
User Modeling and User Profiling in
Adaptive E-learning Systems

An approach for a service-based personalization solution for the
research project AdeLE (Adaptive e-Learning with Eye-Tracking)

Master’s Thesis

at

Graz University of Technology

submitted by

Christoph Fröschl

Institute for Information Systems and Computer Media (IICM)
Faculty of Computer Science

Graz University of Technology
A-8010 Graz, Austria

November 2005

c© Copyright 2005 by Christoph Fröschl

This thesis is written in English language.

Assessor: o.Univ-Prof. Dr. Dr.h.c.mult. Hermann Maurer
Supervisor: DI Victor Manuel Garcia-Barrios
Co-Supervisor: DI Dr. techn. Christian Gütl

Benutzermodellierung und
Benutzerprofile in

Adaptiven E-learning Systemen
Ein Ansatz für eine service-basierte Personalierung im Zuge des

Forschungsprojekts AdeLE (Adaptive e-Learning with Eye-Tracking)

Magister Arbeit

an der

Technischen Universität Graz

vorgelegt von

Christoph Fröschl

Institut für Informationssysteme und Computer Medien (IICM)
Fakultät für Information

Technische Universität Graz
A-8010 Graz, Österreich

November 2005

c© Copyright 2005 by Christoph Fröschl

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: o.Univ-Prof. Dr. Dr.h.c.mult. Hermann Maurer
Betreuer: DI Victor Manuel Garcia-Barrios
Mitbetreuer: DI Dr. techn. Christian Gütl

Abstract i

Abstract

It is essential for user-adaptive systems to have information about the user.
Without any information about the user the adaptive system is not able
to adapt itself to the user’s characteristics and preferences. The required
information is stored and managed in form of user models. Thus, a user
model represents the system’s beliefs about the user. The construction
and the content of user models is the main issue of this work. Further,
a possible solution for a user modeling system will be introduced and
described.

The theoretical part of this thesis addresses all necessary aspects of a
user model. This enables the investigation and examination of available
and well-founded solution approaches. Important issues in this context are
role and content of user models as well as user modeling methods, which
are utilized for the construction and administration of a user model. Fur-
ther, existing standards in the field of user modeling and their applicability
are described. Finally, existing user modeling systems are examined under
the aspects of previous findings.

The proposed solution approach of the practical part of this thesis is
based on a service-oriented architecture. Important issues of a user mod-
eling system are, among others, modularity and flexibility. The service-
oriented architecture enables the implementation of these features. Fur-
ther, issues like privacy and security as well as organization of user data are
seen as indispensable requirements concerning integrity and exploitability
of user data within user modeling systems, and are therefore included in
the proposed solution approach as well.

Several service-oriented frameworks are introduced, whereby Open-
wings was utilized within the solution approach. Regarding the design of
service-oriented systems, an answer to the questions “how big” a service
should be and “how much” functionality a service should offer is neces-
sary. A first approach to answer these questions is done by creating two
different implementations of the proposed solution. These implementa-
tions represent two extrema concerning size and functionality of services.
An evaluation followed by a comparison of the evaluation results show
advantages and drawbacks of these implementations.

i

Kurzfassung ii

Kurzfassung

Für benutzeradaptive Systeme ist es essentiell relevante Informationen
über die Benutzer zu haben. Ohne Informationen über den Benutzer ist es
unmöglich für ein adaptives System sich an die Eigenschaften und Vorlie-
ben des jeweiligen Benutzers anzupassen. Diese benötigten Informationen
werden in Form von Benutzermodellen gespeichert und verwaltet. Ein Be-
nutzermodel stellt die systeminterne Abbildung des Benutzers dar. Der
Aufbau und der Inhalt von Benutzermodellen stellt den Kernpunkt dieser
Arbeit. Weiters wird ein Lösungsansatz für ein Benutzermodellierungssy-
stem erarbeitet und vorgestellt.

Im theoretischen Teil der vorliegenden Arbeit werden alle nötigen
Aspekte eines Benutzermodels untersucht, um nach vorhandenen bzw.
etablierten Lösungsansätzen zu suchen. Wichtige Punkte stellen dabei die
Aufgabe und der Inhalt eines Benutzermodels bzw. die Methoden, die bei
der Erstellung und Verwaltung eines Benutzermodels verwendet werden,
dar. Weiters werden bestehende Standards im Bereich Benutzermodellie-
rung und deren Anwendbarkeit untersucht, um schließlich bereits beste-
hende Benuzermodellierungssysteme aus Sicht dieser Aspekte beleuchten
zu können.

Der vorgestellte Lösungsansatz im praktischen Teil dieser Arbeit ba-
siert auf einer service-orientierten Architektur, mit der es möglich ist die
für wichtig befundenen Eigenschaften eines Benutzermodellierungssystems
umzusetzen. Wichtige technische Eigenschaften sind unter anderem Mo-
dularität und Flexibilität. Weitere Anforderungen wie “Privacy/Securi-
ty” und Organisation von Benutzerdaten sind im Bereich Benutzermo-
dellierung hinsichtlich Integrität und Verwendbarkeit der Benutzerinfor-
mation von enormer Wichtigkeit, und werden ebenfalls im vorgestellten
Lösungsansatz eingearbeitet.

Als Grundlage für den Lösungsansatz werden mehrere service-
orientierte Rahmenwerke vorgestellt, wobei Openwings für den
Lösungsansatz herangezogen wurde. Bezüglich dem Design von service-
orientierten Systemen besteht der Bedarf nach einer Antwort auf die
Fragen “wie groß” ein Service sein bzw. “wie viel” Funktionalität ein
Service zur Verfügung stellen soll. Eine erste Näherung an diese Fragen
wird mittels des Entwurfs zweier Varianten des Lösungsansatzes durch-
geführt. Die beiden Varianten stellen zwei Extrema hinsichtlich Größe
und Funktionsumfang von Services dar. Eine Evaluierung und ein darauf
folgender Vergleich der Ergebnisse gibt Aufschlüsse über die Vor- und
Nachteile beider Varianten.

ii

Certification iii

Ich versichere hiermit, diese Arbeit selbständig verfaßt, andere als die angegebe-
nen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten
Hilfsmittel bedient zu haben.

I hereby certify that the work presented in this thesis is my own and that work
performed by others is appropriately cited.

Signature of the author:

iii

Contents

1 Introduction 5
1.1 Initial Situation and Motivation . 5
1.2 Structure of this Work . 7

2 Basic Principles 9
2.1 Introduction . 9
2.2 User Profiling and User Modeling . 9

2.2.1 The Difference between User Profiling and User Modeling . . . 9
2.2.2 Necessity of User Profiling and User Modeling 10

2.3 Terminology . 11
2.3.1 Adaptive, Adaptable and Personalization 11
2.3.2 E-learning . 12
2.3.3 Adaptive Systems . 12

2.4 Adaptive E-learning Systems . 13
2.4.1 Theoretical Approaches . 14
2.4.2 Types of Systems . 16

2.5 Summary . 18

3 User Modeling in Adaptive Systems 20
3.1 Introduction . 20
3.2 The Role of User Models in Adaptive Systems 20
3.3 User Models in Adaptive E-learning Systems 22

3.3.1 User Models in Macro-adaptive Systems 22
3.3.2 User Models in ITS . 23
3.3.3 User Models in AEHS . 25

3.4 Learner Modeling . 27
3.4.1 Content of a Learner Model 27
3.4.2 Components of a Learner Model 31

3.5 Modeling Techniques . 32
3.5.1 Methods to Construct Learner Models 32
3.5.2 Initialization of Learner Models 36
3.5.3 Update of Learner Models . 37

3.6 Summary . 39

4 Standards for User Modeling and Profiling 41
4.1 Introduction . 41
4.2 Basic Standards . 41

4.2.1 vCard . 41
4.2.2 eduPerson . 42
4.2.3 Universal Learning Format (ULF) 42

4.3 GESTALT . 42
4.3.1 Architecture . 43

1

CONTENTS 2

4.3.2 Data Model . 45
4.4 Public and Private Information - PAPI Learner 46

4.4.1 Common Features, Information Types and Bindings 46
4.4.2 PAPI Learner Information Groups 48
4.4.3 Public and Private Information 49
4.4.4 Summary . 50

4.5 IMS Learner Information Package . 50
4.5.1 The Structure of IMS LIP . 51
4.5.2 XML Schema . 53
4.5.3 Data Protection . 56
4.5.4 Implementations . 57
4.5.5 Summary . 57

4.6 Summary and Conclusion . 58

5 State of the Art of User Modeling Systems 59
5.1 Introduction . 59
5.2 Early User Modeling Systems . 59

5.2.1 GUMS . 60
5.3 User Modeling Shell Systems . 62

5.3.1 UMT . 62
5.3.2 PROTUM . 63
5.3.3 um . 63
5.3.4 BGP-MS . 63

5.4 User Modeling Servers . 66
5.4.1 Doppelgänger . 66
5.4.2 Personis . 68
5.4.3 LDAP-based User Modeling Server 70
5.4.4 Web Service and Agent-based User Modeling System 72

5.5 Summary and Conclusion . 74

6 Basic Reflections for the Solution Approach 77
6.1 Introduction . 77
6.2 Service-oriented Architecture . 77

6.2.1 Web Services . 79
6.2.2 Service-oriented Frameworks 81
6.2.3 Service-oriented Software Design 84

6.3 Privacy and Security in User Modeling 85
6.3.1 Privacy . 85
6.3.2 Security . 87
6.3.3 Privacy Technologies . 87

6.4 Levels of Profiling the Learner . 88
6.4.1 Organizing the Learner Profile 88
6.4.2 Partitioning the Learner Model 89

6.5 Summary and Conclusion . 90

2

CONTENTS 3

7 The Openwings Framework 92
7.1 Introduction . 92
7.2 Overview of Openwings . 92

7.2.1 Openwings Core Services . 93
7.2.2 Contexts in Openwings . 97
7.2.3 Interfaces . 97

7.3 Components in Openwings . 99
7.3.1 Parts of Openwings Components 99
7.3.2 The different Types of Components 100
7.3.3 Lifecycle of Components . 101
7.3.4 Relations between Components 102

7.4 Software Development with Openwings 103
7.4.1 Creation and Intializiation of Service Objects 103
7.4.2 Usage of Service Objects . 104
7.4.3 Policy Concept . 105
7.4.4 Connectors . 107
7.4.5 Installable Component Descriptors 107
7.4.6 Summarization . 110

7.5 Security in Openwings . 110
7.5.1 Code Security . 110
7.5.2 Transport Security . 111
7.5.3 Service Security . 111

7.6 Conclusion . 112

8 Design and Implementation of the Modeling System 114
8.1 Introduction . 114
8.2 Software Requirements of the Modeling System 114

8.2.1 Functional Requirements . 115
8.2.2 Non-Functional Requirements 116

8.3 Architectural Design and Use Cases 117
8.3.1 Use Cases for the Modeling System 119

8.4 Macro-approach . 120
8.4.1 Functional Components . 120
8.4.2 Implementation of selected Aspects 124

8.5 Micro-approach . 126
8.5.1 Functional Components . 126
8.5.2 Implementation of selected Aspects 130

8.6 Evaluation of the Approaches . 132
8.6.1 User Scenarios . 132
8.6.2 Evaluation Criteria . 134
8.6.3 Evaluation Setup . 136
8.6.4 Evaluation Results . 137

8.7 Summary . 142

9 Summary and Outlook 143

3

CONTENTS 4

A Additional UML Diagrams 146

B Screen shots 154

List of Figures 156

List of Tables 158

Listings 159

Bibliography 160

4

1. Introduction

1.1 Initial Situation and Motivation

The research project Adaptive e-Learning with Eye-Tracking (AdeLE1) is a joint
scientific work of the FH Joanneum/Department of Information Design2 and the
Institute for Information Systems and Computer Media (IICM3) of the Graz Uni-
versity of Technology. AdeLE focuses on the enhancement of e-learning technologies
for the purpose of improving personalization of instruction and learning content.
Furthermore, an additional objective is to combine the advantages of utilizing a
real-time eye-tracking system and a dynamic background library for the computa-
tion of personalization procedures and for the enhancement of knowledge transfer
processes.

The eye-tracking system is used to record the behavior of the user in form of
information about his gaze-movements. This information is stored in the user model
and used to derive the actually consumed learning units. Figure 1.1 shows the
architecture of the AdeLE system.

Figure 1.1: Architecture of the AdeLE system [Gütl and Garcia-Barrios 2005]

1http://adele.fh-joanneum.at/
2http://informations-design.fh-joanneum.at/
3http://www.iicm.edu

5

http://adele.fh-joanneum.at/
http://informations-design.fh-joanneum.at/
http://www.iicm.edu

1.1 Initial Situation and Motivation 6

The AdeLE architecture is built up of strong separated client-side and server-
side systems. The client-side consists of three systems, namely a real-time Content-
Tracking System (CS), a real-time Eye-Tracking System (ES) and a Web Client
(WC). The Web Client (WC) provides content, control and navigation elements.
The real-time Eye-Tracking System (ES) monitors eye movements and delivers this
behavior data to the Modeling System (MS) on the server-side. The information
from the ES is linked with the CS to produce information about learning assets.
The server-side of the AdeLE architecture consists of the Modeling System (MS),
the Adaptive System (AS) and the LMS. The LMS compiles the learning content
from the learning object repository and provides the control and navigation interface.
The AS is responsible for the adaptation of the learning content, the navigation and
the visualization. This adaptation is based on information from the MS. The main
MS tasks are to handle user information received from the ET, CT and the AS and
to generate assumptions about the user. Assumptions about the user are based on
the stored data in the MS. [Gütl and Garcia-Barrios 2005]

The aim of this thesis is to design and implement a prototype of the Modeling
System based on the main requirements for the architecture of the AdeLE System,
as illustrated in Figure 1.1 (see [Gütl and Garcia-Barrios 2005] for details).

Although the concept of user modeling has a long history, the term user model
itself was introduced in the 1980es. Previously approaches to adaptive systems
applied user models in form of integrated units, where the user model itself was not
self-contained but distributed within the whole adaptive system. During the last
decade user-centered applications (e.g. recommender systems) have become very
popular and made the application of sophisticated user models reasonable for the
new “e-business lifestyle”.

The challenge regarding the creation of user modeling systems is their multi-
purpose utilization. The goal of a multi-purpose user modeling system is to satisfy
the needs for several different application areas. In most cases, the user modeling
systems are designed and implemented for a specific application field (e.g. e-learning)
but the proposed user modeling system in this thesis should be versatile.

Further, a user modeling system must provide techniques to derive the recorded
information and conclude a model for a particular user. This implies a well-
structured arrangement of the user data and of the inference processes. Additionally,
it is necessary to determine the required user data for the inference processes. It
does not make sense to record information about a user which has no use, although
nearly every piece of information helps to describe the model of the user. Storage, ex-
traction and throughput issues limit the amount of recordable user information and
makes a constriction of the user modeling system necessary. In this case, standards
may help to structure the user data and determine the essential user information.

There exist numerous approaches for user modeling systems with different focuses
and purposes. An examination of these systems should help to find the appropriate
design for the proposed user modeling system. Special issues of the proposed solution
are the service-oriented architecture, privacy and security matters as well as the
structuring of the gathered user information.

Another relevant aspect for user modeling systems is their expandability. The

6

1.2 Structure of this Work 7

expandability is necessary to provide the optimal user modeling system for each
application. Reconfiguring and adding modeling components to the system are
essential abilities to provide an expandable user modeler. The consequences of the
applied service-based architecture regarding expandability should be addressed.

The described aspects in this section and further specific issues as well as their
influence on the technical solution should be examined.

1.2 Structure of this Work

Basically, this thesis is divided into a theoretical part, including the Chapters 2 - 5
and a practical part in Chapters 6 - 8. The theoretical part constitutes the analytical
fundament to examine and describe required knowledge and aspects in the field of
adaptive e-learning, while the practical work is based on this knowledge and ends
with the proposed solution in Chapter 8.

Chapter 2 Basic Principles introduces basic principles like the terminology and
the idea behind adaptive e-learning systems. The definition of the terminology for
this work is required, since there are several different meanings used in literature for
the same word. By listing different approaches and systems types, Chapter 2 gives
an introduction into the fundamentals of adaptive e-learning systems.

Using the finding of Chapter 2 that personalized systems require a representation
about the user in form of a user model, the Chapter 3 User Modeling in Adaptive
Systems describes the utilization of user models in adaptive systems. Concerning
adaptive e-learning systems, the users are students or learners. Therefore, the con-
tent and the structure of learner models are described. In order to apply a user
model it is necessary to construct, initialize and keep the user model up-to-date.
For each of these steps exist modeling techniques which are depicted at the end of
Chapter 2.

There is no real definition of which content should be stored within a user model,
therefore Chapter 4 Standards for User Modeling and Profiling describes present
standards in this field focusing on structure, content, privacy precautions and im-
plementations.

The last chapter of the theoretical part - Chapter 5 State of the Art - covers
the state-of-the-art concerning user modeling systems. Basically, there exist numer-
ous user modeling systems which can be grouped into shell systems and modeling
servers. These systems are described by emphasizing their application focus and
their architecture.

Additional issues, which are not covered by the theoretical part of this work, but
are important for the proposed solution, are described in Chapter 6 Basic Reflections
for the Solution Approach. Technical subjects, like service-oriented architecture and
privacy/security methods are depicted as well. These reflections are needed for the
solution approach of Chapter 8.

The proposed solution approach of Chapter 8 is based on a service-oriented
framework called Openwings, which is described in Chapter 7 The Openwings Frame-
work. Especially interesting aspects like security and communication are examined

7

1.2 Structure of this Work 8

concerning the utilization of Openwings for the development of a user modeling
system.

Chapter 8 Design and Implementation of the Modeling System describes the
software design and the implementation process of the solution approach. Two
different approaches are depicted based on different design assumptions, namely
the micro- and the macro-approach. The micro-approach follows the guideline of
wrapping each component into a single services, while the macro-approach combines
several components into one service. An evaluation and comparison of these two
solution approaches should allow to discover the advantages and drawbacks of both
approaches regarding important aspects in the field of user modeling systems.

8

2. Basic Principles

2.1 Introduction

Adaptive e-learning systems often employ models of the user. A user model is an
internal representation of the user’s properties. Before a user model can be used
it has to be constructed. This process requires much efforts to gather the required
information and finally generate a model of the user. User modeling is depicted in
detail in Chapter 3. The aim of this chapter is to introduces basic principles like
the terminology and the idea behind adaptive e-learning systems.

The difference between the terms user profiling and user modeling as well as
the need for user models within adaptive systems is depicted in Section 2.2. Subse-
quently, the meaning of relevant terms is explained in Section 2.3 as they are used
within this thesis. Finally, an overview over theoretical approaches and different
types of adaptive e-learning systems is given in Section 2.4.

2.2 User Profiling and User Modeling

The terms user profiling and user modeling are often used as synonyms or only
one term is used by meaning of both. To be able to clearly differentiate between a
user profile and a user model the following sub-section is dedicated to describe this
terminology. Reasons for constructing and using a profile or a model of the user and
their applications are described in Section 2.2.2.

2.2.1 The Difference between User Profiling and User Mod-
eling

The difference between user profiling and user modeling lies in the different level of
sophistication. [Koch 2000] describes a user profile as a simple user model.

A user profile is a collection of personal information. The information is stored
without adding further description or interpreting this information. It is comparable
to a getting-setting mechanism of classes in object-oriented programming, where
different parameters are set or retrieved. User profiles represent cognitive skills,
intellectual abilities, intentions, learning styles, preferences and interactions with
the system. These properties are stored after assigning them values. These values
may be final or change over time.

Depending on the content and the amount of information about the user, which
is stored in the user profile, a user can be modeled. Thus, the user profile is used
to retrieve the needed information to build up a model of the user. [Koch 2000]

describes a user model as the representation of the system’s beliefs about the user.
The “real world” user is perceived by the system through the human computer
interface (see Figure 2.1).

The model of the user is based on this information and is therefore only a small

9

2.2 User Profiling and User Modeling 10

Figure 2.1: User and User Model [Kay 2000b]

part of the real user. Nevertheless, the user model must represent the needed char-
acteristics of the user regarding the context of the application.

2.2.2 Necessity of User Profiling and User Modeling

The behavior of an adaptive system varies according to the data from the user
model and the user profile. Without knowing anything about the user, a system
would perform in exactly the same way for all users. [Koch 2000] describes the
application of user models as follows:

“Users are different: they have different background, different knowledge
about a subject, different preferences, goals and interests. To individu-
alise, personalise or customise actions a user model is needed that allows
for selection of individualised responses to the user.”

Therefore, everywhere where an individualized response of the system is expected,
a user model should be applied.

Different types of applications can benefit from user models. User models are
often components of adaptive e-learning systems and are strongly connected to the
instructional part of such systems. Other applications of user modeling are for
example, search engines, recommender systems or help systems.

Further, not only the attributes of a user (e.g. domain knowledge, preferences,
goals, etc.) but also limitations (e.g. disabilities like color blindness etc.) to the
user’s perception must be considered within a user model. If these limitations have
to be violated it is important to know the least disturbing options.

In the field of adaptive e-learning there are a lot of different terms used while the
meaning of these terms is not clearly defined. The following section aims to clarify
this problem and defines the terminology used within this thesis.

10

2.3 Terminology 11

2.3 Terminology

In this section the terminology used in this diploma thesis is introduced. Terms
like adaptive, personalization, e-learning and adaptive systems are described in their
meaning. This is necessary since a lot of different interpretations for theses terms
are used in literature.

2.3.1 Adaptive, Adaptable and Personalization

According to the [Oxford Advanced Learner’s Dictionary 2005], the term adaptive
is defined as:

“adaptive adj.: (technical) concerned with changing; able to change
when necessary in order to deal with different situations”

So adaptive is a property, which defines the ability to change, to suit different
conditions. In other words, something is adaptive, if it is able to change itself or
something else, to fit to several circumstances.

In the context of e-learning systems we can distinguish, according to [Oppermann
et al. 1997], between two different types of adjustment. First, we have adaptable
systems, which refer to the property of changing system parameters. The user is
able to change the behavior of the system. In other words, the user is able to modify
the system in specified ways to fit the users needs.

Second, the term adaptive means the automatic tailoring of the system to the
user. The needs of the user are assumed by the system itself. The user is not asked
to change system parameters to its own needs, rather the necessities of the user
are supposed by the system. The system changes its behavior according to this
necessities. [Oppermann et al. 1997]

[Weibelzahl 2003] demands also another feature. Adaptive systems obtain infor-
mation about the user from observing the user.

In e-learning systems, both terms adaptable and adaptive can be used following
the above stated definitions.

Personalization can be provided by tailoring the content or the visualization of
the system to the user’s preferences. According to [Weibelzahl 2003], the term per-
sonalization represents the terms adaptivity and adaptability as synonyms. Thus,
both types of systems, adaptive and adaptable system, can be summarized as per-
sonalized systems.

According to [Kim 2002], there are at least two distinct origins of the term per-
sonalization. Firstly, dealing with the huge amount of information available today,
it is necessary to gather and deliver only the information that is relevant to an in-
dividual or a group of individuals in the format and layout specified and in time
intervals specified by the user. The second application of the term personalization
is the concept of one-to-one marketing in which a business does marketing tailored
to a group of individual customers. This kind of personalization is motivated by a
rise of the revenue of the business. The customer benefits through receiving useful

11

2.3 Terminology 12

and timely recommendations for purchasing goods or services in the most favorable
terms.

Considering the topic of e-learning it is also necessary to deliver relevant infor-
mation for the learner. Here, relevant information is the learning content, which is
taught during instruction decreased by the already existing domain knowledge of
the individual learner.

2.3.2 E-learning

The term e-learning originates from electronic learning and is often used as an-
other term for web-based learning, online learning or distance learning. However,
there are differences in the meaning of these terms. Thus, they cannot be used as
interchangeable synonyms.

There are still discussion about the definition of the term e-learning. [Dietinger
2003] states that e-learning represents just one part of the learning process. It has to
be completed by e-teaching while the overall process is called e-education. However,
the common meaning of e-learning includes the overall process as well and within
this thesis only the term e-learning is used.

According to [Tsai and Machado 2002], e-learning is defined as follows:

“E-learning is mostly associated with activities involving computers and
interactive networks simultaneously. The computer does not need to be
the central element of the activity or provide learning content. However,
the computer and the network must hold a significant involvement in the
learning activity.”

As the quotation mentions, e-learning implies the usage of computers for learning
purposes. Concerning web-based learning, which is restricted to deliver the content
over the World Wide Web (WWW), e-learning does not specify the transmission
method. Online learning is connected to available learning materials in a computer
environment, while not demanding a network. Distance learning is the “oldest”
term and does not require the use of computers or networks. Distance learning
includes the interaction between learners or students within a class over a distance
for example, receiving the course materials by mail and learning at home. [Tsai and
Machado 2002]

This work is located in the field of e-learning. Thus, only this term is used.

2.3.3 Adaptive Systems

An adaptive system adapts itself or another system to various circumstances. The
process of adaptation is based on user’s goals and preferences. These properties of
the user are stored in a user model. The user model is hold by the system and
provides information about the user like for example, knowledge, goals, etc. A user
model gives the possibility to distinguish between users and provides the system with
the ability to tailor its reaction depending on the model of the user. [Brusilovsky
and Maybury 2002]

12

2.4 Adaptive E-learning Systems 13

In the context of e-learning, adaptive systems are more specialized and focus on
the adaptation of learning content and the presentation of this content. According
to [Mödritscher et al. 2004], an adaptive system focuses on how the knowledge is
learned by the student and pays attention to learning activities, cognitive structures
and the context of the learning material.

In Figure 2.2, the structure of an adaptive system, according to [Brusilovsky and
Maybury 2002], is shown. The system intervenes at three stages during the process
of adaptation. It controls the process of collecting data about the user, the process
of building up the user model (user modeling) and during the adaptation process.

Figure 2.2: The Structure of an Adaptive System [Brusilovsky and Maybury 2002]

Beside this structure of an adaptive system, there exist several other models.
[Weibelzahl 2003] lists the Benyon and Murray’s model, the Oppermann’s model
and the Jameson’s model.

An adaptive system for e-learning is called an adaptive e-learning system. This
restricts the purpose of an adaptive system to the field of e-learning.

An adaptive e-learning system is described, according to [Stoyanov and Kirschner
2004], as follows:

“An adaptive e-learning system is an interactive system that personal-
izes and adapts e-learning content, pedagogical models, and interactions
between participants in the environment to meet the individual needs and
preferences of users if and when they arise.”

Thus, an adaptive e-learning system takes all properties of adaptive systems. To
fit the needs for the application in the field of e-learning, adaptive e-learning systems
adapt the learning material by using user models.

In the following section adaptive e-learning systems are described in more detail.

2.4 Adaptive E-learning Systems

As already depicted in Section 2.2.2, particular information about the user is needed
to change the behavior of the system in order to satisfy the needs of that user. In

13

2.4 Adaptive E-learning Systems 14

adaptive systems this information is stored in a profile or in a model of the user.
Hence, a detailed user profile or a user model is needed to enable adaptivity of the
system.

In the context of e-learning, the adaptation of instruction is affected. Instruction
is the the form how learner are educated. There exist several possibilities how
the instruction is adapted. In the following section (Sub-section 2.4.1), the four
main theoretical approaches are described, namely the macro-adaptive approach,
the aptitude-treatment interaction approach, the micro-adaptive approach and the
constructivistic-collaborative approach. Different types of systems, with its relation
to these theoretical approaches are described in Sub-section 2.4.2.

2.4.1 Theoretical Approaches

Theoretical approaches describe the different possibilities of adaptive instruction.
Since adaptive instruction has a history of more than 100 years, the approaches are
listed in chronological order beginning with the oldest approach.

These approaches are applied by the different types of adaptive e-learning sys-
tems, which are introduced in Sub-section 2.4.2.

Macro-adaptive Approach

Early attempts to personalize instruction to learners took place on the so-called
macro-level. The students were grouped or classified by grades. This grouping
resulted in a homogeneous evaluation of the learners and had minimal effects an the
adaptation because the groups received different instructions very seldom. To better
accommodate different student abilities, the macro-adaptive approach was invented
in the early twentieth century, where the adaptation of instruction is concerned on
a macro-level as well. Within the macro-adaptive approach, alternative instructions
are computed, based on a few main components such as learning objectives, levels
of detail and delivery system. The selection of the appropriate instruction is mostly
based on the student’s instructional goals, general abilities and achievement levels
in the curriculum structure. [Park and Lee 2003]

According to [Corno and Snow 1986], the selection of instructions (i.e., activities)
depends on learning objectives such as compensate students’ weaknesses or devel-
oping new skills and student aptitudes. These aptitudes are categorized into three
types, namely intellectual abilities and prior achievement, cognitive and learning
styles and academic motivation and personality.

Aptitude-treatment Interaction Approach

The aptitude-treatment interaction (ATI) approach adapts instructional strategies
to students aptitudes. This strategy recommends different types of instructions
for students with different characteristics. [Mödritscher et al. 2004] lists the most
important characteristics as intellectual abilities, cognitive styles, learning styles,
prior knowledge, anxiety, achievement motivation, and self-efficiency.

14

2.4 Adaptive E-learning Systems 15

ATI further offers the user full or partial control over the learning process. The
user is able to control the style of the instruction or the way through the course.
Three levels of control are defined, complete independence, partial control within a
given task scenario and fixed tasks with control of pace. Studies have shown that
the learner’s aptitudes influence the learning result when offering different levels
of control of the instruction to the learner. For example, students with low prior
domain knowledge get better results if this control is limited. [Corno and Snow
1986]

Micro-adaptive Approach

Learning needs during instruction are used by the micro-adaptive approach to adapt
the instruction. Theses needs are examined and an appropriate prescription is gen-
erated. Compared to the pretask measurements of the macro-adaptive and the ATI
approach, the micro-adaptive approach is rather based on on-task measurements.
The student behavior and performance are observed by measuring e.g., response
errors, response latencies and emotional states.

The first model for the micro adaptive approach is the idea of programmed in-
structions and was originally applied by Pressey in the year 1926. Through the usage
of technology, a number of different micro-adaptive instructional models have been
developed. These models differ from the programmed instruction idea by applying a
specific model or learning theory. [Park and Lee 2003] lists following existing mod-
els: the mathematical model, the trajectory model, the Bayesian probability model
and the structural and algorithmic approach.

According to [Mödritscher et al. 2004], in case of the micro-adaptive approach
adaptive e-learning is separated in two main processes, the diagnostic process and the
prescriptive process. The first step (the diagnostic process) is used to characterize
the learner by identifying the aptitudes or the prior knowledge and to formulate the
task. Secondly, the interaction between the learner and the task is optimized by
adapting the learning content to the students aptitudes and actual performance.

Constructivistic-collaborative Approach

The constructivistic pedagogical approach focuses on how an e-learning system can
be integrated into the learning process. The learner takes an active role in the
process of learning, where the knowledge is constructed by experiences in the specific
knowledge domain according to the constructivistic learning theory.

Another major part of this approach is the employment of collaborative technolo-
gies, where the pedagogical approach of collaborative learning activities is integrated.
Five characteristics of effective collaborative learning are identified by [Soller 2001],
namely participation, social behavior, performance analysis, group processing and
conversation skills and primitive interaction. To enable a learning success through
collaborative technologies, these five characteristic should be available to the learner.

15

2.4 Adaptive E-learning Systems 16

2.4.2 Types of Systems

This section describes types of systems with the help of the theoretical approaches
introduced in Sub-section 2.4.1. Starting with macro-adaptive systems, intelligent
tutoring systems and adaptive hypermedia system are presented.

Macro-adaptive Instructional Systems

As already mentioned in Sub-section 2.4.1, the macro-adaptive is the oldest approach
where students were simply tracked by grades of ability tests. Macro-adaptive in-
structional systems where developed to tailor the instruction to the learner’s abili-
ties. [Park and Lee 2003] mentions the Burke plan, Dalton plan and Winnetka plan
as early systems applying the macro-adaptive approach. Within these systems the
students were able to go through the learning material at their own pace.

In 1963, the Keller plan was developed at the Columbia University. The Keller
plan is a macro-adaptive system where the instructional process was personalized
for each student [Mödritscher et al. 2004]. It was the first macro-adaptive system
used at many colleges and universities all over the world. Until around 1985 several
other macro-adaptive instructional systems were developed.

The examples macro-adaptive instructional systems given so far should demon-
strate the history of adaptive e-learning and its application. These systems were
applied in many schools and universities by providing only weak adaptation.

Computer-managed Instructional Systems (CMI)

An exceptional position take the Computer-managed Instructional Systems (CMI).
CMI systems provide many macro-adaptive instructional features offering the in-
structor possibilities to monitor and control the learning activities of the student.
Further, CMI systems integrate features of micro-adaptive models (e.g., prediction
of student learning needs). This makes CMI systems more effective concerning
adaptive e-learning compared to pure macro-adaptive systems. [Park and Lee 2003]

Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) are adaptive instructional systems applying arti-
ficial intelligence (AI) techniques. The goal of ITS is to provide the benefits of one-
on-one instruction automatically and cost effectively [Shute and Psotka 1996]. As
in other instructional systems, ITS consist of components representing the learning
content, teaching and instructional strategies as well as mechanisms to understand
what the student does or does not know. In ITS these components are arranged into
the expertise module, the student-modeling module, the tutoring module and a user
interface module (see Figure 2.3) [Brusilovsky 1994]. The expertise module evaluates
the performance of the student and generates instructional content. The student-
modeling module represents the user’s current knowledge and estimates his reasoning
strategies and conceptions. This information is used by the ITS to determine, how
the teaching process should continue. The tutoring module holds information for
the selection of instructional material. This information describes how this material

16

2.4 Adaptive E-learning Systems 17

should be presented and when. The user interface module is the communication
component that controls interaction between the student and the system.

Figure 2.3: Components of an ITS [Brusilovsky 1994]

ITS apply the micro-adaptive model since the decision about learning diagnosis
and instructional prescriptions are generated during the task. Further, the combi-
nation with aptitude variables allows the expertise module to generate conditions
for instructions based on the learner’s characteristics. [Mödritscher et al. 2004]

A variety of AI techniques are used to represent the learning and teaching process.
For example, some ITS systems capture topic related expertise in rules. This en-
ables the ITS to generate problems on the fly, combine and apply rules to solve the
problems, assess each learner’s understanding by comparing the software’s reasoning
with them, and demonstrate the software’s solutions to the participants. The de-
velopment of an expert system that provides comprehensive coverage of the subject
material remains the major problem for ITS.

Adaptive Hypermedia Systems

The development of Adaptive Hypermedia Systems (AHS) can be traced back to
the early 1990s. The hypermedia model was extended by utilizing user models.
AHS are inspired by ITS and try to combine adaptive instructional systems and
hypermedia-based systems. [Brusilovsky 1996] describes the definition of AHS as
follows:

“By adaptive hypermedia systems we mean all hypertext and hypermedia
systems which reflect some features of the user in the user model and
apply this model to adapt various visible aspects of the system to the
user.”

Thus, three criteria are satisfied by AHS. First, the system is based on hypertext or
hypermedia. Second, a user model is applied and third, the system is able to adapt
the hypermedia by using this user model. So far, AHS have been used in educational
systems, e-commerce applications, information systems and help systems.

[Brusilovsky 2001] distinguishes between two different types of AHS regarding
adaptation methods. The first group, which deals with adaptive presentation, pro-
vides an adaptation of the content, that can be presented in different ways or orders.

17

2.5 Summary 18

The content can be adapted to various details, difficulty, and media usage to satisfy
users with different needs, background knowledge, interaction style and cognitive
characteristics. Adaptation of the navigation is provided by the so called adaptive
navigation support group. It can be implemented as direct guidance, adaptive hid-
ing or re-ordering of links, link annotation, map adaptation, link disabling and link
removal. [Kinshuk and Lin 2003]

The introduction of hypermedia and the Web has had a great impact on adaptive
instructional systems but there are some limitations of AHS. According to [Park and
Lee 2003], there was little empirical evidence for the effectiveness of AHS. [De Bra
2000] states, that if prerequisite relationships are omitted or are just wrong, the user
may be directed to pages that cannot be understood by him because of necessary
prior knowledge in this domain. Another drawback is that the same page might look
different if this page is visited again. When the document is adapted to a developing
user model, each time a user visits a particular page again, it may look different.
This can cause confusion and loss of orientation for the user.

[De Bra 2000] concludes, that AHS has the potential to provide the users with
freedom regarding the navigation through the instruction. Further the users can
ensure that the presented learning material is relevant and can be understood by
him.

Adaptive Educational Hypermedia Systems

A subtype of AHS are the adaptive educational hypermedia systems (AEHS). As
implied in the name, AEHS are applied in the context of education. This type of
systems is based on the AHS. The hyperspace of AEHS is kept very small since the
documents are related to a specific topic. The focus of the user modeling is on the
domain knowledge of the learner. [Brusilovsky 1996]

According to [Henze and Nejdl 2003], an AEHS consists of a document space,
a user model, observations and an adaptation component. The document space be-
longs to the hypermedia system and is enriched with associated information (for
example annotations, domain graphs or knowledge graphs). The user model stores,
describes and infers information, knowledge and preferences about a user. Observa-
tions represent the information about the interaction between user and AEHS. These
observations are used for updating the user model. Rules for adaptive functionality
(if for example a document should be suggested for learning or to generate learning
paths) and adaptive treatment (arrange links to further documents depending on
the needs of a particular user) are provided by the adaptation component.

2.5 Summary

To be able to react in the way expected by the user, a system needs to have an
idea about the user’s expectations and preferences. To provide a system with this
information, at least a user profile is needed to gather this “raw data”. To answer to
more particular questions, the system needs the raw data stored within a user profile
is not enough. The user has to be modeled in more detail. This task is accomplished

18

2.5 Summary 19

by a user model. A user model stores semantically enriched information about the
user, restricted to clearly defined areas and domains. For example, a user model
provides information about the user’s learning styles, educational curriculum, history
of interactions with the system and the domain knowledge. This allows adaptive
e-learning systems to adapt the learning content to a specific user.

Concerning adaptive e-learning systems, they are classified by referring to the
used theoretical approach or by the type of system. This section distinguishes
between four theoretical approaches, namely macro-adaptive approach, aptitude-
treatment interaction approach, micro-adaptive approach and the constructivistic-
collaboration approach. The macro-adaptive approach is the oldest and can be
traced back to the early 1900s. Providing adaptation only at a macro-level, the
instruction is not very different for different learners. Aptitudes of the learner are
considered by the aptitude-treatment interaction approach. The learner’s character-
istics define the type of instruction for a particular learner. Needs of the learner are
used to adapt the instruction by the micro-adaptive approach. These needs are iden-
tified during the task by on-task measurements. The constructivistic-collaboration
approach applies the topical constructivistic pedagogical approach combined with
the advantages of collaborative learning.

The second classification is done by considering three types of the adaptive e-
learning systems. First, macro-adaptive instructional systems, which were popular
in the 60s until the early 80s. Second, ITS apply the micro-adaptive approach in
combination with the aptitude-treatment interaction approach and utilize AI tech-
niques to represent the learning and teaching process. The newest type of adaptive
e-learning systems are the AHS which were invented in the early 1990s. AHS were
inspired by ITS and try to combine adaptive instructional systems with hypermedia-
based systems. They provide two types of adaptation: the content-level adaptation
and the link-level adaptation. At content-level the presentation of the learning ma-
terial is adapted to the needs stored within the user model. Hypermedia systems
make it possible to navigate through documents by following links. This property is
used by AHS and AEHS where these links are adapted (e.g. hide, reorder or delete
links).

Every personalized system including adaptive e-learning systems base their adap-
tation processes on user models. In the following Chapter 3, user models are depicted
in more detail.

19

3. User Modeling in Adaptive Systems

3.1 Introduction

In general, the adaptation process can be described by three stages: retrieving the
information about the user, processing the information to initialize and update a
user model, and using the user model to provide the adaptation. Beside the stated
difference between a user model and a user profile in Section 2.2.1, within this
chapter only the term user model is used because user profiling is simply seen as the
process of collecting raw data about the user. The literature related to the topic of
this chapter uses the terms user profile and user model often as synonyms.

In the process of adaptation there can be distinguished between two different
personas. At first the learner or student with its goal to acquire knowledge and
second the teacher. The goal of a teacher is to mediate the covered knowledge of
a course to the learners. Therefore, both points of view must be present in an
e-learning system.

The user model is an essential component in adaptive e-learning systems. The
adaptation of an e-learning system mainly involves choosing and presenting each
successive teaching activity as a function of entire scope of learner’s knowledge of
the subject being taught and other relevant features of the learner, which are in turn
maintained in a learner model. Therefore, the learner model is used to modify the
interaction between system and student to suit the needs of individual students.

This chapter, at first describes the role of user modeling within adaptive systems
in general (see Section 3.2). To focus on adaptive e-learning systems, the different
types of user models and their usage in adaptive e-learning systems are introduced in
Section 3.3. These two sections give an introduction into the topic of user modeling
within adaptive systems.

Focusing on learner modeling, Section 3.4 depicts different approaches of learner
models followed by a description of available modeling techniques to build up these
models (see Section 3.5). At the end of this chapter, a summarization is given (see
Section 3.6).

3.2 The Role of User Models in Adaptive Systems

As already stated in Section 2.1, user modeling takes a lot of efforts. This section
describes the role of a user model within an adaptive system. According to [Kay
2000b], there are three main ways a user model can assist in adaptation. These
are shown in Figure 3.1 indicated by arrows. Between the small rectangles the
interaction between the user and the system is delimited.

The interpret user actions arrow represents user actions at the interface. This
arrow covers all possible actions, which are available through the user interface,
such as mouse actions, typing at the keyboard and audio/video input. A user model
can support the system in interpreting this information. The figure mentions the
example when the user input is ambiguous. In this case, the user model might

20

3.2 The Role of User Models in Adaptive Systems 21

Figure 3.1: Role of the User Model in Adaptation [Kay 2000b]

support or even enable the system to clarify the user input. Further, the user model
can help the system to interpret incorrect user actions. [Kay 2000b] lists applications
in fields like natural language understanding, command line interpreters, spelling
errors by dyslexic users or typing problems by users with motor difficulties.

The machine actions arrow represents the actions initiated by the system. A
user model can be utilized to control and modify these actions to the preferences of
the user. This method includes tailoring the system’s behavior and look to the user
or adaptation of the content as well as the presentation of the content. For example,
e-learning systems may adapt their actions to the user’s domain knowledge with
simpler information for students with less knowledge and more difficult material for
students with more knowledge. Adaptive hypermedia systems, which are described
in Section 2.4.2, focus on the adaptation of navigation and content considering the
preferences and domain knowledge stored in the user model.

The third utilization of a user model for adaptation takes place inside the system.
The user model supports the system during internal actions. Often, internal actions
are filtering processes where the received information is sieved.

A combination of these action is often used for adaptive systems. For example,
an e-learning system monitors the attempts of the user to solve a given task by using
the user model to interpret the user actions. The system might then perform some
internal actions to select the best suitable instruction. These internal actions are
influenced by the user model, especially by the user’s knowledge and learning pref-
erences. After this internal process, the system generates an action at the interface.
The form of the presentation of this action is affected also by the user model. [Kay
2000b]

[Koch 2000] lists seven purposes of a user model:

• Assist a user during learning of a given topic.

• Offer information adjusted to the user.

• Adapt the interface to the user.

21

3.3 User Models in Adaptive E-learning Systems 22

• Help a user to find information.

• Give the user feedback about his knowledge.

• Support collaborative work.

• Give assistance in the use of the system.

These purposes are quite user centered and do not explicitly explain the points where
the user model influences the system. However, these purposes can be fulfilled by
the three possible ways, a user model can influence the adaptations, which have been
previously described.

This section described the usage of user models in general adaptive systems. In
the following section, the different types of applied user models in adaptive systems
are depicted.

3.3 User Models in Adaptive E-learning Systems

User models can be used in very different ways, regarding what is seen as a user of the
system. Since there exist different types of adaptive e-learning systems, the applied
user models are different. These user models and their usage within the system
are described within this section by examining macro adaptive systems, intelligent
tutoring systems and adaptive educational hypermedia systems (see Sub-section
3.3.1 - 3.3.3).

In many systems, the user model is not explicitly described as a simple functional
module. It can be spread over several components of the system. Thus, it is not
clearly visible what is connected to the user model. This fact is considered in
the following section. Therefore a user model might not be available as an extra
component but properties, which are connected to a user model, are assigned to the
term user model.

3.3.1 User Models in Macro-adaptive Systems

In macro-adaptive systems (see Sub-section 2.4.2), the adaptation of instructions is
processed on a macro-level of personalization. Instructional decisions are based on
learner traits gathered from self-reports, questionnaires and pretests. For macro-
adaptive systems it is not necessary to know the domain knowledge during the
instruction. The instructional objectives are determined for each student based on
his academical profile, previous achievements, and other aptitude and motivation
data. The gained knowledge is generated by comparing the results from the pretest
and the test after the course. [Park and Lee 2003]

To accommodate different learning abilities and styles of a student, the necessary
guidance for each student is determined and alternative instructional materials are
selected. The used user models for the learners are not affected or updated during
instruction. No activities or occurred problems are stored.

22

3.3 User Models in Adaptive E-learning Systems 23

3.3.2 User Models in ITS

An ITS consists, as described in Sub-section 2.4.2, of basically four components (see
Figure 3.2). Three of these four components contain a specific user model, namely
the expertise module, the student module and the tutoring module. The expertise
module contains an expert model, the student module contains a student model and
the tutoring module contains a pedagogical model or tutor model.

Figure 3.2: Components of an ITS [Brusilovsky 1994]

The expert model embeds the necessary knowledge about the domain to provide
adaptive feedback, answers to questions and support in problem solving. The sys-
tem’s belief about the learner’s knowledge is represented by the student model. Fur-
ther, the student model may include characteristics and preferences of the learner.
The pedagogical model contains rules, which allow the system to teach like a tutor.
These rules take properties of the student stored in the student model and use the
expert model to calculate the appropriate instruction for the current student.

With this pedagogical model, the tutoring module is able to perform similar
functions as a human tutor in conventional training. These functions are for example:

• knowledge diagnostics

• strategic functions

• prediction functions

• assessment functions

• knowledge development

• error remediation

• domain content representation

• exploration space control

23

3.3 User Models in Adaptive E-learning Systems 24

The student model is used to adapt these functions to the needs of each student.
Knowledge diagnostics represent an accurate measurement of the current student’s
knowledge state. A selection of global teaching plans or teaching strategies are
assigned to strategic functions. Learning path and learning behavior of the stu-
dent are covered by prediction functions while assessment functions cover students
assessments and ITS assessments. Knowledge development, error remediation and
exploration space control are described in more detail in the following sub-sections.
[Brusilovsky 1994; Kinshuk and Lin 2003]

Knowledge Development

To help a student during the knowledge development, an ITS provides four stages.
These stages are what to teach, when to teach, how to teach and finally the imple-
mentation of teaching actions. [Han 2001]

What to Teach: In this stage the student model provides information about the
current knowledge of the student. The system is interested in the student’s lacks
of knowledge. With this information, the tutoring module is able to choose the
curriculum sequence, to provide active help and feedback during the problem solving
process or to provide passive help on request.

Curriculum sequence is used to provide the student with the most suitable learn-
ing sequence. The learning sequence consists of the series of knowledge units to learn
and tasks like examples, questions and problems to solve. The curriculum sequence
helps the student finding a proper path through the learning materials. There are
two subtypes for curriculum sequence: high-level sequencing and low-level sequenc-
ing. High-level sequencing or knowledge sequencing uses the student model and the
domain knowledge to select the successive teaching concept or topic. The low-level
sequencing uses only the student model to determine the following learning task
(e.g. example, test or question). [Brusilovsky 1998]

By using recorded student behaviors the system is able to provide active help
and feedback. Intelligent feedback to solutions of the student, such as error feedback
or comparing the student’s solution to an example solution, can help to improve the
student’s comprehension on this topic. Further, additional hints or reminders help
the student during the solution process.

Whenever a student requests help for the current instruction, the system pro-
vides the student with passive help such as hints, answers to questions or extra
explanations based on the student’s knowledge stored in the student model.

When to Teach: The appropriate moment for knowledge development is calcu-
lated by using the student model. This is important when active help is needed
during the process of problem solution.

How to Teach: Suitable teaching actions such as explanations, test, examples
or problems are chosen by using the student model. These teaching actions are
influenced by the learning style or preferences stored in the student model.

24

3.3 User Models in Adaptive E-learning Systems 25

Implementation of Teaching Actions: At this stage, some teaching actions can
be modified according to the student model. For example, if a student has advanced
knowledge in a topic only a small explanation is provided for solving a problem.

Error Remediation

According to [Self 1987], eight remediation methods can be identified, namely error
definition, explicit remediation, implicit remediation, counter examples, demonstra-
tion of a solution method, access to previous experiences, repeat attempt and tactical
retreat.

Error definition provides a textual description of the error and a recommendation
for correction. Explicit presentation of the correct knowledge is given by an explicit
remediation while implicit remediation prompts the correct knowledge or actions and
shows hints to the student. Counter examples are situations or problems generated
by the system. Access to previous experiences is given by the user model where these
experiences are stored.

Exploration Space Control

The ITS automatically controls the exploration space, while a student is navigating
through the domain space. This control takes places in form of limiting information
resources, the number of search paths and tools, and the amount of presented infor-
mation. This controlling concept is used to reduce the student’s cognitive load since
too much information or possibilities reduce the student’s attention and leads to dis-
traction. The control of the exploration space is based on the student’s competence
level, experience, etc.. [Kashihara et al. 2000]

User models in ITS are applied in several components of the system. For the
purpose of modeling the user of an ITS the student model is the most important
model but the system relies also on relation among the student model, the expertise
model and the pedagogical model. To see differences and conjoints between ITS and
AEHS, the next section depicts user models in AEHS.

3.3.3 User Models in AEHS

To describe user models in adaptive educational hypermedia systems, at first the
possible adaptations must be introduced. According to [Brusilovsky 2001], mainly
the presentation of the hypermedia and the navigation through the hyperspace can
be adapted. These two ways are subdivided into several adaptive hypermedia tech-
nologies (see Figure 3.3).

To be able to tailor the presentation of the learning content and the navigation
to the needs of the user, a user model is needed, which includes the user’s goals or
tasks, knowledge, background and preferences. These properties of a user are used
for making adaptation decisions by adaptive hypermedia systems. Additionally,
recent user models also store the interests and individual traits. The individual
traits include personality, cognitive factors and learning styles, but are not easy to

25

3.3 User Models in Adaptive E-learning Systems 26

Figure 3.3: Adaptive Hypermedia Techologies [Brusilovsky 2001]

extract. They represent stable features of a user, while interests change over time.
[Park and Lee 2003]

[Brusilovsky 2001] describes a new type of adaptation for web-based systems.
The nature of web-based systems enables the user to change its learning environment.
Thus, several different hardware, software and platforms can be used by the same
user. This requires an adaptation to the user’s environment and has become an
important issue.

According [De Bra et al. 1999], an adaptive hypermedia system should consist
of a domain model, a user model, an adaptation model, also known as pedagogical
model and an adaptive engine. The domain model describes how the information
is structured and linked together. The user model represents a set of user char-
acteristics and preferences for browsing the hypermedia space and the adaptation
model consists of pedagogical rules, which define how the domain model relates to
the user model in order to provide adaptation. The adaptive engine is responsible
for processing the adaptation by manipulating the navigation or content fragments
of the page before the adapted page is sent to the user interface.

The models proposed in [De Bra et al. 1999] and user models in ITS (see Sub-
section 3.3.2) are identically. The domain model serves the same purpose as the

26

3.4 Learner Modeling 27

expertise model of an ITS. Both models represent the knowledge of the subject
domain. The tutor or pedagogical model of an ITS describes pedagogical rules for
the instruction, which is comparable to the adaptation model of an AEHS. Finally,
the user model of the AHAM reference model is equally in its purpose to the student
model of an ITS. To conclude, there are mainly the same user models with the same
usage in both types of systems. The reason for this is the historical development,
since the development of AEHS is based on ITS, which were invented before AEHS.

The described user models in this section give an overview about the applied models
in different types of systems. The preferences and characteristics are mainly mod-
eled within a student or learner model by all systems. Sections 3.2 - 3.3 describe
the environment of user models, which roles they have, and which types of user
models are used within different types of systems. The terminology of student and
learner model is often confusing, although both terms have the same meaning. In
the following section, only the term learner model is considered. It describes the
learner model in more detail by introducing the different components and the stored
information of a learner model.

3.4 Learner Modeling

A learner model represents the system’s beliefs about its main target user, the
learner, and provides the necessary information for tailoring the instruction to the
needs of the learner. This necessary information is represented by the content of a
learner model (see Sub-section 3.4.1). The whole content can be grouped regarding
different properties of a learner. These groups are arranged in components of a
learner model (see Sub-section 3.4.2).

3.4.1 Content of a Learner Model

An extensive learner model must contain information about the learner’s domain
knowledge, the learner’s progress, preferences, goals, interests and other information
about the learner, which is important for the used systems. [Self 1994]

[Brusilovsky 1994] states that learner models can be classified according to the
nature and form of information contained in the models. Considering the subject
domain, the information stored in a learner model can be divided into two major
groups: domain specific information and domain independent information

Domain Specific Information

Domain specific information represents a reflection of the learner’s state and the
level of knowledge and skills in a particular subject. [Brusilovsky 1994] names the
model of the domain specific information knowledge model. The knowledge model
can be based on different types of models or a combination of these types. Possible
types of knowledge models are described in the following.

27

3.4 Learner Modeling 28

Scalar Model: Within a scalar model, the level of the learner’s knowledge on the
entire domain is described by one identifier such as a number in the range from 1
to 5. The scalar model is the simplest form of a knowledge model and provides no
information about knowledge in a sub-domain. [Han 2001]

Overlay Model: The entire domain information consists of a set of knowledge
elements or curriculum elements and represents the expert’s knowledge in this do-
main. The overlay model describes the learner knowledge as a subset of the complete
domain model. Lack of knowledge by the learner is derived by comparing it to the
expert’s knowledge. To each knowledge element in the learner’s overlay model, a
certain measure is assigned representing the estimated knowledge of the learner on
that element. The measure can be a scalar (for example an integer, a probability
measure or a flag) or a vector estimate. [Henze and Nejdl 2003]

A detailed description of the overlay modeling techniques is given in Sub-section
3.5.1.

Error Model: A disadvantage of overlay models is the incapability of storing
errors or mistakes made by the learner. For this reason, the bug model or error
model has been developed. With an error model, it is possible to define and reflect
erroneous behaviors of learners and the reasons for these errors. Error models can
be categorized into perturbation models and differential models.

Perturbations or misconceptions for each knowledge element are stored in a per-
turbation model. It is assumed that one or more perturbations exist for each knowl-
edge element of the domain model. Thus, a learner’s perturbation model represents
a subset of all possible perturbations, which are the cause for incorrect learner be-
havior regarding particular knowledge elements. [Brusilovsky 1994]

Genetic Model: The described models, overlay and error model, represent the
state of the learner’s knowledge. But, these models do not express the structure of
the domain knowledge. Therefore, genetic models are used to describe the develop-
ment of the learner’s knowledge. This process can evolve from simple to complex or
from special to general. For example the learner starts with a very special knowl-
edge and proceeds toward a broad and general knowledge. It is possible to describe
a genetic model by a genetic graph, where the nodes and the relationships between
the nodes represent knowledge elements and their interactions. [Han 2001]

28

3.4 Learner Modeling 29

Other Domain Specific Information: Besides the already described domain
specific information stored by different types of models, additional domain specific
information can be stored in the learner model. According to [Han 2001] this infor-
mation includes:

• prior knowledge about the domain of the learner,

• records or learning activities (taken lectures, number of asks for help, time to
solve problems), and

• records of assessments and evaluations.

In general, the additional domain specific information may contain necessary infor-
mation for specific purposes of the learner model related to subject domains.

Domain Independent Information

In addition to the learner’s current knowledge level, domain independent information
is needed to enable adaptivity. Domain independent information about a learner
may include learning goals, cognitive aptitudes, motivational state, background and
experiences, preferences as well as factual and historic data. [Han 2001]

Goals: To establish the correct teaching strategy, it is important to know the
learner’s goals. These goals answer the questions why the learner uses the e-learning
system and what the learner wants to achieve. The goals can be divided into two
different types. First, the learning goal, which is relatively stable for a course unit.
Second, the problem-solving goal, which may change from one problem to another
even within one teaching unit. Example for learning goals are to pass an exam or
solve a particular problem.

Cognitive Aptitudes: Cognitive aptitudes are intellectual abilities for differing
kinds of cognitive performance. For example, musical aptitude, math aptitude and
reading aptitude are all different kinds of cognitive aptitudes.

Motivational States: To measure the drive in instruction the motivational state
of the learner is used. The motivation is measured using a number of long-term and
short-term parameters. Such parameters are for example effort, attention, interest,
distraction, persistence, etc. These parameters are connected to other factors such
as knowledge level, readiness, complexity of the topic and learning outcome.

A learner model that considers motivation of a learner and knowledge state, was
proposed by [Far and Hashimoto 2000]. Within this learner model, the motivational
state is represented by a Bayesian network, where the graph encodes the dependen-
cies among motivational facets and learning activities. For example a path from
the distraction property to attention indicates that distraction is influencing the
attention of the learner.

29

3.4 Learner Modeling 30

Background and Experience: To derive parameters of the learner model, infor-
mation about background and experiences is used. Background information includes
skills that may affect the learning achievement. Such information is for example,
profession, work experience or perspectives. [Brusilovsky 1994]

Experience represents knowledge about the learning environment. Learner,
which are new to a particular learning environment or even new to e-learning may
need different system support regardless if they are novices or experts in the sub-
ject domain. This information might be used to select the appropriate adaptive
navigation method.

Preferences: The learners may have different preferences related to some aspects
of the learning environment. These preferences are considered as not inducible by the
system. Thus, the learner has to inform the system directly or indirectly about his
or her preferences. It is important for an adaptive e-learning system to present and
organize the learning material based on the learner’s preferences. Learner preferences
can also be used to form groups of learners. This technique is called group modeling,
where learners with same preferences form a group (group modeling is described in
Sub-section 3.5.1). Two parts of the preferences are the learning style and the
multiple intelligence, whereby learning style and multiple intelligence are mutually
related to each other.

The theory of multiple intelligence was first described by Howard Gardner in the
year 1983. His latest research indicates that there are eight distinct forms of intelli-
gence: linguistic, logical-mathematical, spatial, kinesthetic, musical, interpersonal,
intrapersonal, and naturalist [Lane 2000]. These eight forms of multiple intelligences
are described as follows:

• Linguistic intelligence is the ability to use words and language. These learners
have highly developed auditory skills and are generally elegant speakers.

• Logical/Mathematical intelligence is the ability to use reason, logic and num-
bers. These learners think conceptually in logical and numerical patterns
making connections between pieces of information.

• Spatial intelligence is the ability to perceive the visual. These learners tend to
think in pictures and need to create vivid mental images to retain information.

• Kinesthetic intelligence is the ability to control body movements and handle
objects skillfully.

• Musical intelligence is the ability to produce and appreciate music.

• Interpersonal intelligence is the ability to relate and understand others. These
learners try to see things from other people’s point of view in order to under-
stand how they think and feel.

• Intrapersonal intelligence is the ability to self-reflect and be aware of one’s
inner state of being.

30

3.4 Learner Modeling 31

• Naturalist describes the ability to recognize and classify numerous species of
the environment (flora and fauna).

Gardner stated that everyone possesses all of these eight intelligence but in different
degrees. Considering multiple intelligence during the process of adaptation, the
learning environment is able to tailor the learning material according to the learners
strengths, which allows to hold the learning progress on a maximum base. [Lane
2000]

Learning styles are different approaches or ways of learning. Multiple intelligence
determines multiple learning styles. Therefore, every learner has different preferences
for how, when, where and how often to learn knowledge. An example for a learning
style model is the WAVI model. WAVI stands for wholist, analyst, verbalizer and
imager and describes preferences about the visualization of learning material. For
example, if a learner prefers images then he is covered by the type imager. [Lane
2000]

Factual and Historic Data: Demographic data such as name, age, parents,
ID etc. is often stored in learner models. This information, combined with other
factual data such as for example interests, is necessary to initialize an individual
learner model. [Han 2001]

This sub-section described the content of a learner model. The content may
simply be subdivided into domain specific and domain independent information.
Beside these classifications of information, it is also possible to divide the structure
of a learner model into several logical components.

3.4.2 Components of a Learner Model

Before dividing a learner model into components, the stored information about the
learner has to be analyzed and grouped regarding different types and levels of infor-
mation.

The components are strongly connected to the application of the learner model,
but it is common to build a performance and a teaching history model. The per-
formance model stores data related to the assessment of the learner’s overall skills,
as well as data related to the learner’s previous knowledge. The teaching history
model keeps track of the material presented to the learner during instruction and
the learner’s mastery of instruction units. [Zhou and Evens 1999; Jeremić and
Devedžić 2004]

Additional components are necessary to provide a complete information about
the learner. [Zhou and Evens 1999] list two additional components, the reply history
and the solution record. A learner reply history is attached to each instruction unit
and stores information about covered learning material and learner answers during
this instruction unit. The amount of errors and the description of these errors, which
where made during the process of problem solving are stored in the solution records.

Another approach to split the learner model into several components is described
by [Castillo et al. 2003], where the learner model is divided into three components:
a profile, a cognitive overlay model and a course overlay model. The learner profile

31

3.5 Modeling Techniques 32

stores information such as name, age, learning style etc. The system’s beliefs about
the learner knowledge is recorded in the cognitive overlay component while the
course overlay component supplies information about the learner’s interactions with
the system.

To describe the technical details about a learner model, additional technical
components are used. Technical components are for example a data reader, a data
writer and a session manager. The data reader and the data writer components
are responsible for providing access to a data storage. A session manager controls
and coordinates all other components and is the controlling unit of a learner model.
[Jeremić and Devedžić 2004]

A learner model is a combination of all relevant data about the learner with respect
to a learning environment. There are common types of information among learner
models like the described subject domain information, learning goals, motivation,
background and experience, cognitive aptitudes, preferences and demographic data.
The content of a learner model is arranged into several components according to the
type of information. To gather the necessary information, different techniques are
used as described in the following section.

3.5 Modeling Techniques

After identifying the necessary information stored in a learner model, the process of
acquiring this information becomes important. There are several methods to con-
struct a learner model, which are described in Sub-section 3.5.1. The construction
of a learner model is followed by the initialization of this learner model. It has to be
filled with initial data. The process of initialization is depicted in Sub-section 3.5.2.
To keep the information stored in the learner model up to date, changed character-
istics of the learner has to be determined to fulfill the requirement of representing
current aspects of the learner. Besides the update of the stored information in the
user model, the delivery of this new data is described in Sub-section 3.5.3.

3.5.1 Methods to Construct Learner Models

Before a user model can be used it has to be constructed. There are many different
methods, which can be applied during the construction. This section describes
machine learning methods, Bayesian methods, overlay methods, stereotype methods
and plan recognition methods.

Machine Learning Methods

Machine learning methods applicable for user modeling include for example rule/tree
learning methods, probabilistic learning methods and instance/case-based learning
methods. A learner model profits of utilizing machine learning methods by means
of increasing accuracy, increasing efficiency and even expandability to where it was
not possible to construct a learner model before. [Sison and Shimura 1998]

32

3.5 Modeling Techniques 33

According to [Webb et al. 2001], the purposes for which machine learning meth-
ods can be used are to model the cognitive processes that underlie the learner’s
actions, to model the differences between the learner’s skills and expert skills, to
model learner’s behavioral patterns or preferences and even to model the character-
istics of the learner. However, although the first two purposes are addressed very
often, modeling behavior or characteristics is still very rare.

Bayesian Methods

Bayesian methods and their applications, like Bayesian networks, are very powerful
and versatile. In general, Bayesian methods are related to the machine learning
methods (see Sub-section 3.5.1) but Bayesian methods are often used within user
models and are therefore described separately.

Bayesian methods support the use of probabilistic inference to update and im-
prove belief values. The main goal of Bayesian networks is to enable probabilistic
inference. This section does not describe the Bayesian methods, since this is out of
scope of this work, but focuses on their application in the field of user modeling.

According to [Li and Ji 2005], Bayesian networks are used for plan recognition
(see Sub-section 3.5.1), user’s needs inference and affective state assessments. To
infer the current state and needs of the learner, taken pauses and errors are con-
sidered. Further, goals and needs are inferred by using the learner’s background,
actions and queries.

The current emotional and mental aspects of the learner are an important indi-
cation of the learner’s state, intention and needs [Li and Ji 2005]. Therefore, the
affective state is a point of interest and can be generated by using Bayesian net-
works. For example, the emotional states are modeled as consequences of how the
current action fits to the learner’s goals and preferences.

Overlay methods

The overlay approach, which was introduced by Carr and Goldstein 1977, is based
on the aspect, that the learner model is a subset of the expert model. The expert
model is subdivided into several smaller parts and modularized into specific topics or
concepts. Each of these small parts can be connected to a particular learner model.
[Sison and Shimura 1998]

Overlay models are widely used in user modeling systems, where they are ap-
plied to model the educational domain. The domain knowledge of the learner is
represented as a subset of the system’s expert domain knowledge. The knowledge
of the learner is constructed on a concept-by-concept base and updated as the user
proceeds through the course. [Brusilovsky 1996] states that an overlay model allows
a flexible model of the learner’s knowledge for each topic.

The complexity of an overlay model depends on the structure of the domain
knowledge, where the granularity is important. Further, the estimation of the
learner’s knowledge is important and is measured by examining the sections the
learner has read and the tests the learner has taken. [Conlan et al. 2002a]

33

3.5 Modeling Techniques 34

Stereotype methods

A stereotype is a collection of frequently occurring characteristics of users. Creating
stereotypes is a very common way of user modeling. New learners are categorized
and assigned to a stereotype according to their initial user model characteristics.
The small amount of initial information is used to infer a large number of default
assumptions. When more information about individual assumptions becomes avail-
able the default assumptions are altered. [Rich 1979]

There are two types of stereotyping: fixed and default. In fixed stereotyping
learners are cast according to their performance into a predefined stereotype that
is determined by an academic level. Default stereotyping is a much more flexible
approach. At the beginning of a session the learners are stereotyped to default values,
but as the learning process proceeds and learner performance data is obtained,
the settings of the initial stereotype are gradually replaced by more individualized
settings. [Kay 2000a]

There are three important elements in a stereotype. First, triggers are used to
activate a stereotype. Without defined triggers, it is not possible to assign a new
learner to a particular stereotype. For example, if the learner is a novice Linux user,
the trigger “no prior knowledge about Linux” is activated. Since the “no prior knowl-
edge about Linux” trigger is related to the novice-stereotype the novice-stereotype
is assigned to this user. The second element of a stereotype is the associated infor-
mation inferences. Activating the novice-stereotype for a learner would infer all the
defined aspects, which a novice user is assumed to know. Third, retraction condi-
tions. There might be a retraction facility to deactivate a stereotype. This can be
important when essential triggers change its state. For example, if the novice Linux
user gets experiences over time, the “no prior knowledge about Linux” trigger gets
deactivated and therefore the novice-stereotype is no longer valid for this user. [Kay
2000b]

The problem using stereotypes is the work to construct and fill appropriate
stereotypes. According to [Kobsa 1993], the developer of a user modeling system has
to think about tasks like user subgroup identification, identification of key character-
istics and representation in hierarchically ordered stereotypes. Subgroups subdivide
the community of all possible users of the system. After the identification of sub-
groups and their key characteristics, a stereotype is assigned to each subgroup.

To identify user subgroups, the user model developer must think about different
groups within an expected user population. The members of a subgroup should own
certain application relevant characteristics. Thus, to identify stereotypes, knowledge
about the application domain is needed. This restricts the usage of a particular
stereotype to an application domain.

Further, key characteristics or triggers must be identified in order to be able to
determine the relevancy of a learner to a specific subgroup. The amount of these
characteristics should be kept very small to provide a fast and easy assignment to a
subgroup.

After all subgroups are identified and related characteristics are assigned, a rep-
resentation of this structure is constructed. The collection of all represented char-

34

3.5 Modeling Techniques 35

acteristics of a subgroup is called a stereotype for this subgroup. If a part of the
content of a stereotype is the content of another stereotype it is possible to build up
a hierarchical structure of all stereotypes. [Kobsa 1993]

It is also possible to form stereotypes based on the background knowledge of the
learner. Mostly a linear hierarchy of stereotypes like beginners, intermediates and
experts is used.

Another modeling technique, which is similar to stereotype modeling is group or
community modeling. The community approach was implemented in Doppelgänger
[Orwant 1993], where communities represent a group of learners. The difference to
stereotype modeling is that a learner is classified by belonging to several communi-
ties. If a user model has no explicit information about a particular characteristic
the value is retrieved from the communities the user belongs to.

Plan Recognition

Plans are used to describe the learner’s intentions and desires, where a plan is a
sequence of learner actions that achieve a certain goal. Plan recognition is based
on observing the learner’s input actions. Such systems try to determine all possible
learner plans, which are valid concerning the observed actions. This calculated set
of plans can be decreased by taking new leaner actions into consideration. [Li and
Ji 2005]

According to [Kobsa 1993], there are basically two kinds of techniques used to
recognize the learner’s plan. In the first approach plan libraries are constructed. A
plan library contains all possible plans and the selection of the actual plan is based
on the observed actions by matching these actions to the set of plans. The problem
with this technique is that all allowed sequences of learner actions have to be stored
within a plan. This demands a lot of computational work beforehand and a huge
storage for the plan library.

The second approach is called plan construction, where the system controls a
library of all possible learner actions combined with the effects and the preconditions
of these actions. The sequence of learner actions is enriched by all allowed succeeding
user actions. Possible next user actions are calculated by comparing the effects of
preceding actions with the preconditions of actions stored in the actions library.
[Kobsa 1993]

In general, the plan recognition method is limited by the requirement that all
possible learner plans have to be specified before. This need not be a problem if the
domain is small enough in which the learner can only follow a limited number of
goals.

Besides the described methods, learner modeling systems often apply specifically
developed methods to construct the model. For example, the learner’s experience
can be calculated from their navigational actions or from considering the time spent
on pages. Further, special rules are implemented to conclude properties or behavioral
concepts of the learner.

35

3.5 Modeling Techniques 36

The process of constructing a model is in most cases not based on one method.
Rather a combination of several methods is applied. Especially stereotyping and
overlay methods are utilized.

After the construction of a learner model by applying one or a combination of the
described methods, in most cases it has to be filled with information and data about
the learner. This process is called initialization. Examples where no learner model
initialization is performed are generic user models. Generic user models are con-
structed without concerns about the application field. Therefore, it is not possible
or desired to initialize the user model. The initialization process of learner models
is described in the following section.

3.5.2 Initialization of Learner Models

The initialization of a learner model represents the process of gathering information
about the learner and transferring this information into the model. The initialization
process is also problem in the field of recommender systems, where it is known as
ramp-up or cold start problem.

This section describes methods, how information about the learner is retrieved.
According to [Self 1994], a learner model can be initialized in three ways, through
explicit questions, initial testing or by stereotyping.

Explicit Questions

The initial learner models are often constructed by directly questioning the learner.
This method is a very effective way to obtain general information about a learner.
The problem is to find the appropriate amount of questions and to get the optimum
amount of information out of these questions on the other side, too many initial
questions could irritate the learner and increase the declination to the system. The
worst case would be, if the learner leaves the system and never returns on the other
side, too less or not well selected questions do not allow the system to extract enough
information to initialize the learner model. [Tsiriga and Virvou 2003]

An alternative that would reduce the number of questions is to use adaptive
questionnaires like in [Kurhila et al. 2001]. They apply adaptive methods to optimize
the questionnaire length by dropping out uninformative questions using Bayesian
methods.

Initial Tests

By asking the learner to take a test, the initial parameters in the learner model can
be obtained by analyzing the test results. In order to control the length of the test,
the concept of neighborhood of knowledge states may be applied. For example, if
curriculum elements A and B are in the same neighborhood, mastery of A implies
mastery of B. This leads to a reduction of the test length but presupposes a well
constructed test. Initial tests are often used to get information about the domain
knowledge of the learner. [Self 1994]

36

3.5 Modeling Techniques 37

Stereotyping

The learner modeling system may use stereotype methods in order to group similar
learners to categories (see Sub-section 3.5.1). Although stereotyping is very powerful
in providing considerable information based on only a few observations, it does not
provide an accurate learner model. The required information to be able to apply
stereotyping can be retrieved by using explicit questionnaires. Another method is
to assign a new and unknown learner to a default stereotype and refine the ap-
plied stereotype by observing the learner. This can also help to reduce the initial
questions. [Han 2001]

After filling the user model with information, keeping this information topical
becomes important.

3.5.3 Update of Learner Models

Updating a learner model means to bring the contained data and information about
a learner up-to-date. Since dynamic and short-term learner characteristics are not
constant properties, a change over time has to be considered by the learner model.
For the process of updating a learner model, information sources and update meth-
ods are needed.

Information Used to Update Learner Models

The used information to update a learner model can be retrieved from different
information sources. At first, the information currently stored in the learner model
must be considered. This information can be used as a base to infer new information
or perform changes on the inferred information. Further, information currently
stored in other system components can be of use. For example the domain model
of an ITS. The main source of information can be gained through monitoring the
learner’s interaction with the system.

According to [Kinshuk 1996], there are several ways to obtain information from
the mentioned information sources:

• implicit,

• explicit,

• structural, and

• historical acquisition.

Implicit acquisition of information is based on observing actions of the learner dur-
ing the learning process. Considering direct dialogues between system and learner
leads to explicit acquisition (e.g. explicit questionnaire). Structural acquisition is
performed by analyzing interrelations between curriculum elements. For example,
if curriculum element A is a prerequisite of element B, an expertise in B implies the
mastery of A. Assumptions based on the learner’s experience are performed during
a historical acquisition of information.

37

3.5 Modeling Techniques 38

Considering the information available to update a learner model there exist dif-
ferent methods how this information is used to update the learner model.

Methods to Update Learner Models

Information to update the learner model has to be derived by analyzing learner re-
sponses, the processes of problem solution and learner actions. These three methods
are analytical processes and are called cognitive diagnosis. Cognitive diagnoses is
defined as the process of inferring a person’s cognitive state based on the perfor-
mance of this person. Another method to update a learner model is to determine
old data and do not using this old data anymore. [Self 1993]

Analysis of Learner Responses: The analysis of learner responses is also called
performance measuring [Brusilovsky 1994]. Basically, questions of an exam during
instruction can be divided into simple questions and complex questions. Simple
questions are only related to one specific curriculum element while complex questions
require the knowledge of more than one single curriculum element. Accordingly, the
learner responses to these two types of question must be handled differently. For
example, a correct answer to a simple question increases the relevance of the related
curriculum element, while a wrong answer decreases the relevance of the underlying
curriculum element.

Analyzing the response to a complex question needs more effort. Correct answers
may lead to an increase of all related curriculum elements but an incorrect answer
needs to be investigated more thoroughly. The question has to be split based on
the structure of the domain model and the resulting parts have to be considered.
Thus, some parts of the answer maybe correct while others are not. By applying a
perturbation or an error model (see Sub-section 3.4.1) the perturbations, which are
relevant for the incorrect answer to the question must be determined. This changes
have to be considered and an update of the affected properties of the learner model
has to be performed.

Analysis of the Process of Problem Solution: Analysis of the problem solving
process requires a technology, where all possible correct rules, which can be used
by the learner during the solution process, are available. By combining these rules
with a collection of misconceptions responsible for error that may occur, the system
is able to calculate and detect all correct solution steps and misconceptions made
by the learner in every step of the problem solving process. [Brusilovsky 1994]

Analysis of Learner Actions: Actions of the learner can be analyzed by con-
sidering them as results of the acquisition of a set of curriculum elements or miscon-
ceptions. This is possible if the subject domain is known. For this, a simply tracing
of the learner actions is needed. This method is called issue tracing. [Brusilovsky
1994]

38

3.6 Summary 39

Discounting Old Data: Considering only topical data reduces the value of old
data in the learner model. This gives importance to data, which is derived from
recent actions. The process of discounting old data is based on the assumption that
the time elapsed since this old data was stored, decreases the importance and the
influence of the old data to the current state of the learner. [Webb and Kuzmycz
1998]

Modeling techniques are an important topic during the construction process of a
learner model. It is common that a learner model uses a combination of several
modeling techniques, especially a combination of stereotype and overlay methods
are applied. The utilized modeling technique also sets scope and accuracy of the
learner model. Generally, the motivation is to build an extensive learner model with
as much accuracy as possible.

After the construction, the model has to be initialized. This step requires infor-
mation, which allows to fill the learner model but spares the effort of the learner.
Therefore, the gathered information must be used in the best possible way to in-
fer much of information. Inferring data requires the usage of intelligent methods
like Bayesian or machine learning methods which leads again into much effort for
the initialization. Keeping the model of the learner up-to-date requires an obser-
vation of the learner during instruction. The only source for keeping the topicality
of information is to consider the interactions between learner and system during
instruction.

3.6 Summary

An adaptive system needs information about the target to which it adapts. Since
this adaptation target is mostly the user of the adaptive system, a model of the user
is needed.

By utilizing a user model, an adaptive system can use this user model in three
different types of system actions. The system can interpret user actions in different
ways concerning stored characteristics in the user model. For example, users with
dyslexia can have particular problem with some words. The system recognizes these
mistyping and corrects the input automatically. In the other direction, the machine
actions or the output of the system can be tailored to fit the needs of the user,
and finally, internal actions can be influenced by the information stored in the user
model.

In the context of adaptive e-learning systems, a user model stores information
necessary to adapt the instruction. Macro-adaptive systems employ a simple model
of the user. The instruction is adapted to the user beforehand and no adaptation is
processed during instruction. User models used in ITS and AEHS are more sophisti-
cated and store more information about the user. The focus lies on the interactions
between user and system during instruction and on the domain knowledge. This
allows to adapt the system to the preferences and the current knowledge of the user.

Considering the application of a user model in an adaptive e-learning system,
the user model is represented by a learner model. Thus, the difference between a

39

3.6 Summary 40

user and a learner model is the specific utilization of the learner model. A learner
model is mainly applied in e-learning systems, while a user model is more generally
and does not focus on a specific application domain. The content of a learner model
and how this content is arranged was described in Section 3.4.

A learner model has to be constructed, initialized and updated. These processes
are described in Section 3.5 as modeling techniques. The initialization of a learner
model is an important topic, where an appropriate way to gather the required infor-
mation has to be found. Especially, the effort for the user during the initialization
must be considered since this process affects the accuracy and the usability of the
learner model and of the overall system. To keep the stored information about the
learner up-to-date, changing information about the learner must be included in the
learner model. After the information within a learner model is changed the new
information must be delivered. The delivery affects systems, which use the learner
model and should keep the information consistent over all places where it is used.

The information stored in a learner model varies between different models and
often depends on the surrounding or using adaptive e-learning system. To provide as
much interoperability for a learner modeling system to be used by several systems, it
is necessary to agree on contained information in a learner model. This agreements
are represented by standards. There exist several standards in the field of user
modeling, which are described in the following Chapter 4.

40

4. Standards for User Modeling and
Profiling

4.1 Introduction

Currently numerous organizations, consortia, etc., like e.g. the Dublin Core (DC)
Metadata Initiative, the Institute of Electrical and Electronics Engineers (IEEE), the
Instructional Management System Global Learning Consortium (IMS GLC) the Ad-
vanced Distributed Learning Initiative (ADL), are working in the area of e-Learning
standards [Paramythis and Loidl-Reisinger 2003]. Though, only some of them are
dealing with the profiling and modeling of the user.

In this chapter, some standards in the field of user profiling and modeling are
discussed. Section 4.2 gives a glimpse to the “low-level” standards vCard, eduPerson
and ULF, where only basic information of the user is stored. The more important
standards that have been analyzed and are referred to in the subsequent sections
are GESTALT1, PAPI Learner2 (henceforth referred to simply as PAPI) and IMS
LIP3 (see Sections 4.3 - 4.5).

This chapter gives a raw overview of what is currently available and what is
covered within these standards. The goal is to emphasize the advantages and dis-
advantages of each standard by comparing them against each other.

4.2 Basic Standards

This section depicts three basic standards, vCard, eduPerson and ULF. These stan-
dards are applied in the field of e-learning but do not represent a complete user
modeling standard since important facets of the user which are relevant for adaptive
systems are missing.

4.2.1 vCard

The concept of vCard4 relies on representing the kind of personal and business
information which is usually covered by a business card. Such information is for
example name, address, date of birth, e-mail address, etc. [IMC 1996]

Since no accurate information needed for personalization in e-learning is stored
within the vCard standard, it lacks of the capability of being used for tailoring
the learning content to the customer’s needs. Therefore it is not applicable in the
context of e-learning directly but it can be seen as a standard used as a basis for
user profiles. [Stratakis et al. 2003]

1http://www.fdgroup.com/gestalt/
2http://edutool.com/papi/
3http://www.imsproject.org/profiles/
4http://www.imc.org/pdi/

41

http://www.fdgroup.com/gestalt/
http://edutool.com/papi/
http://www.imsproject.org/profiles/
http://www.imc.org/pdi/

4.3 GESTALT 42

4.2.2 eduPerson

The eduPerson5 standard is a schema to enable the transfer of information about
people involved in higher education. According to [Stratakis et al. 2003], eduPer-
son is used by US universities. It covers the participants student and academic
staff. Covering both roles has the advantage of being able to deal with all parties
participating in a learning and teaching process.

Comparing eduPerson to vCard [Stratakis et al. 2003], eduPerson concede some
additional specified characteristics such as affiliation, description, entitlement and
preferred language which extends the vCard standard. Nevertheless, this extension
is only a small step forward in the direction of a usable standard in the context of
e-learning.

4.2.3 Universal Learning Format (ULF)

ULF [ULF 2000] was developed by Saba Software and is a standard based on DC,
vCard and other educational metadata standards [Stratakis et al. 2003].

The ULF standard describes not only the information about the learner, but
also the learning content defining formats for catalogs, learning contents, compe-
tencies, profiles and certifications. According to [Stratakis et al. 2003], ULF uses
the Resource Description Framework (RDF) for the resource description and the
discovery.

As mentioned above, ULF covers both, the description of the learner information
and the learning content. This has the advantage that major parts of an e-learning
system can be implemented following the same standard. Concerning the imple-
mentation and realization of the ULF standard the proprietary rights might be an
important drawback since ULF is the product of a corporation, namely Saba Soft-
ware Inc. which holds the rights for this standard.

4.3 GESTALT

Getting Educational Systems Talking across Leading Edge Technologies
(GESTALT6) is a project financed by the Advanced Communications Technology
and Services (ACTS7) program [Conlan et al. 2002a]. The goal of the ACTS pro-
gram is to

“accelerate deployment of advanced communications infrastructures and
services, and is completed by extensive European research in the related
fields of information technology and telematics.” [ACTS 2005]

Therefore, a lot of projects were supported by ACTS which can be found on the
program web site.

5eduPerson is specified in [eduPerson 2004]
6http://www.fdgroup.co.uk/gestalt/
7http://www.cordis.lu/infowin/acts/analysys/intro/index.html

42

http://www.fdgroup.co.uk/gestalt/
http://www.cordis.lu/infowin/acts/analysys/intro/index.html

4.3 GESTALT 43

[Wade et al. 2002] describes the aim of the GESTALT project as a development
of a web-based learning environment being able to provide a variety of learning
materials and resources.

The basic process of creating and storing a user model used by GESTALT is
described in [Conlan et al. 2002a]. Starting with the construction of a user profile,
GESTALT gathers the required information by means of user questionaries. Theses
questionaries are arranged and handled by a wizard which guides the user through
a sequence of question forms.

[Conlan et al. 2002a] lists the obtained information in form of personal details,
contact details, qualification details, skill details, learning preferences and mode of
delivery. After the user profile is constructed, a user model is established using the
previously gathered profile information. This profile is then stored locally (on the
machine of the user) in form of an XML document.

This section examines the GESTALT project by starting with the architecture
followed by the used data model (see following Sub-sections 4.3.1 and 4.3.2).

4.3.1 Architecture

The detailed architecture of the GESTALT project is described in [Wade et al. 2002]

which served also as reference for this sub-section. Thus, a raw overview over the
main issues is given in the following.

The purpose of the GESTALT project is described by Wade et al. as follows:

“The objective of the GESTALT architecture is to establish a framework
for the development of compatible, heterogeneous, scalable, and distrib-
uted educational systems.” [Wade et al. 2002]

The GESTALT system allows persons to find out if the needed resources for their
education exist and if they exist, to request these resources to be transfered to their
local learning environment. The delivery of the requested resources is carried out
by an established infrastructure.

The GESTALT architecture is presented in form of its Functional Architecture
(see Figure 4.1), which defines the functional components of the overall system and
has been derived from the educational actions, roles, and relationships defined in
the GESTALT business model and the requirements specification presented in the
GESTALT deliverable D2018.

8Document available on: http://www.fdgroup.co.uk/gestalt/d201v2.zip

43

http://www.fdgroup.co.uk/gestalt/d201v2.zip

4.3 GESTALT 44

Figure 4.1: GESTALT Functional Architecture [Wade et al. 2002]

As shown the Figure 4.1, the complete functional system consists of several
functional components. The six main components are:

• Web Client

• Resource Discovery Services

• Learning Environment

• User Profiles

• Asset Management System

• Administration

GESTALT assumes that all services available for the end user are delivered to
the local machine by using a small and light weight client technology. Therefore,
the Web Client is running on the user machine and has access to the Resource
Discovery Services for the Selection action and to the Learning Environment for the
Instruction action.

The Resource Discovery Service provides the user with abilities to explore which
courses are available and which institutions are offering these courses. The tasks of
the Learning Environment are to provide complete online support for the process

44

4.3 GESTALT 45

of learning, to track the progress and the achievement of the learner, to support a
flexible and modular curriculum and the organizational management of the learner.
The Asset Management System controlls the access to resources. Some resources
might be for public usage while others are limited to learners, which have subscribed
for this specific resources. The Administration component provides administration
abilities for the institutions, which offer courses.

The User Profiles is a directory service used to store user preferences for the
Learning Environment interactions, such as configurations, and is the central com-
ponent in this architecture. Additional settings for the Resource Discovery Service,
like for example often searched hosts, can also be stored by the User Profiles com-
ponent.

4.3.2 Data Model

The applied data model in the GESTALT project is described in detail by [Wade et
al. 2002] which is also the underlying reference for the following sub-section. This
sub-section gives a brief overview over the data model by summarizing the main
issues.

The data model used within the GESTALT project is based on the following
three standards:

• Unit Object Model (UOM)

• Learning Object Model (LOM)

• Public and Private Information (PAPI)

The UOM is used to represent a learning experience. A learning experience is
for example, a degree course. Therefore it has to include learning goals, required
outcomes, the path through which a learner may run and the specific resources
which the learner may use to learn. The applied LOM standard covers the learning
resources and learning materials (for example books or lectures). For the learner’s
information and the learner’s progress through the learning experience, the data
model applies the PAPI standard (see following Section 4.4 for details).

Based on these three standards, GESTALT has adopted them and developed a
new standard called Extended PAPI (EPAPI). According to [Rodŕıguez-Estévez et
al. 2003], the EPAPI standard is an XML implementation of PAPI but tailored to
the requirements of the GESTALT project.

The GESTALT project represents a complete learning environment, including a
defined architecture and a data model. GESTALT applies three accepted standards
to handle the required data. The user model applied by the GESTALT project is
based on the PAPI standard which is depicted in the following section.

45

4.4 Public and Private Information - PAPI Learner 46

4.4 Public and Private Information - PAPI

Learner

The Public and Private Information for Learners (PAPI Learner) standard takes
ideas from Intelligent Tutoring Systems (ITS) and incorporates relationships be-
tween persons. Since performance information is the most important part of ITS
[Dolog and Nejdl 2003], it plays also a major role in the PAPI Learner standard.
Compared to the already described standards in Section 4.2, the PAPI Learner stan-
dard specifies the model of a learner with all its forms, such as syntax and content.
[Russell 2003] describes PAPI Learner with the following sentence:

“PAPI (Personal and Private Information) specifies the syntax and se-
mantics of a ‘Learner Model’, which will characterise a learner (student
or knowledge worker) and his or her knowledge/abilities.”

Thus, PAPI Learner has to include many more parameters than former shown
standards. [Russell 2003] lists parameters like knowledge, skills, abilities, learning
styles, records and personal information which are covered within PAPI Learner. But
not only the parameters are important, also the depth of detail must be considered.
PAPI Learner allows parameters to be presented with an adjustable focus, starting
with an overview down to the smallest units.

As mentioned in Sub-section 4.2.2 eduPerson deals with different roles or users of
the system, and so does PAPI Learner. According to [Russell 2003], PAPI Learner
enables different points of view, which are for example learner, teacher, parent,
school, employer and so on.

[Russell 2003] identifies a key feature of the PAPI Learner standard in its logical
division. For example, the security and the administration of the learner information
is separated. Sub-section 4.4.1 describes the overall structure of PAPI Learner. Fur-
ther, the learner information is separated into six groups, called learner information
groups (see Sub-section 4.4.2).

As indicated by its name, PAPI Learner emphasizes the importance of privacy
and security (see Sub-section 4.4.3) for a learner model [Russell 2003]. Finally, a
summarization of the PAPI Learner standard is depicted in Sub-section 4.4.4.

4.4.1 Common Features, Information Types and Bindings

In general, the structure of PAPI Learner is divided into three main areas, which are
common features, information types and bindings. These areas of the PAPI Learner
standard are described in detail by [Farance 2001], which is also the foundation of
this section.

The three main areas of PAPI Learner are again separated into smaller Parts
(see Figure 4.2) where each Part represents a logical unit of the area. Various
implementations of PAPI Learner may cover only some parts of the standard but
are still conform to the standard.

The area of Common Features covers the general features which have to be im-
plemented, such as the Core Features (Part 1), the Data Element Registry (Part 6)

46

4.4 Public and Private Information - PAPI Learner 47

Figure 4.2: Relationship among the Parts of the PAPI Learner Standard and rela-
tionship to other standards. [Farance 2001]

and the Registration Authority (Part 5) (see Figure 4.2), and are available among
all realizations of PAPI Learner. An implementation does not necessary include the
Parts 2-4 to claim conformity to the PAPI Learner standard. The Core Features
include datatypes that are used by other parts of PAPI Learner. Information about
data elements, such as enumerated value spaces, are covered by the Data Element
Registry. Registration Authority Process gives a description of how to maintain the
Data Element Registry. The Parts Rationale, Security Notes and Examples/Illus-
trations are only instructive guides and hence need not to be considered by the
implementation.

The next area covers the Information Types. In general the Information Types
(Parts 21-25) can be considered as learner information types as described in Sub-
section 4.4.2. To be flexible for further versions of the PAPI Learner standard, the
Parts 27-28 are included.

The last area is called Bindings and provides a mapping to various standards,
specifications and technical reports.

To describe a specific implementation of PAPI Learner, the structure of Figure
4.2 is often used by referring to the three shown columns (Columns A-C) and cor-
responding Parts. For example a specific implementation agrees to the Parts 1 and
6 out of Column A and Part 21 from Column B, using an XML binding (Column
C). This gives the opportunity to characterize the implementation in a simple and
clear way.

47

4.4 Public and Private Information - PAPI Learner 48

4.4.2 PAPI Learner Information Groups

The overall structure of the PAPI Learner standard was already discussed in the
previous section. The current section focuses on the six groups of learner information
in the PAPI learner model (see Figure 4.3), which are specified in [Farance 2001], and
describes the information types of the PAPI Learner standard as well. This section
is based on the specification of the PAPI Learner standard, given by [Farance 2001].

These six Learner Information Groups cover, as its name already implies, the
information about the learner in all details. The Learner Information Groups can
be considered as the core and the purpose of the PAPI Learner standard.

Figure 4.3: PAPI Learner Information Groups. [Farance 2001]

The Learner Information Groups divide the available information about the
learner into six independent logical units, namely:

• Performance Information

• Preference Information

• Portfolio Information

• Relations Information

• Security Information

• Contact Information

The PAPI Learner approach separates the learner information according to these
six units. The utilizers of the PAPI Learner standard are not restricted to keep this
structure. Thus, they are free to reassemble parts of the learner information to fit
their needs. In the following, a short overview over these units is given.

Performance Information

The Performance Information contains the history, the current work and the future
goals of the learner. This unit is created and used by the components of the learning
environment. Further, it can be used by the learning environment to improve or
optimize the learning experiences for the learner.

48

4.4 Public and Private Information - PAPI Learner 49

Preference Information

The Preference Information unit describes preferences that may improve human-
computer interactions for the learner, such as for example the preferred input and
output devices.

Portfolio Information

The Portfolio Information represents the work of the learner as a collection of ac-
tions. Further, it keeps references to the work done by the learner. The Portfolio
Information is designed to exemplify and to assess the achievements and the skills
of the learner, such as passed exams, written articles and so on.

Relations Information

The Relations Information stands for the relations of the learner to other users of the
learning environment. Such users are for example teachers, supervisors and other
learners.

Security Information

The Security Information holds the security credentials of the learner. Such creden-
tials are for example passwords, private and public keys but also biometric data.

Contact Information

The Contact Information is used by the administration and includes for example
name, address, place of birth and so on. To keep such information away from public
access, the Contact Information is typically hold private and secure.

4.4.3 Public and Private Information

As already depicted in Sub-section 4.4.1, users of PAPI Learner are not forced to use
the proposed structure of the learning information. PAPI Learner allows to combine
different parts to fit the needs of the user.

The combination of parts of the learning information may reveal privacy and
security problems when sharing the information with other organizations. For ex-
ample, combining the contact and the performance information might be useful for
the current application, but privacy violations occur when this information is shared.
In this case there are conflicts between the privacy level of the contact information
and the performance information. Such privacy issues were the main reason why
PAPI Learner split the learner information into six units. However, PAPI Learner
does not specify which unit of the learner information is private and which is public.

PAPI Learner permits to handle the units of the learner information in different
ways with respect to privacy. For example the learner contact information is private
and secure while the learner preference information is marked as public. The level

49

4.5 IMS Learner Information Package 50

of security and privacy is selected by the administrator. An administrator can be
the learner for its own learner information, or the administrator of the organization.

4.4.4 Summary

As discussed in this section, PAPI Learner is a complete standard regarding storage
of user information for learning environments. Nevertheless, PAPI Learner is easy
to extend and is adaptable to fit new requirements for different applications. Such
applications are for example medical and financial applications. [Russell 2003]

Further, PAPI Learner is not limited onto one role within the system, but it
is able to model different points of views, such as for learner, teacher, staff and
employer.

Compared to previously discussed standards, PAPI Learner also focus on the
topic of privacy and security, which is a central point of interest when developing a
user modeling system.

Beside GESTALT and PAPI Learner exists a third important standard specification
called IMS Learner Information Package, which is depicted in the following section.

4.5 IMS Learner Information Package

The IMS9 Learner Information Package (LIP) is a specification for a standard to
record information about learners [Wilson and Jones 2002]. Version 1.0 was released
in March 2001 and the current version is 1.0.1 with some minor changes to the
original version 1.0 [Smythe et al. 2001].

The underlying reference for the following section is the specification of the LIP
standard [Smythe et al. 2001], which includes the complete information about LIP.

LIP is designed to hold information about the learner, including his progress
and received awards. Further, LIP enables the transfer of this information between
different software applications.

To be more precisely, LIP is a collection of information about a learner or a pro-
ducer of learning content. The roles are not limited to one single learner, groups of
learners can be handled as well. Producers of learning content may be organizations
or individuals and are separated into three divisions, namely Creators, Providers
and Vendors, with different tasks and rights. To provide the ability of exchanging
this information among different applications, the information is split into several
packages.

The arrangement of LIP consists of a set of packages, called segments or cate-
gories. The following section deals with these segments and gives an overview over
the structure of LIP. Sub-section 4.5.2 shows how the structure is built in form of
an XML schema. Privacy and security mechanisms offered by LIP are examined in
Sub-section 4.5.4 and finally, some implementations of the IMS LIP standard are
introduced in Sub-section 4.5.4.

9http://www.imsproject.org/

50

http://www.imsproject.org/

4.5 IMS Learner Information Package 51

4.5.1 The Structure of IMS LIP

The structure of IMS LIP consists of segments or categories and elements. The
information about the learner is split into eleven segments, while the elements specify
the data and the structure of a segment.

Segments

LIP divides the learner information into eleven segments, starting from the Identi-
fication to more administrative content like Securitykey (see Figure 4.4).

The reason for this separation is described in [Smythe et al. 2001] as follows:

“These categories were chosen to meet the requirements of a large variety
of use cases and to facilitate mapping among IMS and other relevant
specifications.”

According to [Smythe et al. 2001], the learner information is divided into follow-
ing segments:

• Identification

• Goal

• Qualification, Certifications and Licenses (QCL)

• Activity

• Interest

• Competency

• Accessibility

• Transcript

• Affiliation

• Securitykey

• Relationship

The Identification segment holds the basic information that helps to identify a
person. Elements like name, address, e-mail, etc., are contained within this seg-
ment. Further, biographic and demographic data, which is relevant in the context
of learning should be noted here as well.

Personal goals and ambitions are stored within the Goal segment. The status of
each item in this segment can be tracked and an encapsulated structure allows to
store sub-goals.

The Qualification, Certifications and Licenses (QCL) segment reflects the ac-
complishments already fulfilled, combined with a structure where the source of the
QCL and its level is handled. An example would be “journeyman, plumber”.

51

4.5 IMS Learner Information Package 52

Figure 4.4: The IMS Learner Information Package (LIP) Core Segments. [Smythe
et al. 2001]

The Activity segment contains training or education work of the learner. It is not
limited to traditional education institutions. The Activity segment is kept flexible
to allow the coverage of different activities. This segment does not just simply
record activities and outcomes, in fact it offers the ability to record the digital
representation of the activity, like e.g. a code sample or the digital representation
of a painting in the field of art.

Interest represents hobbies of the learner and other leisure time activities. The
content may be related to the QCL data and may also include digital representations
of the activities.

The Competency segment holds information about abilities or skills the learner
has gained. It is possible that these skills are connected to other information from
the Activity and the QCL segment.

General access to the learner information is stored in the Accessibility segment.
Such accessibilities are defined by language capabilities, disabilities, qualifications
and learning preferences. Learning preferences include cognitive preferences such as
learning styles, physical preferences (for example a preference for a large font) and
technological preferences such as a preference for a particular operating system.

The Transcript segment is a placeholder for standards from other organizations.
It enables the concept of storing records in external data formats. As an example
[Smythe et al. 2001] mentions the US University Academic Transcript. Further, it
is possible to store such transcripts as PDF documents.

Descriptions of the organizations, which are related to the learner, are stored
within the Affiliation segment. This may include for example work groups, profes-
sional association and clubs where the learner has a membership.

Passwords and security keys are hold in the Securitykey segment, which is then
used during the transaction of learner information. Before a transaction is processed,
it is checked for granted rights stored in the Securitykey segment.

Since the core structures of IMS LIP do not include relations or links between

52

4.5 IMS Learner Information Package 53

core segments themselves, the Relationship segment is needed to specify these con-
nections. This leads to a simplified administration of the links, since only the Rela-
tionship segment is needed to manage such connections. The Relationship segment
is used to store the description of the relations between data in other segments.

The second term used to describe the IMS LIP structure is Element. Elements
are described in the following sub-section.

Elements

An element can be seen as a part of a segment and can be specified as data types
(for example language strings) or as recursive hierarchical structures. Elements also
support referencing mechanisms, such as internal references, external references and
references described by a Universal Resource Identifier (URI).

The specification of the IMS LIP standards covers a lot of different data elements
to be able to support a wide range of requirements by different learning environ-
ments. However, IMS LIP was designed to offer ways for supporting specific needs of
the actual implementation. Thus, the implementation has the possibility to extend
an element by its own needs.

4.5.2 XML Schema

IMS LIP uses an XML schema, rather than a Data Type Definition (DTD), as the
binding. This section shows how the structure of IMS LIP is implemented in XML.
It is possible to define element names within the document by using XML schemes
[Smythe et al. 2001], but the opportunity of using other bindings is not excluded.

The description of the used XML schema by IMS LIP can be found in [Smythe
et al. 2001]. This document is also the basement for this section.

The XML schema defines elements, the content of these elements and their at-
tributes. Further, it defines the vocabulary used within the IMS LIP standard. A
short example of how IMS LIP looks like is given in Listing 4.1.

<language>
<typename>

<ty source sourcetype=” imsde fau l t ”/>
<tyva lue>German</ tyva lue>

</typename>
<contentype>

< r e f e r e n t i a l>
<i ndex id>l anguage 01</ index id>

</ r e f e r e n t i a l>
</ contentype>
<p r o f i c i e n c y profmode=”OralSpeak”>Exce l l en t</ p r o f i c i e n c y>
<p r o f i c i e n c y profmode=”OralComp”>Exce l l en t</ p r o f i c i e n c y>
<p r o f i c i e n c y profmode=”Read”>Good</ p r o f i c i e n c y>
<p r o f i c i e n c y profmode=”Write”>Poor</ p r o f i c i e n c y>

</ language>

Listing 4.1: An example of a small portion of a LIP record being used to record
preference information about the learner. In this case language proficiency.

The following section deals with the XML binding used by IMS LIP in detail.

53

4.5 IMS Learner Information Package 54

XML Binding Description

This section describes the XML format, proposed in the IMS LIP standard by pick-
ing out some of the main elements such as <learnerinformation> and some of
its sub-elements like <identification>, <transcript> and <securitykey>. This
structure can be seen in form of a tree in Figure 4.5.

Figure 4.5: <learnerinformation> elements [Smythe et al. 2001]

The <learnerinformation> element is the outermost container for the learner
information. There is only one <learnerinformation> element in each XML file.
The information within this element is specified as the collection of segments in IMS
LIP, which are already discussed above in Sub-section 4.5.1. The content of the
complete <learnerinformation> element can be spread over several XML files to
facilitate the exchange of the information.

The learnerinformation element contains the following elements:

• <comment> This element contains the comments that are relevant to the
structure as a whole. It occurs not more than one time within the
<learnerinformation> element but is not necessarily a part of it.

• <contentype> Contains the content meta-data description concerning the in-
dex for the data, access rights and timestamps. It occurs zero times or once
within the <learnerinformation> element.

54

4.5 IMS Learner Information Package 55

• <ext learnerinfo> This element contains the extensions of the
<learnerinformation> element. It occurs zero or more times within
the <learnerinformation> element.

• The eleven Learner Information Segments (see Sub-section 4.5.1):

– <identification>

– <goal>

– <qcl>

– <activity>

– <competency>

– <transcript>

– <accessibility>

– <interest>

– <affiliation>

– <securitykey>

– <relationship>

The <identification> element contains information to identify the learner.
There is only a single instance of the <identification> element within each
<learnerinformation> element. The types of information included are names,
addresses, contact information, demographics and representative agents (see Figure
4.6).

To visualize the <identification> element see Listing 4.2 where an example of
the <name> element is shown.

Figure 4.6: <identification> elements [Smythe et al. 2001]

55

4.5 IMS Learner Information Package 56

<name>
<typename>

<ty source sourcetype=” imsde fau l t ”/>
<tyva lue>Pre f e r r ed</ tyva lue>

</typename>
<contentype>

< r e f e r e n t i a l>
<i ndex id>name 01</ index id>

</ r e f e r e n t i a l>
</ contentype>
<partname>

<typename>
<ty source sourcetype=” imsde fau l t ”/>
<tyva lue>F i r s t</ tyva lue>

</typename>
<t ex t>Bob</ text>

</partname>
<partname>

<typename>
<ty source sourcetype=” imsde fau l t ”/>
<tyva lue>Last</ tyva lue>

</typename>
<t ex t>Dylan</ text>

</partname>
<name>

Listing 4.2: Example of the <name> element

The <transcript> element is used to store the summary records of the academic
performance at an institution. A tree representation of the <transcript> element
can be seen in Figure 4.7. This information may be hold in an undefined level
of detail. Thus, there is no specified structure for a transcript. Each entry of a
transcript records uses a separate <transcript> element.

Figure 4.7: <transcript> elements [Smythe et al. 2001]

At last, the <securitykey> (see Figure 4.8) is described. This segment defines
and controls the levels of privacy and security for a specific learner. Each key or
entry is stored in a separate <securitykey> element.

4.5.3 Data Protection

As already mentioned in Sub-section 4.5.1, IMS LIP enables the inclusion of mech-
anisms for maintaining privacy and security by providing the Securitykey segment.

56

4.5 IMS Learner Information Package 57

Figure 4.8: <securitykey> elements [Smythe et al. 2001]

However, the specification of the IMS LIP standard does not provide any solution
or restrictions how privacy and security must or should be handled [Russell 2003].
This has to be defined by the implementation, with respect to the specific needs and
requirements.

4.5.4 Implementations

The website of IMS10 lists organizations and products, which are using IMS specifi-
cations. There are links to the organizations and products, including short overviews
of the implemented and used standards, name of the project/organization, etc.. Cur-
rently IMS indexes four organizations and two projects, which use or support the
IMS LIP standard.

Additionally, [Russell 2003] refers to two projects that use IMS LIP. The first
project is called Southwest Hosts Enhancing Lifelong Learning (SHELL11). The sec-
ond project is Northern Ireland Integrated MLE (NIIMLE12). NIIMLE was launched
in February 2003. According to [Russell 2003], both projects use IMS LIP to offer
students the possibility to take courses and modules from any partner institutions.
After finishing the taken course or module, the credits are added to the students
transcript.

Further, the Joint Information Systems Committee (JISC13) decided that every
participating organization needs to support IMS standards [Olivier 2002] which im-
plies the usage of the IMS LIP standard [Russell 2003].

4.5.5 Summary

Summarizing the information from this section, it can be concluded that IMS LIP
produces a complete representation of learner information for e-learning systems.

10http://www.imsglobal.org/direct/directory.html
11http://www.educationaldevelopment.net/shellproject
12http://www.niimle.ac.uk/
13http://www.jisc.ac.uk/

57

http://www.imsglobal.org/direct/directory.html
http://www.educationaldevelopment.net/shellproject
http://www.niimle.ac.uk/
http://www.jisc.ac.uk/

4.6 Summary and Conclusion 58

Considering the possible binding in form of an XML-schema, IMS LIP provides
abilities to be used by applications in the context of personalization and in every
utilization where structured information is needed.

As depicted in Sub-section 4.5.4, there exist systems which implement or provide
the IMS LIP standard.

For the utilization of IMS LIP in the context of e-learning, [Paramythis and Loidl-
Reisinger 2003] reports that IMS LIP lacks in some way of covering user actions and
interactions with the system. Thus, it can be concluded that IMS LIP alone finds
only small usage in adaptive e-learning where the actions and the skills of the user
regarding the environment are important.

4.6 Summary and Conclusion

The shown standards for learner modeling in this chapter (GESTALT, PAPI Learner
and IMS LIP) model the user from a rather rough point of view. But all of these
three standards provide a progression of the learner model over time. The IMS LIP
standard (see Section 4.5) for example, combines the results of educational activities
in an overview, and provides rather static information about the learner, such as
demographic information.

The presented standards are only of limited use in the context of adaptive e-
learning since the coarse grained level of detail excludes the needed detailed infor-
mation. [Paramythis and Loidl-Reisinger 2003]

According to [Rousseau et al. 2004], adaptive e-learning systems require a history
of the user’s interactions. The system must be able to adapt the content to the need
of the learner. Concerning the necessity in adaptive e-learning of basing adaption
processes onto the knowledge and skills of the learner, a sort of relation, which
represents the status of the learner regarding learning units, is needed.

Following [Paramythis and Loidl-Reisinger 2003], PAPI Learner (discussed in
Section 4.4) can be seen as the only standard that fulfills the requirement of de-
tailed information about the activities of the learner. PAPI Learner has advantages
with respect to this issue because it includes ideas from ITS, where the learner per-
formance is seen as the most important information, as mentioned in [Dolog and
Nejdl 2003].

Although PAPI Learner has its advantages in the context of adaptive e-learning,
it lacks in the topicality and further development of its specification. Since IMS
LIP is based on PAPI Learner, it might be a good reason to take IMS LIP as the
standard when developing a learner modeling system. IMS LIP has its advantages
in its topicality (the current version was released in January 2005), in providing an
extensible structure and in its usability.

After acquiring knowledge about the basic concepts about adaptive e-learning in
Chapter 2, the different aspects of user models and the available modeling techniques
from Chapter 3, and the standards in user modeling described in this section, it is
now possible to take a closer look at the available user modeling systems, which are
introduced in the following Chapter 5.

58

5. State of the Art of User Modeling
Systems

5.1 Introduction

Although the topic of user modeling is not new, the term user modeling itself has
become public in 1980. Previously, characteristics about the user were utilized to
change system behaviors and properties. Early deployment of user characteristics
were made in the fields of information retrieval and dialog systems. Further, there
was no clear distinction between user characteristics components and other system
components. This period is described in this chapter as early user modeling (see
Section 5.2).

The first user modeling system is the “General User Modeling System” (GUMS),
published by Tim Finin in 1986 (see Sub-section 5.2.1). GUMS is not connected
to any specific purpose or part of any system. This can be seen as the basis for
further work and leaded - among other solution approaches - into user modeling shell
systems (see Section 5.3). Shell systems are modeling systems without any specified
purpose or application. Thus, they are manifold applicable compared to the early
information retrieval or dialog systems, where the modeled user characteristics are
strongly connected to the application itself.

The development of the World Wide Web (WWW) entailed the development of
server systems. To satisfy the need of this development for having access to the user
model at every location, user modeling systems were transfered onto servers. User
modeling servers, which are described in Section 5.4, provide the possibility to store
user models centralized and providing access within the connected network.

The depicted user modeling shell systems, user modeling servers and examples
which represent current efforts, form the current state of the art in the field of user
modeling for this thesis.

5.2 Early User Modeling Systems

Early attempts to user modeling have been made in the fields of dialog systems and
human-computer-interaction. As an example of a dialog system, which utilizes a
user model, GRUNDY ([Rich 1979]) is described.

GRUNDY calculates recommendation of books according to its assumptions
about the user’s personal characteristics. Such characteristics include for exam-
ple, educational and intellectual level, preference for thrill, fast-moving plots or
romance, tolerance for descriptions of sexuality, violence and suffering. All these
characteristics are represented by values within a linear scale including associated
certainty ratings. The initialization of the user model is processed by using stereo-
type methods (see Sub-section 3.5.1) based on given answers to questions during the
first usage of the system. For example, from the fact that the user has a male first
name, GRUNDY infers a high sex tolerance and a low one for romance.

59

5.2 Early User Modeling Systems 60

In the early 1980’s, user modeling for user interfaces became popular and is
applied in form of adaptive user interfaces. The applied user models were very
small. Mainly the user models recorded command usage or data access and provided
an automatic response to the frequency of this usage. For example, the inference
was that the more a user uses a certain command, the more it would be likely,
that this user is going to use this command in future. Thus, this command was
placed higher in the command list. There was no attempt to infer or represent any
other information about the user, nor to maintain a long-term representation of user
characteristics. Such user models are necessarily limited because of their localization
to a specific application. [Murray 1987]

The early approaches of user modeling are application-oriented since they store
only relevant information for one application. Further, these user models are not
separated from other parts of the system. There is no explicit functional compo-
nent responsible for gathering and storing information about the user. This step in
development, towards a generic user model system is seen as the beginning of user
model systems, which are not related or involved to any application. The following
section describes the first separate user modeling system.

5.2.1 GUMS

In the year 1986, the “General User Modeling System” (GUMS) [Finin and Drager
1986] was published. GUMS was the first system, which allowed to abstract from the
application system. The term “general” in the name GUMS describes the attribute
of application-independency, which was one motivation for Finin and Drager to
publish their modeling system.

The GUMS system allows to define simple stereotype hierarchies in form of a tree
structure. For each stereotype it is possible to describe facts and rules prescribing
the system’s reasoning about it. The initial stereotype for a user must be assigned
by the application. The rules can be used to derive new information, both definite
and assumed, from the current information about the user. If one fact of an assigned
stereotype is in conflict with an assumption about the user, this assigned stereotype
will be replaced by the next higher one in the hierarchy, which does not include the
troublesome fact.

GUMS supports two types of inference-rules. The certain flag describes infor-
mation, which is definitely true and the default flag describes information, which is
assigned to a user model by default, such as through stereotyping. For example, if
a user is categorized under the stereotype Programmer, which implies that this user
should know what a file is, but there is no explicit data about the user’s knowledge
about files, then the user knows what a file is by using the default flag. This in-
formation is as long valid until a contrary information will appear. On the other
hand, if the user is queried about his knowledge about files, no default information
is needed and the assigned property is marked with certain flag.

60

5.2 Early User Modeling Systems 61

Further, GUMS accepts and stores new facts about the user, which are provided
by the application system (see Figure 5.1). Further, GUMS verifies the consistency
of new data with the currently stored data. If an inconsistency is found, the ap-
plication system will be informed by a response to the new information action. At
runtime, GUMS answers questions of the application concerning the currently held
assumptions about the user.

Figure 5.1: Architecture of a General User Modeling System [Finin and Drager 1986]

[Finin and Drager 1986] presented a simple architecture for a general user model-
ing utility which is based on the ideas of a default logic. Although GUMS was never
used together with an application system, it made the basis for later user modeling
systems. [Kobsa 2001a]

This section describes some aspects of the history of user modeling systems. Basi-
cally, until the publication of GUMS there was no explicit user modeling component.
The required information was stored and spread over several system components.
Thus, the user model was only applicable for this specific system. Since building a
user model takes a lot of sophistication and efforts, general user modeling system or
so-called user modeling shell systems were introduced.

61

5.3 User Modeling Shell Systems 62

5.3 User Modeling Shell Systems

User modeling shell systems provide integrated techniques, which are often used
by user modeling components. The developer of a user model should be able to
arrange an appropriate shell system by choosing the necessary components for the
desired user modeling system. The needed components depend on the application
and are filled with information about the user considering the application domain.
The resulting system will fulfill all requirements for a centralized user modeling
system. Information needed to initialize a user model must still be supplied by the
application system.

In the following sub-sections several extensive user modeling shell systems,
namely UMT, um, PROTUM and BGP-MS are described (see Sub-section 5.3.1
- 5.3.4).

5.3.1 UMT

The User Modeling Tool (UMT) proposed by [Brajnik and Tasso 1994] allows the
specification of stereotypes, which contains descriptions of characteristics of user
groups in form of attribute-value pairs. The stereotypes can be arranged in ar-
bitrary hierarchies whereby inheritance of information to sub-stereotypes is sup-
ported. Every stereotype owns activation conditions (triggers), which define when a
stereotype is applicable to the current user. For detailed information on stereotype
methods see Sub-section 3.5.1.

UMT also provides a rule interpreter that allows to define inferring rules for
user models. Possible contradictions between assumed user characteristics must be
specified explicitly by using these rules. UMT accepts and stores assertions about a
user, which are generated or gathered by the application system. Depending on the
grade of reliability of these assertions it is possible to consider them as constant or as
assumptions, which can be deleted later. Stereotypes with fulfilled activation con-
ditions through preceding assumption add further assumptions, namely attribute-
value pairs that characterize corresponding user groups. Some of these assumptions
can be contradictory. The UMT applies after each change of the user model all
inferring rules (including rules to detect contradictions) to the set of constants and
assumptions. Further, dependencies between inferred assumptions are recorded.

A truth-maintenance-component determines all possible user models. That in-
cludes all consistent sets of assertions, consisting of constants, a selection of assump-
tions and all derivation based on the constants and assumptions. The current user
model is selected by comparing the gained possible user models with given prefer-
ences. Thereby, assumptions from the application are rated higher than assumptions
inferred by stereotypes. If inconsistence with new information occurs later, the as-
sumptions involved in this inconsistence are easy to detect, since the dependencies
are recorded. The set of possible user models can be revised and reevaluated to find
the current user model.

62

5.3 User Modeling Shell Systems 63

5.3.2 PROTUM

The “PROlog based Tool for User Modeling” (PROTUM) was published in [Vergara
1994] and combines advantages of GUMS and UMT (see Sub-section 5.2.1 and Sub-
section 5.3.1). As the name expresses, PROTUM is based on Prolog, which is a
logical programming language. PROTUM contains a dependency management and
a truth-maintenance system like in UMT. Stereotypes are used to infer information.
The hierarchy of the stereotypes is not limited to a tree structure and the managed
assumptions by truth-maintenance system are not based on attribute-value pairs
like in UMT.

PROTUM calculates for each stereotype the activation rate of its triggers and
uses this measure for the activation and the deactivation of stereotypes. Further, the
activation rate of triggers is used to resolve conflicts between inconsistent assump-
tions of two activated stereotypes. For example, if stereotype A has an activation
rate of 80% and stereotype B 93%, then the assumption of stereotype B is used to
infer a particular information in case of a contradiction.

5.3.3 um

um [Kay 1995] is a toolkit for user modeling that represents assumptions about the
user’s knowledge, beliefs, preferences, and other user characteristics in attribute-
value pairs. From the application system’s point of view, um represents a library of
user modeling functions. Thus, it is not an independent user modeling system in a
strict sense.

Every piece of information is formed into components. A component implies
the information accompanied by a list of evidences for its truth and its falsehood.
Further, the source of each component, its type and a time stamp is recorded.
There are 5 different types of components, observation, stereotype activation, rule
invocation, user input and told to the user. [Kobsa 2001a]

um addresses the needs of different consumers or applications of the modeling
system by assigning each um-consumer an individual representation of the user
information. Each um-consumer can define a selection of tools which match its
needs. This allows to create application-related user modeling systems, while the
stored user information within the um modeling shell system is the same for all
um-consumers. [Kay 1995]

The techniques used by the um system include stereotyping and rule based
methods (see Sub-section 3.5.1 and Sub-section 3.5.1).

5.3.4 BGP-MS

BGP-MS1 is a user modeling shell system focusing on modeling the user’s knowledge,
beliefs and goals. [Kobsa and Pohl 1995]

The user modeling shell system receives observation information about a user
from the application system, processes internal classification and calculation op-

1BGP-MS stands for Belief, Goal and Plan Maintenance System.

63

5.3 User Modeling Shell Systems 64

erations based on these observations. Questions from the application system are
answered by assumptions about the user (system beliefs), for example about his
knowledge (user beliefs) or his goals and plans.

BGP-MS works logic oriented like GUMS and UMT (see Sub-section 5.2.1 and
Sub-section 5.3.1). For the acquisition of information for the user model, stereotype
methods, natural language dialogs and questionnaires are used. These techniques
represent the base for later inferring processes. BGP-MS consists of several com-
ponents with different tasks. For example, there exists a specific component for
managing stereotypes, which is responsible for the activation and deactivation of
assigned stereotypes of an individual user model. Further, BGP-MS provides an
integrated suite of knowledge representation mechanisms, which is based on the
SB-ONE2 knowledge-representation tool, for representing its assumptions about the
current user, its domain-specific user modeling knowledge and optionally its general
knowledge about the application domain.

As can be see in Figure 5.2 there are four main components in the shell system
which communicate over the functional interface. The individual user model and the
stereotypes are built upon the representation system which is based on SB-ONE. The
user model developer can manipulate the knowledge of the representation system
through the graphical interface.

Figure 5.2: Internal view of the BGP-MS [Blank 1996]

2SB-ONE is a workbench for the representation of conceptual knowledge, with the emphasis on
applications in natural-language systems. A good description can be found in [Kobsa 1991].

64

5.3 User Modeling Shell Systems 65

An interesting aspect of the BGP-MS is the defined communication protocol
KoNstanz Inter-Process Communication Management System (KN-IPCMS). The
KN-IPCMS is a platform-independent, message-oriented communication protocol
which is used to communicate between an application and the BGP-MS shell system.
In Figure 5.3 there are three types of communication:

1. If the application wants to tell the shell system about an observed believe or
goal of a user, it can send an bgp-ms-tell message to the shell.

2. The message type d-act is used to tell the shell system about an action that a
user has performed in the application.

3. Assumptions about a user are an important information for an application,
so the application can request such an assumption with a bgp-ms-ask message
sent to the shell system, and the BGP-MS can deliver the answer in a bgp-ms-
answer message to the application.

Below the arrows in Figure 5.3, message examples are shown. These messages are
in the belief, goal, plan language (BGPL). For example, the d-act message describes
the execution of the print action on the user documentation.

Figure 5.3: Communication between BGP-MS and the application [Kobsa and Pohl
1995]

The internal knowledge representation of BGP-MS is done by a partition mech-
anism. The whole knowledge is separated into several partitions, which are ordered
hierarchically and allow heredity. The knowledge within partitions is described in
form of predicate logic. A detailed description about the knowledge representation
is beyond the scope of this work and can be found in [Kobsa and Pohl 1995]. The
system can be used as a network server with multi-user and multi-application capa-
bilities. Therefore, the BGP-MS can also be seen as a user modeling server, which
are described in Section 5.4.

65

5.4 User Modeling Servers 66

The presented user modeling shell systems were mainly published in the early
nineties. They were not really applied and distributed, not even in the research
community. One exception is the BGP-MS, which was used outside of the institu-
tion at which it was developed. However, the ideas and methods that were used in
these prototypes, particular the stereotype method and the client-server architec-
ture, made the base for later developments. [Kobsa 2001a]

The following section describes user modeling systems, which are based on a
client-server architecture, where the user modeling system represents the server and
the application system the client.

5.4 User Modeling Servers

The connection of computer by local area networks (LAN) and the spreading of the
Internet reinforce the client-server architecture. With the gained knowledge of the
user modeling shell systems, it became popular to construct user modeling systems
installed on a server. This allows user modeling systems to be used by different
applications in a distributed area.

The first user modeling server described in this section is the Doppelgänger
system (see Sub-section 5.4.1). Doppelgänger is a system for delivering personalized
news. Later, the economy picked up the idea of personalized services using the
World Wide Web and user modeling servers (See Sub-sections 5.4.2 - 5.4.4).

5.4.1 Doppelgänger

Doppelgänger, published by [Orwant 1995], is a user modeling system that can
monitor user actions and detect patterns within these actions. Originally, it was
developed to deliver a personalized daily newspaper. The user characteristics were
used to select the news.

Basically, the architecture of the Doppelgänger system consists of two levels, the
sensor and the server level. The user modeling system gathers data about users from
sensors, makes inferences on those data, and the results available to applications.
Sensors provide data about users and may be either hardware or software. Thus,
the techniques used to extract information from user activities are used within the
sensors. Every sensor has its own specific purpose. For example, one sensor gathers
data about the user’s frequency and duration of computer use or another sensor
provides data about the physical location of the user by using wall-mounted motion
sensors.

To prevent or reduce influence of error prone sensors, Doppelgänger maintains
an accuracy estimation for each sensor. This is used to decide how much confidence
to assign to assertions based on that sensor’s information. Further, the users are
always able, but not forced to interact directly with the user modeling system.

The whole user model is split into several sub-models. Each sub-model covers an
aspect of the user characteristics. Thus, changes in the user model are affecting only
one part of the user model at one time. The information contained in a user model
is encoded in a simple knowledge representation language called Sponge [Orwant

66

5.4 User Modeling Servers 67

1993], which utilizes a LISP-like data structure. Listing 5.1 shows a small part of a
sub-model.

(ob j e c t orwant primary
(ob j e c t b i o g r aph i c a l da t a

(s t r i n g b i nd i n g ” t rue name” ”Jon Orwant”)
(s t r i n g b i nd i n g ”e−mail adre s s ” ” jon orwant@uni . de”)

. . .)
. . .)

Listing 5.1: A small part of a primary sub-model of Doppelgänger containing
demographic data. [Orwant 1995]

Every user model is stored in a UNIX directory where a large amount of files repre-
sent domain sub-models and conditional sub-models. Domain sub-models contain
information about a particular aspect of the user’s behavior (for example, prefer-
ences for personalized newspaper content), whereas conditional sub-models contain
information about the user that replaces domain information when a certain condi-
tion exists. For example, during midday a user might prefer sport news while his
common interests focus on business news. In this example, the condition is a time
period and becomes true during midday and overwrites the user’s domain sub-model
of his common news preferences.

An example for the data coming from a motion sensor is shown in Listing 5.2.
This data indicates that the user orwant is at the place 344 complemented with
time and id of the sensor.

((ob j e c t orwant l o c a t i o n (p lace 344) (time 437986473) (id ac t ive badge))

Listing 5.2: Data from a motion sensor to the server. [Orwant 1995]

Before the raw data coming from the sensors is stored in the user model, it is
modified by so called learning techniques. Doppelgänger provides three different
learning techniques, namely modeling events with linear prediction, modeling inter-
ests with beta distribution and modeling location with Markov models. The linear
prediction is used to predict the next occurrence of events. For example, it predicts
the next time when a particular user will read the newspaper. To estimate the favor
for different news topics, the beta distribution is used. Already gathered information
about preferences for particular news topics are used to calculate the interest in a
specific topic. To model the location of the user, the Markov model is utilized. The
general purpose of the location tracking and modeling is to predict future user loca-
tions. A Markov model consists of a set of states, a matrix of transition probabilities
and a matrix of output probabilities. A state represents the location of the user (e.g.
a room, a corridor, or a desktop). Given a particular state, a Markov model de-
scribes a particular probability that the user will walk (transition) to another room
(state) by the transition probabilities matrix. The matrix of output probabilities is
ignored for location modeling by the Doppelgänger system. [Orwant 1995]

Another interesting aspect is the possibility to have several Doppelgänger model-
ing systems running in different locations. They are able to exchange their gathered
information of a user or a community. Communities in Doppelgänger are similar to
common stereotypes as described in Sub-section 3.5.1. If there is some information

67

5.4 User Modeling Servers 68

about a user not available in his user model, default information from communi-
ties is used to supply this needed information. Some examples for communities
are students, children or artists. All together there are 22 communities available
in Doppelgänger. The difference between communities and stereotypes is that the
membership or assignment to a community is not binary (member or no member).
Each community has members with different grades of membership. A grade shows
the conformity of a particular user to a community. A further difference is that a
community represents the combination of its constituent user models, which means
that a community represents an average of all member characteristics. [Orwant
1995]

Each user may belong to many different communities at the same time. When a
default information is required for a user model X, each community votes an answer.
The importance or strength of each vote is proportional to the similarity between
the community and the user model X, the grade of membership. The resulting
assertion is calculated by a weighted average of all the users and community models
according to the similarity to the user model X.

5.4.2 Personis

Personis, published by [Kay et al. 2002], is a user model server with focus on user’s
privacy, control and ability to scrutinize her/his user model. A scrutable user model
allows users to see the details of the information held about them and the processes
used to gather it. Giving the users control over their scrutable user model allows
them to make changes or enter their own estimations. Personis was mainly developed
for adaptive hypertext applications but it is not limited to such applications.

The underlying user model is based on the um toolkit where information about
a user is separated and stored in components (see Sub-section 5.3.3). The collabo-
ration of personis with adaptive hypermedia systems (AHA 1 - AHA N) is shown
in Figure 5.4. The architecture is divided into four parts, namely the server it-
self, generic scrutiny tools that enable the user to see and control their own user
model, a collection of adaptive hypertext applications and the views, which are the
conceptual, high level elements shared between the server and each application.

The generic scrutiny interface allows the user to access and modify her/his user
model without the usage of an adaptive hypertext application. This scrutiny inter-
face is application-independent. The adaptive hypertext applications are split into
two parts. First, the core of the adaptive hypertext which enables the user to do
some task such as ‘learn to program’ and second, the scrutiny interface associated
with ‘that’ adaptive hypertext application. The user might want to scrutinize the
adaptivity within the context of the adaptive hypertext application. The views of
the user model available to each adaptive hypertext application define the compo-
nents used by this application. For example, the AHA 1 in Figure 5.4 might need
just a few components of the user model. The architecture allows the definition
of a view that represents just these components. Another application could use a
different view. The application developer defines the needed components of the user
model required by the application and describes these components in form of a view.

68

5.4 User Modeling Servers 69

Figure 5.4: Personis Collaboration Architecture [Kay et al. 2002]

The privacy issue is addressed by allowing the user to define, which applications have
access to particular components of the user model. The user can also control the
information sources that should be made available to each application. The access
control information is stored with the user model. [Kay et al. 2002]

The internal architecture of the Personis server is shown in Figure 5.5. The user
model information is stored in an object oriented database (OODB), which makes
it possible to distribute the data among several connected servers. This allows
to allot required processing power and storage space over several machines. The
structure of the user model is represented as in the um toolkit (see Sub-section
5.3.3). Components describe parts of the user model and are connected to a list of
evidence. Every evidence is stored with the information about its source. Contexts
allow to structure the components in a hierarchical structure. Further, views are
stored in form of objects in the OODB. The object database also holds the access
control information in form of access rights for applications and users. Each aspect
can be controlled by assigning read and write rights.

The communication between server and client operates with remote method calls
using the XML-RPC3 protocol over secure socket layer (SSL). Additionally, the
server provides a management interface implemented with HTML, HTTP and SSL
protocols and accessible from any web browser. The purpose of the resolvers is to
interpret the data stored in the generic user model for a specific application. The
evidence of a component is interpreted and the value of this component is concluded.
It is possible to associate a specialized resolver for a particular application. As shown

3See http://www.xmlrpc.org for details

69

http://www.xmlrpc.org

5.4 User Modeling Servers 70

Figure 5.5: Personis Internal Server Architecture [Kay et al. 2002]

in Figure 5.5, one client adaptive hypertext system might use one certain resolver.
Another client might use another and therefore these two clients interpret the same
component differently. [Kay et al. 2002]

To summarize, the Personis user modeling server uses the um toolkit as the un-
derlying conceptual foundation for the user model. Additional features like scrutiny
interfaces, views, OODB and resolvers allow the usage of Personis as a versatile user
modeling server. Interesting aspects of Personis are scrutable user models, privacy
of user information and the possibility of distributing the user modeling server over
several computers.

5.4.3 LDAP-based User Modeling Server

Most of the described user modeling servers so far, do not focus on storage and data
handling. An exception is the user modeling server based on the Lightweight Direc-
tory Access Protocol (LDAP), which was published by [Fink 2003]. This modeling
server uses a directory structure, namely LDAP, to store and manage data about
the users. LDAP directories can manage information that is spread across a network
of servers by linking this information through referrals.

The user modeling server is based on an LDAP directory server that is com-
plemented by several pluggable user modeling components and can be accessed by
external clients, as shown in Figure 5.6.

The core of the architecture is the Directory Component with its sub-systems
Communication, Representation and Scheduler. The Communication sub-system
handles the communication with external clients of the user modeling server and
with the User Modeling Components which are internal clients of the Directory
Component. Each User Modeling Component performs a dedicated user modeling

70

5.4 User Modeling Servers 71

Figure 5.6: Overview of the LDAP-based User Modeling Server Architecture [Fink
2003]

task, such as for example domain-based inferences. The task of the Representation
sub-system is to manage the directory contents, which is mostly information about
the user. Main tasks of the Scheduler are to wrap the underlying LDAP server
(marked in gray in Figure 5.6) with a component interface and as an interface be-
tween the different sub-systems and components of the user modeling server. The
Directory Component and the User Modeling Components communicate via CORBA
and LDAP. The User Modeling Components perform specific user modeling tasks.
The amount of these components is not restricted. A proposed composition of com-
ponents by [Fink 2003] describes the utilization of a statistics-based User Learning
Component, a similarity-based Mentor Learning Component and a rule-based Do-
main Inference Component. The User Learning Component learns user interests
and preferences from usage data, and updates individual user models. The Mentor
Learning Component predicts missing values in individual user models from models
of similar users and the Domain Inference Component infers interests and prefer-
ences in individual user models by applying domain inferences to user information
that was explicitly provided by users or implicitly inferred by the other learning
components. [Fink 2003]

The possibility to add self-developed User Modeling Components enables appli-
cations to easily use their own modeling components. The component-based archi-
tecture and the defined interfaces (LDAP and CORBA) facilitate the development

71

5.4 User Modeling Servers 72

and use of such modeling components. Further, the component-based architecture
allows to distribute the complete modeling server over several platforms and ma-
chines. This is an important aspect concerning data management and performance
if this user modeling server is issued for a huge amount of users.

5.4.4 Web Service and Agent-based User Modeling System

At present, a tendency to use Web Services in personalized system can be identified.
An example for a service-based personalized system is published in [González et al.
2005]. In this approach, Web Services are used to implement agents. The complete
system is composed by several agents, where every agent has its own task. Figure
5.7 shows the architecture of this system.

Figure 5.7: Architecture of an Agent-based User Modeling System [González et al.
2005]

The user modeling system consists of several agents and can be viewed with
different detail levels. In the highest level the system is separated into two agents.

72

5.4 User Modeling Servers 73

First, the Web Service Abstract Agent (WSAA) provides capabilities of automatic
discovery of services in the Internet for the user. It can communicate with agent-
based and non agent-based applications. When an application is not agent-based, a
wrapper agent is used for the communication. Second, the Ubiquitous Abstract Agent
(UAA) provides initialization, identification, interoperability, control, coordination
and management of the user preferences allowing a flexible and autonomous human-
agent interaction.

There are basically two ways how the WSAA and the UAA can communicate.
First, the WSAA requests information from the UAA how to deal with a particu-
lar application. Second, the UAA receives information from the WSAA regarding
the success or failure of the application interaction. This information is a kind of
feedback and is used by the UAA to learn about the user interests. Both abstract
agents are designed to be implemented in a distributed environment. Further, the
UAA can be used on a mobile device. [González et al. 2005]

The WSAA is composed by three types of agents, namely Account Agent,
Provider Agent and Consumer Agent. The Account Agent maintains a list of appli-
cations, which can be connected to the user modeling system. The Provider Agent
uses information about the context and the Repository Agent from the UAA to find
new interesting or possible applications. A user requested application is searched
and discovered by the Consumer Agent. Further, the Consumer Agent communi-
cates with the Provider Agent and creates appropriate Application Agents for each
possible application. [González et al. 2005]

The architecture of the UAA is divided into four types of agents, namely Control
Agent, Creator Agent, Application Agent and Repository Agent. The Control Agent
has three tasks:

• user login,

• dialogue with the user regarding interaction with an application and

• request the Creator Agent to generate an Application Agent to manage the
application.

Tasks of the Creator Agent are to acquire the user profile, deliver this information
to the Repository Agent, generate Application Agents and register applications with
the usage of the Control Agent. An Application Agent is dynamically created when
an interaction between a user and a particular application takes place. The number
of Application Agents varies from user to user. The last agent, the Repository
Agent provides database storage procedures to save the information about the user
represented in the user model. [González et al. 2005]

A very interesting aspect of this multi-agent user modeling system is its possibil-
ity to work in a distributed environment. Further, this environment can also include
mobile devices. To provide such an interoperability, the agents are implemented by
using Web Services. This technology (i.e. set of standards) allows to spread the
system over several different computers and devices.

The described user modeling servers in this section are only some examples among
many others. There are further user modeling servers with a commercial utilization

73

5.5 Summary and Conclusion 74

like Group Lens [Konstan et al. 1997], Personalization Server [ATG 2005] or Learn
Sesame [Caglayan et al. 1997]. Commercial modeling server are mainly applied for
adapting web sites of e-commerce applications and therefore based on Web Service
technologies. The utilized user modeling methods within these solutions are collabo-
rative filtering algorithms, rule-based methods, stereotyping and sometimes overlay
methods, which are described in Section 3.5.

User modeling servers make it possible to use a centralized source for informa-
tion about a user. Such a server can be used by several application systems not
necessarily running on the same platform. A distributed application system archi-
tecture may use a modeling server within a network. This emphasizes the role of
privacy and security. Further, since many different application systems are using the
same user modeling server, aspects like performance, scalability and extensibility be-
come important and are addressed by different solutions. For example, Personis (see
Sub-section 5.4.2) allows to distribute the data over several platforms and supports
privacy by allowing to set privacy tags for each part of the user information.

User modeling standards, which are described in Chapter 4 are rarely supported
by user modeling servers. One example for a standard-based user modeling system
is OntobUM [Razmerita et al. 2003]. OntobUM uses IMS LIP (see Section 4.5) to
structure the explicit user model. Additionally, IMS LIP is extended by a behav-
ior concept, which describes characteristics of users interacting with an application
system. OntobUM was developed for a knowledge management system to provide
personalization, expertise discovery, networking, collaboration and learning.

The following section gives a summary of this chapter and emphasizes interesting
facets of user modeling systems.

5.5 Summary and Conclusion

In the beginning of this section a short description about the history of user modeling
systems is given. This emphasizes that user modeling is not a “young” topic but has
gained popularity in the last years because of the usage in recommender systems.

The user modeling system GUMS (see Sub-section 5.2.1) can be seen as the
first application-independent system. It focuses on a versatile usage by applying
stereotyping and rule-based methods. Together with the user modeling shell sys-
tems described in Section 5.3, they represent the base for the nowadays popular
user modeling servers. The modeling techniques applied by the user modeling shell
systems are the same as those used in user modeling servers. For example, the um
modeling shell system (see Sub-section 5.3.3) is used by the Personis server (see
Sub-section 5.4.2). Personis embeds the um shell with a server structure combined
with a database storage.

The present development efforts affect mainly user modeling servers. There are
intentions to provide scrutiny for user models (see Sub-section 5.4.2). A scrutable
user model allows the user to access and to modify an own user model. Further,
intentions can be identified to optimize the data storage, as described in Sub-section
5.4.3 or to provide interfaces to enhance the user modeling system by adding user

74

5.5 Summary and Conclusion 75

modeling components. In this case, a user model is distributed over several sub-
models. A sub-model describes a particular “part” of the user (for example demo-
graphic data or learning styles). One sub-model is offered by one component. This
can be achieved by using a component-based architecture. It is simply possible to
add further sub-models by developing and adding components which implement the
required sub-models.

Other developments focus on the usage of service-based architecture, which is
mainly done by using Web Services (see Sub-section 5.4.4). According to [Tsalgati-
dou and Pilioura 2002], the advantages of a service-based architecture are:

• easy and fast deployment,

• interoperability,

• just-in-time integration and

• reduced complexity by encapsulation.

New services can be developed by reusing or combining existing services. This
allows an easy and fast deployment of new functionality. Since the interfaces of
services are well defined and different communication protocols are available by the
used framework, any service can interact with other services. By limiting what is
absolutely required for interoperability it is possible to develop services which are
truly platform- and language-independent. This means that developers do not need
to change their development environments in order to produce or consume services.
Furthermore, by allowing legacy applications to be exposed as services, the service-
based architecture easily enables interoperability between legacy applications or be-
tween services and legacy applications. Service-based systems are using discovery
mechanisms to find and arrange available functionality. Thus, such systems are self
configuring and allow a just-in-time integration of new applications and services.
A very important point is the reduced complexity by encapsulation of components,
where components are packed into services. This reduces the importance of how a
component is implemented and lies the focus onto the behavior of the component.
This reduces system complexity, as application designers do not have to worry about
implementation details of the services they are invoking.

To be able to combine the advantages of a component-based user modeling sys-
tem with the advantages of using a service-based architecture an appropriate soft-
ware development method must be found. Taking user modeling components and
packing them into services leads to the usage of a service-oriented architecture.
Therefore, an appropriate system architecture should use a service oriented frame-
work. Different service-oriented frameworks are described in Section 6.2.

Concerning user modeling standards, only some user modeling systems (for ex-
ample OntobUM [Razmerita et al. 2003]) work with the standards described in
Chapter 4. In such cases, the stored data is arranged according to the standard
specification. In many user modeling systems, the user model data is stored in a
self-developed schema. This is a problem if two different user modeling systems are

75

5.5 Summary and Conclusion 76

compared. For every system, the gathered data about a user has to be extracted
from the user model.

The following chapter describes basic thoughts related to the solution approach
proposed by the author of this thesis. The background knowledge about different
topics is gained from the topics examined so far in this document, like user modeling
techniques (see Chapter 3), available standards (see Chapter 4) and the described
systems in this section.

76

6. Basic Reflections for the Solution
Approach

6.1 Introduction

This chapter depicts different points of interest which must be clarified before start-
ing with the proposed solution for this thesis. The first question to be answered is the
optimal technology to develop the user modeling system (see Section 6.2). Secondly,
the topic privacy and security for user modeling systems is examined concerning
available standards, techniques and possible solutions (see Section 6.3). Finally, the
necessary levels and the organization of learner profiles and learner models are de-
scribed (see Section 6.4). In the last section, the conclusion states the outcome in
form of a recommendation for the solution approach.

6.2 Service-oriented Architecture

The examination of different user modeling systems (see Chapter 5) recommends
the utilization of a service-oriented architecture (SOA) for the implementation of
the proposed solution, which is described in Chapter 8.

This section starts with a description of SOA. The terms, concepts and compo-
nents, which are related to SOA are depicted. After this introduction into SOA, Web
Services, services-oriented framework and the principles of service-oriented software
design are described (see Section 6.2.1 - 6.2.3).

SOA has become popular in the last few years due to Web Services. The mo-
tivation to develop another programming paradigm was the insufficiency of object-
oriented architecture to be able to reuse functionality and not just code. Further
motivations were the needs to deal with distributed software, application integration,
varying platforms, varying protocols, various devices, the Internet, etc. Addition-
ally to object-oriented software design, component-based architecture is used by
SOA to provide reusable functionality. Instead of replacing these two well known
and proofed software development techniques, SOA merges them and combines their
advantages. This is done by following the application architecture schema shown in
Figure 6.1. There are less details of the implementation visible as one gets closer to
the user of the application who interacts with the services and therefore does not
need to know anything about the used objects or components. [Hashimi 2003]

Along with SOA comes a new vocabulary describing the key concepts. According
to [Hashimi 2003], this new terminology embraces concepts, such as the following:

• service,

• message,

• dynamic discovery,

• and Web Services.

77

6.2 Service-oriented Architecture 78

Figure 6.1: Application implementation layers: services, components, objects [En-
drei et al. 2004]

Service: A service in SOA represents a unit of functionality. Further these services
fulfill three conditions. First, the interface for the service is platform-independent.
Second, the service can be located and invoked dynamically and third, the service
has and maintains its own state and is self-contained. [Hashimi 2003]

Due to the platform-independence, the service consumer is able to connect and
use the service independent of the location, the operating system and the program-
ming language. The concept of dynamic discovery states that a discovery service
(for example, a directory service) is available (see Figure 6.2). Such a directory
service provides a look up mechanism to service consumers where they can find a
service-based on given criteria. For example, consumer A is looking for a database
access service. In this case consumer A might connect to the directory service and
might get a list of available services which offer connections to a specific database.

Figure 6.2: Directory service [Hashimi 2003]

78

6.2 Service-oriented Architecture 79

Message: The communication between service providers and consumers is estab-
lished by using messages. Every service publishes an interface contract. This con-
tract defines the behavior of the particular service, its acceptable messages and
the possible return messages. Since the interface contract must be platform- and
language-independent it is necessary to apply a technology which is not restricted
to a specific language or platform. In most cases XML is used to construct these
messages. XML offers the required versatility to clearly define messages. [Hashimi
2003]

Dynamic Discovery: At a high level of abstraction, SOA consists of three core
parts, namely service providers, service consumers and the directory service. The
roles of service providers and consumers are obvious but the task of the directory
service needs some further explanation. The directory service is used to mediate
between service providers and consumers. Service providers are registered in the
directory service and the service consumers are now able to query the directory
service to find the appropriate service provider. Utilizing a directory service provides
a dynamic discovery of available services. This allows to decouple consumers from
service providers and therefore the service consumer is able to choose the service
provider at runtime. [Hashimi 2003]

Web Services: Web Services are not an underlying concept of SOA. They just
represent one kind of realization of the SOA concept. Nevertheless, SOA has become
very popular because of Web Services. Web Services are described in more detail in
Section 6.2.1.

After explaining the terms which are related to SOA , two different types of service-
oriented design approaches are identified. First, the Web Service concept (see Section
6.2.1), and second, service-oriented frameworks (see Section 6.2.2). The following
two sections focus on these two approaches.

6.2.1 Web Services

As already stated, Web Services are a relatively new technology and are accepted as
an implementation of service-oriented architecture. The reason for this fast gain in
publicity is the ability to provide a distributed computing approach by integrating
extremely heterogeneous applications over the Internet [Endrei et al. 2004]. This
integration relies on the complete independency of programming language, operating
system and hardware of Web Services. The World Wide Web Consortium (W3C)
works with the following definition of a Web Service:

“A Web Service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web Service in a manner prescribed by its de-
scription using SOAP messages, typically conveyed using HTTP with

79

6.2 Service-oriented Architecture 80

an XML serialization in conjunction with other Web-related standards.”
[Booth et al. 2004]

As this definition implies, a Web Service is mainly based on open technologies such
as:

• eXtensible Markup Language (XML)

• Simple Object Access Protocol (SOAP)

• Universal Description, Discovery and Integration (UDDI)

• Web Services Description Language (WSDL)

Considering the W3C definition of Web Services and the above mentioned open
standards, a Web Service is basically a SOA service with at least two additional
constraints. First, the interfaces must be based on Internet protocols such as HTTP,
FTP and SMTP. Second, the messages must be in XML format, except for binary
data attachment. However, using this open standards and fulfilling these restrictions
allow also interoperability between different company solutions, which represents one
of the reasons why Web Services have become so popular.

An illustration of operations, the components providing them and interactions
used by the concept of Web Services are shown in Figure 6.3. Basically, the figure
represents the same concept as shown in Figure 6.2 except that interactions and
components are restricted to the definition of Web Services.

Figure 6.3: Web Services roles, operations and components [Kreger 2001]

The service provider is the platform that hosts access to the service while the
service requestor or consumer is looking for and invoking or initiating an interaction

80

6.2 Service-oriented Architecture 81

with a service. The service requestor role can be played by a browser driven by a
person or a program without a user interface, for example another web-service. The
service registry is a searchable registry of service descriptions where service providers
publish their service descriptions. Service requestors are able to find services and
obtain binding information. Publish, find and bind are the operations, which are
performed by the different roles. The service provider must publish the particular
service so that the service requestor is able to find this service. In the bind operation
the service requestor invokes or initiates an interaction with the service at runtime
using the binding details in the service description to locate, contact and invoke the
service. The standards WSDL and the UDDI are used to find and publish services.
[Kreger 2001]

The Web Service technology is the logical progression of object-oriented and
component-based design patterns. With their loose coupling between functional
components and usage of open standards, it is possible to develop software which uses
today’s ubiquitous WWW. But applications are often used within closed networks
like the Intranet. Therefore it is necessary to distinguish between SOA and Web
Services. Web Services implement the concept of SOA within the environment of
the WWW.

Before starting with the development process of a service-oriented application it
is useful to look for already available frameworks. By applying a service-oriented
framework the development process can be reduced by the already available services
for communication, security, lookup, and so forth. The following section describes
available frameworks which allow to develop service-oriented applications.

6.2.2 Service-oriented Frameworks

Service-oriented frameworks offer an environment to deploy and run self developed
software in a service-oriented manner. There exist numerous frameworks for many
different purposes, platforms and operating systems. Basically, every framework
works with components which represent a part of the functionality and pack this
component in a service. Besides several commercial initiatives and specifications,
the following section focuses on OSGi and Openwings. For both of these framework
specifications there exist free available implementations.

OSGi

OSGi stands for Open Service Gateway initiative and is a coalition of more than
70 companies which developed a common open standard for service gateways. The
OSGi specifications define an environment, which allows to run services. These
specifications are currently available in version 3, which was published in March
2003 [OSG 2003].

81

6.2 Service-oriented Architecture 82

The core component of the OSGi specifications is the OSGi framework. The
framework provides a standardized environment for applications (called bundles).
The framework is divided in a number of layers (see Figure 6.4):

• Execution Environment

• Modules

• Life Cycle Management

• Service Registry

Figure 6.4: Architecture of the OSGi framework [OSG 2003]

Additionally, a security system is contained, which is available for all these layers.
This security system is based on the Java 2 security model.

The execution environment is the specification of the Java environment. For
example, all Java 2 configurations and profiles (like J2SE) are allowed execution
environments. The Modules layer defines the class loading model. OSGi is based
on Java but is extended by modularization. Therefore, compared to Java, where
normally a single classpath contains all the classes and resources, by means of the
OSGi Modules layer it is possible to add private classes for a module as well as
controlled linking between modules. The Life Cycle layer adds bundles that can be
dynamically installed, started, stopped, updated and uninstalled. Bundles represent
a software component and rely on the module layer for class loading. The Service
Registry provides cooperation for bundles. Bundles can cooperate by using class
sharing techniques or by using the Service Registry, which allows to share objects
between bundles. There are several events defined to handle the life cycle of services.
For example, if a service is started the started event is thrown. [OSG 2003]

82

6.2 Service-oriented Architecture 83

Since OSGi represents the specification of a service-oriented framework, there
exist several implementations of this specification. Beside many commercial imple-
mentations there are some free and open source implementations available, namely
JEFFREE1, Oscar2 and Knopflerfish3.

Openwings

Openwings4 was founded by General Dynamics Decision Systems5 and Sun Microsys-
tems6 in the year 1999. The current section gives an overview over the Openwings
architecture and its basic concepts.

Openwings defines its framework as follows:

“Openwings is a set of open systems specifications for a framework that
enables the development of highly available, secure, distributed systems
for mission critical applications. The initial implementation of this
framework utilizes Sun’s Jini technology to provide ad-hoc integration of
system components as well as increasing the interoperability in a ‘systems
of systems’ environment.” [Openwings 2003]

In other words, Openwings is a service-oriented framework which enables the devel-
opment of components. Components are independent from each other and are able
to consume or provide a service. The communication between components follows
the client-server concept where common contracts specify the form of communica-
tion.

The Openwings architecture (see Figure 6.5) was designed to enable the devel-
opment of a service-oriented network-based system. Such systems are independent
from middleware, databases and platforms. The base is represented by the Compo-
nent service. A Component service offers all needed commands to handle a service.
Connector services are used to establish connections between components (between
a service provider and a service consumer). Install services handle the installation
of components. To be able to unite several services it is possible to use the Context
service. The same properties and policies are assigned to every service within a
context. A policy describes a component. There can exist several policies for one
component, e.g. a security policy or an installation policy. The security in Open-
wings is covered by offering three different types of Security services, namely Code,
Transport and Service security. [Bieber and Carpenter 2001]

A reference implementation of the Openwings specifications is currently available
in version 1.1 but not as open source. Openwings is described in more detail in
Chapter 7.

As described in this section it is likely to use a service-oriented framework for the
development of service-oriented software. This saves a lot of development time

1http://jeffree.objectweb.org/
2http://oscar.objectweb.org/
3http://www.knopflerfish.org/
4http://www.openwings.org/
5http://www.generaldynamics.com/
6http://www.sun.com

83

6.2 Service-oriented Architecture 84

Figure 6.5: Openwings Architecture [Bieber and Carpenter 2001]

and resources even though the framework may not realize exactly all the features
which would be ideal for a particular software project. Therefore, an appropriate
framework has to be chosen. After a framework has been chosen, the process of
software design can be started. Since SOA does not come along with well-defined
software development patterns, the next section describes rules and ideas on how
the software design process may be carried out.

6.2.3 Service-oriented Software Design

As already stated in Section 6.2, SOA is based on software components. This means
that at least one software component is packed into a service. A service can simply
be defined as

“... a group of related components that carry out a given business process
function.” [Romand et al. 2005]

Thus, SOA focuses on the development of services rather than small components.
These services provide a higher level of abstraction from a functional point of view.
Further, the motivation to develop service-oriented applications is that the parts
of these applications (services) can be reused by other application. The smaller a
service is and the less functionality is packed into a service the more a service is
reusable. On the other hand, dealing with a whole bunch of small services increases
the complexity and the maintenance affords to keep the application running. There-
fore, it is necessary to consider several parameters within the design process when
the functionality of services and the components are defined. This point is taken
for further investigations and two different, contradictory solution approaches are
defined in Chapter 8. The first approach is following the concept of packing one
component into one service which leads into many services. The second approach
defines logical and functional units, and puts them together into one service.

84

6.3 Privacy and Security in User Modeling 85

As already stated at the beginning of this section, SOA has become popular by the
introduction and usage of Web Services. But often there is a misinterpretation if
these Web Services are considered as the same as SOA. Web Services are only one
of several possible realizations of SOA concepts based on the WWW infrastructure.
Other realizations of SOA are implementations based on service-oriented frame-
works. These frameworks are valuable since they offer an environment where de-
velopers can focus on the functionality and do not have to care about realization
of service-communication, -lifecycle, -discovery, etc.. But the concern about good
service-oriented software design remains. Beside the guideline that a service should
be able to represent one business process and should consist of components, the
software designers can choose the granularity in which components and therefore
services are realized.

In the next section further important points concerning user modeling systems,
namely privacy and security, are depicted.

6.3 Privacy and Security in User Modeling

Privacy and security are two important topics in the field of user modeling. Since
user modeling is based on the collection of very intimate and personal data about
users it is necessary to protect this information from unauthorized access of systems
and persons.

Security in user modeling is often seen as not a goal itself but as a precondition
for realizing privacy [Schreck 2001]. Nevertheless, the following section describes
privacy and security as separated topics because there are different problems and
solutions to ensure privacy and security.

6.3.1 Privacy

The term privacy was initially defined in 1890 by a judge called Louis Brandeis.
He specified privacy as an individual’s right to be left alone. This definition is to
weak for nowadays application, therefore a better definition of privacy is stated by
[Westin 1970] as follows:

“Privacy is the claim of individuals, groups, or institutions to determine
for themselves when, how, and to what extent information about them is
communicated to others.”

Therefore, concerning a user modeling system, it is necessary that a particular user
is able to adjust his level of privacy by selecting the information which should be
shared and to whom. To realize this requirement a well thought system is needed
to offer privacy to the user.

According to [Schreck 2001], the confidentiality of user model information can
be achieved by processing user model information anonymously or pseudonymously.
The user model information is thus no longer administered as data, which is con-
nected to a user but it remains interpretable and usable for connected application
systems.

85

6.3 Privacy and Security in User Modeling 86

There are several levels of anonymity. Depending on the application of the user
model an appropriate level of anonymity must be selected. [Schreck 2001] lists six
different levels of anonymity ranging from the unambiguous assignment of data to
a person to the complete disengagement of data from the person:

• super-identification,

• identification,

• latent identification (controlled pseudonyms),

• pseudonymous identification (uncontrolled pseudonyms),

• anonymous identification, and

• anonymity.

With super-identification the user is identified using a third-party, which resides
outside the system. This guarantees that no system component is able to counterfeit
the identity. In the level of identification the user identifies himself by demonstrating
knowledge of secret (for example a password) which is compared to the stored value.
By the procedure of latent identification or controlled pseudonyms the user identifies
himself to the system and obtains one of the predefined pseudonyms. This procedure
is often used in box number advertisements. Using pseudonymous identification or
uncontrolled pseudonyms methods let the user enter a unique pseudonym and a
secret when using the system for the first time. Afterwards, the pseudonym and
the secret are used for all subsequent sessions. The system is unable to clarify
the identity of a particular user and thus it is also unable to link the pseudonym
to the user’s identity. This method is used in most web-based services. Through
anonymous identification the user gains access to the system by providing a secret
without revealing his identity. Thus, the system is unable to distinguish between
users which share the same secret. At the highest level of anonymity, the user does
not identify nor authenticate himself to the system. The system is not able to
differentiate between the users. [Schreck 2001]

Comparing the requirements of user modeling with the levels of anonymity, the
pseudonymous identification is the best compromise between privacy demands and
the requirements of user modeling. Pseudonyms also make it possible to link a
user model and the user being modeled without revealing the user’s identity to
components of the user adaptive system or to the user modeling system.

Anonymity and pseudonymity offer advantages for user modeling systems by
limiting the relationship between persons and their personal data. Further, by offer-
ing the user the demanded level of privacy the acceptance of personalized systems
increases. [Schreck 2001]

Beside the privacy which is needed to prevent unauthorized persons or systems
of getting information about a specific person, the second issue in this section is the
security of user information.

86

6.3 Privacy and Security in User Modeling 87

6.3.2 Security

Security deals with the protection of the information itself. Compared to privacy
where access to the information in a user model is limited by the privacy settings,
security concepts are needed to prevent unauthorized access of systems to user mod-
eling systems and data.

The security can be sustained by applying different concepts, namely Denial
of Access or Selective Access [Schreck 2001]. There are two ways how Denial of
Access can be interpreted. First, as a denial of access to the connection between
the user and the stored data, and second, as denial of access to the information of
a particular user. Techniques to provide denial of access to data are anonymity (see
Section 6.3.1) and encryption. Anonymity cuts the relation between the particular
user and the information about him. To protect personal data from inspection
when it is exchanged between the user model and its clients, the information must
be encrypted.

Technologies for data encryption are widely known and applied. The discussion
of such technologies would exceed this work. Thus, in the following section only
the technologies and guidelines which are available to ensure privacy in e-learning
systems are described.

6.3.3 Privacy Technologies

Beside the importance of applying privacy techniques for e-learning systems it is also
necessary to describe this level of privacy. According to [El-Khatib et al. 2003] a user
of an online-learning environment has concerns about privacy, like what information
is gathered and for which purpose. Further interests are how long this information
is kept and if this information is revealed to other companies.

To address these questions the W3C developed the Platform for Privacy Prefer-
ences Project (P3P) [Cranor et al. 2002]. P3P allows web sites to described their
privacy policies in a standardized form, which can be automatically retrieved and
interpreted by the user client. These privacy policies are arranged in a machine-
readable XML format. The user can specify privacy requirements and the web site
can publish its privacy policies, both according to the P3P form. Taking the re-
quested privacy requirements of the user, the user client can automatically make
decisions regarding the acceptability of the provided privacy level of the service. If
the user’s privacy requirements are not fulfilled, the user is warned in form of a
notification. [El-Khatib et al. 2003]

According to [Kobsa 2001b], personalized systems (e.g. adaptive e-learning sys-
tems) should support P3P to allow users to express their need of privacy. But P3P
is far away of being able to described all privacy preferences regarding personalized
systems.

Concerning standards like PAPI and IMS LIP (see Chapter 4), they also address
concerns about privacy. PAPI does not specify a detailed model or technology and
no particular privacy policy is specified, but a valuable feature facilitating privacy
protection is defined. This feature is the logical division of learner information,
which allows to partition learner information and assign different privacy policies to

87

6.4 Levels of Profiling the Learner 88

each of these parts of information. Similar to PAPI, IMS LIP treats data privacy
as an essential requirement but does not define any details on the implementation
mechanism or the architecture.

The purpose of user modeling systems is to gather and process as much information
about a user as required and possible. This is necessary to provide personalized
systems the needed user information. Since such, often very personal, data is stored
centralized in a user model, concerns about privacy and security have to be taken
seriously and the applied solution must be well thought and enable the privacy
needs of the users. Privacy and security mechanisms must protect the user modeling
system from unauthorized access of systems or persons and from intrusions into the
modeling system or the communication.

Anonymity and pseudonymity provides in most cases enough privacy since a user
modeling client is not able to query information about a user from whom it does
not know his pseudonym and his secret. The user is in this case responsible for the
decision to whom she/he can safely give away the user data. In order to offer the
user more transparency and information about applied privacy methods, the P3P is
in this case a good initiative.

In the next section the modules and the relevant information is described, which
are necessary for an exploitable user profile.

6.4 Levels of Profiling the Learner

As described in Section 2.2, profiling is used to gather and organize information
about a user in form of raw data. At this state, there is no interpretation performed
on the received data. The idea of profiling is based on a useful logging of user
interaction with the system. To be able to extract needed information from the
data stored in the user profile it is necessary to apply a particular user model.
Such a user model takes the data from the user profile, interprets it and models a
particular aspect of the user. To enable this information enrichment it is necessary
to provide the user model with the needed data. Therefore, the user profile must
gather and store relevant data about the user. The current section describes and
examines an idea of how the data in the user profile can be structured and organized.

Initially, it is necessary to identify the information sources from where data for
the user profile is received. Having knowledge about these sources and the kind of
information which is contained within these data, allows to organize the content of
the user profile. For example, if the information source is an eye-tracking device,
the received data contains information about the gaze movements on-screen.

The following sub-sections describe ideas about how the data of the user profile
and the user model are organized.

6.4.1 Organizing the Learner Profile

In the field of adaptive e-learning it is necessary to gather information which allows
the personalization of (in most cases) the learning content. Regarding the learner

88

6.4 Levels of Profiling the Learner 89

profile, data about shown instructions, interactions with the system and personal
details are important. Based on these types of information it is possible to split
the learner profile into a history component and a learner information component,
where the learner information covers all personal details about the learner and the
history data records instructions shown to the learner and interactions of the learner
with the system.

The learner information unit does not need much logical sophistication since
all related values are in the form of key-value pairs, for example, first name, age,
etc. The history component is more complex and must organize interactions and
instructions in a way so that the learner model is able to process and interpret this
data. The learner profile shown in Figure 6.6 depicts the structure of the proposed
solution for a modularized learner profile.

Figure 6.6: Structure of the Learner Profile

The learner profile which represents the highest level is separated into a Learner
Information Profiler and into a History Data Profiler. This separation into compo-
nents allows to add Additional Profilers according to the application requirements.
The History Data Profiler is sub-divided into a Session, Instruction, Action and
System handler. The Session handler assigns every session of a particular learner
a unique id. All occurring actions and instructions are assigned to one particular
session. Used systems are handled by the System handler. Systems are for example,
a course, a forum or a chat environment. Within a session, there might be several
systems but an action or an instruction is connected to a particular system. At
last, Instruction and Action handler record the received data about instructions
and interactions.

6.4.2 Partitioning the Learner Model

Concerning the learner model, two different types of information are relevant, namely
domain specific and domain independent information (see Section 3.4). Domain spe-

89

6.5 Summary and Conclusion 90

cific information is connected to the knowledge domain, which in turn represents a
context-dependent conceptual space. At the level of the underlying learner pro-
file, domain specific information is received when the application sends information
about interactions with the system related to the learning content. For example,
information about the shown instructions or results of an exam. The recording
of these interactions is necessary to build a learner model which contains domain
specific information. The learner model is needed to enable the adaptation of the
learning content according to the progress and the current domain knowledge of the
learner. Thus, recording the progress of a learner through the learning material is
an essential point. [Conlan et al. 2002b]

Domain independent information is the second type of information stored in a
learner model. As stated in Section 3.4, domain independent information is necessary
to allow adaptation according to the learner’s preferences, learning styles, cognitive
aptitudes, etc..

Splitting the learner model into several components, where each component rep-
resents one particular part of the learner model leads to a learner model consisting
of several sub-models. This idea is already depicted and used by the LDAP sys-
tem described in Section 5.4.3. Every learner modeling component performs specific
modeling tasks. In this case, additional learner modeling components can be added
or removed according to the requirements of the application.

This section has listed reasons why it is important to consider the organization of
learner data. A well structured learner profile allows the learner model to exploit the
profile data. Basically, a component-based structure of the profile and of the model
is useful and has two main advantages. First, the user data and information can be
structured into logical parts, and second, it is easier to add further sub-profiles and
sub-models.

6.5 Summary and Conclusion

As may be concluded from an examination of user modeling systems described in
Chapter 5, it is advisable to utilize SOA as the underlying solution concept. The
first section of the current chapter describes the basic principles of SOA and their
implementation in form of Web Services or service-oriented frameworks (see Sections
6.2.1 - 6.2.2). Because of the protocol limitations of Web Services two common
service-oriented frameworks (OSGi and Openwings) are described. Openwings has
its advantages compared to OSGi, because along with the specification also a free
reference implementation is available. For OSGi there are several implementations
of its specifications, but only some are freely available. Finally, service-oriented
software design is described. Although some rules and patterns for the software
design are available, they lack in the recommendation of how big a service should
be. This fact motivates to design two different solutions approaches, namely a micro
approach (see Section 8.5) where one component is packed into one service, and a
macro approach (see Section 8.4), where only a few services embrace the whole
functionality.

90

6.5 Summary and Conclusion 91

The Section 6.3 deals with privacy and security for user modeling systems. It
emphasizes the importance of privacy and introduces standards, techniques and so-
lutions for satisfying the required level of privacy and security in order to keep the
data about the user safe and secure. The P3P is a new initiative of the W3C to
standardize some privacy principles and allow the user to define the own privacy
requirements. Further, it informs the user about the offered privacy level of an
application. Again, the privacy precautions by the user modeling standards, partic-
ularly PAPI and IMS LIP are described (for more information about these standards
see Sections 4.4 - 4.5).

In the last section of this chapter (see Section 6.4), the levels of learner profiles
and learner models are depicted. Concerning the received data by a learner profile
it is possible to split the profile into several components. For example, data about
learner interactions with the system is recorded in one component while data about
shown instructions is stored in another component. Similar to such a learner profile,
a learner model can be structured in the same manner. This partitioning allows to
build a flexible and extensible learner modeling system.

As the examination of service-oriented techniques within this section results in a
recommendation to utilize the Openwings framework for the solution approach, the
next chapter describes the Openwings framework in more detail.

91

7. The Openwings Framework

7.1 Introduction

Motorola (General Dynamics Decision Systems) and Sun Microsystems founded the
Openwings consortium1 in June 1999 as an open community. The goal of the com-
munity is to specify a framework which is independent from the used middleware,
databases, computer organizations and operating systems. Up to now more than
100 companies have joined the Openwings community [Carpenter and Bieber 2003].
In addition to this specification, also a reference implementation was developed.
The Openwings white paper [Bieber and Carpenter 2001] and its specifications are
the main source for this chapter. Openwings is a framework for service oriented
software development (see Section 6.2 for more information about service oriented
software development). It provides abilities to develop software components and de-
ploy them in form of services. The reference implementation represents the topic of
this chapter and is used by the solution approaches which are introduced in Chapter
8.

Starting with an overview of the Openwings framework, the component and
developing model defined by Openwings is described (see Section 7.3 and Section
7.4) followed by security issues covered by Openwings. At the end of this chapter a
summarization is given.

7.2 Overview of Openwings

The architecture of the Openwings framework is layer-based as shown in Figure 7.1
. The Network layer describes the lowest level. It stands for a pile of computers
and other devices which communicate with the Component Services (see Section 7.3
for details). Component Services themselves, are able to communicate with each
other, even if they are running on different platforms, by using connectors. For
the framework it makes no difference on which computer or platform a Component
Service is installed and running. The different components are assigned to Container
Services, which observe the running component services (see Sub-section 7.2.1).

The next higher layer represents the Java Virtual Machines (JVMs) which are
running on the operating system from different Java editions. The restriction which
JVM and hence which computer organization and operating system is supported
depends on the used discovery plugins and Connector Services. The reference im-
plemenation needs an adequate Java 2 Standard Edition JVM because of the Jini
discovery plugin [Jini 1999], RMI [RMI 1997] for synchronous connectors and JMS
[Hapner et al. 2002] for the asynchronous connectors. It is not necessary that the
self-developed services are implemented in Java but they must define Java interfaces.
Within the reference implementation the services are also realized in Java.

1http://www.openwings.org

92

http://www.openwings.org

7.2 Overview of Openwings 93

Figure 7.1: Architecture of the Openwings Framework [Bieber and Carpenter 2001]

7.2.1 Openwings Core Services

On the layer above the network layer, the JVM services that enable the usage of
the framework are located. Compared to Component Services, these services are
provided by Openwings and called Core Services. Core Services are the Container
Service, the Connector Service, the Component Service, the Install Service, the
Context Service, the Management Service and the Security Service. These Core
services are described in the Sections 7.2.1 - 7.2.1.

Every Core Service abstracts from certain used technologies. Services offered by
the framework are accessible and can be called from software outside the framework.
This external software as well as processes within the Container Service (see Sub-
section 7.2.1) are able to use Component Services to produce new service objects.
Furthermore, they are able to discover and use all services of the framework with
the help of Component Services. Therefore the Component Service lies on top of all
other services.

In the following the Core Services provided by the framework are introduced.
These seven services are the Container Service, the Connector Service, the Compo-
nent Service, the Install Service, the Context Service the Management Service and
the Security Service (see Figure 7.1).

93

7.2 Overview of Openwings 94

Container Service

By using Container Services it is possible to use different discovery plugins and Con-
nector Services. A Container Service provides a runtime environment for executable
components and can be used to discover service objects and to communicate with
them. For the service object discovery the discovery plugin is used. Connections
for the communication between service object are established by using Connector
Services. The specification focuses on the usage of Jini2, UDDI3 and Web Services as
discovery services. For the implementation of the Connector Services the technolo-
gies RMI4, IIOP5, JMS6 and SOAP7 are taken into consideration, but an extension
to use other technologies for the discovery of service object is possible.

Connector Service

Connector Services provide transport protocol independency by abstracting synchro-
nous and asynchronous communications in terms of Java interfaces. Interchangeable
connectors handle the details of specific protocols. The connector framework is de-
signed for independent usage from the rest of the architecture in other frameworks,
such as Enterprise Java Beans (EJB).

Connector Services specify an API for connectors and provide tools for the gen-
eration and location of protocol specific connectors. According to [Bieber and Car-
penter 2003], they have the following assignments :

• Automatic generation of connectors for different service interfaces and connec-
tion technologies.

• Generation of objects for the communication between service objects (so-called
proxy objects).

Service objects take these generated objects to communicate with other service
objects. Figure 7.2 shows the anatomy of a connector. A connector is composed
of a user proxy and a provider proxy. A connector is installed when each proxy is
inserted in the appropriate component.

2More information about Jini can be found at http://www.jini.org/
3Universal Description Discovery and Integration UDDI http://www.uddi.org/
4Java Remote Method Invocation RMI http://java.sun.com/docs/books/tutorial/rmi/
5Internet Inter-ORB Protocol IIOP
6Java Message Service JMS http://java.sun.com/products/jms/
7Simple Object Access Protocol SOAP http://www.w3.org/TR/soap12-part1/

94

http://www.jini.org/
http://www.uddi.org/
http://java.sun.com/docs/books/tutorial/rmi/
http://java.sun.com/products/jms/
http://www.w3.org/TR/soap12-part1/

7.2 Overview of Openwings 95

Figure 7.2: Connector Architecture [Bieber and Carpenter 2001]

Component Service

With Component Services it is possible to provide and use basically every software
service object in Openwings. Every Component Service is assigned to a Container
Service. A Component Service provides the following abilities:

• Creating service objects and making them available within the network.

• Signing in and signing out service interfaces for the communication.

• Creating Connectors which enable the communication with other service ob-
jects.

Component developers are only concerned with a small set of operations. For
synchronous services this means providing and using services, removing a provided
service, and discarding a used service. For asynchronous services this means publish-
ing and subscribing to services, unsubscribing a service, and unpublishing a service
(see Figure 7.3).

For complete details on how components are developed, created and handled
within Openwings see Sub-section 7.2.2.

Install Service

The Install Service is responsible for the installation of components. A component
must own an Installable Component Descriptor to be installable. For details on the
Installable Component Descriptor see Sub-section 7.4.5.

The Install Service can act as an application server to make components available
to other platforms. With the Install Service it is possible to register a listener for
events generated by the service. Such installation events allow for example the
Container Services to instantly start components after their installation.

To install a new component, the Install Service first authenticates the component.
Then the files of the component are extracted and placed in the appropriate locations
on the platform. Next, the Install Service tries to resolve dependencies and policies,

95

7.2 Overview of Openwings 96

Figure 7.3: Component Services Use Cases [Bieber and Carpenter 2001]

described in Sub-section 7.4.3, for the component. Once the component is in the
resolved state it can be executed. If the user chooses to uninstall a component,
the component moves into the uninstalled state and its files are removed from the
system. Further, the Install Service provides a voting mechanism which allows other
components to delay the uninstallation of needed components.

Context Service

Openwings allows to combine several platforms on which Openwings is running into
one context. Every context is administrated by its own Context Service. Context
Services are discussed in more detail in Sub-section 7.2.2.

Management Service

Management Services offer a connection between Openwings and different software
tools and concepts which support management tasks [Smith et al. 2003].

The Management Service allows to simply create additional service objects. Each
Openwings component contains an extensible management framework that allows
management plugins to be added and remotely controlled.

Security Service

Security Services offer code, transport and service security concepts. For the code
security the Java Code Security Concept [Gong 2003] is used. Within Openwings
the code security begins with the installation of components where the signatures of
the Java Archive8 (JAR) files are validated and reaches into the processing of code
where the access to different parts of the local platform (for example file system,
JVM, network, etc.) is controlled.

8http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

96

7.2 Overview of Openwings 97

The transport security focuses on the communication encryption between service
objects by using the Connector Services.

The Security Service uses a role-based method access design. Which methods
can be access by which roles is defined by a security policy (see Sub-section 7.4.3).
Hence, it is possible to prevent unauthorized access to critical methods within a
service object.

The topic of security in Openwings is discussed mored detailed in Section 7.5.

7.2.2 Contexts in Openwings

The context service offers the possibility to connect several platforms. Such connec-
tions can be used for three purposes, as described in the following.

At first, the platforms inside a context build a kind of trusted partnership. Ser-
vice objects can be discovered unrestrained within a context by using discovery
mechanisms. If a discovery manager is running outside a context it is not possible
to find service objects from inside the context. This provides the system with a kind
of border security where it is possible to define which service objects can be accessed
from outside and which are not accessible.

Secondly, it is allowed to install and execute components not only on platforms
but also on contexts. In this case, the context service decides on which platform
a component is installed or executed. If a platform fails, components and running
processes are tried to be moved to other well-running platforms.

And finally, it is possible to put policy objects in Context Services. This feature
provides the possibility to assign a policy that affects all components installed on
this context. Thus, it is easier to administrate a complete group of components.

7.2.3 Interfaces

Developers of components can specify different types of interfaces in Openwings
using Java. The following types of interfaces are listed in the Interface Definition
Specification [Bieber et al. 2003]:

• synchronous and asynchronous service interfaces,

• legacy system interfaces,

• data object interfaces,

• attributes interfaces and

• policy interfaces.

Synchronous and asynchronous service interfaces offer interfaces for the usage
of the service behind and to connect to other services.

Legacy system interfaces are used by the connectors to make legacy systems in
form of services available (for more details on connectors see Sub-section 7.4.4).

Data object interfaces control the access of objects, that are stored in a database.

97

7.2 Overview of Openwings 98

By means of attribute interfaces it is possible to set parameters which are then
used to discover particular services (see Sub-section 7.4.2).

Policy interfaces represent configuration data in Openwings and are stored in
policy files. The information of a policy file is read by a policy object and can be
accessed through the policy interface.

In the following sub-sections synchronous and asynchronous service interfaces,
attribute interfaces and policy interfaces are described in more detail. These three
interfaces are used in nearly every application.

Synchronous Service Interfaces

The synchronous service interface is used to specify methods which might be accessed
from other services. Basically every Java interface can be used as an interface for
Openwings components since Openwings does not provide a general interface from
which the user interfaces are derived.

However, Openwings specifies some requirements for synchronous service inter-
faces and their methods. Thus, a valid synchronous service interface must fulfill the
following conditions:

• Every method of a synchronous service interface must be able to throw the
RemoteException. This forces the developer to deal with exceptions and to
think about problems of distributed computing and error handling.

• Every used parameter must be serializeable, i.e. the parameter must be con-
vertible into a bytestream. The reason for this is the established connection
between service objects provided by Connector Services which limits the form
of the transferred data to bytestreams. This applies also to return values.

The Openwings reference implementation currently supports Java Remote
Method Invocation (Java RMI) and Internet Inter-ORB Protocol (IIOP9) as the
synchronous and OpenJMS as the asynchronous communication protocol.

Asynchronous Service Interfaces

Openwings allows the specification of arbitrary asynchronous service interfaces for
the communication between services.

The event producer uses the asynchronous service interface to generate events
while the event listener implements the asynchronous service interface to be able to
react on events which are generated with this interface.

Asynchronous service interfaces require the same conditions as the synchronous
service interfaces but with one additional restriction. The methods must not have
a return value.

9Information about the IIOP specification can be found on the website http://www.omg.org

98

http://www.omg.org

7.3 Components in Openwings 99

Policy Interfaces

Policies are used to store and supply configuration data. Every policy has a policy
interface to query the configuration data. Each policy interface defines a policy
type. In Openwings some policy types are already defined like InstallableCompo-
nentDescriptorPolicy, Provide-, Use-, Publish-, EventServicePolicy or Management
Policies.

The InstallableComponentDescriptorPolicy contains information for the installa-
tion of the component (see Sub-section 7.4.5 for details). In order to describe usable
service interfaces the ProvideServicePolicy, UseServicePolicy, PublishServicePolicy
and the EventServicePolicy can be used. Management Policies on the other hand,
are used to provide configuration data for management services. To be able to read
and write through policy interfaces it is needed to generate a sequence of classes. In
Sub-section 7.4.3 the generation of such classes and the usage of policies is described
in more detail.

Within this section, an overview over Openwings is given. In the following section
Components in Openwings, which are used to develop software, are introduced.

7.3 Components in Openwings

Source code is handled by Openwings in form of components. A component contains
the implemented software combined with supporting information which is needed
by Openwings and is packed into a JAR file. Openwings distinguishes between
executable and non executable components. The interfaces are provided in non
executable components while the implementation of the interface is packed into an
executable component. Therefore, two components are needed for one service (for
example one non executable component A i which contains the interface and one
executable component A e which includes the implementation) but it is possible to
start more than one service from one component.

In the following section the usage and the parts of components in Openwings are
introduced.

7.3.1 Parts of Openwings Components

As already mentioned in the previous section, components for installation are offered
in form of JAR files in Openwings. During the installation, the files contained in
the JAR file are installed on the local platform. In order to recognize the usage
of the different files by the framework it is necessary to put the files in different
directories which are referenced in the Installable Component Descriptors (see Sub-
section 7.4.5).

99

7.3 Components in Openwings 100

The Openwings tutorial [Openwings 2003] proposes the following directory struc-
ture:

• /bin

• /policies

• /data

• /docs

• /lib

• /http

• /source

The /bin directory contains executable files which may be executed by the con-
tainer service from the current operating system. Such files can be for example .bat
or .csh files. Openwings provides a mechanism which automatically executes differ-
ent files, regarding to the operating system. Another way to execute native code is
offered by the Java API as described in [JNI 1997].

All files in the /policies directory are recognized as policy files by the framework.
Files used by services may be located in the /data directory. The name of these

files must be specified through attributes (for more information about attributes see
Sub-section 7.4.3) in order to be able to access the file.

The content of the /docs directory will be published on a webserver. This direc-
tory should be used for textual descriptions and documentations of components (for
example Javadoc10 files) and should contain an index.html file.

The JAR files are located in the /lib directory. The /lib directory in general
contains all Java and native libraries which are used by the services. All libraries in
this directory can as well be used by services from other components.

Further, the /http directory contains all files which should be published by the
webserver.

If the code should be published with the component, it is possible to put the
source code in the /source directory.

7.3.2 The different Types of Components

As already mentioned at the beginning of Section 7.3, Openwings distinguishes be-
tween two different types of components, executable and non executable components.

Non executable components contain files which may be used by other components,
for example service interfaces. Components which contain executable files are named
executable components. An executable file can be a Java class or a script file which
then may be executed by the operating system itself. The container service starts a
process to execute a component and manages the process during its lifecycle.

10http://java.sun.com/j2se/javadoc/

100

7.3 Components in Openwings 101

With the help of executable components it is possible to create services which in
turn publish their service interfaces. Executable components are divided, regarding
to the type of their interfaces, into provider, user, publisher or subscriber. A provider
offers synchronous service interfaces while the user uses such synchronous service
interfaces. On the other side the publisher produces events with an asynchronous
service interface and the subscriber is notified via asynchronous service interfaces
about these events. In order to identify the purpose of a component, it is recom-
mended to add these terms to the name of the component. Some cases do not allow
to identify a component clearly. For example a component can be as user and a
provider at the same time, or offer synchronous and asynchronous interfaces.

Within Openwings the components have different states. These states and the
transitions between these states build together the lifecycle of a component. The
lifecycle of components is described in the following section.

7.3.3 Lifecycle of Components

During its installation, a component runs through different states. Figure 7.4 shows
the possible states of a component and the proper transitions between these states.

Figure 7.4: Component Install State Diagram [Bieber and Carpenter 2001]

The possible states of a component are Stopped, Installed, Resolved and Unin-
stalled. Additionally there are two other states where the component is not known
by the Openwings framework. These two states are marked in Figure 7.4 as dots
and can be seen as entry respective exit points. The transitions describe the pos-
sible changes of the component state and are depicted as arrows. There are seven
transitions:

• Authenticate: The authentication transition starts from a state where the
component is not known by the framework. At the beginning of the installation
the signature of the JAR file is checked. This prevents of installing untrusted
code on the platform.

101

7.3 Components in Openwings 102

• Install: After a successful authentication, the install service creates a new
directory for the component. This directory is located in the installation di-
rectory of Openwings and has the same name as the component. The content
of the components JAR file is extracted into this directory. After a successful
installation the component’s state switches to Installed.

• Resolved, Unresolved Dependencies: During these transitions the install
service tries to replace the references and attributes of the Install Component
Descriptor with the correct values. If it is possible to replace all references
the component changes into the Resolved state. Otherwise, the component
remains or switches back to the Installed state. If a component is not exe-
cutable and the component is in the Resolved state, it can be used by other
components whereas executable components are ready to be executed at this
state.

• Uninstall: During the uninstallation of a component all files owned by this
component are removed. If processes of the component are running or the
component is referenced by other components and the component should be
uninstalled, the component is not removed immediately but marked for later
uninstallation. Further, it is important to mention, that in Openwings, com-
ponents marked for uninstallation are removed during the next start of the
install service.

If an already installed component is installed again with the same version num-
ber, name and unique ID, the old files are replaced by the new one. Services started
from this component are not interrupted by such an installation. The data contained
in the new files is loaded by the service when the files are accessed the next time.

7.3.4 Relations between Components

Openwings knows only one type of relation between components: Component A is
only related to component B if component A uses the classpath, the codebase or
a parameter of component B. Therefore the Installable Component Descriptor of
component A contains a reference to component B. A component can only reach
the resolved state (see Figure 7.4) if all components on which it depends are in the
resolved state. For more information about references see Sub-section 7.4.5.

In Openwings, it is not possible to construct relations between two executable
components. If for example the executable component C wants to use methods
of component D, it needs the interface of executable component D. Therefore, each
interface is offered in one separate component. With this concept it is easily possible
to make a service available to many other services. The interface must only be
published once and then all other services may use it.

As already mentioned, components provide the possibility to develop software
and deploy it in Openwings. The process of software development and what has to
be considered during the software development is discussed in the following section.

102

7.4 Software Development with Openwings 103

7.4 Software Development with Openwings

In this section, the offered concepts to implement and use components in Openwings
are introduced. At first, the initializing of service objects which are created out
of components is treated (see Sub-section 7.4.1), followed by the description of the
lookup and usage process, the service parameters and the concept of service listeners
(see Sub-section 7.4.2). Therefore, the underlying policy concept and the connectors
are described (see Sub-section 7.4.3 and Sub-section 7.4.4). At last, the concept of
Installable Component Descriptors is described (see Sub-section 7.4.5).

7.4.1 Creation and Intializiation of Service Objects

With the aid of services from the Openwings framework every software program is
able to create and use service objects. This is done by using executable compo-
nents. As already depicted in Sub-section 7.3.2, executable components consist of
an executable Java class, which then creates the service object. In Openwings the
container service starts the executable component.

Listing 7.1 shows how service objects are created and distributed.
ComponentComplex is taken from the ComponentFactory and a new instance of
the class HelloWorldProvider is generated. The instance of HelloWorldProvider
is linked with the ComponentComplex and published by calling the method
provideService.

public stat ic void main (St r ing [] a rgs)
{

// Get a s imple component s e r v i c e from the component f a c t o r y
ComponentComplex component = ComponentFactory . getComponentComplex () ;

// Create a new s e r v i c e prov ider .
Hel loWorldProvider he l loWor ldProvider = new Hel loWorldProvider () ;

. . .

// This excep t ion b l o c k w i l l catch any error s t r y i n g encountered in prov id ing
// the s e r v i c e
try
{

// D i s t r i b u t e the Hel loWorldServiceSynchronous i n t e r f a c e on the
// he l loWor ldProvider o b j e c t so i t can be remote ly invoked .
Object d i s t r i bu t edOb j e c t = component . d i s t r i bu t eOb j e c t (

Hel loWorldServiceSynchronous . class , he l loWor ldProvider) ;

// Pub l i sh Hel loWorldServiceSynchronous i n t e r f a c e on the d i s t r i b u t e dOb j e c t .
// Save the unique i d e n t i f i e r o f the o b j e c t be ing pub l i s h ed .
UniqueID se rv i c e ID = component . p rov id eSe rv i c e (

Hel loWorldServiceSynchronous . class , d i s t r i bu t edOb j e c t) ;
}
catch (Exception e)
{ . . . }

. . .
}

Listing 7.1: The main method of a Java class where a service object is created,
distributed and published.

Openwings is further able to start the component automatically after the instal-

103

7.4 Software Development with Openwings 104

lation. If the component refers to more than one Installable Component Descriptor
(see Sub-section 7.4.5 for details), the component will not be installed more than
once, but started multiple times. As a result of this characteristic, it is possible to
create several service objects with the same type but with different configurations.

After the creation of service objects, the initialization of them follows a pattern,
which is the same in most of the applications and takes place in the constructor of
the component class.

At first, a component service object is generated by using the
ComponentComplexFactory. After that, the returned service object can be
initialized.

Since the service object was already distributed by the code of the main method
it is possible to use it as long as the shutdown method is not called.

The Openwings framework requires the implementation of a shutdown method
to be able to delete a service object. The shutdown method enables efficient memory
usage and helps the garbage collection releasing memory.

Finally, it hast to be mentioned that class specific initialization must be done
within the constructor and therefore is not explicitly described in this section.

7.4.2 Usage of Service Objects

Service objects with a synchronous service interface can be used by the useService

method. With the method subscribeService an event listener, which receives
events from an asynchronous service interface, can be connected. The interfaces
Component and ComponentComplex provide two possible ways of using a service
object.

The first possibility is to enter only the service interface of the needed service
object. Second, it is possible to specify parameters for the needed service object or
the used service listener which limits the set of fitting service objects and listeners.

With service parameters it is possible to specify the attributes of a needed service
object. This can take place within the call of the useService method by specifying
the needed parameters. It is for example possible to use only service objects which
are running on a specific platform by indicating it within the call of the useService
method.

The service listener is a service object, which reacts when new service objects
become public and available or are stopped. In such cases, the component service
generates events which can be received by implementations of the service listener.

To be able to receive events, the service listener must implement the interface
UseServiceListener for synchronous and the interface EventServiceListener for
asynchronous service interfaces.

To register a service object as a service listener of another existing service object
the methods useService or subscribeService are used (see Listings 7.2 and 7.3
below). The object which implements the service listener interface is used as a
parameter for these method calls.

104

7.4 Software Development with Openwings 105

// use a s e r v i c e
try {

component . u s eSe rv i c e (Se rv i c eSynchronous In t e r f a c e . class ,
U s e S e r v i c eL i s t e n e r l i s t e n e r)

}
catch (Inva l i dSe rv i c eExcep t i on e) { . . . }
// d i scard a s e r v i c e
d i s ca rdUsedServ i c e (s e rv i c e ID)

Listing 7.2: A code snip where the component registers itself as the service listener
for another service object with a synchronous service interface.

When an EventServiceListener is registered, an object, which is capable of
receiving events as well as implements the asynchronous service interface is needed.

// sub s c r i b e to s e r v i c e
try {

component . s ub s c r i b eS e r v i c e (ServiceAsynchronous . class , java . lang . Object
s e r v i c e , Ev en t S e r v i c eL i s t e n e r l i s t e n e r) ;

}
catch (Inva l i dSe rv i c eExcep t i on e) { . . . }
// unsubscr i be from se r v i c e
unsubs c r i b eSe rv i c e (someServiceAsynchronous . class)

Listing 7.3: A code snip where the component registers itself as the service listener
for another service object with an asynchronous service interface.

Before service objects can be used it is necessary to configure the underlying com-
ponents. Openwings provides a possibility where this configuration data is stored
in external files and uses the policy concept described in the following section.

7.4.3 Policy Concept

One of the guidelines for the specification of Openwings was:

“The Openwings architecture focuses on zero administration, plug-n-
operate (PLOP) systems.” [Openwings 2003]

To realize zero administration, Openwings utilizes the policy concept. In Openwings
it is possible to store configuration information in so-called policy files where the
data is arranged in XML format. In this sub-section the policy concept and its usage
is described.

105

7.4 Software Development with Openwings 106

To be able to read and write policy files, a row of classes and files must be
generated beforehand. Within the Openwings reference implementation [Bieber and
Carpenter 2001], this task is assigned to the PolicyBuilder. The PolicyBuilder takes
the interface of the policy and generates the following building blocks:

• A class which implements the given policy interface and is capable of reading
and writing the policy files.

• An XML schema which defines the format of the XML file.

• A class which provides a command line tool for creating policy files.

In Figure 7.5 all parts of the policy concept used by Openwings and their relations
among each other are shown. Only the “own policy” interface is needed to generate
all required files by using the PolicyGenerator.

Figure 7.5: Openwings Policy Concept

To load policy data a PolicyLoader object is needed, which can be retrieved
from the PolicyLoaderFactory. The PolicyLoader is used to load policy data
only requiring the policy interface and the filename of the policy file as parameter.
In return, the PolicyLoader generates a policy object. This policy object is then
able to access the policy interface by reading and writing the policy data.

The disadvantage of such a policy concept is that policy objects are not reacting
on changes of the underlying policy file. As a workaround for this drawback an
extended PolicyGenerator may be useful which allows policy objects to monitor the
policy file for changes.

106

7.4 Software Development with Openwings 107

7.4.4 Connectors

A connector enables the communication between service objects through service
interfaces by using middleware. During the implementation of service objects the
developer does not need to take care about the used middleware.

The Connector Service offers the possibility to generate connectors. A connector
generator produces a connector for a specific service interface. The reference im-
plementation of the Openwings specification [Bieber and Carpenter 2001] provides
connector generators for RMI, IOOP and JMS connections. The connectors must
be generated during the compilation and packing of the component.

To integrate legacy systems Openwings uses connectors to be able to communi-
cate with them. For this purpose, firstly the interface for the legacy system must be
specified. With this interface it is then possible to generate connectors depending
on the needed middleware.

The connectors provided by Openwings have big advantages compared to the
usage of common middleware. A synchronous connector can try to call the method
of the service object several times before reporting a failure. This can prevent error
when services are running on different platforms and the connection is temporarily
unavailable. Asynchronous connectors are able to offer a buffer in which events can
be stored. This takes the load from event listeners since they do not have to react
on events immediately after their occurrence.

These two advantages can be always achieved by using adequate middleware
and are not linked to connectors. But the usage of connector generators makes the
development of components, which communicate with other service objects, easier.

7.4.5 Installable Component Descriptors

An Installable Component Descriptor (ICD) describes the different parts of a com-
ponent, attributes for the identification of a component and information needed to
execute a component.

As already mentioned in Section 7.3, a component is packed
in form of a JAR file which must at least contain one file
(./policies/InstallableComponentDescriptorPolicy.xml). This file con-
tains the description of an ICD in XML format. [Bieber and Crumpton 2003]

Openwings provides a graphical editor allowing the user to change settings of
the ICD in a simple way. This editor is able to save the ICD in the required XML
format and to load an existing ICD.

The ICD contains several parameters and defines their values. To provide flexi-
bility, it is possible to assign not only values but references to the parameters. Ref-
erences are resolved during the installation of a component and are used to provide
platform-dependent values for the parameters.

107

7.4 Software Development with Openwings 108

Installable Component Descriptor Parameters

In this sub-section the different parameters of the ICD are described. The following
itemization lists the available parameters of the ICD:

• Unique ID

• Component Name

• Version

• Icon

• Description

• Executable

• Executable String

• Platform

• Shared Container Hint

• Restart Hint

• Boot Process Hint

• Run Immediately Hint

• Serve Hint

• Mobile

• Classpath

• Resolvable Classpath

• Codebase

• Resolveable Codebase

• Properties

• Command Line Parameters

• bin, policies, data, docs, lib, http and source

The Unique ID is a 16 byte string which identifies a component unambiguously
and can be generated automatically. The Component Name represents the name
of the component which should be unique as well because the component name is
used by the framework for identification purposes. Version is equal to the version
number. The Openwings Explorer is able to show icons for each component. The
Icon parameter is the place where the file of the icon is located. The Description is

108

7.4 Software Development with Openwings 109

a simple textual description of the component which should be in human readable
format. The parameter Executable indicates whether the component is executable
or not. Within the Executable String the executable class or the native file of an
executable component is specified. The used Java Virtual Machine for executable
components using an executable Java class or the operating system for native files is
described in Platform. Shared Container Hint specifies if the started processes from
this component should run in a container together with other components. If the
Restart Hint is set to “true” and the process terminates in a irregular manner (for
example with a “not catched” exception), it is started again immediately. When the
Boot Process Hint is set to “true” the component is started right after the system
start. The Run Immediately Hint decides if the component is started right after the
installation of the component. When the Serve Hint is set, the component’s JAR file
will be installed on a http-server. The Mobile parameter indicates if a process can
be transferred between two platforms. For an executable component the Classpath
contains needed libraries for the execution. In case of non executable components
the Classpath offers libraries to other components. The content of the Resolvable
Classpath will be added to the classpath, but unlike the Classpath it may contain
references (see Sub-section 7.4.5). Libraries listed within the Codebase are offered
by a http-server. This allowes the usage of these libraries also on other platforms.
In general, libraries which can be used by other components should be put in the
Codebase. The content of the Resolvable Codebase is resolved and added to the
Codebase by the install service and behaves similarly to the Resolvable Classpath.
Properties represent (key,value)-pairs and are handed over to the JVM during a
component’s call. These Properties can then be used by the service object. Proper-
ties from non executable components can be referenced from other components. In
the Command Line Parameters the parameters for the main method can be set. bin,
policies, data, docs, lib, http and source refer to directories under the base directory
(see Sub-section 7.3.1).

Using References

Openwings allows the usage of references in the parameters Properties, Resolvable
Codebase and Resolvable Classpath. References can be used as variables like in a
programming language but with the limitation of assigning a value only once. For
further releases of Openwings, it is planned that the usage of references is changed
into the direction of policies.

Components are installed on the local hard drive of a platform and thus, the ab-
solute path changes depending on the computer, but the ICD needs absolute paths.
For this purpose, references are used to specify parameters without knowing the ab-
solute path. For example, the Resolvable Codebase parameter may contain entries
like ${Communicator_im.libdir} which refers to the libraries of the component
with the name Communicator_im. It is also possible to refer to other components
in the same way.

With ${@<method>} it is possible to call methods to retrieve the value of a
property (for example date=${@java.util.Date.toString}). In Openwings, such

109

7.5 Security in Openwings 110

methods are not able to use parameters and must return values of type String.
Furthermore, the methods must be specified in the classpath.

Moreover, references can point to files or to properties of the framework. A
complete list of all utilization possibilities can be found in [Openwings 2003].

7.4.6 Summarization

In this section the main concepts provided by Openwings to develop components
were introduced. Beginning with the process of the installation an initialization
of service objects within the Openwings framework, the usage of these service ob-
jects, where Openwings offers synchronous and asynchronous service interfaces, was
described as well as the policy concept, which describes possibilities for providing
configuration information. Finally, the connector concept, which is used by Open-
wings to abstract from different communication and connection technologies, was
introduced.

In the following section the security topic is depicted. Security is an important
point during the process of software development. Openwings offers facilities to
develop a secure system.

7.5 Security in Openwings

Security is an important and well-solved issue in the architecture of Openwings. The
trade-off between easy administration, level of security and flexibility is considered
by Openwings to minimize administration while not reducing the level of security.

As already mentioned in Sub-section 7.2.1, Openwings focuses on code as well as
on transport and service security. Security is handled in Openwings in a distributed
way. There are for example, the Security Service and the Install Service, both
dealing with the code security, while the Connectors are used to provide transport
and service security. Other parts of the security concept are located in the Context
Service and the Container Service.

In this section the provided security concept in general, which is divided into
code security (see Sub-section 7.5.1), transport security (see Sub-section 7.5.2) and
service security (see Sub-section 7.5.3), is discussed. Further the parts where they
are processed are depicted.

7.5.1 Code Security

The code security concept used by Openwings is mainly based on the Java Code Se-
curity Concept [Gong 2003] and focuses on the avoidance of unallowed processes. In
other words, Openwings has the possibilities to prevent the installation of malicious
code and curtails the accessible parts on the platform.

Following the rules of the Java Security Concept, the Openwings code security is
based on policies. In short, policies can be seen as configuration files and are stored
in XML format (for more details see Sub-section 7.4.3).

110

7.5 Security in Openwings 111

The security policy consist of several grant clauses where every entry grants per-
missions to a specific component. With such grant clauses it is possible to control
the rights of a particular component regarding platform features, and therefore re-
stricting the influence of the code. For example component A is allowed to read
from the file system (which is specified with grant clause in the security policy) but
component B is not allowed to access the file system. Therefore, malicious code
of component B has no possibility to access the file system since no permission is
granted to it.

To prevent the installation of unwanted code, Openwings uses the installation
service (see Sub-section 7.2.1) where the signature of a component installation file
is compared to a valid key in the Openwings keystore. Hence, the component in-
stallation file must be previously signed with a valid key.

Java also supports the concept of checking signatures on component installation
files containing code and assigning permissions based on these signatures. For this
purpose, the policy concept is taken and enables the possibility to grant different
permissions to code with different signatures.

7.5.2 Transport Security

Transport security concepts are used to secure the communication between com-
ponents in general. In Openwings, the transport security provides a secure com-
munication between components via secure connectors. The connector service (see
Sub-section 7.2.1) is built with the ability to encrypt the data sent between end-
points. The reference implementation provides secure connectors based on the Java
Generic Security Services (GSS) API. [GSS 2000]

The reference implementation by General Dynamics provides an easy way to
include transport security since the connector generator for GSS over RMI is included
in the reference implementation.

7.5.3 Service Security

The service security completes the security topic in Openwings. As already described
in Sub-section 7.2.1, Openwings takes usage of a role concept with access rights to
control the service security. Every process that produces a service object owns a
role. The corresponding service object has the same role.

Within the security policy (see Sub-section 7.4.3), it is specified which method
of the interface can be used with a specific role [Bieber and Thrash 2003].

The roles in the Openwings reference implemenation are managed by the security
service which uses a separate Java keystore for that and can easily be configured
through a user interface. Each platform stores its own roles and it is not possible to
exchange roles between different platforms. If the same role is needed on more than
one platform it has to be configured manually on each platform.

Every connector, which is involved into establishing a connection, authenticate
to the security service on the local platform. The security service delegates the
active role to them and pops up a login window if no role is activated.

111

7.6 Conclusion 112

Openwings does not distinguish between local and remote services. In order
to ensure secure access to local services from other platforms the Context Service
is needed. Contexts in Openwings enables the possibility to control the system
formation, to build a system of systems and to configure the security. A context
provides procedures to encapsulate a system from external access. Only specified
services and methods can be used by remote services. Contexts in Openwings were
described more detailed in Sub-section 7.2.2.

7.6 Conclusion

Openwings uses Java interfaces to specify its service interfaces. Compared to OSGi
(see Sub-section 6.2.2 for details), Openwings additionally supports asynchronous
service interfaces.

Apart from the service interfaces, Openwings also provides an easy configuration
concept. The configuration information is accessed through interfaces, which are
called policy interfaces. Policy interfaces enable the access to the policy data which
is stored in files on the local platform. Openwings does not observe these files and
changed information is not available for the process until the next access to the file.
The generation of policies is not very easy to handle. Thus, it is not reasonable to
generate policy interfaces for each component.

The compilation of Openwings components can cause some problems because the
supplied Ant11 scripts are not very flexible and must be adapted for own purposes.

Further, the installation of components and the creation of process objects do
not provide dynamic references. References which are already resolved are assigned
with new values or resolved again only upon the next installation.

The security concepts provided by Openwings, which are described in Section
7.5, seem to be sufficient for building a secure system, presupposing a trusted lo-
cal environment. A trusted local environment is needed, since the security policies
are stored on the local file system in form of plain text. This gives attackers an
access point to the security policy and allows them to changed it. Regarding re-
mote access, the context service is appropriate to secure the system from forbidden
access. Contexts are not supported by the current version of the Openwings refer-
ence implementation. Hence, for the proposed user modeling system in Chapter 8,
a workaround is needed. The solution takes usage of the service security concept
by using secure connectors and Openwings roles combined with code security where
installed code must be signed with a valid signature.

The container service monitors the running processes which represent a service. If
a service throws an exception, the affected component is started again and continues
its work. This self-healing quality can be used to provide a stable system.

Openwings provides concepts for an automatic installation of components and
an automatic creation of service objects. These concepts are not very powerful.
The development of a runtime component on the other hand, where startup and
shutdown tasks are processed, is quite useful.

11Description of the Ant compilation tool available at http://ant.apache.org

112

http://ant.apache.org

7.6 Conclusion 113

The strength of Openwings lies in the support of several communication and
discovery technologies. For example, discovery plugins can be developed and added
to Openwings as well as connector generators to integrate further communication
protocols.

This chapter provides the needed information about the used service-oriented
framework. The developed solution approach of a user modeling system, which is
introduced in the next chapter, uses Openwings as the underlying environment.

113

8. Design and Implementation of the
Modeling System

8.1 Introduction

The findings of the previous chapters are used to design a multi-purpose modeling
system. A versatile user modeling system should consist mainly of two parts, namely
a user profile and a user model. Both together are needed to store the information
about a user. Additional parts of a user modeling system must deal with topics,
such as storage, privacy, security and communication.

The proposed user modeling system of this chapter is based on the requirements
which are defined in Section 8.2. These requirements represent the functional con-
straints of the user modeling system and are used as a base for the design process.
The first design step is the architectural design and the definition of the use cases
(see Section 8.3).

Service-oriented software design (see Sub-section 6.2.3) gives no accurate answer
to the questions regarding how big a service should be and how much functionality
should actually be packed into one service. Therefore, two different solution ap-
proaches, namely a micro- and a macro-approach, were designed and implemented
with the goal of comparing them against each other. The whole functionality of
the two different solution approaches for the modeling system is the same, but the
partition into services is different.

The functional design and the implementation is described for each solution
approach. This is necessary since different components and services are required.
The first approach, which is introduced is the macro-approach (see Section 8.4)
followed by the micro-approach in Section 8.5. At the end of this chapter, the
evaluation of the approaches is depicted (see Section 8.6) by starting with the user
scenarios, evaluation criteria and evaluation setup (see Sub-section 8.6.1 - 8.6.3).
Each solution approach is examined under the same user scenarios and criteria
followed by a comparison of the evaluation results.

8.2 Software Requirements of the Modeling Sys-

tem

The user modeling system is to be used for storing and offering information about
users. This information is needed to personalize e-learning systems.

In many personalization e-learning systems, the user model is seen as a part of
the system and therefore the user model can only be used within this system. Every
personalized system uses its own user model, and therefore, several models of the
same user exist within different personalization systems. To centralize such a user
model, a stand-alone user modeling system is needed which gives several systems
access to the user information.

114

8.2 Software Requirements of the Modeling System 115

Although the user modeling system is developed as part of the AdeLE1 research
project, the required user modeling system must work as a single application. To
satisfy the needs of different adaptive applications the user modeling system must
offer possibilities to add specific modeling components.

The software requirements of this section cover information regarding the func-
tional and non-functional requirements of the software. It does not specify how the
requirements are to be implemented or how they are to be designed. Although ex-
amples may be given, these are only examples to help explaining a requirement and
thus do not have to be followed.

8.2.1 Functional Requirements

This section describes the requirements of the user modeling application that are
purely functional. They describe a feature that must be present or met in the final
application.

Provide Access to Arbitrary Adaptive Applications

The access to the user modeling system must be available for different application
systems and must not be limited to one specific application. This requires an in-
terface specification which provides a versatile communication. Further, an extra
interface for an external eye-tracking application must be available, as the proposed
system is used within the AdeLE research project. However, this interface only
needs to be capable of receiving pre-processed data from the eye-tracking system.
User information queries are only answered over the common interface.

Store Received User Information

The application systems are responsible for delivering user information to user mod-
eling system. The user modeling system on itself does not collect user information
directly but must store, organize and process the received data. The user informa-
tion must be organized in a component-based manner, where raw data is recorded
in a user profile. Based on this user profile, user models exploit this information,
interpret it and infer additional information about the user. Appropriate methods
must be applied to ensure this functionality, as user models aim at the semantic
enrichment of the raw data of user profiles.

Initialize, Update and Deliver User Profiles and User Models

The implemented user models must be initialized with the stored user information.
If the user information changes, the affected user models must be updated automat-
ically. A further task of the user modeling system is to deliver user information in
form of user models. Thus, an application system must be able to query the user
modeling system for a specific user model.

1http://adele.fh-joanneum.at/

115

http://adele.fh-joanneum.at/

8.2 Software Requirements of the Modeling System 116

Module-based Architecture

The architecture of the user modeling system must be module-based in order to
ensure the flexibility, reusability and extensibility of the system. Thus, modules
must be able to perform one specific task. For example, modules might be Profiler,
Modeler, Data Handler, etc..

Provide a User Interface

For monitoring and maintenance purposes, the user modeling system must offer an
own user interface (UI). The UI must provide all possible tasks which can be done
with the user modeling system. Therefore, the UI must enable to view and change
a particular user model. Further, the presentation of the UI must be adjustable.
Possible presentation forms are for example a Java Graphical UI (GUI), XML or
HTML.

8.2.2 Non-Functional Requirements

This section describes the requirements of the user modeling system that do not
relate to functional aspects. They describe a concept that should be adhered to in
the resulting system and in the development of the system.

General Software Requirements

Performance: The software should operate at a reasonable speed and with a
reasonable response time to commands.

Operational Platform: The software should be independent of the underlying
hardware and operating system.

Service-based Implementation: The implementation of the user modeling sys-
tem should work on a service-based framework. However, this framework must not
limit the functionality of the system.

Data Storage: The data should be primarily stored on the file system but the
system must be designed to allow access to a database as well.

Privacy and Security: The privacy and security of user information must be
ensured by the user modeling system.

External Requirements: The software should not require any specialized hard-
ware to run. Any other software resources required for operation of the program
should be distributed with the main program.

116

8.3 Architectural Design and Use Cases 117

Documentation

A documentation of the implemented system must be produced in form of Javadoc
generated HTML files. The documentation of the design process is covered in Section
8.4 and Section 8.5.

Develop with view to further development

The development of the application should facilitate future additions and modifica-
tions to the software.

Encourage code reuse from other sources

Reuse of code from freely available sources should be encouraged for the development
of the system.

The requirements enlisted in this section describe the main guidelines for the software
design. The software architecture is described in the followings section (see Section
8.3) and is valid for both solution proposals (micro- and macro-approach).

8.3 Architectural Design and Use Cases

The architectural design of the modeling system depicts the system by specifying
the main components and describing their function and the interactions between
them. To illustrate their interactions use cases are introduced in Sub-section 8.3.1.

As shown in Figure 8.1 there are basically three architectural levels. The lower
level represent the Openwings Framework on which the Modeling System is erected.
The next higher level describes the Modeling System itself, which is subdivided into
several functional units. The highest level is used by applications or External Sys-
tems like adaptive systems or test environments. External Systems are not addressed
in this software design but they do not need to be based on Openwings. The only
restriction for the External Systems layer is the communication interface, which is
provided by the Modeling System and must be implemented by them.

The most important layer in Figure 8.1 is the Modeling System layer and is
divided into the following sub-layers:

• Data Storage

• Profiler

• Modeler

• Tools

• Manager

117

8.3 Architectural Design and Use Cases 118

Figure 8.1: Layer Architecture of the Modeling System

The Data Storage layer represents the access to a data storage system like a
database or the file-system. On top of the Data Storage is the Profiler layer. The
Profiler must have a direct connection to the Data Storage since basically only
user information in form of “raw data” is handled by the Profiler. The Profiler is
accessed by two layers. First the Modeler layer, where the user models are hold
and second, the Manager layer. The user models are initialized and updated with
the data managed by the Profiler. The Modeler has no direct access to the Data
Storage which prevents a concurrent manipulation of the data between the Profiler
and the Modeler. If an application needs raw data about a particular user the
Manager is able to access the Profiler and deliver the queried data. The Manager has
access to the Modeler and to the Tools, since the Manager is responsible for offering
External Systems access to the Modeler. The Tools layer provides the Manager with
additional functionality and includes for example the GUI.

For external systems, the Modeling System behaves as one unit. This is shown in
Figure 8.1 by the surrounding box of the different levels of the Modeling System. The
communication with the Modeling System is processed by the Manager. Therefore,
security policies, privacy methods and data encryption must be provided by the
Manager.

So far, the main layers of the Modeling System and their tasks are described. In the
following section, the use cases for the modeling system are introduced.

118

8.3 Architectural Design and Use Cases 119

8.3.1 Use Cases for the Modeling System

Before the use cases can be described and analyzed, it is necessary to define the
possible users of the modeling system. Considering the software requirements in
Sub-section 8.2.1 two types of using systems can be identified within the context of
the AdeLE research project, namely adaptive systems and one eye-tracking system.
These two types of using or application systems have different purposes and therefore
different use cases. Since the affected components of the modeling system are mainly
the Modeler and the Profiler, it is also feasible to separate the use cases concerning
the affected components. Figure 8.2 shows those use cases, which affect the Profiler
and are initiated from an adaptive system.

Figure 8.2: Use Cases for the Profiler

The actions of an adaptive system regarding the Profiler are basically Send and
Query User Data. Further use cases are Check if a User is Available, Create a New
User and Construct a new Profiler. The query for the user availability checks if a
particular user is known by the modeling system. If this user it not known he can
be added to the modeling system by performing the use case Create New User. In
this case, the user profile is created and initialized. Finally, it is possible to add
required profilers by external systems (Construct New Sub-Profiler). By this use
case the external system sends information about the construction of the new sub-
profiler. This information is used and a new sub-profiler is installed by the Profiler.
The adding of sub-profilers works dynamically and allows to define arbitrary sub-
profilers while the Profiler knows about the installed sub-profiles.

The use cases for the Modeler are similar to the use cases of the Profiler and are
shown in Appendix A.1.

The second application system is the eye-tracking system. The eye-tracking
system sends information about gaze movements of the user to the Modeling system
(see Figure 8.3). This information is needed for later processing by the Modeler.

119

8.4 Macro-approach 120

Figure 8.3: Use Cases for the Eye-tracker

The eye-tracker Sends Eye-Tracking Information to the modeling system where
the Profiler records this data. This use case is very simple but it has to be considered
that the amount of data received from the eye-tracker is very high and dense. Thus,
the modeling system must be able to process this data within an appropriate time
period.

The architectural design is on a rather coarse grained level of detail but it identifies
the main levels of the modeling system and their interactions. In the following two
Sections 8.4 and 8.5) the two proposed solutions (macro- and micro-approach) are
described in more detail.

8.4 Macro-approach

After the architectural design process, the whole functionality of the system must
be divided into functional units, according to the proposed architecture.

According to the guide-line of the macro-approach, the functional components
are constructed by using the layers of the architecture, namely Data Storage, Pro-
filer, Modeler, Manager and Tools. The resulting functional division is described
in the following Sub-section 8.4.1. After the software design, the modeled system
is implemented. Sub-section 8.4.2 depicts the implemented aspects of the macro-
approach within the scope of the thesis project.

8.4.1 Functional Components

Considering the architectural design of Section 8.3 the determined layers of the
architecture are used to form the components of the macro-approach. As shown in
Figure 8.4, the following main components are identified:

• Data Handler

• Profiler

• Modeler

120

8.4 Macro-approach 121

• Manager

• Profiler Editor

Figure 8.4: Functional Architecture of the Macro-approach

The Data Handler provides access to data storages (see Figure 8.4). There are no
restrictions which data storage system is currently used. For example, it is possible
to use a database or the file-system. This allows to simplify the usage of different
storage system since all components which use the Data Handler do not need to
know anything about the storage.

The Profiler performs all tasks which are needed to record, query and deliver a
user profile. It is the only component which has direct access to the Data Handler.
This access is used to fill the user profiles with recorded raw data about the users.
There is a connection between the Manager and the Profiler, which allows external
systems to query directly the user profile, because often a user model is not needed.
There is a strict separation between the user profile and the user model based on
the findings of Section 2.2. This separation is also realized in the components of
the functional architecture. Further, the Profiler is based on a modular concept,
which means that the complete Profiler consists of several sub-profilers, where each
of the sub-profilers is responsible for a particular part of the user profile. This
modularity allows to extend and adapt the Profiler according to the needs of the
external systems. Additional sub-profilers are defined by external systems in form of
a request to install a sub-profiler. The installation of this sub-profilers is performed

121

8.4 Macro-approach 122

by the Profiler itself. Further, the Profiler handles this sub-profiler and the access
to them.

Similar to the Profiler, the Modeler is also designed in a modular manner. The
Modeler encapsulates several user models in form of sub-modelers, each of them
covering a specific user model. The Modeler itself knows about the implemented
sub-modelers. User models are defined by external systems. The definition of the
user model is included in the request to install a further sub-modeler. The Mod-
eler is responsible to handle this request and manage the installed sub-modelers.
This functional architecture of the Profiler and the Modeler allows a maximum of
scalability to the requirements of external systems.

The Manager is mainly responsible for the communication with the modeling
system. To allow communication, an appropriate interface is specified by the Man-
ager and has to be implemented by external systems. Further, the communication
is performed by using a defined protocol. The protocol must be versatile to enable
the needed communication. Further tasks of the Manager are defined as follows:

• resolve and delegate commands,

• communicate with the Profiler and the Modeler,

• offer privacy and security techniques, as well as

• identify and authorize external systems.

If a command is received by the Manager, it must resolve this command, extract
the information and delegate this command to the resolved component (e.g. Profiler
or Modeler). The affected component performs the required task and returns the
result to the Manager. The Manager generates the return command according to the
protocol specifications and sends this command back to the external system. Privacy
and security techniques are also offered by the Manager. Security for the transfered
user information is established by applying an encryption mechanism between the
Manager and the external systems. To enable privacy, two concepts are used. First,
by using pseudonymity (see Sub-section 6.3.1), the user is not directly connected to
the information stored in the profiles and models. Second, the implemented user
profiles and user models contain information about which part of the information is
available for all systems and e.g. which part can only be read by defined systems.
This concept of assigned level of privacy to user information is similar to the concept
used in PAPI (see Section 4.4). As already stated, the user information is arranged
in sub-profiles and user sub-models. This granularity is taken as the fundament for
partitioning of the user information in order to assign the corresponding privacy
levels. For example, the sub-profile “demographic data” could be assigned with the
privacy rule that only a specific system A has read and write access. For all other
systems this sub-profile is not accessible. The identification of the external systems
is also done by the Manager, where each external system has its own unique id.
This unique id is generated by the Manager during the first communication with
the external system. Only the Manager and the external system have knowledge
about this unique id.

122

8.4 Macro-approach 123

The Profiler Editor allows to view and change the user profiles. Since the Profiler
Editor is an internal system no privacy or security issues must be concerned. Further,
it is possible to select the desired presentation form (for example, XML or HTML).
The Profiler Editor is used to control and correct stored user information and to
monitor the system activities.

External systems are mainly, but not restricted to, Adaptive Systems. The mod-
eling system can be used by more than one Adaptive System, this is shown in Figure
8.4 through AS 1 - AS N. Additionally, the Eye-tracker is shown as an external
system. The modeling system is able to process data received from an eye-tracking
system. This data represents information related to gaze movements of the user
and is included in the user profile and handled through the user model. To simplify
the communication, the eye-tracking system communicates with the manager using
the same interface as the adaptive systems. This centralizes the communication
and centralizes the security concerns to the manager. The drawback is that the
connected systems may influence each other in cases of access and processing time.
Appendix B.2 shows a screen shot of AdeLE during a course. Information about
adaptation is shown by offering alternatives to the selected presentation form (In-
structional Alternatives) combined with relevant information from the user model
(Profile from learner). To provide scrutable user models (see Section 5.4.2) a link to
the particular user model is shown. This allows the learner to view and adjust his
user model.

To illustrate the collaboration of the described components, Figure 8.5 shows
the sequence diagram for the use case Send User Data. The Adaptive System calls
the method processCommand of the Manager. At first, the security and the privacy
policies are considered. This leads either into an authorization or into a refusion
of the received command. If the authorization is granted, the Context Manager is
invoked. The Context Manager resolves the required components (i.e. the context)
to which the command is delegated based on the given command. The Security and
the Context Manager are included in the Manager component but extra drawn to
facilitate the explanations. The Profiler is called from the Manager to record the
user data. The Profiler processes the given user data and stores it with the usage of
the Data Handler. Additional sequence diagrams are shown in Appendix A.2 and
A.3.

123

8.4 Macro-approach 124

Figure 8.5: Sequence Diagram for the User Case Send User Data

The architectural design of Section 8.3 and the functional design of this section
describe and specify the components of the proposed user modeling system. Imple-
mentations done within the thesis project are based on this design and are depicted
in the following section.

8.4.2 Implementation of selected Aspects

The software design of the macro-approach is used to form the components of the first
solution system by using the Openwings framework (see Chapter 7). In Openwings
one component is packed into one service but a component can consist of more than
one Java class. Openwings is not limited to Java but recommends the usage of Java
to implement components and create services. The following Java components were
implemented in the macro-approach:

• Manager

• Modeler

• Profiler

124

8.4 Macro-approach 125

• Data Handler

• GUI Visualization

The Manager component consists of the classes Communicator,
CommunicationInterpreter and ContextManager (see Figure 8.6). The
CommunicationInterpreter uses the abstract class CommunicationObject.
In order to be able to interpret the received commands, the CommunicationObject

must be implemented. There are two implementations of the
CommunicationObject available, namely the EyeTrackerCommunicatioObject and
the AdaptionSystemCommunicationObject (see Appendix A.4).

Figure 8.6: Class Diagram of the Manager Component

The classes shown in Figure 8.6 are conform to the functional description of
Sub-section 8.4.1 except that there is no explicit functionality to enable privacy and
security. Privacy is ensured by using pseudonyms whereas security is provided by
using Openwings specific security features (see Section 7.5). Further improvements
of the system must include security and privacy concepts, which are described in
Section 6.3 and Sub-section 8.4.1.

The Modeler component is constructed to manage the StateModeler and the
WAVIModeler (see Appendix A.5). Compared to the functional design of the previous
section, this implementation does not allow to dynamically add user models. The
implementation is limited onto these two user models, while the dynamic extension
feature would allow to add user models during work. As shown in Appendix A.5,

125

8.5 Micro-approach 126

each modeler encapsulates one specific user model, namely the UserStateModel and
the WAVIModel.

Similar to the Modeler is the Profiler component (see Appendix A.6). The
Profiler is divided into the UserInformationHandler and the BehaviourHandler.
The UserInformationHandler is responsible for information about the user, as
for example first name, last name, etc., while the BehaviourHandler records
and manages data about shown instruction (InstructionHandler), interac-
tions with the system (ActionHandler) and data from the eye-tracker system
(GazeTrackingHandler).

Connection to a data storage system is provided by the DataHandler component
(see Appendix A.7). The implementation of the macro-approach covers access to
the file-systems (FileHandler) in form of XML documents (XMLFileHandler).

The GUI Visualization is a simplified form of the Profiler Editor, which is de-
signed to allow different visualization forms. According to the requirements specified
within the scope of this thesis, the Profiler Editor needs only a Java GUI (a screen
shot can be seen in Appendix B.1).

As described in this section, the macro-approach consists of four components plus the
GUI visualization which are packed into separate services. The implementation itself
is based on the Java programing language where Java interfaces are used to define
service contracts. For more details about how software is developed with Openwings
see Section 7.4. The description of the implementation work in all details will exceed
the scope of this thesis.

The first of two implementation steps was the macro-approach. Only four ser-
vices are used within the macro-approach to provide the functionality of the mod-
eling system. The second step is the micro-approach, where it is tried to pack as
little functionality as possible and reasonable into one service.

8.5 Micro-approach

This section describes the functional design and the implementation of the micro-
approach. As already stated in Section 8.1, the micro-approach follows the guideline
that every component is represented by one service. Nevertheless, the functionality
of the micro-approach is equally to that of the macro-approach (see Section 8.4). The
design of the micro-approach results in a more fine grained structure of components
and services.

At the first state of the functional design, the functional components have to be
determined. This is done in Sub-section 8.5.1. The components as the outcome of
this design are then used for developong the services. At the end of this section the
implemented aspects of the micro-approach are depicted (see Sub-section 8.5.2).

8.5.1 Functional Components

The functional components of the micro-approach are created by sub-dividing the
components of the macro-approach (see Sub-section 8.4.1). This is a simple way to

126

8.5 Micro-approach 127

ensure the same functional scope as the macro-approach. The functional components
are described within this section by a similar grouping as in the macro-approach (see
Figure 8.4)

Figure 8.7: Functional Architecture of the Manager

The first group of functional components is the Manager (see Figure 8.7). The
Manager is sub-divided into the Communicator (CO), the Security Manager (SecM)
and the Context Manager (CM). The Communicator is responsible for the commu-
nication between external systems and the modeling system. The Communicator
asks the Security Manager if the external system is authorized to access the model-
ing system. If access is granted, the relevant component for the current command is
resolved by the Context Manager. For example, if the command contains user data
which is to be stored in the user profile, the Context Manager tells the Communi-
cator to proceed with the process by calling the Profiler.

The Modeler group (see Figure 8.8) contains functional components which are
responsible for the user modeling. The access point to the Modeler is the Model
Manager (MM). The Model Manager is responsible for the communication with the
Manager. Further tasks of the Model Manager are to construct, initialize, deliver
and maintain user models. Every user model is managed by its own Modeler. Exam-
ples for implemented modelers are the State Modeler (SM) and the WAVI Modeler
(WM). The State Modeler contains the state model, which models the current user
state regarding domain knowledge. A knowledge state (like “read” or “learned”) is
assigned to every piece of the learning material. For example, the knowledge state
of user X about chapter 9 of course A is “learned”. The WAVI Modeler represents
the WAVI model, which describes the learning styles of a particular user. General
information about the content of a user model in adaptive e-learning systems is
described in Sub-section 3.4.1.

Figure 8.8: Functional Architecture of the Modeler

127

8.5 Micro-approach 128

Raw data about the user is hold in a user profile. The user profile is sub-divided
into several Profilers which are managed by the Profile Manager (PM) (see Figure
8.9). Similar to the Modeler, the Profile Manager creates and handles these Profil-
ers. Implemented initial Profilers are the User Information Handler (UH) and the
Behavior Handler (BH). The User Information Handler deals with general infor-
mation about the user, as for example demographic data. The Behavior Handler
holds information about the user behavior. The user behavior is observed by record-
ing shown instructions (Instruction Handler IH), user interactions (Action Handler
AH) with the system and gaze information (Gaze Information Handler GH). Gaze
information is received from the eye-tracking system.

Figure 8.9: Functional Architecture of the Profiler

The last group of functional components is called Tools. The Tools group com-
bines all components which are not directly connected to any other previously de-
scribed groups (see Figure 8.10). These are “common” components used by the
Manager and by the Profiler. The Tools group provides functionality to the Man-
ager in form of the Profile Editor (PE) and the Communication Interpreter (CI).
The Profile Editor offers a user interface to view and modify the user information
stored in the modeling system. An implementation of the Profiler Editor is the
GUI Visualization (GV) which provides a GUI for the modeling system and there-
fore offers an ergonomic way to view and change the user information. Further
implementations of the Profiler Editor may include for example an HTML presen-
tation. Since the communication with the Communicator is based on a specified
command syntax it is useful to model an extra Communication Interpreter which
takes the received command, checks the syntax of the command, interprets it and
sends the result back to the Communicator for further processing. Thus, the Com-
municator is independent of the used command syntax. For each command syntax,
a corresponding Communication Interpreter must be implemented. Examples are

128

8.5 Micro-approach 129

the Adaptive Systems Communication Interpreter (AI) and the Eye-tracking System
Communication Interpreter (EI).

Figure 8.10: Functional Architecture of the Tools Component

The Profiler uses the Tools group to get access to a data storage. The Data
Manager (DM) provides access to several storage systems. This makes the Profiler
independent of the used data storage. Each data storage system requires an im-
plementation of the Data Manager. Database access is provided by the Database
Handler (DH), wile access to the file-system is realized by the File Handler (FH).
The data organization of the File Handler is specified by an XML Data Handler
(XD).

Figure 8.11 shows the complete functional architecture of the micro-approach.
The previously described component groups are combined and the connections be-
tween components are depicted. External systems within the scope of the AdeLE
project are represented by an Adaptive System (AS), an Eye-tracking Systems (ET)
and a Test Client (TC).

129

8.5 Micro-approach 130

Figure 8.11: Functional Architecture of the Micro-Approach (adapted from [Gütl
and Garcia-Barrios 2005])

Based on the architectural design (see Section 8.3), the functional design specifies
components and their relations among each other. The following section describes
the implementation of these components, which was done within the thesis project.

8.5.2 Implementation of selected Aspects

After the implementation of the macro-approach it was necessary to implement the
micro-approach with the identically functionality as the macro-approach. Open-
wings allows to specify service contracts in form of Java interfaces. This ability is
used to create a service for each class, whereby the existing classes from the macro-
approach were re-used and additional interfaces were specified for them. This allowed

130

8.5 Micro-approach 131

to reduce the implementation work for the micro-approach and guaranteed the same
functionality for both approaches.

The manager component from the macro-approach is sub-divided into two ser-
vices, namely the ContextManager and the CommunicationInterpreter as shown
in Figure 8.12. The interfaces shown in Figure 8.12 are the service contracts. Nam-
ing conventions, like adding Synchronous to the end of the interfaces indicate that
this service contract enables synchronous communication with the services. The
synchronous communication is based in RMI (see Sub-section 7.4.4).

Figure 8.12: UML class diagram including services which are connected to the Com-
municator service

The Communicator service further connects to the ModelManager and to
the ProfileModeler. The services of the Modeler group are ModelManager,
WAVIModeler and StateModeler (see Appendix A.8). The ModelManager service is
responsible for the implemented user models. As in the macro-approach (see Sub-
section 8.4.2), two user models, namely the WAVI model and the state model are
implemented. For each of these user models a modeler service is created. Access
to user information, which is needed to initialize and update the user models is
provided by the ProfileModeler service.

The functional architecture of the micro-approach (see Sub-section 8.5.1) pro-
poses the partition of the Profiler into a ProfileModeler and several sub-profilers.
Sub-profilers are allowed to have again their own sub-profilers. This results into the
implementation of the Profiler as shown in Appendix A.9. The ProfileModeler

uses two sub-profiler services, namely the UserInformationHandler service and the
BehaviourHandler service. The BehaviourHandler has again sub-services, which

131

8.6 Evaluation of the Approaches 132

are called ActionHandler, InstructionHandler and GazeInformationHandler.
All these profilers have access to the data storage.

The FileHandler service (see Appendix A.10) provides general access to the
local file system. An implementation of the FileHandler is the XMLFileHandler,
which organizes the data in form of XML files. Listing 8.1 shows an XML code-snip
of the user information file.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<p r o f i l e>

<f i r s tname>Christoph Johann Fe l i x</ f i r s tname>
<lastname>Froesch l</ lastname>
. . .

</ p r o f i l e>

Listing 8.1: XML user information stored on the file system.

In sum, the micro-approach contains 15 services. That is much more than in the
macro-approach. Since 15 services are difficult to handle especially during the start
and the shut-down of the system, it is useful to develop a runtime environment
which keeps track of and monitors the life cycle of the services.

Not only handling but several other criteria are used to evaluate the two solution
approaches in the following section.

8.6 Evaluation of the Approaches

An evaluation of both solution approaches introduced in Section 8.4 and 8.5 is nec-
essary to find advantages and drawbacks of each approach. Further, the foundation
should be established to be able to answer the question, how much functionality can
be reasonable packed into one service. The evaluation follows the guidelines of a
scenario-based evaluation, where stakeholders are used in form of scenarios.

The following section is not a complete evaluation but a first step to classify
the solution approaches in a technical way. This evaluation is made in four steps.
First, different user scenarios which are relevant for the evaluation are described
in Sub-section 8.6.1. The second step is the definition of the evaluation criteria or
benchmarks (see Sub-section 8.6.2), followed by the third step, the description of
the evaluation setup in Sub-section 8.6.3. Finally, the results of the evaluation are
depicted in Sub-section 8.6.4.

8.6.1 User Scenarios

The evaluation of the approaches is performed under the conditions of these user
scenarios. User scenarios are often used for user-centered design in the field of
human-computer-interaction (HCI) [Bødker 2000]. Basically, the user scenarios used
in this section differ from their common meaning in that these scenarios do not
describe hypothesized user interaction scenarios but roles of the users. Each role has
its own goals and tasks to be carried out. Thus, different user scenarios are affected
by the two approaches in different ways. The term user scenarios is applicable

132

8.6 Evaluation of the Approaches 133

because they are used to compare different solutions, which is similar to a HCI
evaluation.

The following section describes three user scenarios, namely Administrator, De-
veloper and Application User by depicting their motivation and possible interactions
with the modeling system.

Developer

The Developer scenario includes persons which are involved in the design and im-
plementation process. For example, these persons are software developers, software
designers and programmers.

Main goals of Developers are to create a stable, useful, powerful and versatile
modeling system. Developers are compelled to fulfill the given requirements of Sec-
tion 8.2. Further, Developers intend to spent as less time to develop the system as
possible. During testing, they have to deal intensively with the system by simulating
real-world tasks. Since Developers are basically human beings, another issue is the
survey over the source code during the design and implementation period.

Application User

Application User is the scenario for which the modeling system is mainly developed.
Application Users of the modeling system are adaptive systems, eye-tracking systems
and any other system with the need for user information.

Goals of Application Users are to store and retrieve user information in an easy,
fast, robust and secure way. There are no interests in what is happening behind the
communication interface. The Application User sees the modeling system as a black
box with a defined interface to communicate. Since every application needs different
properties of the modeled user, there is a need to adapt the modeling system to the
application needs.

Administrator

The last user scenario is the Administrator. The Administrator is responsible for
the system maintenance. Tasks are to start the system, to control the system during
runtime and if improvements can be made, to carry them out. Improvements are
in this scenario not improvements of code but improvements regarding the system.
Since the modeling system is based on a service-oriented architecture (SOA) it is
possible to distribute services over a local network. The Administrator should mon-
itor the communication and computing loads of the affected computers and find an
appropriate system structure.

The Administrator is a combination of software system and persons. The Admin-
istrator software system is for example the runtime environment which is responsible
for starting the needed services and keep them running. Persons are responsible for
more sophisticated tasks like managing the system’s structure and monitoring sys-
tem loads. Administrators are directly affected by the handling criteria and, as

133

8.6 Evaluation of the Approaches 134

already stated above, in charge of clustering and distribution of the modeling sys-
tem.

The definition and description of user scenarios help to compare systems under dif-
ferent points of view. Aspects and criteria which are examined during the evaluation
are described in the following section.

8.6.2 Evaluation Criteria

In addition to user scenarios, criteria are used to evaluate the two approaches. A cri-
terion describes a standard or an aspect against which something is measured. After
the measurement, the evaluation result of the different approaches is compared. An
objective comparison can be provided by assigning values to each criteria according
to the measurement result, but many criteria allow only a qualitative description of
the criteria satisfaction.

The first step is to find out the relevant evaluation criteria. The following cri-
teria are listed and described in [Shehory and Sturm 2001; Chung et al. 2000;
Hetzel 1988]. But not all criteria listed in literature are applicable and useful in
this case. Basically, the proposed and implemented modeling system of this thesis
project can be evaluated in a similar way to distributed systems, since Openwings
is based on the network layer and allows to run communicating services on different
platforms without further restrictions. Further, relevant aspects in the field of user
modeling must be added to the technical evaluation criteria for distributed systems
(e.g. privacy, security, adaptability, etc.). The following section lists and describes
the used criteria:

• Performance

• Reliability

• Clustering and Distribution

• Handling

• Adaptability

• Scalability

• Privacy and Security

Performance

Not all software systems have explicitly specifications on performance issues. But
every system will have implicit performance requirements. The software should not
take infinite time or need infinite resources to execute. Performance evaluation of
a software system usually includes: resource usage, throughput, stimulus-response
time and queue lengths detailing the average or maximum number of tasks waiting to

134

8.6 Evaluation of the Approaches 135

be serviced by selected resources. The goal of performance testing can be for exam-
ple, performance bottleneck identification, performance comparison and evaluation.
[Hetzel 1988]

Poor performance is often the result of problems in the architecture or design
rather than the implementation. This statement is reinforce by the following quote:

“Performance is largely a function of the frequency and nature of inter-
component communication, in addition to the performance characteris-
tics of the components themselves, and hence can be predicted by studying
the architecture of a system.” [Clements 1996]

Therefore, the evaluation of the system performance is made by examining the
architecture and the communication processes of the solution approaches.

Reliability

The reliability of a software component is the degree to which it can function cor-
rectly in the presence of exceptional inputs or stressful environmental conditions.
[IEEE 1991] defines reliability as

“... the ability of a system or component to perform its required functions
under stated conditions for a specified period of time.”

There are no concerns about the functional correctness of the software addressed by
the reliability criterion. Only problems such as machine crashes, process hangs or
abnormal termination are monitored.

Clustering and Distribution

Clustering is a method to arrange multiple computers in form of a cluster. This
group of computers or servers acts like a single system. [Whatis.com 2005]

The distribution of software as a result of clustering is an important issue, be-
cause software component should not be divided arbitrarily. Thus, aspects like load
balancing are used to find the best distribution.

Handling

Handling describes the manageability of the software system. Manageability covers
the activity of ensuring that the application is alive and functioning normally, as well
as that of checking that an application performance is as expected. [Whatis.com
2005]

Concerning the different user scenarios, there are different handling aims. For
example, the Application User wants to access the system through a simple interface,
or the Administrator wants to manage a flexible and small system.

135

8.6 Evaluation of the Approaches 136

Adaptability

Adaptations describe changes of the system in order to accommodate changes of the
environment. Adaptation of software systems are caused by changes from an old
environment to a new one. If adaptability is provided by the software system this
change results in a new system, which should meet the needs of the new environment.
[Chung and Subramanian 2001]

Scalability

Scalability is the ability of a software application to change its size. In most cases
the rescaling is done to a larger size. [Whatis.com 2005]

Privacy and Security

Software quality, reliability and security are related to each other. Flaws in software
or software with a bad quality can be exploited by intruders for unauthorized access
to the system. The purpose of security testing includes identifying and removing
this software flaws. To find vulnerabilities, simulated security attacks are performed.
[Hetzel 1988]

The description of these evaluation criteria helps to examine the approaches. For
both systems the same definitions must be applied in order to ensure a comparable
result. To allow the assessment of the systems concerning the evaluation criteria, it
is necessary to use a good evaluation setup. The used evaluation setup is described
in the following section.

8.6.3 Evaluation Setup

A evaluation setup describes the configuration and conditions under which the eval-
uated systems are operating. The major point for designing an evaluation setup is
that it must include the needed features to allow a conclusion about all relevant
evaluation criteria. For example, if the performance in form of access time is mea-
sured, a setup is needed, where the access to a particular system is performed several
times.

Since this is not a holistic evaluation, but rather a comparison of the two solution
approaches, the evaluation is limited on mainly qualitative descriptions of the crite-
ria. Thus, also the evaluation setup represents a simple approach to an evaluation
setup for an extensive evaluation.

The evaluation setup used for this thesis consists of two external systems and
the GUI visualization service. These three services communicate with the modeling
system at the same time and are working in a concurrent manner. This allows to
assess the performance of the modeling systems. Figure 8.13 shows the class diagram
of one external system (PerformanceTest1). All services are running on the same
“Openwings 1.1” platform.

The classes PerformanceTest1 and PerformanceTes2 are wrapped into Open-
wings services. After starting the service, they communicate with the modeling

136

8.6 Evaluation of the Approaches 137

Figure 8.13: UML class diagram of the evaluation setup (performance test)

system by connecting to the Communicator, respectively to the Manager service.
The service PerformanceTest1 writes a user parameter (last name) to the user
profile while the second PerformanceTest2 service queries the WAVI model of the
same user. Both commands are repeated 50 times and the mean processing time is
written to the log windows of the services.

As described in Section 7.5, Openwings allows to secure the transport and the
services from unauthorized access. During the deployment of a service it is possible
to set the security. Either security is enabled or disabled without any change to the
Java source. Since security is an important issue for user modeling systems the con-
sequences of enabling Openwings security to the performance criterion is examined
by repeating the same evaluation process with enabled secure communication.

Applying the evaluation setup of this section returns the evaluation results. These
results are depicted in the following section.

8.6.4 Evaluation Results

The evaluation results are structured regarding user scenarios, since the three user
scenarios give different results for the evaluation criteria. In many cases, evaluation
criteria are not relevant for a specific user scenario. For example, the Developer
is not affected by the privacy criterion. The Developer is responsible to fulfill the

137

8.6 Evaluation of the Approaches 138

privacy requirements, but the evaluation of the privacy criterion is not relevant for
him.

The first user scenario is the Developer, followed by the Application User. Fi-
nally, the Administrator scenario is examined in the following section.

Developer

As already stated in Sub-section 8.6.1, the task of the Developer is to fulfill the
user requirements and create the needed system. During the design and the imple-
mentation process the Developer is interested in two evaluation criteria, namely the
Handling and the Scalability of the approach.

The Handling of the solution approaches is different for the Developer. Since
the micro-approach contains 15 services, a well organized development environment
is needed to cope with the source code during the implementation. Compared to
the macro-approach, where only 4 services are used, this is a drawback of the micro-
approach regarding the handling.

Comparing Scalability of the two solution approaches does not allow to prefer one
approach. Scalability of the macro-approach is implemented by adding additional
classes to the related service and changing the service contracts. Performing a scala-
bility change for the micro-approach is handled completely different. Not additional
classes are added to existing macro-services but new classes are wrapped by new ser-
vices. To allow the access to this new services the common services must know about
them and therefore modified on the source level. Therefore, from the viewpoint of
the Developer scenario the scalability needs less efforts for the macro-approach.

Application User

The Application User is the user scenario for which the approaches are designed. Ap-
plication Users are interested in aspects like Performance, Robustness, Adaptability
and Privacy/Security.

Regarding Performance, comparing the architecture of the two solution ap-
proaches makes clear, that the micro-approach needs more inter-service commu-
nication to operate. Since this communication is processed by applying the Java
RMI technology (see Sub-section 7.4.4), there is a lot of communication overhead.
This reduces the system performance of the micro-approach. Considering the macro-
approach, only 4 services are communicating with each other, which consequently
allows to to prefer the macro-approach.

The result of this performance inspection by using the evaluation setup (see
Sub-section 8.6.3) results in command processing times, which are shown in Table
8.1.

The mean command processing time for unsecure communication is for the micro-
approach about four times higher than for the macro-approach. This is arguable
with the more inter-service communication of the micro-approach. There is not much
difference between the two commands (Com1 and Com2) although different parts
of the system are affected. Further, it can be noticed, that the data caching of the
WAVI modeler increases the processing speed for this command. The first execution

138

8.6 Evaluation of the Approaches 139

Micro-approach Macro-approach

Connectors Com1 Com2 Com1 Com2
unsecure 96 [ms] 104 [ms] 18 [ms] 21 [ms]
secure 742 [ms] 756 [ms] 155 [ms] 163 [ms]

Com1: Set User Information
Com2: Get WAVI Model

Table 8.1: Mean Command Processing time for Micro- and Macro-approach in milli-
seconds

of Com2 was in all cases the slowest, since in this case, the modeler has to connect
to the profiler in order to initialize the WAVI model. All further requests for the
WAVI model are answered by using the cached data within the Modeler. Securing
the communication between the services increases the processing time enormously
and hinders a reasonable utilization of the micro-approach. The processing time
is nearly one second for each command by the micro-approach and more than 150
millisecond for the macro-approach.

Over all, the macro-approach with its less inter-service communications is the
preferable solution approach regarding performance.

Considering Reliability, the life cycle of services running on the Openwings frame-
work is monitored by the framework. Openwings detects if a service has stopped and
tries to restart the service again. Nevertheless, error handling during runtime has
to be implemented by the approaches itself. A service-based architecture requires
an error handling within services. Therefore, each service must be able to deal with
occurring errors. Since both approaches implement the same functionality also the
error handling mechanism is the same. Thus, there is no difference regarding Reli-
ability between micro- and macro-approach although Openwings has to handle 15
services for the micro-approach and only 4 services for the macro-approach.

Regarding Adaptability, the modeling system can be adapted in form of adding
profilers and user models. Each Application User is able to define its own profilers
and modelers. Both approaches are designed to allow such adaptation and therefore
they are considered as coequal regarding Adaptability.

Both approaches apply the same Privacy and Security techniques. Privacy is
provided by using pseudonyms for users and by the privacy modul, which allows to
define privacy levels for parts of the user information.

Security is established by utilizing the Openwings security features. Thus, there
is no difference between the two approaches concerning privacy and security.

Administrator

According to the definition of the Administrator scenario (see Sub-section 8.6.1),
criteria like Robustness and Stability, Clustering and Distribution, Handling and
Scalability are in the interest of an Administrator.

Regarding Reliability, the Administrator is responsible to deal with outtakes
of the system. Outtakes are for example the crash of a service. In this case the

139

8.6 Evaluation of the Approaches 140

Administrator has to identify the crashed service and restart it. This task is mainly
performed by the runtime environment. Since the services itself are designed to
be stateless, there is no rollback problem. In the case of a crashed service, the
Application User receives an error message and is asked to resubmit the command.
The runtime environment has to monitor a different amount of services, concerning
the two approaches. The micro-approach needs 15 services and this makes it more
error prone compared to the macro-approach, where only 4 services are needed. This
fragility of the micro-approach results in more work for the Administrator.

A further task of the Administrator is to keep track of Clustering and Distribution
in order to provide load balancing. Clustering techniques provided by the Openwings
framework are applied to spread the processing load over several machines. Since the
micro-approach offers more possibilities to distribute the complete system, it allows
to balance the load in a more accurate way. However, the macro-approach also allows
to distribute the system but not in such a precise manner as the micro-approach.

Considering outtakes and distribution issues, the Handling of parts of the systems
is important. The micro-approach with its higher amount of services needs more
resources to administer them, and therefore the Handling is not that easy as for a
system with less services.

To provide the required performance of the modeling system, the Scalability is an
important aspect. The Administrator has the possibility with clustering and distrib-
ution methods to adjust the Scalability of the system. Comparing the Scalability of
the micro-approach with that of the macro-approach shows advantages for the first
one. For example, it is possible to place one small component of the system (e.g.
UserInformationHandler) on another platform if it is under heavy load. With the
macro-approach this is not possible because there is only one service representing
the Profiler.

Evaluation Summary

In order to summarize the evaluation results, this last part of the chapter condenses
the main outcomes in form of two tables (see Table 8.2 and Table 8.3).

Each table describes the evaluation results for one solution approach. Further,
by assigning numerical values to strengths and weaknesses the author of this thesis
has tried to compare both approaches in a quantitative way.

140

8.6 Evaluation of the Approaches 141

Micro-approach

Developer Application User Administrator
Performance -2
Reliability -1 -1
Clustering 2
Handling -1 -2

Adaptability 0
Scalability 0 1

Privacy/Security 0

-2 ... strong drawback; -1 ... weak drawback; 0 ... equally
1 ... weak advantage; 2 ... strong advantage; ... not affected

Table 8.2: Evaluation Summary for the Micro-approach

Macro-approach
Developer Application User Administrator

Performance 1
Reliability 0 1
Clustering 0
Handling 0 1

Adaptability 0
Scalability 0 0

Privacy/Security 0
-2 ... strong drawback; -1 ... weak drawback; 0 ... equally
1 ... weak advantage; 2 ... strong advantage; ... not affected

Table 8.3: Evaluation Summary for the Macro-approach

141

8.7 Summary 142

Although the focus of the external systems (Application User) is different, it
is possible to state that the macro-approach is preferable. Also for the user sce-
nario Administrator, the macro-approach has advantages compared to the micro-
approach. Only for Developers is not a big difference between the two solution
approaches.

This section described the evaluation and comparison of micro- and macro-approach
by depicting the evaluation process in form of user scenarios, evaluation criteria and
an evaluation setup. The end of this section depicted the outcomes of the evaluation
and summarized the main results.

The following section gives a summary of this chapter including comments on
the design process and evaluation results.

8.7 Summary

The design process is an essential stage in every software development process. It
that sense, it has to be emphasized that a good software design allows to satisfy
the current needs of the application user and allows to extend the system for future
changes. The demands to the modeling system are described in form of requirements
in Section 8.2 followed by the architectural design and the specification of use cases
in Section 8.3.

The functional design and the implementation is separated into the macro-
approach and the micro-approach (see Section 8.4 and 8.5). In these sections the
functional architecture of the approaches is introduced followed by the description
of the implementations. The actual implementation does not cover the complete
design outcome, and represents therefore a “first prototype”.

In the last section of this chapter the evaluation and comparison of the two
approaches (see Section 8.6) were described. The evaluation results show that the
macro-approach has some advantages compared to the micro-approach. Less inter-
service communication efforts and a simpler system architecture provides more per-
formance and better handling.

The following chapter gives a conclusion of this thesis and depicts some interest-
ing aspects for further work in form of an outlook.

142

9. Summary and Outlook

Information about the user, in form of an internal representation of user traits and
states, is an important matter for adaptive systems. Without any knowledge, or
with wrong knowledge about the user, it is not possible for user-adaptive systems
to perform accurate adaptations. Therefore, user information must be available to
adaptive systems. The unit where this information is managed is called user model
and represents all aspects of the system’s idea about the user.

This thesis aims at a proposal for a modeling system by describing and examining
important characteristics and requirements for such a system. The main concern of
the author of this work was to create a versatile and secure user modeling system.
Prerequisites for a versatile system are a well-organized and well-structured user
profile and user model. Security for user modeling systems is often related to privacy
since user information stored in a system is included by the right to privacy.

The proposed system is based on a service-oriented architecture and therefore,
consequences of a service-oriented architecture regarding user modeling systems and
especially on the main concerns of this work were examined. In general, the following
aspects were considered and investigated within this thesis:

• terminology,

• modeling techniques,

• user modeling standards,

• available user modeling systems,

• privacy and security techniques, and

• service-oriented architecture.

Due to these aspects, this thesis is divided into a theoretical part and a practical
part. The theoretical part examines the listed aspects, while the practical part uses
the outcome of the examination and describes the realization of these aspects in
form of a service-based solution approach.

In order to be able to describe important issues regarding user modeling it is
previously necessary to clarify the terminology. In literature the meaning of the
terms user modeling, user profiling and adaptive e-learning systems differs. Within
this thesis, the term user profiling is used in relation to a low-level user model where
basically user information is collected in form of “raw data”. The user model exploits
the user profile and infers semantically richer user information. The utilization of
user profiles and user models within adaptive e-learning systems is described by
examining available theoretical approaches and possible types of systems.

Distinct adaptive e-learning systems apply different user models, but all of them
use a kind of learner or student model. Considering a learner model, aspects like the
demands to a learner model, available user modeling techniques and the content of a
learner model were described. In order to offer information about a learner, a mod-
eling system must be able to construct, initialize and update the learner model. For

143

Summary and Outlook 144

each of these steps several methods and techniques can be identified (e.g. Bayesian
Methods, machine learning methods, overlay and stereotype methods, etc.). The
content of learner models can be separated into domain specific and domain inde-
pendent information. Domain specific information describes the learner’s expertise
regarding a knowledge domain, while domain independent information covers learner
traits, such as preferences, goals and so forth.

The applicability of already existing solutions to describe the content of a learner
model was examined in form of an inspection of available user modeling standards.
There exist mainly three standards which are suitable, namely GESTALT, PAPI
Learner and IMS LIP. The standards PAPI Learner and IMS LIP are seen as the
most valuable and allow to model the user in an appropriate level of detail. Although
these standards are not utilized in many systems, this thesis gives a clear proposal
for utilizing them since they allow to organize the content of the user model in a
well-defined way and offer precautions for privacy and security issues.

The second examination of existing solutions was the description of available user
modeling systems. From a chronological viewpoint three types of user modeling sys-
tems were examined, namely Early User Modeling System, Shell Systems and User
Modeling Servers. Latest developments apply Web Service and agent technologies,
which enable flexibility in form of the ability to add further modeling components.

Prior to the practical part of this work, some aspects concerning the design and
the implementation of the proposed modeling system were examined. Reflections for
the proposed solution were concerning privacy and security techniques, organization
and structure of user profiles and user models as well as service-oriented architecture.
In order to provide an exploitable user profile, it is necessary to organize the user
information contained in the profile. This is possible by splitting the user profile into
several sub-profiles where each sub-profile handles a specific type of user informa-
tion. The user model is organized in a similar way. This organization facilitates the
utilization of privacy and security mechanisms since each sub-profile and sub-model
can be connected with a particular privacy level (e.g. demographic data is only
readable). Security issues must be enabled by the applied service-oriented frame-
work. Two frameworks were examined and compared, namely OSGi and Openwings.
Openwings was chosen to be used for the design and implementation of the modeling
system and represents a specification of a service-oriented framework.

The core of the practical part of this theses is the design and implementation
of the solution approach. The proposed solution represents a user modeling system
based on the Openwings framework and integrates the deductions of all previously
described aspects. Concerning software development patterns for service-oriented
design, there are no specific rules about how much functionality should be offered
by one service. The practical part of this thesis worked on this question in form
of comparing two extrema, namely a macro-approach and a micro-approach. The
macro-approach groups all related functional components and wraps them into one
service. This approach results in a smaller amount of services compared to the
micro-approach, where each component is wrapped by one service.

Using a service-oriented architecture as the basis for a user modeling system al-
lows to realize modular and therefore versatile user profiles and user models. There-

144

Summary and Outlook 145

fore, the implemented service-oriented system utilizes an up-to-date software design
paradigm, which is often referred to as the successor of the object-oriented par-
adigm. Privacy concerns are addressed by applying methods like pseudonymity
combined with a security service, which is responsible for authentication and access
restrictions. Communication security and the prevention of intrusion is handled by
the Openwings framework. That emphasizes the advantages of this service-oriented
framework. Comparing the micro-approach and the macro-approach shows different
results. There is no clear answer to the investigated design question. The appropri-
ate design must be chosen depending on the most relevant required criteria, whereby
this comparison is helpful and may be used as a reference.

Extensions and improvements of the proposed solution are foreseen through the
research project AdeLE. Especially privacy and security concerns combined with the
enhancement of the scrutability of the user model might be considered for further
work. Scrutable user models allow the user to view and change his user model, and
therefore, gives the user more freedom and control concerning the adaptation and
presentation of the learning content. Further reasons for a scrutable user model is the
traceability of adaptations by showing the users reasons for the current adaptation
of the learning material and offering “the other alternatives” (those not selected by
the system).

Additional further work may aim to integrate available user modeling standards
into the modeling system. This integration may take place in form of an addi-
tional modeler, which uses the data from the user profile and creates the specified
presentation according to the specification of the standard.

145

A. Additional UML Diagrams

Figure A.1: Use Cases for the Modeler

Figure A.2: Sequence Diagram for querying the User Profile

146

147

Figure A.3: Sequence Diagram for querying the User Model

147

148

Figure A.4: UML class diagram of the abstract class CommunicationObject with two
available implementations, namely EyeTrackerCommunicationObject and Adaption-
SystemCommunicationObject

148

149

Figure A.5: UML Class Diagram of the Modeler Component (macro-approach)

149

150

Figure A.6: UML Class Diagram of the Profiler Component (macro-approach)

150

151

Figure A.7: UML Class Diagram of the DataHandler Component (macro-approach)

Figure A.8: UML class diagram including services which are connected to the Mod-
elManager service (micro-approach)

151

152

Figure A.9: UML class diagram including services which are connected to the Pro-
fileModeler service (micro-approach)

152

153

Figure A.10: UML class diagram including services which are connected to the
FileHandler service (micro-approach)

153

B. Screen shots

Figure B.1: Screen shot of the GUI Visualization, where the WAVI model of user
“chris” is queried.

154

155

Figure B.2: Screen shot of the AdeLE front-end showing a course visualization.

155

List of Figures

1.1 Architecture of the AdeLE system [Gütl and Garcia-Barrios 2005] . . 5

2.1 User and User Model [Kay 2000b] . 10
2.2 Adaptive System [Brusilovsky and Maybury 2002] 13
2.3 Components of an ITS [Brusilovsky 1994] 17

3.1 Role of the User Model in Adaptation [Kay 2000b] 21
3.2 Components of an ITS [Brusilovsky 1994] 23
3.3 Adaptive Hypermedia Techologies [Brusilovsky 2001] 26

4.1 GESTALT Functional Architecture [Wade et al. 2002] 44
4.2 Relationships among PAPI Learner parts [Farance 2001] 47
4.3 PAPI Learner Information Groups. [Farance 2001] 48
4.4 IMS LIP Core Segments [Smythe et al. 2001] 52
4.5 <learnerinformation> elements [Smythe et al. 2001] 54
4.6 <identification> elements [Smythe et al. 2001] 55
4.7 <transcript> elements [Smythe et al. 2001] 56
4.8 <securitykey> elements [Smythe et al. 2001] 57

5.1 GUMS Architecture [Finin and Drager 1986] 61
5.2 Internal view of the BGP-MS [Blank 1996] 64
5.3 Communication with BGP-MS [Kobsa and Pohl 1995] 65
5.4 Personis Collaboration Architecture [Kay et al. 2002] 69
5.5 Personis Internal Architecture [Kay et al. 2002] 70
5.6 Overview of the LDAP Server Architecture [Fink 2003] 71
5.7 Overview of the Agent-based Architecture [González et al. 2005] . . . 72

6.1 Application implementation layers: Services, components, objects
[Endrei et al. 2004] . 78

6.2 Directory service [Hashimi 2003] . 78
6.3 Web Services [Kreger 2001] . 80
6.4 OSGi framework [OSG 2003] . 82
6.5 Openwings Architecture [Bieber and Carpenter 2001] 84
6.6 Structure of the Learner Profile . 89

7.1 Architecture of the Openwings Framework [Bieber and Carpenter 2001] 93
7.2 Connector Architecture [Bieber and Carpenter 2001] 95
7.3 Component Services Use Cases [Bieber and Carpenter 2001] 96
7.4 Component Install State Diagram [Bieber and Carpenter 2001] 101
7.5 Openwings Policy Concept . 106

8.1 Layer Architecture . 118
8.2 Use Cases for the Profiler . 119
8.3 Use Cases for the Eye-tracker . 120

156

LIST OF FIGURES 157

8.4 Functional Architecture of the Macro-approach 121
8.5 Sequence Diagram for Send User Data 124
8.6 Class Diagram of the Manager Component 125
8.7 Functional Architecture of the Manager 127
8.8 Functional Architecture of the Modeler 127
8.9 Functional Architecture of the Profiler 128
8.10 Functional Architecture of the Tools Component 129
8.11 Functional Architecture of the Micro-Approach (adapted from [Gütl

and Garcia-Barrios 2005]) . 130
8.12 Communicator class diagram of the micro-approach 131
8.13 UML class diagram of the evaluation setup 137

A.1 Use Cases for the Modeler . 146
A.2 Sequence Diagram for querying the User Profile 146
A.3 Sequence Diagram for querying the User Model 147
A.4 UML class diagram of the CommunicationObject 148
A.5 UML Class Diagram of the Modeler Component 149
A.6 UML Class Diagram of the Profiler Component (macro-approach) . . 150
A.7 UML Class Diagram of the DataHandler Component (macro-approach)151
A.8 ModelManager class diagram of the micro-approach 151
A.9 ProfileModeler class diagram of the micro-approach 152
A.10 FileHandler class diagram of the micro-approach 153

B.1 Screen shot of the the GUI Visualization 154
B.2 Screen shot of the AdeLE front-end 155

157

List of Tables

8.1 Mean Command Processing time for Micro- and Macro-approach in
milli-seconds . 139

8.2 Evaluation Summary for the Micro-approach 141
8.3 Evaluation Summary for the Macro-approach 141

158

Listings

4.1 IMS LIP example . 53
4.2 IMS LIP <name> element . 56
5.1 Primary sub-model in Doppelgänger [Orwant 1995] 67
5.2 Data from a sensor in Doppelgänger [Orwant 1995] 67
7.1 Creating Service Objects . 103
7.2 Use and Discard Services . 105
7.3 Subscribe and Unsubscribe to Services 105
8.1 XML user information file . 132

159

Bibliography

[ACTS 2005] The Advanced Communications Technology and Services (ACTS)
Program, 2005. http://www.cordis.lu/infowin/acts/analysys/intro/

index.html [Last access February 21th, 2005].

[ATG 2005] Art Technology Group (ATG) Products, 2005. http://www.atg.com/
products [Last access July 18th, 2005].

[Bieber and Carpenter 2001] Guy Bieber and Jeff Carpenter. Openwings, A Service-
Oriented Component Architecture for Self-Forming, Self-Healing, Network-
Centric Systems (Rev 2.0), 2001. http://www.openwings.org/download/specs/
openwingswp.pdf [Last access March 18th, 2005].

[Bieber and Carpenter 2003] Guy Bieber and Jeff Carpenter. Openwings Con-
nector Service Specification Ver 1.0 Final, 2003. http://www.openwings.

org/download/specs/Openwings_Connector_Services.pdf [Last access March
18th, 2005].

[Bieber and Crumpton 2003] Guy Bieber and Kathleen Crumpton. Openwings In-
stall Service Specifcation Ver. 1.0 Final, 2003. http://www.openwings.org/

download/specs/Openwings_Install.pdf [Last access April 6th, 2005].

[Bieber and Thrash 2003] Guy Bieber and Brian Thrash. Openwings Security Spec-
ification Ver. 1.0 Final, 2003. http://www.openwings.org/download/specs/

Openwings_Security.pdf [Last access March 18th, 2005].

[Bieber et al. 2003] Guy Bieber, Mark Nelson, and Lon Chang. Openwings Inter-
face Definition Specification Ver. 1.0 Final, 2003. http://www.openwings.org/

download/specs/openwings_interface.pdf [Last access March 18th, 2005].

[Blank 1996] Karlheinz Blank. Benutzermodellierung für adaptive interaktive Sys-
teme: Architektur, Methoden, Werkzeuge und Anwendungen. PhD thesis, Uni-
versity of Stuttgart/Germany, 1996.

[Bødker 2000] Susanne Bødker. Scenarios in User-Centered Design - Setting
the Stage for Reflection and Action. Interacting with Computers, vol. 13,
p.p. 61–75, 2000. http://www.clab.edc.uoc.gr/application/scenarios_in_

user-center.pdf [Last access September 18th, 2005].

[Booth et al. 2004] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer,
Michael Champion, Chris Ferris, and David Orchard. Web Services Architec-
ture. Technical report, World Wide Web Consortium (W3C), 2004. http:

//www.w3.org/TR/ws-arch/ [Last access September 18th, 2005].

[Brajnik and Tasso 1994] Giorgio Brajnik and Carlo Tasso. A shell for developing
non-monotonic user modeling systems. International Journal of Human-Computer
Studies, vol. 40, no. 1 p.p. 31–62, 1994.

160

http://www.cordis.lu/infowin/acts/analysys/intro/index.html
http://www.cordis.lu/infowin/acts/analysys/intro/index.html
http://www.atg.com/products
http://www.atg.com/products
http://www.openwings.org/download/specs/openwingswp.pdf
http://www.openwings.org/download/specs/openwingswp.pdf
http://www.openwings.org/download/specs/Openwings_Connector_Services.pdf
http://www.openwings.org/download/specs/Openwings_Connector_Services.pdf
http://www.openwings.org/download/specs/Openwings_Install.pdf
http://www.openwings.org/download/specs/Openwings_Install.pdf
http://www.openwings.org/download/specs/Openwings_Security.pdf
http://www.openwings.org/download/specs/Openwings_Security.pdf
http://www.openwings.org/download/specs/openwings_interface.pdf
http://www.openwings.org/download/specs/openwings_interface.pdf
http://www.clab.edc.uoc.gr/application/scenarios_in_user-center.pdf
http://www.clab.edc.uoc.gr/application/scenarios_in_user-center.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

BIBLIOGRAPHY 161

[Brusilovsky and Maybury 2002] Peter Brusilovsky and Mark T. Maybury. From
adaptive hypermedia to the adaptive web. Communications of the ACM, vol. 45,
no. 5 p.p. 30–33, 2002.

[Brusilovsky 1994] Peter Brusilovsky. The Construction and Application of Stu-
dent Models in Intelligent Tutoring Systems. Journal of Computer and System
Sciences International, vol. 32, no. 1 p.p. 70–89, 1994. http://www2.sis.pitt.

edu/~peterb/papers/studentmodels.pdf [Last access May 18th, 2005].

[Brusilovsky 1996] Peter Brusilovsky. Methods and Techniques of Adaptive Hyper-
media. User Modeling and User-Adapted Interaction, vol. 6, no. 2–3 p.p. 87–129,
1996. http://www2.sis.pitt.edu/~peterb/papers/UMUAI96.pdf [Last access
May 18th, 2005].

[Brusilovsky 1998] Peter Brusilovsky. Adaptive Educational Systems on the World-
Wide-Web: A Review of Available Technologies. In Proceedings of workshop
WWW-Based Tutoring at 4th International Conference on Intelligent Tutoring
Systems (ITS’98), 1998.

[Brusilovsky 2001] Peter Brusilovsky. Adaptive Hypermedia. User Modeling
and User-Adapted Interaction, vol. 11, no. 1–2 p.p. 87–110, 2001. http://

www2.sis.pitt.edu/~peterb/papers/brusilovsky-umuai-2001.pdf [Last ac-
cess May 18th, 2005].

[Caglayan et al. 1997] Alper Caglayan, Magnús Snorrason, Jennifer Jacoby, James
Mazzu, Robin Jones, and Krishna Kumar. Learn Sesame - A Learning Agent
Engine. Applied Artificial Intelligence, vol. 11, no. 5 p.p. 393–412, 1997. http://
www.aminda.com/mazzu/AAI97_LearnSesame.pdf [Last access July 18th, 2005].

[Carpenter and Bieber 2003] Jeffrey Carpenter and Guy Bieber. Openwings Com-
ponent Service Specification Ver 1.0 Final, 2003. http://www.openwings.

org/download/specs/Openwings_Component_Services.pdf [Last access March
18th, 2005].

[Castillo et al. 2003] Gladys Castillo, Joao Gama, and Ana M. Breda. Adaptive
Bayes for a Student Modeling Prediction Task based on Learning Styles. In Pro-
ceedings of the 9th International Conference on User Modeling (UM’03), P.p.
328–332, 2003. http://www.mat.ua.pt/gladys/Papers/UM2003.pdf [Last ac-
cess June 18th, 2005].

[Chung and Subramanian 2001] Lawrence Chung and Nary Subramanian. Process-
Oriented Metrics for Software Architecture Adaptabilit. In Proceedings of the
5th IEEE International Symposium on Requirements Engineering (RE’01), P.p.
310–311, Washington, DC, USA, 2001. IEEE Computer Society. http://www.

utdallas.edu/~chung/ftp/POMSAA-Poster.pdf [Last access September 21th,
2005].

161

http://www2.sis.pitt.edu/~peterb/papers/studentmodels.pdf
http://www2.sis.pitt.edu/~peterb/papers/studentmodels.pdf
http://www2.sis.pitt.edu/~peterb/papers/UMUAI96.pdf
http://www2.sis.pitt.edu/~peterb/papers/brusilovsky-umuai-2001.pdf
http://www2.sis.pitt.edu/~peterb/papers/brusilovsky-umuai-2001.pdf
http://www.aminda.com/mazzu/AAI97_LearnSesame.pdf
http://www.aminda.com/mazzu/AAI97_LearnSesame.pdf
http://www.openwings.org/download/specs/Openwings_Component_Services.pdf
http://www.openwings.org/download/specs/Openwings_Component_Services.pdf
http://www.mat.ua.pt/gladys/Papers/UM2003.pdf
http://www.utdallas.edu/~chung/ftp/POMSAA-Poster.pdf
http://www.utdallas.edu/~chung/ftp/POMSAA-Poster.pdf

BIBLIOGRAPHY 162

[Chung et al. 2000] Lawrence Chung, Brain A Nixon, Eric Yu, and John Mylopou-
los. Non-Functional Requirements in Software Engineering. International Series
in Software Engineering Volume 5. Kluwer Academic Publishers, 2000.

[Clements 1996] Paul C. Clements. Coming attractions in software architecture.
Technical Report No. CMU/SEI-96-TR-008, Software Engineering Institute,
Carnegie Mellon University, 1996. http://www.sei.cmu.edu/pub/documents/

96.reports/pdf/tr008.96.pdf [Last access September 13th, 2005].

[Conlan et al. 2002a] Owen Conlan, Declan Dagger, and Vincent Wade. Towards a
Standards-based Approach to e-Learning Personalization using Reusable Learn-
ing Objects. In Proceedgins of the World Conference on E-Learning in Cor-
porate, Government, Healthcare and Higher Education (E-Learn 2002), P.p.
210–217, September 2002. http://www.cs.tcd.ie/~oconlan/publications/

eLearn2002_v1.24_Conlan.pdf [Last access February 13th, 2005].

[Conlan et al. 2002b] Owen Conlan, Vincent P. Wade, Catherine Bruen, and Mark
Gargan. Multi-model, Metadata Driven Approach to Adaptive Hypermedia Ser-
vices for Personalized eLearning. In Proceedings of the 2nd International Con-
ference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH’02),
P.p. 100–111, 2002. https://www.cs.tcd.ie/Owen.Conlan/publications/

AH2002v0.99e11_Conlan.pdf [Last access September 13th, 2005].

[Corno and Snow 1986] L. Corno and R.E. Snow. Adapting teaching to individual
differences among learners. Handbook of research on teaching, 1986.

[Cranor et al. 2002] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin
Presler-Marshall, and Joseph Reagle. The Platform for Privacy Preferences 1.0
(P3P1.0) Specification. World Wide Web Consortium (W3C), 2002. http://www.
w3.org/TR/P3P/ [Last access September 13th, 2005].

[De Bra et al. 1999] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM:
A Dexter-based Reference Model for Adaptive Hypermedia. In Proceedings of
the 10th ACM Conference on Hypertext and Hypermedia (HT’99), P.p. 147–156,
1999. http://www.win.tue.nl/~debra/ht99/ht99.ps [Last access June 7th,
2005].

[De Bra 2000] Paul De Bra. Pros and Cons of Adaptive Hypermedia in Web-Based
Education. Journal on CyberPsychology and Behavior, vol. 3, p.p. 71–77, 2000.
A draft version of this article is available at http://www.win.tue.nl/~debra/

cyber.html [Last access May 19th, 2005].

[Dietinger 2003] Thomas Dietinger. Aspects of E-learning Environments. PhD the-
sis, Graz University of Technology, 2003.

[Dolog and Nejdl 2003] Peter Dolog and Wolfgang Nejdl. Challenges and Benefits of
the Semantic Web for User Modelling. In Proceedings of the AH2003 workshop at
12th World Wide Web Conference. User Modelling Conference 2003, June 2003.

162

http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr008.96.pdf
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr008.96.pdf
http://www.cs.tcd.ie/~oconlan/publications/eLearn2002_v1.24_Conlan.pdf
http://www.cs.tcd.ie/~oconlan/publications/eLearn2002_v1.24_Conlan.pdf
https://www.cs.tcd.ie/Owen.Conlan/publications/AH2002v0.99e11_Conlan.pdf
https://www.cs.tcd.ie/Owen.Conlan/publications/AH2002v0.99e11_Conlan.pdf
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.win.tue.nl/~debra/ht99/ht99.ps
http://www.win.tue.nl/~debra/cyber.html
http://www.win.tue.nl/~debra/cyber.html

BIBLIOGRAPHY 163

http://www.learninglab.de/~dolog/pub/semanticwebandum.pdf [Last access
February 13th, 2005].

[eduPerson 2004] Middleware Architecture Committee for Education, Directory
Working Group (MACE-Dir), Internet2. Draft Revision of eduPerson Specifica-
tion, 2004. http://www.educause.edu/eduperson/ [Last access February 13th,
2005].

[El-Khatib et al. 2003] Khalil El-Khatib, Larry Korba, Yuefei Xu, and George
Yee. Privacy and Security in E-Learning. International Journal of Distance
Education, vol. 1, no. 4 p.p. 1–19, 2003. http://iit-iti.nrc-cnrc.gc.ca/

iit-publications-iti/docs/NRC-45786.pdf [Last access August 13th, 2005].

[Endrei et al. 2004] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe
Comte, Poel Krogdahl, Min Luo, and Tony Newling. Patterns: Service-
Oriented Architecture and Web Services. Chapter 2 Service-oriented architec-
ture, RedBooks, 2004. http://www.redbooks.ibm.com/redbooks/SG246303/

wwhelp/wwhimpl/js/html/wwhelp.htm [Last access August 13th, 2005].

[Far and Hashimoto 2000] Behrouz Homayoun Far and A.H. Hashimoto. A Compu-
tational Model for Learner’s Motivation States in Individualized Tutoring System.
In Proceedings of the 8th International Conference on Computers in Education
(ICCE 2000), P.p. 21–24, 2000.

[Farance 2001] Frank Farance. PAPI Learner, Draft 8 Specification, 2001. http:

//edutool.com/papi/ [Last access February 13th, 2005].

[Finin and Drager 1986] Tim Finin and David Drager. GUMS: a General User Mod-
elling System. In Proceedings of the Canadian Society for Computational Stud-
ies of Intelligence 1986 (CSCSI-86), 1986. http://acl.ldc.upenn.edu/H/H86/

H86-1021.pdf [Last access June 13th, 2005].

[Fink 2003] Josef Fink. User Modeling Servers - Requirements, Design, and Eval-
uation. PhD thesis, University of Duisburg/Germany, 2003. http://www.ics.

uci.edu/~kobsa/phds/fink.pdf [Last access July 21th, 2005].

[Gong 2003] Li Gong. Java 2 Platform Security Architecture, Version
1.2, 2003. http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/

security-spec.doc.html [Last access February 21th, 2005].

[González et al. 2005] Gustavo González, Cecilio Angulo, Beatriz López, and
Josep Llúıs de la Rosa. Smart User Models: Modelling the Humans in Ambi-
ent Recommender Systems. In Proceedings of the Workshop on Decentralized,
Agent Based and Social Approaches to User Modelling (DASUM 2005), P.p. 11–
20, 2005.

[GSS 2000] Sun Microsystems Inc. Java Generic Security Services (GSS),
2000. http://java.sun.com/j2se/1.4.2/docs/guide/security/index.html

[Last access March 30th, 2005].

163

http://www.learninglab.de/~dolog/pub/semanticwebandum.pdf
http://www.educause.edu/eduperson/
http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-45786.pdf
http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-45786.pdf
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/js/html/wwhelp.htm
http://edutool.com/papi/
http://edutool.com/papi/
http://acl.ldc.upenn.edu/H/H86/H86-1021.pdf
http://acl.ldc.upenn.edu/H/H86/H86-1021.pdf
http://www.ics.uci.edu/~kobsa/phds/fink.pdf
http://www.ics.uci.edu/~kobsa/phds/fink.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/index.html

BIBLIOGRAPHY 164

[Gütl and Garcia-Barrios 2005] Christian Gütl and Victor Manuel Garcia-Barrios.
Towards an Advanced Modeling System applying a Service-based Approach. In
Proceedings of the 5th IEEE International Conference on Advanced Learning
Technologies (ICALT’05), P.p. 860–862, 2005. http://www2.iicm.edu/cguetl/

papers/ModelingSystem_ICALT05/ModelingSystem_ICALT05.pdf [Last access
September 21th, 2005].

[Han 2001] Binglan Han. Student Modelling and Adaptivity in web based Learning
Systems. Master’s thesis, Massey University/New Zealand, 2001.

[Hapner et al. 2002] Mark Hapner, Rich Burridge, Rahul Sharma, Joseph Fialli, and
Kim Haase. Java Message Service API Tutorial and Reference. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[Hashimi 2003] Sayed Hashimi. Service-Oriented Architecture Explained. Article
on the Internet, 2003. http://www.ondotnet.com/pub/a/dotnet/2003/08/18/

soa_explained.html [Last access August 21th, 2005].

[Henze and Nejdl 2003] Nicola Henze and Wolfgang Nejdl. Logically Characteriz-
ing Adaptive Educational Hypermedia Systems. In Proceedings of International
Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems (AH’03),
P.p. 15–29. AH2003, 2003. http://wwwis.win.tue.nl/ah2003/proceedings/

paper2.pdf [Last access June 1st, 2005].

[Hetzel 1988] Bill Hetzel. The Complete Guide to Software Testing, 2nd Edition.
QED Information Sciences, Inc., 1988.

[IEEE 1991] IEEE. IEEE Standard Glossary of Software Engineering Terminology,
1991. IEEE Standard 610.12-1990.

[IMC 1996] Internet Mail Consortium (IMC). vCard - The Electronic Business Card
Version 2.1, 1996. http://www.imc.org/pdi/pdiproddev.html [Last access Feb-
ruary 12th, 2005].

[Jeremić and Devedžić 2004] Zoran Jeremić and Vladan Devedžić. Design Pat-
tern ITS: Student Model Implementation. In Proceedings of the IEEE Interna-
tional Conference on Advanced Learning Technologies (ICALT’04), P.p. 864–865,
2004. http://csdl2.computer.org/comp/proceedings/icalt/2004/2181/00/
21810864.pdf [Last access October 1st, 2005].

[Jini 1999] Sun Microsystems Inc. Jini, 1999. http://www.jini.org [Last access
February 21th, 2005].

[JNI 1997] Sun Microsystems Inc. Java Native Interface Specification, 1997. http:
//java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html [Last access
February 21th, 2005].

164

http://www2.iicm.edu/cguetl/papers/ModelingSystem_ICALT05/ModelingSystem_ICALT05.pdf
http://www2.iicm.edu/cguetl/papers/ModelingSystem_ICALT05/ModelingSystem_ICALT05.pdf
http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html
http://www.ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html
http://wwwis.win.tue.nl/ah2003/proceedings/paper2.pdf
http://wwwis.win.tue.nl/ah2003/proceedings/paper2.pdf
http://www.imc.org/pdi/pdiproddev.html
http://csdl2.computer.org/comp/proceedings/icalt/2004/2181/00/21810864.pdf
http://csdl2.computer.org/comp/proceedings/icalt/2004/2181/00/21810864.pdf
http://www.jini.org
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html

BIBLIOGRAPHY 165

[Kashihara et al. 2000] Akihiro Kashihara, Kinshuk, Reinhard Oppermann, Rossen
Rashev, and Helmut Simm. A Cognitive Load Reduction Approach to Exploratory
Learning and Its Application to an Interactive Simulation-Based Learning System.
Journal of Educational Multimedia and Hypermedia, vol. 9, no. 3 p.p. 253–276,
2000. Abstract available at http://www.aace.org/dl/index.cfm/fuseaction/
ViewPaper/id/6284/toc/yes [Last access June 7th, 2005].

[Kay et al. 2002] Judy Kay, Bob Kummerfeld, and Piers Lauder. Personis: A server
for user modeling. In Proceedings of the 2nd International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH’2002), P.p. 201–212, 2002.

[Kay 1995] Judy Kay. The um toolkit for cooperative user modelling. User Modeling
and User-Adapted Interaction, vol. 4, no. 3 p.p. 149–196, 1995. http://www.cs.
usyd.edu.au/~judy/Homec/Pubs/um.ps [Last access July 1st, 2005].

[Kay 2000a] Judy Kay. Stereotypes, Student Models and Scrutability. In Proceed-
ings of the 5th International Conference on Intelligent Tutoring Systems (ITS
2000), P.p. 19–30, 2000.

[Kay 2000b] Judy Kay. User Interfaces for All, chapter User Modeling for Adap-
tation, P.p. 271–294. Human Factors Series. Lawrence Erlbaum Associates, Inc.,
2000. http://www.cs.usyd.edu.au/~judy/Homec/Pubs/ch18.pdf [Last access
June 1st, 2005].

[Kim 2002] Won Kim. Personalization: Definition, Status, and Challenges ahead.
Journal of Object Technology, vol. 1, no. 1 p.p. 29–40, 2002. http://www.jot.

fm/issues/issue_2002_05/column3.pdf [Last access May 25th, 2005].

[Kinshuk and Lin 2003] Kinshuk and Taiyu Lin. User Exploration Based Adapta-
tion in Adaptive Learning Systems. International Journal of Information Systems
in Education, vol. 1, no. 1 p.p. 22–31, 2003. http://infosys.massey.ac.nz/

~kinshuk/papers/jsise2002.pdf [Last access May 19th, 2005].

[Kinshuk 1996] Kinshuk. Computer Aided Learning for Entry Level Accountancy
Students. PhD thesis, De Montfort University, 1996. http://infosys.massey.

ac.nz/~kinshuk/thesis/mainpageps.html [Last access June 25th, 2005].

[Kobsa and Pohl 1995] Alfred Kobsa and Wolfgang Pohl. The User Modeling Shell
System BGP-MS. User Modeling and User-Adapted Interaction, vol. 4, no. 2 p.p.
59–106, 1995. http://www.ics.uci.edu/~kobsa/papers/1995-UMUAI-kobsa.

pdf [Last access July 25th, 2005].

[Kobsa 1991] Alfred Kobsa. First experiences with the SB-ONE knowledge repre-
sentation workbench in natural-language applications. ACM SIGART Bulletin,
vol. 2, no. 3 p.p. 70–76, 1991.

[Kobsa 1993] Alfred Kobsa. User Modeling: Recent Work, Prospects and Hazards.
In Adaptive User Interfaces: Principles and Practise. M. Schneider-Hufschmidt,

165

http://www.aace.org/dl/index.cfm/fuseaction/ViewPaper/id/6284/toc/yes
http://www.aace.org/dl/index.cfm/fuseaction/ViewPaper/id/6284/toc/yes
http://www.cs.usyd.edu.au/~judy/Homec/Pubs/um.ps
http://www.cs.usyd.edu.au/~judy/Homec/Pubs/um.ps
http://www.cs.usyd.edu.au/~judy/Homec/Pubs/ch18.pdf
http://www.jot.fm/issues/issue_2002_05/column3.pdf
http://www.jot.fm/issues/issue_2002_05/column3.pdf
http://infosys.massey.ac.nz/~kinshuk/papers/jsise2002.pdf
http://infosys.massey.ac.nz/~kinshuk/papers/jsise2002.pdf
http://infosys.massey.ac.nz/~kinshuk/thesis/mainpageps.html
http://infosys.massey.ac.nz/~kinshuk/thesis/mainpageps.html
http://www.ics.uci.edu/~kobsa/papers/1995-UMUAI-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/1995-UMUAI-kobsa.pdf

BIBLIOGRAPHY 166

T. Kühme and U. Malinowski, eds., 1993. http://www.ics.uci.edu/~kobsa/

papers/1993-aui-kobsa.pdf [Last access May 25th, 2005].

[Kobsa 2001a] Alfred Kobsa. Generic User Modeling Systems. User Modeling
and User-Adapted Interaction, vol. 11, no. 1-2 p.p. 49–63, 2001. http://www.

ics.uci.edu/%7Ekobsa/papers/2001-UMUAI-kobsa.pdf [Last access May 25th,
2005].

[Kobsa 2001b] Alfred Kobsa. Tailoring Privacy to User’s Needs. In Proceedings of
the 8th International Conference on User Modeling 2001 (UM2001), P.p. 303–313,
2001. http://www.ics.uci.edu/~kobsa/papers/2001-UM01-kobsa.pdf [Last
access September 25th, 2005].

[Koch 2000] Nora Koch. Software Engineering for Adaptive Hyperme-
dia Systems. PhD thesis, Ludwig-Maximilians-University Munich/Ger-
many, 2000. http://www.pst.informatik.uni-muenchen.de/personen/

kochn/PhDThesisNoraKoch.pdf [Last access May 8th, 2005].

[Konstan et al. 1997] Joseph A. Konstan, Bradley N. Miller, David Maltz,
Jonathan L. Herlocker, Lee R. Gordon, and John Riedl. GroupLens: applying
collaborative filtering to Usenet news. Communications of the ACM, vol. 40, no.
3 p.p. 77–87, 1997.

[Kreger 2001] Heather Kreger. Web Services Conceptual Architecture (WSCA
1.0). Technical report, IBM Software Group, 2001. http://www-306.ibm.com/

software/solutions/webservices/pdf/WSCA.pdf [Last access August 28th,
2005].

[Kurhila et al. 2001] Jaakko Kurhila, Miikka Miettinen, Markku Niemivirta, Petri
Nokelainen, Tomi Silander, and Henry Tirri. Bayesian Modeling in an Adaptive
On-Line Questionnaire for Education and Educational Research. In Proceedings
of the 10th International PEG Conference, P.p. 194–201, 2001. http://cosco.

hiit.fi/Articles/peg2001eduform.pdf [Last access June 28th, 2005].

[Lane 2000] Carla Lane. Implementing Multiple Intelligences and Learning Styles
in Distributed Learning/IMS Projects. Technical report, The Education Coali-
tion (TEC), 2000. http://www.tecweb.org/styles/imslsindl.pdf [Last access
June 10th, 2005].

[Li and Ji 2005] Xiangyang Li and Qiang Ji. Active Affective State Detection and
Assistance with Dynamic Bayesian Networks. IEEE Transactions on Systems,
Man, and Cybernetics: Special Issue on Ambient Intelligence, vol. 35, no. 1 p.p.
93–105, 2005.

[Mödritscher et al. 2004] Felix Mödritscher, Victor Manuel Garcia-Barrios, and
Christian Gütl. The Past, the Present and the future of adaptive E-Learning. In
Proceedings of the International Conference Interactive Computer Aided Learn-
ing (ICL2004), 2004. http://www.iicm.edu/iicm_papers/icl2004/adaptive_

e-learning/adaptiv_e-learning.pdf [Last access April 28th, 2005].

166

http://www.ics.uci.edu/~kobsa/papers/1993-aui-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/1993-aui-kobsa.pdf
http://www.ics.uci.edu/%7Ekobsa/papers/2001-UMUAI-kobsa.pdf
http://www.ics.uci.edu/%7Ekobsa/papers/2001-UMUAI-kobsa.pdf
http://www.ics.uci.edu/~kobsa/papers/2001-UM01-kobsa.pdf
http://www.pst.informatik.uni-muenchen.de/personen/kochn/PhDThesisNoraKoch.pdf
http://www.pst.informatik.uni-muenchen.de/personen/kochn/PhDThesisNoraKoch.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://cosco.hiit.fi/Articles/peg2001eduform.pdf
http://cosco.hiit.fi/Articles/peg2001eduform.pdf
http://www.tecweb.org/styles/imslsindl.pdf
http://www.iicm.edu/iicm_papers/icl2004/adaptive_e-learning/adaptiv_e-learning.pdf
http://www.iicm.edu/iicm_papers/icl2004/adaptive_e-learning/adaptiv_e-learning.pdf

BIBLIOGRAPHY 167

[Murray 1987] Dianne M. Murray. Embedded User Models. In Proceedings of the
2nd IFIP International Conference on Human-Computer Interaction (INTER-
ACT’87), P.p. 229–235, 1987.

[Olivier 2002] Bill Olivier. Standards and Specifications: Why Use IMS? Technical
report, The Joint Information Systems Committee JISC, 2002. http://www.

jisc.ac.uk/uploaded_documents/bp4.pdf [Last access February 13th, 2005].

[Openwings 2003] Openwings “Online Tutorial”, 2003. http://www.openwings.

org/openwings-1.1/tutorial/index.html [Last access March 30th, 2005].

[Oppermann et al. 1997] Reinhard Oppermann, Rossen Rashev, and Kinshuk.
Knowledge Transfer (Vol. II), chapter Adaptability and Adaptivity in Learn-
ing Systems, P.p. 173–179. pAce, London, 1997. http://fit.fraunhofer.de/

%7Eoppermann/publications/kt97_gmd.pdf [Last access April 20th, 2005].

[Orwant 1993] Jon Orwant. Doppelgänger Goes To School: Machine Learning for
User Modeling. Master’s thesis, Massachusetts Institue of Technology, 1993.

[Orwant 1995] Jon Orwant. Heterogeneous Learning in the Doppelgänger User Mod-
eling System. User Modeling and User-Adapted Interaction, vol. 4, no. 2 p.p. 107–
130, 1995. ftp://ftp.media.mit.edu/pub/orwant/doppelganger/learning.

ps.gz [Last access June 21th, 2005].

[OSG 2003] OSGi Open Services Gateway Initiative. OSGi Service Platform Re-
lease 3, 2003. http://www.osgi.org/osgi_technology/download_specs2.asp?
section=2 [Last access September 1st, 2005].

[Oxford Advanced Learner’s Dictionary 2005] Oxford Advanced Learner’s Dictio-
nary, 2005. http://www.oup.com/elt/oald/ [Last access April 20th, 2005].

[Paramythis and Loidl-Reisinger 2003] Alexandros Paramythis and Susanne Loidl-
Reisinger. Adaptive Learning Environments and e-Learning Standards. Electronic
Journal of e-Learning, vol. 2, no. 11 p.p. 181–194, 2003. http://www.ejel.org/
volume-2/vol2-issue1/issue1-art11-paramythis.pdf [Last access February
13th, 2005].

[Park and Lee 2003] Ok Park and Jung Lee. Handbook of Research for Educational
Communications and Technology, chapter Adaptive Instructional Systems, P.p.
651–660. Association for Educational Communications and Technology, 2003.
http://coe.sdsu.edu/eet/articles/cmi/Park,%202003.pdf [Last access May
18th, 2005].

[Razmerita et al. 2003] Liana Razmerita, Albert Angehrn, and Alexander Maed-
che. Ontology-based User Modeling for Knowledge Management Systems. In
Proceedings of the 9th International Conference on User Modeling (UM’03),
2003. http://www.calt.insead.edu/Project/OntoLogging/documents/

2003-UM-Ontology_based_user_modeling_for_Knowledge_Management_

Systems.pdf [Last access July 21th, 2005].

167

http://www.jisc.ac.uk/uploaded_documents/bp4.pdf
http://www.jisc.ac.uk/uploaded_documents/bp4.pdf
http://www.openwings.org/openwings-1.1/tutorial/index.html
http://www.openwings.org/openwings-1.1/tutorial/index.html
http://fit.fraunhofer.de/%7Eoppermann/publications/kt97_gmd.pdf
http://fit.fraunhofer.de/%7Eoppermann/publications/kt97_gmd.pdf
ftp://ftp.media.mit.edu/pub/orwant/doppelganger/learning.ps.gz
ftp://ftp.media.mit.edu/pub/orwant/doppelganger/learning.ps.gz
http://www.osgi.org/osgi_technology/download_specs2.asp?section=2
http://www.osgi.org/osgi_technology/download_specs2.asp?section=2
http://www.oup.com/elt/oald/
http://www.ejel.org/volume-2/vol2-issue1/issue1-art11-paramythis.pdf
http://www.ejel.org/volume-2/vol2-issue1/issue1-art11-paramythis.pdf
http://coe.sdsu.edu/eet/articles/cmi/Park,%202003.pdf
http://www.calt.insead.edu/Project/OntoLogging/documents/2003-UM-Ontology_based_user_modeling_for_Knowledge_Management_Systems.pdf
http://www.calt.insead.edu/Project/OntoLogging/documents/2003-UM-Ontology_based_user_modeling_for_Knowledge_Management_Systems.pdf
http://www.calt.insead.edu/Project/OntoLogging/documents/2003-UM-Ontology_based_user_modeling_for_Knowledge_Management_Systems.pdf

BIBLIOGRAPHY 168

[Rich 1979] Elaine Rich. User Modeling via Stereotypes. Cognitive Science, vol. 3,
p.p. 329–354, 1979. http://www.cs.utexas.edu/users/ear/CogSci.pdf [Last
access June 21th, 2005].

[RMI 1997] Sun Microsystems, Inc. Java Remote Method Invocation (RMI), Spec-
ification, 1997. http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/

rmiTOC.html [Last access February 21th, 2005].

[Rodŕıguez-Estévez et al. 2003] Judith Rodŕıguez-Estévez, Manuel Caeiro-
Rodŕıguez, and Juan M. Santos-Gago. Standardization in Computer Based
Learning. The European Journal for the Informatics Professional, vol. 13, no. 3
p.p. 8–15, October 2003.

[Romand et al. 2005] Ed Romand, Gerald Brose, and Rima Patel Sriganesh.
Mastering Enterprise JavaBeans. Wiley Publishing, Inc., 3rd edition,
2005. http://www.infosys.tuwien.ac.at/Staff/tom/Teaching/UniZH/CBSE/
MasteringEJB3.pdf [Last access September 13th, 2005].

[Rousseau et al. 2004] Boris Rousseau, Parisch Browne, Paul Malone, and Mı́cheál
ÓFoghlú. User Profiling for Content Personalisation in Information Retrieval.
In Proceedings of the 19th ACM Symposium on Applied Computing (SAC
’04), 2004. http://www.irisa.fr/texmex/publications/versionElect/2004/
Rousseau_ACMSAC04_UserProfile.pdf [Last access October 13th, 2005].

[Russell 2003] Rosemary Russell. Metadata standards for the description of POR-
TAL users: a review. Technical report, UKOLN, University of Bath, 2003.
http://www.fair-portal.hull.ac.uk/downloads/Metadata.pdf [Last access
February 13th, 2005].

[Schreck 2001] Jörg Schreck. Security and Privacy in User Modeling. PhD thesis,
University of Essen, 2001.

[Self 1987] John Self. Student models: What use are they? In P. Ercoli and
R. Lewis, editors, Proceedings of the IEP TC3 Working Conference on AI Tools
in Education, P.p. 73–86, 1987.

[Self 1993] John Self. Model-based Cognitive Diagnosis. User Modeling and User-
Adapted Interaction, vol. 3, no. 2 p.p. 89–106, 1993. ftp://ftp.comp.lancs.

ac.uk/pub/aai/aai-report-82.ps.Z [Last access June 13th, 2005].

[Self 1994] John Self. Student Modelling: the key to individualize knowledge-
based instruction, chapter Formal Approaches to Student Modelling, P.p. 295–
352. Springer-Verlag Berlin, 1994. ftp://ftp.comp.lancs.ac.uk/pub/aai/

aai-report-92.ps.Z [Last access June 13th, 2005].

[Shehory and Sturm 2001] Onn Shehory and Arnon Sturm. Evaluation of mod-
eling techniques for agent-based systems. In Proceedings of the 5th Inter-
national Conference on Autonomous Agents (AGENTS ’01), P.p. 624–631,

168

http://www.cs.utexas.edu/users/ear/CogSci.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://www.infosys.tuwien.ac.at/Staff/tom/Teaching/UniZH/CBSE/MasteringEJB3.pdf
http://www.infosys.tuwien.ac.at/Staff/tom/Teaching/UniZH/CBSE/MasteringEJB3.pdf
http://www.irisa.fr/texmex/publications/versionElect/2004/Rousseau_ACMSAC04_UserProfile.pdf
http://www.irisa.fr/texmex/publications/versionElect/2004/Rousseau_ACMSAC04_UserProfile.pdf
http://www.fair-portal.hull.ac.uk/downloads/Metadata.pdf
ftp://ftp.comp.lancs.ac.uk/pub/aai/aai-report-82.ps.Z
ftp://ftp.comp.lancs.ac.uk/pub/aai/aai-report-82.ps.Z
ftp://ftp.comp.lancs.ac.uk/pub/aai/aai-report-92.ps.Z
ftp://ftp.comp.lancs.ac.uk/pub/aai/aai-report-92.ps.Z

BIBLIOGRAPHY 169

2001. http://www.sce.carleton.ca/faculty/esfandiari/agents/papers/

shehory.pdf [Last access September 13th, 2005].

[Shute and Psotka 1996] Valerie J. Shute and Joseph Psotka. Handbook of Research
on Educational Communications and Technology, chapter Intelligent tutoring sys-
tems: Past, Present and Future, P.p. 1–99. Scholastic Publications, 1996.

[Sison and Shimura 1998] Raymund Sison and Masamichi Shimura. Student Mod-
eling and Machine Learning. International Journal of Artificial Intelligence in
Education, vol. 9, p.p. 128–158, 1998.

[Smith et al. 2003] Michael Smith, Guy Bieber, and Jeff Carpenter. Open-
wings Management Service Specification Ver. 1.0 Final, 2003. http://www.

openwings.org/download/specs/Openwings_Management_Services.pdf [Last
access March 18th, 2005].

[Smythe et al. 2001] Colin Smythe, Frank Tansey, and Robby Robson. IMS Learner
Information Package Information Model Specification, Version 1.0, 2001. http:

//www.imsglobal.org/profiles/ [Last access February 13th, 2005].

[Soller 2001] Amy L. Soller. Supporting Social Interaction in an Intelligent Col-
laborative Learning System. International Journal of Artificial Intelligence
in Education, vol. 12, p.p. 40–62, 2001. http://www.ou.nl/otecresearch/

publications/slavi%20stoyanov/stoyanov-kirschner.pdf [Last access May
8th, 2005].

[Stoyanov and Kirschner 2004] Slavi Stoyanov and Paul Kirschner. Expert Concept
Mapping Method for Defining the Characteristics of Adaptive E-Learning: AL-
FANET Project Case. Educational Technology, Research & Developement, vol.
52, no. 2 p.p. 41–56, 2004. http://www.ou.nl/otecresearch/publications/

slavi%20stoyanov/stoyanov-kirschner.pdf [Last access May 8th, 2005].

[Stratakis et al. 2003] Miltos Stratakis, Vassilis Christophides, Kevin Keenoy, and
Aimilia Magkanaraki. SeLeNe - Preliminary Report: Learning Objects, Meta-
Data and Standards. Technical report, School of Computer Science and In-
formation Systems, 2003. http://www.dcs.bbk.ac.uk/selene/reports/KK_

Preliminary_report.pdf [Last access March 2nd, 2005].

[Tsai and Machado 2002] Susanna Tsai and Paulo Machado. Essay: E-
learning, online learning, web-based learning, or distance learning: unveil-
ing the ambiguity in current terminology. eLearn, vol. 2002, no. 7 p.p. 3,
2002. http://www.elearnmag.org/subpage/sub_page.cfm?section=3\&list_
item=6\&page=1 [Last access April 20th, 2005].

[Tsalgatidou and Pilioura 2002] Aphrodite Tsalgatidou and Thomi Pilioura. An
Overview of Standards and Related Technology in Web Services. Distributed
and Parallel Databases, vol. 12, p.p. 135–162, 2002. http://www.csd.uch.gr/

~hy565/Papers/overview_of_standards.pdf [Last access July 18th, 2005].

169

http://www.sce.carleton.ca/faculty/esfandiari/agents/papers/shehory.pdf
http://www.sce.carleton.ca/faculty/esfandiari/agents/papers/shehory.pdf
http://www.openwings.org/download/specs/Openwings_Management_Services.pdf
http://www.openwings.org/download/specs/Openwings_Management_Services.pdf
http://www.imsglobal.org/profiles/
http://www.imsglobal.org/profiles/
http://www.ou.nl/otecresearch/publications/slavi%20stoyanov/stoyanov-kirschner.pdf
http://www.ou.nl/otecresearch/publications/slavi%20stoyanov/stoyanov-kirschner.pdf
http://www.ou.nl/otecresearch/publications/slavi%20stoyanov/stoyanov-kirschner.pdf
http://www.ou.nl/otecresearch/publications/slavi%20stoyanov/stoyanov-kirschner.pdf
http://www.dcs.bbk.ac.uk/selene/reports/KK_Preliminary_report.pdf
http://www.dcs.bbk.ac.uk/selene/reports/KK_Preliminary_report.pdf
http://www.elearnmag.org/subpage/sub_page.cfm?section=3&list_item=6&page=1
http://www.elearnmag.org/subpage/sub_page.cfm?section=3&list_item=6&page=1
http://www.csd.uch.gr/~hy565/Papers/overview_of_standards.pdf
http://www.csd.uch.gr/~hy565/Papers/overview_of_standards.pdf

BIBLIOGRAPHY 170

[Tsiriga and Virvou 2003] Victoria Tsiriga and Maria Virvou. Initializing Student
Models in Web-Based ITSs: A Generic Approach. In Proceedings of the 3rd IEEE
International Conference on Advanced Learning Technologies (ICALT 2003),
P.p. 42–46, 2003. http://thalis.cs.unipi.gr/~vtsir/Tsiriga%40Virvou_

ICALT2003.pdf [Last access June 18th, 2005].

[ULF 2000] Saba Software Inc. Universal Learning Format (ULF) Tech-
nical Specification Version 1.0, 2000. http://xml.coverpages.org/

ulfSpecification20001204.pdf [Last access February 13th, 2005].

[Vergara 1994] Harald Vergara. PROTUM: A Prolog Based Tool for User Modeling.
Technical report, Department of Information Science, University of Konstanz,
1994.

[Wade et al. 2002] Vincent Wade, Kevin Riley, Bob Banks, Paul Foster, Neil Evans-
Mudie, Yves Nicol, and Paul Doherty. Work Package 5 - Object (Interfaces)
Specification. Technical report, GESTALT - Project AC367, 2002. http://www.
fdgroup.co.uk/gestalt/D502v4.zip [Last access February 13th, 2005].

[Webb and Kuzmycz 1998] Geoffrey I. Webb and Mark Kuzmycz. Evaluation of
Data Aging: A Technique for Discounting Old Data During Student Modeling. In
Proceedings of the 4th International Conference on Intelligent Tutoring Systems
(ITS’98), P.p. 384–393, 1998.

[Webb et al. 2001] Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Ma-
chine Learning for User Modeling. User Models User-Adapted Interaction, vol.
11, no. 1-2 p.p. 19–29, 2001.

[Weibelzahl 2003] Stephan Weibelzahl. Evaluation of Adaptive Systems. PhD
thesis, University of Trier, 2003. http://www.easy-hub.org:8000/stephan/

weibelzahl03-diss.pdf [Last access May 8th, 2005].

[Westin 1970] Alan F. Westin. Privacy and Freedom. Bodley Head, 1970.

[Whatis.com 2005] Whatis.com. Whatis.com Website, 2005. http://whatis.

techtarget.com/ [Last access October 13th, 2005].

[Wilson and Jones 2002] Scott Wilson and Peter Rees Jones. What Is... IMS
Learner Information Packaging?, 2002. http://www.cetis.ac.uk/groups/

20010801124300/FR20021029103504 [Last access February 13th, 2005].

[Zhou and Evens 1999] Yujian Zhou and Martha W. Evens. A Practical Student
Model in an Intelligent Tutoring System. In Proceedings of the 11th IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI’99), P.p. 13–18,
1999.

170

http://thalis.cs.unipi.gr/~vtsir/Tsiriga%40Virvou_ICALT2003.pdf
http://thalis.cs.unipi.gr/~vtsir/Tsiriga%40Virvou_ICALT2003.pdf
http://xml.coverpages.org/ulfSpecification20001204.pdf
http://xml.coverpages.org/ulfSpecification20001204.pdf
http://www.fdgroup.co.uk/gestalt/D502v4.zip
http://www.fdgroup.co.uk/gestalt/D502v4.zip
http://www.easy-hub.org:8000/stephan/weibelzahl03-diss.pdf
http://www.easy-hub.org:8000/stephan/weibelzahl03-diss.pdf
http://whatis.techtarget.com/
http://whatis.techtarget.com/
http://www.cetis.ac.uk/groups/20010801124300/FR20021029103504
http://www.cetis.ac.uk/groups/20010801124300/FR20021029103504

	Contents
	Introduction
	Initial Situation and Motivation
	Structure of this Work

	Basic Principles
	Introduction
	User Profiling and User Modeling
	The Difference between User Profiling and User Modeling
	Necessity of User Profiling and User Modeling

	Terminology
	Adaptive, Adaptable and Personalization
	E-learning
	Adaptive Systems

	Adaptive E-learning Systems
	Theoretical Approaches
	Types of Systems

	Summary

	User Modeling in Adaptive Systems
	Introduction
	The Role of User Models in Adaptive Systems
	User Models in Adaptive E-learning Systems
	User Models in Macro-adaptive Systems
	User Models in ITS
	User Models in AEHS

	Learner Modeling
	Content of a Learner Model
	Components of a Learner Model

	Modeling Techniques
	Methods to Construct Learner Models
	Initialization of Learner Models
	Update of Learner Models

	Summary

	Standards for User Modeling and Profiling
	Introduction
	Basic Standards
	vCard
	eduPerson
	Universal Learning Format (ULF)

	GESTALT
	Architecture
	Data Model

	Public and Private Information - PAPI Learner
	Common Features, Information Types and Bindings
	PAPI Learner Information Groups
	Public and Private Information
	Summary

	IMS Learner Information Package
	The Structure of IMS LIP
	XML Schema
	Data Protection
	Implementations
	Summary

	Summary and Conclusion

	State of the Art of User Modeling Systems
	Introduction
	Early User Modeling Systems
	GUMS

	User Modeling Shell Systems
	UMT
	PROTUM
	um
	BGP-MS

	User Modeling Servers
	Doppelgänger
	Personis
	LDAP-based User Modeling Server
	Web Service and Agent-based User Modeling System

	Summary and Conclusion

	Basic Reflections for the Solution Approach
	Introduction
	Service-oriented Architecture
	Web Services
	Service-oriented Frameworks
	Service-oriented Software Design

	Privacy and Security in User Modeling
	Privacy
	Security
	Privacy Technologies

	Levels of Profiling the Learner
	Organizing the Learner Profile
	Partitioning the Learner Model

	Summary and Conclusion

	The Openwings Framework
	Introduction
	Overview of Openwings
	Openwings Core Services
	Contexts in Openwings
	Interfaces

	Components in Openwings
	Parts of Openwings Components
	The different Types of Components
	Lifecycle of Components
	Relations between Components

	Software Development with Openwings
	Creation and Intializiation of Service Objects
	Usage of Service Objects
	Policy Concept
	Connectors
	Installable Component Descriptors
	Summarization

	Security in Openwings
	Code Security
	Transport Security
	Service Security

	Conclusion

	Design and Implementation of the Modeling System
	Introduction
	Software Requirements of the Modeling System
	Functional Requirements
	Non-Functional Requirements

	Architectural Design and Use Cases
	Use Cases for the Modeling System

	Macro-approach
	Functional Components
	Implementation of selected Aspects

	Micro-approach
	Functional Components
	Implementation of selected Aspects

	Evaluation of the Approaches
	User Scenarios
	Evaluation Criteria
	Evaluation Setup
	Evaluation Results

	Summary

	Summary and Outlook
	Additional UML Diagrams
	Screen shots
	List of Figures
	List of Tables
	Listings
	Bibliography

