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Abstract

Rare earth ions like neodymium(III) and europium(III) exhibit interesting optical properties

owing to their partially filled f-orbitals, which lead to their application in laser materials or

as luminophores.

The aim of this thesis was to investigate the so-called hypersensitive transitions of rare earth

ions taking neodymium(III) and europium(III) as representatives. The intensities of these

transitions are particularly sensitive to the environment, i.e. to the ligands surrounding the

ion.

The main focus was the investigation of the symmetry dependence of the hypersensitive

transitions.

Therefore, the absorbance and emission spectra of neodymium(III) and europium(III) in

solvent mixtures of water, acetone and methanol were investigated experimentally in

this thesis in order to evaluate the hypersensitive transitions in different environments.

Furthermore, rare earth ion doped calcium aluminium borate (CAB) glasses were prepared

corresponding to an environment of low symmetry. A Judd-Ofelt analysis of the optical

spectra was performed yielding semi-empirical Judd-Ofelt intensity parameters, which

were compared to literature values for neodymium(III) and europium(III) in various host

materials. Particularly the parameter Omega-2 exhibited the expected dependence on the

environment. Conclusions were drawn from these findings concerning the variation of the

hypersensitive transition intensities in different environments.

In order to better understand these f-f transitions, theoretical studies using relativistic ab

initio methods were performed to determine the electronic states, the transition energies as

well as their oscillator strengths for neodymium(III) and europium(III). Various structures

of the rare earth ion water complexes in different symmetries were optimized based on

density functional theory calculations with large effective core potentials. These complexes

were further investigated together with the free ions using several multi-reference methods

like Kramers restricted configuration interaction and spin-orbit coupled CASSCF at the one-

component Douglas-Kroll-Hess, two-component X2C and four-component Dirac-Coulomb
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level of theory. The main findings of these calculations, i.e. the energy levels, oscillator

strengths and computed Judd-Ofelt parameters, were compared to experimental and

computed values. Calculations with increasing speed of light corresponding to the non-

relativistic limit enabled the assignment of the states of neodymium(III).

A good agreement with the literature was found for the low energy states, while the

description of the states of higher energy still needs improvement. As expected, non-zero

oscillator strengths were only obtained for the low symmetric water complexes but not for

centrosymmetric geometries.
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Kurzfassung

Seltenerdionen wie Neodym(III) und Europium(III) weisen interessante optische Eigen-

schaften auf, die durch ihre teilweise gefüllten f-Orbitale verursacht werden und zu An-

wendungen in Lasermaterialien oder als Leuchtstoffe geführt haben.

Das Ziel dieser Masterarbeit war die Untersuchung der sogenannten hypersensitiven

Übergänge der Seltenerdionen an den Beispielen Neodym(III) und Europium(III). Die

Intensitäten dieser Übergänge variieren stark in Abhängigkeit von der Umgebung der

Ionen, d.h. von den Liganden. Das Hauptaugenmerk lag dabei auf der Untersuchung der

Symmetrie-Abhängigkeit der hypersensitiven Übergänge.

In dieser Masterarbeit wurden deswegen Absorptions- und Emissionsspektren von Neo-

dym(III) und Europium(III) in Lösungsmittelmischungen von Wasser, Aceton und Methan-

ol gemessen um die hypersensitiven Übergänge in unterschiedlichen Umgebungen zu

untersuchen. Des Weiteren wurden Seltenerd-dotierte Calcium-Aluminium-Boratgläser

(CAB-Gläser) hergestellt, die einer Umgebung von niedriger Symmetrie entsprechen.

Es wurde eine Judd-Ofelt Analyse der optischen Spektren durchgeführt. Die ermittel-

ten semi-empirischen Judd-Ofelt Intensitätsparameter wurden mit Literaturwerten für

Neodym(III) und Europium(III) in verschiedenen Wirtsmaterialien verglichen. Dabei zeigte

der Parameter Omega-2 die erwartete Abhängigkeit von der Umgebung. Aus den Inten-

sitätsänderungen der hypersensitiven Übergänge wurden Schlussfolgerungen bezüglich

der Polarisierbarkeiten der unterschiedlichen Umgebungen gezogen.

Um diese f-f Übergänge besser verstehen zu können wurden weiters relativistische ab

initio Methoden eingesetzt zur Bestimmung der elektronischen Zustände, der Energien

der Übergänge sowie deren Oszillatorstärken. Dazu wurden verschiedene Strukturen

von Neodym(III)- und Europium(III)-Wasser-Komplexen mit Dichtefunktionaltheorie und

Pseudopotentialen optimiert. Diese Komplexe sowie die freien Ionen wurden darüber

hinaus mit Multi-Referenz-Methoden wie Kramers restricted configuration interaction und

Spin-Bahn gekoppeltem CASSCF untersucht unter Verwendung von skalar-relativistischen

Douglas-Kroll-Hess, zweikomponentigen und vierkomponentigen Hamiltonoperatoren.
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Die Ergebnisse der Rechnungen, d.h. die Energieniveaus, Oszillatorstärken und Judd-

Ofelt Parameter, wurden mit experimentellen sowie theoretischen Werten verglichen.

Rechnungen mit steigender Lichtgeschwindigkeit, die dem nichtrelativistischen Limit

entsprechen, haben die Zuordnung der Zustände von Neodym(III) ermöglicht. Es wurde

eine gute Übereinstimmung der energetisch niedrig liegenden Zustände mit Literatur-

werten gefunden, während die Zustände höherer Energie noch Abweichungen von den

Experimenten zeigten. Niedrig-symmetrische Strukturen ergaben von Null verschiedene

Oszillatorstärken, während zentrosymmetrische Geometrien wie erwartet Oszillatorstärken

gleich Null zeigten.

viii



Contents

Abstract v

1. Introduction 1

I. Theory 5

2. Crystal �eld and Judd-Ofelt theory 7

2.1. Crystal field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. Free ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2. Ions in a crystal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Judd-Ofelt theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Hypersensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Computational methods 33

3.1. Dirac’s theory and four-component methods . . . . . . . . . . . . . . . . . . . . 33

3.2. Two-component Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3. Douglas-Kroll-Hess theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5. Multi-Configurational Self-Consistent Field – CASSCF . . . . . . . . . . . . . . 47

3.6. Basis sets and effective core potentials . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7. Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. Group theory and symmetry 65

4.1. Double groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2. The SU(2), SO(3) and other groups . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3. Time reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4. Descent in symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



Contents

II. Experiments and computations 75

5. Experiments 77

5.1. Reagents and instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1. Synthesis of rare earth nitrates . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.2. Glass preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.3. Sample solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2. Experimental results of Nd3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1. Absorbance spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2. Emission spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3. Judd-Ofelt analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3. Experimental results of Eu3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1. Absorbance spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2. Emission spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3. Judd-Ofelt analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6. Computations 109

6.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1. Calculation of geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.2. Calculation of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2. Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3. Computational results of Nd3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1. Structures and energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2. States of Nd3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4. Computational results of Eu3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1. Structures and energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2. States of Eu3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.3. Spectroscopy and Judd-Ofelt analysis . . . . . . . . . . . . . . . . . . . . 132

7. Conclusion 137

Appendix 143

Bibliography 163

x



List of Figures

2.1. Representation of vectors r⃗i, r⃗j and r⃗ij of electrons i and j in the Cartesian

coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Some energy levels of EuF3
28 as an example for the splitting of energy levels

due to additional terms in the total Hamiltonian. . . . . . . . . . . . . . . . . . 13

3.1. Concept of Generalized Active Spaces (GAS) taken from Fleig70. . . . . . . . . 47

3.2. Definition of an active space for CASSCF calculations taken from Jensen71. . 49

4.1. A Koch curve of third order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2. Splitting of 4F state taken from Tinkham23. . . . . . . . . . . . . . . . . . . . . . . 68

5.1. Colour of Nd-CAB-glass under different light sources. . . . . . . . . . . . . . . 82

5.2. Absorbance spectra of Nd3+ in water-acetone mixtures. . . . . . . . . . . . . . . 84

5.3. Absorbance spectra of Nd3+ in water-methanol mixtures. . . . . . . . . . . . . 84

5.4. Comparison of absorbance spectra of Nd3+ in water, methanol and acetone. . 85

5.5. Absorbance spectra of Nd3+ in water-acetone mixtures: absorption of solvents

in UV and NIR region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6. Absorbance spectrum of Nd3+-CAB-glass. . . . . . . . . . . . . . . . . . . . . . . 86

5.7. Experimental energy levels of Nd3+ compared with NdF3
28. . . . . . . . . . . . 90

5.8. Emission spectra of Nd3+ in water-DMSO mixtures and in acetone. . . . . . . 91

5.9. Judd-Ofelt parameters Ωλ and oscillator strength of hypersensitive transition

of Nd3+ in water-acetone and water-methanol mixtures. . . . . . . . . . . . . . 95

5.10. Absorbance spectra of Eu3+ in water-acetone mixtures. . . . . . . . . . . . . . . 99

5.11. Absorbance spectra of Eu3+ in water-methanol mixtures. . . . . . . . . . . . . . 99

5.12. Absorbance spectrum of Eu3+-CAB-glass. . . . . . . . . . . . . . . . . . . . . . . 100

5.13. Emission spectra of Eu3+ in water-acetone mixtures. . . . . . . . . . . . . . . . . 100

5.14. Emission spectra of Eu3+ in water-methanol mixtures. . . . . . . . . . . . . . . 101

5.15. Excitation spectrum and emission spectra of Eu3+-CAB-glass. . . . . . . . . . . 101

5.16. Experimental energy levels of Eu3+ compared with EuF3
28. . . . . . . . . . . . 102

xi



List of Figures

5.17. Judd-Ofelt parameters Ωλ of Eu3+ in water-acetone and water-methanol

mixtures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1. [Nd (H2O)3]
3+, D3h (C2v) (B3LYP ECP49MWB TZVP). . . . . . . . . . . . . . . . 115

6.2. Nd-6w-Th: [Nd (H2O)6]
3+, Th (D2h) (B3LYP ECP49MWB TZVP). . . . . . . . . 116

6.3. Energy levels of Nd3+ (X2C KRCI Dyall cv3z) with increasing speed of light

c equivalent to decreasing spin-orbit coupling (all states). . . . . . . . . . . . . 117

6.4. Energy levels of Nd3+ (X2C KRCI Dyall cv3z) with increasing speed of light

c equivalent to decreasing spin-orbit coupling. . . . . . . . . . . . . . . . . . . . 118

6.5. Computed energy levels of Nd3+ and Nd3+-water complexes at different

levels of theory compared with experimental values of NdF3
28. . . . . . . . . . 119

6.6. [Eu (H2O)6]
3+ (B3LYP ECP52MWB TZVP). . . . . . . . . . . . . . . . . . . . . . . 122

6.7. [Eu (H2O)8]
3+ (B3LYP ECP52MWB TZVP). . . . . . . . . . . . . . . . . . . . . . . 124

6.8. [Eu (H2O)9]
3+ (B3LYP ECP52MWB TZVP). . . . . . . . . . . . . . . . . . . . . . . 124

6.9. C1 structures of [Eu (H2O)6,8]
3+

(B3LYP ECP52MWB TZVP) used for multi-

reference calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.10. Computed energy levels of Eu3+-water complexes (DKH SOC-CASSCF (6,7)

TZVP-DKH) compared with experimental values. . . . . . . . . . . . . . . . . . 127

6.11. Holzer128: Computed energy levels of Eu3+ and Eu3+-water complexes at

different levels of theory compared with experimental values of EuF3
28. . . . 129

.1. State diagram describing the Judd-Ofelt program . . . . . . . . . . . . . . . . . 146

.2. Descent in symmetry of D (O(3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

.3. Descent in symmetry of F (O(3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

.4. Descent in symmetry of G (O(3)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xii



1. Introduction

Rare earth elements comprise lanthanum and the first row of the f -block from cerium

to lutetium.1 Many applications arise from their optical properties, e.g. as phosphors in

television screens and computer displays, optical amplifiers in fiber optics, lasers and

sensors,2 just to mention a few of them.

Typical representatives of rare earth ions are neodymium and europium. Neodymium

finds application in permanent magnets as Nd-Fe-B alloys3–5 and in lasers, e.g. in green

laser pointers using monopotassium phosphate crystals for frequency doubling.6 A fa-

mous example is the Nd:YAG laser, i.e. neodymium-doped yttrium aluminium garnet

Nd:Y3Al5O12.7,8 Europium(III) is widely used in phosphor technology as a red luminophore

in TV sets, fluorescent lamps and some lasers.2 Recent studies have discussed the use of

Eu3+ for water measurements in DMSO, in vivo imaging and other applications.9,10

The optical properties of rare earth elements are determined by their partially filled f -

orbitals. The electronic transitions are mainly forced electric dipole transitions within the

4 f configuration and therefore parity forbidden.11 These f↔ f transitions have been the

subject of many studies since the beginning of the twentieth century.

Many interesting spectroscopic properties are associated with rare earth ions. In the early

years of the twentieth century the sharpness of the lines in absorbance and emission spectra

of rare earth ions in crystals has stimulated the interest of many scientists.12 Their spectra

resemble the spectra of free ions or free atoms, in some cases with linewidths as narrow as

0.01 Å.12 This suggests that the interaction with the surrounding ligands is very weak.12

The small linewidths and weak interaction with the environment are a consequence of

the shielding of the 4 f shell by the outer filled 5s2 and 5p6 orbitals.13 Rare earth ions are

special in that their optical properties are caused by transitions within “core orbitals” that

only participate to some extent in chemical bonding.13–16 This explains the similarity to

the spectra of free ions. Transition metal ions, on the contrast, exhibit d↔d transitions, i.e.

transitions between d-orbitals, which are also “binding orbitals”.

The sharpness of the lines of rare earth ions, inter alia, makes them interesting as probes in

biochemistry or generally as analytical sensors.11,17,18
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1. Introduction

Another very interesting phenomenon associated with f↔ f transitions of rare earth ions

– and the topic of this thesis – are so-called hypersensitive transitions. Their intensities

exhibit a great variation depending on the environment, while the intensities of the other

transitions remain nearly unchanged. Various explanations exist, but there is still not a

consistent theory available. A lot of theoretical as well as experimental studies have been

conducted since Jørgensen & Judd19 have introduced the term hypersensitive in 1964.

In this thesis the hypersensitive transitions of neodymium(III) and europium(III) were

investigated experimentally in solvent mixtures showing the continuous increase in intensity

of the hypersensitive transitions when going from water to another solvent like methanol or

acetone. Several studies of rare earth ion doped glasses have been carried out. In the present

thesis Nd3+-doped and Eu3+-doped calcium aluminium borate glasses were prepared as a

model system of low symmetry.

Relativistic effects are of much importance when investigating rare earth ions. Scalar

relativistic effects caused by the high velocities of the inner electrons due to heavy nuclei

lead to a contraction of the s- and p-orbitals, therefore enhancing the shielding of the

outer electrons from the nuclear potential.13,20 This results in an expansion of the d- and

f -orbitals.13,20 Such scalar relativistic effects are for example responsible for the colour of

gold.20

Even more important for this thesis were magnetic couplings, which involve spin-orbit

coupling. The electron spin couples to the magnetic field associated with the orbital motion

of the electrons.20 As a consequence, states of mixed spin and orbital angular momentum

quantum numbers arise and only the total angular momentum J and MJ quantum numbers

are considered to be “good” quantum numbers.20 Thus transitions that are spin-forbidden

in a non-relativistic theory can be explained taking the spin-orbit coupling into account.21

In the case of rare earth elements or ions, the spin-orbit splitting is even of the same order of

magnitude as the electron-electron Coulomb interaction, which makes a proper description

of this effect necessary using relativistic quantum chemical methods.12,21

In relatively few theoretical ab initio analyses the hypersensitive transition of Nd3+ was

investigated. More studies have been conducted on Eu3+, but the number is still limited.

In the past, Judd-Ofelt theory served as a useful tool to investigate f↔ f transitions. It

is still very popular as a semi-empirical theory and there is extensive literature available

concerning Judd-Ofelt analyses of rare earth ions in crystals, glasses or various complexes.

Yet, modern ab initio Judd-Ofelt theory, e.g. extended to the relativistic framework by

Smentek & Wybourne22, is still rarely applied.
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This thesis presents an ab initio investigation of the f↔ f transitions of Nd3+ and Eu3+ based

on relativistic multi-reference methods. One-component Douglas-Kroll-Hess SOC-CASSCF

calculations are compared to two-component X2C and four-component Dirac-Coulomb

KRCI calculations of the free ions as well as of water complexes of the rare earth ions in

different symmetries.

The present thesis is structured as follows:

The first part focuses on the theory behind the used methods. The theoretical background

for Judd-Ofelt calculations is presented in chapter 2 and the computational methods are

described in chapter 3. The group theoretical considerations are treated in chapter 4.

The second part of this thesis presents the results and conclusions. It is divided into

experiments, chapter 5, and computations, which are shown in chapter 6.
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Part I.

Theory
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2. Crystal �eld and Judd-Ofelt theory

2.1. Crystal �eld theory

2.1.1. Free ions

Hamiltonian

The total Hamiltonian of the free ion with N electrons, ĤFI , is given by the sum12

ĤFI = Ĥ0 + ĤC + ĤSO + ... . (2.1)

Ĥ0 =
N
∑
i=1

ĥi =
N
∑
i=1

(− h̄2

2me
∇2

i −
1

4πε0

Ze2

Ri
) (2.2)

Ĥ0 itself is the sum of one-electron operators describing the kinetic energy of the electrons

and the electron-nucleus attraction potential due to the Coulomb force, where ∇2 = ∆

denotes the Laplace operator, me the mass of the electron, e the elementary charge, Z the

nuclear charge and R the electron-nucleus distance. In the central field approximation Z is

replaced by an effective nuclear charge, Ze f f , to account for the screening of the outer

electrons from the force field of the nucleus by the inner (closed shell) electrons. Ĥ0 is a

spherical symmetric operator.12,23

ĤC = 1
4πε0

N
∑∑
i<j=1

e2

rij
(2.3)
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2. Crystal �eld and Judd-Ofelt theory

The two-electron operator ĤC describes the electron-electron repulsion, which is also caused

by a Coulomb force, rij being the distance between the electrons i and j.12 For actual crystal

field calculations, ĤC is expanded into spherical harmonics.21,24

e2

rij
= e2

∣r⃗i − r⃗j∣
= e2

√
r2

i + r2
j − 2rirj cos ω

Let r> be the larger of the two distances (either ri or rj) and r< be the smaller distance, then

one can express e2

rij
as

e2r>
rijr>

= e2

r>
(1+ r2<

r2>
− 2

r<
r>

cos ω)
− 1

2

. (2.4)

Using the known relation

(1− 2ax + x2)−
1
2 =

∞
∑
k=0

xk Pk(a) (2.5)

and the connection between Legendre polynomials Pk(cos ω) and spherical harmonics

Y(k)q

Pk(cos ω) = 4π

2k + 1

k
∑

q=−k
Y(k)∗q (i) ⋅Y(k)q (j) (2.6)

e2

rij
= e2

r>
⋅ (1+ r2<

r2>
− 2

r<
r>

cos ω)
− 1

2

= e2
∞
∑
k=0

rk<
rk+1>

Pk(cos ω) (2.7)

=e2
∞
∑
k=0

4π

(2k + 1)
rk<

rk+1>

k
∑

q=−k
Y(k)∗q (i) ⋅Y(k)q (j) .

In this way, the Coulomb operator ĤC can be expanded into spherical harmonics.24

ĤC = e2

4πε0

N
∑∑
i<j=1

∞
∑
k=0

4π

(2k + 1)
rk<

rk+1>

k
∑

q=−k
Y(k)∗q (i) ⋅ Y(k)q (j) (2.8)

8



2.1. Crystal �eld theory

x

y

z

r⃗i r⃗j

r⃗iji j

ω

Figure 2.1.: Representation of vectors r⃗i, r⃗j and r⃗ij of electrons i and j in the Cartesian coordinate system.

Finally, ĤSO describes the spin-orbit coupling, i.e. the coupling of the spin of electron i (si)

and the orbital angular momentum of the electron i (`i).12

ĤSO =
N
∑
i=1

ξ(ri) `i ⋅ si (2.9)

ξ(ri) is the spin-orbit coupling function of electron i moving in the potential U(ri).12

ξ(ri) =
h̄2

2m2c2ri

dU(ri)
dri

(2.10)

Wave function

An electron may be described by a one-electron wave function24,25

φn`m`ms(r, ϑ, ϕ) = Rn`(r) ⋅Y(`)m`
(ϑ, ϕ) ⋅ σms . (2.11)

Rn`(r) is the radial part, Y(`)m`
(ϑ, ϕ) the angular part, which is a spherical harmonic func-

tion, and σms is the spin function. The N electron system can therefore be described by

antisymmetrized products of N such wave functions, so called Slater determinants Θ or

determinantal wave functions, consistent with the Pauli principle (2.13). This principle

states that the many-electron wave function must change sign if the space and spin coor-

dinates x of two electrons are interchanged, i.e. the many-electron wave function must be

antisymmetric.26

9



2. Crystal �eld and Judd-Ofelt theory

Θ = 1√
N!

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

φa(1) φa(2) φa(3) ⋯ φa(N)
φb(1) φb(2) φb(3) ⋯ φb(N)
φc(1) φc(2) φc(3) ⋯ φc(N)
⋮ ⋮ ⋮ ⋱ ⋮

φn(1) φn(2) φn(3) ⋯ φn(N)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(2.12)

Θ(x1, ..., xi, ..., xj, ..., xN) = −Θ(x1, ..., xj, ..., xi, ..., xN) (2.13)

The indices a, b, c, ..., n label the different sets of the 4 quantum numbers n, `, m` and ms,

while the numbers 1, 2, 3, ..., N refer to the coordinates (r, ϑ, ϕ) of the N electrons. These

Slater determinants are eigenfunctions of Ĥ0, in which no electron-electron interaction

is included. The number of different Slater determinants Θ for a given configuration of

N equivalent electrons corresponds to the number of ways of arranging N electrons in

2 ⋅ (2` + 1) spin orbitals.24

[2 ⋅ (2` + 1)]!
N![2 ⋅ (2` + 1) − N]!

(2.14)

All of these Slater determinants for a given configuration have the same eigenvalue, i.e.

they are highly degenerate.24

In the case of Nd3+ 354 Slater determinants are obtained for the configuration 4f3 (Nd3+:

[Xe]4f3), whereas Eu3+ yields 3,003 Slater determinants for the configuration 4f6 (Eu3+:

[Xe]4f6) in the central field approximation.

When the electron-electron interaction, ĤC, is included in the total Hamiltonian of the

system, the energy levels are split into new levels, i.e. the degeneracy is lifted to some

extent, and new wave functions are needed, which can be expressed as linear combinations

of the original eigenfunctions.24 This is a general observation when an extra term is added

to the Hamiltonian of the system.

At the level of electron-electron interaction, the individual angular momenta `i and spins si

couple to the total orbital angular momentum L and total spin S according to the vector

model of atoms. This is called the Russell-Saunders or LS-coupling.21

10



2.1. Crystal �eld theory

L =
N
∑
i=1

`i (2.15)

S =
N
∑
i=1

si (2.16)

The orbital angular momentum and spin projection quantum numbers, ML = −L,−L +
1, . . . ,+L and MS = −S,−S + 1, . . . ,+S,* are given by24

ML =
N
∑
i=1

m`(i) (2.17)

MS =
N
∑
i=1

ms(i) . (2.18)

The new Russell-Saunders wave functions are named Ψ(L, ML, S, MS). They are (2L + 1) ⋅
(2S + 1)-fold degenerate eigenfunctions of (Ĥ0 + ĤC). Their energy levels are labelled with

Russell-Saunders term symbols 2S+1L.24

Ψ = ∑
i

ci ⋅Θi (2.19)

Introducing ĤSO into the total Hamiltonian again results in a splitting of energy levels and

a mixing of wave functions. The spin and the orbital angular momentum couple to a total

angular momentum given by the quantum number J. In other words, the effect of ĤSO is

the mixing of states with same J, but different S and L values.12 The consequence is that

neither the spin quantum number S, nor the (orbital) angular momentum quantum number

L are “good” quantum numbers any more at this level of theory.

The new wave functions are (2J + 1)-fold degenerate eigenfunctions of ĤFI = Ĥ0 + ĤC +
ĤSO and can be expressed as linear combinations of the original Russell-Saunders wave

functions24

Ψ(L, S, J, MJ) = ∑
S,L

cS,L ⋅Ψ(L, ML, S, MS) . (2.20)

*The z component of L is given by Lz = ML h̄ and of S by Sz = MS h̄.27

11



2. Crystal �eld and Judd-Ofelt theory

The energy levels are denoted with the Russell-Saunders term symbol 2S+1LJ of the term

which gives the largest contribution to the linear combination (2.20). One should keep in

mind that there are usually other contributions to this state as well, which may have another

multiplicity (2S + 1) or angular momentum quantum number L.

In the case of rare earth ions ĤSO is approximately of the order of ĤC, whereas the spin-

orbit coupling is small for (first-row) transition metal ions, where it is therefore usually

neglected or can be treated as a small perturbation.12,24 For example, the splitting of the
7FJ states of Eu3+ due to ĤSO lies in the order of some hundred to approximately 1,000

cm−1 and the separation of the 5DJ states in the order of 1,000 cm−1 (up to 3,000 cm−1).

The energy differences between 2S+1LJ states increase with increasing atomic number, thus

reflecting a stronger spin-orbit coupling or larger ξ, respectively.12 In the case of Yb3+ (4f13),

a splitting of 10,000 cm−1 between the 2F7/2 and 2F5/2 state is found.12

Free ion energies

For energy calculations of free ions, the matrix elements of the spin-orbit wave functions

between (ĤC + ĤSO), ⟨Ψ(L, S, J, MJ) ∣ (ĤC + ĤSO) ∣Ψ(L, S, J, MJ)⟩, have to be evaluated. Ĥ0

does not need to be considered in spectroscopy where only energy differences are relevant.24

On the one hand, the spin-orbit wave functions Ψ(L, S, J, MJ) are expanded into linear

combinations of Russell-Saunders wave functions Ψ(L, ML, S, MS), which themselves are

expressed in terms of Slater determinants Φ, i.e. antisymmetrized products of one-electron

wave functions φn`m`ms(r, ϑ, ϕ). On the other hand, ĤC is expanded into spherical harmonics.

Thus, the integrals ⟨Ψ(L, S, J, MJ) ∣ ĤC ∣Ψ(L, S, J, MJ)⟩ can be reduced to smaller integrals,

which are essentially products of a radial part Rk(ab; de), an angular part Ak and a spin

part.24

ĤC = 1
4πε0

N
∑∑
i<j=1

e2

rij

= 1
4πε0

N
∑∑
i<j=1

e2
∞
∑
k=0

rk<
rk+1>

4π

(2k + 1)

k
∑

q=−k
Y(k)∗q (i) ⋅ Y(k)q (j) (2.21)

12



2.1. Crystal �eld theory

Figure 2.2.: Some energy levels of EuF3
28 as an example for the splitting of energy levels due to additional

terms in the total Hamiltonian.

⟨Ψ(L, S, J, MJ) ∣ ĤC ∣Ψ(L, S, J, MJ)⟩ = ∑⟨Φr ∣ ĤC ∣Φs⟩ (2.22)

⟨Φr ∣
e2

rij
∣Φs⟩ = ∑⟨φa(i)φb(j) ∣ e2

rij
∣φd(i)φe(j)⟩ ⋅ δ(φc(k), φ f (k)) (2.23)

The two-electron operator ĤC does not contain spin, so the integration over the spin

coordinates can be carried out separately yielding the Kronecker delta function δ for the

orthonormal spin functions σ.29

φa(i) = Ra ⋅Y(`)ma (i) ⋅ σa

13



2. Crystal �eld and Judd-Ofelt theory

⟨φa(i)φb(j) ∣ e2

rij
∣φd(i)φe(j)⟩ =

∞
∑
k=0

⟨RaRb ∣
e2rk<
rk+1>

∣ RdRe⟩ (2.24)

⋅ 4π

(2k + 1)

k
∑

q=−k
⟨Y(`)ma (i)Y(`)mb (j) ∣Y(k)∗q (i) ⋅Y(k)q (j) ∣Y(`)md (i)Y(`)me (j)⟩ (2.25)

⋅ δ(σa, σd) ⋅ δ(σb, σe) (2.26)

(2.24) is the radial part Rk(ab; de), or Slater parameter Fk, which is an infinite sum over

the radial parts of the wave functions and the operator. The calculation of these integrals

is the major problem in crystal field calculations, so they are usually accounted for by

empirical parameters called the Racah parameters. In the case of transition metal ions, there

are three Racah parameters A, B and C, whereas four Racah parameters E0, E1, E2 and

E3 are obtained for rare earth ions. These parameters are fitted so as to obtain the best

agreement between calculated and experimental energy levels of the free ions using atomic

spectroscopy. The number of possible k values is therefore limited to three for transition

metal ions (d-elements) and to four for rare earth ions ( f -elements).24

The angular part Ak of the wave functions and the operator (2.25) is a product of spherical

harmonics, one part of them depending solely on the coordinates of electron i, the other

part depending on the coordinates of electron j. Hence, this integral can be written as a

product24

Table 2.1.: The relationship between Slater parameters Fk, i.e. the radial integrals, Condon-Shortley parameters
Fk and Racah parameters A, B, C for transition metal ions24 (left) and Ek for rare earth ions12 (right).

F0 = F0 A = F0 − 49F4 F0 = F0 E0 = F0 − 10F2 − 33F4 − 286F6

F2 = (49)−1 F2 B = F2 − 5F4 F2 = (225)−1 F2 E1 = 1
9(70F2 + 231F4 + 2, 002F6)

F4 = (441)−1 F4 C = 35F4 F4 = (1089)−1 F4 E2 = 1
9(F2 − 3F4 + 7F6)

F6 =
25

184, 041
F6 E3 = 1

3(5F2 + 6F4 − 91F6)
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2.1. Crystal �eld theory

Ak = 4π

2k + 1

k
∑

q=−k
⟨Y(`)ma (i) ∣Y(k)∗q (i) ∣Y(`)md (i)⟩ ⟨Y(`)mb (j) ∣Y(k)q (j) ∣Y(`)me (j)⟩ .

Solutions to such integrals are known.29 The only non-zero solutions for transition metal

ions are those with k = 0, 2, 4 and for rare earth ions with k = 0, 2, 4, 6. This explains the

number of Racah parameters.

⟨Y(`1)
m1 ∣Y(k)q ∣Y(`2)

m2 ⟩ =
2π

∫
ϕ=0

π

∫
ϑ=0

Y(`1)
m1 (ϑ, ϕ)Y(k)q (ϑ, ϕ)Y(`2)

m2 (ϑ, ϕ) sin ϑ dϑdϕ (2.27)

= (−1)m1 [(2`1 + 1)(2k + 1)(2`2 + 1)
4π

]
1
2 ⎛
⎝
`2 k `1

0 0 0

⎞
⎠
⎛
⎝
`2 k `1

m2 q −m1

⎞
⎠

(2.28)

= (−1)`1−m1
⎛
⎝

`1 k `2

−m1 q m2

⎞
⎠
⟨Y(`1) ∥ Ŷ(k) ∥Y(`2)⟩ (2.29)

Equation (2.29) is the application of the Wigner-Eckart theorem30,31, according to which such

integrals can be expressed as products of the 3-j symbol (2.30) and a so-called reduced

matrix element, which is independent of the quantum numbers m1, m2 and q.23,29

⎛
⎝

`1 k `2

−m1 q m2

⎞
⎠
= (−1)`1−k−m2 (2`2 + 1)−

1
2 ⟨`1m1, kq ∣ `2 −m2⟩ (2.30)

The 3-j symbol vanishes unless the relations (2.31) and (2.32) are fulfilled.23

−m1 + q +m2 = 0 (2.31)

(`2 + k) ≥ `1 ≥ ∣`2 − k∣ (2.32)

From the “triangle relation” (2.32) follows for d-electron systems, i.e. transition metal ions,

with `1 = `2 = 2 that k can only take the values 0, 1, 2, 3, 4 and for f -electron systems, e.g.

rare earth ions, with `1 = `2 = 3 that k = 0, 1, 2, ..., 6 (k ∈ N0).

15



2. Crystal �eld and Judd-Ofelt theory

Another general requirement for such integrals or matrix elements to be non-zero, which

originates from group theoretical considerations, is that the integrals must be of even parity

(g).23† As a consequence of `1 = `2 (equal parity), the parity p of the spherical harmonic Y(k)q

must be even or k must be an even number, respectively. Hence, the only possible numbers

of k for transition metal ions are 0, 2, 4 and for rare earth ions 0, 2, 4, 6.

p(Y(k)q ) = (−1)k (2.33)

`1 = `2 = 2 ∶ (−1)2 ⋅ (−1)k ⋅ (−1)2 = +1 (2.34)

`1 = `2 = 3 ∶ (−1)3 ⋅ (−1)k ⋅ (−1)3 = +1 (2.35)

Integration over the orthonormal spin functions yields the Kronecker delta function (2.26),

which is either zero for different spin quantum numbers S, or 1 for equal S.

If the Racah parameters E and the spin-orbit coupling constants ξ are known, the energy of

the free ion can thus be calculated.12

2.1.2. Ions in a crystal �eld

In crystal field theory the interaction of ligands with a central metal ion is treated as a

purely electrostatic interaction without any covalent contributions, which is one of the

major drawbacks of this theory.24 The electrostatic ligand field of a certain symmetry is

described by an additional term, ĤCF, in the total Hamiltonian of the system. The crystal

field operator ĤCF gives rise to a further splitting of energy levels, the crystal field splitting,

into Stark levels or crystal field levels as well as to a further mixing of the wave functions.24

The symmetry of the crystal field determines the number of arising Stark levels, while its

strength determines the magnitude of the splitting.12

In the case of rare earth ions, ĤCF is very small compared to ĤSO, which is a consequence of

the shielding of the f -electrons by the outer lying filled subshells. The crystal field splitting

can therefore not be observed in experimental spectra of rare earth ions in solution or in

†A matrix element ⟨ψ(j
′
)

k′ ∣Ĥ′∣ψ(j)k ⟩ vanishes unless the totally symmetric representation is included in the
direct product of the irreducible representations of the operator Ĥ′ and the functions ψ.23
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2.1. Crystal �eld theory

glasses, which exhibit greater line widths due to the inhomogeneous broadening.24 However,

for first-row transition metal ions the relation ĤSO < ĤCF < ĤC is valid, i.e. the crystal field

interaction is more important than the spin-orbit splitting.24

The resulting crystal field states are labelled with the irreducible representations of the

symmetry point group 2S+1Γ. Interactions can only occur between states of the same

symmetry.

In Kramers ions like Nd3+ with an odd number of f -electrons and half-integer values of J
the free ion energy levels are split into (J + 1

2) Stark levels in a crystal field of low symmetry,

thus retaining a rest degeneracy of 2, the so-called Kramers degeneracy, while in non-
Kramers ions like Eu3+ with an even number of f -electrons and integer values of J the free

ion energy levels are split into (2J + 1) Stark levels in a crystal field of low symmetry, hence

removing the degeneracy.12,24

ĤCF = ∑
i
∫
τ

e ⋅ ρ(R)
∣R − ri∣

dτ (2.36)

The operator ĤCF is similar to ĤC, with ρ(R) as the charge density at the position R, which

is caused by the ligands, i.e. a kind of a smeared instead of a localized charge.12 This

can be regarded as a special form of an electron-electron interaction with a charge cloud

∫ ρ(R)dτ instead of a point charge qe = −e.24 Like ĤC, ĤCF can be expanded into spherical

harmonics24

ĤCF = e ⋅ ∑
k,q,i
∫
τ

ρ(R) rk<
rk+1>

√
4π

2k + 1
Ŷ(k)∗q (ϑ, ϕ)

√
4π

2k + 1
Ŷ(k)q (ϑi, ϕi)dτ (2.37)

= e ⋅ ∑
k,q,i
∫
τ

ρ(R) rk<
rk+1>

Ĉ(k)∗q (ϑ, ϕ) Ĉ(k)q (ϑi, ϕi)dτ (2.38)

using the Racah normalization of spherical harmonics Ĉ(k)q (ϑ, ϕ).12

Ĉ(k)q (ϑ, ϕ) =
√

4π

2k + 1
Ŷ(k)q (ϑ, ϕ) (2.39)

The crystal field parameters Bkq are given by12

Bkq = e ⋅ ∫
τ

ρ(R) Ĉ(k)∗q (ϑ, ϕ) rk<
rk+1>

dτ . (2.40)
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2. Crystal �eld and Judd-Ofelt theory

The expansion of ĤCF into spherical harmonics depends on the symmetry of the crystal

field, which leads to a reduction of possible k values, i.e. of the number of spherical

harmonics which have to be included in the expansion.24

ĤCF = ∑
k,q,i

BkqĈ(k)q (i) (2.41)

First of all, the number of possible values of k and q = −k,−k + 1, ...,+k are reduced by

the Wigner-Eckart theorem (see equations (2.31) and (2.32)). Then, the number is further

reduced by the symmetry of the crystal field. For example one obtains k = 4 and q = −4, 0, 4

for a d-electron system in an octahedral field, and only one crystal field parameter, B40,

remains24

ĤCF,Oh = B40

⎡⎢⎢⎢⎢⎣
Ĉ(4)0 +

√
5

14
(Ĉ(4)4 + Ĉ(4)−4 )

⎤⎥⎥⎥⎥⎦
. (2.42)

In the case of rare earth ions ( f -electron systems) in an octahedral field, the crystal field

operator ĤCF,Oh is given by32

ĤCF,Oh = B40

⎡⎢⎢⎢⎢⎣
Ĉ(4)0 +

√
5

14
(Ĉ(4)4 + Ĉ(4)−4 )

⎤⎥⎥⎥⎥⎦
+ B60

⎡⎢⎢⎢⎢⎣
Ĉ(6)0 +

√
7
2
(Ĉ(6)4 + Ĉ(6)−4 )

⎤⎥⎥⎥⎥⎦
. (2.43)

2.2. Judd-Ofelt theory

Interaction with light

The rare earth ions exhibit interesting optical properties. Their transitions in the visible re-

gion are mainly one-photon forced electric dipole transitions within the 4 f N configuration,11

but magnetic dipole transitions like the 5D0 → 7F1 transition33 of Eu3+ are also observed.34

The problem at hand is to describe such Laporte forbidden, i.e. parity forbidden, electric

dipole f↔ f transitions.11,35

The intensity I of a transition is proportional to the square of the transition moment

according to Fermi’s golden rule.23,24 In the case of an electric dipole transition this is given

by the integrals of the electric dipole moment operator34
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2.2. Judd-Ofelt theory

µ̂ed = −e∑
i

ri = −e∑
i

ri C(1)(i) = −e∑
q

D(1)q . (2.44)

Here D(1) is a tensor operator of rank 1, i.e. a vector, with the components D(1)q where

q = 1, 0,−1.34 This is the result of converting the Cartesian vector operator into a spherical

tensor operator.23,34

Such a matrix element (2.45)

I ∝ ∣ ⟨A′ ∣ µ̂ed ∣ A⟩ ∣
2

, (2.45)

and therefore the intensity I, is zero unless the totally symmetric irreducible representation

(irrep) is contained in the direct product of the irreps.23 The matrix element must thus be of

even parity (gerade, g) in the case of inversion symmetry.23 The parity of the electric dipole

moment operator is odd and if both states A and A′ belong to the same configuration,

which is the case for f↔ f transitions, they possess the same parity.24 This always leads

to zero matrix elements according to g⊗ u⊗ g = u and u⊗ u⊗ u = u. Still, these transitions

occur and can even have relatively high intensities suggesting that other mechanisms make

these so-called forced electric dipole transitions possible.24,35

Forced electric dipole transitions

The approach by Judd36 and Ofelt37 is based on Rayleigh-Schrödinger perturbation theory.11

The odd components of the crystal field operator ĤCF are used as perturbing operator,

which mix states of opposite parity into the original states ∣A⟩ representing the states of the

spin-orbit coupled free ion 4 f N configuration, or Ψ(L, S, J, MJ) see above (eq. (2.20)).11,34 In

actual theoretical calculations, symmetry adapted functions, i.e. proper linear combinations

that form the basis of the corresponding irreps of the point group, are used for the

eigenstates ∣A⟩ of ĤFI .11 This is the static approach, which neglects the multipole ↔ dipole

interactions between the central ion and a ligand treated in the “dynamic coupling” or

“ligand polarization model”.11

ĤCF = ∑
t,p

At,p∑
i

ri C(t)p (i) = ∑
t,p

At,p D(t)p (2.46)

19



2. Crystal �eld and Judd-Ofelt theory

Equation (2.46) again describes the crystal field operator in terms of Racah’s spherical

harmonics C(t)p or the tensor operator D(t)p and the crystal field parameters At,p.34 The

notation was changed compared to equation (2.41) to emphasize that we are now interested

in the odd components of ĤCF as a perturbing operator, i.e. t is an odd number. The new

states of mixed parity ∣B⟩ up to first order in the perturbation can be expressed as11,24,34

∣B⟩ = ∣A⟩ +∑
Ψ′′

⟨Ψ′′ ∣ ĤCF ∣ A⟩
E(A) − E(Ψ′′)

∣Ψ′′⟩ . (2.47)

Here ∣Ψ′′⟩ denotes an excited configuration of opposite parity, e.g. 4 f N−1n′′`′′ with `′′ = d,

g, with the energy E(Ψ′′), while ∣A⟩ and E(A) belong to the original 4 f N configuration.11

This also explains why ĤCF must be of odd parity, because otherwise the matrix element in

equation (2.47) would be zero.

In order to calculate the intensity of a transition B → B′, matrix elements of the type

−e ⟨B′ ∣D(1)q ∣ B⟩ (2.48)

(compare to eq. (2.44) and (2.45)) have to be evaluated with11,34

⟨B′ ∣D(1)q ∣ B⟩ = ∑
Ψ′′
∑
t,p

At,p

⎛
⎜
⎝

⟨A′ ∣D(1)q ∣Ψ′′⟩ ⟨Ψ′′ ∣D(t)p ∣ A⟩
E(A) − E(Ψ′′)

+
⟨A′ ∣D(t)p ∣Ψ′′⟩ ⟨Ψ′′ ∣D(1)q ∣ A⟩

E(A′) − E(Ψ′′)

⎞
⎟
⎠

. (2.49)

The next step is the introduction of some simplifications which lead to an expression that

can be calculated.

1st approximation:
The energies E(Ψ′′) of all levels of the excited configuration 4 f N−1n′′`′′ are equal, i.e. the

excited levels are considered as degenerate.11,34

2nd approximation:
The energy differences in both denominators in equation (2.49) are roughly the same,

E(A) − E(Ψ′′) ≈ E(A′) − E(Ψ′′). Hence, they are replaced by an average energy difference

∆E(Ψ′′).11,34
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2.2. Judd-Ofelt theory

These approximations are considered to be the weak point of the Judd-Ofelt theory.34

However, they are needed in order to make calculations possible.11 In the case of well

separated 4 f N and 4 f N−1n′′`′′ (e.g. 4 f N−15d1) configurations with large ∆E(Ψ′′), these

approximations are justified.38 Now it is possible to perform the closure relation over Ψ′′.11

Furthermore, the tensor operators D(1)q of the electric dipole operator and D(t)p of the crystal

field operator are expressed as ∑i ri C(1)q (i) and ∑i rt
i C(t)p (i).34 The first term of equation

(2.49) is then given by34

∑
Ψ′′,t,p

At,p

⎛
⎜
⎝

⟨A′ ∣D(1)q ∣Ψ′′⟩ ⟨Ψ′′ ∣D(t)p ∣ A⟩
∆E(Ψ′′)

⎞
⎟
⎠
=

∑
Ψ′′,t,p

At,p ⟨A′∣∑
i

C(1)q (i)∣Ψ′′⟩ ⟨Ψ′′∣∑
i

C(t)p (i)∣A⟩ ⟨4 f ∣ ri ∣n`⟩ ⟨n` ∣ rt
i ∣4 f ⟩ ∆E(Ψ′′)−1 (2.50)

where the ⟨n`∣rk∣n′`′⟩ denote the radial integrals over the corresponding radial parts of

the one-electron wave functions, where ∣4 f ⟩ belongs to the 4 f N and ∣n`⟩ to the excited

4 f N−1n′′`′′ configuration.34 Application of the closure procedure then yields34

∑
Ψ′′,t,p

⟨A′∣∑
i

C(1)q (i)∣Ψ′′⟩ ⟨Ψ′′∣∑
i

C(t)p (i)∣A⟩ =

(−1)p+q+λ (2λ + 1)
1
2
⎛
⎝

1 λ t
q −p − q p

⎞
⎠

⟨A′ ∣∑
i
[C(1)q (i) ⋅C(t)p (i)]λ

−p−q ∣ A⟩ . (2.51)

Here the combined tensor operator T(λ)µ (i)29

T(λ)µ (i) = ∑
q,p

C(1)q (i) ⋅C(t)p (i) ⟨1q, tp∣λµ⟩ (2.52)

was used with the Clebsch-Gordan or vector coupling coefficients29 ⟨1q, tp∣λµ⟩ and the condition

µ = −p − q for a non-vanishing 3-j symbol (see eq. (2.31)).

⟨1q, tp∣λ(−µ)⟩ = (−1)λ−µ (2λ + 1)
1
2
⎛
⎝

1 λ t
q µ p

⎞
⎠

(2.53)

Equation (2.53) was obtained using the phase factor (−1)j3+m3 and the exchange of two

columns, which does not change the sign because of (−1)1+t+λ = +1, t being an odd number
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2. Crystal �eld and Judd-Ofelt theory

and λ an even number (see below).

The introduction of the unit tensor operator U makes the elimination of the sum ∑i possible,

with U(λ) = ∑i u(λ)i and the reduced matrix element of the one-particle unit tensor operator

⟨n`∣∣u(λ)∣∣n′`′⟩ = δnn′ ⋅ δ``′ .34

⟨A′ ∣∑
i

Tλ
µ(i) ∣ A⟩ =

(−1) f+1(2 f + 1)
1
2 (2` + 1)

1
2

⎧⎪⎪⎨⎪⎪⎩

1 t λ

f f `

⎫⎪⎪⎬⎪⎪⎭
⟨ f ∥C(1) ∥ `⟩ ⟨` ∥C(t) ∥ f ⟩ ⟨A′ ∣U(λ)−p−q ∣ A⟩ (2.54)

Here the 6-j symbol {⋯} was introduced and the reduced matrix elements ⟨∣∣C(k)∣∣⟩ of the

spherical tensors C(k).
The second part of the matrix element ⟨B′∣D(1)q ∣B⟩ (2.49) can be expressed in an analogous

way yielding the same terms, expect for the 3-j symbol. By applying the symmetry relation

of the 3-j symbols29,34

⎛
⎝

1 λ t
q −p − q p

⎞
⎠
= (−1)1+λ+t ⎛

⎝
t λ 1

p −p − q q

⎞
⎠

(2.55)

it becomes evident that the two 3-j symbols will cancel for an odd λ, thus removing all odd

λ terms, and only even λ terms survive. A further limit λ ≤ 6 is caused by the 6-j symbol.34

Therefore λ can only take the values 2, 4, 6.

The reduced matrix elements ⟨∣∣C(k)∣∣⟩, the 6-j symbol, the radial integrals and the energy

denominator are usually summarized in the function Ξ(t, λ).34

Ξ(t, λ) =2∑
n`

(−1) f+`(2 f + 1)
1
2 (2` + 1)

1
2

⎧⎪⎪⎨⎪⎪⎩

1 λ t
f ` f

⎫⎪⎪⎬⎪⎪⎭
⟨ f ∥C(1) ∥ `⟩ ⟨` ∥C(t) ∥ f ⟩

⋅ ⟨4 f ∣ r ∣n`⟩ ⟨n` ∣ rt ∣4 f ⟩ ∆E(Ψ′′)−1 (2.56)

⟨B′ ∣D(1)q ∣ B⟩ = ∑
t,p
∑

λ=2,4,6
(−1)p+q(2λ + 1)

1
2 At,p

⎛
⎝

1 λ t
q −p − q p

⎞
⎠

Ξ(t, λ) ⟨A′ ∣U(λ)−p−q ∣ A⟩ § (2.57)

§(−1)p+q+λ = (−1)p+q because λ is an even number.
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2.2. Judd-Ofelt theory

A reduction of the unit tensor matrix element yields34

⟨A′ ∣U(λ)−p−q ∣ A⟩ = (−1)J′−M′
J
⎛
⎝

J′ λ J
−M′

J −p − q MJ

⎞
⎠
⟨4 f Nα′[S′L′]J′ ∥U(λ) ∥4 f Nα[SL]J⟩ (2.58)

where the ∣4 f Nα[SL]J⟩ denote spin-orbit coupled wave functions of the free ion. The

reduced matrix element is again independent of MJ .

The equations derived above are also valid for transitions between individual Stark levels,

which cannot be resolved in solution or in glasses.34 Hence, a last approximation is made.

3rd approximation:
The population of all ground state Stark levels is assumed to be equal and one sums over

all these Stark levels, i.e. over all MJ and M′
J .

24,34

At the same time a summation over the components of D(1)q and of D(t)p is carried out,

which causes the 3-j symbols to be replaced by 3−1(2J + 1)−1(2t + 1)−1.34

This corresponds to the original Judd-Ofelt theory, which made the calculation of oscillator

strengths of the f↔ f transitions possible, see below.

Judd-Ofelt parameter

The oscillator strength fed of an electric dipole transition B → B′ is given by34

fed =
8π2mec ν̃

h
χ ∣ ⟨B′ ∣D(1)q ∣ B⟩ ∣

2
(2.59)

where ν̃ is the transition energy in cm−1, χ = (n
2+2)2
9n is the Lorentz field correction with the

refractive index n of the medium.34 The constants have their usual meanings.

Combining the above derived terms for the transition moment ⟨B′∣D(1)q ∣B⟩ results in the

expression34

fed =
8π2mec ν̃

3 h(2J + 1)
(n2 + 2)2

9n
∑

λ=2,4,6
Ωλ ∣ ⟨4 f Nα′[S′L′]J′ ∥U(λ) ∥4 f Nα[SL]J⟩ ∣

2
(2.60)

with the Judd-Ofelt parameters Ωλ
34

Ωλ = (2λ + 1)
1
2 ∑

t,p
∣At,p∣2 Ξ2(t, λ) (2t + 1)−1 . (2.61)
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2. Crystal �eld and Judd-Ofelt theory

Thus, if the three Judd-Ofelt parameters Ωλ of a system are known together with the

reduced matrix elements of the unit tensor operator ⟨∥U(λ)∥⟩, which were calculated and

tabulated e.g. by Carnall et al.28, and the other terms, ν̃ and n, the oscillator strength of

a transition can be calculated. These reduced matrix elements are not very sensitive to

the environment, i.e. to the ligands, therefore tabulated values can be used for different

rare earth ion systems.34 However, they can also be calculated based on the intermediate

coupling scheme28 and using fractional parentage coefficients for the doubly reduced matrix

elements, see Nielson & Koster39, or by direct integration of a single simple matrix element

(µ = 0, MJ = M′
J) and comparison to the Wigner-Eckart theorem (see eq. (2.58)).23

Judd-Ofelt calculations

It is common to perform Judd-Ofelt calculations based on a semi-empirical approach,

although also ab initio calculations are carried out.11,38 In semi-empirical calculations the

Judd-Ofelt parameters Ωλ are obtained as phenomenological parameters from a least

squares fitting procedure between experimental fexp and calculated oscillator strengths

fcalc (2.60).34 An example of such a Judd-Ofelt program, which uses the tabulated squared

reduced matrix elements of the unit tensor operator published by Carnall et al.28, is given

in the Appendix.

fexp = 4.318 ⋅ 10−9∫ ε(ν̃) dν̃ (2.62)

A = log10 (
I0

I
) = ε ⋅ c ⋅ d (2.63)

Experimental oscillator strengths can be calculated by measuring the integrated molar

absorptivity ∫ ε(ν̃) dν̃ in the absorbance spectra and using the relation (2.62).28,40,41 Lambert-

Beer’s law (2.63) defines the molar absorption coefficient or molar absorptivity ε. The

equation for the experimental oscillator strength can be derived according to40

f = 8π2me c
h e2 ν̃0 D (2.64)

and

ν̃0 D = 2303 h c
8π3NA

∫ ε(ν̃) dν̃ (2.65)
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2.2. Judd-Ofelt theory

which leads to

f = 2303 me c2

NAπ e2 ∫ ε(ν̃) dν̃ . (2.66)

Here, D is the dipole strength of a transition,40 2303 = ln(10) ⋅ 1000.

D = ∣ ⟨Ψ f ∣ µ̂ ∣Ψi⟩ ∣
2

(2.67)

∫ ε(ν̃) dν̃ = 8π3

h c
NA

2303
ν̃0 D (2.68)

The root mean square deviation (rms) gives the difference between the experimental and

calculated oscillator strengths.34,41

rms = (
sum of squares of deviations

number of observations−number of parameters
)

1
2

= (
∑( fcalc − fexp)2

number of bands− 3
)

1
2

(2.69)

Special care must be taken with the units in Judd-Ofelt calculations or when using the

above formulas, particularly when using the elementary charge e. The quantities in these

formulas are based on the older CGS system (centimetre-gram-second) and not on the SI

system.40 Therefore, Table 2.2 summarizes the constants that have to be used for Judd-Ofelt

calculations. The unit of the Ωλ parameters is usually cm2.

In the case of Eu3+, there are often not enough transitions resolved in the experimental

spectra to perform a least squares fitting procedure to calculate the Judd-Ofelt parameters.

An alternative strategy is to obtain the Ωλ by a comparison of the radiative transition

probabilities of magnetic and electric dipole transitions in the emission spectra.43 The 5D0 →
7F1 transition of Eu3+ could be shown to be a magnetic dipole transition,33 whose radiative

transition probability A01 is independent of the environment of the rare earth ion,43 while

the 5D0 → 7FJ (J = 2, 4, 6) are electric dipole transitions,33 where A0J only depends on the

Ωλ parameters (λ = 2, 4, 6).43 A great simplification in the special case of Eu3+ is that the

intensity or oscillator strength of the 5D0 → 7F2 transition is solely determined by Ω2, of

the 5D0 → 7F4 transition by Ω4 and of the 5D0 → 7F6 transition by Ω6.43 This is a result

of the reduced matrix elements of the unit tensor operator ⟨∥U(λ)∥⟩, which vanish in the

cases J = 0Ð→ J′ and λ ≠ J′.28 Thus, the following formulas were used in this thesis for the

determination of the Judd-Ofelt parameters of Eu3+.44,45
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2. Crystal �eld and Judd-Ofelt theory

Table 2.2.: Constants and their meanings and units in the CGS system.42

Symbol Value CGS unit Definition

me 9.10938215 ⋅ 10−28 g electron mass

c 2.99792458 ⋅ 1010 cm s−1 speed of light

h 6.62606885 ⋅ 10−27 erg s = g cm2 s−1 Planck’s constant

e 4.80320427 ⋅ 10−10 esu = g
1
2 cm

3
2 s−1 elementary charge

NA 6.02214 ⋅ 1023 (mol) Avogadro’s constant

ν̃, ν̃0 / cm−1 wavenumber of a transition

A0J = A01 (
∫ I0J dν̃

∫ I01 dν̃
)( ν̃01

ν̃0J
) (2.70)

Here the radiative transition probability of the magnetic dipole transition is given by

A01 ≈ 50 s−1.44,45 ∫ I0J dν̃ is the integrated intensity of the 0 → J transition and ν̃0J the

associated wavenumber. The Judd-Ofelt parameters Ωλ can then be calculated according

to44

Ω2 =
3 h c3 A02

8π e2 ω3 χ ⟨7F2 ∥U(2) ∥ 5D0⟩
2 (2J + 1)

(2.71)

where ω is the angular frequency of the transition, ω = 2πν = 2πcν̃ ⋅ 100 in rad s−1 (ν̃ in

cm−1), χ is the Lorentz field correction, in this case χ = n(n2+2)2
9 with the refractive index

n,44 J denotes the J-value of the initial state of the transition, i.e. J = 0, and the constants

are listed in Table 2.2. Ω4 and Ω6 can be obtained in an analogous way by replacing A02

and ⟨7F2∥U(2)∥5D0⟩ by the corresponding terms.44

It should be noted that such phenomenological or semi-empirical Judd-Ofelt parameters

also contain dynamic or vibronic contributions from the interaction of the rare earth ion

with the ligands, as opposed to the above presented static Ωλ parameters of the original

Judd-Ofelt theory, which is based on a static perturbation by the crystal field potential.11,34

In addition, electron correlation and higher-order effects caused by the (static and dynamic)

crystal field potential, the spin-orbit coupling and the mass polarization shift are also

accounted for.38 Accordingly, the semi-empirical Judd-Ofelt theory is more general than
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2.2. Judd-Ofelt theory

the original ab initio theory derived by Judd and Ofelt.

However, the theory was further developed, for example by Wybourne46, who introduced

third-order contributions to the intensities, or more recently by Smentek & Wybourne22

with the extension to the relativistic formalism, which makes the calculation of transitions

possible that are forbidden in the non-relativistic theory, e.g. the 0 ↔ 0 transitions of

Eu3+.38

Selection rules

The 3-j and 6-j symbols together with the reduced matrix elements ⟨∥U(λ)∥⟩ and the

orthogonality of the spin functions yield the following selection rules34

• ∆` = ±1, ∣∆L∣ =≤ 6, ∆S = 0

• ∣∆J∣ =
⎧⎪⎪⎨⎪⎪⎩

2, 4, 6 if J or J′ = 0

≤ 6 else

• ∣∆MJ ∣ = p + q .

Furthermore, J = 0↔ 0 = J′ transitions are forbidden.24,34 However, the selection rules on L
and S are lifted to some extent due to the spin-orbit coupling.34 Also the selection rules on

J are not obeyed strictly because of the J-mixing, but still they are much more important

than the constraints on ∆L and ∆S.34

Magnetic dipole transitions

As mentioned above, also magnetic dipole transitions occur in the spectra of rare earth ions.

In contrast to the electric dipole f↔ f transitions, they are allowed, because the magnetic

dipole operator µ̂md is of even parity.24

µ̂md = −
e

2 mec
(L + 2S) (2.72)

The following selection rules are valid for magnetic dipole transitions.34

• ∆` = 0, ∣∆L∣ = 0, ∆S = 0

• ∣∆J∣ = 0,±1 and not 0↔ 0
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2. Crystal �eld and Judd-Ofelt theory

Again, the selection rules on L and S are not obeyed strictly.34 Carnall et al.41,47 have

calculated the magnetic dipole oscillator strengths of a number of trivalent rare earth ions.

Electric quadrupole and especially higher multipole transitions were not observed in

experimental spectra.34

2.3. Hypersensitivity

One of the most interesting features in rare earth ion spectra are so-called hypersensitive
transitions. The intensities of these transitions are particularly sensitive to the environment of

the rare earth ion in contrast to the intensities of the majority of f↔ f transitions.34 They were

first called hypersensitive by Jørgensen & Judd19. Since then the hypersensitive transitions

were investigated by many authors for a variety of rare earth ions in crystals, glasses and

solutions and different explanations for this phenomenon were suggested.34,48–51 However,

there is still no consistent theory available that explains hypersensitive transitions.

The selection rules of hypersensitive transitions are34

• ∣∆J∣ ≤ 2

• ∣∆L∣ ≤ 2

• ∣∆S∣ = 0,

which correspond to the selection rules on ⟨∥U(2)∥⟩.34 The selection rules on L and S are

again lifted to some extent due to spin-orbit coupling. As a consequence, Ω2 is expected to

be especially sensitive to the environment compared to Ω4,6.34

Some of the properties of hypersensitive transitions are given below. To begin with, their

pure electronic transition intensity is zero if the rare earth ion is situated at an inversion

Table 2.3.: Hypersensitive transitions34 and their wavenumbers28 ν̃ of Nd3+ and Eu3+.

Lanthanide Hypersensitive transition ν̃ (cm−1)

Nd3+ 4G5/2 ← 4I9/2 17,193

5D1 ← 7F1 18,655

Eu3+ 5D2 ← 7F0 21,483
5D0 → 7F2 16,267
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2.3. Hypersensitivity

centre,¶ just like in the case of normal, i.e. non-hypersensitive, transitions, whereas slight

deviations from the centrosymmetry lead to relatively high intensities of the hypersensitive

transitions while the intensities of the other transitions remain unchanged (see e.g. for Eu3+

Blasse et al.52).34 The spectra of aqueous solutions exhibit comparatively low intensities of

the hypersensitive transitions. In general, the intensity dependence on the ligands is given

by34

I− > Br− > Cl− > H2O > F−

and

aryl > alkyl .

Furthermore, basic or electron donating ligands seem to enhance the intensity of the

hypersensitive transition, i.e. there is a dependence on the pKa of the ligands.49

Theories of hypersensitivity

Judd19,36 proposed that the effect can be described in the formalism of Judd-Ofelt theory by

the crystal field parameter A1,p (t = 1), which solely occurs in the expression for Ω2 and not

for Ω4,6.34 Only the point groups Cs, Cn (n = 1− 4, 6), Cnv (n = 2− 4, 6) allow A1,p parameters.

However, several experimental examples of lanthanides in other point groups have shown

high intensities of the hypersensitive transitions.34

Also the vibronic mechanism for Ω2 proposed by Jørgensen & Judd19 cannot account for the

observed properties of hypersensitive transitions.34

The inclusion of covalency in the description has been discussed by some authors, which

results in an increase of the calculated intensity and mainly affects Ω2, but also Ω4.34

Moreover, the selection rules of hypersensitive transitions correspond to those of quadrupole
transitions, which was also considered as a cause of hypersensitivity. However, the intensity

of quadrupole transitions is very low and does not explain the high intensities observed

in the experiments.34 Besides, in this case Ω2 would be proportional to the square of the

wavenumber of the transition ν̃2, which could also not be verified by experiments.34

Jørgensen & Judd19 also proposed the inhomogeneous dielectric model, which is based on

the assumption that the radiation induces dipoles in the environment of the rare earth ion.

¶Non-zero transition intensities in centrosymmetric sites are caused by vibronic mechanisms.34,49
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2. Crystal �eld and Judd-Ofelt theory

This causes a variation of the electric field across the ion (∇E)(2)p . The electric quadrupole

operator is then given by34

µ̂eq = −e (2
3
)

1
2

∑
i

r2
i C(2)q (i) (∇E)(2)p (i) . (2.73)

Under these circumstances, a considerable enhancement of the quadrupole transition

intensity can be achieved, which the authors expressed as Ω2(inhomogeneous dielectric) =
const. ⋅Ω2(quadrupole).34 These transitions are called “pseudo-quadrupole” transitions.49

Finally, one of the most promising explanations is the dynamic coupling model. It considers

the perturbation of the ligand wave functions caused by the central ion as well, in addition

to the perturbation due to the ligand field. The perturbed wave function of the total system

up to first order is34

∣Ψi⟩ = ∣M0L0⟩ −∑
b
(Ea − Eb)−1 ⟨MaLb ∣ V̂ ∣ M0L0⟩ ∣MaLb⟩ (2.74)

where total state of the system is written as a product of the ground and excited functions

of the metal ion, ∣M0⟩ and ∣Ma⟩, and of the ligand, ∣L0⟩ and ∣Lb⟩. Ea denotes the energy of

the ∣Ma⟩ ← ∣M0⟩ transition and Eb of the ∣Lb⟩ ← ∣L0⟩ transition. Evaluation of the transition

matrix element −e ⟨Ψ f ∣D(1)q ∣Ψi⟩ leads to the following term for the oscillator strength34

f (dyn) = 8π2me c ν̃

3h(2J + 1)
χ Ω2(dyn) ∣ ⟨4 f Nα f [S f L f ]J f ∥U(2) ∥4 f Nαi[SiLi]Ji⟩ ∣

2
. (2.75)

Ω2(dyn) = ( 2
15

)( α2

R8 ) ⟨ f ∥C(2) ∥ f ⟩
2
⟨4 f ∣ r2 ∣4 f ⟩2

∑
q,m

{[Bq,m]∣
N
∑
L=1

C(3)−q−m∣
2
} (2.76)

Thus, there is only a dynamic (dyn) contribution to Ω2, but not to Ω4,6. Here α is the

average polarisability of the ligands, R denotes the ligand–metal bond distance and Bq,m is

a numerical factor.34

The dynamic coupling model predicts that the Y(3)m spherical harmonic function must

be contained in the expansion of the potential of the rare earth ion in order to exhibit

hypersensitivity. This limits the possible point groups to Cs, Cn (n = 1− 8), Cnv (n = 2− 6

and ∞), C3h, Dn (n = 2− 6), as well as D2d, D3h, S4, T and Td.34

The dynamic coupling method made the prediction of hypersensitive transitions of the

neodymium trihalides NdX3 possible, where many of the above mentioned theories failed.

Furthermore, many properties of hypersensitive transitions can be explained like the
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dependence on the polarisability of the ligands (I− > Br− > Cl− > H2O > F−; aryl > alkyl).34

In contrast to the inhomogeneous dielectric model, the charge distribution due to the f↔ f
transition induces dipoles in the ligands in the case of the dynamic coupling model.34

Presumably a combination of these effects should be considered when describing the

hypersensitivity of a transition. The symmetry alone cannot account for the considerable

intensity changes,51 though there seems to be a relation between certain point groups and

the intensity of the hypersensitive transition. An inversion centre affects all transitions, not

only the hypersensitive ones.49 The polarisability of the ligands seems to play an important

role as well.51
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3. Computational methods

This part focuses on relativistic quantum mechanics, i.e. the combination of Einstein’s theory

of special relativity and quantum mechanics, starting with the Dirac equation. It is mainly

based on the books by Reiher and Wolf21 and Dyall and Fægri53. Quantum electrodynamics

would be the fundamental physical theory fulfilling the requirements of special relativity

and the state of the art in the description of the interaction of light (photons) and matter

(electrons), but it is not suited for the description of molecular systems.

3.1. Dirac's theory and four-component methods

The Dirac equation of a freely moving electron is given by21

ih̄
∂

∂t
Ψ = [ h̄c

i
αk∂k + βmec2]Ψ (3.1)

or, equivalently, by

ih̄
∂

∂t
Ψ = [c(α ⋅ p) + βmec2]Ψ (3.2)

which can be derived using the correspondence principle together with Dirac’s approach

for the square root operator.21,53

The Dirac parameters αk and β can be shown to be 4 × 4 matrices, in the standard

representation given by

αi =
⎛
⎝

0 σi

σi 0

⎞
⎠

and β =
⎛
⎝

12 0

0 12

⎞
⎠

(3.3)
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with 12 being the 2 × 2 unit matrix and σi are the three Pauli matrices

σx =
⎛
⎝

0 1

1 0

⎞
⎠

, σy =
⎛
⎝

0 −i
i 0

⎞
⎠

and σz =
⎛
⎝

1 0

0 −1

⎞
⎠

, (3.4)

or represented by a vector

α = (αi) = (α1, α2, α3) (3.5)

σ = (σx, σy, σz) . (3.6)

The α parameters, which simply resulted from the mathematical treatment53, can be

considered to represent the spin21, whereas cα can be identified with the velocity operator

in accordance with the classical velocity four-vector.53 The term c(α ⋅p) then corresponds to

the kinetic energy operator in the relativistic framework21, where p refers to the canonical

momentum operator (p → −ih̄∇).

Because of the 4 × 4 structure of the Dirac matrices, the quantum mechanical state is

necessarily a vector of four functions or a “4-spinor”.21 The Dirac equation is Lorentz

covariant, i.e. it fulfils the requirements of special relativity, as opposed to the time-

dependent Schrödinger equation, which does not treat time and space variables in the same

manner (second derivatives with respect to space, but only first derivatives with respect to

time).53 The 4-spinor Ψ can also be written in terms of 2-spinors or bi-spinors, the large

component ΨL and the small component ΨS, because of the block structure of the Dirac

matrices.21

Ψ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ψ1

Ψ2

Ψ3

Ψ4

⎞
⎟⎟⎟⎟⎟⎟
⎠

=
⎛
⎝

ΨL

ΨS

⎞
⎠

(3.7)

The Dirac equation in split notation then reads21

c(σ ⋅ p)ΨS +mec2ΨL = ih̄
∂

∂t
ΨL (3.8)

c(σ ⋅ p)ΨL −mec2ΨS = ih̄
∂

∂t
ΨS (3.9)
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3.1. Dirac's theory and four-component methods

One should keep in mind that these equations represent four coupled first-order differential

equations. The Dirac equation for a freely moving particle has four solutions, two of which

correspond to positive energy eigenvalues, which are physically meaningful, and the other

two belonging to negative energy eigenvalues.21 An interpretation of these negative energy

states is given in the books by Reiher & Wolf21 (p. 178) and Dyall & Knut Fægri53 (p. 54).

The Dirac equation of an electron in an external electromagnetic potential can be derived

using the minimal coupling scheme21,54*

ih̄
∂

∂t
Ψ = [c(α ⋅ p) + βmec2 + qeφ − qe(α ⋅A)]Ψ , (3.10)

where φ denotes a scalar potential and A an external vector potential, qe = −e is the charge

of an electron. This equation can also be written in terms of the mechanical or kinematic

momentum operator π.21,53

π ≡ p −
qe

c
A (3.11)

Kinetic balance

If the speed of light is increased, c → ∞, the non-relativistic limit is reached. It will be

shown later how the Schrödinger equation is recovered for c →∞. In order to compare the

relativistic and non-relativistic energy, the origin of the energy scale must be shifted by

−mec2 in the case of the Dirac equation.21

ih̄
∂

∂t
⎛
⎝

ΨL

ΨS

⎞
⎠
= c ⋅

⎧⎪⎪⎨⎪⎪⎩

(σ ⋅π)ΨS

(σ ⋅π)ΨL

⎫⎪⎪⎬⎪⎪⎭
− 2mec2 ⎛

⎝
0

ΨS

⎞
⎠
+V

⎛
⎝

ΨL

ΨS

⎞
⎠

(3.12)

A relation between the 2-spinors ΨL and ΨS can be obtained using the lower part of this

equation together with the assumption 2mec2 ≫ E −V, with the energy E → ih̄ ∂
∂t and the

potential V.

*p → p − qA and E → E − qφ .20
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3. Computational methods

(ih̄
∂

∂t
+ 2mec2 −V)ΨS = c(σ ⋅π)ΨL (3.13)

ΨS = c(σ ⋅π)
ih̄ ∂

∂t + 2mec2 −V
ΨL (3.14)

ΨS ≈ σ ⋅π
2mec2 ΨL (3.15)

This relation (3.15) is known as kinetic balance. On account of ΨS being by a factor of

c−1 ≈ 1/137 smaller than ΨL, the former is called the small component (S) and the latter the

large component (L). The small component vanishes for c → ∞, i.e. in the non-relativistic

limit, while the large component then yields the uncoupled α- and β-spin orbitals.21

Time-independent Dirac equation

In quantum chemistry one is mostly interested in the eigenstates of a time-independent

Hamiltonian, the stationary states. In this case a product ansatz for the wave function can

be made.53

Ψ(r, t) = Ψ(r)θ(t) (3.16)

θ(t) = e
Et
ih̄ (3.17)

After substitution this yields the time-independent Dirac equation.

ĤΨ(r) = EΨ(r) (3.18)
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3.1. Dirac's theory and four-component methods

Many particle systems

In the case of atoms and molecules, the Hamiltonian can be expressed as a sum of one-

particle (ĥ) and two-particle operators (ĝ), describing also the electron-electron and electron-

nucleus interaction.20,21,55

Ĥ =
N
∑

i
ĥ(i) +

N
∑
i<j

ĝ(i, j) +VNN (3.19)

Here, the Born-Oppenheimer approximation56 has been applied, i.e. the nuclear and electronic

degrees of freedom are separated.

Ĥ → Ĥ
′
elΨel,A = E

′
el,AΨel,A (3.20)

ĤelΨel,A = Eel,AΨel,A = (E
′
el,A −VNN)Ψel,A (3.21)

Further approximations are made, for example the neglect of nuclear spin, point-like

particles and simplifications of the interaction potentials.

The one-electron operator ĥ, which only depends on the coordinates of one electron i, is

given by the Dirac Hamiltonian, here without an external vector potential A21

ĥ(i) = c(αi ⋅ pi) + (βi − 1)mec2 +Vnuc(ri) (3.22)

ĥ =
⎛
⎝

Vnuc c(σ ⋅ p)
c(σ ⋅ p) Vnuc − 2mec2

⎞
⎠

(3.23)

where Vnuc is a scalar potential representing the interaction of one electron with the clamped

nuclei, which reads in Gaussian units (4πε0 = 1)

Vnuc(ri) = −
M
∑

I

ZIe2

∣ri −Ri∣
. (3.24)
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VNN denotes the nucleus-nucleus repulsion, which is again a Coulomb-type operator like

Vnuc. In the following chapters the Born-Oppenheimer approximation is applied, i.e. a

constant shift of the energy is assumed, without the specification el for “electronic”. The

wave function and the energy are thus functions of a given nuclear geometry. Furthermore,

the by mec2 shifted energy is used. Still, the electronic solutions are called “positive-energy

solutions” and the positronic solutions “negative-energy solutions”.21

The spin-orbit coupling, σ ⋅ `, is “embedded” in the term α ⋅ p or σ ⋅ p, respectively, i.e. in the

off-diagonal elements of the one-electron (Dirac) Hamiltonian.21

σ ⋅ p = (σ ⋅ r
r

) 1
r
[r ⋅ p + i(σ ⋅ `)] (3.25)

Here ` denotes the orbital angular momentum operator ` = r × p.

The remaining unknown is the exact expression for the two-electron operator ĝ. The

simplest interaction potential, a Coulomb operator, can be described analogous to Vnuc or

VNN . Unretarded interactions, where the effects of the electromagnetic fields generated by

the electrons are felt simultaneously, are given by the Gaunt operator21

G0(i, j) = −qiqj
αiαj

rij
= −

qiqj

rij

4
h̄2

⎛
⎝

0 sisj

sisj 0

⎞
⎠

. (3.26)

Here αiαj is the scalar product αiαj = ∑3
k=1 αi,kαj,k. The Gaunt interaction describes the

instantaneous magnetic interaction of the electrons and spin-spin interactions.21,55

The Breit operator B0(i, j) accounts for retarded interactions.21

B0(i, j) = −
qiqj

2
⎛
⎝

αiαj

rij
+

(rij ⋅ αi)(rij ⋅ αj)
r3

ij

⎞
⎠

(3.27)

= G0(i, j) + Bret.(i, j) (3.28)

This is the frequency-independent Breit operator, where Bret.(i, j) denotes the true retarda-

tion operator, but one can also derive a frequency-dependent Breit operator Bω(i, j) using
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3.1. Dirac's theory and four-component methods

quantum electrodynamics. The combined Coulomb-Breit operator57 can also be written

as20,55

ĝBreit
ij = ĝCoulomb

ij + ĝGaunt
ij + ĝgauge

ij (3.29)

= 14 ⊗ 14

rij
−

(cαi)(cαj)
c2rij

−
(cαi ⋅ ∇i)(cαj ⋅ ∇j)rij

2c2 (3.30)

However, in this work only the Coulomb interaction term was used, which includes

spin-same-orbit,58,59 but not spin-other-orbit interaction, which is described by the Gaunt

term.20,55

ĤDC =
N
∑
i=1

ĥ(i) +
N
∑
i<j

ĝCoulomb
ij

=
N
∑
i=1

[cαi ⋅ pi + (βi − 1)mec2 +Vnuc(ri) 14] +
N
∑
i<j

14 ⊗ 14

rij
(3.31)

This is the Dirac-Coulomb Hamiltonian ĤDC,20 which was used in this thesis, where the last

term corresponds to the Coulomb repulsion between the electrons ĝ(i, j) → VC(i, j) = e2

∣ri−rj ∣ .
This relativistic four-component Hamiltonian for molecular calculations is often called

“fully relativistic” Hamiltonian, though it is no longer Lorentz covariant.21

A problem arises in relativistic four-component calculations which is caused by the possi-

bility of infinitely large negative energies or the unboundedness of the one-electron Dirac

Hamiltonian, respectively. This could lead to a variational collapse when the variational

principle is applied.21 A possible solution to this problem is to apply the minimax princi-
ple60, where the minimum of the electronic energy with respect to the large component

of the spinor is determined and the maximum of the energy with respect to the small

component.21

The Dirac
61 program uses this principle together with the “empty Dirac” picture20,53,

where the negative-energy states are treated as virtual states during the Hartree-Fock

optimization.20 A coupling or pair-creation process between the positive-energy (electronic)

and negative-energy (positronic) states should be prohibited - this is the case for no-pair
Hamiltonians.21
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Non-relativistic limit

For increasing speed of light c →∞, the four-component one-electron Dirac operator ĥ turns

into the one-component one-electron operator ĥS of non-relativistic Schrödinger quantum

mechanics.21

ĥ(i) = cαi(pi −
qi

c
Aext) + (βi − 1)mec2 +Vnuc(ri)

⇓

ĥS(i) = − h̄2

2me
∆i +Vnuc(ri)

This is a consequence of the vanishing small components of the spinor, see page 36 (3.1).

3.2. Two-component Hamiltonians

It is desirable to reduce the four-component Hamiltonian to a two-component Hamiltonian

representing only the positive-energy solutions.21,55 This can be achieved using, for example,

elimination techniques that substitute the small component ψS according to21

ψS = RψL . (3.32)

R = R(ε) = (ε −V + 2mec2)−1 c (σ ⋅ p) (3.33)

This relation holds because of the (2 × 2)-superstructure of the one-electron Fock-type

operator f̂ , where V is diagonal and ĥ f ree corresponds to the field-free one-electron Dirac

Hamiltonian21, see for example (3.1) on page 36.

f̂ = ĥ f ree +Vnuc +Vee
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=V

(3.34)

f̂ ψ = εψ (3.35)
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3.2. Two-component Hamiltonians

Hence, the R-operator depends on the energy eigenvalue ε. It is also called “exact

coupling”.55 Heully et al.62 were able to derive an expression for R which is not explicitly

energy dependent.55 Starting from the one-electron Dirac equation

hLLψL + hLSψS = EψL (3.36)

hSLψL + hSSψS = EψL (3.37)

and eliminating ψS using R

(hLL + hLSR)ψL = EψL (3.38)

an equation which is not explicitly relating to the energy E can be obtained55

hSL + hSSR = RhLL + RhLSR . (3.39)

The two sets of solutions, R+ and R−, of this operator equation belong to the positive- and

negative-energy solutions, respectively. Finally, a general form of the Foldy-Wouthuysen

transformation63 could be derived giving the required transformation matrix U.55,62

U =
⎛
⎝

Ω+ −R†Ω−
RΩ+ Ω−

⎞
⎠

(3.40)

Ω+ =
1√

1+ R†R
= N−1

+ (3.41)

Ω− =
1√

1+ RR†
(3.42)

U† ⎛
⎝

hLL hLS

hSL hSS

⎞
⎠

U =
⎛
⎝

h̃++ 0

0 h̃−−

⎞
⎠

(3.43)

The two-component equation describing the positive-energy (electronic) spectrum is given

by55

h++ψ2c
+ = Eψ2c

+ . (3.44)
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In order to develop an exact two-component Hamiltonian, called X2C, the solution of the

one-electron Dirac equation is required. However, the calculation of two-electron terms in

molecular computations is much more expensive, so this does not present a problem. It is

therefore possible to obtain the X2C Hamiltonian starting from the matrix representation of

the parent four-component Hamiltonian and then extracting the exact coupling R.55

3.3. Douglas-Kroll-Hess theory

The Douglas-Kroll-Hess (DKH) transformations64,65 lead to a block diagonalization of

the Hamiltonian, i.e. a to decoupling of the negative-energy states (see eq. (3.43)).21 A

sequence of unitary transformations Ui, starting with the free-particle Foldy-Wouthuysen

transformation U0,63 is performed.21,55 This corresponds to a stepwise decoupling of the

Hamiltonian in orders of the potential V.21,55

U = ⋯U3 U2 U1 U0 =
∞
∏
i=0

Ui (3.45)

U0 = Ap
⎛
⎝

1 σ ⋅ Pp

−σ ⋅ Pp 1

⎞
⎠

(3.46)

where the factors are given by

Ap =

¿
ÁÁÀEp +mec2

2Ep
, Pp =

c p
Ep +mec2 , Rp = α ⋅ Pp =

c(α ⋅ p)
Ep +mec2 (3.47)

Ep =
√

p2c2 +m2
e c4 .

Ep is the (positive) relativistic energy of a freely moving particle, Ap and Rp denote

kinematic factors.21

1st unitary transformation:21

f̂1 = U0 (ĥ f ree +V)U†
0 = ε0 + ε1 +O1 (3.48)

ε0 = βEp −mec2 (3.49)

ε1 = ApVAp + ApRpVRp Ap (3.50)

O1 = βAp[Rp, V]Ap (3.51)
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3.3. Douglas-Kroll-Hess theory

The arising ε terms are called even, because they exhibit the desired block-diagonal LL and

SS structure, while the odd operator O contains the off-diagonal elements. The aim is to

cancel the odd operators, which is accomplished by odd and antihermitian operators W
(W† = −W).21

2nd unitary transformation:21

f̂2 = U1 f̂1 U†
1 (3.52)

= ε0 + ε1 +O
(2)
1 + ε2 +O(2)2 + ε3 +O(2)3 +

∞
∑
k=4

(ε
(2)
k +O(2)k ) (3.53)

The antihermitian operator W1, which is first order in V, is defined in such a way as

to obtain O(2)1 = 0.21 After this second unitary transformation U1, which is the first DK

transformation, all terms needed for the third order DKH Hamiltonian are determined, i.e.

ε0−3.21

Further unitary transformations lead to higher order DKH Hamiltonians. The n-th order

DKH Hamiltonian is given by21

ĥDKHn = ε0 + ε1 + ε2 +⋯ =
n
∑
k=0

εk (3.54)

where ε0 and ε1 are given above and21

ε2 =
1
2
[W′

1,O1] (3.55)

W′
1(i, j) = β

O(1)1 (i, j)
Ei + Ej

. (3.56)

For explicit expressions of the other terms and higher order ε see the book by Reiher &

Wolf21.

It should be noted that the occurring operators are defined in momentum space.21,55

Accordingly, all operators first need to be transformed to p2-space for the construction of

the DKH Hamiltonian and afterwards the reversed transformation back to position space is

carried out.21

ĥDKH∞ =
∞
∑
k=0

εk =
∞
∑
k=0

⎛
⎝

εk+ 0

0 εk−

⎞
⎠
=

∞
∑
k=0

⎛
⎝

εsf
k+ + εsd

k+ 0

0 εsf
k− + εsd

k−

⎞
⎠

(3.57)
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Equation (3.57) highlights the possibility to decompose each even operator ε into spin-free

(sf) and spin-dependent (sd) parts.21 When going from the four-component theory to

the two-component theory, only the LL blocks are of interest in order to reproduce the

positive-energy spectrum. Then, the (2× 2)-block diagonal operator up to fourth order (n =

4) is given by21

ĥ2c
DKHn =

n
∑
k=0

εk+ . (3.58)

A successful modification is the scalar-relativistic or one-component DKH method. In this

approximation, the spin-dependent operators are neglected (α ⋅ p ⇒ σ ⋅ p ⇒ p) and

only one-electron operators are altered in order to account for scalar-relativistic effects.21

The reason why two-electron operators are not considered is that the DKH Hamiltonian

is determined before the start of the SCF iterations, which makes the inclusion of the

two-electron terms of the Fock operator impossible since they depend on the solution

functions ψ. This causes the picture change error since these terms are not transformed

and only accounted for in the non-relativistic form.21 The scalar-relativistic DKH method

can be readily implemented in non-relativistic quantum chemistry programs.21 The Orca

program package uses for example the second-order spin-free, i.e. scalar-relativistic, DKH

Hamiltonian.66

3.4. Con�guration Interaction

A single determinant approach like the (Dirac-)Hartree-Fock method is not a good choice

for quantum chemical calculations. The difference between the exact electronic energy and

the (Dirac-)Hartree-Fock energy, the so called correlation energy, amounts to < 5% of the

exact energy.21

A systematic improvement is, for example, an expansion of the total electronic state A

ΨA, e.g., into configuration state functions (CSF) ΦI , which themselves are given by a

superposition of Slater determinants, here denoted ΘK.21 This technique is known as

configuration interaction. It accounts for the so called dynamic correlation.21

ΨA =
∞
∑
I=0

ΦICIA (3.59)
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3.4. Con�guration Interaction

ΦI = ∑
K

ΘKBKI (3.60)

Equation (3.59) gives the full configuration interaction (FCI) wave function, which cor-

responds to an expansion into the complete set of CSFs (or Slater determinants).21 The

expansion coefficients CIA of state A are called “CI coefficients”.

The CI expansion is usually truncated according to a specific substitution pattern, where

occupied spinors (or spin orbitals) of the Slater determinant are replaced by new orthogonal

virtual spinors.21 CI-Singles-Doubles (CISD) for example corresponds to a truncation after

double substitutions, i.e. only single- Φr
a and double-excited determinants Φrs

ab are included,

where one occupied spinor (spin orbital) a has been replaced by a virtual spinor r, or in

general a, b, c, . . . occupied spinors are substituted by r, s, t, . . . virtual spinors (Φrst...
abc...).

The virtual spinors are obtained through the solution of the Roothaan equation.21

ΨCISD
A = Φ0 C0,A +

N
∑
ar

Φr
a C(ar),A +

N
∑

a < b
r < s

Φrs
ab C(ar),(bs),A (3.61)

Φ0 gives the (Dirac-)Hartree-Fock ground state wave function.26 Using the notation ∣S⟩ for

∣Φr
a⟩ (single excitation), ∣D⟩ for ∣Φrs

ab⟩ (double excitation), ∣T⟩ for ∣Φrst
abc⟩ (triple excitation) etc.,

the upper part of the Hermitian CI matrix H is given by26

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣Φ0⟩ ∣S⟩ ∣D⟩ ∣T⟩ ⋯

⟨Φ0∣ ⟨Φ0∣Ĥ∣Φ0⟩ 0 ⟨Φ0∣Ĥ∣D⟩ 0 ⋯

⟨S∣ ⟨S∣Ĥ∣S⟩ ⟨S∣Ĥ∣D⟩ ⟨S∣Ĥ∣T⟩ ⋯

⟨D∣ ⟨D∣Ĥ∣D⟩ ⟨D∣Ĥ∣T⟩ ⋯

⟨T∣ ⟨T∣Ĥ∣T⟩ ⋯

⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.62)

However, each truncated CI expansion suffers from the lack of size consistency.

A further improvement is given by the multi-reference configuration interaction MRCI

method, which employs a linear combination of N-electron basis functions {Φre f } instead of

a single (Dirac-)Hartree-Fock reference determinant Φ0.21
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ΨMRCI
A = ∑

ν

Φre f
ν Cν,A +

N
∑
ν,ar

Φre f ,r
ν,a C(ar),A +

N
∑
ν

a < b
r < s

Φre f ,rs
ν,ab C(ar),(bs),A (3.63)

The CI eigenvalue problem is solved variationally yielding the matrix equation for all

electronic states21

HC = EelC (3.64)

The columns of the matrix C contain the CI coefficients and Eel is the diagonal matrix of the

total electronic energies. The solution of the CI eigenvalue problem, i.e. the diagonalization

of H, can be achieved using, for example, the Davidson algorithm.21

The relativistic CI method is more complicated than the non-relativistic approach, because

classes of integrals are non-zero which vanish in the latter case. The Hamiltonian is of

block-pentadiagonal form. Problems of an increased number of determinants or increased

size of the Hamiltonian matrix have to be faced. For example, in the case of CI with

double excitations, the expansion is four times longer in the relativistic case compared

to the non-relativistic counterpart. This is a consequence of the Kramers pairs and their

properties.53 The concept of Kramers pairs, i.e. a spinor and its Kramers partner, instead of

α- and β-spin orbitals, is given in (4.3) on page 70.

Kramers Restricted Con�guration Interaction

In this thesis the relativistic program module Luciarel
67–70, which is implemented in

the Dirac program package, was employed to perform Kramers Restricted Configuration
Interaction (KRCI)20,68,70 calculations. The one-particle functions in this multi-reference CI

program constitute Kramers-paired spinors {ψp ,ψp̄}, which transform according to the

irreducible representations (irreps) of double groups.20,68 As a consequence, the fermion irrep

for each shell must be specified in an input for such a relativistic calculation rather than

the spatial symmetry. All calculations were performed in the double group D∗
2h, i.e. in a

group with inversion center, where there are two possible fermion irreps corresponding to

gerade and ungerade spinors.
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ExternalGAS N

GAS N-1

⋮⋮

GAS III

GAS II

Frozen CoreGAS I

Figure 3.1.: Concept of Generalized Active Spaces (GAS) taken from Fleig70.

An important feature of the KRCI module is the Generalized Active Space (GAS)67,70 concept.

The one-particle space can be divided into subspaces, where different excitations and occu-

pation numbers are allowed. This offers the possibility to design an active space flexibly.70

Figure 3.1 highlights the underlying principle of GA spaces, dividing the one-particle space

into a frozen core, several subsequent GA spaces exhibiting different occupation numbers

and excitation levels, i.e. single, double, triple, etc. excitations into the next GA space,

and finally the external orbitals. Excitations out of the outer core shells of GAS I are also

possible, therefore enabling core-valence correlation.

3.5. Multi-Con�gurational Self-Consistent Field � CASSCF

The Multi-Configurational Self-Consistent Field (MCSCF) method is again based on a linear

combination of determinants or configuration state functions (CSF) Φ. In this method not

only the expansion coefficients Cν, but also the molecular orbitals Φopt
ν are optimized, as

opposed to CI methods.21

ΨMCSCF
A = e−κ∑

ν∈S
Φν CνA (3.65)

47



3. Computational methods

The expansion is carried out in a chosen subspace S,21 because the number of configurations

that can be included in an MCSCF calculation is restricted for computational reasons.

The second-generation MCSCF methods optimize the configurational coefficients and

orbitals, or “orbital (spinor) rotation parameters”, simultaneously, which can be achieved

using the Newton-Raphson technique.21 It is based on the first and second derivatives

of the energy with respect to the variational parameters. The optimization of the orbitals

is accomplished using a unitary matrix U that contains the orbital rotation parameters

κpq.21

U = e−κ (3.66)

UU† = 1 → U† = (e−κ)T = eκ (3.67)

κ† = −κ (antihermitian) (3.68)

The MCSCF wave function (3.65) is a qualitatively correct description of the system, which

accounts for static correlation due to the flexibility of the wave function.71 It can therefore

describe near-degeneracy effects, i.e. systems in which some configurations have nearly the

same energy,71 for example f -elements.20

A variant of the MCSCF method is the Complete Active Space Self-Consistent Field (CASSCF)

technique, which divides the molecular orbitals into active and inactive orbitals. In the

active space, which usually consists of the highest occupied and lowest unoccupied orbitals,

a full CI is carried out.71 This limits of course the number of electrons and orbitals that

can be included in the active space and a thorough choice of the orbitals has to be made.

[n,m]-CASSCF indicates that n electrons in m orbitals are included the active space.71 The

CASSCF concept is shown in Figure 3.2.

SOC-CASSCF

The Orca
72 program package provides a “fully variational spin-orbit coupled CASSCF”

method based on quasi-degenerate perturbation theory.66 An effective spin-orbit coupling

(SOC) operator, the spin-orbit mean-field (SOMF) operator by Heß et al.73, is employed.74 It

was derived starting from the Breit-Pauli SOC operator with the approximation to approach

the two-electron part of the operator by a mean-field, thus yielding an effective one-electron

operator74
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Active space (CAS) All excitations

Figure 3.2.: Definition of an active space for CASSCF calculations taken from Jensen71.

ĤSOMF = ∑
i

ẑi ŝi . (3.69)

The one-electron part of the SOC operator is given by74

Ĥ(1)SOC =∑
i

ĥ1el−SOC
i ŝi (3.70)

=α2

2
∑

i
∑
A

ZA r−3
iA ÎiA ŝi , (3.71)

which is equivalent to the one-electron part in the Breit-Pauli SOC operator.74 Here α =
c−1 ≈ 1/137 is the fine structure constant in atomic units, ZA is the charge of nucleus A and ŝi

is the spin operator of electron i. The distance between the i-th electron and nucleus A is

given by riA = ∣ri −RA∣ and ÎiA = (r̂i −RA) × p̂i denotes the angular momentum of electron i
relative to nucleus A, with p̂i being the momentum operator of the i-th electron.74

The two-electron part uses the operator74

ĝSOC(i, j) = −α2

2
Îij r−3

ij . (3.72)

Together, ĥ1el−SOC and ĝSOC define the matrix elements of the spatial part ẑ of the mean-field

SOC operator ĤSOMF
74
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⟨φi ∣ ẑ ∣φa⟩ = ⟨φi ∣ ĥ1el−SOC ∣φa⟩ +∑
j

nj [(φiφa∣ĝSSO∣φjφj) −
3
2
(φiφj∣ĝSOC∣φjφa)

−3
2
(φjφa∣ĝSOC∣φiφj)] . (3.73)

Here, the sum ∑j is carried out over the spatial orbitals φj with fixed occupation numbers

nj.73 A special notation is used to indicate the spatial integrals (⋯).74

⟨ψpψq ∣ ĝ2el−SOC
1,2 ∣ψrψs⟩ = (φpφr∣ĝSOC∣φqφs) {δχqχs ⟨χp∣ŝ∣χr⟩ + 2δχpχr ⟨χq∣ŝ∣χs⟩} (3.74)

The orthonormal spin orbitals ψk can be written as a product of a spatial φk and a spin part

χk.

ψk = φk(r) χk(s) (3.75)

χk(s) = α(s) or β(s) (3.76)

For actual calculations the spatial orbitals are expanded in a set of basis functions.74 The

CASSCF wave function is obtained as a linear combination of wave functions with specific

multiplicities S and the associated MS = S, S − 1, ...,−S.66

Ψ(rel) = ΨSMS +ΨSMS−1 +⋯+ΨS−1MS−1 +ΨS−1MS−2 +⋯ (3.77)

ΨSMS =
N
∑

I
CSMS

I ΦSMS
I (3.78)

Φ again represents a CSF. The eigenvectors and energy levels of the coupled states are

obtained by diagonalizing the corresponding matrix with the elements66

⟨ΨSMS
I ∣ ĤBO + ĤSOC ∣ΨS′M′

S
J ⟩ = δI J δSS′ δMS M′

S
E(S)I + ⟨ΨSMS

I ∣ ĤSOMF ∣ΨS′M′
S

J ⟩ . (3.79)

ĤBO represents the Born-Oppenheimer Hamiltonian.
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3.6. Basis sets and e�ective core potentials

Basis set expansion technique and spinor basis

In the independent particle model, the total wave function Ψ of a system can be expressed

as an antisymmetrized product of molecular 4-spinors ψi(r) or a Slater determinant,

respectively, in an analogous way like the one presented in (2.1.1) on page 9. On the basis

of the LCAO model (linear combination of atomic orbitals), a molecular spinor is expanded

in a set of atomic (at) 4-spinors ψ
(at)
k (r, RA), which themselves are expressed in terms of

known basis functions φ
(a)
µ (r, RA). RA is the coordinate of nucleus A, at which the specific

spinor or basis function is centred,21 and r is the electronic coordinate.

ψi(r) =
m′

∑
k

dik ψ
(at)
k (r, RA) (3.80)

Here the coefficients dik correspond to the occupation numbers.21

ψ
(at)
k (r, RA) =

m′
k

∑
µ

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b(1)kµ
φ
(1)
µ (r, RA)

b(2)kµ
φ
(2)
µ (r, RA)

b(3)kµ
φ
(3)
µ (r, RA)

b(4)kµ
φ
(4)
µ (r, RA)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(3.81)

The superscripts (a) label the different components of the spinor. However, a single basis

set {φµ(r, RA)} can be used for all components as well.21

ψi(r) =
m′

∑
k

m′
k

∑
µ

dik

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b(1)kµ
φ
(1)
µ (r, RA)

b(2)kµ
φ
(2)
µ (r, RA)

b(3)kµ
φ
(3)
µ (r, RA)

b(4)kµ
φ
(4)
µ (r, RA)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

≡
m
∑
µ

⎛
⎜⎜⎜⎜⎜⎜
⎝

c(1)iµ φ
(1)
µ (r, RA)

c(2)iµ φ
(2)
µ (r, RA)

c(3)iµ φ
(3)
µ (r, RA)

c(4)iµ φ
(4)
µ (r, RA)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.82)

Here the c(a)iµ are the combined expansion coefficients of the basis functions and m′ = s(A) ×
d(s) × M denotes the number of basis spinors with the number of shells per atom, s(A),

the degeneracy of each shell, d(s), and the number M of atoms in the molecule (minimal

basis). There are m′
k expansion coefficients b(a)kµ

of the basis functions, also called “contraction
coefficients”, hence the total number of basis functions is 4×m, where m = m′ ×m′

k.21 For an
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exact representation of a molecular spinor a complete basis would be needed, i.e. an infinite

number of basis spinors. However, in actual calculations the number of basis spinors is

restricted.21 A contracted basis set uses frozen expansion coefficients b(a)kµ
, therefore reducing

the number of basis functions.21

The kinetic balance condition can also be formulated for the molecular spinors ψi.21

ψS
i ≈ σ ⋅π

2mec
ψL

i (3.83)

Instead of using four independent expansions for the four components of a molecular

spinor, one can also expand them in terms of 2-spinors21

ψi(r) =
⎛
⎝
∑µ c(L)iµ φL

µ(rA)

∑µ c(S)iµ φS
µ(rA)

⎞
⎠

(3.84)

where rA = r −RA.

φL
µ(rA) =

Pµ(rA)
rA

χκµmµ(ϑA, ϕA) (3.85)

φS
µ(rA) = i

Qµ(rA)
rA

χ−κµmµ(ϑA, ϕA) (3.86)

The two-component spherical spinors χ±κµmµ(ϑA, ϕA) correspond to the Pauli spinors,

which are eigenfunctions of the squared two-component angular momentum j2 and jz.21

χ
(±)
jmj

=
⎛
⎜⎜
⎝

±
√

`±mj+1/2
2`+1 Y`(mj− 1

2 )√
`∓mj+1/2

2`+1 Y`(mj+ 1
2 )

⎞
⎟⎟
⎠

(3.87)

χκmj = χ
(+)
jmj

(3.88)

χ−κmj = χ
(−)
jmj

(3.89)
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Y are spherical harmonics and κ(+) = j + 1
2 , κ(−) = −j − 1

2 = −κ(+) are quantum numbers.21

The radial parts Pµ(rA) and Qµ(rA) could be expressed as Slater-type functions. However,

this usually leads to unsolvable SCF equations. For this reason, mainly Gauss-type functions

(GTO) are used. They exhibit a different short and long range behaviour, therefore more

Gaussian functions are needed than Slater-type functions to represent an atomic orbital.21

PGTO
µ (rA) = NL

µ r`µ+1
A e−ζµr2

A (3.90)

QGTO
µ (rA) = NS

µ [(κµ + `µ + 1) − ζµrA] r`µ

A e−ζµr2
A (3.91)

The factors ζµ are the only adjustable parameters of the basis. They are determined before

the calculation and are called the “exponents”.21

This basis functions can also be expressed in Cartesian coordinates, in contrast to the above

polar coordinates, where the sum of the exponents (αµ + βµ + γµ) is associated with the

angular quantum number `.21

φL
µ(rA) = NL

µ xαµ yβµ zγµ e−ζL
µr2

A (3.92)

φS
µ(rA) = NS

µ xαµ yβµ zγµ e−ζS
µr2

A (3.93)

The kinetic balance is applied to the radial function of the small component.21

In this thesis Dyall’s triple-zeta core-valence basis set cv3z75 was used, which is available

in the Dirac program.† Dyall’s basis sets are more or less correlation-consistent76. The

triple-zeta (3z) refers to the usage of three basis functions for the description of one valence

orbital, i.e. the s and p set in this case. The (core-)valence (cv) basis comprises functions for

the correlation of the ns, np, nd, n f , (n + 1)s, (n + 1)p, (n + 1)d, and (n + 2)s shells for the

lanthanides.77 The cv3z basis set consists of 2-spinor Gaussian functions. Here, the primitive

functions for the small component are obtained using the kinetic balance condition.78

The use of a spinor basis in relativistic calculations should be preferred to the use of “scalar

relativistic molecular orbitals”, which are obtained without regard to spin-orbit coupling,

according to Fleig et al.68. The spinors require the integration of double group symmetry

into a program.68

†http://dirac.chem.sdu.dk/basisarchives/dyall/index.html (28.02.2014).
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E�ective core potentials

The idea behind effective core potentials (ECP) is to include only the valence electrons in an

actual calculation, which are considered to determine the chemical behaviour of an atom or

molecule. This leads not only to a considerable reduction of computational effort compared

to the use of an all-electron basis set, but it also makes the inclusion of relativistic effects in

a simple way possible by a proper design of the potentials.79 These potentials then replace

the core electrons.21

One starts with an effective valence-only (v) model Hamiltonian79

Ĥv =
nv

∑
i

ĥv(i) +
nv

∑
i<j

ĝv(i, j) +Vcc +Vcpp . (3.94)

Here Vcc is the repulsion between the core electrons and nuclei of the system and Vcpp is the

“core polarization potential”; the subscript v denotes the valence electrons and c the core

electrons. The number of valence electrons, nv, is given by nv = n −∑N
λ (Zλ −Qλ), where Qλ

denotes the charge of the core λ.

The non-relativistic Hamiltonian (in atomic units) can be used to model the one- and

two-electron operators79

ĥv(i) = −1
2

∆i +Vcv(i) (3.95)

ĝv(i, j) = 1
rij

. (3.96)

The effective core potential (ECP) is given by Vcv. It describes the interaction of a valence

electron with the core and the nuclei. Relativistic effects are accounted for by an appropriate

design of Vcv. In the case of molecular systems, Vcv is defined as a superposition of the

atomic pseudopotentials.21,79

Vcv(i) =
N
∑
λ

(−Qλ

rλi
+∆Vλ

cv(rλi)) +⋯ (3.97)

The interaction between the nuclei and cores, Vcc, is obtained in an analogous way.
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Vcc =
N
∑
λ<µ

(
QλQµ

rλµ
+∆Vλµ

cc (rλµ)) +⋯ (3.98)

In both potentials (3.97) and (3.98), the first term corresponds to an attractive or repulsive

Coulomb interaction, respectively, while ∆Vλ
cv and ∆Vλµ

cc represent correction terms. Qλ =
(Zλ − ncore

λ )e is the charge of the atomic core λ, rλi = ∣Rλ − ri∣ denotes the distance between

nucleus λ and electron i and rλµ = ∣Rλ −Rµ∣ the distance between the two nuclei λ and µ.21

In order to ensure that the valence orbitals are orthogonal to the core and moved out of the

core, projection operators are included in the effective core potentials.21

The ECPs used in this thesis are based on a semilocal pseudopotential V(ri)80

V(ri) = −
Q
ri
+∑

`

∑
k

Ak` e−ak`r2
i P` . (3.99)

Here the charge of the core is given by Q, i and j are electron indices and P` denotes a

projection operator onto the Hilbert subspace with angular symmetry `80

P` = ∑
m`

∣` m`⟩ ⟨` m`∣ . (3.100)

The exponents ak` are determined by a single electron fit to valence energies of Hartree-Fock

calculations, while the coefficients Ak` can be obtained by a fit to quasi-relativistic all-

electron Hartree-Fock valence energies in the case of quasi-relativistic pseudopotentials.80

Here, this quasi-relativistic equations are given by the Wood-Boring (WB) approach81

including a mass-velocity term and an averaged Darwin-spin-orbit term.80 For explicit

analytical forms of pseudopotentials see Dolg79.

Apart from the given quasi-relativistic WB pseudopotential, there are also non-relativistic
(HF) and relativistic (DF) pseudopotentials.

Besides the shape-consistent pseudopotentials, which yield pseudo-orbitals of nearly the

same shape as the original valence orbitals and are needed for an accurate description of

bond lengths, there are energy-consistent pseudopotentials.79 These reproduce the energies

accurately via a fit to the total valence energy obtained by all-electron multi-configuration
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Dirac-Hartree-Fock calculations.79 The parameters of the pseudopotential are determined

such as to obtain the best agreement of the total valence energies. ‡

Model potentials are an alternative to pseudopotentials. They conserve the radial-node

structure of the original atomic valence orbitals in contrast to the latter potentials.21

In this thesis the energy-consistent quasi-relativistic (Wood-Boring WB) pseudopotentials

ECP49MWB (for Nd3+) and ECP52MWB (for Eu3+) published by Dolg et al.80,82 were used.

The number (49 or 52) indicates the number of core electrons that have been replaced by

the pseudopotential. These ECPs have a large core, which includes the f -electrons, therefore

leaving only 8 valence electrons for Nd3+ and Eu3+ (5s and 5p shells). “M” signifies that a

neutral atom was used as a reference system for the generation of the pseudopotential.83

3.7. Density Functional Theory

In contrast to the above presented wave mechanic methods, density functional theory (DFT)

is based on the fact that the energy can be directly defined as a functional of the electron

density ρ.71 The underlying principles are the Hohenberg-Kohn theorems.84 If the exact

functional relationship was known, DFT would give the exact energy including electron

correlation.71 However, this is not the case and an effort is made to design approximate

functionals. The modern application of DFT is mainly based on the Kohn-Sham theory, which

corresponds to a re-introduction of orbitals in order to calculate the kinetic energy T.71

The electron density function ρ1 (or ρ) is given by

ρ1(r1) = N[ ∣Ψ(x1, x2, ..., xN)∣2 ds1dx2⋯dxN (3.101)

where the integral is equal to the probability of finding an electron at position r1 and the

prefactor guarantees that the integral of the density yields the number of electrons N.

Ĥλ = T̂ + V̂ext(λ) + λV̂ee (3.102)

In equation (3.102) the Hamiltonian of a system is written in terms of the kinetic energy

operator T̂, the external potential operator V̂ext and the electron-electron interaction operator

‡Energy-consistent ECPs are, for example, available under http://www.theochem.uni-
stuttgart.de/pseudopotentials/index.en.html (28.02.2014).
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V̂ee with 0 ≤ λ ≤ 1. Setting λ = 0 results in a system composed of non-interacting electrons. In

such a case the exact solution of the Schrödinger equation is given by a Slater determinant

and the exact kinetic energy can be written as71

TS =
N
∑
i=1

⟨φi ∣ −
1
2
∇2 ∣φi⟩ (3.103)

where the subscript S indicates that the kinetic energy was calculated from a Slater deter-

minant composed of molecular orbitals φi. The idea of Kohn and Sham was to calculate the

kinetic energy in this idealised limit.71

Yet a real system corresponds to the case λ = 1, because electrons are interacting particles

possessing a charge and a spin, so their motion is correlated. A correction term to the

idealised kinetic energy, which is the (kinetic) correlation energy, is therefore introduced.71

The external potential operator, which is given by the nuclear-electron attraction V̂ne for

λ = 1, is adapted in such a way as to yield the same density ρ for all λ values.71 The

total energy EDFT can then be expressed as a sum of the contributions from the kinetic

energy, the nuclear-electron attraction, the Coulomb part of the electron-electron repulsion

J and an exchange-correlation term Exc including the exchange part of the electron-electron

repulsion and the remaining correlation energy.71

EDFT[ρ] = TS[ρ] + Ene[ρ] + J[ρ] + Exc[ρ] (3.104)

This exchange-correlation functional Exc[ρ] is defined by the deviation of TS from the exact

kinetic energy T and of the Coulomb electron-electron repulsion J from the real interaction

Eee.71 It is the only unknown functional in Kohn-Sham theory.71

Exc[ρ] = (T[ρ] − TS[ρ]) + (Eee[ρ] − J[ρ]) (3.105)

Ene[ρ] = −
M
∑
A
∫

ZA ρ(r)
∣RA − r∣

dr (3.106)

J[ρ] = 1
2∬

ρ(r) ρ(r′)
∣r − r′∣

dr dr′ (3.107)

Exchange and correlation holes

Electrons avoid each other due to their charge and spin. According to the Pauli principle, the

total wave function of such a fermionic system must be antisymmetric with respect to the
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interchange of two particles.26 This leads to the exchange energy. In addition, the charges

result in a correlated motion of the electrons giving rise to the (dynamical) correlation

energy. This can be described in terms of reduced probabilities of finding an electron

in the vicinity of another electron.71 In the case of N independent particles, the electron

pair-density ρ2 can be expressed as the product of two one-electron densities ρ1.71

ρ
indep
2 (r1, r2) = (1− 1

N
) ρ1(r1) ρ1(r2) (3.108)

The description of real particles requires the introduction of a reduced probability given by

the so-called exchange-correlation hole hxc.71

ρ2(r1, r2) = ρ1(r1) ρ1(r2) + ρ1(r1) hxc(r1, r2) (3.109)

hxc(r1, r2) =
ρ2(r1, r2)

ρ1(r1)
− ρ1(r2) (3.110)

The exchange-correlation hole can be decomposed into a Fermi hole caused by the exchange

part and a Coulomb hole owing to the dynamical correlation.71

hxc = hx + hc (3.111)

hx = hαα
x + hββ

x (3.112)

hc = hαα
c + hββ

c + hαβ
c (3.113)

The integral of the Fermi hole equals −1, while the integral of the Coulomb hole is zero.71

The integral of hxc is given by71

∫ hxc(r1, r2)dr2 = ∫
ρ2(r1, r2)

ρ1(r1)
dr1dr2 −∫ ρ1(r2) dr2

= N(N − 1)
N

− N

= −1 . (3.114)

The expression of the Coulomb energy functional J[ρ] (3.107) contains a non-physical

self-interaction, which must be corrected. This correction for the self-repulsion is included

in the exchange term.71
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Exchange-correlation functional

The exchange-correlation functional Exc[ρ] can be expressed in different forms and the

choice of the particular functional depends on the problem at hand. In general, it can

be distinguished between functionals where the parameters are determined using the

requirement to fulfil several criteria, e.g. that the functional should be self-interaction

free and that the exchange and correlation energy exhibit different scaling properties,

and empirical functionals where the parameters are determined by a fit to experimental

data.71

The local density approximation (LDA) is based on the assumption that the density can locally

be approximated as a uniform electron gas, i.e. that the density function varies slowly.71

In the more general local spin density approximation (LSDA), the exchange energy per

particle, ε, is given by71

εLSDA
x = −3

4
( 3

π
)

1
3

f1(ζ) ρ
1
3 . (3.115)

Exc[ρ] = Ex[ρ] + Ec[ρ] = ∫ ρ(r) εx[ρ(r)] dr +∫ ρ(r) εc[ρ(r)] dr (3.116)

ζ is the spin polarization, i.e. the normalized difference between ρα and ρβ, and ρ ≡ ρ1(r).71

f1(ζ) = 1
2
[(1+ ζ)

4
3 + (1− ζ)

4
3 ] (3.117)

ζ =
ρα − ρβ

ρα + ρβ
(3.118)

The LSDA correlation energy can be obtained by interpolating the correlation energy of a

uniform electron gas.71 An important parametrization of this term was published by Vosko,

Wilk and Nusair85 (VWN).

εVWN
c (rs, ζ) = εc(rs, 0) + εa(rs)(

f2(ζ)
f ′′2 (0)

) (1− ζ4) + [εc(rs, 1) − εc(rs, 0)] f2(ζ) ζ4 (3.119)

f2(ζ) =
f1(ζ) − 2
21/3 − 1

(3.120)
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The parametrization of the εc(rs, ζ) and εa(rs) functions is given in equation (3.121) with

the fitting constants A, x0, b and c.71

εc/a(x) = A{ln( x2

X(x)
) 2b

Q
tan−1 ( Q

2x + b
)

− bx0

X(x0)
[ln((x − x0)2

X(x)
) + 2(b + 2x0)

Q
tan−1 ( Q

2x + b
)]} (3.121)

x =
√

rs

X(x) = x2 + bx + c

Q =
√

4c − b2

It should be noted that in the original publication different parametrizations were suggested,

which lead to different implementations of VWN as a local correlation part in the various

quantum chemistry programs. The Orca program uses the “VWN-5” parametrization,

while the Gaussian program employs “VWN-3”, which leads to slightly different numerical

results.66

The generalized gradient approximation (GGA) provides a means to improve the LSDA

method using derivatives of the density, while at the same time ensuring that the Fermi

and Coulomb holes integrate to −1 and 0, respectively.71

One of the most successful GGA exchange functionals was published by A. D. Becke86

(1988).

εB88
x = εLDA

x +∆εB88
x

∆εB88
x = −β ρ1/3 x2

1+ 6 β x sinh−1x
(3.122)

x =
∣∇ρ∣
ρ4/3

The parameter of this functional, β, was determined by a fit to data from the rare gas

atoms.71

The LYP correlation functional, published by Lee, Yang and Parr87, is an important GGA

correlation functional, which is often combined with the B88 exchange functional (3.122)
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yielding BLYP.71

εLYP
c = −4 a

ραρβ

ρ2(1+ dρ−1/3)
− a b ω{

ραρβ

18
[144 (22/3)CF (ρ

8/3
α + ρ

8/3
β )

+(47− 7δ)∣∇ρ∣2 − (45− δ) (∣∇ρσ∣2 + ∣∇ρβ∣2) + 2ρ−1(11− δ) (ρσ∣∇ρσ∣2 + ρβ∣∇ρβ∣2)]

+ 2
3

ρ2 (∣∇ρσ∣2 + ∣∇ρβ∣2 − ∣∇ρ∣2) − (ρ2
α∣∇ρβ∣2 + ρ2

β∣∇ρα∣2)} (3.123)

CF =
3

10
(3π2)2/3

ω = e−cρ−1/3

ρ14/3(1+ dρ−1/3)

δ = cρ−1/3 +
dρ−1/3

(1+ dρ−1/3)

The parameters a, b, c and d were obtained from a fit to data from the helium atom.71

Another example of a GGA functional is the non-empirical PBE functional by Perdew,

Burke and Ernzerhof.88

According to the adiabatic connection formula, the relationship between the exchange-

correlation energy and the associated hole potential is given by71

Exc =
1

∫
0

⟨Ψλ ∣ V̂hole
xc (λ) ∣Ψλ⟩ dλ (3.124)

which can be approximated71

Exc ≈
1
2
( ⟨Ψ0 ∣ V̂hole

xc (0) ∣Ψ0⟩ + ⟨Ψ1 ∣ V̂hole
xc (1) ∣Ψ1⟩ ) . (3.125)

The first term in equation (3.125) corresponds to the λ = 0 limit of non-interacting electrons.

In this case the exchange energy is exactly given by Hartree-Fock theory based on a single

Slater determinant of Kohn-Sham orbitals and the correlation energy is accordingly zero.

The second term (λ = 1 limit) can be approximated using an LSDA functional, or better

using an LSDA functional in combination with a gradient correction. Such an approximation

to the exchange-correlation functional is called hybrid method as it also includes Hartree-

Fock exchange (HF).71

One of the most successful hybrid functionals is the “Becke 3 parameter Lee Yang Parr”

(B3LYP)87,89,90 functional.

EB3LYP
xc = (1− a)ELSDA

x + a EHF
x + b ∆EB88

x + (1− c)ELSDA
c + c ELYP

c (3.126)
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The three parameters a, b and c were determined by a fit to experimental data (a ≈ 0.2,

b ≈ 0.7, c ≈ 0.8).71

Another example is the one parameter hybrid functional PBE0. The addition of exact

Hartree-Fock exchange could be shown to improve the results of DFT calculations.71

DFT calculations

The theory behind DFT calculations is very similar to the Hartree-Fock theory. The or-

thogonal orbitals from a basis set expansion are determined in such a way as to minimize

the energy based on the Lagrange method, i.e. by setting the variation of the Lagrange

functional71

L[ρ] = EDFT[ρ] −
N
∑
ij

λij (⟨ψi ∣ψj⟩ − δij) (3.127)

equal to zero. This yields, after a unitary transformation that makes the matrix of Lagrange

multipliers diagonal, the Kohn-Sham pseudo-eigenvalue equations.71

hKS ψi = ε i ψi (3.128)

or after expansion of the orbitals ψ into a basis set {φ}71

hKS C = S C ε . (3.129)

hab = ⟨φa ∣ ĥKS ∣φb⟩ (3.130)

Sab = ⟨φa ∣φb⟩ (3.131)

The operators can be written as71

ĥKS = −
1
2
∇2 +Ve f f (3.132)

Ve f f (r) = Vne(r) +∫
ρ(r′)
∣r − r′∣

dr′ +Vxc(r) (3.133)

Vxc(r) =
δExc[ρ]
δρ(r)

= εxc[ρ(r)] +∫ ρ(r′)δεxcr′

δρ(r)
dr′ . (3.134)
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3.7. Density Functional Theory

The integrals of the exchange-correlation part Vxc cannot be determined analytically, there-

fore a numerical integration based on a grid is performed.71

∫ φa(r) Vxc[ρ(r),∇ρ(r)] φb(r)dr ≈
G
∑

k
Vxc[ρ(rk),∇ρ(rk)] φa(rk) φb(rk) ∆vk (3.135)

Here the sum runs over the number of grid points G.

DFT calculations are popular for optimizations of (transition) metal complexes.91 The

computational costs are comparatively low, but the obtained results are more accurate than

those provided by Hartree-Fock71 or even MP2 calculations in this case. Hybrid functionals

could be shown to give a good performance in geometry optimizations of various transition

metal complexes yielding only small deviations from the experiments.92 The PBE hybrid

(PBE0), together with B3P86 and B3PW91, gives particularly good results and the authors

conclude that it is superior to B3LYP for such applications.92 However, hybrid functionals

should be in general preferred over non-hybrid functionals for geometry optimizations of

metal complexes.92
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4. Group theory and symmetry

Symmetry plays an important role in chemistry and physics, as the previous chapters have

shown. The spectroscopic selection rules, for instance, were derived using group theoretical

considerations, see the rule for non-vanishing matrix elements. The spinors and wave

functions of a system can be classified according to the irreducible representations of the

point group. In a symmetry-adapted basis the operators adopt block diagonal form, which

can be exploited in computational chemistry because in this way matrix operations can

be performed more efficiently.21 Relativistic theories and half-integer values of the total

angular momentum quantum number J make the introduction of time reversal symmetry

and double groups necessary.

The starting point for the derivation of crystal field theory, the free ion, transforms according

to the irreducible representations (irrep) of the group of all rotations in three dimensions

O(3). In this full rotation group, the spherical harmonics Ym
` (ϑ, ϕ) form the basis for the

(2` + 1)-dimensional irreps.23,93 The (reducible) character χ of a spherical representation

with an angular momentum quantum number ` under a rotation α* can be calculated

according to23

χ(α) =
sin ({` + 1

2} α)
sin ( α

2)
(4.1)

Figure 4.1.: A Koch curve of third order.

*χ(C2) = χ(π), χ(C3) = χ ( 2π
3 ), χ(C4) = χ (π

2 ) etc.
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In a crystal field, the symmetry group and thus the dimensionality of the irreps is reduced,

which leads to the lifting of degeneracy mentioned in the above chapters.23 The remaining

degeneracy can be determined using group theory. In the weak crystal field limit, which

is the case for rare earth ions, the total angular momentum quantum number J can still

be considered a good quantum number, because the crystal field only acts as a small

perturbation.23 This allows the use of the free ion terms 2S+1LJ together with the concept of

double groups.

In the case of inversion symmetry, it should be noted that “g terms split only into g terms and
u terms split only into u terms”†. The parity of a many-electron wave function is ∏k(−1)`k ,

where ` denotes the orbital angular momentum quantum number and k runs over all

electrons.23 The wave function of Nd3+ is therefore always u in the presence of an inversion

centre, and that of Eu3+ is always g.

Nd3+ ∶ 4 f 3 ⇒ (−1)3(−1)3(−1)3 = −1

Eu3+ ∶ 4 f 6 ⇒ (−1)3(−1)3(−1)3(−1)3(−1)3(−1)3 = +1

The parity selection rule was already mentioned in 2.2. Electric dipole transitions between

states of the same parity are forbidden, because the operator µ̂ed belongs to the u represen-

tation. The magnetic dipole operator however, being an axial vector, is g and so transitions

between states of the same parity are allowed.23 It should be noted that in real systems the

inversion symmetry is often destroyed, e.g. by vibrations, making these “parity-forbidden”

electric dipole transitions possible.23

4.1. Double groups

In the case of an even number of electrons, or integer values of J, the same scheme can be

used as for normal point groups. Equation (4.1) then gives the reducible character, which

upon reduction produces the irreps arising from state 2S+1LJ in the given point group (using

σ̂ ≡ Ĉ2 ⋅ î for a reflection and the fact that the character of the inversion i equals ± the

character of the identity E for even or odd J, respectively).23 This is, for example, the case

of Eu3+.

However, if the system has an odd number of electrons, or half-integer values of J, like

†Tinkham, M. Group Theory and Quantum Mechanics unabridged republication of the work originally
published by McGraw-Hill Book Company, New York, in 1964 (Dover Publications, Inc., Mineola, New York,
2003).
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4.1. Double groups

Nd3+, two-valued representations and double groups need to be used.23 The character for a

rotation through an angle α can again be written as23

χJ(α) =
sin ({J + 1

2} α)
sin ( α

2)
(4.2)

but now a rotation by (α + 2π) results in23

χJ(α + 2π) = (−1)2J χJ(α) (4.3)

and only a rotation by 4π corresponds to the identity.23

χJ(α ± 4π) = χJ(α) (4.4)

A new group element R is introduced, which corresponds to a rotation by 2π with the

properties R ≠ E, but R2 = E.23 The new extended group is called double group and has twice

as many elements as the corresponding ordinary point group, i.e. the order of the double

group is 2n instead of n. The concept of double groups allows the use of the same formulas

as for the normal case, e.g. equation (4.2).23 This equation produces the normal single-

valued representations for integer J, called boson irreps and having a positive character

for R,53 and it produces the new double-valued representations for half-integer J,23 called

fermion irreps53 or spinor representations93 and having a negative character for R.53 A

reduction of χJ with half-integer J leads to irreps that are at least two-fold degenerate. This

is a consequence of time reversal symmetry or Kramers’ theorem,23 see below. The standard

reduction formula can be used.23

DL = ∑
i

ai Γi and ai = n−1∑
k

Nk χi(Ck) χL(Ck) (4.5)

Here DL is the representation (“Darstellung”), whose characters χL can be reduced and

which therefore can be expressed in terms of the irreps Γ of the given point group. Nk is the

number of elements in the class Ck and n denotes the order of the group, i.e. the number of

group elements.

Figure 4.2 depicts the splitting of the 4F state in a weak and a strong crystal field of cubic

symmetry (double group O’). The irreps Γ of the crystal field states can be determined using

equation (4.2) and reducing the obtained χJ in the double group O’ (equation (4.5) and

Table 4.1). The total number of states, which remains unchanged,23 is given in parenthesis.

Without spin-orbit splitting, i.e. case (d), the levels of the F state split into the irreps
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4F (28)

4F3/2 (4)

4F5/2 (6)

4F7/2 (8)

4F9/2 (10)

Γ8 (4)

Γ7 (2)

Γ8 (4)

Γ6 (2)

Γ8 (4)

Γ7 (2)

Γ8 (4)

Γ6 (2)

Γ8 (4)

Γ8 (4)

Γ7 (2)

Γ8 (4)

Γ6 (2)

Γ8 (4)

Γ7 (2)

Γ8 (4)

Γ6 (2)

Γ8 (4)

4Γ2 (4)

4Γ5 (12)

4Γ4 (12)

(a) (b) (c) (d) (e)

Figure 4.2.: Splitting of 4F state taken from Tinkham23; (a) Russell-Saunders or LS-coupling, (b) LS and spin-
orbit (SO) coupling, (c) LS-, SO-coupling together with crystal field splitting in the double group
O’ (weak crystal field), (d) same as (c) but in a strong crystal field, (e) LS and crystal field splitting,
but no SO-splitting (non-relativistic limit).
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4.2. The SU(2), SO(3) and other groups

DF = Γ2 ⊕ Γ4 ⊕ Γ5 = A2 ⊕ T1 ⊕ T2 of O’. Forming the direct product of these representations

with the representation of the spin (D3/2 = Γ8) gives the decomposition23

Γ2 ⊗ Γ8 = Γ8

Γ4 ⊗ Γ8 = Γ6 ⊕ Γ7 ⊕ 2Γ8

Γ5 ⊗ Γ8 = Γ6 ⊕ Γ7 ⊕ 2Γ8 .

It should be noted that it is not possible to know the order of the levels if the sign of the

perturbation, i.e. of the crystal field, is not known.23

Double group character tables can be found in the book by Altmann & Herzig93.

4.2. The SU(2), SO(3) and other groups

Operations in spin space can only be carried out using unitary transformations Ω̂.53 These

transformations constitute the special unitary group of dimension 2, SU(2).53 The basis

functions are taken to be the eigenfunctions of ŝz, ∣12 , 1
2⟩ and ∣12 ,− 1

2⟩.
53

Ω̂†Ω̂ = 1 (4.6)

The linear transformations Ω̂ in the three-dimensional Euclidean space R3 that do change

the lengths or angles are real, orthogonal (3× 3) matrices53

Ω̂TΩ̂ = 13 . (4.7)

They form the real orthogonal group of dimension 3, O(3),53 which is the continuous group

of all “proper and improper rotations of a sphere with a fixed center”‡. If the determinants of the

transformation matrices equal 1, ∣Rn(φ)∣ = 1, these transformations constitute a subgroup

of O(3), namely the special orthogonal group of dimension 3 SO(3),53 or the continuous

group of all “proper rotations of a sphere with a fixed centre”‡The inversion and reflections

belong to O(3), but not to SO(3) because their determinants equal −1 and not 1.53

The symmetry group that has to be considered in case of spherical symmetry, e.g. free ions,

is SU(2) ⊗O(3) and in case of lower symmetry, e.g. in a crystal field, is SU(2) ⊗G where

‡Altmann, S. L. & Herzig, P. Point-Group Theory Tables 2nd. <https://phaidra.univie.ac.at/detail_
object/o:104731> (Wien, 2011).
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4. Group theory and symmetry

Table 4.1.: Character table of O’ and characters of fermion representation DJ taken from Tinkham23.

O’ E R 8C3 8RC3 3C2 + 3RC2 6C′
2 + 6RC′

2 6C4 6RC4

A1 Γ1 1 1 1 1 1 1 1 1

A2 Γ2 1 1 1 1 1 -1 -1 -1

E Γ3 2 2 -1 -1 2 0 0 0

T1 Γ4 3 3 0 0 -1 -1 1 1

T2 Γ5 3 3 0 0 -1 1 -1 -1

E1/2 Γ6 2 -2 1 -1 0 0
√

2 −
√

2

E5/2 Γ7 2 -2 1 -1 0 0 −
√

2
√

2

F3/2 Γ8 4 -4 -1 1 0 0 0 0

1 -1
√

2 −
√

2

DJ (2J + 1) −(2J + 1) -1 1 0 0 0 0

0 0 −
√

2
√

2

G denotes the ordinary single point group.53 These direct products lead to the double

groups,53 see 4.1 on page 69.

As already stated in 3.1 the Hamiltonian must be invariant under Lorentz transformations

in a relativistic theory. These coordinate transformations form the Lorentz group L.23 A

combination of L with translations in space and time produces the proper Poincaré group
and the addition of space and time inversions leads to the unrestricted Poincaré group.23

4.3. Time reversal symmetry

At the beginning of this chapter the inversion was mentioned. The relativistic theory, taking

place in the four-dimensional Minkowski space with the equivalence of space and time,21

rather than in a three-dimensional space, leads to the definition of a time-reversal operator

K̂, which turns t into −t.23 K̂ is an antilinear and antiunitary operator and can be expressed

as the product of a unitary operator Û and the operator of complex conjugation K̂0.23

K̂ = ÛK̂0 (4.8)
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4.3. Time reversal symmetry

It has the following properties21,53

K̂ (aψi) = a∗ψi (4.9)

K̂ r K̂† = r , K̂ p K̂† = −p , K̂ σ K̂† = −σ (4.10)

i.e. it keeps the positions r invariant, but changes the sign of the momentum operator (and

of the velocity) and induces spin σ flips.53 Equation (4.9) gives the antilinear property of

K̂.21 As a consequence, this operator does not correspond to an observable and has no

eigenvalue.53

In the four-component relativistic theory K̂ can be written as21,53

K̂ = −i Σy K̂0 = −i
⎛
⎝

σy 0

0 σy

⎞
⎠

K̂0 (4.11)

where Σy denotes the y component of the total spin operator Σ. Hence, Û can be expressed

as product of n Pauli matrices σ in a many particle system, where n is the number of

particles. This leads to23

K̂2ψ = ψ if n is even (4.12)

K̂2ψ = −ψ if n is odd. (4.13)

According to Kramers’ theorem,94 the states of odd electron systems are at least doubly

degenerate even in the lowest symmetry in the absence of an external vector potential,53

which follows directly from the time reversal symmetry. Degeneracy in even electron

systems, on the other hand, can only be caused by spatial symmetry.23

K̂ψi = ψ̄i (4.14)

The time reversal operator relates a set of degenerate ψi to a new set ψ̄i.23 These two

sets are called Kramers pairs.21 K̂ψ is orthogonal to ψ and they are linearly independent.

Both possess the same eigenvalue, because the non-relativistic as well as the relativistic

Hamiltonian are invariant under time reversal.53

A new nomenclature is introduced, that is the term “corepresentation” is used rather than

representation, because the group contains antiunitary and unitary operations.23

Relativistic quantum chemistry programs like Dirac exploit Kramers time reversal and

double group symmetry,68 i.e. a basis of Kramers pairs {ψ, ψ̄} is used instead of α- and

β-spin orbitals,20,53 which can be efficiently treated using quaternion algebra.21,95
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4.4. Descent in symmetry

The descent in symmetry or subduction from a (point) group gives the corresponding

representations of a point group of lower symmetry (subgroup) which arise in the reduction

of the representations of the original (point) group.93 The subduction from O(3) for the

boson representations (integer values of j) or fermion (spinor) representations (half-integer

values of j) to some subgroups is summarized in Table 4.2. Care must be taken with point

groups with inversion centre, which are labelled with the symbol ♣. States arising from g
terms, like in the case of Eu3+, remain gerade in the subgroup, and u terms remain u (Nd3+).

Besides, equations (4.1) or (4.2) may be used for the subduction from O(3), which corre-

sponds to the free ion case, together with the reduction formula (4.5). Descent in symmetry

diagrams can be found in the Appendix, for tables see Altmann & Herzig93.
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Table 4.2.: Subduction from O(3).93

j = O(3) → D2h ♣

2n (n + 1) Ag ⊕ n (B1g ⊕ B2g ⊕ B3g)

2n + 1 n Au ⊕ (n + 1) (B1u ⊕ B2u ⊕ B3u)

n + 1
2 (n + 1) E1/2,g

j = O(3) → D2

2n (n + 1) A ⊕ n (B1 ⊕ B2 ⊕ B3)

2n + 1 n A ⊕ (n + 1) (B1 ⊕ B2 ⊕ B3)

n + 1
2 (n + 1) E1/2

j = O(3) → C2v

2n (n + 1) A1 ⊕ n (A2 ⊕ B1 ⊕ B2)

2n + 1 n A2 ⊕ (n + 1) (A1 ⊕ B1 ⊕ B2)

n + 1
2 (n + 1) E1/2

j = O(3) → C2

2n (2n + 1) A ⊕ 2n B

2n + 1 (2n + 1) A ⊕ (2n + 2) B

n + 1
2 (n + 1) (1E1/2 ⊕ 2E1/2)

j = O(3) → Cs

n (n + 1) A’ ⊕ n A”

n + 1
2 (n + 1) (1E1/2 ⊕ 2E1/2)

n = 0, 1, 2, ...
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Part II.

Experiments and computations
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5. Experiments

5.1. Reagents and instruments

The lanthanide oxides Nd2O3 and Eu2O3 from Treibacher Industrie AG (99.9 %) were used

as starting materials, together with HNO3 puriss. p.a., ≥ 65 % from Fluka Chemie AG,

Sigma-Aldrich Chemie GmbH. Nd2O3 and Eu2O3 were subjected to a heat treatment at

800○C for one hour. The further components of the calcium aluminium borate (CAB) glasses,

CaCO3 (min. 99 %) and Al2O3 were obtained from Merck, while BH3O3 (purum p.a., ≥ 99.0

% (T)) was supplied by Fluka Chemie AG. Acetone (ROTISOLV® HPLC, min. 99.9 % (GC))

and methanol (ROTIDRY®, ≥ 99.9 % (GC)) were supplied by Carl Roth GmbH + Co. KG,

while dimethyl sulfoxide (DMSO; purum, ≥ 99.0 % (GC)) was obtained from Fluka Chemie

GmbH, Sigma-Aldrich Chemie GmbH. The solvents were used as received.

The refractive indices were measured with the NAR-1T Abbe refractometer of ATAGO®

CO., LTD. with digital thermometer at the wavelength of the sodium D-line (589 nm).

1-Bromonaphthalene was used as contact liquid for the measurement of the glasses.

The Nabertherm® L3/S27 furnace was used for the heat treatment of the lanthanide oxides

as well as in the glass preparation for the preheating of the casting mould and the glass

annealing. The raw materials of the glasses were melted in the Nabertherm® HT04/17

high-temperature furnace in a platinum crucible.

A thermogravimetric analysis was carried out with the Netzsch STA 449 C Jupiter® TG-DSC

system by Ing. J. Hobisch using an aluminium crucible and a temperature program (5 min

at 20○C, then heated at a rate of 10○C/min, 15 min at 550○C, afterwards cooling to ambient

temperature) under He inert gas.

The absorbance spectra were recorded with the PerkinElmer Lambda 950 UV/VIS/NIR

Spectrometer. The spectrometer is equipped with a tungsten halogen light source for the

VIS-NIR region, a photomultiplier tube as detector in the UV-VIS region (1 nm PMT slit) and

a Peltier controlled PbS detector for the NIR region (detector changeover at approximately
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800 nm). The spectra were recorded in the range from 1,400 to 320 nm and from 900

to 320 nm with a data interval of 0.1 nm. Baseline corrections were performed with air

as reference. A holmium filter was used to determine the accuracy of the wavelength.

Furthermore, the repeatability of the measurements was tested.

Excitation and emission spectra were recorded with the PerkinElmer LS 55 Fluorescence

Spectrometer. The spectrometer is equipped with a pulsed Xenon source for excitation and

the R 928 photomultiplier tube as detector. The emission spectra were recorded at different

excitation wavelengths using various cut-off filters and a data interval of 0.5 nm.

UV/VIS fused silica cuvettes of PerkinElmer™ instruments and Hellma® 110-OS precision

cells made of special optical glass (crown glass) were used for the sample solutions.

The spectra were analysed and plotted with the OriginPro 8 data analysis and graphing

software.

5.1.1. Synthesis of rare earth nitrates

The lanthanide oxides were heated with nitric acid (2 mL HNO3 / 1 g Ln2O3) and the

mixture was evaporated to dryness. The obtained amorphous solid was solved in water and

it was tried to precipitate crystals. However, also slow drying of the concentrated aqueous

solutions over phosphorus pentoxide in a desiccator did not produce crystals. The solution

was concentrated nearly to dryness and then further dried over night at 80○C. The product

was, after grinding, equilibrated in the air at ambient temperature. The water content of the

synthesized lanthanide nitrates, Nd(NO3)3 ⋅ 5H2O and Eu(NO3)3 ⋅ 4H2O, was determined

by a thermogravimetric analysis by Ing. J. Hobisch.

5.1.2. Glass preparation

The raw materials, Nd(NO3)3 ⋅ 5H2O or Eu(NO3)3 ⋅ 4H2O together with CaCO3, Al2O3 and

BH3O3, were kept in a platinum crucible at 800○C to allow the formed gases to escape and

then heated to 1,200○C in 30 min and held at this temperature for approximately 1 h. The

molten glass was poured into a preheated cuvette-shaped mould and then annealed to

relieve the internal stress (1 h at 350○C and then cooled down to 50 – 30○C in 24 h). Tables

5.1 and 5.2 summarize the composition and properties of the CAB glasses.
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Table 5.1.: Composition of prepared Nd- and Eu-CAB-glasses.

Glass Composition

(mol-%)

Nd-CAB-glass 11 CaO ⋅ 5.7 Al2O3 ⋅ 83 B2O3 ⋅ 0.1 Nd2O3

Eu-CAB-glass 11 CaO ⋅ 5.9 Al2O3 ⋅ 83 B2O3 ⋅ 0.1 Eu2O3

Table 5.2.: Prepared Nd-CAB-glass and Eu-CAB-glass: molar mass M, density ρ, concentration c of Nd3+ and
Eu3+, optical path length OPL and refractive indices n (at temperatures T).

Glass M ρ c(Ln3+) OPL n (T)

(g mol−1) (g cm−3) (mol L−1) (cm) (○C)

Nd-CAB-glass 70.301 1.755 0.0629 1.2 1.5545 (24.1)

Eu-CAB-glass 70.327 1.747 0.0663 1.2 1.5555 (24.1)

The densities of the glasses were measured using Archimedes’ principle. First, the weight

of the glass was measured and then it was hung into a water-filled beaker and the weight

increase caused by the displaced water was determined. Using the density of water at

the given temperature, the displaced mass can be converted to a volume which is just the

volume of the glass.

The refractive indices were measured with an Abbe refractometer and 1-Bromonaphthalene

as contact liquid.

5.1.3. Sample solutions

Stock solutions of the lanthanide nitrates in the pure solvents, i.e. distilled water, acetone,

methanol and DMSO, were prepared. The concentrations and properties of the sample

solutions in the mixed solvents are listed in Tables 5.3 and 5.4. As the sample solutions

in the solvent mixtures exhibit a volume contraction upon mixing,96 the volumetric flasks

were filled up with the pure mixtures of the same ratio.
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Table 5.3.: Measured solutions of Nd3+ in water-acetone and water-methanol mixtures: concentrations c and
refractive indices n (at temperatures T).

Sample V-% acetone in water c(Nd3+) (mol L−1) n (T (○C))

Nd-100-water (I) 0 0.0526 1.3355 (24.4)

Nd-90-w-a 10 0.0526 1.3400 (24.7)

Nd-80-w-a 20 0.0526 1.3451 (25.0)

Nd-70-w-a 30 0.0526 1.3501 (25.2)

Nd-60-w-a 40 0.0526 1.3545 (25.5)

Nd-50-w-a 50 0.0523 1.3580 (25.7)

Nd-40-w-a 60 0.0523 1.3620 (25.5)

Nd-30-w-a 70 0.0523 1.3640 (25.6)

Nd-20-w-a 80 0.0523 1.3642 (25.1)

Nd-10-w-a 90 0.0523 1.3629 (24.9)

Nd-100-acetone 100 0.0523 1.3582 (24.8)

Sample V-% methanol in water c(Nd3+) (mol L−1) n (T (○C))

Nd-100-water (II) 0 0.0526 1.3365 (22.7)

Nd-90-w-m 10 0.0526 1.3370 (22.8)

Nd-80-w-m 20 0.0526 1.3391 (23.1)

Nd-70-w-m 30 0.0526 1.3415 (23.3)

Nd-60-w-m 40 0.0526 1.3431 (23.7)

Nd-50-w-m 50 0.0526 1.3440 (23.7)

Nd-40-w-m 60 0.0526 1.3440 (23.1)

Nd-30-w-m 70 0.0526 1.3430 (23.1)

Nd-20-w-m 80 0.0526 1.3405 (23.1)

Nd-10-w-m 90 0.0526 1.3370 (23.1)

Nd-100-methanol 100 0.0526 1.3305 (23.0)
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Table 5.4.: Measured solutions of Eu3+ in water-acetone and water-methanol mixtures: concentrations c and
refractive indices n (at temperatures T).

Sample V-% acetone in water c(Eu3+) (mol L−1) n (T (○C))

Eu-100-water (I) 0 0.1466 1.3390 (24.5)

Eu-90-w-a 10 0.1466 1.3449 (24.9)

Eu-80-w-a 20 0.1466 1.3490 (25.1)

Eu-70-w-a 30 0.1466 1.3541 (25.2)

Eu-60-w-a 40 0.1466 1.3595 (25.3)

Eu-50-w-a 50 0.1466 1.3631 (25.5)

Eu-40-w-a 60 0.1467 1.3661 (25.6)

Eu-30-w-a 70 0.1467 1.3670 (25.6)

Eu-20-w-a 80 0.1467 1.3685 (25.6)

Eu-10-w-a 90 0.1467 1.3671 (23.5)

Eu-100-acetone 100 0.1467 1.3630 (24.0)

Sample V-% methanol in water c(Eu3+) (mol L−1) n (T (○C))

Eu-100-water (II) 0 0.1466 1.3385 (22.6)

Eu-90-w-m 10 0.1466 1.3400 (22.6)

Eu-80-w-m 20 0.1466 1.3420 (22.5)

Eu-70-w-m 30 0.1466 1.3440 (22.4)

Eu-60-w-m 40 0.1466 1.3460 (22.3)

Eu-50-w-m 50 0.1466 1.3470 (22.2)

Eu-40-w-m 60 0.1466 1.3465 (22.3)

Eu-30-w-m 70 0.1466 1.3460 (22.2)

Eu-20-w-m 80 0.1466 1.3440 (22.1)

Eu-10-w-m 90 0.1466 1.3400 (22.0)

Eu-100-methanol 100 0.1466 1.3350 (22.0)
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5.2. Experimental results of Nd3+

The f↔ f transitions of Nd3+ give rise to colours of the Nd-compounds. Figure 5.1 shows

the colours of the prepared Nd-CAB-glass under different light sources.* The colour change

is caused by an interplay between the absorption bands of Nd3+ and the characteristic

spectrum of the light source. The synthesised neodymium nitrates exhibit an even stronger

colour and colour change than the glass, which only contains 0.0629 mol L−1 Nd3+. The

different colours of rare earth compounds under different (white) light sources are known

and other examples can be found in the literature.97

(a) Tungsten lamp. (b) White LED. (c) Fluorescent lamp.

Figure 5.1.: Colour of Nd-CAB-glass under different light sources.

5.2.1. Absorbance spectra

Figures 5.2, 5.11 and 5.6 show the absorbance spectra of Nd3+ in water-acetone and

water-methanol mixtures and in the pure solvents, as well as of the Nd-CAB-glass. The

change in intensity of the hypersensitive 4G5/2 ← 4I9/2 transition when going from water to

another solvent can be clearly seen, e.g. in Figures 5.2b, 5.3b and 5.4. In all the cases, the

hypersensitive transition in water exhibits the lowest intensity. It seems that the coordination

of water is preferred to the coordination of acetone or methanol, because in both mixtures

the increase in intensity starts at approximately 50 % acetone or methanol in water.

The 2G7/2 ← 4I9/2 transition is close to the hypersensitive transition and the two transitions

could not be resolved separately. The intensity in the spectra of the solutions with a water

content greater than 50 % is presumably mainly caused by the 2G7/2 ← 4I9/2 transition,

*The photographs of the Nd-CAB-glass were taken by M. Reiter.
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which has a larger transition energy, and not by the hypersensitive transition. It can be

seen how the shape of this band changes with decreasing water content. At the same time,

the barycentre of the band is shifted towards lower energies, which corresponds to an

increasing contribution of the hypersensitive transition. The band is dominated by the 4G5/2

← 4I9/2 transition in the 100 % acetone and methanol solutions.

In the case of the water-DMSO mixtures, no hypersensitive effect was observed, i.e. the

intensity of the 4G5/2 ← 4I9/2 transition remained constant irrespective of the solvent ratio.

The absorbance spectra in water-DMSO are therefore not shown in this thesis. The reason

why the intensity variation of the hypersensitive transition was not observed lies probably

in the preferred coordination of water. The solutions were not heated under nitrogen like

described in the literature,9,10 therefore presumably not enough energy was provided for

the formation of DMSO compounds.

The variation of absorption bands of water and acetone in the UV and NIR region is shown

in Figure 5.5. The “optical window” can be seen, i.e. the range where visible light can pass

through the solvents. Electronic transitions at the UV edge and vibrational excitations at

the NIR edge cause solvent absorptions, hence no f↔ f transitions of the rare earth ions

can be observed in these regions in the solvents. In methanol, the absorption in the UV

region starts at higher wavenumbers than in acetone.98 The absorbance spectra of Nd3+

in water-acetone mixtures are therefore shown from 11,111 to 25,000 cm−1 and of Nd3+ in

water-methanol mixtures from 11,111 to 29,700 cm−1.

The absorbance spectrum of the Nd-CAB-glass is shown in Figure 5.6. It is analogous to

the spectra of Nd3+ in the solvent mixtures, the bands merely exhibit a greater linewidth.

Tables 5.5, 5.6 and 5.7 list the transition energies of Nd3+. Only the solutions in the pure

solvents and the 50-50 % mixtures are presented in the tables. In Figure 5.7 the experimental

energy levels of the 2S+1LJ states of Nd3+ in water, acetone and methanol, which were

obtained from an evaluation of the transition energies, are compared with the published

values for NdF3 by Carnall et al.28, which were also used for the band assignment.

It can be seen that the shift of the energies in the different environments is very small. In

general, the results are in good agreement with the literature.28,49,99 It should be noted

that the individual Stark levels cannot be resolved in solution or glasses, because of the

inhomogeneous broadening. The linewidths are generally greater than in the lanthanide

spectra in crystals. The reported energies therefore correspond to the barycentres of the

transitions between different Stark levels.
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5. Experiments

(a) Absorbance spectra. (b) Hypersensitive 4G5/2 ← 4I9/2 transition.

Figure 5.2.: Absorbance spectra of Nd3+ in water-acetone mixtures.

(a) Absorbance spectra. (b) Hypersensitive 4G5/2 ← 4I9/2 transition.

Figure 5.3.: Absorbance spectra of Nd3+ in water-methanol mixtures.
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5.2. Experimental results of Nd3+

Figure 5.4.: Comparison of absorbance spectra of Nd3+ in water, methanol and acetone.

Figure 5.5.: Absorbance spectra of Nd3+ in water-acetone mixtures: absorption of solvents in UV and NIR
region.
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Figure 5.6.: Absorbance spectrum of Nd3+-CAB-glass.

The experimental oscillator strengths fosc(exp), which were determined using equation

(2.62), and calculated oscillator strengths fosc(JO) obtained using Judd-Ofelt theory (eq.

(2.60)) are also listed in Tables 5.5, 5.6 and 5.7. The Judd-Ofelt analysis, rms of the Judd-Ofelt

calculations and (m2) expression is explained later in this chapter. It can be seen from

the oscillator strengths that the hypersensitive transition, together with the 2G7/2 ← 4I9/2

transition, has the highest intensity in all the mixtures. While the variation of the oscillator

strengths of the other transitions is small in different environments, i.e. in water, acetone

and methanol, except for some transitions with lower intensity which exhibit a greater error

in the determination of fosc, there is a considerable increase in the oscillator strength of

the hypersensitive transition when going from water to acetone or methanol. This increase

is more pronounced in acetone than in methanol. The oscillator strengths are in good

agreement with the literature.41,99,100 Merely the transitions with higher energies near the

UV region that were more difficult to determine in the experimental spectra vary more

from other published values.41,99,100
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Table 5.5.: Experimental results of Nd3+ in water-acetone mixtures: wavenumbers ν̃, areas ∫ A dν̃ and experi-
mental and calculated (Judd-Ofelt) oscillator strengths fosc of transitions.

v-% a ←Ð 4I9/2 ν̃ (cm−1) ∫ A dν̃ (cm−1) fosc (×10−5)

exp JO

4F3/2 11533 24.8 0.203 0.274
4F5/2, 2H9/2 12536 107.1 0.879 0.867
4F7/2, 4S3/2 13484 107.7 0.884 0.902
4F9/2 14698 6.7 0.055 0.068

0 2H11/2 15900 1.8 0.015 0.019
4G5/2, 2G7/2 17325 125.6 1.03 1.04
4G7/2, 4G9/2, 2K13/2 19335 79.8 0.655 0.604
2D3/2, 4G11/2, 2K15/2 21369 20.9 0.171 0.152
2P1/2, 2D5/2 23398 4.7 0.038 0.079

4F3/2 11521 24.2 0.200 0.281
4F5/2, 2H9/2 12532 109.9 0.907 0.895
4F7/2, 4S3/2 13483 110.5 0.912 0.932
4F9/2 14700 6.9 0.057 0.070

50 2H11/2 15900 1.9 0.016 0.020
4G5/2, 2G7/2 17309 142.3 1.17 1.18
4G7/2, 4G9/2, 2K13/2 19327 83.3 0.688 0.630
2D3/2, 4G11/2, 2K15/2 21369 21.9 0.181 0.157
2P1/2, 2D5/2 23397 4.8 0.040 0.081

4F3/2 11513 15.6 0.129 0.248
4F5/2, 2H9/2 12535 99.8 0.823 0.854
4F7/2, 4S3/2 13509 109.0 0.899 0.902
4F9/2 14750 8.7 0.072 0.069

100 2H11/2 15947 2.7 0.022 0.019
4G5/2, 2G7/2 17236 352.1 2.91 2.91
4G7/2, 4G9/2, 2K13/2 19283 101.8 0.840 0.723
2D3/2, 4G11/2, 2K15/2 21412 21.0 0.173 0.146
2P1/2, 2D5/2 23373 3.4 0.028 0.070
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Table 5.6.: Experimental results of Nd3+ in water-methanol mixtures: wavenumbers ν̃, areas ∫ A dν̃ and
experimental and calculated (Judd-Ofelt) oscillator strengths fosc of transitions.

v-% m ←Ð 4I9/2 ν̃ (cm−1) ∫ A dν̃ (cm−1) fosc (×10−5)

exp (m2)a JO (m2)a

4F3/2 11526 23.4 0.192 0.193
4F5/2, 2H9/2 12532 109.8 0.901 0.833
4F7/2, 4S3/2 13481 107.7 0.885 0.969
4F9/2 14694 6.6 0.055 0.070
2H11/2 15887 1.8 0.015 0.019

0 4G5/2, 2G7/2 17320 125.9 1.03 1.05
4G7/2, 4G9/2, 2K13/2 19326 80.2 0.659 0.510
2D3/2, 4G11/2, 2K15/2 21342 21.3 0.175 0.129
2P1/2, 2D5/2 23398 4.9 0.040 0.049
2P3/2 26264 0.3 0.002 0.007
4D1/2, 4D3/2, 4D5/2, 2I11/2 28420 99.0 0.813 0.861

4F3/2 11522 19.7 0.162 0.183
4F5/2, 2H9/2 12527 108.4 0.890 0.815
4F7/2, 4S3/2 13477 105.9 0.869 0.956
4F9/2 14697 6.7 0.055 0.069
2H11/2 15889 2.0 0.016 0.019

50 4G5/2, 2G7/2 17296 142.1 1.17 1.18
4G7/2, 4G9/2, 2K13/2 19316 78.8 0.647 0.505
2D3/2, 4G11/2, 2K15/2 21351 20.4 0.168 0.125
2P1/2, 2D5/2 23390 4.6 0.038 0.045
2P3/2 26246 0.4 0.003 0.006
4D1/2, 4D3/2, 4D5/2, 2I11/2 28401 93.2 0.765 0.809

4F3/2 11521 15.7 0.129 0.180
4F5/2, 2H9/2 12532 105.1 0.863 0.819
4F7/2, 4S3/2 13501 107.8 0.885 0.958
4F9/2 14734 8.3 0.068 0.069
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2H11/2 15914 2.4 0.020 0.019

100 4G5/2, 2G7/2 17247 265.0 2.18 2.19
4G7/2, 4G9/2, 2K13/2 19295 92.6 0.760 0.583
2D3/2, 4G11/2, 2K15/2 21417 20.4 0.168 0.125
2P1/2, 2D5/2 23389 4.4 0.036 0.044
2P3/2 26217 0.4 0.004 0.006
4D1/2, 4D3/2, 4D5/2, 2I11/2 28317 91.6 0.752 0.794

a See page 92 for explanation.

The oscillator strengths of the Nd-CAB-glass deviate more from the values in solution

than the fosc values in solution among themselves, but the results are again in accordance

with other published values for Nd3+ doped glasses.101 The oscillator strength of the

hypersensitive transition exhibits a greater variation in different glasses,101,102 as expected

because of its sensitivity to the environment. The highest oscillator strength is observed in

the Nd-CAB-glass, i.e. 3.66 ⋅ 10−5 (compared to 2.91 ⋅ 10−5 in acetone, 2.18 ⋅ 10−5 in methanol

and 1.03 ⋅ 10−5 in water).

5.2.2. Emission spectra

The emission spectra of Nd3+ in water-DMSO mixtures and in pure acetone are shown in

Figure 5.8. The maximum intensity of the band is observed at 367.5 nm (2.721⋅104 cm−1)

in DMSO, at 413.5 nm (2.418⋅104 cm−1) in acetone and at 386.5 nm (2.587⋅104 cm−1) in

Nd-90-w-d (10 % DMSO in water). The highest intensities were observed in the Nd-70-w-d

mixture (at 386 nm or 2.591⋅104 cm−1, 30 % DMSO in water) and the Nd-40-w-d mixture

(again at 386 nm or 2.591⋅104 cm−1, 60 % DMSO in water). The water-DMSO emission

spectra were recorded in the range from 300 to 800 nm with an excitation wavelength of

270 nm, which was determined in an excitation spectrum, while the emission spectrum in

acetone was recorded at an excitation wavelength of 254 nm.

There are a few reasons against describing this band as being caused by f↔ f transitions

of Nd3+. First of all, the emission bands are very broad, as opposed to the bands of

f↔ f transitions. Moreover, it is well-known that Nd3+ exhibits luminescence in the NIR

region, not in the visible region.103,104 An investigation of the luminescence lifetime of

a Nd3+-DMSO solution by Yao et al.10 has shown that the lifetime also differs from the
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Figure 5.7.: Experimental energy levels of Nd3+ compared with NdF3
28.

Table 5.7.: Absorbance spectrum of Nd-CAB-glass: wavenumbers ν̃, areas ∫ A dν̃ and experimental and
calculated (Judd-Ofelt) oscillator strengths fosc of the transitions.

←Ð 4I9/2 ν̃ (cm−1) ∫ A dν̃ fosc (×10−5)a

exp JO

4F3/2 11458 58.9 0.337 0.433
4F5/2, 2H9/2 12515 230 1.31 1.37
4F7/2, 4S3/2 13464 246 1.40 1.39
4F9/2 14726 17.9 0.103 0.108
2H11/2 15952 4.67 0.027 0.030
4G5/2, 2G7/2 17233 639 3.66 3.66
4G7/2, 4G9/2, 2K13/2 19282 217 1.24 1.12
2D3/2, 4G11/2, 2K15/2 21436 46.9 0.268 0.243
2P1/2, 2D5/2 23260 11.2 0.064 0.126

a rms = 7.26 ⋅ 10−7.
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(a) Nd3+ in water-DMSO. (b) Nd3+ in acetone.

Figure 5.8.: Emission spectra of Nd3+ in water-DMSO mixtures and in acetone.

expected value for lanthanide emissions. These emissions are presumably metal-to-ligand
charge-transfer bands, rather than f↔ f transitions.10

5.2.3. Judd-Ofelt analysis

A semi-empirical Judd-Ofelt analysis of the absorbance spectra of Nd3+ in the solvent

mixtures and the CAB glass was conducted. The Judd-Ofelt parameters Ωλ (λ = 2, 4, 6)

were obtained from a least squares fit between calculated and experimental oscillator

strengths. A program was written for this purpose based on a software by Dr. K. Gatterer,

see Appendix. The results are reported in Tables 5.8, 5.9 and 5.10. Figure 5.9 shows the

dependence of the three Ωλ parameters on the environment of Nd3+ and the influence of

the solvents on the oscillator strength of the hypersensitive transition is demonstrated in

Figure 5.9c. An increasing acetone or methanol content leads to greater oscillator strengths

of the hypersensitive transition, fosc(hyp), and to an increase of Ω2, while Ω4 and Ω6 remain

nearly unchanged, as expected. This increase in fosc(hyp) and Ω2 is even more pronounced

in acetone than in methanol, as was already seen in the spectra. In water the relation

Ω2 < Ω4 < Ω6 holds, in methanol Ω4 < Ω2 ≈ Ω6 and in acetone Ω4 < Ω6 < Ω2. This is in line

with the polarisabilities of the solvents, α(water) = 1.65 ⋅ 10−40 C2 m2 J−1 < α(methanol) =
3.69 ⋅ 10−40 C2 m2 J−1 < α(acetone) = 7.12 ⋅ 10−40 C2 m2 J−1.105 It seems that the change of

the intensity of the hypersensitive transition can be explained with the change in the

polarisability of the environment of Nd3+, at least to some extent.
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More bands were resolved in the Nd3+ spectra in the water-methanol mixtures than in

the water-acetone mixtures, presumably because of the starting absorption of acetone in

the UV region,106 see Figure 5.5. As a consequence, more bands were available in the

water-methanol mixtures for the least squares fit to determine the Ωλ parameters and

calculated oscillator strengths, fosc JO. Therefore, the Judd-Ofelt analysis was first carried

out using the same bands as for the water-acetone mixtures, subsequently referred to as

(m1), in order to enable a direct comparison between the two solvent mixtures, and then

using in addition the 4D1/2, 4D3/2, 4D5/2, 2I11/2 ← 4I9/2 transition (also called L group28), in

the further work named (m2).

The obtained Judd-Ofelt parameters in water, see Tables 5.8 and 5.9 (m1), are in compar-

atively good agreement with the results for Nd3+(aq) by Carnall et al.41, Ω2 = 0.93 ± 0.3,

Ω2 = 5.0 ± 0.3 and Ω2 = 7.9 ± 0.4.34 However, the results for Ω2,4 of Nd3+ in the water-

methanol mixtures when taking the absorbance peaks of the L group into account as

well, Table 5.9 (m2), deviate from the literature values,34,41 especially Ω2. The results in

acetone are similar to the published values for Nd(NO3)3 in ethyl acetate by Carnall et al.47,

Ω2 = 9.2± 0.4, Ω2 = 5.4± 0.3 and Ω2 = 7.7± 0.45.34

The fit between experimental and calculated oscillator strengths is in most cases better in

the (m1) analysis, except for the transitions 4F3/2 ← 4I9/2 and 2P1/2, 2D5/2 ← 4I9/2, where a

better agreement is obtained in the (m2) analysis. The root mean square deviations (rms)

of the Judd-Ofelt calculations are smaller for (m1), however the standard error of the Ωλ

parameter is smaller for (m2), which is highlighted in Figure 5.9b, or in Table 5.9. Figure

5.9a shows the dependence of the Judd-Ofelt parameters on the acetone content in water

and is consistent with the observations in the literature,34,41 as well as the (m1) analysis

(Figure 5.9b, unfilled symbols ◻). The (m2) analysis shows the same tendency as the (m1)

analysis, but different values for the Judd-Ofelt parameters are obtained, especially for

Ω2,4. To sum up, the (m1) analysis without L group gives a better agreement with literature

values, better rms values and better fit between fexp and fcalc(JO) for most transitions, while

the (m2) analysis yields Judd-Ofelt parameters with a smaller standard error.

A lot of studies have been carried out of Nd3+ doped glasses, a few examples from the

literature for the range of the Ωλ parameters in various glasses are given in Table 5.10.

Devi & Jayasankar107 have compared the Judd-Ofelt parameters of almost forty different

glasses. Numerous studies have shown the large variation of Ω2, e.g. Ω2 = 37 ⋅ 10−20 cm2 in

poly(methyl methacrylate)108 or even 275 ⋅ 10−20 cm2 (NdI3, D3h).34 The prepared Nd-CAB-

glass is in good agreement with other borate glasses,109,110 as can be seen in Table 5.10.
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Table 5.8.: Judd-Ofelt results of Nd3+ in water-acetone mixtures: Judd-Ofelt parameters Ωλ (λ = 2, 4, 6),
experimental (exp) and calculated (JO) oscillator strengths fosc of hypersensitive 2G7/2, 4G5/2 ← 4I9/2

transition and root mean square deviations (rms) of the Judd-Ofelt calculations.

v-% a Ω (×10−20 cm2) fosc (×10−5) rms (×10−7)

Ω2 Ω4 Ω6 exp JO

0 0.536 ± 0.46 6.24 ± 0.70 7.41 ± 0.34 1.03 1.04 4.14

10 0.572 ± 0.47 6.28 ± 0.70 7.43 ± 0.34 1.05 1.05 4.18

20 0.642 ± 0.48 6.31 ± 0.73 7.47 ± 0.36 1.07 1.08 4.33

30 0.812 ± 0.49 6.34 ± 0.74 7.59 ± 0.36 1.12 1.12 4.43

40 1.03 ± 0.50 6.20 ± 0.76 7.60 ± 0.37 1.15 1.15 4.55

50 1.08 ± 0.51 6.29 ± 0.77 7.55 ± 0.38 1.17 1.18 4.64

60 1.50 ± 0.52 6.22 ± 0.78 7.64 ± 0.38 1.26 1.27 4.71

70 2.31 ± 0.54 5.95 ± 0.82 7.60 ± 0.40 1.40 1.41 4.94

80 3.66 ± 0.56 5.66 ± 0.84 7.56 ± 0.41 1.66 1.67 5.09

90 6.44 ± 0.60 5.18 ± 0.90 7.16 ± 0.44 2.20 2.21 5.46

100 9.58 ± 0.80 5.40 ± 1.2 7.32 ± 0.59 2.91 2.91 7.25
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Table 5.9.: Judd-Ofelt results of Nd3+ in water-methanol mixtures: Judd-Ofelt parameters Ωλ (λ = 2, 4, 6),
experimental (exp) and calculated (JO) oscillator strengths fosc of hypersensitive 2G7/2, 4G5/2 ← 4I9/2

transition and root mean square deviations (rms) of the Judd-Ofelt calculations.

v-% m Ω (×10−20 cm2) fosc (×10−5) rms (×10−7)

Ω2 (m1) Ω4 (m1) Ω6 (m1) exp (m1) JO (m1) (m1)

0 0.514 ± 0.52 6.28 ± 0.79 7.49 ± 0.39 1.03 1.04 4.68

10 0.590 ± 0.52 6.20 ± 0.78 7.37 ± 0.38 1.04 1.04 4.66

20 0.733 ± 0.53 6.15 ± 0.81 7.35 ± 0.40 1.06 1.07 4.81

30 0.922 ± 0.55 6.04 ± 0.83 7.38 ± 0.41 1.09 1.10 4.93

40 1.16 ± 0.57 5.98 ± 0.87 7.44 ± 0.42 1.14 1.14 5.16

50 1.43 ± 0.58 5.76 ± 0.88 7.41 ± 0.43 1.17 1.17 5.25

60 1.77 ± 0.62 5.69 ± 0.94 7.40 ± 0.46 1.23 1.23 5.60

70 2.28 ± 0.63 5.55 ± 0.96 7.46 ± 0.47 1.32 1.33 5.72

80 3.05 ± 0.65 5.40 ± 0.99 7.44 ± 0.48 1.47 1.47 5.86

90 4.45 ± 0.69 5.39 ± 1.0 7.64 ± 0.51 1.77 1.77 6.22

100 6.30 ± 0.73 5.58 ± 1.1 7.51 ± 0.54 2.18 2.18 6.55

v-% m Ω (×10−20 cm2) fosc (×10−5) rms (×10−7)

Ω2 (m2) Ω4 (m2) Ω6 (m2) exp (m2) JO (m2) (m2)

0 2.07 ± 0.41 3.70 ± 0.38 8.16 ± 0.53 1.03 1.05 7.47

10 2.13 ± 0.41 3.65 ± 0.38 8.03 ± 0.53 1.04 1.05 7.40

20 2.24 ± 0.41 3.64 ± 0.38 8.00 ± 0.53 1.06 1.07 7.41

30 2.41 ± 0.41 3.57 ± 0.38 8.02 ± 0.53 1.09 1.10 7.41

40 2.66 ± 0.42 3.49 ± 0.39 8.09 ± 0.54 1.14 1.15 7.58

50 2.84 ± 0.41 3.41 ± 0.38 8.02 ± 0.52 1.17 1.18 7.37

60 3.11 ± 0.41 3.46 ± 0.38 7.98 ± 0.52 1.23 1.24 7.39

70 3.60 ± 0.41 3.35 ± 0.38 8.02 ± 0.53 1.32 1.33 7.41

80 4.26 ± 0.40 3.38 ± 0.37 7.96 ± 0.51 1.47 1.48 7.21

90 5.61 ± 0.41 3.47 ± 0.38 8.13 ± 0.52 1.76 1.78 7.32

100 7.65 ± 0.45 3.33 ± 0.42 8.09 ± 0.57 2.18 2.19 8.03
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(a) Water-acetone mixtures. (b) Water-methanol mixtures.

(c) Experimental and calculated oscillator strengths of
hypersensitive transition.

Figure 5.9.: Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) of Nd3+ in water-acetone and water-methanol mixtures
(filled symbols (m2) ∎: Judd-Ofelt analysis taking 4D1/2, 4D3/2, 4D5/2, 2I11/2 ← 4I9/2 transitions
into account =̂ L group; unfilled symbols (m1) ◻: without L group) and experimental (exp) and
calculated (JO) oscillator strengths fosc of Nd3+ in water-acetone and water-methanol (m2) mixtures.
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Table 5.10.: Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) of Nd-CAB-glass and root mean square deviation (rms) of
calculation and range of Ωλ parameters of various Nd3+-doped glasses reported in the literature.

Nd-CAB-glass (present work)a

Ω2 = 8.73± 0.69 ⋅ 10−20 cm2

Ω4 = 8.55± 1.0 ⋅ 10−20 cm2

Ω6 = 9.76± 0.51 ⋅ 10−20 cm2

Nd3+-doped borate glasses

Ω2 = 7.3 ⋅ 10−20 cm2 , 8.53 ⋅ 10−20 cm2

Ω4 = 9.9 ⋅ 10−20 cm2 , 7.47 ⋅ 10−20 cm2

Ω6 = 8.54 ⋅ 10−20 cm2 , 9.60 ⋅ 10−20 cm2

Nd3+ doped strontium lithium , Nd3+ doped

bismuth borate glass109 24Li2O⋅8Na2O⋅67B2O3
110

Other Nd3+-doped glasses

Ω2 = 0.25 ⋅ 10−20 cm2 – 7.75 ⋅ 10−20 cm2

20ZnO⋅50SiO2⋅29.5Bi2O3⋅0.5Nd2O3
111 Nd3+ doped strontium

titanium phosphate glass112

Ω4 = 1.17 ⋅ 10−20 cm2 – 7.89 ⋅ 10−20 cm2

TeO2-LiF-Nd2O3
112 Nd3+ doped lithium

fluoro-borate glass with Mg-Ca101

Ω6 = 1.36 ⋅ 10−20 cm2 – 8.27 ⋅ 10−20 cm2

20ZnO⋅50SiO2⋅29.5Bi2O3⋅0.5Nd2O3
111 Nd3+ doped lithium

fluoro-borate glass with Mg101

a rms = 7.26 ⋅ 10−7.
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5.2. Experimental results of Nd3+

In conclusion, the continuous variation of the intensity of the hypersensitive 4G5/2 ← 4I9/2

transition of Nd3+ was observed in the water-acetone and water-methanol mixtures, as

could be seen in the spectra and on the basis of the oscillator strengths. The results of the

Judd-Ofelt analysis are in line with these findings. The highest oscillator strength of the

hypersensitive transition, fosc(hyp), and the largest value for the Ω2 parameter, which is

sensitive to the environment, were found in acetone, and the lowest values for fosc(hyp) and

Ω2 in water.

The Nd-CAB-glass yielded a high value for Ω2 compared to other Nd3+-doped glasses.

These results are in close agreement with the literature.
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5. Experiments

5.3. Experimental results of Eu3+

5.3.1. Absorbance spectra

The absorbance spectra of Eu3+ in water-acetone and water-methanol mixtures and of the

Eu-CAB-glass are shown in Figures 5.10, 5.11 and 5.12. The large increase in intensity of the

hypersensitive 5D2 ← 7F0 transition when going from water to methanol or acetone, which

was already found for the 4G5/2 ← 4I9/2 transition of Nd3+, can be seen in Figures 5.10b

and 5.11b. The “hot bands” 5D1 ← 7F1 and, to a lesser extent, 5D3 ← 7F1 also exhibit some

hypersensitive character. The starting material, Eu2O3 (99.9 %), contained other lanthanide

oxide impurities. The transitions of Eu3+ in the absorbance spectra are much weaker than

the Nd3+ or Ho3+ transitions, so their hypersensitive transitions 4G5/2 ← 4I9/2 (at ≈ 1.72 ⋅ 104

cm−1) and 5G6 ← 5I8 (at ≈ 2.21 ⋅ 104 cm−134), exhibiting high intensities, can also be seen in

the spectra of Eu3+, despite the low concentrations of Nd3+ and Ho3+. The 5D0 ← 7F0 could

not be observed because it is hidden under the neodymium transition.

A larger spectral range was resolved in the water-methanol mixtures than in the water-

acetone samples, including the 5L6 ← 7F0 transition, which has the highest intensity of the

Eu3+ transitions in the (UV-)VIS region. The identification of the bands on the higher energy

side of the 5L6 ← 7F0 peak is difficult because of the high density of states in this region and

overlapping bands. Figure 5.11a gives an assignment of these bands on a trial basis.

5.3.2. Emission spectra

Europium(III) exhibits a red to orange-red luminescence, which is mainly caused by the

hypersensitive 5D0 →7F2 transition at 1.62 ⋅ 104 cm−1 or 617 nm. Figures 5.13, 5.14 and 5.15

present the emission spectra of Eu3+ in water-acetone and water-methanol mixtures and of

the Eu-CAB-glass. All spectra of the solutions were measured with an excitation wavelength

of 396 nm. They clearly demonstrate the change of intensity of the hypersensitive transition,

which has the lowest intensity in water. The solutions in 100 % acetone and 100 % methanol

yield comparable intensities of the hypersensitive transition.

The CAB glass was measured with different excitation wavelengths, see Figure 5.15.

The transition energies of Eu3+ are listed in Tables 5.11 and 5.13, while Figure 5.16 compares

them to the published values for EuF3 by Carnall et al.28, which were also used for the band
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5.3. Experimental results of Eu3+

(a) Absorbance spectra. (b) Hypersensitive 5D2 ← 7F0 transition.

Figure 5.10.: Absorbance spectra of Eu3+ in water-acetone mixtures.

(a) Absorbance spectra. (b) Hypersensitive 5D2 ← 7F0 transition.

Figure 5.11.: Absorbance spectra of Eu3+ in water-methanol mixtures.
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5. Experiments

Figure 5.12.: Absorbance spectrum of Eu3+-CAB-glass.

(a) Emission spectra. (b) Hypersensitive 5D0 →7F2 transition.

(c) Luminescence of Eu3+ solutions in 50
(left) – 90 v-% acetone in water and in
100 % acetone (right).

Figure 5.13.: Emission spectra of Eu3+ in water-acetone mixtures.
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5.3. Experimental results of Eu3+

(a) Emission spectra. (b) Hypersensitive 5D0 →7F2 transition.

Figure 5.14.: Emission spectra of Eu3+ in water-methanol mixtures.

(a) Excitation spectrum. (b) Emission spectra.

(c) Luminescence at λex = 254 nm. (d) Luminescence at λex = 365 nm.

Figure 5.15.: Excitation spectrum and emission spectra of Eu3+-CAB-glass recorded at different excitation
wavelengths and luminescence of Eu-CAB-glass.
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assignment. Only the solutions in the pure solvents and the 50-50 % mixtures are presented

in the tables.

Figure 5.16.: Experimental energy levels of Eu3+ compared with EuF3
28.

It can be seen that the energies remain nearly the same in the different environments, i.e.

the position of the states stays approximately the same, which was also observed for Nd3+

and can be explained by the shielding of the f -electrons from the environment.11,13 The

environment of the rare earth ion thus has no substantial influence on the position of the

states. There is an overlap between the 5D0 → 7F0 band with the more intense 5D0 → 7F1

band, therefore the position of the 0→ 0 transition could not be determined. The transition

energies are in accordance with the literature.28,43,99,113,114

The photographs (Figures 5.13c, 5.15c and 5.15d) show the luminescence of Eu3+ caused by

f↔ f transitions. The increase in luminescence intensity can also be seen in Figure 5.13c, i.e.

in a series of Eu3+ in water-acetone mixtures ranging from 50 to 100 % acetone in water,

confirming the higher intensity in acetone compared to water.
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5.3. Experimental results of Eu3+

5.3.3. Judd-Ofelt analysis

Judd-Ofelt calculations were performed based on the theory outline in chapter 2.2 on page

25, i.e. using the ratio of the radiative transition probabilities A of the magnetic dipole
5D0 → 7F1 transition to the electric dipole 5D0 → 7FJ (J = 2, 4, 6) transitions. The 5D0 → 7F6

transition at 1.24 ⋅ 104 cm−1 or approximately 807 nm was outside the recorded spectral

range, therefore the Ω6 parameter could not be determined. The results are summarized

in Tables 5.12 (solutions) and 5.13 (CAB glass). A large variation of the Ω2 parameter is

observed, while Ω4 nearly stays the same, as was already found for Nd3+. This demonstrates

the well-known sensitivity of Ω2 to the environment. Figure 5.17 depicts the dependence of

the Judd-Ofelt parameters on the acetone and methanol content in water. The increase of

Ω2 is more pronounced in the water-acetone mixtures than in the water-methanol mixtures.

The relation Ω4 < Ω2 was found for all the (pure) solvents and solvent mixtures, in contrast

to the findings of Nd3+. The acetone solution yields the largest value of Ω2. This tendency is,

like in the case of Nd3+, associated with an increase in the polarisability of the environment

of Eu3+. However, the polarisability is only one possible explanation for the hypersensitivity.

There seems to be a dependence on the symmetry as well, as was already mentioned in

chapter 2.3. The experimental spectra of the solutions cannot be used for an interpretation

in terms of symmetry, because there is no definite point group since the environment is

dynamic, but the CAB glass is a good example of a host of low symmetry.

The asymmetry ratio (ar) describes the ratio of the intensities of the hypersensitive transition

to the magnetic dipole 5D0 → 7F1 transition, which remains nearly unchanged irrespective

of the environment.43

ar =
Int (5D0 → 7F2)
Int (5D0 → 7F1)

(5.1)

The higher the asymmetry ratio, the stronger is the hypersensitive effect. Tables 5.11 and

5.13 give the asymmetry ratios together with the radiative transition probabilities A. It can

be seen how the asymmetry ratio increases when going from water to acetone or methanol,

in line with the increase of the Ω2 parameter, showing the hypersensitivity of the 5D0 → 7F2

transition. The largest asymmetry ratio is observed in acetone (ar = 4.05). The Eu-CAB-glass

yields an asymmetry ratio of only 2.78, which is lower than in methanol (ar = 2.92), but still

larger than in water (ar = 0.88). That is to say, the following order of the asymmetry ratios

is observed

water < CAB glass ≈ methanol < acetone .
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Table 5.11.: Emission spectra of Eu3+ in water-acetone and water-methanol mixtures: wavenumbers ν̃, areas

∫ I dν̃, radiative transition probabilities A for electric (ed) and magnetic (md) dipole transitions and
asymmetry ratios (ar).

v-% a 5D0 → ν̃ (cm−1) ∫ I dν̃ Aed (s−1) Amd (s−1) ar

7F4 14390 11126 22.3 0

0 7F2 16199 25892 46.1 0 0.884
7F1 16906 29281 0 50

7F4 14398 13817 22.7 0

50 7F2 16202 42613 62.3 0 1.19
7F1 16911 35708 0 50

7F4 14449 30340 26.6 0

100 7F2 16203 270489 212 0 4.05
7F1 16934 66813 0 50

v-% m 5D0 → ν̃ (cm−1) ∫ I dν̃ Aed (s−1) Amd (s−1) ar

7F4 14411 19772 21.1 0
7F3 15402 1642
7F2 16219 48299 45.8 0 0.877

0 7F1 16940 55050 0 50

(5D1 → 7F2 17971 10668)

(5D2 → 7F4 18808 11669)

7F4 14418 20580 22.7 0
7F3 15393 1573
7F2 16226 67638 66.4 0 1.27

50 7F1 16940 53169 0 50

(5D1 → 7F2 17997 7058)

(5D2 → 7F4 18741 8151)

7F4 14466 44139 27.1 0
7F3 15384 5695
7F2 16218 278313 152 0 2.92

100 7F1 16947 95412 0 50

(5D1 → 7F2 17981 11664)

(5D2 → 7F4 18678 21229)
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5.3. Experimental results of Eu3+

The obtained Ωλ parameters of Eu3+ in water, Ω2 = 2.2 ⋅ 10−20 cm2 and Ω2 = 2.0− 2.1 ⋅ 10−20

cm2, deviate from the reported values published by Carnall et al.41 (1968), where Ω2 =
1.45 ⋅ 10−20 cm2, Ω4 = 6.63 ⋅ 10−20 cm2 and Ω6 = 5.37 ⋅ 10−20 cm2 was found for aqueous

solutions of Eu3+. However, the Judd-Ofelt parameters of the investigated mixtures still lie

in the reported range, as shown in Table 5.14.

Table 5.12.: Judd-Ofelt parameters Ωλ (λ = 2,4) of Eu3+ in water-acetone (v-% acetone in water) and water-
methanol (v-% m) mixtures.

Ω (×10−20 cm2) Ω (×10−20 cm2)
v-% a

Ω2 Ω4
v-% m

Ω2 Ω4

0 2.2 2.1 0 2.2 2.0

10 2.2 2.1 10 2.3 2.0

20 2.3 2.1 20 2.4 2.0

30 2.4 2.0 30 2.6 2.1

40 2.5 2.0 40 2.8 2.1

50 2.8 2.0 50 3.1 2.1

60 3.3 2.0 60 3.4 2.1

70 4.0 2.0 70 3.9 2.1

80 5.0 2.0 80 4.8 2.2

90 7.0 2.1 90 6.0 2.3

100 9.5 2.4 100 7.3 2.5

Table 5.13.: Emission spectrum of Eu-CAB-glass: wavenumbers ν̃, areas ∫ I dν̃, radiative transition probabilities
A for electric (ed) and magnetic (md) dipole transitions, Judd-Ofelt parameters Ωλ (λ = 2,4) and
asymmetry ratios (ar).

5D0 → ν̃ (cm−1) ∫ I dν̃ Aed (s−1) Amd (s−1) Ω (×10−20 cm2) ar

Ω2 Ω4

7F4 14378.9 35269 19.8 0
7F2 16227.4 292593 146 0 1.18 4.36 2.78
7F1 16973.4 105196 0 50

There is extensive literature concerning Judd-Ofelt parameters of Eu3+.16,41,43–45,114–117 Table

5.14 lists only a selection of the published values. The calculated Ω4 parameter of the Eu-
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5. Experiments

(a) Water-acetone mixtures. (b) Water-methanol mixtures.

Figure 5.17.: Judd-Ofelt parameters Ωλ (λ = 2,4) of Eu3+ in water-acetone and water-methanol mixtures.

CAB-glass is in agreement with the literature values,16,43,116 e.g. in agreement with many

Eu3+ doped glasses, also borate glasses, that have been reported by Babu & Jayasankar43.

The Ω2 parameter of the Eu-CAB-glass (Ω2 = 1.18 ⋅10−20 cm2) is smaller than some published

values for other Eu3+ doped borate glasses, e.g. Ω2 = 5.64 ⋅ 10−20 cm2 for a lithium borate

glass,43 but still lies in the observed range, see Table 5.14. Most studies do not report Ω6

values for the same reason as mentioned in this thesis.

Table 5.14.: Range of Ωλ parameters of Eu3+ in various hosts reported in the literature.

Ω2 = 0.46 ⋅ 10−20 cm2 – 33.0 ⋅ 10−20 cm2

57ZrF4⋅35BaF2⋅1LaF3⋅3AlF3⋅3EuF3
118 Eu(TTA)32H2O16

(TTA = thenoyltrifluoroacetonate)

Ω4 = 0.18 ⋅ 10−20 cm2 – 5.53 ⋅ 10−20 cm2

Eu2(DDBM)3H2O114 Eu(3-NH2pic)3o-phen16

(chelating β-diketone complex) (3-NH2pic = 3-aminopyridine-

2-carboxylic acid)

Ω6 = 0.51 ⋅ 10−20 cm2 – 6.30 ⋅ 10−20 cm2

Eu3+ doped KMgSi glass43,119 49.5Li2CO3⋅49.5H3BO3⋅1Eu2O3
43

106



5.3. Experimental results of Eu3+

In summary, the variation of the intensities of the hypersensitive transitions of Eu3+

depending on the environment were observed both in the aborbance and in the emission

spectra, showing the lowest intensities in water and the highest intensities in acetone. The

transition energies were only affected to a small extent by the change of the solvents owing

to the shielding of the f -electrons by the outer filled 5s and 5p shells.11,13 In line with the

increase in intensity and of the oscillator strength of the hypersensitive transition was the

increase in the Ω2 parameter. For the asymmetry ratio, the relation water < CAB glass ≈
methanol < acetone was found.

The Eu-CAB-glass yielded a relatively small Ω2 parameter compared to other borate glasses.

The results are generally in accordance with the literature.
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6.1. Methodology

6.1.1. Calculation of geometries

Geometry optimizations and frequency calculations of the lanthanide water complexes, i.e.

Nd3+ and Eu3+ aquo complexes, were performed using the Gaussian09 program package120

and density functional theory calculations with the hybrid functional B3LYP87,89,90. For the

water molecules the triple-zeta basis set TZVP121,122 was used and the effective core poten-

tials ECP49MWB80,82 and ECP52MWB80,82 for Nd3+ and Eu3+, respectively. The large core

ECPs, which include the f -electrons in the core, can be used for geometry optimizations of

lanthanide complexes, because it was shown that the f -electrons do not contribute signif-

icantly in the lanthanide–ligand bonding.14–16 Some molecular mechanics investigations

have reported that the ligand–ligand interaction is dominating the geometries of lanthanide

complexes.16,123,124 Maron & Eisenstein14 have evaluated geometrical parameters with small

as well as large core ECPs and concluded that the large core ECPs can safely be used and

that DFT should be preferred over MP2.

Different symmetries of the coordination polyhedra were generated, mainly based on a

calculation of the coordinates in a spherical coordinate system and back transformation to

Cartesian coordinates. The quadratic antiprisms were generated by rotating the four Ln–O

bonds of the optimized cubes using125

Rn̂(α) v⃗

with the rotation matrix125

Rn̂(α) =

⎛
⎜⎜⎜⎜
⎝

n2
1(1− cos α) + cos α n1n2(1− cos α) − n3 sin α n1n3(1− cos α) + n2 sin α

n2n1(1− cos α) + n3 sin α n2
2(1− cos α) + cos α n2n3(1− cos α) − n1 sin α

n3n1(1− cos α) − n2 sin α n3n2(1− cos α) + n1 sin α n2
3(1− cos α) + cos α

⎞
⎟⎟⎟⎟
⎠
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where n̂ = (n1, n2, n3)T denotes the unit vector of the rotational axis and α is the rotation

angle. This corresponds to a rotation about an arbitrary axis passing through the origin.

Other geometries were also created by a rotation along the Ln–O bonds using this rotation

matrix.

C1 geometries often required a partial optimization in internal coordinates with some vari-

ables held constant, because otherwise the optimization yields again a higher symmetric

structure, especially of the oxygens.

6.1.2. Calculation of states

Kramers Restricted Configuration Interaction (KRCI) calculations of Nd3+ using the four-

component Dirac-Coulomb (DC) Hamiltonian (keyword DOSSSS) and two-component

X2C Hamiltonian126 together with Dyall’s triple-zeta core-valence basis set cv3z75 were

performed with the Dirac
61 program.

Calculations with increasing speed of light were carried out, from c = 137 a.u. to 1 ⋅ 106

a.u., in order to simulate the non-relativistic limit and to assign the states accordingly.

The four-component Hamiltonian exhibited convergence problems for c > 137 a.u. due to

“intruding positron states”, i.e. large negative-energy states that were occupied, therefore

the two-component Hamiltonian was chosen for these calculations. Calculations with the

General Open Shell CI Program (GOSCIP) of Dirac, i.e. complete open-shell CI127 (COSCI),

provided information about the degeneracies and symmetry classifications of the states

thus facilitating the assignment of the states. Table 6.1 gives the used partitioning of the

space into generalized active (GA) spaces in Nd3+ KRCI calculations, corresponding to the

correlation of 29 electrons in 29 orbitals. Other partitionings were also tested, particularly

the inclusion of more virtual orbitals, but these calculations did not converge and needed a

large computational effort. The results of the Eu3+-water complexes are compared to the

findings of Holzer128, who computed Eu3+ states with KRCI and correlated 32 electrons in

29 orbitals (Figure 6.11).

The energy levels of the [Nd (H2O)6]
3+ Th (D2h) structure (Nd-6w-Th) were determined

with Dirac-Hartree-Fock calculations with the two-component X2C4 Hamiltonian126, triple-

zeta basis set TZVP121,122 for the water molecules and cv3z75 for Nd3+.

Calculations with increasing speed of light of Nd-6w-Th were also performed, based on the

previous work by C. Holzer. However they are not presented here as the state assignment

was beyond the scope of this thesis.
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Table 6.1.: Generalized Active Spaces of Nd3+ KRCI calculations: number of gerade (left) and ungerade functions
(right), minimum (left) and maximum electron occupation (right) after this GAS and function types
in the GAS.

GAS GAS Kramers pairs Occupation Orbital shells

g u min. max.

I 7 6 24 26 4s, 4p, 4d, 5s, 5p

II 0 7 27 29 4 f

III 6 3 29 29 5d, 6s, 6p

State average spin-orbit coupled (SOC)73,74 CASSCF calculations of the lanthanide water

complexes were conducted with the Orca program package72 using the second-order

scalar-relativistic DKH method and triple-zeta basis set TZVP-DKH129–131 for all the ele-

ments, i.e. H, O and Nd or Eu. DFT orbitals from calculations at the DKH B3LYP87,89,90

TZVP-DKH129–131 level of theory were used as starting orbitals for the SOC-CASSCF calcula-

tions. In the case of the Eu3+ complexes, pure f -orbitals were obtained in a straightforward

manner. However, more problems were encountered in the case of the Nd3+ structures,

where several SOC-CASSCF calculations and orbital rotations were necessary to obtain

pure f -orbitals in the desired order.* Moreover, convergence problems arose for Nd3+. For

the Eu3+ structures two SOC-CASSCF calculations were performed. None of structures

with nine water molecules converged following this procedure.

6.2. Symmetry

Molecular symmetry was exploited in all the calculations, except for the optimizations of

the C1 structures. However, the programs only support Abelian groups. Table 6.2 gives

the subduction from O(3) to some Abelian subgroups. It can be seen how, for example,

the F term of Eu3+ splits into the irreps 1 Ag ⊕ 2 B1g ⊕ 2 B2g ⊕ 2 B3g in the subgroup D2h.

Basically the (Abelian) groups D2h and C1 were used for the calculations.

*Despite the usage of the “forbs” keyword.
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Table 6.2.: Subduction from O(3).93

L = O(3) → D2h
♣ L = O(3) → C2

0 S 1 Ag 0 S 1 A

1 P 1 B1u ⊕ 1 B2u ⊕ 1 B3u 1 P 1 A ⊕ 2 B

2 D 2 Ag ⊕ 1 B1g ⊕ 1 B2g ⊕ 1 B3g 2 D 3 A ⊕ 2 B

3 F 1 Au ⊕ 2 B1u ⊕ 2 B2u ⊕ 2 B3u 3 F 3 A ⊕ 4 B

4 G 3 Ag ⊕ 2 B1g ⊕ 2 B2g ⊕ 2 B3g 4 G 5 A ⊕ 4 B

5 H 2 Au ⊕ 3 B1u ⊕ 3 B2u ⊕ 3 B3u 5 H 5 A ⊕ 6 B

6 I 4 Ag ⊕ 3 B1g ⊕ 3 B2g ⊕ 3 B3g 6 I 7 A ⊕ 6 B

L = O(3) → D2 L = O(3) → Cs

0 S 1 A 0 S 1 A’

1 P 1 B1 ⊕ 1 B2 ⊕ 1 B3 1 P 2 A’ ⊕ 1 A”

2 D 2 A ⊕ B1 ⊕ B2 ⊕ B3 2 D 3 A’ ⊕ 2 A”

3 F A ⊕ B1 ⊕ B2 ⊕ B3 3 F 4 A’ ⊕ 3 A”

4 G 3 A ⊕ 2 B1 ⊕ 2 B2 ⊕ 2 B3 4 G 5 A’ ⊕ 4 A”

5 H 2 A ⊕ 3 B1 ⊕ 3 B2 ⊕ 3 B3 5 H 6 A’ ⊕ 5 A”

6 I 4 A ⊕ 3 B1 ⊕ 3 B2 ⊕ 3 B3 6 I 7 A’ ⊕ 6 A”

L = O(3) → C2v

0 S 1 A1

1 P 1 A1 ⊕ 1 B1 ⊕ 1 B2

2 D 2 A1 ⊕ 1 A2 ⊕ 1 B1 ⊕ 1 B2

3 F 1 A2 ⊕ 2 A1 ⊕ 2 B1 ⊕ 2 B2

4 G 3 A1 ⊕ 2 A2 ⊕ 2 B1 ⊕ 2 B2

5 H 2 A2 ⊕ 3 A1 ⊕ 3 B1 ⊕ 3 B2

6 I 4 A1 ⊕ 3 A2 ⊕ 3 B1 ⊕ 3 B2

♣ Group with inversion centre: Eu3+ has gerade states (g) and Nd3+ ungerade states (u).
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Table 6.3.: Subduction from O(3)o into fermion correpresentations for Nd3+.93

J = O(3) → D2h
♣

1
2 1 E1/2,u

3
2 2 E1/2,u

5
2 3 E1/2,u

7
2 4 E1/2,u

9
2 5 E1/2,u

11
2 6 E1/2,u

13
2 7 E1/2,u

15
2 8 E1/2,u

♣ Group with inversion cen-

tre: only ungerade states

(u) shown.

6.3. Computational results of Nd3+

6.3.1. Structures and energetics

The relative energies and point groups of the optimized Nd3+-water complexes in different

symmetries, [Nd(H2O)x]
3+ (x = 3, 4, 6, 8, 9), are summarized in Table 6.4. The highly sym-

metric geometries correspond in most cases to saddle points yielding imaginary frequencies,

which are indicated with the superscript ∗(i), where i denotes the number of imaginary

frequencies. The only exception is the Th structure, i.e. the octahedron of the oxygens,

which is a highly symmetric minimum structure. However, the aim of this thesis is to

determine the dependence of the intensity of the hypersensitive transition on the symmetry.

Therefore not only the lower symmetric minimum structures are of interest, but also some

structures of high symmetry. The C1 geometries have the lowest relative energies within the

complexes with eight and nine water molecules, which are common coordination numbers

of lanthanides.1,12,132 The coordination number of Nd3+ in water was found to be nine.1,133

The corresponding coordination polyhedron is a triaugmented triangular prism (D3h). The

actual used structure for the further correlated multi-reference calculations, Nd-6w-Th, is

indicated in bold. The other structures with six, eight and nine water molecules exhibited
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convergence problems.

Table 6.4.: Relative energies Erel , point group and structural characterization of optimized
[Nd(H2O)x]

3+ complexes (B3LYP ECP49MWB TZVP), * imaginary frequencies
(number).

Name Number Erel Point group Coordination

H2O (kJ mol−1) (largest Abelian polyhedron of O

subgroup)

Nd-3w-D3h-1 3 0.00 D3h (C2v)a trigonal planar

Nd-3w-D3 3 0.002625 D3 (C2) trigonal planar

Nd-3w-D3h-2 3 11.56 *(4) D3h (C2v) trigonal planar

Nd-4w-D2h 4 / *(3) D2h square planar

Nd-6w-Cs 6 0.00 Cs octahedron

Nd-6w-C1-1 6 0.005251 C1 octahedron

Nd-6w-C1-2 6 7.007 C1 “twisted” oxygens

Nd-6w-Th 6 0.1103 Th (D2h) octahedron

Nd-6w-Td 6 24.42 *(6) Td (D2) octahedron

Nd-8w-C1-1 8 0.00 C1 quadratic antiprism

Nd-8w-C1-2 8 0.01838 C1 quadratic antiprism

Nd-8w-C1-3 8 0.05776 C1 quadratic antiprism

Nd-8w-C1-4 8 16.90 C1 cube

Nd-8w-C2 8 11.15 *(1) C2 quadratic antiprism

Nd-8w-C4 8 16.69 *(1) C4 (C2) “twisted” oxygens

Nd-8w-D2d 8 17.21 *(1) D2d (C2v) cube (distorted)

Nd-8w-D4d 8 39.15 *(8) D4d (C2v) quadratic antiprism

Nd-8w-D4h-1 8 96.18 *(10) D4h (D2h) cube

Nd-8w-D4h-2 8 97.14 *(10) D4h (D2h) cube

Nd-9w-C1-1 9 0.00 C1

Nd-9w-C1-2 9 0.2494 C1 triaugmented

Nd-9w-D3h-1 9 22.71 *(4) D3h (C2v) triangular

Nd-9w-D3h-2 9 31.32 *(6) D3h (C2v) prism

a In frequency calculation output: C3h (Cs, C1).

Figures 6.1 and 6.2 show the structures of Nd-3w-D3h-1 and Nd-6w-Th. For other Nd3+-
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water complexes see chapter 6.4.1 (Eu3+-water complexes) on page 122 as the geometries

are nearly the same for the Nd3+-water complexes and Eu3+-water complexes, except for

the bond lengths.

6.3.2. States of Nd3+

The 2S+1LJ states of neodymium(III) are very dense in the region above the 4I states, which

led to overlapping bands in the experimental spectra. In the case of quantum chemical

computations it complicates the assignment of the states. This problem is even more

pronounced in the water complexes than in the free ion, because of the additional crystal

field splitting. Therefore KRCI calculations of the free ion, Nd3+, were performed as

a starting point. However, additional calculations with increasing speed of light were

necessary for a definite assignment of the states. If c → ∞, the non-relativistic limit is

reached which corresponds to LS-coupled 2S+1L states without spin-orbit coupling, i.e. all

terms arising from the same LS-coupled state can be identified. The additional information

of the calculations is the J value. Figures 6.3 and 6.4 present the results of these calculations,

i.e. the effect of spin-orbit coupling and assignment of the computed Nd3+ 2S+1LJ states. The

energies of these calculations with increasing speed of light can be found in the Appendix.

Constant values for the energies of the LS-coupled 2S+1L states are reached from a value of

c = 1 ⋅ 105 au. The calculations were performed until c = 1 ⋅ 106 au.

The results of the KRCI calculations of the Nd3+ ion with two-component X2C Hamiltonian

(Nd3+ 1) and the four-component DC Hamiltonian (Nd3+ 2) are compared to the published

experimental values for NdF3 by Carnall et al.28 in Figure 6.5. The results of the SOC-

CASSCF (Nd-6w 1), i.e. the first 88 crystal field levels, and of the Dirac-Hartree-Fock

calculation (Nd-6w 2), i.e. the first 120 crystal field levels, of Nd-6w-Th are also shown in

Figure 6.5, however the band assignment was beyond the scope of this thesis. It should

Figure 6.1.: [Nd (H2O)3]
3+, D3h (C2v) (B3LYP ECP49MWB TZVP).
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Figure 6.2.: Nd-6w-Th: [Nd (H2O)6]
3+, Th (D2h) (B3LYP ECP49MWB TZVP).

be noted that the highly symmetric Th geometry yielded zero oscillator strengths for all

transitions in the SOC-CASSCF calculation, owing to the centrosymmetry of the system.

The four-component calculations (Nd3+ 2) give slightly better results than the two-com-

ponent calculations (Nd3+ 1), i.e. the computed energies are in better agreement with the

experiment, e.g. with Nd3+ doped LaF3 (“NdF3”).28 It should be noted that only states

with J ≥ 5/2 were considered in the former case. The experimental values correspond to

the centres of gravity of the individual Stark levels of Nd3+ doped LaF3 and are labelled

with the free ion term 2S+1LJ with the largest contribution to the eigenstate.28 These average

energies differ of course from the computed free ion states, e.g. the (experimental) average

energy of the 4I9/2 term is 235 cm−1, while the 4I9/2 state is the degenerate ground state

of the free ion corresponding to 0 cm−1 in the absence of a crystal field. In general, the

computed 4I states are in comparatively good agreement with the literature values for

NdF3 with a difference in the order of 50 - 100 cm−1, while the states of higher energy

deviate more distinctly from the experimental values, not only in terms of energy, but also

in the sequence of the states (see Table 6.5). The hypersensitive transition 4G5/2 ← 4I9/2, for

example, has an experimental transition energy of 17,193 cm−1, while the calculated values

are 20,934 cm−1 (Nd3+ 1) and 20,931 cm−1 (Nd3+ 2), respectively, i.e. the deviation lies in

the order of 103 cm−1. The sequence of the 4F5/2 and 2H9/2, of the 4G5/2 and 2G7/2 and of

the 4G9/2 and 2K15/2 states is reversed in the calculations compared to the experiments.

Only few ab initio studies have examined the f↔ f transitions of Nd3+. Hatanaka &

Yabushita134 have found 21,748 cm−1 for the hypersensitive transition of NdBr3 with the

multi-reference spin-orbit configuration interaction (MRSOCI) method, which is about 800

cm1− larger than the transition energy found in the relativistic KRCI calculations of Nd3+

performed in this thesis.
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Figure 6.3.: Energy levels of Nd3+ (X2C KRCI Dyall cv3z) with increasing speed of light c equivalent to
decreasing spin-orbit coupling (all states).
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Figure 6.4.: Energy levels of Nd3+ (X2C KRCI Dyall cv3z) with increasing speed of light c equivalent to
decreasing spin-orbit coupling.
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Figure 6.5.: Energy levels of Nd3+ and [Nd (H2O)6]
3+ at different levels of theory compared with experimental

values of NdF3
28; Nd3+ 1 = X2C KRCI (29,29) cv3z, Nd3+ 2 = Dirac-Coulomb Hamiltonian KRCI

(29,29) cv3z, Nd-6w 1 = [Nd(H2O)6]
3+ Th DKH SOC-CASSCF (3,7) TZVP-DKH, Nd-6w 2 =

[Nd(H2O)6]
3+ Th X2C4 DHF TZVP cv3z.
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Table 6.5.: Computed energies of the Nd3+ free ion states compared to experimental values of NdF3
28 and

computed values of NdBr3
134; Nd3+ 1 (2c) at X2C KRCI (29,29) cv3z level of theory, Nd3+ 2 (4c)

Dirac-Coulomb Hamiltonian KRCI (29,29) cv3z level of theory.

States Wavenumber (cm−1)

NdF3
28 Nd3+ 1 (2c) Nd3+ 2 (4c)

4I9/2 235 0 0
4I11/2 2114 2004 1591
4I13/2 4098 4163 4144
4I15/2 6148 6430 6402
4F3/2 11621 13379
4F5/2 12660 14467 14035
2H9/2 12768 14058 14454
4F7/2 13619 15487 15467
4S3/2 13691 15684
4F9/2 14899 16734 16704
2H11/2 16105 17530 17495
4G5/2 17428 20934 20931
2G7/2 17469 19591 19565
2G9/2 22433 22389
4G7/2 19293 22519 22502
4G9/2 19709 24185
2K13/2 19785 23427 23397
2D3/2 21425 24646
4G11/2 21714 25521
2K15/2 21780 25653
2P1/2 23458
2D5/2 24004
2P3/2 26424

Transition Wavenumber (cm−1)

NdF3
28 Nd3+ 1 (2c) Nd3+ 2 (4c) NdBr3

134

4G5/2 ← 4I9/2 17193 20934 20931 21748
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To sum up, the assignment of the Nd3+ states of higher energy is difficult due to the high

density of states in the region above the 4I manifold, but it was possible using calculations

with increasing speed of light. The four-component KRCI calculations of Nd3+ yielded the

best agreement with the experimental energy levels, however the states of higher energy

still differ significantly from the experimental results.
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6.4. Computational results of Eu3+

6.4.1. Structures and energetics

The relative energies and point groups of the optimized Eu3+-water complexes are presented

in Table 6.6. The same notation is used as for Nd3+, i.e. imaginary frequencies are indicated

with the superscript ∗(i), where i denotes the number of imaginary frequencies. The

results are in line with the findings of neodymium. The highly symmetric structures

exhibit in most cases high relative energies and imaginary frequencies, especially the

cubic D4h structures of [Eu (H2O)8]
3+, while the lower symmetric geometries correspond to

minima. The only exception is Eu-6w-Th, which has the lowest energy of the optimized

[Eu(H2O)6]
3+ complexes despite the high symmetry (octahedron of oxygens, Th). The

actual used structures for the further correlated multi-reference calculations are marked

in bold. The coordination number of Eu3+ in water is nine,1,133,135 however none of the

multi-reference calculations of the [Eu(H2O)9]
3+ complexes converged.

Figures 6.6, 6.7 and 6.8 show selected structures of the [Eu(H2O)x]
3+ complexes.

6.4.2. States of Eu3+

The band assignment in the case of the Eu3+ water complexes is straightforward because of

the greater spacing between the states. As a consequence, no problems due to intervening

levels or wrong sequence of the states are observed, in contrast to Nd3+. C. Holzer128 has

already investigated the free ion states of Eu3+ with relativistic KRCI calculations and

various GA spaces, as shown in Figure 6.11.

(a) C1: Eu-6w-C1-2 (b) Td (D2) (c) Th (D2h): Eu-6w-Th

Figure 6.6.: [Eu (H2O)6]
3+ (B3LYP ECP52MWB TZVP).
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Table 6.6.: Relative energies Erel , point group and structural characterization of optimized [Eu(H2O)x]
3+

complexes (B3LYP ECP52MWB TZVP), * imaginary frequencies (number).

Name Number Erel Point group Coordination

H2O (kJ mol−1) (largest Abelian polyhedron of O

subgroup)

Eu-6w-Th 6 0.00 Th (D2h) octahedron

Eu-6w-Cs 6 0.1103 Cs distorted octahedron

Eu-6w-C1-1 6 0.1129 C1 octahedron

Eu-6w-C1-2 6 31.13 *(2) C1 “twisted” oxygens

Eu-6w-Td 6 27.99 *(6) Td (D2) octahedron

Eu-8w-C1-1 8 0.00 C1 quadratic antiprism

Eu-8w-C1-2 8 0.005251 C1 quadratic antiprism

Eu-8w-C1-3 8 19.18 C1 “twisted” oxygens

Eu-8w-C2 8 11.91 *(1) C2 dist. quadratic antiprism

Eu-8w-C4 8 18.52 *(1) C4 (C2) “twisted” oxygens

Eu-8w-D2d 8 18.53 *(1) D2d (C2v) distorted cube

Eu-8w-S4 8 19.16 S4 (C2) cube

Eu-8w-C4v 8 43.28 *(8) C4v (C2v) quadratic antiprism

Eu-8w-D4h-1 8 107.2 *(10) D4h (D2h) cube

Eu-8w-D4h-2 8 108.2 *(9) D4h (D2h) cube

Eu-9w-D3-1 9 0.00 D3 (C2)

Eu-9w-D3-2 9 0.04463 D3 (C2) triaugmented

Eu-9w-C1 9 0.07614 C1 triangular

E-9w-D3h 9 23.96 *(4) D3h (C2v) prism
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(a) C2 (b) D4h (D2h)

Figure 6.7.: [Eu (H2O)8]
3+ (B3LYP ECP52MWB TZVP).

(a) D3h (C2v) (b) D3 (C2)

Figure 6.8.: [Eu (H2O)9]
3+ (B3LYP ECP52MWB TZVP).
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(a) Eu-6w-C1-1 (b) Eu-6w-C1-2 (c) Eu-8w-C1-1

Figure 6.9.: C1 structures of [Eu (H2O)6,8]
3+

(B3LYP ECP52MWB TZVP) used for multi-reference calculations.

In this thesis, SOC-CASSCF (6,7) calculations of the water complexes with six (Eu-6w-

Th, Eu-6w-C1-1, Eu-6w-C1-2) and eight water molecules (Eu-8w-C1-1) were performed.

The computed average energy levels, i.e. the levels after averaging the crystal field states

belonging to one 2S+1LJ term, are shown in Figure 6.10 and Table 6.7. It can be seen that

number of states in the same energy range is much smaller than for neodymium(III). The

crystal field splitting of Eu-8w-C1-1 is also shown in Figure 6.10, demonstrating the small

influence of the environment on the energy levels of rare earth ions. The computed crystal

field splittings of these Eu3+-water complexes, i.e. Eu-6w-Th, Eu-6w-C1-1, Eu-6w-C1-2, are

listed in the Appendix. It was found to be mostly in the order of 1− 10 cm−1 and sometimes

also 10−1 and 102 cm−1.

The results of the Eu-6w-C1-1 structure are similar to those of Eu-6w-C1-2 and therefore

not shown explicitly in the tables and figures. The deviation in the transition energies lies

in the order of 10− 102 cm−1, however the oscillator strengths of the Eu-6w-C1-2 structure

are significantly larger than those of the Eu-6w-C1-1 geometry, where the oxygens form

a nearly perfect octahedron and only the orientation of the hydrogens leads to the C1

“symmetry”. It is concluded that the symmetry of the coordination polyhedron formed by

the oxygens in the Eu-6w-C1-1 structure is still too high, or to put it another way too close

to inversion symmetry, to yield substantial oscillator strengths. The C1 structures used in

the calculations are shown in Figure 6.9.

Comparison to the experimental energies of Eu3+ doped LaF3 published by Carnall et al.28,

or to the aqueous Eu3+ solution measured in this thesis, shows the good agreement of the

computed 7F states with the literature values. The deviation is in the order of approximately

10 - 100 cm−1. The problem is the F–D gap, i.e. the states of higher energy, like in the case

of Nd3+. The computed 5D states exhibit far too high energies. The largest deviation from
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the experimental values is found for the highly symmetric Eu-6w-Th structures.

Eu-6w-C1-2 yields better results for the 7FJ states, while Eu-8w-C1-1 gives a better agreement

for the 5DJ states, but is still differing some thousand cm−1 from the experimental energies.

The best agreement is reached for the 7F5 term, i.e. 3,863 cm−1 (Eu-6w-C1-2) instead of

3,849 cm−1 (EuF3). Comparison with the Eu3+ water solution gives analogous results.

The transition energies of the hypersensitive transitions 5D2 ← 7F0 and 5D0 → 7F2 are

overestimated by about 3,000 cm−1 and 5,000 cm−1, respectively.

It remains to be seen if complexes with nine water molecules, i.e. the preferred coordination

number in water, yield better results.

The KRCI calculations of Eu3+ by Holzer128 yielded significantly better results for the 5D

states, see Figure 6.11. A successive inclusion of electrons and orbitals in the GA spaces

resulted in a lowering of the 5D states.128 However, at the same time the spacing between

the 7F states increases leading to a worse description of the lower states than with the

SOC-CASSCF calculations of the water complexes performed in this thesis. A next step

would be to perform Dirac-Hartree-Fock calculations of Eu3+-water complexes with Dirac

and compare these results to the Orca SOC-CASSCF calculations.

The SOC-CASSCF calculations yield better results for the 7F2 ← 7F0 transition energy than

Hatanaka & Yabushita134 with their SOCI calculations, however their 5D2 ← 7F0 excitation

energy (23,991 cm−1) is in better agreement with the experiment,134 owing to the poor

description of the 7F–5D separation in the SOC-CASSCF calculations. Naleway et al.136

have investigated the energy levels of europium with a SOCI method and their relativistic

effective core potential. They found comparatively good results for the splitting of the 7F

and 5D manifolds into SO-coupled states with an CI expansion with single and double

excitations including 5s, 5p excitations in the singles, while the description of the 7F–5D

separation was found to be better without 5s, 5p excitations.136
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Figure 6.10.: Computed energy levels of [Eu (H2O)6,8]
3+

(DKH SOC-CASSCF (6,7) TZVP-DKH) compared with
experimental values of Eu3+ water solution and EuF3

28; Eu-6w (Th) corresponds to the Eu-6w-Th
structure, Eu-6w (C1) to the Eu-6w-C1-2 structure and Eu-8w (C1) to Eu-8w-C1-1.
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Table 6.7.: Computed average energies of the [Eu (H2O)x]
3+ (x = 6, 8) states at DKH SOC-CASSCF (6,7) TZVP-

DKH level of theory compared to experimental values of EuF3
28 and computed values for EuBr3

134.

States Wavenumber (cm−1)

EuF3
28 Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

7F0 0 0 0 0
7F1 372 206 327 307
7F2 1026 614 938 888
7F3 1866 1220 1763 1698
7F4 2823 2022 2750 2676
7F5 3849 3015 3863 3787
7F6 4907 4196 5099 5003
5D0 17293 27605 22269 22207
5D1 19027 28007 23057 22996
5D2 21483 29294 24663 24602
5D3 24355 30788 27133 27074
5D4 27586 31820 30516 30460

Transitions Wavenumber (cm−1)

EuF3
28 Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1 EuBr3

134

7F2 ← 7F0 1026 614 938 888 1132
5D2 ← 7F0 21483 29294 24663 24602 23991
5D0 → 7F2 16267 26991 21331 21319
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Figure 6.11.: Holzer128: Computed energy levels of Eu3+ and [Eu (H2O)6]
3+ at different levels of theory (Dirac-

Coulomb Hamiltonian KRCI cv3z) compared with experimental values of EuF3
28, with permission

of C. Holzer to reprint.
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Table 6.8.: f -orbitals of Eu3+ (by C. Holzer) and of the water complexes Eu-6w-Th, Eu-6w-C1-2 and Eu-8w-C1-1
(DKH SOC-CASSCF (6,7) TZVP-DKH).

Eu3+ Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

f x(x2 − 3y2)
(m` = +3)

f z(x2 − y2)
(m` = +2)

f xz2 (m` = +1)

f z3 (m` = 0)
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Table 6.8.: f -orbitals of Eu3+ (by C. Holzer) and of the water complexes Eu-6w-Th, Eu-6w-C1-2 and Eu-8w-C1-1
(DKH SOC-CASSCF (6,7) TZVP-DKH).

Eu3+ Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

f yz2 (m` = −1)

f xyz
(m` = −2)

f y(3x2 − y2)
(m` = −3)

Figure 6.8 shows the f -orbitals of the Eu3+-water complexes and compares them to the

orbitals of the free ion, Eu3+, calculated at the same levels of theory, i.e. DKH SOC-CASSCF

(6,7) TZVP-DKH, by C. Holzer. No general tendency was observed when going from the free

ion to the complex with eight water molecules. The orbitals of Eu3+ in the water complexes

are generally similar to those of the free ion. In the case of the Eu-6w-Th complex, p-orbitals

of two opposite oxygens mix to some extent with the f z(x2 − y2), f xz2 and f z3 orbitals of

Eu3+, indicating that “purer” f -orbitals were obtained for the C1 water complexes, which
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could be a reason for the better agreement of the energy levels of the latter geometries. The

f x(x2 − 3y2) and f y(3x2 − y2) orbitals of the Eu3+-water complexes expanded along two

Eu–O bonds towards the oxygens, especially in the Eu-6w-Th and Eu-6w-C1-2 structures in

the former case and in Eu-6w-Th and Eu-8w-C1-1 in the latter case.

6.4.3. Spectroscopy and Judd-Ofelt analysis

The computed absorbance spectra (SOC-CASSCF) of the Eu3+-water complexes of C1 sym-

metry, particularly Eu-6w-C1-2 and Eu-8w-C1, yielded non-zero oscillator strengths in the

order of 10−8 − 10−9, which is smaller than the experimental values (10−6 − 10−8).41,43,99 None

of the calculations, however, has found non-zero oscillator strengths for the hypersensitive

transition or other transitions observed in the experimental spectra as only intensities for

the 7FJ’ ← 7FJ and 5D4 ← 7FJ transitions were obtained. Hatanaka & Yabushita134 obtained

oscillator strengths for the transitions of EuBr3 comparable to the experiment in the order

of 10−6 − 10−7. This suggests that these SOC-CASSCF calculations are not the method of

choice for computing oscillator strengths of the f↔ f transitions of Eu3+.

The maximum oscillator strengths of a manifold of transitions to the different Stark levels

were used to compute Judd-Ofelt parameter Ωλ (λ = 2, 4, 6) for Eu3+. Tables 6.9 and 6.10

summarize the results of the Judd-Ofelt calculations based on equation (2.60), see chapter

2.60 on page 23. The Judd-Ofelt program used for the analysis of Nd3+ was extended to

calculate computed Ωλ parameters from a fit to computed oscillator strengths of Eu3+;

these results are listed in Table 6.11.

Similar values for the Ωλ parameters are obtained using either the average transition energy,

∆Eav, or the energy corresponding to the used maximum oscillator strengths, ∆E fmax , and

either equation (2.60) or a least squares fit with the Judd-Ofelt program. The relation

Ω2 < Ω4 ≈ Ω6 is found, which is on the whole consistent with the published experimental

Judd-Ofelt parameters for aqueous solutions of Eu3+.41 However, the values of the computed

Judd-Ofelt parameters strongly vary from the experimental values as a consequence of the

underestimated computed oscillator strengths.

These results also reflect the generality of the semi-empirical Judd-Ofelt parameters, which

contain electric dipole as well as magnetic dipole or electric quadrupole contributions and

possibly also vibronic interactions and other mechanisms. A lot of these contributions are

not accounted for in the computations, which consider for example only electric dipole

transitions. In the case of the 7F1 ← 7F0 and 5D1 ← 7F0 transitions, Carnall et al.41 have found
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Table 6.9.: Average computed transition energies of [Eu (H2O)6]
3+ C1 (Eu-6w-C1-2) with non-zero oscillator

strengths fosc (DKH SOC-CASSCF (6,7) TZVP-DKH) and computed Judd-Ofelt parameter Ωλ (λ
= 2, 4, 6) using transition energy belonging to fosc (max.), E fmax , and the squared reduced matrix

elements ⟨∣∣U(λ)∣∣⟩
2

published by Carnall et al.28.

Transition ∆E (cm−1) fosc (max.) Ωλ (×10−20 cm2) ⟨∣∣U(λ)∣∣⟩2

av. E fmax (×10−5) Ω2 Ω4 Ω6 U(2) U(4) U(6)

7F2 ← 7F0 937.96 854.90 1.00⋅10−4 0.00658 / / 0.1374 0 0
7F4 ← 7F0 2750.0 2804.8 1.70⋅10−3 / 0.0334 / 0 0.1402 0
7F5 ← 7F0 3862.9 3909.2 2.00⋅10−4

7F6 ← 7F0 5098.7 4752.5 3.20⋅10−3 / / 0.0359 0 0 0.145
5D4 ← 7F0 30516 30579 1.00⋅10−4 / 0.0230 / 0 0.0011 0

7F3 ← 7F1(1) 1626.1 1596.1 1.00⋅10−4 0.2092 0.1281 0
7F4 ← 7F1(1) 2613.4 2686.5 2.00⋅10−4 / 0.0099 / 0 0.1741 0
7F5 ← 7F1(1) 3726.2 3772.6 1.00⋅10−4 0 0.1192 0.0544
7F6 ← 7F1(1) 4962.0 4614.7 2.00⋅10−3 / / 0.0266 0 0 0.3774

7F4 ← 7F1(2) 2362.8 2463.9 1.00⋅10−4 / 0.00540 / 0 0.1741 0
7F5 ← 7F1(2) 3475.7 3482.4 1.00⋅10−4 0 0.1192 0.0544
7F6 ← 7F1(2) 4711.5 4783.2 4.00⋅10−4 / / 0.00514 0 0 0.3774
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Table 6.10.: Average computed transition energies of [Eu (H2O)6]
3+ C1 (Eu-6w-C1-2) with non-zero oscillator

strengths fosc (DKH SOC-CASSCF (6,7) TZVP-DKH) and computed Judd-Ofelt parameter Ωλ (λ =

2, 4, 6) using these average energies and the squared reduced matrix elements ⟨∣∣U(λ)∣∣⟩
2

published
by Carnall et al.28.

Transition Av. ∆E fosc (max.) Ωλ (×10−20 cm2) ⟨∣∣U(λ)∣∣⟩2

(cm−1) (×10−5) Ω2 Ω4 Ω6 U(2) U(4) U(6)

7F2 ← 7F0 937.96 1.00⋅10−4 0.00599 / / 0.1374 0 0
7F4 ← 7F0 2750.0 1.70⋅10−3 / 0.0341 / 0 0.1402 0
7F5 ← 7F0 3862.9 2.00⋅10−4

7F6 ← 7F0 5098.7 3.20⋅10−3 / / 0.0334 0 0 0.145
5D4 ← 7F0 30516 1.00⋅10−4 / 0.0230 / 0 0.0011 0

7F3 ← 7F1(1) 1626.1 1.00⋅10−4 0.2092 0.1281 0
7F4 ← 7F1(1) 2613.4 2.00⋅10−4 / 0.0102 / 0 0.1741 0
7F5 ← 7F1(1) 3726.2 1.00⋅10−4 0 0.1192 0.0544
7F6 ← 7F1(1) 4962.0 2.00⋅10−3 / / 0.0248 0 0 0.3774

7F4 ← 7F1(2) 2362.8 1.00⋅10−4 / 0.00563 / 0 0.1741 0
7F5 ← 7F1(2) 3475.7 1.00⋅10−4 0 0.1192 0.0544
7F6 ← 7F1(2) 4711.5 4.00⋅10−4 / / 0.00521 0 0 0.3774

Table 6.11.: Computed Judd-Ofelt parameter Ωλ (λ = 2, 4, 6) of Eu-6w-C1-2 (DKH SOC-CASSCF (6,7) TZVP-
DKH) using Judd-Ofelt program; ∆E fmax : using transition energy belonging to fosc (max.), ∆Eav:
using average transitions energies.

Ωλ (×10−20 cm2)

Ω2 Ω4 Ω6

∆E fmax
a 0.00657 ± 0.0051 0.0334 ± 0.0015 0.0334 ± 0.00081

∆Eav
b 0.00599 ± 0.0029 0.0340 ± 0.0010 0.0334 ± 0.00050

a rms = 7.74 ⋅ 10−10.
b rms = 4.78 ⋅ 10−10.
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6.4. Computational results of Eu3+

significant magnetic dipole oscillator strengths, while the other 2S+1LJ ← 7F0 transitions

exhibit predominantly electric dipole character.

In the ab initio study of the cause of hypersensitivity by Hatanaka & Yabushita134 it was

concluded that ligand-to-metal charge-transfer (LMCT), especially in the case of europium,

and dynamic coupling are important contributions to the oscillator strengths of the majority

of f↔ f transitions, based on a decomposition of transition dipole moments.134

In summary, the band assignment did not pose any difficulties for Eu3+, even for the water

complexes where also crystal field splitting arises. It could be shown that the crystal fields

acts only as a small perturbation, as was expected. The 7F are described properly with the

SOC-CASSCF calculations, but the F–D spacing is overestimated by some thousand cm−1.

No significant difference between the f -orbitals of the Eu-6w-Th, Eu-6w-C1-2 and Eu-8w-

C1-1 structures and the free ion Eu3+ was observed. In some cases the orbitals expanded

along the Eu–O bonds. In the Eu-6w-Th geometry, p-orbitals of opposite oxygens also mix

to some extent with the f -orbitals of europium(III).

The C1 structures yielded non-zero oscillator strengths for the f↔ f transitions, however

only for transitions that are not in the recorded range of the experimental spectra. The

computed oscillator strengths and Judd-Ofelt parameters are about two orders of magni-

tude smaller than the experimental values, thus suggesting that the used method is not

suitable to calculate the desired transitions and other effects should be accounted for in the

computations as well.
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7. Conclusion

In this thesis, the hypersensitive transitions of Nd3+ and Eu3+ were investigated in different

environments and symmetries. The experimental part focused on absorbance and emission

spectra of the rare earth ions in solvent mixtures as well as in CAB glasses. Furthermore, a

semi-empirical Judd-Ofelt analysis was performed.

The theoretical part consisted of relativistic ab initio calculations of Nd3+ as well as of

water complexes of Nd3+ and Eu3+ in different symmetries at the one-component Douglas-

Kroll-Hess, two-component X2C and four-component Dirac-Coulomb level of theory using

different multi-reference methods.

Experiments

In summary, the hypersensitivity of the 2G7/2 ← 4I9/2 and 5D2 ← 7F0 transitions of Nd3+ and

Eu3+, respectively, could be observed in the absorbance spectra of the solvent mixtures. The

mixtures showed a continuous variation of the intensity of the hypersensitive transitions

yielding the highest intensities in acetone and the lowest intensities in water. Intermediate

intensities were found in the water-methanol mixtures. The same findings were obtained

for the 5D0 →7F2 transition of Eu3+ in the emission spectra.

This tendency, which was also reproduced by the oscillator strengths, is in line with

the polarisabilities of the solvents, α(water) < α(methanol) < α(acetone). Early studies

have already proposed the dependence of the hypersensitive transitions of rare earth

ions on the polarisability of the environment,34,51 which seems to be confirmed by this

present investigation. The concept of polarisability is included in the dynamic coupling
model in terms of a dynamic contribution to the Ω2 intensity parameter. Other suggested

explanations for the hypersensitivity like the pKa value of the solvents or ligands could not

be confirmed by the present study, as the pKa values of acetone, methanol and water do not

follow the observed intensity tendency. However, the experimental spectra of the rare earth

ions in solvent mixtures cannot be used for an interpretation in terms of symmetry, because
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7. Conclusion

there is no definite point group in this dynamic environment. Yet, the symmetry of the

environment was also discussed by many authors as a cause of hypersensitivity and is for

example also accounted for in the dynamic coupling model. Presumably a combination of

some effects like the polarisability and symmetry of the environment should be considered

when describing hypersensitive transitions of rare earth ions.

The CAB glasses prepared in this thesis served as a model system of low symmetry. The

highest oscillator strength for the 2G7/2 ← 4I9/2 transition of Nd3+ was found in the CAB

glass. However, the asymmetry ratio, i.e. the ratio of the intensities of the hypersensitive

transition to a magnetic dipole transition, of the Eu-CAB-glass yielded a value of only

2.78, which is smaller than the asymmetry ratio found in methanol. In the case of Eu3+,

the following order of the asymmetry ratios was found: water < CAB glass ≈ methanol <
acetone.

A Judd-Ofelt analysis of the absorbance spectra of Nd3+ and emission spectra of Eu3+

confirmed these results. The expected variation of the Ω2 parameter, which is sensitive to

the environment, was observed in the different solvent mixtures, while Ω4 and Ω6 remained

nearly constant. In the case of neodymium(III), the relation Ω2 < Ω4 < Ω6 was found in

water, in methanol Ω4 < Ω2 ≈ Ω6 and in acetone Ω4 < Ω6 < Ω2. These results are in line

with the change of intensity or oscillator strength of the hypersensitive transition. The

Judd-Ofelt analysis of Eu3+ yielded the relation Ω4 < Ω2 for all pure solvents and solvent

mixtures. However, for both ions the highest value of Ω2 was found in acetone.

In the spectra of Nd3+ or Eu3+ in water-methanol, a broader range could be resolved

than in the water-acetone mixtures, because of the starting absorption of acetone in the

(UV)-VIS region. Therefore, more bands were available for a Judd-Ofelt analysis. In the

case of neodymium(III), the analysis, i.e. the least squares fit, was performed in two ways.

First, without the additional transitions (m1) and then taking the the 4D1/2, 4D3/2, 4D5/2,
2I11/2 ← 4I9/2 transitions into account as well. The results significantly differ, yielding for

example Ω2(m1) = 0.514 ± 0.52 ⋅ 10−20 cm2, Ω4(m1) = 6.28 ± 0.79 ⋅ 10−20 cm2 and Ω6(m1) =
7.49±0.39 ⋅10−20 cm2 compared to Ω2(m2) = 2.07±0.41 ⋅10−20 cm2, Ω4(m2) = 3.70±0.38 ⋅10−20

cm2 and Ω6(m1) = 8.16 ± 0.53 ⋅ 10−20 cm2 in water. However, both the (m1) analysis and

the (m2) analysis showed the same tendency of the Ωλ parameters. In summary, the (m1)

analysis gave a better agreement with literature values, better rms values and better fit

between fexp and fcalc(JO) for most transitions, while the (m2) analysis yielded Judd-Ofelt

parameters with a smaller standard error.

The Nd-CAB-glass yielded a high value for Ω2 compared to other Nd3+-doped glasses,
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while a relatively small Ω2 parameter was found for the Eu-CAB-glass compared to other

borate glasses.

The results of the oscillator strengths and Judd-Ofelt intensity parameters Ωλ are in

agreement with the literature and lie in the observed range.

An evaluation of the experimental energy levels of Nd3+ and Eu3+ and comparison to

published values of the rare earth ions in LaF3
28 showed that the shift of the energies in the

different environments is indeed very small. It can be concluded that the environment of

the rare earth ion has no substantial influence on the position of the states, which can be

explained by the shielding of the f -electrons by the filled 5s and 5p shells.11,13

Broad emissions were observed in the spectra of Nd3+ in the water-DMSO mixtures and

in acetone, which are presumably caused by metal-to-ligand charge-transfer and not by

f↔ f transitions of Nd3+, because of their linewidth and lifetime.10 Besides, Nd3+ exhibits

luminescence at lower energies in the NIR region.103,104

In the Nd3+ solutions in water-acetone and water-methanol a preferred coordination of

water was observed as the increase in intensity of the hypersensitive transition started only

at 50 v-% acetone or methanol in water.

Since the 2G7/2← 4I9/2 and 4G5/2← 4I9/2 bands overlap in the experimental spectra, a change

of the band shape and a shift of the barycentre towards lower energies was observed, which

is explained by an increasing contribution of the hypersensitive 4G5/2 ← 4I9/2 transition.

Computations

To sum up the ab initio calculations, it was found in this thesis that most high symmetric wa-

ter complexes of Nd3+ and Eu3+ exhibited high relative energies and imaginary frequencies,

while the low symmetric geometries correspond to minima. The only exceptions were the

optimized [Nd,Eu(H2O)6]
3+ complexes of Th symmetry, i.e. the octahedra of oxygens. The

preferred coordination number of Nd3+ and Eu3+ in water is nine,1,133,135 however none of

the structures with nine water molecules was used for further multi-reference calculations

due to convergence problems.

The assignment of the free ion 2S+1LJ states was straightforward for Eu3+. Nd3+, on the

contrary, has a high density of states in the region of higher energy above the 4I states, thus

leading to intervening states and complicating the assignment. Still this was accomplished

in the present thesis using calculations with increasing speed of light corresponding to a
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7. Conclusion

decreasing spin-orbit coupling. The results of the relativistic four-component KRCI calcula-

tions of the free ion, Nd3+, yielded the best agreement with the experimental energy levels

of NdF3,28 however the states of higher energy still differ from the published experimental

results both in the energy of the states and in their sequence. The hypersensitive 4G5/2 ←
4I9/2 transition is overestimated by about 3.7 ⋅ 103 cm−1. Still, this result is by about 800 cm−1

better than other published values based on an ab initio study of NdBr3.134

The results of the SOC-CASSCF calculations of the Eu3+-water complexes are consistent

with the findings of Nd3+. The 7F states are in good agreement with the experimental energy

levels of EuF3
28 and yielded better results than the ab initio study of EuBr3 by Hatanaka

& Yabushita134. Yet, the spacing between the 7F and 5D states is overestimated by some

thousand cm−1, in analogy to the KRCI calculations of Nd3+. Hatanaka & Yabushita134 have

found a slightly better energy for the hypersensitive 5D2 ← 7F0 transition, i.e. a deviation of

2.5 ⋅ 103 cm−1 instead of the 3.1 ⋅ 103 cm−1 encountered in this thesis. The four-component

KRCI calculations of Holzer128 yielded the best agreement with the experimental transition

energy because the F–D spacing is lowered, but at the expense of a worse description of the
7F states compared to the present study.

These SOC-CASSCF calculations of Eu3+-water complexes also revealed the small crystal

field splitting, which was found to be mostly in the order of 1− 10 cm−1 and sometimes also

10−1 and 102 cm−1. The splitting caused by spin-orbit coupling is in the order of 102 − 103

cm−1 for Eu3+. This demonstrates the small influence of the environment on the energy

levels.

The computed oscillator strengths using SOC-CASSCF deviate significantly from the

observed oscillator strengths in the experimental spectra or from published values in the

literature. All centrosymmetric structures yielded zero oscillator strengths due to symmetry

selection rules, while the C1 geometries showed small oscillator strengths for some 2S’+1LJ’

← 7FJ transitions.

As a consequence, the computed Judd-Ofelt parameters, which were obtained using these

small oscillator strengths, are one to two orders of magnitude smaller than the experimental

Ωλ parameters of Eu3+ in water. However, the observed relation Ω2 < Ω4 ≈ Ω6 is consistent

the literature.41 It is concluded that the SOC-CASSCF method applied in this thesis is not

the method of choice for computing oscillator strengths of f↔ f transitions and more effects

have to be accounted for in the ab initio calculations, like electric quadrupole oscillator
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strengths, ligand-to-metal charge-transfer and dynamic coupling.134

In conclusion, the results of this thesis indicate that the dynamic coupling model137–140

is the preferred theory to describe the hypersensitive transitions of neodymium(III) and

europium(III), since it explains the dependence on the polarisability as well as on the

symmetry of the environment, which were both confirmed in the present experimental and

theoretical study.
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Judd-Ofelt program

JuddOfelt is a software module written in Python 3 to calculate Judd-Ofelt parameters and

oscillator strengths for the specified ion Nd3+ and Eu3+. The software mainly relies on an

existing GAUSS-implementation provided by Dr. K. Gatterer and makes extensive use of

NumPy, a package for scientific numerical computation.

For Nd3+ and Eu3+ literature values for the squared reduced matrix elements of the unit

tensor operator ⟨∥U(λ)∥⟩ by Carnall et al.28 are already provided. Otherwise a new element

specification file must be defined.

Input files contain information about the experimental setup and its result, i.a. the concen-

tration c, light path l, J-value of initial state and refractive index n. Output files supply the

calculated Judd-Ofelt parameters Ω2, Ω4 and Ω6 as well as two tables with experimental

and calculated oscillator strengths.

1. Input preparation: Build matrices

2. Calculate experimental oscillator strengths

3. Perform a linear regression and obtain the Judd-Ofelt parameters

4. Calculate oscillator strengths

5. Calculate standard deviation and standard error

Technically the calculation is preceded by a an input parser and succeeded by an exporter

which uses the prettytable package.

First, the experimental oscillator strengths are calculated with equation (2.62)

fexp = 4.318 ⋅ 10−9∫ ε(ν̃) dν̃

= 4.318 ⋅ 10−9

c ⋅ l ∫ A(ν̃) dν̃ .

where the integral ∫ A(ν̃) dν̃ denotes the area of bands measured in the experimental

spectra. They form the vector fexp, which comprises the oscillator strengths of all observed

transitions.

Second, a matrix C is build of all transitions a

Ca =
8π2mec

3h
(n2 + 2)2

9n
1

2J + 1
ν̃a ⟨∥U(λ)∥⟩

2
a
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entry/read input

Inital State

entry/read input

Inital State

entry/start calculation

Calculation in progress

entry/start calculation

Calculation in progress

entry/process results

Results available

entry/process results

Results available

exit/load element spec

Configuration loaded

exit/load element spec

Configuration loaded

exit/start calculation

Data loaded

exit/start calculation

Data loaded

do/calculate fobs

Observed oscillator strength

do/calculate fobs

Observed oscillator strength

do/linear regression

Least square fit performed

do/linear regression

Least square fit performed

do/calculate standard error

Calculation performed

do/calculate standard error

Calculation performed

do/show calculated oscillator strengths

Table generated

do/show calculated oscillator strengths

Table generated

calculate Judd Ofelt parameters

show results

Figure .1.: State diagram describing the Judd-Ofelt program
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based on the expression for the oscillator strengths of the Judd-Ofelt theory, equation

(2.60)

fcalc =
8π2mec ν̃

3 h(2J + 1)
(n2 + 2)2

9n
∑

λ=2,4,6
Ωλ ∣ ⟨4 f Nα′[S′L′]J′ ∥U(λ) ∥4 f Nα[SL]J⟩ ∣

2
.

Then, a linear regression is performed based on the least squares principle to obtain the

Judd-Ofelt intensity parameters Ωλ (λ = 2, 4, 6)

⎛
⎜⎜⎜⎜
⎝

Ω2

Ω4

Ω6

⎞
⎟⎟⎟⎟
⎠

= (CT ⋅C)−1 ⋅CT ⋅ fexp .

The next step is to calculate oscillator strengths, fcalc, using the Ωλ parameters and equation

(2.60).

Finally, the standard deviation or root mean square deviation (rms) is determined according

to equation (2.69)

rms = (
sum of squares of deviations

number of observations−number of parameters
)

1
2

= (
∑( fcalc − fexp)2

number of bands− 3
)

1
2

and the standard error (se) of the Ωλ parameters using the rms

se = rms
√

diag ({CT ⋅C}−1) .

The Judd-Ofelt program was extended for Eu3+ in order to fit Judd-Ofelt oscillator strengths,

“ fcalc”, to the computed oscillator strengths.

Input �le example

# Nd-50-H-A

el=Nd3+

j=9/2

c=0.0523498303 mol/l

n=1.358
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l=1.0 cm

table (name, RS term symbol, nu, area)

R 4F3/2 11520.09251 24.15931

S 4F5/2,2H(2)9/2 12532.00488 109.91915

A 4F7/2,4S3/2 13483.14895 110.50763

B 4F9/2 14698.85366 6.86615

C 2H(2)11/2 15899.40869 1.87028

D 4G5/2,2G(2)7/2 17309.30166 142.22387

E,F 4G7/2,4G9/2,2K13/2 19327.3831 83.32383

G,H 2D3/2,4G11/2,2K15/2,2G(1)9/2 21370.03871 21.88655

I 2P1/2,2D5/2 23395.76052 4.8309

Output �le example

JuddOfelt 0.1.0

# Nd-50-H-A

JO-parameters:

omega_2 = 1.0792560486513352e-20

omega_4 = 6.289661723484508e-20

omega_6 = 7.546242822320441e-20

Observed oscillator strength:

+------+---------------------------------+-------------------+

| Name | RS term symbol | p_exp |

+------+---------------------------------+-------------------+

| R | 4F3/2 | 1.99366872064e-06 |

| S | 4F5/2, 2H(2)9/2 | 9.07072143842e-06 |

| A | 4F7/2, 4S3/2 | 9.11928384226e-06 |

| B | 4F9/2 | 5.66606765103e-07 |

| C | 2H(2)11/2 | 1.54338792575e-07 |

| D | 4G5/2, 2G(2)7/2 | 1.17365637076e-05 |

| E,F | 4G7/2, 4G9/2, 2K13/2 | 6.87602889135e-06 |
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| G,H | 2D3/2, 4G11/2, 2K15/2, 2G(1)9/2 | 1.80611657112e-06 |

| I | 2P1/2, 2D5/2 | 3.98654358198e-07 |

+------+---------------------------------+-------------------+

Calculated oscillator strength:

+------+---------------------------------+-------------------+

| Name | RS term symbol | p_calc |

+------+---------------------------------+-------------------+

| R | 4F3/2 | 2.80914093447e-06 |

| S | 4F5/2, 2H(2)9/2 | 8.94326077222e-06 |

| A | 4F7/2, 4S3/2 | 9.31658220934e-06 |

| B | 4F9/2 | 7.04241757365e-07 |

| C | 2H(2)11/2 | 1.99116559334e-07 |

| D | 4G5/2, 2G(2)7/2 | 1.1784640473e-05 |

| E,F | 4G7/2, 4G9/2, 2K13/2 | 6.30168355522e-06 |

| G,H | 2D3/2, 4G11/2, 2K15/2, 2G(1)9/2 | 1.56868937271e-06 |

| I | 2P1/2, 2D5/2 | 8.07687969225e-07 |

+------+---------------------------------+-------------------+

Standard deviation:

4.6493374941711964e-07

Normal termination

Computations

Table .1.: Energy levels of Nd3+ (X2C KRCI Dyall cv3z) with increasing speed of light c or decreasing spin-orbit
coupling.

c (a.u.) Wavenumber (cm−1)
4I9/2

4I11/2
4I13/2

4I15/2
4F3/2

2H9/2
a 4F5/2

137 0 2004.27 4163.27 6429.81 13379.18 14057.90 14467.15

150 497.41 2168.73 3994.58 5936.64 13828.47 14494.13 14714.16

200 1636.62 2567.80 3619.14 4773.81 14788.75 15466.19 15253.58
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250 2177.58 2768.70 3446.90 4204.19 15213.09 15892.75 15498.91

300 2473.65 2881.91 3354.51 3887.28 15436.87 16214.53 15630.60

400 2769.00 2997.23 3263.81 3567.31 15654.08 16336.12 15760.23

500 2905.89 3051.50 3222.29 3417.67 15752.69 16420.89 15819.74

625 2993.53 3086.53 3195.90 3321.40 15815.12 16474.18 15857.67

750 3041.14 3105.64 3181.62 3268.95 15848.80 16502.59 15878.21

875 3069.85 3117.20 3173.03 3237.27 15869.04 16519.52 15890.58

1,000 3088.48 3124.72 3167.47 3216.69 15882.14 16530.41 15898.60

1,250 3110.39 3133.57 3160.93 3192.46 15897.51 16543.13 15908.02

1,500 3122.29 3138.38 3157.39 3179.29 15905.84 16550.00 15913.13

2,000 3134.12 3143.17 3153.86 3166.19 15914.12 16556.80 15918.22

5,000 3146.90 3148.35 3150.06 3152.04 15923.05 16564.11 15923.70

10,000 3148.73 3149.09 3149.52 3150.01 15924.32 16565.15 15924.49

100,000 3149.33 3149.34 3149.34 3149.35 15924.74 16565.49 15924.75

500,000 3149.34 3149.34 3149.34 3149.34 15924.75 16565.50 15924.75

1,000,000 3149.34 3149.34 3149.34 3149.34 15924.75 16565.50 15924.75

c (a.u.) Wavenumber (cm−1) (cont.)
4F7/2

4S3/2
4F9/2

a 2H11/2
2G7/2

4G5/2
2G9/2

b

137 15486.87 15683.70 16733.83 17530.34 19590.59 20934.09 22433.16

150 15601.01 15821.96 16648.18 17396.32 19778.97 21432.42 22141.33

200 15792.10 16061.06 16416.89 17061.09 20214.45 22548.04 21416.95

250 15853.12 16138.97 16281.21 16889.88 20427.08 23071.03 21120.42

300 15879.65 16172.36 16089.61 16793.23 20545.63 23356.81 20990.55

400 15901.81 16199.30 16070.68 16694.87 20665.56 23642.15 20892.39

500 15910.75 16209.66 16022.75 16648.65 20721.73 23774.61 20859.37

625 15916.06 16215.58 15989.12 16618.86 20757.90 23859.52 20842.78

750 15918.81 16218.57 15970.05 16602.60 20777.61 23905.69 20835.33

875 15920.43 16220.29 15958.29 16592.78 20789.52 23933.54 20831.37

1,000 15921.47 16221.38 15950.56 16586.40 20797.26 23951.62 20829.03

1,250 15922.66 16222.63 15941.37 16578.88 20806.37 23972.89 20826.49

1,500 15923.31 16223.29 15936.33 16574.80 20811.32 23984.45 20825.21

2,000 15923.94 16223.94 15931.28 16570.73 20816.25 23995.94 20824.02
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5,000 15924.62 16224.63 15925.80 16566.34 20821.57 24008.35 20822.81

10,000 15924.72 16224.73 15925.01 16565.71 20822.33 24010.12 20822.64

100,000 15924.75 16224.76 15924.75 16565.50 20822.58 24010.71 20822.58

500,000 15924.75 16224.76 15924.75 16565.50 20822.58 24010.71 20822.58

1,000,000 15924.75 16224.76 15924.75 16565.50 20822.58 24010.71 20822.59

c (a.u.) Wavenumber (cm−1) (cont.)
4G7/2

2K13/2
4G9/2

b 2D3/2
4G11/2

2K15/2

137 22518.81 23427.36 24185.00 24645.70 25520.88 25652.73

150 22713.38 23706.29 24070.55 25049.48 25293.70 25611.15

200 23209.72 24346.36 23957.26 26083.29 24747.76 25472.74

250 23475.00 24655.50 23951.85 26630.68 24482.87 25391.17

300 23629.59 24827.22 23960.00 26943.92 24337.95 25343.39

400 23791.10 25000.77 23976.31 27258.76 24194.09 25293.93

500 23868.58 25082.07 23986.85 27397.93 24127.79 25270.50

625 23919.09 25134.43 23994.66 27478.17 24085.51 25255.36

750 23946.84 25162.99 23999.26 27515.90 24062.61 25247.08

875 23963.68 25180.24 24002.17 27535.66 24048.81 25242.08

1,000 23974.65 25191.46 24004.10 27546.99 24039.87 25238.83

1,250 23987.59 25204.66 24006.43 27558.67 24029.37 25235.00

1,500 23994.64 25211.84 24007.72 27564.30 24023.66 25232.91

2,000 24001.67 25218.98 24009.02 27573.11 24018.00 25230.84

5,000 24009.27 25226.70 24010.44 27574.22 24011.88 25228.60

10,000 24010.35 25227.81 24010.65 27574.52 24011.01 25228.28

100,000 24010.71 25228.17 24010.71 27574.49 24010.72 25228.18

500,000 24010.71 25228.17 24010.71 27574.36 24010.72 25228.18

1,000,000 24010.71 25228.18 24010.71 27574.57 24010.72 25228.18

a 2H9/2 or 4F9/2.
b 2G9/2 or 4G9/2.
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Table .2.: Computed crystal field splittings of Eu3+-water complexes at the DKH SOC-CASSCF (6,7) TZVP-DKH
level of theory in Th and C1 symmetries with 6 and 9 water molecules.

Wavenumber (cm-1)

Free ion term Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

7F0 0 0 0

152.76 136.64 216.60
7F1 224.82 387.22 352.01

239.95 455.99 352.25

576.18 829.90 821.43

594.05 854.86 821.61
7F2 613.74 907.13 920.94

639.96 1017.49 936.62

648.21 1080.35 937.29

1190.51 1697.73 1665.71

1202.07 1714.20 1672.19

1213.93 1732.77 1672.33
7F3 1223.33 1754.04 1696.08

1225.89 1803.72 1696.18

1234.94 1809.28 1742.40

1246.40 1827.66 1742.63

1931.27 2588.94 2593.24

1976.40 2607.26 2610.63

1984.92 2621.88 2610.64

1988.68 2785.89 2659.99
7F4 2037.24 2804.75 2660.15

2055.23 2820.44 2711.37

2059.70 2823.14 2711.52

2077.96 2846.87 2763.42

2089.98 2851.09 2764.03

2922.40 3621.80 3645.64

2951.79 3622.00 3645.64

2970.88 3804.81 3788.93
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Table .2.: Computed crystal field splittings of Eu3+-water complexes at the DKH SOC-CASSCF (6,7) TZVP-DKH
level of theory in Th and C1 symmetries with 6 and 9 water molecules.

Wavenumber (cm-1)

Free ion term Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

2998.76 3817.44 3789.07

3000.88 3825.39 3794.85
7F5 3013.21 3869.57 3795.38

3025.26 3909.21 3835.34

3045.36 3959.95 3835.42

3072.56 4009.23 3835.57

3074.59 4021.32 3835.65

3090.11 4030.97 3854.64

4057.72 4751.31 4856.60

4058.61 4752.49 4856.60

4159.78 4855.72 4890.29

4175.09 4859.65 4890.29

4179.03 5028.01 4939.22

4185.23 5035.87 4939.22
7F6 4187.26 5170.38 5030.76

4219.87 5187.79 5030.79

4224.76 5254.88 5095.39

4269.20 5294.56 5095.68

4272.43 5313.44 5132.10

4274.94 5388.70 5132.44

4280.21 5390.25 5144.06
5D0 27604.59 22268.88 22206.56

27604.60 23022.25 22979.02
5D1 28204.51 23067.70 23004.23

28210.41 23082.05 23004.27

28806.94 24627.94 24573.41

28814.13 24636.08 24599.13
5D2 29413.94 24645.42 24599.35
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Table .2.: Computed crystal field splittings of Eu3+-water complexes at the DKH SOC-CASSCF (6,7) TZVP-DKH
level of theory in Th and C1 symmetries with 6 and 9 water molecules.

Wavenumber (cm-1)

Free ion term Eu-6w-Th Eu-6w-C1-2 Eu-8w-C1-1

29414.78 24700.64 24619.88

30020.61 24703.27 24619.96

30020.61 27077.07 27047.87

30539.33 27107.48 27048.05

30539.33 27107.97 27069.44
5D3 30915.60 27120.44 27069.45

30915.82 27157.56 27087.87

31289.54 27166.73 27087.95

31294.63 27193.65 27104.21

31668.44 30437.75 30430.72

31668.44 30438.18 30430.72

31735.64 30491.81 30447.95

31735.64 30495.00 30447.95
5D4 31817.09 30530.48 30464.76

31817.14 30536.30 30464.79

31844.03 30555.85 30483.06

32044.76 30579.25 30483.12

32044.76 30583.54 30491.16
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Optimized structures

Nd-6w-Th:
19

Nd-6w-Th B3LYP ECP49MWB TZVP

Nd 0.000000 0.000000 0.000000

O 0.000000 0.000000 -2.492117

O 2.492117 0.000000 0.000000

O -2.492117 0.000000 0.000000

O 0.000000 2.492117 0.000000

O 0.000000 -2.492117 0.000000

O 0.000000 0.000000 2.492117

H 0.770801 0.000000 -3.089127

H -0.770801 0.000000 -3.089127

H -0.770801 0.000000 3.089127

H 3.089127 0.770801 0.000000

H -3.089127 0.770801 0.000000

H -3.089127 -0.770801 0.000000

H 3.089127 -0.770801 0.000000

H 0.000000 3.089127 0.770801

H 0.000000 -3.089127 0.770801

H 0.000000 -3.089127 -0.770801

H 0.000000 3.089127 -0.770801

H 0.770801 0.000000 3.089127
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Eu-6w-Th:
19

Eu-6w-Th B3LYP ECP52MWB TZVP

O 0.000000 0.000000 -2.431906

Eu 0.000000 0.000000 0.000000

O 0.000000 0.000000 2.431906

O 2.431906 0.000000 0.000000

O -2.431906 0.000000 0.000000

O 0.000000 2.431906 0.000000

O 0.000000 -2.431906 0.000000

H 0.771580 0.000000 -3.028086

H -0.771580 0.000000 -3.028086

H -0.771580 0.000000 3.028086

H 3.028086 0.771580 0.000000

H -3.028086 0.771580 0.000000

H -3.028086 -0.771580 0.000000

H 3.028086 -0.771580 0.000000

H 0.000000 3.028086 0.771580

H 0.000000 -3.028086 0.771580

H 0.000000 -3.028086 -0.771580

H 0.000000 3.028086 -0.771580

H 0.771580 0.000000 3.028086
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Eu-6w-C1-1:
19

Eu-6w-C1-1 B3LYP ECP52MWB TZVP

O 0.009375 -0.019158 -2.432483

Eu 0.007040 -0.000003 -0.000026

O 0.016581 -2.432416 0.019551

O 0.004858 0.018963 2.432417

O 2.439567 0.009926 0.002256

O -2.425433 -0.009799 -0.002390

O -0.002561 2.432410 -0.019571

H 0.781821 -0.023119 -3.027731

H -0.761432 -0.025173 -3.029835

H -0.767402 0.018242 3.027920

H 3.032665 0.783999 -0.004497

H -3.024866 0.759376 -0.008830

H -3.018561 -0.783859 0.003152

H 3.039053 -0.759189 0.010643

H -0.007260 3.034980 0.747159

H 0.019826 -3.022427 0.796015

H 0.018177 -3.035000 -0.747189

H -0.002764 3.022374 -0.796068

H 0.775813 0.029875 3.029507
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Eu-6w-C1-2:
19

Eu-6w-C1-2 B3LYP ECP52MWB TZVP

O 0.000000 0.000000 0.000000

Eu 0.000000 0.000000 2.443078

O 2.215807 0.000000 3.458060

O -2.364941 0.417003 2.125529

O -0.588237 0.418984 4.787231

O -0.494351 -2.280646 3.129662

O 0.950579 2.112022 1.537288

H -0.131182 -0.731205 -0.632482

H 0.140918 0.788957 -0.550716

H -0.592765 1.265225 5.272330

H 0.137353 -3.005498 3.297423

H 1.882116 2.296240 1.322299

H 0.484664 2.939357 1.317064

H -1.369165 -2.676423 3.299811

H 2.389841 0.001660 4.416802

H -3.058243 0.537606 2.799988

H -2.830309 0.500587 1.272940

H 3.101616 -0.001354 3.050888

H -0.872206 -0.242036 5.444019
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Eu-8w-C1-1:
19

Eu-8w-C1-1 B3LYP ECP52MWB TZVP

O -1.507129 1.506824 1.310336

Eu 0.000256 0.001440 0.002246

O 1.472281 1.496305 1.360424

O -1.516247 -1.474807 1.331995

O 1.464415 -1.484847 1.378728

O 0.033510 2.094348 -1.363532

O -2.081922 0.000572 -1.380659

O 0.011978 -2.112160 -1.331276

O 2.125800 -0.018976 -1.310981

H -1.671387 2.454016 1.175092

H -2.462377 -1.641335 1.192208

H 1.997485 -1.218047 2.145060

H 0.584137 2.883368 -1.234686

H -2.871130 0.555264 -1.272003

H -0.543013 -2.899134 -1.208826

H 2.337860 0.546418 -2.071164

H 2.911479 -0.570772 -1.167600

H -0.525458 2.287781 -2.133372

H -2.269561 -0.576496 -2.138475

H 0.594807 -2.316611 -2.080302

H 1.631144 -2.434030 1.261799

H 1.196353 2.047509 2.110523

H -2.064859 1.249536 2.062248

H -1.266332 -2.014305 2.099533

H 2.422581 1.661298 1.250200
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Heyrovský Institute of Physical Chemistry, Znojmo, Czech Republic, 2013).

129. Pantazis, D. A., Chen, X. Y., Landis, C. R. & Neese, F. J. Chem. Theory Comput. 4, 908

(2008).

130. Pantazis, D. A. & Neese, F. J. Chem. Theory Comput. 5, 2229 (2009).

131. Ahlrichs, R. & coworkers. H - Kr.

132. Gschneidner, K. A., Bünzli, J.-C. & Pecharsky, V. K. Handbook on the Physics and
Chemistry of Rare Earths: Optical Spectroscopy <http://books.google.at/books?id=

7SeUxda5ffEC> (Elsevier Science, 2011).

133. Cotton, S. Lanthanide and actinide chemistry (Wiley, England Hoboken, NJ, 2006).

134. Hatanaka, M. & Yabushita, S. An ab initio study on the f-f hypersensitive transition

intensities of lanthanide tribromide molecules. Chemical Physics Letters 504, 193–198

(2011).

135. Hazenkamp, M. F. & Blasse, G. Rare-earth ions adsorbed onto porous glass: lumines-

cence as a characterizing tool. Chemistry of Materials 2, 105–110 (1990).

136. Naleway, C. et al. An ab initio study of the ionization potentials and f–f spectroscopy

of europium atoms and ions. The Journal of Chemical Physics 116, 5481–5493 (2002).

137. Mason, S., Peacock, R. & Stewart, B. Dynamic coupling contributions to the intensity

of hypersensitive lanthanide transitions. Chemical Physics Letters 29, 149–153 (1974).

172

http://de.wikipedia.org/wiki/Drehmatrix
http://de.wikipedia.org/wiki/Drehmatrix
http://books.google.at/books?id=7SeUxda5ffEC
http://books.google.at/books?id=7SeUxda5ffEC


Bibliography

138. Mason, S. F., Peacock, R. D. & Stewart, B. Ligand-polarization contributions to the

intensity of hypersensitive trivalent lanthanide transitions. Molecular Physics 30, 1829–

1841 (1975).

139. Peacock, R. D. The charge-transfer contribution to the intensity of hypersensitive

trivalent lanthanide transitions. Molecular Physics 33, 1239–1246 (1977).

140. Peacock, R. D. The intensities of laporte forbidden transitions of the d- and f-block

transition metal ions. Journal of Molecular Structure 46, 203–227 (1978).

173


