2002; Markram et al., 1998). The model predicts
that at a synapse with “weight” w the amplitude Ak of the kth spike in a spike train
with interspike intervals ∆1,∆2, ..,∆k−1 is given by,

Ak = w · uk · Rk ,

uk = U + uk−1(1 − U) exp−∆k−1/F , (B.59)

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1) exp−∆k−1/D ,
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where the hidden dynamic variables uk ∈ [0, 1] and Rk ∈ [0, 1] are initialized for
the first spike to u1 = U and R1 = 1. The parameters U ,D and F represent
the utilization of the synaptic efficacy of the first spike after a resting state, the
recovery and the facilitation time constants, respectively. These parameters were
set based on experimental data on short-term plasticity in dependence of pre- and
post-synaptic neuron (excitatory or inhibitory) as in (Haeusler and Maass, 2007)
(see in particular Table 1 in this reference), by randomly drawing for each neuron
values for U , D, and F from corresponding data-based Gaussian distributions.

Connectivity and synaptic parameters

Synaptic parameters and connectivity rules for the data-based cortical column
model were taken from (Haeusler and Maass, 2007), see Figure 2.1A. In partic-
ular, we adopted from (Haeusler and Maass, 2007) the connection probabilities and
transmission delays for each type of connection (EE, EI, IE, II) and each cortical
layer ((Haeusler and Maass, 2007), Figure 1), as well as short-term plasticity pa-
rameters. Furthermore, synaptic efficacies of individual synapses were drawn from
Gamma distributions with data-based means and variances for each type of connec-
tion (EE, EI, IE, II) taken from (Haeusler and Maass, 2007). Two input streams
were connected to the microcircuit, each consisting of 40 input neurons. In contrast
to (Haeusler and Maass, 2007) we used rate-based Poisson input neurons instead
of injecting “frozen” spike patterns. Background synaptic inputs were emulated as
in (Haeusler and Maass, 2007) via background input currents to each neuron, with
conductances modeled according to (Destexhe et al., 2001). To adjust connectiv-
ity for cortical microcircuit models of different sizes, we also adopted the method
proposed by (Haeusler and Maass, 2007), in which recurrent weights are scaled
inversely proportional to network size.

We tested the validity of our cortical microcircuit model by comparing the av-
erage activity of different layers (see Figure 2.2A) under various conditions against
the values reported by (Haeusler and Maass, 2007). We confirmed that all layers
exhibited very similar average activity to (Haeusler and Maass, 2007) under all
considered conditions.

B.7 Details to small microcircuit model in Figure 2.1

The small cortical microcircuit model of Figure 2.1B was constructed based on
the cortical column template of (Haeusler and Maass, 2007): Synaptic connections
between neurons and their weights were chosen to approximately reflect connection
probabilities and mean synaptic strengths of the cortical column template (Haeusler
and Maass, 2007). Due to the very small size of this network, the resulting dynamics
was not immediately satisfactory (for example, the influence of inputs on Layer
5 neurons was too weak). To shift the circuit into a more responsive regime, we
manually adjusted a few synaptic weights and neuronal excitabilities. In particular,
we injected small constant currents into some of the neurons to modulate their
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intrinsic excitability. Furthermore, to increase activity and correlations between
highlighted neurons 2, 7 and 8, we increased synaptic weights 8 → 2 and 8 → 7
by factors 5 and 10, respectively. To set the initial Markov state of the network,
preparatory input was shown for 1 s before the actual start of the simulation. Two
different preparatory inputs were injected to set the two initial states considered in
Figure 2.1F-H (first: i1 at 100 Hz, i2 at 100 Hz, second: both i1 and i2 at 0 Hz).
To reproduce the same initial Markov state in multiple trials (for example the two
trials shown in Figure 2.1F), the same random seed was used during the preparatory
phase for these trials. The random seed was then reinitialized at t = 0 to different
values for each trial.

B.8 Estimates of required computation time

Gelman-Rubin univariate and multivariate analysis

Various methods have been developed for measuring convergence speed to a sta-
tionary distribution in the context of Markov chain Monte Carlo sampling (Cowles
and Carlin, 1996; Brooks and Roberts, 1998; El Adlouni et al., 2006). The Gel-
man Rubin diagnostic, which we adopted in this article, is one of the most widely
used methods (Gelman and Rubin, 1992; Brooks and Roberts, 1998; Brooks et al.,
2010; Gjoka et al., 2010), besides other popular methods such as the diagnostics by
Raftery and Lewis (Raftery et al., 1992) and by Geweke (Geweke, 1991). We remark
that the consensus in the literature is that no single method is perfect in general.
Some attractive properties of the Gelman Rubin method are general applicability to
any MCMC system (some other methods only work, for example, in the context of
Gibbs sampling), ease of use, ease of implementation, computational efficiency, and
the fact that results are quantitative (in contrast to graphical diagnostics) (Cowles
and Carlin, 1996; Brooks and Roberts, 1998).

The Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992) takes as
input samples fromm different runs (trials/chains/sequences) produced by the same
system, started from different initial states. The method was originally developed
for discrete-time systems in the context of Markov Chain Monte Carlo sampling.
Our simulations use a time step of 1 ms, so we simply treat each simulation step as
one discrete time step in a Markov chain. The Gelman-Rubin method produces as
output the potential scale reduction factor R̂(t) as a function of time t. The scale
reduction factor R̂(t) is an indicator for whether or not the system has converged
at time t. High values ≫ 1 indicate that more time is needed until convergence,
while values close to 1 suggest that convergence has (almost) taken place.

For computing the scale reduction factor R̂(t) at time t, samples from the period
[t, 2t] from each run of the network are taken into account. In the univariate case
one focuses on a particular single variable (such as the marginal simple state of a
single neuron, or the simple state of a “random readout” neuron as in the solid lines
of Figure 2.2G). Let n be the number of samples obtained from the period [t, 2t]
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from each of the simulations. Then one defines

R̂(t) =
n− 1

n
+
m+ 1

mn

B(t)

W (t)
, (B.60)

where B(t) and W (t) are between and within-sequence variances, respectively,
which can be computed as described in (Gelman and Rubin, 1992), based on sam-
ples taken from the time period [t, 2t]. In the rare event of W = 0, which happens
for example if a neuron never fires and hence its state is constant across all runs,
we set R̂ to 1.

An unfortunate source of confusion is the fact that Gelman and Rubin (Gel-
man and Rubin, 1992) originally introduced R̂ in its “variance” form equivalent
to equation (B.60), but later in (Gelman et al., 2004; Brooks et al., 2010) altered
this definition and defined R̂ as the square root of (B.60). This issue is particularly
critical when considering threshold values for R̂: a threshold of 1.2 was suggested in
the context of the original definition (Kass et al., 1998). Later, a typical threshold
of 1.1 was suggested, but this lower threshold applied to the modified definition
(Gelman et al., 2004; Brooks et al., 2010). Squaring this apparently lower threshold
yields again a typical threshold of approximately 1.2.

In the multivariate case (e.g. when analyzing convergence of the vector-valued
simple state of a small subset of neurons as in the dotted lines of Figure 2.2G)
one takes vector-valued (d-dimensional) samples, and computes the multivariate
potential scale reduction factor R̂d(t) according to:

R̂d(t) =
n− 1

n
+
m+ 1

m
λ1(t), (B.61)

where λ1(t) is the largest eigenvalue of W (t)−1B(t)/n, and W (t) and B(t) denote
within and between sequence covariance matrix estimates (see (Brooks and Gelman,
1998) for details).

Convergence analysis for cortical microcircuit models

Gelman-Rubin values were calculated based on 100 runs, where the duration of
each run was 10 s of biological time. We tried also much longer simulations of 100 s
but did not notice any sign of non-convergent behavior. A random initial state
was set in each run by showing random input for 1 s before the start of the actual
simulation. This initial random input was fed into the network via the two regular
input streams (40 neurons each), by assigning to each input neuron a random rate
drawn uniformly from a 0 − 40 Hz range. Convergence analysis of marginals was
performed by applying univariate analysis to single components of the simple state
yS, with τ = 10 ms. From individual marginal convergence values, mean and worst
marginal convergence (as in Figure 2.2E,F) were derived by taking at time t the
mean/max over all individual R̂-values at time t. For pairwise spike coincidences
(see Figure 2.2D), we analyzed samples of the product of simple states of two
neurons (the product equals 1 only if both neurons spiked within the last 10 ms).
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Random readouts for Figure 2.2G were implemented by adding an additional
excitatory observer neuron to the network which receives synaptic inputs from a
random subset of 500 network neurons (we kept this number 500 fixed across sim-
ulations with different network sizes to allow a fair comparison). The number of
randomly chosen neurons from each of the pools is given in Table B.1.

E I

L2/3 120 30

L4 80 20

L5 200 50

Table B.1: Number of randomly chosen neurons per pool for readout neuron in Figure 2.2G

Synapses onto the readout neuron were created in a similar manner as con-
nections within the cortical column model: short-term plasticity parameters were
set depending on the type of connection (EE or IE) according to (Haeusler and
Maass, 2007). The weights for EE and IE connections were randomly chosen from
a Gamma distribution with mean 2 nS and scale parameter 0.7, and mean 5 nS and
scale parameter 0.7, respectively. Gelman-Rubin convergence of readouts was then
computed as for the marginal case.

Convergence analysis of vector-valued simple states of subsets of neurons (see
Figure 2.2G) was performed by applying multivariate analysis to randomly chosen
subnetworks of the cortical column. In particular, we randomly drew 5 neurons from
each of the 6 pools, yielding a subnetwork of 30 neurons, and calculated R̂30(t).

B.9 Impact of different dynamic regimes on the con-
vergence time

In Figure 2.3 we compared convergence times in four different neural circuits. The
first circuit was identical to the small cortical microcircuit from Figure 2.1. For the
remaining three circuits, the same stochastic point neurons and conductance-based
dynamic synapses with delays were used as for the data-based cortical microcircuit
model. Dynamic synaptic parameters were set to the corresponding mean values of
parameters used in the cortical column model. Synaptic delays of 1 ms were used for
all networks, except for the network with sequential structure (Figure 2.3C) where
delays were 3 ms. To modulate the intrinsic excitability of neurons we injected
small currents to each neuron. The strengths of injected currents and connections
were tuned for each network until the desired network activity was achieved. Synap-
tic background inputs were injected as in the cortical microcircuit model. To set
different initial states (needed for Gelman Rubin analysis), during a preparatory
phase of 1 s we injected into each neuron a random current chosen from [−2, 2] nA.
These small random input currents were strong enough to yield sufficiently diverse
initial states. Gelman-Rubin values were then calculated based on 100 runs, where
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the duration of each run (after the preparatory phase) was 20 s of biological time.
Convergence analysis was performed on marginals (individual simple states with
τ = 10 ms). Mean and worst marginals were computed as described in the previous
section.

Below are additional details to the circuits used for Figure 2.3B-D: The sparsely
active network of Figure 2.3B comprises one excitatory (E) and one inhibitory (I)
population (each 10 neurons). Connections between neurons were drawn randomly
according to the following set of connection probabilities: EE=0.1, EI=0.1, II=0.9,
IE=0.9. The network with sequential structure of Figure 2.3C consists of two inter-
connected subnetworks where each one of them produces a stereotypical trajectory.
Each subnetwork consists of a trigger neuron, a subsequent chain of neurons, and
a pool of inhibitory neurons. Shown in Figure 2.3C are only the excitatory chain
neurons from each subnetwork (neurons 1-15: first subnetwork; neurons 16-30: sec-
ond subnetwork). Each excitatory neuron in the chain projects to all other neurons
in the same chain with synaptic strengths decreasing with distance according to
exp(−distance/τd) where τd = 0.01 applies to the forward direction in the chain
and τd = 0.1 to the backward direction. The trigger neuron projects (forward) to
the chain in the same fashion with τd = 1. All neurons in the chain project to the
inhibitory pool, and all neurons in the inhibitory pool project back to the trigger
neuron and to the chain. Finally, the two subnetworks are combined such that
the inhibitory pool of one subnetwork projects to the trigger neuron and the chain
of the other subnetwork, and vice versa. This ensures that only one of the two
subnetworks can be active at a time (competition between two trajectories). The
bistable network of Figure 2.3D consists of two populations which strongly inhibit
each other (each population comprising 10 neurons).

B.10 Phase-specific distributions in the presence of pe-

riodic inputs

The theoretical proof for Theorem 2 can be found after the proof of Theorem 1
above. For Figure 2.4F, a single long simulation (100.000 s) of the bi-stable network
in Figure 2.4E was carried out. Each of the two pools was defined active at time t
if more than two neurons from the pool had an active simple state at time t (with
τ = 10 ms). A transition was defined as the succession of a period in which one
pool was active and the other pool inactive by a period in which the other became
active and the first pool turned inactive. Between those two periods it typically
occurs that either both pools are active or both are inactive for some short time.
The exact time (and phase within the current cycle) of each transition was defined
as the point in the middle of this intermediate period.
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B.11 Generation of heuristic solutions to constraint

satisfaction problems

Formulation of Sudoku as a constraint satisfaction problem

A constraint satisfaction problem consists of a set of variables defined on some
domain and a set of constraints, which limit the space of admissible variable assign-
ments. A solution to a problem consists of an assignment to each variable such that
all constraints are met. To formulate Sudoku as a constraint satisfaction problem,
we define for each of the 81 fields (from a standard 9x9 grid), which has to be filled
with a digit from 1 to 9, a set of 9 binary variables (taking values in {0, 1}) (Ercsey-
Ravasz and Toroczkai, 2012). Each of these binary variables votes for exactly one
digit in a field. The rules of the Sudoku game impose constraints on groups of these
variables, which can be classified into the following three types.

Given number constraints: The given numbers of a puzzle are fixed. Hence, the
binary variables for the given fields are constrained to fixed values, for example, a
given value 2 corresponds to fixed binary values (0, 1, 0, . . . , 0).

Unique field constraints: In a correct solution, there must be only one digit
active in each field. Hence in each field, exactly one of the 9 associated binary
variables must be 1, and all others must be 0 (equivalent to stating that the sum
over these binary variables must equal 1).

Unique group constraints: There are three types of groups: rows, columns and
3x3 subgrids. There are 9 row groups, 9 column groups, and 9 subgrid groups.
In any of these groups, each digit 1, . . . , 9 must appear only once. Hence, in each
group, all binary variables voting for the same digit i must sum to 1.

Network architecture for solving Sudoku

Sudoku can be implemented in a spiking neural network by creating for each of
the 9 binary variables in each Sudoku field a local group of ngroup pyramidal cells.
Whenever one of these pyramidal cells fires, the corresponding binary variable is
set to 1 for a short period τ = 20 ms. The binary variable is defined 0 only if no
neuron in its associated group fired within the last τ = 20 ms. This mapping allows
one to readout the current (tentative) solution represented by the network at any
time t. The tentative solution is correct only if all constraints are met. For all
simulations we used ngroup = 4, resulting in a total 81∗9∗4 = 2914 pyramidal cells.
Constraints among Sudoku variables can be implemented via di-synaptic inhibition
between the groups of pyramidal cells as detailed below.

Given number constraints are implemented by providing strong positive input
currents selectively to those neurons which code for the given numbers, and negative
currents to neurons coding for wrong digits in a given field. Unique field constraints
are implemented by forming a winner-take-all (WTA) circuit among all 9 ∗ 4 = 36
neurons associated with the same Sudoku field. A WTA circuit is modeled by a
single inhibitory neuron which is reciprocally connected to all 36 pyramidal cells. To
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reduce the probability that no pyramidal cell fires (which would violate the unique
field constraint), thresholds of pyramidal cells are set to low values (see next section
for details). Unique group constraints are implemented by a WTA circuit in which
all neurons in a group which code for the same digit participate. In summary, there
are 81 unique field constraints and 27 ∗ 9 = 243 unique group constraints (in each
group there is a constraint for each digit), yielding a total of 324 WTA circuits.
These WTA circuits are partially overlapping, in the sense that each pyramidal cell
participates in 4 of these WTA circuits (one for the unique value constraint in its
field, and three for the unique group constraints in its row/column/subgrid).

Stochastic spike generation in both excitatory and inhibitory neurons is imple-
mented consistent with the theoretical noise model I (see next section for details).
The network thus fulfills all theoretical conditions for Theorem 1, and is guaran-
teed to have a unique stationary distribution pC(y|x) of network states, to which
it converges exponentially fast. This landscape will have automatically peaks at
those states of the network which fulfill most of the game constraints, since each of
the WTA circuits ensures that invalid configurations with respect to that constraint
are unlikely to occur. Any specific Sudoku problem can be set by providing input
x to the network in the form of strong currents to those neurons which correspond
to the given values. This automatically modifies the landscape of the stationary
distribution pC(y|x) such that only (or predominantly) solutions consistent with
the givens are generated. Finally, due to neuronal noise the network can quickly
probe different peaks in the landscape (different promising solution candidates) and
escape them equally fast. Importantly, this process may occur at different places in
the Sudoku puzzle simultaneously. Hence, one can interpret the network dynamics
also as a highly parallel stochastic search algorithm.

Details to implementation and simulations for Figure 2.5

Simulations for Figure 2.5 were performed in NEVESIM, an event-based simulator
for networks of spiking neurons developed in C++ with a Python Interface(Pecevski,
2013). The puzzle in Figure 2.5A was generated and rated “hard” by “Sudoku Solu-
tions” (Aire Technologies, 2013). Spike generation is modeled according to equation
(B.58), with parameters δu = 0.5, τs = 20 ms. The stochastic threshold ϑ was set
to −1 and 10 for excitatory and inhibitory neurons, respectively. An absolute re-
fractory period of 3 ms was chosen for pyramidal cells. To maximize the speed up of
event-based simulations, PSPs were modeled in a simplified manner as current-based
rectangular pulses of length 20 ms (in contrast to the more complex conductance
based integration of synaptic inputs used for cortical microcircuit models).

WTA circuits were formed by reciprocally connecting a single inhibitory neuron
to all participating pyramidal cells. The single inhibitory neuron was modeled to
mimic the response of a population of inhibitory neurons (i.e. strong inhibition for
a prolonged amount of time), using an absolute refractory period of 20 ms, and
strong bidirectional connections from and to excitatory neurons (synaptic weights
100 and −100, respectively).
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To set a particular puzzle, given numbers were fixed by providing strong input
currents to the corresponding pyramidal cells. In particular, neurons coding for
the given numbers in a Sudoku field received a constant positive input current (a
constant input +9 on the membrane potential). Neurons coding for conflicting
digits in given Sudoku fields received a constant negative input current of strength
−11.

A final practical remark concerns the number of neurons coding for each binary
variable, ngroup = 4. We found that networks with ngroup > 1 have a number of
attractive properties compared to networks with single neuron coding. In particular
firing rates of individual neurons can be lower (for ngroup = 1 a pyramidal cell
would need to constantly burst to indicate a steady active state). Also, synaptic
efficacies among neurons can be made weaker, and overall spike response patterns
appear more biologically plausible. In view of a potential implementation in analog
neuromorphic hardware, population coded variable assignments are also less prone
to single unit failures or device mismatch.
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C.1 Stochastic neuron model

Neurons are modeled as simple stochastic point neurons with absolute refractory
period τ . When not in a refractory state, neuron k spikes at an instantaneous firing
rate which depends exponentially on the membrane potential uk(t) (3.2), according
to,

lim
δt→0

p(neuron k fires within(t, t+ δt])/δt = ρk(t) =
1

τ
exp(uk(t)) , (C.1)

with τ = 10ms unless otherwise stated. An exponential dependence of a neuron’s
firing probability on the membrane potential has been suggested by (Jolivet et al.,
2006) based on a fit to experimental data. Similar stochastic neuron models have
been suggested by (Truccolo et al., 2005; Buesing et al., 2011).
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C.2 Details to Principle 1: stationary distributions and

energy functions

Network states

We distinguish between principal neurons and auxiliary neurons. Principal neurons
directly represent the random variables (RV) of a problem (e.g. the boolean vari-
ables in a satisfiability problem as in Figure 3.2). The state of principal neurons
therefore reflects the state of the RVs. Auxiliary neurons (i.e. all auxiliary neurons
in circuit motifs and the lock-in neuron), on the other hand, do not represent ran-
dom variables. Their only purpose is to modulate and shape the distribution (and
energy function) over principal neurons.

The state xk(t) of a principal neuron k at time t is defined as,

xk(t) =

{

1, if neuron k fired within (t− τ, t] ,

0, otherwise ,
(C.2)

where τ is a brief time window corresponding to the duration of a PSP. The state
ξm(t) of an auxiliary neuron m is defined in an analogous manner. The full network
state,

(x(t), ξ(t)) = (x1(t), . . . , xN (t), ξ1(t), . . . , ξM (t)) (C.3)

is defined as the vector of states of all principal neurons k = 1, . . . , N and all
auxiliary neurons m = 1, . . . ,M in the network. Similar notions of network state
have been suggested by a number of experimental (Schneidman et al., 2006; Berkes
et al., 2011) and theoretical (Buesing et al., 2011; Pecevski et al., 2011; Habenschuss
et al., 2013a) papers. The principal network state refers only to the state vector
x(t) of all principal neurons. Unless otherwise stated, the term network state refers
to the principal network state.

Convergence to stationary distribution

Under mild conditions, activity in a general spiking network with noise can be
theoretically guaranteed to converge exponentially fast to a unique stationary dis-
tribution p(x, ξ) of full network states (Habenschuss et al., 2013a), regardless of
initial network conditions. In the context of the stochastic neuron model (3.1-3.2)
it can be easily verified that the theoretical conditions for convergence are fulfilled
if all weights wkl are bounded from above, i.e. if there exists some wmax such that
all wkl ≤ wmax. Throughout the paper this condition is met. Exponentially fast
convergence to a unique marginal distribution p(x) over principal network states is
a simple corollary that follows from the convergence to a unique joint distribution
p(x, ξ).
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Energy functions

In analogy with statistical physics (Plischke and Bergersen, 2006), we define the
energy function E(x) of a network of spiking neurons with unique stationary dis-
tribution p(x) of principal network states x as

E(x) = − log p(x) + C , (C.4)

with an arbitrary constant C. The stationary distribution p(x) can then be ex-
pressed as,

p(x) =
e−E(x)

∑

x
′ e−E(x′)

. (C.5)

Note that according to this definition, energies are defined only up to a constant
(a global shift applied to all states). To indicate that two energy functions are
identical except for a constant shift we use the notation E1(x) , E2(x), i.e.

E1(x) , E2(x) ⇔ ∃C∈R ∀x (E1(x) = E2(x) + C) . (C.6)

C.3 Details to Principle 2: circuit motifs shaping the
energy function

A key theoretical question is how the energy function E(x) (or equivalently p(x))
over principal network states x depends on the parameters of a network, in particu-
lar on synaptic weights wkl and neuronal excitabilities bk among principal neurons,
as well as on auxiliary circuits connected to the principal neurons. Previous work
had shown that pair-wise symmetric connections between neurons map onto second-
order dependencies between variables (Buesing et al., 2011). (Pecevski et al., 2011)
demonstrated in addition how more complex dependencies can be encoded through
the use of pre-processing circuits in the context of probabilistic inference.

Here we consider how in addition to second-order dependencies, common higher-
order constraints of hard computational problems can be encoded through the use
of simple auxiliary circuit motifs, in a manner suitable for compositionality and
large-scale circuit design.

Compositionality

To facilitate systematic design of complex energy landscapes, we would like to find
a basic set of auxiliary circuit motifs which can be combined in arbitrarily rich
ways with predictable outcomes. A particularly desirable feature to aim for is
linear compositionality, such that the energy contribution to the energy landscape
of each circuit motif is independent of the presence of other circuits. A precise
definition follows.
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Definition 1 (Compositionality). Let N be a principal network of k =
1, . . . , N stochastic principal neurons (3.1)-(3.2), symmetric connections wkl = wlk

(but no self-connections, i.e. wkk = 0) and biases bk, with energy function EN(x).
Let C = {C1, . . . , CL} be a set of L additional auxiliary circuits which can be re-
ciprocally connected to the principal network N to modulate the behavior of prin-
cipal neurons. Denote by EN,I(x) the modulated energy function of the network
in the presence of a subset I ⊆ {1, . . . , L} of these auxiliary circuits, and de-
fine the change in the energy landscape due to the presence of this subset I as
∆EN,I(x) , EN,I(x) − EN(x). Then the set of auxiliary circuits C is said to be
compositional with respect to network N if changes in energies sum up linearly for
all possible combinations, i.e.

∆EN,I(x) ,
∑

i∈I

∆EN,i(x) , (C.7)

for any subset I ⊆ {1, . . . , L}.

Note that due to linearity of membrane integration (3.2), the membrane po-
tential of a principal neuron k in the presence of some subset I of arbitrarily
complex auxiliary circuits can be written as,

uk,I(t) = bk +
∑

l

wkl xk(t) +
∑

i∈I

∆uk,i(t) , (C.8)

where the current contribution of auxiliary circuit Ci to the membrane potential
of principal neuron k is denoted by ∆uk,i(t). Define x\k(t) as the state vector
of all principal neurons except neuron k, and {xk = ·,x\k(t)} as the state
vector x(t) with the state of neuron k replaced by ·. Then, building on the
analysis of (Buesing et al., 2011), the following theoretical result provides suf-
ficient conditions on the auxiliary circuit contributions ∆uk,i(·) for compositionality.

Theorem 3 (Sufficient conditions for compositionality). Let N be any
network of principal neurons and C a set of auxiliary circuits as defined above.
Suppose that for each auxiliary circuit Ci there exists an energy function Ui(x)
such that at any time t the following relation holds,

∆uk,i(t) = Ui

(
{xk = 0,x\k(t)}

)
− Ui

(
{xk = 1,x\k(t)}

)
(C.9)

Then the set of auxiliary circuits C is compositional with respect to N. Further-
more, the energy change due to each individual circuit is given by ∆EN,i(x) , Ui(x).

Theorem 3 suggests that auxiliary circuits should be constructed in a highly
specific manner to support compositionality. In particular, (C.9) states that
auxiliary circuit contributions to the membrane potential of a principal neuron
k should be basically memoryless and reflect a specific function of the current
state of the remaining network, x\k(t). Note that this function (the right-hand
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side of (C.9)) has a very intuitive interpretation: a circuit Ci should inform
each principal neuron k about the currently expected drop in the energy function
Ui that can be achieved by a spike of neuron k (i.e. a switch from xk = 0 to xk = 1).

Proof of Theorem 3: If (C.9) holds for all Ci then the membrane po-
tential of a principal neuron k in the presence of some subset of auxiliary neurons
I is given at time t by,

uk,I(t) = bk +

N∑

l=1

wkl xk(t) +
∑

i∈I

[
Ui

(
{xk = 0,x\k(t)}

)
− Ui

(
{xk = 1,x\k(t)}

)]

(C.10)

This can also be expressed as,

uk,I(t) = UI

(
{xk = 0,x\k(t)}

)
− UI

(
{xk = 1,x\k(t)}

)
, (C.11)

with

UI(x) = −
N∑

k=1

bkxk − 1

2

N∑

k=1

N∑

l=1

wklxkxl +
∑

i∈I

Ui(x) . (C.12)

One can then verify that the neural computability condition (NCC) from (Buesing
et al., 2011) is fulfilled by a network with membrane dynamics (C.11) with respect
to stationary distribution p(x) ∝ exp(−UI(x)):

log
p(xk = 1|x\k)

p(xk = 0|x\k)
= log

p({xk = 1,x\k})
p({xk = 0,x\k})

(C.13)

= log p({xk = 1,x\k}) − log p({xk = 0,x\k}) (C.14)

= −UI({xk = 1,x\k}) + UI({xk = 0,x\k}) (C.15)

= bk +

N∑

l=1

wklxl +
∑

i∈I

[−Ui({xk = 1,x\k}) + Ui({xk = 0,x\k})]

(C.16)

Thus, a network with membrane dynamics (C.12) meets the NCC for
p(x) ∝ exp(−UI(x)), and the energy function of the network is given by
EN,I(x) , UI(x). Furthermore, from (C.12) it is obvious that energies due to
combinations of auxiliary circuits sum up linearly and that the energy contribution
due to each single Ci equals ∆EN,i(x) , Ui(x).
�

Note that, in contrast to neural sampling theory (Buesing et al., 2011), The-
orem 3 is only concerned with the distribution over a subset of all neurons (the
principal neurons x), i.e. the marginal distribution p(x) after integrating out all
auxiliary variables ξ.
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WTA circuit motif

The WTA circuit motif consists of a single auxiliary neuron which is reciprocally
connected to some subset K ⊆ {1, . . . N} of principal neurons (Figure 3.1B). The
goal of the WTA motif is to achieve that most of the time exactly one neuron in
K is active. The WTA motif should thus increase the energies of all network states
except those states where exactly one neuron in K is active. This can be achieved
in two steps. First, the energy of all network states where more than one neuron
in K is active is increased. We found that this can be robustly achieved by a single
inhibitory neuron which receives strong excitatory connections from K, and sends
strong inhibitory connections back to K (with some weight −wWTA ≪ 0). The
inhibitory neuron should have a low bias such that it only fires when one of the
principal neurons is active. Second, the energy of states where no neuron in K is
active is raised. This can be done most easily by raising the biases of all neurons
in K by some constant bWTA (not shown in Figure 3.1B) with 0 < bWTA < wWTA.
Alternatively, this could in principle also be achieved by an additional auxiliary
neuron which is constantly active and makes excitatory connections to all neurons
in K.

The described implementation of the WTA circuit motif is intended to approx-
imate the requirements of Theorem 3 for compositionality. This can be seen if one
considers the energy function

UWTA[K](x) =







bWTA , if
∑

k∈K
xk = 0 ,

0 , if
∑

k∈K
xk = 1 ,

(wWTA − bWTA) · (−1 +
∑

k∈K
xk) , if

∑

k∈K
xk > 1 .

(C.17)

According to (C.9) the ideal ∆uk,WTA[K](t) for implementing this energy func-
tion in a compositional manner is given by,

∆uk,WTA[K](t) =

{

bWTA ,
∑

l∈K\k xl(t) = 0 ,

bWTA − wWTA ,
∑

l∈K\k xl(t) > 0 .
(C.18)

This behavior is closely approximated by the described WTA circuit implemen-
tation: Regardless of the network state, there is a bias term bWTA. As soon as one
(or more) of the neurons fire, this triggers the auxiliary inhibitory neuron which
then strongly inhibits all competitors with weight −wWTA. The nature of the ap-
proximation lies mainly in the delay between the onset of activity of a winner and
the onset of inhibition at the remaining principal neurons.

OR circuit motif

The OR circuit motif consists of two auxiliary neurons reciprocally connected to
some subset K ⊆ {1, . . . N} of principal neurons (Figure 3.1B). The purpose of the
OR motif is to ensure that most of the time at least one neuron in K is active.
Thus, the energies of all network states where no neuron in K is active should
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be increased. At the same time, however, the energies of all other network states
should ideally remain unmodified, regardless of how many neurons ≥ 1 are active.
The first part, i.e. increasing the energies of states where no neuron is active, can
be done by adding an auxiliary neuron (Figure 3.1B, left auxiliary OR neuron)
which excites all neurons in K with equal synaptic weight wOR. The second part is
slightly more tricky, as it requires that the OR circuit should suspend its influence
on the network during periods where at least one neuron in K is active. This can be
achieved by a) adding an inhibitory connection from K to the first auxiliary neuron
such that the neuron is only activated when needed, and b) by adding a second
auxiliary neuron (Figure 3.1B, right auxiliary OR neuron) which is triggered when
a neuron in K fires in response to the first auxiliary neuron. The goal of the second
auxiliary neuron is to immediately cancel any effect of the first auxiliary neuron
on the remaining neurons in K due to sustained post-synaptic potentials. This is
achieved through inhibitory connections −wOR to all neurons in K.

Analogous to the WTA circuit, the described implementation of the OR circuit
motif aims to approximate the requirements of Theorem 3 for compositionality. To
see this, consider the energy function

UOR[K](x) =

{

0 , if
∑

k∈K
xk ≥ 1 ,

wOR , if
∑

k∈K
xk = 0 .

(C.19)

By (C.9) the corresponding ideal ∆uk,OR[K](t) supporting compositionality is
given by,

∆uk,OR[K](t) =

{

0 ,
∑

l∈K\k xl(t) ≥ 1 ,

wOR ,
∑

l∈K\k xl(t) = 0 .
(C.20)

The OR circuit approximates this behavior as described above through the
combination of two auxiliary neurons. The nature of the approximation is three-
fold. First, when all principal neurons in an OR circuit have just turned off (and
thus the constraint is not met anymore), the additional bias wOR should ideally be
communicated instantly to all neurons. However, the first auxiliary neuron fires in
general with some small delay, and therefore the additional bias wOR is signaled to
the principal neurons slightly later than ideally required. Second, when a principal
neuron eventually fires in response to the first auxiliary neuron, there is a delay until
the second auxiliary neuron turns on to cancel the bias wOR that is still present due
to lingering PSPs from the first auxiliary neuron. Third, there is an “undershoot”
effect when the excitatory PSP of the first principal neuron has already vanished,
but the inhibitory PSP of the second auxiliary neuron is still present. To minimize
the error due to this effect, the overall biases of all principal neurons in an OR
circuit should be kept high, in order to keep the typical delay between the activity
onset of the first and the second auxiliary neuron as short as possible.
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C.4 Details to Principle 3: benefits of asymmetric

spike-based signaling

Principles 1 and 2 pave the way towards massively parallel realizations of stochas-
tic search in networks of spiking neurons. A first application of these principles
has provided compelling results in simulations, as demonstrated in Figure 3.2 and
Figure 3.3. A key theoretical question which then arises is to what extent differ-
ent components of the system contribute to the observed performance. There are
various aspects that can be examined in this context, such as the asynchronicity of
message transfer, stochasticity, and the asymmetry of spike-based communication
(a spike marks the onset of a fixed-length on period, whereas off periods vary ran-
domly - hence on and off states are handled fundamentally different by a spiking
network). We focus our analysis here on the role of the asymmetry of spike-based
signaling, because its implications are arguably least well understood.

Asymmetric vs. symmetric dynamics

In order to isolate the effect of asymmetric signaling we consider an artificial non-
spike-based “symmetrized” system in which on and off transitions of units are
not mediated in an asymmetric fashion via spikes of fixed length, but rather in a
symmetric manner. Specifically, we aim to morph neural spiking dynamics into
the dynamics of Gibbs sampling (Bishop, 2006), one of the standard methods in
statistics and machine learning for sampling from complex probability distributions.
By theoretically analyzing and comparing the behavior of the two systems one can
then reason about the specific role of asymmetric signaling.

A canonical way of symmetrizing the dynamics of a given spiking network with
noise is to make sure that all other components and aspects of the systems remain
unchanged (event-based asynchronous signaling, stochasticity, synaptic weights and
biases, definition of membrane potential uk given the current on/off states of other
neurons) and modify only the way the system handles transitions between on and off
states. Importantly, to facilitate a comparison between asymmetric vs. symmetric
dynamics, such modification should not alter the stationary distribution and energy
function of the system.

For a stochastic spiking neuron embedded in some network, transitions occur
from off to on states according to

ρon(uk) =
1

τ
exp(uk) , (C.21)

whereas transitions from on to off occur deterministically after a period of τ time
units has passed. Clearly, in a symmetric system transitions must occur stochasti-
cally in both directions (they cannot be both deterministic), with transition rates
ρ′on(uk) and ρ′off(uk). Concrete symmetric expressions for ρ′on(uk) and ρ′off(uk) are
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obtained by using a continuous-time variant of Gibbs sampling (Bishop, 2006).

ρ′on(uk) = ρ0 · σ(uk) , (C.22)

ρ′off(uk) = ρ0 · σ(−uk) , (C.23)

where σ(u) = (1 + exp(−u))−1 denotes the standard sigmoid function. Such a
continuous-time variant of Gibbs sampling has been proposed in the literature,
for example, in the context of sampling from second-order Boltzmann machines
(Yamanaka et al., 1997).

Asymmetry facilitates transitions across large energy barriers

A somewhat unexpected but striking difference which emerges from the comparative
analysis between asymmetric and symmetric dynamics is that transitions across
large energy barriers are much more likely and frequently to occur with asymmetric
(spike-based) signaling. To see this, define the mean on-transition time mon(u) as
the average time from the last on→ off transition until the next off→on transition,
at a given membrane potential u. The mean off -transition time is defined in an
analogous manner. In the stochastic spiking network these are given by,

mon(u) =
1

ron(u)
= τ · exp(−u) , (C.24)

moff(u) = τ . (C.25)

In the symmetric system, on the other hand, mean transition times are given
by,

m′
on(u) =

1

r′on(u)
=

1

ρ0
· (1 + exp(−u)) , (C.26)

m′
off(u) =

1

r′off(u)
=

1

ρ0
· (1 + exp(u)) . (C.27)

Notably, one can identify a single translation factor F (u) between the two systems,

mon(u) = m′
on(u) · F (u), (C.28)

moff(u) = m′
off(u) · F (u) (C.29)

which is given by,

F (u) = τρ0
︸︷︷︸

const.

· (1 + exp(u))−1 (C.30)

Note that F (u) is strictly positive and decreases monotonically with increas-
ing membrane potential u. Furthermore, note that small values F (u) signify that
the asymmetric dynamics is fast in comparison with the symmetric dynamics (in
both, on and off directions). Hence, (C.30) shows that the asymmetric dynamics
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of spiking neurons increases specifically the on- and off -transition rates of those
neurons with high membrane potentials u (i.e. neurons with strong input and/or
high biases). This makes sense since off transitions in the symmetric case can
be arbitrarily slowed down for large u (C.27), whereas the spike-based system will
necessarily fall back to an off state on a regular basis regardless of u.

Given that transitions are specifically enhanced in the presence of high mem-
brane potentials, and taking into account that large u reflect large energy barriers
(according to (C.12)), it follows that the spike-based system is much more inclined
to make exploratory on→off transitions (crossing large energy barriers) on a regular
basis. Despite the resulting increased frequency of transitions to high-energy states
due to (C.30), however, it should be stressed that on average the asynchronous
spike-based system does not spend more time in high-energy states (both systems
sample from the same p(x)), because according to (C.28) also the transition back
to the corresponding on state (i.e. the lower energy state) happens at an increased
rate for large u. The critical observation is that the return to the identical previous
state can be intercepted by other neurons which, while the neuron is off, are given
the brief opportunity to spike before the previous state is restored, and may thereby,
e.g., escape from a previously inhibited state. This is particularly obvious in the
context of WTA circuits, where such brief periods of off -time of the current winner
allow other neurons to take over. Altogether, as we demonstrated in Figure 3.3, it
is observed that this enhanced utilization of exploratory moves leads to improved
search for low energy states in the asymmetric spike-based system, by facilitating
fast escape routes from deep local minima which are not available to such extent in
a symmetric system.

Asymmetry facilitates goal-directed transitions

(C.30) states that spike-based transition frequency is enhanced in proportion to u. It
was already noted above that this encourages exploratory on→off transitions which
may facilitate the escape from local minima. But clearly also off →on transitions
are affected by (C.30). In particular, consider a situation where a group of neurons
in the off state is competing for emitting the next spike (e.g. in a WTA circuit).
Those neurons with the highest membrane potentials are particularly eager to fire.
Suppose, for example, that there are two neurons with ua = 3 and ub = 5, and all
other neurons have considerably lower u. In the symmetrized non-spiking system,
transition rates scale with σ(u) and are therefore approximately equal for the two
neurons a and b (due to saturation of the sigmoid function). In the spike-based
system, however, instantaneous transition rates scale with exp(u) and thus the
competition will be much easier to win by the neuron which is most eager to fire
(i.e. neuron b in the example). Clearly, this makes a substantial difference in the
dynamics and performance of the stochastic search, especially since uk reflects the
drop in energy that can be gained by turning on some neuron k. In particular,
it means that a spike-based system is not only more exploratory in the “up-hill”
direction (on→off transitions towards higher energy levels), but also more goal-
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directed in the “down-hill” direction.

Obviously, the enhanced agility with respect to some transitions must come at
a price. Indeed, those transitions which bring about only small changes in the
energy landscape (transitions with small u) are considerably disadvantaged by the
spike-based dynamics. In terms of convergence properties, however, this seems to
be a small price to pay, since stochastic search appears in practice more frequently
impeded by the presence of large energy barriers. 1

C.5 Details to Principle 4: internal temperature con-
trol

In order to realize an internal temperature control mechanism which allows network
activity to “lock in“ when a good solution has been found, the following functional
components are required (Figure 3.1D): 1. The generation of OK signals in each
circuit motif. 2. A lock-in unit that integrates individual OK signals into a global
all OK message. 3. The activation of additional circuits which reduce temperature.

The following realizations of these elements have proved effective: For the WTA
circuit motif, the activity of the inhibitory neuron can be directly used as an OK
signal. This works because the probability that two neurons are active at the same
time is vanishingly small as long as strong inhibitory connections are used in the
WTA motif. Hence, in practice whenever the inhibitory neuron is active it means
that exactly one principal neuron is active (and the WTA constraint is met). For the
same reasons, one can also simply connect all neurons in a WTA circuit to the lock-
in neuron. Since at most one neuron is active at a time, the joint impact of these
neurons on the lock-in unit precisely reflects whether the WTA constraint is met.
For the OR circuit motif, the most straightforward way of implementing an OK
signal is to add another auxiliary neuron with low bias and excitatory connections
from all involved principal neurons, such that the neuron fires as long as one of the
principal neurons is active, and remains silent otherwise. In simulations, however,
a slightly different implementation has proved more effective, which can be used
when all principal neurons involved in the OR circuit are also part of some WTA
circuit. Then, a not OK signal can be derived by adding an auxiliary neuron with
low bias which receives connections from all other neurons in the WTA circuits of
the involved principal neurons. This works because, whenever principal neuron k
(which is involved in the OR circuit and in addition in some WTA circuit) is not
active, some other neuron in the WTA circuit of neuron k must be active (most
of the time). Hence, whenever the OR constraint is violated and all K principal

1Clearly, also transitions with negative u are disadvantaged by the spike-based dynamics. In
general, this may have a negative effect on convergence, and the magnitude of such negative effects
would need to be examined in relation to the previously described advantages. In the context of
this paper, however, negative u practically only occur in neurons which are not supposed to fire at
all, for example neurons which are currently inhibited in a WTA circuit. And in this case it is in
fact desirable that such transitions occur with decreased frequency.
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neurons involved in the OR circuit are inactive, the auxiliary neuron will see that
in each of the involved WTA circuits some other neuron is active. A more detailed
description of how this was implemented as part of the lock-in mechanism for 3-SAT
problems is given in Section ”Details to 3-SAT application“.

The lock-in neuron can be implemented by choosing a low bias and connection
strengths from OK neurons in each circuit in such a manner that the firing prob-
ability reaches non-negligible values only when all OK signals are active. When
circuits send either OK or not OK signals, the connection strengths from not OK
should be negative and can be chosen in such a manner that non-negligible firing
rates are achieved only if all OK but none of the not OK signals are active.

Regarding the activation of additional circuitry to reduce temperature, the most
straightforward way of achieving this is to duplicate all circuit motifs (as indicated
in Figure 3.1D). The biases of auxiliary neurons in duplicated circuits should be
much lower, such that these circuits remain inactive unless an additional excitatory
drive is provided by the lock-in neuron. This is exactly how temperature reduction
was implemented for the OR circuit motif. For WTA circuits, however, there exists
an even a simpler way of reducing temperature which does not require duplication
of circuitry but only excitatory connections from the lock-in neuron to all principal
neurons in a WTA circuit. This works well because the WTA circuit motif consists
of two components, a) excitatory drive (increased bias) to all involved principal
neurons, and b) strong mutual inhibition. If inhibition strength is very strong,
however, duplication of that second component is not necessary. Hence, a reduction
of temperature can be achieved by mere activation of additional excitatory drive.
For further implementation details see Section ”Details to 3-SAT application“.

C.6 Details to simulations

All simulations were performed in NEVESIM, an event-based neural simulator.
Optimization of networks, as well as exploration of their properties were done with
ZLIB, a library for parallelization and optimization, developed within the scope of
this thesis. The analysis of simulation results was performed in Python and Matlab.

Details to 3-SAT application (Figure 3.2)

A general 3-SAT problem consisting of a set of binary variables and a set of clauses,
each involving three variables, can be implemented in a spiking network by repre-
senting each binary random variable (RV) with two neurons forming a WTA circuit
(biases of the principal neurons: bnrn). In particular, the WTA circuit is imple-
mented by adding a single inhibitory neuron with bias binh and connecting it to
the two neurons with bidirectional connections winh and wexc (to and from the in-
hibitory neuron, respectively). The winh should be set strong enough to shut down
all principal neurons in the WTA circuit (to overcome their biases). wexc should
be strong enough such that it activates inhibition almost immediately in order to
prevent other neuron(s) from spiking.
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For the implementation of a 3-SAT clause one needs to form an OR circuit con-
sisting of those neurons which take part in the clause. In particular, two auxiliary
neurons are added, with biases of 0.5B and −3.5B for the first and the second
auxiliary neuron, respectively, where B is some constant. Both auxiliary neurons
should connect to those neurons involved in the clause (in total to 3 neurons), with
bidirectional connections wOR and −B (to and from the first auxiliary neuron,
respectively), and −wOR and B (to and from the second auxiliary neuron, respec-
tively). Finally, the first auxiliary neuron connects to the second one with strength
3B.

Therefore, the total number of neurons needed to implement a general 3-SAT
problem in a spiking neural network is 3#variables + 2#clauses (2 + 1 per WTA
circuit, and 2 per OR circuit), while the number of connections is 4#variables +
13#clauses. Notably, both the number of neurons and the number of synapses
depend linearly on the number of variables (the number of clauses linearly depends
on the number of variables if problems with some fixed clauses-to-variables ratio
are considered).

At any point in time the principal network state x is defined based on the
activity of principal neurons within the last τ time units. If exactly one of the two
neurons which code for a RV Xi is active at some time t, then the variable has a
properly defined value. The WTA circuit for each RV ensures that this is the case
most of the time for most problem variables. When this is the case, one can simply
read off the current assignment of values to the RVs from the network state. Any
clause is considered satisfied if at least one of the three neurons, which correspond
to the three literals of the clause, is active.

To calculate the current performance of a solution at any point in time we use as
a performance measure the ratio between the number of satisfied clauses and total
number of clauses. If none of the variables which take part in a clause are properly
defined then that clause is considered unsatisfied. As a result, this performance
measure is well-defined at any point in time.

In order to implement the lock-in mechanism we use two working regimes which
differ in the temperature of the network. While the first one is the normal regime
during which the network normally explores possible solutions, the second one is the
regime of decreased temperature during which the network locks into the current
state (solution) and is very unlikely to escape from it. To implement the second
regime we add for each clause two additional auxiliary neurons which are connected
in the same way as the original auxiliary neurons (they target the same neurons) but
with different weights: wOR2 and −B (to and from neuron), and −wOR2 and B(to
and from neuron), for the first and second additional auxiliary neuron, respectively.
In addition their biases are set to −0.5B and −6.5B (first and second aux. neuron).

These additional auxiliary neurons are activated (i.e. functional) only when a
certain state (the solution) was detected, which is signaled by the global lock-in
neuron with bias bglob that is connected to both additional auxiliary neurons of all
clauses with connection strengths B and 3B to the first and the second additional
auxiliary neuron, respectively. Additionally, the global lock-in neuron is connected
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to every other principal neuron with connection strength wglob. This global neuron is
active by default due to the high bias, but is deactivated whenever one of the status
neurons, which check if a certain clause is not satisfied, is active (not OK signals).
There is one status neuron for each clause, with bias set to −2.5B. The status
neuron receives excitatory connections from all neurons corresponding to inverted
literals of the clause, with strength B. Therefore, if all RVs that participate in the
clause are set to the wrong values, this triggers the status neuron which reports
that the clause is not satisfied. This automatically shuts down the global neuron
signaling that the current network state is not a valid solution.

To implement this lock-in mechanism one needs additional 3#clauses+1 neurons
and 2#variables + 20#clauses synapses.

The architecture described above was used throughout with the following pa-
rameters: τ = 10e − 3 and refractory period of 10ms for all neurons except for
the global neuron which has τ = 9e − 3 and refractory period of 9ms, bnrn = 2,
binh = −10, bglob = 10, B = 40, winh = −100, wexc = 100, , winh = −100,
wOR = 2.5, wOR = 10, with rectangular PSPs of 10ms duration without trans-
mission delays for all synapses except for the one from the global neuron to the
additional auxiliary neurons where the duration is 11ms.

For the analysis in Figure 3.2F of problem size dependence we created 3-SAT
problems of different sizes with clause-to-variable ratio of 4.3. To ensure that a
solution exists, each of the created problems was checked for satisfiability with
zhaff, a freely available 3-SAT solver (Fu et al., 2004).

Details to TSP application (Figure 3.3)

For finding the shortest route for a TSP problem consisting of Ncities cities and
Nresting additional resting steps one needs in total Ncities +Nresting variables, where
each RV codes for the city visited at a certain step s. To solve TSP problems one
needs to consider three types of constraints: (a) each RV must be properly defined,
i.e. exactly one city must be visited at each step s. In addition, (b) each value of a
variable must appear at least once in all RVs. At the same time only neighboring
variables (those coding for consecutive steps) can have the same values (this allows
for ”resting“ steps). Finally, (c) the penalty (in terms of additional energy) that two
consecutive variables appear in a given configuration, i.e. a particular transition
from city i to some other city j, must reflect the traveling cost between the pair of
cities.

Based on Principle 2 these constraints can be implemented in a spiking neural
network by forming circuits and interactions between neurons, where each ofNcities+
Nresting variables with Ncities different values can be represented by Ncities neurons
with bias bnrn each of which represents one city. To implement variable constraints
(a) it is enough to form a WTA circuits from neurons that code for different values
of the same variable. The WTA is formed in the same way as described for 3-SAT
problem by taking corresponding neurons (here WTA circuits have Ncities principal
neurons). To force the network to visit some desired city at a particular step it is
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sufficient to set the biases of those neurons which code for the desired city at in the
WTA circuit of that step to different values. In particular, the desired value in the
WTA circuit of that step is set to bP and all others to bN .

The implementation of constraints (b) requires that all variables have different
values except if they are neighboring variables. In the spiking network implemen-
tation this can be realized by adding negative connections of strength wunique from
each neuron that codes for a certain value in a variable to all other neurons which
code for the same value in other variables, except for the neighboring variables.
This simply prevents, or decreases the chance, that two particular variables have
the same value except if they are neighboring variables.

Finally, constraints (c) can be implemented by adding connections between all
the neurons which code for two consecutive variables. This results in a network with
a ring structure (as the last and the first variable are also connected). We chose
to encode weights of these connections such that they reflect the relative distances
between cities. To calculate the weights we normalize all the distances with respect
to the maximum distance (this procedure applies also for asymmetric problems)
and then we rescale and shift them according to w = woffset + (1 − wN ) ∗ wscale,
where wN are normalized weights in [0, 1] range.

Such architecture requires (Ncities +1)∗Nresting neurons and N(3Nresting −1)+
(Ncities − 1) ∗ (Ncities − 1) ∗Nresting number of synapses.

Reading out the current assignment to a variable can be done based on the
activity of the principal neurons which take part in the WTA circuit (same as for 3-
SAT). Note that in this case each variable has Ncities values and therefore it multiple
neurons within the same WTA could be active. When this happens, the value of the
associated RV is briefly undefined. The performance of the network at some time is
calculated as the ratio of the optimal path and the current path represented by the
network. In order for the currently represented path to be valid all variables have
to properly defined and each value (city) has to appear at least once. Although
this is not always the case, exceptions occur rarely and therefore are not visible in
performance plots.

For solving symmetric planar TSP experiments in Figure 3.3 we used the follow-
ing setup: τ = 20e − 3 and refractory period of 20ms for all neurons, bnrn = −0.3,
bP = 100, bN = −100, binh = −10, winh = −100, wexc = 100, wunique = −14.2,
wscale = 20.8, woffset = −6.6, Nresting = 3, with rectangular PSPs of 20ms duration
without transmission delays for all synapses. The value of the first variable (the
first step) was fixed to the first city.

For solving asymmetric TSP problems we used the same architecture but slightly
different parameters: bnrn = 1.3, wunique = −14.1, woffset = −7.9, Nresting = 8.

For the comparative analysis between asymmetric and symmetric sampler (Neu-
ral Sampling (NS) vs. Boltzmann machine (BM)) we used exactly the same weights,
biases and architecture as described above. The only difference here was that no
inhibitory neurons were used, so that WTAs were implemented via direct inhibi-
tion connections between neurons taking part instead of bi-synaptic connections via
inhibitory neurons.
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The comparison of the number of state changes between BM and NS implemen-
tations was done based on 100 runs, each of which was simulated for 100.000 state
changes. In each run and after every state changes we evaluated the current network
state, and checked how many RVs were properly defined or not. Combining all runs
in each case, we calculated how often transitions occurred in each sampler to states
with different numbers Nundef = 0, . . . , Ncities + Nresting of undefined RVs. Based
on this information we constructed corresponding histograms for BM and NS. To
highlight the differences between the two implementations, we calculated the ratios
between the normalized histogram values for NS and BM (Figure 3.3C). For the
convergence speed comparison, in each run we calculated after each state change the
cumulative minimum and mean performance during the whole time leading up to
that state change. This was first done for each of the 100 network runs individually.
The results were then averaged for each number of steps over all runs.
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D.1 Generative model for extraction of multiple hidden
causes

The generative model for extraction of multiple hidden causes contains visible vari-
ables y1, . . . , yN ∈ {0, 1} and hidden variables z1, . . . , zM ∈ {0, 1}. The probabilistic
model is given as:

p(yi = 0|z,λ) =

M∏

m=1

λzm

im , (D.1)

where λim is in the range (0, 1] and gives the probability that the input yi is not
active given that zm is active. By defining wim = − log λim, where wim is in the
range [0,∞), we get

p(yi = 0|z,W ) =
M∏

m=1

e−wimzm = e−w̄T
i z. (D.2)
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Individual visible variables are independent, given the hidden variables. Hence, we
have

p(y|z,W ) =

N∏

i=1

p(yi = 1|z,W )yip(yi = 0|z,W )(1−yi) (D.3)

=

N∏

i=1

e−wT
i z(1−yi)(1 − e−wT

i z)yi (D.4)

We approximate 1 − e−w
T
i z with 1 − e−w

T
i z ≈ e−1/(2wT

i z+b), which holds very
good for small wT

i z. This gives us:

p̃(y | z,W ) =

N∏

i=1

e
−w

T
i z+yi(w

T
i z− 1

2wT
i

z+b
)

(D.5)

in the following we consider realizations of E and M steps of Stochastic Online
EM algorithm. For E-step, given a new input pattern yt at time t, one needs to draw
a sample zt ∼ p(z|yt,W ). To do so we use NCC condition from neural sampling
theory in order to calculate the membrane potential of neurons in recurrent spiking
neural network required such that it samples from desired distribution.

The membrane potential of a neuron is calculated as a log-odd ratio (NCC
condition):

uk = log
p(zk = 1| z\k,y)

p(zk = 0| z\k,y)

= π + JT
\k z\k +

N∑

i

[(yi − 1)wik + yi(
1

∑M
m6=k wimzm + b

− 1
∑M

m6=k wimzm + wik + b
)]

with Jkl = Jlk = − 1
σ2 for k 6= l and π = 2K−1

2σ2 .
Here we linearize the complex calculation of difference of fractions with γwik. This
approximation is good for small wik but it heavily depends on b and current acti-
vation of circuit, and it results with

uk ≈ π + JT
\k z\k +

N∑

i

(γyi − 1)wik (D.6)

where γ is a free parameter.
If there is some noise in the input means λim > ρ > 0 and wim < − log ρ, which

is equivalent to p(yi = 0| z) > 0 and means that there is some maximum value of
wim. Under assumption that the relevant weights for discrimination of pattern will
reach the maximum value (− log ρ) and others 0, we make approximation

∑N
i wik ≈

const = δk.

uk = π + JT
\k z\k +

N∑

i

γyiwik − δk (D.7)
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The δk can be incorporated into the prior π resulting with πk = π − δk, which
is equivalent to using neuron specific intrinsic excitability and inhibition strength.
Finally the inference can be done as:

uk = πk + JT
\k z\k +γ yT wk (D.8)

If one assumes that all wk are the same, which is the case when all patterns are of
same complexity (sum of rates from all channel) as in the case of bar rate patterns,
one ends up with eq. 4.2 for membrane potential. This means that all neurons will
prefer to learn patterns of similar complexity. If we allow for different constants
(βk) this should force the neurons to learn patterns of different complexity.

In order to perform the E-step one needs to perform an update of parameters
as ∆W ∝ ∂W log p(yt,zt|W ). As prior p(z) does not depend on W , this is the
same as taking derivative of log p(yt|zt,W ).

Maximization of the log-likelihood with respect to wim gives

∂

∂wim
log p̃(y | z,W ) =

∂

∂wim
log

N∏

i=1

e
−w

T
i z+yi(wT

i z− 1

2wT
i

z +b
)

=
∂

∂wim

N∑

i=1

−wT
i z+yi(w

T
i z− 1

2wT
i z+b

)

= −zm + yi(zm +
2zm

(2wT
i z+b)2

)

Now we can update the parameters of the model in order to increase log-likelihood
for the given configuration. To update, we use gradient descant technique, where
gradient of log-likelihood with respect to wim gives us the learning rule

∆wim = ηzm(yi − 1 +
yi

(
√

2wT
i z+θ)2

) (D.9)

where θ = b/
√

2. This learning rule is not local as it requires information about
activation of all output neurons as well as values of all synapse weights originating
from input neuron i. In order to make this biologically plausible we approximate
this by using only locally available information at synapse:

∆wim = ηzm(yi − 1 +
yi

(
√

22wim + θ)2
) (D.10)

where η is learning rate and b is bias which limits weights.

D.2 Creation of rate and spatio-temporal patterns

P denotes the set of patterns, where each one has the length li. Each pattern
consists of Nc channels (input neurons) with ri,1,t, .., ri,Nc,t firing rates, where i
denotes pattern and t ∈ [0, li] denotes time.
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In the case of bar rate pattern of shape n× n = Nc, all channels have constant
firing rate during the whole length of pattern. Among all channels there is a subset
S of channels, |S| = n, whose channels have high rate (Rh) while others have low
rate (Rl), ri,S,t = Rh, ri,\S,t = Rl. Subset S is such that all elements belong to a
specific row or a column of n× n shaped pattern.

The spatio-temporal or time varying rate patterns consist of channels where each
one of them has changing rate during the whole length of pattern. The firing rate
for each channel is calculated as ri,j,t = exp(xt), where xt is a membrane potential
of a neuron, which is calculated based on independent Ornstein-Uhlenbeck process
(OU). The OU process is defined as dxt = ΘOU(µOU − xt)dt + σOUdWt, where t
denotes time, ΘOU > 0 is the changing rate (convergence speed), µOU > 0 is the
mean, σOU > 0 is the noise variance and Wt is the Wiener process.

D.3 Creation of complex input spike trains

The input spike train is made by superimposing a number of patterns, or more
precisely their rates, from the set of patterns P , where the maximum number of
patterns(CM ) that can be overlapped at any given point of time is constrained.
Superposition of patterns can be done linear on nonlinear. In the case of linear
superposition the final rate of a particular channel is the sum of rates of patterns
that overlap at given time (ri), while in the case of nonlinear superposition it is
calculated as fL+fH ∗σ(ri, µS , ωS), where fL is the lowest rate, fH the highest rate,
σ(x, µS , ωS) = 1/(1 + exp(−(x − µS)/ωS))), and µS = fL + fH/2, ωS = fH/(2α),
with α being the width of sigmoid function.

Additionally, the patterns are allowed to have an arbitrary relative timing.
In order to create such an input we introduce channels ch1,t, .., chCM ,t, where
chi,t ∈ {0, .., |P |} and t denotes time. Each channel chi,t has a certain probability
of being active pai, where active means that one of the patterns is presented in that
channel and therefore chi,t > 0 (value depends on the pattern’s index). Probability
of some channel chi being on is pai = u/l, where u is the total time being active and
l the total duration of input (simulation time). The total time of being active can
be approximated as u ≈ nsd, yielding pai = nsd/l, where ns is the number of times
one of patterns were active during simulation time l in a particular channel and d is
average length of all patterns in P , d =

∑
li/|P |. Finally, the probability of activat-

ing one of patterns from |P | in channel chi is pi = ns/(l−ns(d−1)), which together
with the previous expression gives pi = σ(ũi − log τ̃), where ũi = log(pai/(1−pai)),
τ̃ = d and σ(x) is a standard sigmoid function (σ(x) = 1/(1 + exp(−x))). Note
that this is equivalent to the neural sampling with only difference that activity of
channels (neurons) are not binary but rather consist of cause information (pattern’s
index), while τ̃ is an average of all patterns length (pattern specific τ̃). Note that
the this could also be solved with number of channels (ch)= |P |, which would en-
sure that activity is binary, but additional mechanism that ensures maximum and
minimum number of overlapping patterns would be needed.
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D.4 Details to the performance measure

According to the neural sampling theory (Buesing et al., 2011) the neuron is active
for period τ after it spikes. We refer to the binary description of this behavior in
discrete time as neuron’s activity nai,t ∈ {0, 1}, where i denotes neuron, t time and
nai,t = 1 during [spike, spike+τ ] period (this is the same as looking for periods when
auxiliary variable ζi > 0, for details look in (Buesing et al., 2011)). Grouped activity
is obtained by performing logical OR operation between individual neurons activity
belonging to the same group of neurons. In similar way as neuron’s activity we define
pattern’s activity, pai,t ∈ {0, 1}, where i denotes pattern, t time and pai,t = 1 during
[start+ epsp/2, start+ li + epsp/2+ tau]) period, where start denotes time of start
of pattern’s representation, epsp denotes length of used excitatory PSP (EPSP)
shape (this is the time period where EPSP shape has significant value) and li is the
length of the pattern.

Grouping of neurons is done according to the precision measure (van Rijsbergen,
1974) which is defined as

Precision =
TP

TP + FP
(D.11)

TP (True-Positive) is the number of times prediction was correct, while FP (False-
Positive) is the number of times prediction was wrong. The precision measure
between pattern’s activity pai,t and neural activity naj,t is calculated as

Precision =

∑

t nai,tpaj,t
∑

t nai,tpaj,t +
∑

t[nai,tpaj,t]
, (D.12)

where line over nai,t denotes binary NOT operation.

For sufficiently long patterns (here we assume there is some temporal structure)
we calculate the correlation measure (Phi coefficient) between groups of neurons ac-
tivity (grouped activity) and patterns activity, where neurons are grouped according
to the precision measure. For the case of short rate patterns (bars) assumption is
that there is no temporal structure, therefore we do not group neurons, but we
rather directly calculate correlation between neurons’ and patterns’ activity.

To measure the quality of the model we use the average correlation of all and
the average correlation of all found patterns. For each neuron we find the pattern
with whom it has the highest correlation. Note that it is possible that there is no
such neuron if the model did not discover (learn) certain pattern. Then the average
correlation of all patterns is given as the ratio between the sum of correlations
for patterns which are learned and the number of all patterns, while the average
correlation of found pattern is given as the ratio between the sum of correlations
for patterns that were learned and the number of those learned patterns.
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D.5 Details to simulations

All simulations of SWTA networks with direct implementation of inhibition, as
well as analysis, were performed in Python. Simulations of SWTA networks which
implemented biological realistic inhibition were done in PCSIM, a neural simulator
written in C++ that provides a Python interface, which was extended in order to
support simulation of SWTA model. Optimizations of SWTA networks, as well
as exploration of theirs properties were done with ZLIB (Chapter 5), a library for
parallelization and optimization, developed by me within the scope of this thesis.

Details to experiment with superposition of bar rate patterns

In this experiment we train SWTA network with 120s of input made by nonlinear
superposition of at most 3 out of 16 bar rate patterns (30ms) with constant rates
per channel and arbitrary relative timing. We use SWTA network with following
setup: N = 64, M = 64, µ = −7., σ = 0.2, η = 0.04, b = 1., γ = 2., additive alpha
EPSP of 30ms length and top value at 1.15, additive double exponential inhibitory
PSP (IPSP) shape(trise = 1ms, tfall = 10ms), τ = 10ms, delay of 4ms, maximum
weight = 2., the same βk for all neurons incorporated into µ and thresholding for
correlation at 0.3 (min correlation, otherwise the neuron is considered as a free
neuron). Inhibition is implemented via direct connections between SWTA neurons.
The patterns have arbitrary relative timing and at most 3 patterns are allowed to
overlap at the same time. The patterns activity probabilities are [0.6, 0.6, 0.7], which
results in the following distribution of number of overlapping patterns in increasing
order (from 0 to 3) [0.05, 0.26, 0.44, , 0.25].

Details to emergent extraction of time-varying rate patterns from
superpositions in complex input streams

Here we consider nonlinear superposition of two spatio-temporal patterns (150ms)
with varying rates per channel and arbitrary relative timing shown for 100s to the
SWTA network with following parameters: N = 64, M = 100, µ = −5., σ = 0.5,
η = 0.07, b = 0.8, γ = 2., additive alpha EPSP of 30ms length and top value at
1., additive double exponential IPSP shape(trise = 1ms, tfall = 10ms), τ = 10ms,
delay of 3ms, maximum weight = 2., the same βk for all neurons incorporated
into µ and thresholding for grouping neurons at 0.4 (min precision). Each pattern
consists of 64 channels and each channel has varying rates limited to 50Hz generated
by independent Ornstein-Uhlenbeck process with params: µ = 0, θ = 5., σ = 0.5.
The patterns have arbitrary relative timing and at most 2 patterns are allowed to
overlap at the same time. The patterns activity probabilities are [0.5, 0.5], which
results in the following distribution of number of overlapping patterns in increasing
order (from 0 to 2) [0.25, 0.5, 0.25].
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Details to computational properties of microcircuit motif with re-
laxed lateral inhibition

For all experiments we used the same SWTA network setup. The SWTA network
was trained with 120s of input made by nonlinear superposition of at most 3 out
of 16 bar rate patterns (30ms). All measured were calculated based on 10runs.
SWTA network parameters: N = 64, M = 100,µ = −7, σ = 0.2, η = 0.04,
b = 1., γ = 2., additive alpha EPSP of 30ms length and top value at 1.15, additive
double exponential IPSP shape(trise = 1ms, tfall = 10ms), inhibition delay 4ms,
τ = 10ms, maximum weight = 5., the same βk for all neurons incorporated into µ
and thresholding for correlation at 0.3
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