
Dipl.- Ing. Andreas Doblander

A Novel Software Framework for Multi-Processor
Embedded Smart Cameras

Dissertation

vorgelegt an der
Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der technischen Wissenschaften

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Vorstand: O. Univ.- Prof. Dr. techn. Reinhold Weiß

Oktober 2006



I dedicate this work to my wife Anna.
Your unquestioning support, your understanding,

and your enduring encouragement made this work possible.



Abstract

In traffic surveillance there is a trend towards embedded smart cameras. These
cameras provide on-site video analysis to detect dangerous traffic situations and
compute traffic statistics that can be used for traffic management. Typically, multi-
processor platforms comprising several DSPs and other specialized processors are
used. In this thesis the SmartCam is considered as target platform.

This thesis presents a novel middleware for loose coupling of DSP algorithms.
Because of tight resource constraints standard solutions are not appropriate and,
therefore, an efficient and light-weight middleware layer is suggested for the
SmartCam. By introducing only minimal indirection it also provides little transfer
time overhead. Transparent communication within a single processor and between
different processors via the local PCI bus is supported by a special proxy mecha-
nism transparent to the application developer. For easy service discovery a simple
directory service is provided that allows algorithms to find data sinks and sources
dynamically according to their requirements.

For wide-spread use of smart cameras they require basic fault-tolerance mech-
anisms. The system has to stay operational in case of unexpected events without
external intervention. Because of tight device cost limitations in the industry it is
especially interesting to focus on software fault-tolerance. Redundant hardware
would result in increased product costs and further to reduced market success.

Currently, in most systems ad hoc mechanisms for software fault-tolerance are
employed separately for each application. In contrast to that the aim of this work
is to provide dedicated services for fault-tolerance in the middleware. An impor-
tant advantage of a middleware solution is that program code for fault-handling
is shared by all applications so that scarce system resources are saved. Based on
the flexibility with respect to QoS and dynamic reconfigurability introduced by the
publisher-subscriber middleware a graceful degradation approach is the most rea-
sonable approach for software fault-tolerance. Video surveillance applications can
mostly be stripped down to an essential set of algorithms so that a degraded state
also satisfies minimum requirements—at least for short time periods or in some
parts of the system, respectively. To decide on which algorithms to degrade the
framework relies on application-specific knowledge for their prioritization.

In the middleware framework for the DSPs in the SmartCam a special algorithm
component model is derived that supports high-level model-based development
of video analysis algorithms. That is, algorithms are developed using a model-
based environment like Matlab/Simulink. Code for the DSP framework is then
directly generated from the model. An evaluation of the code generation tools in
Matlab/Simulink suggests this approach to be feasible.

A prototype of the presented framework has been implemented on the
SmartCam platform. Experimental evaluation shows that the overhead introduced
by the middleware mechanisms is very small. This efficiency is substantial for use
with video analysis algorithms on our embedded smart camera platform.



Kurzfassung

In der Videoüberwachung ist zunehmend ein Trend hin zu eingebetteten intelli-
genten Kameras zu beobachten. Diese Smart Cameras ermöglichen Videoanalyse
direkt vor Ort. Damit können gefährliche Situationen erkannt werden und Ver-
kehrsstatistiken für das Verkehrsmanagement berechnet werden. Die für die Vi-
deoverarbeitung nötige Rechenleistung wird meist mittels Multi-Prozessor Platt-
formen aus DSPs und anderen spezialisierten Prozessoren zur Verfügung gestellt.
In der vorliegenden Arbeit wird die SmartCam als Zielplattform verwendet.

Diese Arbeit stellt eine neuartige Middleware für lose gekoppelte DSP Algo-
rithmen vor. Wegen der begrenzten Ressourcen sind dafür Standardlösungen nicht
geeignet. Deshalb wird für die SmartCam eine effiziente und schlanke Middleware-
Schicht vorgestellt. Durch minimale Indirektion ist der Kommunikations-Overhead
sehr gering. Transparente Kommunikation innerhalb eines Prozessors und zwi-
schen mehreren Prozessoren erfolgt über einen speziellen Proxy-Mechanismus. Für
das Auffinden von Services wird ein einfaches Directory Service zur Verfügung ge-
stellt. Damit können Algorithmen Datenquellen und -senken dynamisch nach ihren
Anforderungen auffinden.

Damit intelligente Kameras auch in größerem Umfang eingesetzt werden kön-
nen, benötigen sie zumindest grundlegende Mechanismen zur Fehlertoleranz. Bei
unvorhergesehenen Ereignissen soll zumindest ein Notbetrieb aufrechterhalten
werden und zwar möglichst ohne menschliche Intervention. Aus Kostengründen
ist in der eingebetteten Videoüberwachung auch Software Fehlertoleranz vorzuzie-
hen, da Hardware-Redundanz die Produktkosten erhöht und damit den Markter-
folg senkt.

Derzeit werden meist eigens in jeder Anwendung ad-hoc Mechanismen zur
Fehlertoleranz eingesetzt. Im Gegensatz dazu ist es das Ziel dieser Arbeit speziel-
le Fehlertoleranz-Dienste in der Middleware anzubieten. Der Vorteil einer solchen
Lösung ist, dass der Programm-Code für die Fehlerbehandlung von allen Anwen-
dungen geteilt werden kann, wodurch Ressourcen geschont werden. Durch die Fle-
xibilität in der dynamischen Rekonfiguration von QoS Einstellungen und Algorith-
menzusammensetzugen der Publisher-Subscriber Middleware wird ein Graceful
Degradation Ansatz gewählt. Tatsächlich können Videoüberwachungsanwendun-
gen, zumindest für eine bestimmte Zeit, mit reduzierter Qualität betrieben werden.
Welche Algorithmen degradiert werden, wird vom Framework aufgrund anwen-
dungsspezifischer Information über deren Priorisierung entschieden.

Das präsentierte Middleware-Framework stellt auch ein Komponentenmodell
für DSP Algorithmen zur Verfügung. Damit wird auch der Einsatz von Modell-
basierten Entwicklungsmethoden ermöglicht. Das heißt, Algorithmen werden in
einer Umgeben, wie z.B. Matlab/Simulink, entwickelt und der entsprechende DSP
Programmcode wird daraus automatisch generiert. In einer experimentellen Eva-
luierung wurde die Durchführbarkeit dieses Ansatzes bestätigt.

Ein Prototyp des präsentierten Frameworks wurde auf der SmartCam imple-
mentiert. Experimentelle Untersuchungen zeigen, dass der Overhead durch die
Middleware besonders gering ist. Die resultierende Effizenz ist besonders wichtig
für Videoanalyse auf eingebetteten intelligenten Kameras.



Extended Abstract

In traffic surveillance there is a trend towards embedded smart cameras. These
cameras provide on-site video analysis to detect dangerous traffic situations and
compute traffic statistics that can be used for traffic management. To provide
enough computing power for the video analysis algorithms high performance em-
bedded computing platforms are required. Typically, multi-processor platforms
comprising several DSPs and other specialized processors are used. In this thesis
the SmartCam is considered as target platform.

Because of the limited resources of the embedded smart camera platform it is
not possible to run all intended analysis algorithms simultaneously. In previous
work in the SmartCam project a framework was established that allows for all al-
gorithms to be loaded and unloaded on demand at runtime. An important restric-
tion of this framework was that only predefined algorithm connections could be
realized. In order to extend the platform’s flexibility in terms of connecting video
analysis algorithms dynamically at runtime this thesis presents a novel middle-
ware for loose coupling of DSP algorithms 1. Because of tight resource constraints
standard solutions are not appropriate and, therefore, an efficient and light-weight
middleware layer is suggested for the SmartCam 2.

The presented real-time publisher-subscriber middleware (PS-MW) is a very
light-weight architecture that supports loose coupling of tasks in the given dynamic
application environment. By introducing only minimal indirection it also provides
little transfer time overhead. Transparent communication within a single DSP and
between different DSPs via the local PCI bus is supported. To abstract from the
PCI bus a special proxy mechanism transparent to the application developer is in-
troduced. For easy service discovery a simple directory service is provided that
allows algorithms to find data sinks and sources dynamically according to their re-
quirements. In that way it is possible to rearrange algorithm connections at runtime
if special surveillance conditions request for an adapted analysis pipeline. Alterna-
tively, it is also possible to rearrange and reconfigure algorithms to make the system
more power-efficient if it is running on batteries 3 4.

1Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, and Andreas Zoufal. A light-weight
Publisher-Subscriber Middleware for Dynamic Reconfiguration in Networks of Embedded Smart
Cameras. In Proceedings of the 5th WSEAS International Conference on Software Engineering, Parallel
and Distributed Systems, Madrid, Spain, February 2006. World Scientific and Engineering Academy
and Society

2Michael Bramberger, Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut
Schwabach. Distributed smart cameras for surveillance applications. Computer, 39(2):68–75, February
2006

3Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach. A Novel Soft-
ware Framework for Power-Aware Reconfiguration in Distributed Embedded Smart Cameras. In
Proceedings of the 12th IEEE International Conference on Parallel and Distributed Systems, volume 1, pages
281–288, Minneapolis, Minnesota, USA, July 2006. IEEE Computer Society

4Andreas Doblander, Arnold Maier, Bernhard Rinner, and Andreas Zoufal. An Efficient Middle-
ware for Power-Aware Service Reconfiguration in Multi-DSP Smart Cameras. In Proceedings of the
2nd IEEE International Conference on Information and Communication Technologies: From Theory to Appli-
cationsSoftware Engineering, pages 1093–1094, Damascus, Syria, April 2006. IEEE



In the middleware framework for the DSPs in the SmartCam a special algorithm
component model is derived that may also be used to support high-level model-
based development of video analysis algorithms 5. That is, algorithms are devel-
oped using a model-based environment like Matlab/Simulink and code for the
DSP framework is directly generated from the model. An evaluation of the code
generation tools in Matlab/Simulink suggests this approach to be feasible although
substantial effort has to be made to adapt to custom hardware 6. However, the in-
creasing complexity of embedded applications drives development of the tools so
that they are continuously improved.

As typical future surveillance settings will be based on a large number of smart
cameras it is necessary to aid operators and system providers in operating the sys-
tem and maintenance, respectively. Especially maintenance in such large-scale dis-
tributed systems plays an increasing role in the industry. Therefore, it is desirable
to provide systems of smart cameras with self-management capabilities. In other
words such systems should act as autonomously as possible.

A basic requirement for self-management and autonomous operation is fault-
tolerance with its enabling mechanisms fault-detection and fault-diagnosis. It al-
lows a system to stay operational in case of unexpected events without external
intervention. Because of tight device cost limitations in the industry it is especially
interesting to focus on software fault-tolerance. Redundant hardware results in
increased product costs which in turn means reduced market success.

Currently, in most systems today ad hoc mechanisms for software fault-
tolerance are employed separately for each application. In contrast to that the aim
of this work is to provide dedicated services for fault-tolerance in the middleware.
An important advantage of a middleware solution is that program code for fault-
handling is shared by all applications so that scarce system resources are saved.
Based on the flexibility with respect to QoS and dynamic reconfigurability intro-
duced by the publisher-subscriber middleware a graceful degradation approach is
the most reasonable approach for software fault-tolerance 7. In fact, video surveil-
lance applications can mostly be stripped down to an essential set of algorithms so
that a degraded state also satisfies minimum requirements—at least for short time
periods or in some parts of the system, respectively.

The presented middleware-based software fault-tolerance approach for intelli-
gent video surveillance applications is organized in two layers 8. First, the node-

5Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, and Andreas Zoufal. A Middleware
Framework for Dynamic Reconfiguration and Component Composition in Embedded Smart Cam-
eras. WSEAS Transactions on Computers, 5(3):574–581, March 2006

6Andreas Doblander, Dietmar Gösseringer, Bernhard Rinner, and Helmut Schwabach. An Evalu-
ation of Model-Based Software Synthesis from Simulink Models for Embedded Video Applications.
International Journal of Software Engineering and Knowledge Engineering, 15(2):343–348, April 2005

7Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach. Improving Fault-
Tolerance in Intelligent Video Surveillance by Monitoring, Diagnosis and Dynamic Reconfiguration.
In Proceedings of the Third IEEE-Workshop on Intelligent Solutions in Embedded Systems, Hamburg, Ger-
many, pages 194–201, 2005. ISBN 3-902463-03-1

8Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut Schwabach. Increasing Service
Availability in Intelligent Video Surveillance Systems by Fault Detection and Dynamic Reconfigura-
tion. In Proceedings of the Telecommunications and Mobile Computing Workshop on Wearable and Pervasive
Computing, Graz, Austria, March 2005



level layer focuses on a single smart camera. That is, only algorithms within a node
and their interactions are observed. Second, the system-level layer is concerned
with the overall network of smart cameras. Data from neighboring nodes is ex-
ploited to derive decisions on the network and the alive-states of whole nodes.

Based on the algorithm component model defined by the framework each al-
gorithm in the system has to provide the middleware framework with information
on its QoS capabilities and resource requirements. Furthermore, algorithms have
to provide an interface that is used by the middleware to monitor the algorithms’s
state.

In case of faults graceful degradation is carried out by appropriate reconfig-
uration of algorithms and their QoS settings. The (surveillance) application, i.e.,
the developer, has to communicate the minimum QoS requirements of the used al-
gorithms to the middleware. Additionally, a situation-dependent prioritization of
algorithms has to be provided. Based on this importance measure the middleware
reconfigures the overall application, i.e., all algorithms. Replication of node and
system state information among neighboring nodes ensures that reconfiguration is
also possible in case of node failures.

A prototype of the framework has been implemented on the SmartCam plat-
form. Experimental evaluation shows that the overhead introduced by the middle-
ware mechanisms is very small. This efficiency is substantial for use with video
analysis algorithms on our embedded smart camera platform.

Thesis Contribution

• The thesis presents a novel light-weight communication middleware for em-
bedded multi-DSP platforms. It is based on the publisher-subscriber mecha-
nism and supports flexible reconfiguration of DSP algorithms.

• Middleware mechanisms for node-level and system-level fault-tolerance in
the domain of video surveillance by smart cameras are introduced. That is,
application-specific knowledge is used for reasoning about algorithm recon-
figurations to achieve graceful degradation.

• A prototype implementation of the middleware has been realized on a het-
erogeneous multi-processor platform featuring a network processor (Intel XS-
cale) and multiple DSPs (Texas Instruments C64x).

• Reconfiguration and communication performance have been evaluated on
the prototype platform mentioned above. The approach is shown to be very
efficient in terms of memory consumption and resulting CPU load.

• High-level software development using the Matlab/Simulink environment
has been examined and evaluated concerning its applicability to automatic
code generation of video analysis algorithms.



Acknowledgments

This work has been conducted for the SmartCam project at the Institute for Techni-
cal Informatics and I would like to thank Professor Reinhold Weiß, the head of the
institute, and my advisor Bernhard Rinner for their guidance and support during
my time at Graz University of Technology. Furthermore, thanks to all colleagues at
the institute for their inputs in many valuable discussions.

Very special thanks go to my colleagues and friends Michael Bramberger and
Arnold Maier for their priceless help and support, as well as their friendship that
made it a real pleasure for me to work on this project. My appreciation also goes to
Markus Quaritsch, Norbert Trenkwalder, and Karima Klamminger for their devo-
tional work and commitment to the project.

I am also very grateful for the strong support of my work from the ARC Seibers-
dorf research GmbH. Thank you for the financial support that made this work pos-
sible. Especially, I would like to thank the people at the Video and Safety Technology
group and its former head Helmut Schwabach for their continual support and help.

Finally, my biggest thank to my wife Anna for her understanding and enduring
encouragement during the last years; and my parents for their guidance through-
out my whole life and their unprecedented confidence in my decisions.

Thank you!

ANDREAS DOBLANDER



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Dynamic reconfiguration . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Towards Autonomous Smart Cameras . . . . . . . . . . . . . . 4
1.2.3 Raising the Level of Abstraction in Embedded Software De-

velopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scientific Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Problem Analysis and Related Work 10

2.1 Distributed Embedded Video Surveillance . . . . . . . . . . . . . . . 10
2.2 Software Components and their Composition . . . . . . . . . . . . . . 11
2.3 High-Level Software Development in Embedded Systems . . . . . . 13
2.4 Fault-Tolerance in Distributed Embedded Systems . . . . . . . . . . . 14
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Autonomous and Self-Adaptive Systems . . . . . . . . . . . . 16
2.5.2 Middleware and Frameworks for Embedded Systems . . . . . 17
2.5.3 Component Models and Technology . . . . . . . . . . . . . . . 22
2.5.4 High-Level Software Development for Embedded Systems . . 27
2.5.5 Software Fault Tolerance in Distributed Embedded Systems . 28

3 A Software Framework for Autonomous Embedded Smart Cameras 32

3.1 SmartCam Hardware Platform Overview . . . . . . . . . . . . . . . . 32
3.2 Software Framework Requirements . . . . . . . . . . . . . . . . . . . 34
3.3 Software Framework Architecture . . . . . . . . . . . . . . . . . . . . 34
3.4 The Publisher-Subscriber Middleware . . . . . . . . . . . . . . . . . . 36

3.4.1 Architecture Description . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Medium Abstraction and Remote Subscription . . . . . . . . . 39
3.4.3 Directory Service and Service Discovery . . . . . . . . . . . . . 39

3.5 Dynamic Component Composition . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Dynamic Loading and Reconfiguration . . . . . . . . . . . . . 41
3.5.2 DSP Algorithm Component Model . . . . . . . . . . . . . . . . 41
3.5.3 Ressource Monitoring and Component Composition . . . . . 42
3.5.4 Component Performance Monitoring . . . . . . . . . . . . . . 45

i



3.6 Fault Handling in a Network of Smart Cameras . . . . . . . . . . . . 48
3.6.1 Considered fault classes . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Fault handling procedures . . . . . . . . . . . . . . . . . . . . . 50

3.7 Middleware-Based Fault-Tolerance Architecture for Smart Cameras . 51
3.7.1 Node Level Modes . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.2 System Level Modes . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 High-Level Software Development for DSPs . . . . . . . . . . . . . . 55
3.8.1 Model-Based Development of Embedded Video Surveillance

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.8.2 Integration of Automatically Generated Components . . . . . 58

4 Implementation and Experimental Evaluation 61

4.1 Prototype Platform as Evaluation Environment . . . . . . . . . . . . . 61
4.1.1 Demonstration Application . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Dynamic loading . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.3 Extension to the Fault Tolerance Architecture . . . . . . . . . . 64

4.2 Performance Analysis of the Publisher-Subscriber Middleware . . . . 64
4.2.1 Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Initialization and Communication Overhead . . . . . . . . . . 66

4.3 Evaluation of the Fault Tolerance Architecture . . . . . . . . . . . . . 68
4.3.1 Scenario 1: Inconsistent Observations . . . . . . . . . . . . . . 70
4.3.2 Scenario 2: DSP Crash . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Evaluation and Discussion of Model-Based Development of Video
Analysis Algorithms using Simulink . . . . . . . . . . . . . . . . . . . 73

5 Conclusion 77

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 80

ii



List of Figures

1.1 The state-of-the-practice in changing features and algorithms in
mission-critical embedded devices. . . . . . . . . . . . . . . . . . . . . 3

1.2 A more flexible approach to reconfiguration as it was used in the first
SmartCam prototype. But still the intended reconfigurations could
not be done dynamically. Only predefined algorithms can be ex-
changed at runtime. Several QoS levels that cannot be applied by
runtime parametrization also have to be provided as predefined al-
gorithm instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The new reconfiguration approach for dynamic algorithm reconfig-
uration in the SmartCam as presented in this thesis. Improved flexi-
bility introduces full dynamic reconfiguration capabilities. . . . . . . 5

1.4 The development process as it is currently state-of-the-practice at
ARC Seibersdorf research GmbH. As algorithm experts are not fa-
miliar with the target hardware platform the system integration is
inefficient because integrator have to recode algorithms to adapt to
platform specialities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The intended development approach based on the software frame-
work presented in this thesis. Involved roles and their relations
among each other and the framework are illustrated. . . . . . . . . . 9

2.1 The model-based design process according to [The06]. . . . . . . . . . 14
2.2 The model-based development process compared to conventional

development [The06]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Architecture-based approach to self-adaptation adapted from

[OGT+99]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Accessing remote services or device capabilities in BASE adapted

from [BSGR03]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 The hybrid development process according to [Tei05]. . . . . . . . . . 26

3.1 The SmartCam hardware architecture. It comprises a sensing unit, a
processing unit, and a communication unit. Up to ten DSPs provide
the necessary computing power for video analysis algorithms. . . . . 33

3.2 The overall software architecture of our smart camera. In the left part
of the figure the so-called SmartCam-Framework is illustrated while
the right part shows the so-called DSP-Framework. . . . . . . . . . . 35

iii



3.3 Fundamental relations between objects of the publisher-subscriber
architecture. Only local connections within a single DSP are sketched. 37

3.4 Extended publisher-subscriber architecture to connect algorithms
running on different DSPs. These remote connections beyond DSP
boundaries are established via intermediate publishers and sub-
scribers. The special medium abstraction object (MAO) is used to
abstract from PCI communication. . . . . . . . . . . . . . . . . . . . . 40

3.5 Principle structure of a DACM component. . . . . . . . . . . . . . . . 42
3.6 Simple example for heap allocation problems. The algorithm allo-

cates more dynamic memory than it specified to the framework. . . . 46
3.7 Basic mechanism to get an estimate for algorithm execution times. . . 47
3.8 Basic mechanism to get an estimate for communication delay from

algorithm Ai to algorithm Ai+1. . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Overview of the fault tolerance architecture as it is included in the

SmartCam software framework. . . . . . . . . . . . . . . . . . . . . . . 52
3.10 Generic model-based development process [The06, KSLB03]. . . . . . 56
3.11 The complete build process that generates code from a Simulink

model using the Real-Time Workshop program contained in the de-
velopment suite [The06]. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Development process that uses automatic code generation and inte-
gration of generated components into the framework. . . . . . . . . . 59

4.1 The SmartCam prototype comprising an Intel IXDP425 baseboard,
two ATEME NVDK DSP boards, a GSM/GPRS module, and a
CMOS image sensor. A Ethernet connection serves as the main com-
munication medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Demonstration application resembling a simple surveillance sce-
nario where a high quality stream is sent to an operator terminal
and a lower quality stream is archived to a network storage. . . . . . 63

4.3 The extended fault tolerance architecture to cope with deviations of
statistical analysis results on different cameras. . . . . . . . . . . . . . 65

4.4 Transfer time in a multicast scenario increases depending on the
number of subscribers and the priorities of publisher and subscriber
tasks (denoted “Pri(Pub)” and “Pri(Subs)”). . . . . . . . . . . . . . . . 67

4.5 The Simulink model of the motion detection algorithm as it was used
for the evaluation experiments. . . . . . . . . . . . . . . . . . . . . . . 73

iv



List of Tables

3.1 Example algorithm information as provided by the DACM. . . . . . 43

4.1 Memory requirements of middleware objects. . . . . . . . . . . . . . . 65
4.2 Initialization times of PS-MW components. . . . . . . . . . . . . . . . 66
4.3 Message transfer times for plain mailbox communication and for a

transfer using our publisher-subscriber middleware. . . . . . . . . . . 66
4.4 Message transfer time from a single publisher to multiple sub-

scribers depending on the number of subscribers and the task pri-
orities. PPO and PSO denote task priorities of the publisher and the
subscribers, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Message transfer overhead time for publisher and subscribers resid-
ing on different DSPs. Overhead is given compared to direct PCI
transfers without the PS-MW. . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Algorithms and their attributes for the example traffic surveillance
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Resource requirements for surveillance tasks according to [BBRS04]. 71
4.8 Profiling results in CPU cycles split among different parts of the al-

gorithm. Ratings for all implementation variants are collected. . . . . 74
4.9 Memory consumption in KB. The code size and the memory re-

quired for data storage and buffers are summarized for each imple-
mentation variant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



Chapter 1

Introduction

1.1 Background

Recent advances in computing, communication and sensor technology are push-
ing the development of numerous new applications. This trend can especially be
observed in pervasive computing. Intelligent video surveillance based on smart
cameras is an example for an innovative intelligent infrastructure application.

Smart cameras [WOL02, LLWO04] are equipped with high-performance on-
board computing and communication devices. They combine video sensing, pro-
cessing and communication within a single embedded device. Networks of dis-
tributed smart cameras are an emerging technology for a broad range of important
applications, including smart rooms, surveillance, tracking and motion analysis.
By having access to many views and through cooperation among the individual
cameras, these networks have the potential to realize many more complex and chal-
lenging applications than single camera systems.

Surveillance applications pose strong requirements on the camera’s hardware
and software [FMR00]. Typically, the cameras have to execute demanding video
processing and compression algorithms. These surveillance tasks running on the
cameras offer different QoS-levels and may be adapted in response to events de-
tected in the monitored area. The distributed surveillance architecture has, there-
fore, to be scalable and flexible.

In previous work [Bra05, BDM+06] a smart camera has been designed—it is
called the SmartCam—as a fully embedded system focusing on aspects such as
dynamic load distribution [BRS05] and power consumption and QoS-management
[Mai06]. The smart camera is realized as a scalable, embedded high-performance
multi-processor platform consisting of a network processor and a variable number
of digital signal processors (DSP).

Several requirements have to be met by the system software to employ this
flexible high-performance platform in real-world distributed (surveillance) appli-
cations:

• Flexibility of algorithm configuration, i.e., how tasks are composed to build
the application.

1



1.2. Motivation 2

• Scalability concerning the number and the different types of employed
surveillance tasks.

• Low resource consumption so that resources are spared for surveillance tasks
and image buffers.

• Low performance overhead to not hinder real-time operation of surveillance
tasks.

• Real-time operation to meet requirements of surveillance tasks. At least frame
rate requirements of all tasks have to be met.

To meet the above requirements a multi-layer heterogeneous software frame-
work was devised for our smart cameras. Since our smart cameras comprise a net-
work processor and several DSPs the framework is divided into two parts. First,
the part running on the network processor—the so-called SmartCam-Framework
(SC-FW)—hosts a mobile agent system (MAS) and provides system-level task dis-
tribution services. Second, the part employed on the DSPs—the so-called DSP-
Framework (DSP-FW)—is based on a publisher-subscriber middleware approach.
The responsibility of this DSP-FW is to provide local task communication where
all tasks are dynamically loaded and unloaded. This is in contrast to current prac-
tice where functionality is mostly changed by re-programming a device with a new
software image. That implies that the device has to be rebooted and cannot provide
its service for some time. To support dynamic alteration of surveillance applica-
tions loose coupling of tasks is required [HC01]. Therefore, a publisher-subscriber
approach was chosen to support this loose coupling. Given the tight resource re-
quirements in our system standard middleware solutions are not appropriate. Spe-
cial implementations for resource constrained embedded devices could not be used
because they are not available for the DSPs and the operating system we use.

This middleware allows to dynamically change the camera’s functionality, i.e.,
various tasks can be loaded and unloaded at runtime or their QoS-level can be
adapted dynamically. Based on this reconfiguration capabilities our smart cameras
can be combined to a distributed embedded (surveillance) system and support co-
operation and communication among the individual cameras.

1.2 Motivation

1.2.1 Dynamic reconfiguration

In embedded computing the general practice for changing features of employed
devices or change entire software configurations is to do image swapping. That
is, the overall software image is exchanged. Figure 1.1 illustrates the principle
of changing the software image. This procedure is not very flexible and means
that the whole device has to be rebooted after successful software image updates.
Most video surveillance applications require at least the video storage features to
run uninterruptedly so changing software images with every change in the camera
configuration is not an option.



1.2. Motivation 3

Current
Software

Image
A

Software
Image

C

Software
Image

B

replace

Software Image
Repository

Figure 1.1: The state-of-the-practice in changing features and algorithms in
mission-critical embedded devices.

Furthermore, it is not very efficient to use such a brute-force mechanism for
changing algorithm configurations because of the unacceptable reaction times and
unnecessary down-times. In this context an algorithm configuration means the
composition of different algorithms to a whole application as well as QoS levels
of individual algorithms if they cannot be changed by runtime parametrization of
the respective algorithm. Parameterizations that cannot be done dynamically when
the algorithm is running are mostly such that they require substantial reorganiza-
tion of internal algorithm buffers. A typical example is changing the input image
resolution of the MPEG-4 encoder because internal memory management of the
algorithm prohibits changing buffers of a running instance.

As there are several of these reconfiguration limitations when relying only on
changing overall software images a more flexible approach was introduced in the
first SmartCam prototype [BBRS04, BRS04]. There it was possible to load and un-
load several algorithms at runtime. But all algorithms were restricted to be known
beforehand. It was not possible to load new algorithms for extending functional-
ity. Another severe restriction was that it was not possible that two instances of the
same algorithm were run on the same SmartCam. The root cause for these limita-
tions was a static binding of algorithms to communication channels over the PCI
bus. In Figure 1.2 the situation concerning algorithm reconfiguration in the first
SmartCam prototype is illustrated.

Given the above limitations it is an important goal of this work to pro-
vide a flexible software framework for dynamic software reconfiguration in the
SmartCam prototype. In this thesis the notion of dynamic integration is introduced
for the SmartCam software framework to describe the presented reconfiguration
approach. Figure 1.3 shows this principle of dynamic integration where algorithms



1.2. Motivation 4

Predefined set of
algorithms

(predefined combinations only)

Current Software Image��Algorithm
1

��Algorithm
1��Algorithm

2����Algorithm
3

add and
connect

algorithm

not allowed

Figure 1.2: A more flexible approach to reconfiguration as it was used in the first
SmartCam prototype. But still the intended reconfigurations could not be done dy-
namically. Only predefined algorithms can be exchanged at runtime. Several QoS
levels that cannot be applied by runtime parametrization also have to be provided
as predefined algorithm instances.

complying to the DSP algorithm component model defined in this work can be loaded
and unloaded arbitrarily.

1.2.2 Towards Autonomous Smart Cameras

In embedded video surveillance it is a key feature of smart cameras to relieve op-
erators in central surveillance stations from continuously observing hundreds of
different monitors. Therefore, it is necessary to provide each smart camera with
substantial self-management capabilities and profound detection algorithms. The
aim is that a camera generates alarms in case of dangerous situations in the ob-
served scene. Video streams from dangerous scenes can then be displayed to an
operator as a reaction to the alarm. In such a scenario only the most relevant video
streams are presented to the operators preventing them from information overflow.

But in order to be of real assistance a network of smart cameras has to reach
an adequate level of trustworthiness so that operators rely on the systems alarms.
Therefore, each SmartCam in a future surveillance network has to provide self-
monitoring and fault-tolerance mechanisms [DMRS05b, DMRS05a].

Furthermore, it is necessary for a SmartCam to keep house with their energy
resources. This might not be a big problem for, e.g., tunnel installations or indoor
surveillance. But when fielded in rural and remote environments with less infras-
tructure a SmartCam has to be powered by solar energy or by batteries [MRSS06].
To achieve an energy-efficient configuration of a single SmartCam and whole net-



1.2. Motivation 5

Current
Software

Image

Any algorithm
conforming with
the framework's

component model����Algorithm
1

����Algorithm
1 ��Algorithm

2 ��Algorithm
3

load /
unload

load /
unload

load /
unload

unload /
load

Figure 1.3: The new reconfiguration approach for dynamic algorithm reconfigura-
tion in the SmartCam as presented in this thesis. Improved flexibility introduces
full dynamic reconfiguration capabilities.

works of SmartCams the software framework’s dynamic reconfiguration capabili-
ties are used as a basis [DMRZ06, DMRS06].

When pushing the concept of an embedded smart camera further to integrate
a multi-sensor device with sensor-fusion capabilities the necessity of dynamic re-
configuration and self-management increases even more [BDJ+06]. More sensors
imply more detection algorithms and, therefore, an increased number of reconfig-
uration events and increased monitoring effort. Efficient inter-task communication
as well as a well-defined algorithm model are key for successful employment of
complex multi-sensor devices. Especially, with the increased fault complexity due
to the increasing number of algorithms and events the dynamic reconfiguration
and flexible task communication mechanisms provide the means for gracefully de-
grading system performance in case of faults.

1.2.3 Raising the Level of Abstraction in Embedded Software Develop-
ment

To cope with increasing software complexity in distributed embedded multi-
processor architectures such as smart cameras it is necessary to raise the level of ab-
straction in the software development. In recent years the object-oriented paradigm
has been adopted for embedded software but still the level of abstraction is not ad-
equate for the complexity inherent in current designs [Sch06].

In the research community there are efforts to introduce high-level approaches
such as model-based software development or model-integrated computing to the
embedded software industry [BGK+06, SSBG03].



1.3. Scientific Focus 6

Especially, in multi-processor architectures it is necessary to aid developers and
integrators in their complex tasks. As a smart camera is such a system it is essential
for future applications of the SmartCam to step towards improved development
paradigms. Component-oriented development combined with model-based ap-
proaches that also provide rich visualization capabilities and domain-specific com-
ponent libraries can significantly raise the level of abstraction.

1.3 Scientific Focus

Based on the introductory ideas of the previous sections the research goal of this
thesis can be stated as follows:

To develop a software framework for distributed embedded smart cameras focussing on

• flexibility and scalability with respect to type and number of analysis algorithms.

• efficiency in terms of memory consumption and runtime overhead.

• fault-tolerance mechanisms to step towards autonomous operation of networks of
smart cameras.

• support for system integrators and application / algorithm developers by appropriate
abstractions.

so that the demanding requirements imposed by future video surveillance applications can
be met.

A prototype implementation of the middleware was realized on a heteroge-
neous multi-processor platform featuring a network processor (Intel XScale) and
multiple DSPs (Texas Instruments C64x). Reconfiguration and communication per-
formance were evaluated on the prototype platform. The approach is shown to be
very efficient in terms of memory consumption and resulting CPU load.

Based on the dynamic reconfiguration capabilities of the SmartCam graceful
degradation of system services is examined as a means for improving service avail-
ability in spite of faults. Specialized prioritization of algorithmic services are de-
vised in view of the intended application of the SmartCam in video traffic surveil-
lance.

To meet increasingly tight time-to-market demands and increasing software
complexity in embedded surveillance systems a high-level development paradigm
should be evaluated for their feasibility in this field. As is shown in Figure 1.4 the
current development process is inefficient in that it needs the system integrator to
recode the algorithm to port it to the actual target hardware. The major problem
is that video analysis experts focus on the algorithmic details and are mostly not
familiar with the target hardware. They devise their algorithms in high-level mod-
eling environments like Matlab/Simulink or using abstract programming language
libraries that cannot be efficiently ported to the embedded target hardware.

To solve this the software framework should be devised such that support for
high-level development can easily be integrated in the future. As a typical envi-
ronment for algorithm exploration the Matlab/Simulink development suite was



1.3. Scientific Focus 7

Framework Developer
(Platform Expert)������ Algorithm Development

(Matlab / Simulink,
C++ Libraries, ...)

Functional Validation/
Test

Algorithm Developer
(Video Analysis Expert)

Algorithm
4

Algorithm
1

Algorithm
3

Algorithm
2

Application Developer
(Video Surveillance

Domain Expert)

Intelligent Video
Surveillance Application

3rd-Party
Algorithms

operating system layer

drivers, buffer management, ...

Board Support
Package

Algorithm Repository

creates

integrates
(statically)

choose and
parameterize

Prototype
(Matlab code, C++ with
high-level libraries, ...)

Recode / Port
(improve

efficiency on
target hardware)

revise

Figure 1.4: The development process as it is currently state-of-the-practice at ARC
Seibersdorf research GmbH. As algorithm experts are not familiar with the target
hardware platform the system integration is inefficient because integrator have to
recode algorithms to adapt to platform specialities.



1.4. Thesis Outline 8

chosen as an example for a model-based development environment following a
model-based approach.

In Figure 1.5 the resulting improved development process is shown in context of
a video surveillance application as it would be appropriate, e.g., at the ARC Seibers-
dorf research GmbH Video and Safety Technology group. This process has the
benefit that the algorithm experts are decoupled from the platform by the model-
based development environment. Code generation templates and in part also block
libraries are created by platform experts. Therefore, automatically generated algo-
rithms are appropriate for the target hardware and efficient in spite of the high-level
approach.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

• Chapter 2 first presents a problem analysis that clarifies the driving forces and
motivating aspects for this thesis. The presentation of these different aspects
is organized in several sections. Second, it discusses relevant related research
work in industry and academia in Section 2.5.

• Chapter 3 discusses the novel middleware fault-tolerance approach for em-
bedded smart cameras. The light-weight publisher-subscriber software archi-
tecture as well as the middleware fault-tolerance mechanisms are described.

• Chapter 4 first presents the implementation of the framework as it was used
for evaluation. Then it discusses an experimental evaluation of the presented
approach. It demonstrates the feasibility and efficiency of the presented ap-
proach.

• Chapter 5 concludes the thesis by summarizing the most important ideas and
conclusions. In the end possible directions for future work are discussed in
Section 5.1.



1.4. Thesis Outline 9

Framework Developer
(Platform Expert)������������

Model-Based Algorithm
Development

(design, validate, revise)

Code Generation

Algorithm Developer
(Video Analysis Expert)

Algorithm
4

Algorithm
1

Algorithm
3

Algorithm
2

Application Developer
(Video Surveillance

Domain Expert)

Intelligent Video
Surveillance Application

3rd-Party
Algorithms

operating system layer

middleware layer including
dynamic loading

application layer
(layer for algorithms)

Software Framework

Code
Generation
Templates

Simulink
Block

Libraries

Algorithm Repository

Matlab/
Simulink

creates

creates

creates

is used

is used

can be
added

creates

resulting code
is added

integrates
("dynamic integration")

choose and
parameterize

to be loaded
to DSPs

pass model

Figure 1.5: The intended development approach based on the software framework
presented in this thesis. Involved roles and their relations among each other and
the framework are illustrated.



Chapter 2

Problem Analysis and
Related Work

In this chapter the main problems in the research field are stated and analyzed in
Section 2.1. The intention is to provide some insight into the driving forces in the
field of distributed embedded video surveillance. Key aspects such as component
composition, fault-tolerance, and high-level development are treated in separate
sections. In Section 2.5 of this chapter related work by other researchers in the field
is presented. The discussion of related work is organized in different subsections
corresponding to the main ideas of the thesis.

2.1 Distributed Embedded Video Surveillance

Video surveillance is an upcoming field in industry and research. Due to the in-
creased demand for security applications video surveillance is employed in many
different areas. There are indoor surveillance applications in casinos, hotels, corpo-
rate and governmental buildings and outdoor surveillance on parking lots, public
places and, of course, traffic surveillance on highways. Given tight time-to-market
and cost demands and the vast number of devices needed for a surveillance appli-
cation there is also a strong trend towards embedded solutions. Therefore, smart
cameras are an integral part of future surveillance systems [WOL02].

Another interesting recent development is aerial video surveillance [SLS+04]
based on wireless video stream transmission for rural areas where no network in-
frastructure is available. It is also an embedded solution and would even be an
interesting application domain for intelligent cameras because they have the po-
tential to reduce transmission bandwidth that is scarce in wireless settings.

Embedded video Surveillance applications are very demanding with respect to
computing and memory resources. Therefore, it is especially important to provide
these applications with flexible mechanisms for resource allocation and dynamic
loading capabilities. The notion of runtime configuration capable embedded systems by
Nitsch and Kebschull [NK02] is quite similar to our understanding of a dynamically
configurable system. However, we do not consider hardware reconfiguration as
suggested in their work. Nitsch and Kebschull also use Enterprise Java Beans as

10



2.2. Software Components and their Composition 11

enabling technology which is too resource intensive for our application in smart
cameras.

Modern embedded applications are increasingly complex in that they do not
serve a single purpose anymore but fulfill several different tasks. Combined with
the limited resources the embedded platforms provide software development is
becoming more and more cumbersome and error prone. Better tool support and
better methodologies are required to cope with this situation. To provide com-
plex features and major applications special techniques such as dynamic loading
and distributed computing are employed. Naively running all possible services
becomes impossible and, additionally, consumes extra energy [LWD+06]. It is the
aim to provide all the complicated services needed by the application but perform
the services only at the right time.

To aid operators and users of highly complex embedded systems several so-
phisticated mechanisms have to be provided. That is, these systems get more and
more intelligent. One major goal is to build the systems in a way that they can
manage most of their runtime and maintenance tasks by themselves. Therefore,
such systems are often called “autonomic systems”. A major requirement for au-
tonomous behavior is a fault-tolerance concept so that the system is able to recover
from failures without (substantial) intervention by an operator [KC03].

At least a system state with reduced functionality should be achievable instead
of complete system failure. Graceful degradation is a popular and well researched
mechanism to achieve prolonged operation in case of a fault. Of course, there is a
vast number of other fault-tolerance 1 and high dependability approaches around.
Especially, redundant hardware and highly sophisticated software methods like,
e.g., n-version programming and recovery blocks [Lyu95] are employed in high
dependability systems. However, in the case of embedded surveillance the focus
is on price-per-unit which inhibits too sophisticated and expensive solutions. But
nevertheless, with the dynamic reconfiguration capabilities and the framework pre-
sented in this thesis it is possible to devise a graceful degradation scheme to provide
the system with increased survivability with only reasonable overhead.

2.2 Software Components and their Composition

Software components are increasingly used in software development to handle
complexity and cost requirements. In contrast to hardware components, there are
two distinct variants of components [MPT04] in software. First, there are com-
ponents that can only be used as provided. These are called Commercials Off-
The-Shelf (COTS). Second, there are components that can be modified and cus-
tomized by the user. Therefore, the second category is called Modifiable Off-The-
Shelf (MOTS).

For simplicity in this thesis no distinction is made between the two different
types of components. Therefore, both component types are referred to as COTS.
However, in the literature often the term Off-The-Shelf (OTS) is used as a single

1In this thesis all terms related to dependable and secure systems, i.e., all terms like fault, failure,
dependability, fault-tolerance and the like, are understood as defined in [ALRL04].



2.2. Software Components and their Composition 12

notion that includes both types of reusable components when it is necessary to
differentiate between the two component types.

According to [Wha05] there are several informal definitions for a component
depending on the actual field of application. In the following two plausible defini-
tions are stated that intuitively explain what software components are about.

Definition 1. In programming and engineering disciplines, a component is an identifi-
able part of a larger program or construction. Usually, a component provides a particular
function or group of related functions. In programming design, a system is divided into
components that in turn are made up of modules. Component test means testing all related
modules that form a component as a group to make sure they work together.

Definition 2. In object-oriented programming and distributed object technology, a com-
ponent is a reusable program building block that can be combined with other components
in the same or other computers in a distributed network to form an application. Exam-
ples of a component include: a single button in a graphical user interface, a small interest
calculator, an interface to a database manager. Components can be deployed on different
servers in a network and communicate with each other for needed services. A component
runs within a context called a container. Examples of containers include pages on a Web
site, Web browsers, and word processors.

Besides the two informal definitions stated above there is another textual defi-
nition by Szyperski [Szy97] that is most frequently used in scientific literature. This
popular and concise definition for software components is stated in the following.

Definition 3. A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

Despite the benefits the component-based development paradigm entails there
are still several challenges and problems regarding component granularity, compo-
nent variability, component dependencies, component interfaces, component mod-
els, and component certification that have to be taken into account [MPT04].

A very basic problem is that it cannot be guaranteed that several separately de-
signed components work properly when they are combined in a single application
[HC01].

A further research issue is dynamic component composition. That is, connect-
ing binary components at runtime. Of course, problems concerning the integra-
tion of (maybe third party) components at runtime are highly relevant for fault-
tolerance considerations. If two or more components do not work properly when
integrated it is important to detect this situation as soon as possible to keep the
system in a consistent state. After detection appropriate action has to be taken to
minimize unintended system behavior.

To make use of components it is also necessary to define a so-called component
model. According to [Mic05b] a component model can be defined as stated in the
following definition.

Definition 4. A component model is defined as typically providing these major types of
services:



2.3. High-Level Software Development in Embedded Systems 13

• Component interface exposure and discovery. Thus, during application use,
one component can interrogate another one to discover its characteristics and how to
communicate with it. This allows different companies (possibly independent service
providers) to create components that can interoperate with the components of other
companies without either having to know in advance exactly which components it
will be working with.

• Component properties. This allows a component to make its characteristics pub-
licly visible to other components.

• Event handling. This allows one component to identify to one or more other com-
ponents that an event (such as a user pressing a button) has occurred so that the
component can respond to it. In Sun’s example, a component that provided a button
user interface for a finance application would "raise" an event when the button was
pressed, resulting in a graph-calculating component gaining control, formulating a
graph, and displaying it to the user.

• Persistence. This allows the state of components to be preserved for later user ses-
sions.

• Application builder support. A central idea of components is that they will not
only be easy and flexible for deploying in a distributed network, but that developers
can easily create new components and see the properties of existing ones.

• Component packaging. Since a component may comprise several files, such as
icons and other graphical files, Sun’s component model includes a facility for pack-
aging the files in a single file format that can be easily administered and distributed.
(Sun calls their component package a JAR (Java Archive) file format.)

2.3 High-Level Software Development in Embedded Sys-

tems

There is an increasing trend towards high-level development in the embedded sys-
tems community. It is the aim of these mostly model-based approaches to raise
the level of abstraction. Current programming languages are not able any more
to cope with tremendously increased complexity in embedded software develop-
ment. The systems themselves are getting more and more complex. Furthermore,
close cooperation among different engineering domains is often necessary to bring
an embedded application to the market. That is, many fields are involved in hard-
ware and software development as most embedded devices are in tight interaction
with their environment. Therefore, high-level development aims at simplifying the
development process by providing a uniform means of communication throughout
the different people involved. That is, a system model is used from the beginning
of the development process on to the final validation tests. Figure 2.1 illustrates the
intended process for model-based approaches as it is implemented in the Simulink
development environment.



2.4. Fault-Tolerance in Distributed Embedded Systems 14

Figure 2.1: The model-based design process according to [The06].

The key idea is to pass models of appropriate levels of detail at the interfaces
of different development phases. Models are a better choice than paper work as
practiced up to now because models can be kept executable and they can easily
be visualized. Figure 2.2 compares the model-based process to the conventional
development process. Visualization is an important feature of model-based devel-
opment because it allows developers to better oversee the complexity inherent in
typical embedded system designs.

In the past few years a number of different approaches to the model-based de-
velopment paradigm have evolved in the literature but also in the industry. Several
companies are providing software development environments that support model-
based processes (e.g., The Mathworks Matlab/Simulink [The06], National Instru-
ments LabVIEW [Nat06], or Telelogic TAU [Tel06]). Also several research projects
are focussing on the use of model-based principles to improve development time,
system reliability and the maintenance phase. Interesting projects that are some-
what related to the work presented in this thesis are presented in Section 2.5.4.

2.4 Fault-Tolerance in Distributed Embedded Systems

The increasing complexity of embedded applications results also in an increased
number of failures and, therefore, lower customer satisfaction and higher mainte-
nance costs. As a result means for mitigating failure effects are often included in
embedded designs. In a network of smart cameras it is especially necessary to im-
prove autonomous fault handling because one of the key aims of smart cameras is
to minimize operator interaction.

Nevertheless, the market demands also embedded smart cameras to obey tight
device cost constraints. It is, therefore, not practical to include redundant hardware
or extra reliable, i.e., expensive, hardware. Another restriction is that extensive soft-
ware redundancy can also not be implemented because the high computing power
requirements of embedded video processing have to be met. Redundant software
components, as used in general-purpose computing middleware (e.g. FT-CORBA
[Gro04]), would require additional hardware which is not acceptable due to limited



2.4. Fault-Tolerance in Distributed Embedded Systems 15

Figure 2.2: The model-based development process compared to conventional de-
velopment [The06].

allowed unit cost. Unit cost limits also inhibit extensive software fault-tolerance
techniques [Pul01] as N-version programming, recovery blocks, time redundancy,
and other high-reliability techniques.

However, given the dynamic reconfiguration capabilities of our SmartCam it is
possible to introduce limited fault-tolerance by employing graceful degradation of
executed services. Fault-tolerance in general can be implemented in the application
code or in middleware. Nevertheless, it is more efficient to provide it in the mid-
dleware because by that not every application has to include fault-tolerance code
by itself [SNT04]. Because of the improved code efficiency and to better reflect
the goal of taking the SmartCam towards more autonomous behavior in our sys-
tem the graceful degradation mechanisms are provided by middleware services.
In that respect fault-tolerance is introduced almost transparent to application de-
velopers which eases software development. Framework developers and system
integrators are then responsible to provide the intended middleware mechanisms
for fault-tolerance. The publisher-subscriber framework together with the dynamic
reconfiguration facilities serve as the foundation for realizing these services.

It is important in distributed real-time systems to distinguish between
application-level fault-tolerance and system-level fault-tolerance [HLKK00]. Given
this differentiation the available approaches can be categorized. System-level fault-
tolerance encompasses redundancy and recovery actions within the system hard-
ware and software. Application-level fault-tolerance, on the other hand, encom-
passes redundancy and recovery actions within the application software.

Based on these definitions a middleware approach to fault-tolerance would
qualify for both of the above-mentioned or for none. However, as middleware
fault-tolerance aims at simplifying development by abstracting fault-tolerance



2.5. Related Work 16

mechanisms as well as to remove fault-tolerance code from applications it may
be useful to consider it a system-level technique.

2.5 Related Work

This section presents a discussion of the state-of-the-art in research fields relevant
for this thesis. Important research results and related work are summarized. The
section is organized in several subsections that reflect the different topics related to
this work.

2.5.1 Autonomous and Self-Adaptive Systems

In the late nineteen-eighties the idea of autonomic computing emerged. Originally
introduced by IBM research it spread into the artificial intelligence and control
communities [Lad99]. Autonomic systems can be characterized as systems that
can manage themselves given high-level objectives from administrators. They will
maintain and adjust their operation in the face of changing components, work-
loads, demands, and external conditions and in the face of hardware or software
failures, both, innocent and malicious [KC03].

According to Kephart et al. [KC03] autonomic computing can also quite well be
described by the term self-management. As a relatively general term it subsumes the
most important attributes of autonomic computing systems which can be identified
as

• self-configuration,

• self-optimization,

• self-healing, and

• self-protection.

Therefore, also the notion of a self-adaptive systems can be seen as a synonym
for autonomic systems. Traditionally, self-adaptation is achieved by techniques in-
troduced by the artificial intelligence (AI) community. The aim has always been
to improve robustness of mission critical systems. Another term describing the at-
tributes of autonomous systems is self-controlling system [KBE99]. It was derived
from the viewpoint of control engineering where not only the controller is imple-
mented in software but also the system under control is a part of software. Then
well-known principles like open-loop, closed-loop or adaptive control models can
analogously be applied for self-controlling software.

The model-based approach to self-adaptation [KS99] is also based on mod-
els. But different to self-controlling systems the model-based approach relies on
domain-specific models typically based on graphs. Models represent the system
itself, it’s environment and the relationship between them. Once these models are
available they are used to derive actions for reconfiguration in order to adapt the
system to achieve a certain goal.



2.5. Related Work 17

Quite early NASA introduced self-adaptive techniques in a large-scale project
called “Remote Agent” (RA) that was deployed to space with the deep space one
mission [BDR+99]. This mission was the first to rely on autonomous navigation.
Previous missions always were navigated by ground operators. As a novel flight
command and control system the RA was directed by goals specified by the oper-
ators. It was the RA’s responsibility to choose appropriate means to achieve them.
To meet these requirements AI technologies for planning/scheduling and model-
based fault diagnosis and recovery were employed. To handle the complexity in
software development resulting from the AI technologies the designers introduced
model-checking and automatic code generation. Especially, the fault protection
code was automatically generated from behavioral and structural high-level state-
chart models to improve development efficiency and code quality.

Another interesting approach towards self-adaptive software is architecture-
based self-adaptation [OGT+99]. This approach concentrates on an architectural per-
spective of adaptive software. It assumes relatively coarse-grained components as
building blocks of an application. Self-adaptation is then organized in two concur-
rent processes: system evolution and system adaptation. System evolution focuses on
the consistent application of change over time whereas system adaptation repre-
sents the cycle of detecting changing circumstances and planning and deploying
responsive modifications. Figure 2.3 sketches the basic relationship between adap-
tation and evolution. According to the authors the main issue in self-adaptation is
to guarantee consistent reconfiguration of components. Therefore, robust observers
together with a rigorous change management are vital.

2.5.2 Middleware and Frameworks for Embedded Systems

CORBA-based general purpose middleware Middleware for distributed and
embedded systems is a very active research field. A lot of work has been done
to support transparent communication and to ease distributed application devel-
opment. Component-based middleware technologies from general purpose com-
puting, such as, Microsoft DCOM [Ses97], Java RMI [PM01] and OMG CORBA
[Pop98] are not suitable for very resource limited devices [MCE02]. To adapt
the CORBA technology to resource constrained real-time systems the Real-Time
CORBA (RT-CORBA) and Minimum CORBA specifications [The01, Obj02] have
been introduced.

Schmidt et al. [Sch02] invented “TAO” as an implementation of the RT-CORBA
specification. It is an object request broker especially developed for distributed real-
time and embedded systems. Their CIAO framework [BWGS03] extends TAO to
also include a component model for distributed real-time and embedded systems
that enables easy component composition. All these approaches are quite large and,
therefore, not suitable for our multi-DSP platform. They are further not available
on the operating system of our DSPs and cannot easily be ported to it.

In general all these approaches share the idea of providing transparent com-
munication among object or components residing in different address spaces. The
problem is that they also aim at supporting a wide range of programming lan-
guages and mostly general purpose computer architectures. That is the reason why



2.5. Related Work 18

Plan changes

Adaptation
management

Deploy change
descriptions

Evaluate and
monitor

observations

Enact changes and
collect observations

Evolution
management

Implementation
Architectural

model

Maintain
consistency

and system integrity

Figure 2.3: Architecture-based approach to self-adaptation adapted from
[OGT+99].

these middleware systems impose substantial overhead. What they provide rather
well is software reuse and platform independence. But as these advantages can-
not be exploited in the highly specialized SmartCam platform a very light-weight
approach was chosen and is presented in this thesis.

Supporting Adaptable Distributed Systems with FORMAware A Java-based
framework for adaptable systems is FORMAware [MBC04]. It is targeted for mo-
bile platforms and ubiquitous applications. But FORMAware is also strongly de-
pendent on general purpose operating systems. Therefore, it is not suitable for
deployment on the DSPs of the SmartCam hosting the proprietary DSP/BIOS op-
erating system.

FORMAware is also an approach that focusses on the development phase of
embedded software and facilitates reuse by introducing a component-based frame-
work. Providing reflection mechanisms on the architectural and structural level the
FORMAware middleware is an adaptive framework. That is, applications can be
rather easily adapted to new application areas and extended with new function-
ality. Basically, the middleware keeps a meta-model of its current composition.
By using indirection through adapters, delegates and factories components can be
changed without halting dependent services. This is a functionality that is also
key in the approach presented in this work. However, performance analysis sug-



2.5. Related Work 19

Figure 2.4: Accessing remote services or device capabilities in BASE adapted from
[BSGR03].

gest that the Java implementation and the additional indirection impose substantial
performance overhead.

A Micro-broker-based Middleware for Pervasive Computing In [BSGR03] the
authors present their BASE middleware for pervasive computing. This work aims
at a scalable and efficient middleware that serves all possible computing architec-
tures for pervasive computing.

BASE is based on a micro-broker that only implements very basic functionality.
All other features can be added as plug-ins as needed. Especially, transport proto-
cols are added as plug-ins. By this technology it is easy to adapt the middleware to
new protocols and communication devices.

In this thesis a very similar approach is presented where a medium abstrac-
tion entity takes care of transparent communication. This abstraction object is also
easily extended to handle new communication media. The micro-broker is quite
analogous to micro kernels known from operating system technology.

Although the BASE middleware was implemented in Java it is very memory ef-
ficient due to the micro-broker approach that focusses only on the most important
middleware features. However, transport of remote invocations is realized through
the Java RMI interface. Therefore, it suffers from substantial performance overhead
for remote service invocations. However, local invocations can even be faster than
standard RMI calls because they use a proprietary proxy solution. It exploits local-
ity so that unlike RMI it does not need to pass through the RMI and TCP protocol
stacks. Again, this is similar to the approach in this work where proxy objects are
only used when communicating with remote services. Figure 2.4 illustrates the
basic principle of service invocation in BASE.

A Data-Flow Oriented Component Framework for Pervasive Dependability

Another interesting approach is the Self-* (pronounce self-star) architecture [FH03].
It is a data-flow oriented and component-based middleware framework that is
aimed at dependable pervasive computing systems. The architecture defines com-
ponents and pins where pins are directed ports that connect components. That is,
data flows through pins from one component to the other. The data-flow oriented
approach has the advantage of clean separation of components. This is especially
important because Self-* was designed to be a demonstration platform for illus-



2.5. Related Work 20

trating dependability mechanisms based on automated fault injection. Mainly in-
terface functions of components are tested for standardized hypotheses by online
fault injection.

For example, a hypothesis may state that a function crashes if its first argument
is negative. The automated fault injection subsystem tests the function and if the
hypothesis cannot be rejected by the test the middleware can provide countermea-
sures such as a wrapper for the function that ensures a non-negative first argument.
By this mechanism the authors want to increase overall system dependability. Of
course, this approach involves a lot of overhead in storing hypotheses, conducting
rejection tests by fault injection, storing all data of component communication to
derive hypotheses and so on.

Although this approach is very promising for devising future dependability
mechanisms it is not very suitable for use in real video surveillance applications.
The approach presented in this thesis also builds on a data-flow oriented view of
component communication. In contrast to explicit components for splitting and
queueing data streams in our approach the middleware objects take care of multi-
ple data receivers and buffered communication.

Concerning the dependability measures based on automatic fault injection we
have also taken a different approach to increasing fault tolerance. This is mostly
due to the fact that the runtime overhead of online tests and the storage needs for
all relevant data is not feasible for the embedded video surveillance application of
the SmartCam.

The Publisher-Subscriber Paradigm A popular inter process communication
model for embedded systems is the real-time publisher/subscriber model (RT-PS)
[RGS95]. It supports loose coupling of tasks by message-oriented communication.
As the registration of data sources and sinks can be done at runtime the RT-PS ap-
proach was chosen as the basis for the software framework presented in this thesis.

One promising commercial implementation of the RT-PS model for data cen-
tric communication, i.e., NDDS [PCSH99], is available from Real-Time Innovations
(RTI). Unfortunately, this implementation supports only special operating systems
and it is not available for the DSPs we use in our smart cameras. Furthermore, it
cannot be easily applied to different computing architectures. Therefore, it is not
well suited for the heterogeneous processor environment of the SmartCam. Nev-
ertheless, the basic principles of the NDDS approach by RTI are the same as in the
middleware part of the framework presented in this thesis.

MicroQoSCORBA (MQC) One of the key features of MQC [Dor03] is a set of
fault-tolerant mechanisms that allow for supporting applications which demand
for a higher level of reliability. It is a middleware platform that focusses on em-
bedded applications. A fine level of configurability allows developers to generate
a customized middleware. MQC is, therefore, a framework that for instantiating
a middleware customized to specialized hardware. It addresses advanced issues
like fault tolerance, security, energy consumption and system performance. Fault-
tolerance mechanisms incorporated into MQC include temporal redundancy (i.e.



2.5. Related Work 21

automatic retransmissions), spatial redundancy (e.g. multiple transmission paths),
value redundancy (e.g. checksums), as well as group communication and failure
detection.

Generic Object Platform Infrastructure An early middleware architecture spe-
cially tailored for multimedia applications was supposed by Coulson [Cou99]. It
is called Generic Object Platform Infrastructure (GOPI) and it strongly focusses on
scheduling and threading mechanisms supporting multimedia streams. Based on
conventional operating systems it does not rely on hard determinism as is the case
with the framework presented in this work. Being a multimedia middleware so-
lution one of its key tasks is to provide communication between multimedia ap-
plications on different network nodes. Unlike the approach presented herein GOPI
relies on standard CORBA ORBs and direct socket communication. Although GOPI
features QoS descriptions it does not provide dynamic reconfiguration capabilities.

Distributed SW Architecture for ubiquitous sensor systems Wolf et al.
[LWD+06] present a software framework for ubiquitous smart cameras. It is a joint
effort of the Princeton’s smart camera group and the Vanderbilt University’s Model-
Integrated Computing (MIC) group. Their focus is on the modeling and design of
real-time embedded camera systems.

Based on their gesture recognition system prototype they investigate a fully dis-
tributed communication pattern to support intelligent and ubiquitous applications
using several cameras. As the heart of the system a multi-layer software framework
provides a service-oriented platform for different algorithms.

Similar to the work presented in this thesis they have developed a middleware
layer that orchestrates the algorithms comprising the actual application. The goal is
to run at any time only services that are actually needed. Again this is very similar
to our approach were the algorithm composition and the algorithm’s QoS levels are
adjusted according to actual application needs.

They also use service registration and binding to dynamically adjust the com-
position of different services. Decisions concerning which service configuration
to choose are made using finite state machines that are application-specific. For
the design and the modeling of the software they take advantage of the model-
integrated computing paradigm. Domain-specific languages are used as a frame-
work for developing the software for their embedded cameras.

In this thesis also a model-based development approach is suggested. Unfor-
tunately, up to now they did not disclose enough details to do an in-depth com-
parison of their work with the ideas presented in this thesis. Currently, they are
mainly focussing on the wireless communication performance and different net-
work topologies for their camera networks.

Texas Instruments DaVinci Technology The DaVinci technology by Texas Instru-
ments (TI) [Mod06] is an innovative framework for multi-core embedded DSP so-
lutions. DaVinci is a combined hardware and software platform that builds upon a
dual-core System-on-Chip (SoC). An ARM core and a C64x core are integrated in a



2.5. Related Work 22

single chip. The intended applications are multimedia appliances that rely strongly
on complex signal processing algorithms. Extending previous architectures TI pro-
vides a complete software bundle to ease application development. On the one
hand there are the two operating systems, i.e., Linux for the ARM and DSP/BIOS
for the C64x, along with different support libraries. On the other hand there is an
abstraction to aid developers in using third-party components easily.

Similar to our approach presented in previous work [BDM+06] signal process-
ing algorithms are treated as components. The application developer can plug and
unplug them using standardized interfaces. But in contrast to our approach they
currently support only encoder and decoder algorithms. Based on their XDAIS
[Ins02] component standard they extended it to XDAIS-DM or XDM to also sup-
port algorithm descriptions that are needed for proper composition of multimedia
algorithms. Mainly this information is dedicated to different QoS settings as reso-
lution, frame rate and the like.

In contrast to that the algorithm description interface presented in this thesis is
more flexible and is not limited to encoder and decoder tasks. Another difference to
the presented approach is that the XDAIS-DM framework focusses on a single SoC.
Indeed it handles two different cores but it does not address distributed nodes and
communication among different algorithms residing in different address spaces as
does the framework presented in this work.

2.5.3 Component Models and Technology

As a key building block most middleware specifications define a component model
that specifies interactions of components within a system. Typical features of com-
ponent models are listed in Definition 4. There are is a number of different com-
ponent models presented in the literature. In the following only the most relevant
for this thesis are briefly described and compared to the approach proposed in this
work.

Large-scale server component models One of the most well known compo-
nent models is the CORBA Component Model (CCM) [Gro05a] that is specified
for the CORBA specification in its third version. Other well known commer-
cial component-based approaches include Sun Enterprise Java Beans (EJB) [DeM02]
and Microsoft .NET [Mic05a]. These are full-featured component systems that are
mostly used in the development of large-scale business applications. Typically, all
these large-scale component systems implement all features defining a component
model (see Definition 4).

Because of the rich feature set they are also very large software systems that
also impose substantial performance overhead. In embedded systems the focus
is on light-weight solutions and, therefore, these major component systems along
with their corresponding component models are not suitable in a typical embedded
setting. To overcome the problems of excessive memory and computing power re-
quirements Light Weight CCM (LwCCM) [ST03] was submitted to the Object Man-
agement Group (OMG) for specification.



2.5. Related Work 23

LwCCM aims at providing only core features. Advanced functionality of the
CCM is not included in LwCCM. Thus, it can be implemented for resource critical
embedded systems. Embedded CORBA-based applications can, therefore, be real-
ized using LwCCM. Persistence, transactions and security are not addressed in the
LwCCM specification. Nevertheless, compatibility with the full-flagged CCM spec-
ification is retained so that LwCCM components can also be deployed on CCM-
based systems.

The PECOS approach PECOS [WGC+02] is a collaborative project between in-
dustrial and research partners that seeks to enable component-based technology
for a certain class of embedded systems known as “field devices”. A component
model for field device software is devised and a special component composition
language called CoCo is introduced to ease software design. They also defined a
mapping of CoCo to Java and C++ which not only allows to specify interfaces but
also provides some help for specification of the actual behavior of components.
This code generation raises the level of abstraction in embedded software develop-
ment.

Unlike the approach suggested in this thesis the PECOS approach uses only
textual representations for code generation. It is the aim of the PECOS project to
support all necessary steps for embedded component development. Different tools
have been developed and integrated into the Eclipse development environment.
One goal is to transform this collection of experimental tools to a full suite of a
commercial development environment for embedded software development.

As PECOS focusses on small devices, especially in the control domain it does
not address dynamic reconfiguration of components. The central idea is to foster
software development and software reuse by employing component-based princi-
ples to the embedded world. An idea similar to the approach presented in this work
is to provide checking of component composition. However, in PECOS the checks
are performed only at design time, whereas we are employing runtime checks to
ensure proper dynamic component composition.

SaveCCM—A component model for safety-critical real-time systems SaveCCM
[HÅCT04] is a specialized component model aimed at safety-critical control appli-
cations in vehicular systems. It is only of limited flexibility but, on the other hand,
facilitates analysis of real-time and dependability issues in embedded control sys-
tems. As part of an overall effort to improve dependability in vehicular system
SaveCCM is also accompanied by a dedicated component framework to also im-
prove development processes.

Note that the term SaveCCM has nothing to do with the CORBA component
model (CCM). It is merely a composition of the project name SAVE, the framework
SaveComp and the general term component model and might be stated as SaveComp
Component Model. Based on a pipes and filters paradigm the execution model of
SaveCCM is rather restrictive. Components as the basic unit of encapsulation can
be in either state, executing or waiting to be triggered, respectively.



2.5. Related Work 24

The component model defines three other entities besides a component. First,
there are switches that are used to dynamically change component interconnections.
Second, assemblies are a means for forming aggregate components. As the third
part the runtime framework provides services like component communication, com-
ponent execution and control of sensors and actuators.

An interesting facet of SaveCCM is that a dedicated specification and composi-
tion language is used to represent a system in terms of the basic elements compo-
nents, assemblies and switches. A graphical notation based on UML is also devised
to have a symbolic representation of systems built with SaveCCM. As a demonstra-
tion example an adaptive cruise control application is used. It is shown that sacri-
ficing flexibility in favor of facilitating real-time analysis helps in building reliable
vehicular applications.

An Efficient Component Model for the Construction of Adaptive Middleware

In [CBCP01] the authors present OpenCOM which is a light-weight component
model based on the standardized COM component model [DeM95]. To be effi-
cient it only supports a subset of the overall COM specification. That is, only a
single address space is supported.

This is in contrast with the approach described in this work where the benefit
is that component interaction is supported beyond address space boundaries in a
transparent way. Furthermore, OpenCOM does not implement standard compo-
nent model features such as distribution, persistence, security, and transactions.
But the OpenCOM model is designed for dynamic reconfiguration of components
which is in contrast to most standard component models that do not very well sup-
port the deployment phase of components in a dynamic application environment.

The interesting thing with OpenCOM is that it is designed as a component
model for the design of middleware platforms itself. That is, it is not used to pro-
vide a structure for component interaction on top of a framework to form applica-
tions but to develop the framework. As a demonstration of its capabilities it was
used to design OpenORB v2 which is an adaptive middleware platform. Using
OpenCOM the authors where able to introduce reflection to the middleware layer
and, therefore, make the middleware itself adaptive.

At its heart the OpenORB builds also on GOPI [Cou99] which is a CORBA-
based multimedia middleware platform. However, OpenCOM and its derivative
technologies are designed for general purpose computing platforms rather than
embedded architectures.

AFT-CCM—Adaptive Fault-Tolerance on the CORBA Component Model AFT-
CCM [FSF03] is a component model based on CCM. It is aimed at applications
with fault-tolerance requirements. Like most CORBA-based technologies it is also
designed for large-scale distributed computing systems mostly applied in Web ap-
plications. The application programmer can specify QoS requirements for services
and the desired levels of dependability can also be defined.

To achieve a special dependability level different forms of component, i.e., ser-
vice, replication are employed. Several dedicated system components are respon-



2.5. Related Work 25

sible for the transparent replication of application components. Furthermore, key
system components are also replicated on different hosts in the system to guarantee
correct replication also in case of failures in the runtime environment supporting
the component model. Of course, it is also possible to integrate components into
the system that are not critical and, therefore, do not need to be replicated. Persis-
tence of component state information is achieved by constantly saving it to local
non-volatile storage. Hence, on failure of a component its state is restored to a
replica to continue normal operation after minimum downtime.

Given the significant overhead of the overall management framework and the
full redundancy of replication it is understandable that each host in such a system
has to provide substantial hardware resources. Therefore, AFT-CCM is not suitable
for cost-sensitive embedded applications.

A Novel Component Platform for Logistics Software Product Lines An interest-
ing approach for a component model in the area of logistics software is presented
by Teiniker [Tei05]. The author introduces this reference component model in a
formal notation based on graph theory. In extension to current server component
technologies, e.g., COM+, EJB, or CCM, this approach introduces nested compo-
nent composition and contract aware interfaces. That is, component interfaces are
not only described in their syntactical properties but also in formally specified se-
mantic behavior.

These semantic descriptions as defined in interface contracts consist of precon-
ditions, postconditions and invariants. It is interesting to note that this novel com-
ponent model decouples components from the communication middleware. There-
fore, the decision of which middleware technology to choose can be separated from
component development. This is in contrast to the approach presented in this thesis
where a special middleware layer is obligatory to deploy algorithm components.

But similar to our approach the reference model of Teiniker et al. also supports
local component communication [TMK+02] to boost performance. That is, com-
ponents are connected directly if they reside in the same address space. In other
component middleware it is usual that communication is always carried out using
the whole communication stack of the used middleware technology.

Teiniker et al. also emphasized the aspect of reusing legacy code in the proposed
reference model. Therefore, they provide a whole framework for generating com-
positional code and interfaces corresponding to the reference component model.
Based on the suggested reference component model the author also derived a new
hybrid development process especially suited for the intended application area of
logistics software. Figure 2.5 presents an overview of the resulting hybrid develop-
ment process.

Note that the system development step is also a model-based approach that
raises the level of abstraction so that the developer’s understanding of the system
and the degree of reuse can be increased. In this aspect it is similar to the ideas for
software development for embedded smart cameras presented in this thesis.



2.5. Related Work 26

Test Client

C C

S
ys

te
m

 D
ev

el
op

m
en

t

T
es

t−
D

riv
en

Developer
Testcase

MPSM

C
om

po
ne

nt
D

ev
el

op
m

en
t

Q
oS

−
D

riv
en

System 
Designer

S
ys

te
m

 D
ep

lo
ym

en
t

System 
Deployer

Node C

System 
Administrator

Developer
Component

Nested Component
Composition

Node A

Node B

M
od

el
−

D
riv

en

Figure 2.5: The hybrid development process according to [Tei05].



2.5. Related Work 27

2.5.4 High-Level Software Development for Embedded Systems

There are a number of approaches to high-level or model-based embedded soft-
ware development. For example platform-based development [SV02] suggests a
layered design with well defined interfaces between different layers. It does not
only cover software parts of a system but also the system hardware. As a very
basic concept platform-based development is mostly used in real-time systems in
critical applications. Principles of platform-based development are incorporated in
most development processes to simplify system understanding. Therefore, also the
approach presented in this thesis can be seen in terms of a system formed by differ-
ent platforms where lower levels provide services for higher levels. Especially, the
software framework of the SmartCam is an example for a platform-based design
(cf. Figure 3.2).

Other popular methodologies are model-driven architecture (MDA) [Gro05b]
and UML-based methods [SM04]. All of these approaches raise the level of ab-
straction and employ code synthesis which is also a key benefit of modeling in
Simulink as suggested in this thesis. Nevertheless, they are mostly focussing on
automatic synthesis of skeleton code for the connection of distributed objects and
components. It eases the development by relieving the programmer from tedious
network programming and the like. In the approach presented in this thesis the
focus is on algorithmic code. That is, besides skeleton code for component com-
position the application logic is generated from the model. In that way algorithm
design is decoupled from framework design.

In Wybo and Putti [WP99] the synthesis capabilities of Simulink are evaluated
for automotive powertrain control. Although most automotive applications have
to meet hard real-time deadlines their overall performance requirements are sig-
nificantly smaller than in video analysis. Similarly, an integrated modeling ap-
proach for audio signal processing using Simulink and Texas Instruments DSPs is
discussed by Hong et al. [HGC+00].

Whalen and Heimdahl [WH99] discuss requirements and problems of auto-
matic code generators for safety-critical systems. Major problems are model in-
tegrity, unambiguous syntax, and syntactic expressiveness. For automatic synthe-
sis it is important that a model’s expressions are unique so that code generation is
a unique mapping. To be useful in the overall development process models have
to be transformed to different levels of abstraction and to different domains rep-
resenting different development phases. An initial model that is created in the
requirements phase has to be passed to design people that are likely to transform
it to a more detailed model that they pass to the next phase, respectively. All trans-
formations have also to be such that there is a one-to-one mapping from the first
model up to the code generated from the final model. Another issue is that a model
has to be expressive enough to represent all entities and behaviors of the desired
application domain.

A special code generation environment for safety-critical systems is described
in Kim and Lee [KL03].



2.5. Related Work 28

The model-integrated computing initiative is also closely related to the model-
based development efforts undertaken in academia. It is described in more detail
in the section on autonomous systems (cf. Section 2.5.1).

2.5.5 Software Fault Tolerance in Distributed Embedded Systems

There is a lot of work around concerning fault tolerance in distributed systems.
Especially, middleware fault tolerance mechanisms for general purpose comput-
ing are well researched [SNT04]. But for highly resource constrained distributed
embedded systems there is less work available in the research community.

Since fault tolerance can be integrated into different layers, i.e., into the hard-
ware, the middleware or the application itself, a vast field of research is established.
Fault tolerance is inherent to the massive redundancy of sensor networks. Unfor-
tunately, we cannot afford hardware redundancy due to the tight cost constraints
in the embedded market. The ambition of our work is, however, to integrate fault
tolerance into the existing middleware and to increase service availability by bene-
fiting from graceful degradation.

In [SS03] the improvement of resource utilization in fault-tolerant multi-
resolution video servers is addressed. Similar to our work, for the achievement
of graceful degradation this approach proposes a QoS degradation method by ad-
dressing the multi-resolution property of video streams.

Fault-tolerant CORBA (FT-CORBA), a popular fault tolerance extension of
the Common Object Request Broker Architecture (CORBA), a standard for software
componentry, is the foundation of many projects (see, e.g., [NGYS00], [GHN03],
[SNT02]). Unlike in our work, the foundation of fault tolerance in FT-CORBA lies
in redundancy, achieved by replication of objects in combination with logging and
recovery.

The Aroma system presented in [NMMS00] enhances the Java Distributed Ob-
ject Model with support for object replication. Aroma is suitable for existing and
new Java RMI [PM01] applications as it can be deployed at runtime with only lit-
tle modification to the Java RMI infrastructure. Phoenix [KKL04] is a fault-tolerant
middleware layer for data intensive grid applications. Transient failures are han-
dled according to user specified policy, a concept that we also consider to embed.

Although CORBA and also Java RMI are middleware technologies suited for
distributed applications, they still target general purpose computing and are there-
fore too weighty for our objectives. Hence, we rely on the development of a self-
contained solution to meet the special demands of the already existing system.

A Framework for Dynamic Software Architecture-based Self-healing In
[QXcMw05] the authors present a reconfiguration scheme based on architectural
reflection. That is, a model of the software architecture is maintained to reflect the
current state of its structure. In case of monitored anomalies a dedicated architec-
ture manager analyzes the changes and chooses a repair strategy.

A verification step ensures that only architecture reconfigurations following the
system constraints are considered. After that a reconfiguration script is generated
and executed to take the reconfiguration in place. The interesting part is that only



2.5. Related Work 29

structural changes are taken into account. No change of behavior can be considered
in repair strategies. But this approach is able to do the reconfiguration at runtime.

Fault Adaptive Embedded Software for Large-Scale Real-Time Systems In
[MJO+05] the authors present a large-scale fault adaptive embedded software pro-
totype for the Fermilab BTeV high energy physics experiment. Given the vast
amount of data that has to be handled a multi-layer architecture is implemented
comprising about 2500 DSPs for data pre-filtering and about 2500 Linux worksta-
tions for further data analysis.

Resulting from the large number of hardware elements a centralized expert sys-
tem providing fault mitigation schemes for all possible system states is not feasi-
ble. Therefore, a distributed and multi-layered fault mitigation scheme is proposed.
Fault handling is done at three different layers.

First, on each DSP there is a self-protecting and self-optimizing very light-
weight agent monitoring the physics application on that DSP. Second, multiple
DSPs are collected in so-called Farmlets which also have a dedicated fault han-
dling authority. Third, several Farmlets are combined to Regions that themselves
can impose fault handling strategies on their wider scope. In general only very
rudimentary fault handling is provided. That is mainly due to the extreme data
rates that have to be handled. The most important strategies are:

• Resetting the physics application on a single DSP when it fails to meet a time-
out deadline.

• Setting a Farmlet-wide rate for dropping events without analysis on all DSPs
in that Farmlet to prevent queue overflow.

• A global rate for dropping events for all Farmlets.

• Authorization of a Region to declare a Farmlet as defect and redirect future
work to a hot spare Farmlet.

Real-Time Object-Oriented Adaptive Fault Tolerance Support (ROAFTS) Mid-

dleware In [Kim01] the author presents a discussion of the ROAFTS middleware
for real-time fault tolerance for object-oriented distributed computing systems. The
paper is not focussed on embedded systems but treats conventional distributed
systems like web servers. It merely concentrates on real-time requirements of fault-
tolerance actions itself. There are two claims the presented approach has to fulfill:

• Real-time computations have to be completed on time even when faults occur.

• Fault detection techniques have to yield a bounded detection latency and re-
covery techniques have to yield bounded recovery time.

In the approach presented in this thesis these two metrics are treated in a some-
what relaxed form. Given the soft real-time requirements and relatively low avail-
ability demands in video surveillance algorithms it is sufficient to concentrate on
best-effort techniques based on graceful degradation.



2.5. Related Work 30

ROAFTS builds on extensive system monitoring to detect resource failures and
transient overloads. Similar to our approach its aim is to maintain the minimum
required QoS of critical components as long as possible. Unlike the approach pre-
sented in this thesis ROAFTS relies on component replication following the dis-
tributed recovery block scheme (DRB).

To save the limited resources of a SmartCam we do not use replication but only
application-specific state redundancy.

A Framework for Scalable Analysis and Design of System-wide Graceful Degra-

dation in Distributed Embedded Systems Shelton et al. [SKN03] take an inter-
esting approach to defining graceful degradation of a system by introducing a so-
called utility metric.

The basic assumption of the principle of graceful degradation is that a system
can be defined as working with less than all functionality available. That is, there
have to be some less important functionality that can be shut down or reduced to
lower QoS in favor of more important behavior.

The utility is a measure for the benefit that is gained from a system. It may
be related to utility attributes such as functionality, performance or reliability and
safety. For each component of a system the designer has to assign a value for each
of the chosen utility attributes. All utility attributes of a component together form
the utility vector of this component. Overall system utility serves then as a metric
to compare all possible system configurations. A decision on which configuration
to take is deferred by comparing resulting system utilities.

Middleware for Embedded Adaptive Dependability (MEAD) The authors in
[BN03] assume that software faults cannot be entirely eliminated and suggest to
deal with them at runtime. Real-time systems for avionics and other mission-
critical applications typically face constraints that limit hardware redundancy.

Nevertheless, dependable software is a must in such systems. In their opinion
CORBA will be mostly used for next generation combat systems. However, they
state that the lack of fault-tolerant real-time CORBA solutions forces developers to
implement ad-hoc solutions in the application layer. MEAD is designed to transfer
these solutions to the middleware layer and relieve applications from repeatedly in-
cluded fault-tolerance code. Only policies governing the middleware mechanisms
are provided by the application developer.

At its heart MEAD relies on component replication that is done transparently
and using all available processors in the system. Based on a specified fault-
tolerance properties of a component it is replicated by the framework at runtime.
A monitoring entity generates fault reports that trigger a replication manager to
switch between the results of replicas and re-replicate affected components.

The monitoring mechanism detects crashed components and processes. Similar
to the approach presented in this thesis a hierarchical resource management con-
tinually collects current resource usage of each component. Resource overloading
can thus be avoided.



2.5. Related Work 31

An interesting feature of the approach is that they try to predict faults to apply
anticipatory and preventive recovery. Basically, they use statistical and heuristic
methods to compute the time span to future faults. Then they can reconfigure the
system within that time span to make it less vulnerable to that fault.

For example, if it is likely that a processor will fail within five minutes the de-
pendability framework can move the most important replicas from that processor
to another. This minimizes the influence of the fault that may occur, of course, only
to some level of confidence.

Fault-Tolerant Distributed Vision for Object Tracking In [KZSR01] a fault toler-
ant distributed vision system for smart room applications is described. It is based
on the assumption that the aggregation of information from multiple viewpoints
reduces uncertainty about a scene.

A consequence of this assumption is that there is redundancy in the sensory
information and, therefore, there is no single point of failure regarding the sensors.
This redundancy of aggregate information from multiple cameras is exploited to
increase detection quality. The authors focus on a person tracking application and
base their approach on distribution of time-stamped object features among cameras
to improve the tracking performance.

Note that they assume a global time base for all cameras achieved by the net-
work time protocol (NTP). Given a frame rate of 25 frames per second the authors
prove that the resolution of NTP is sufficient.

Basically, every sensor node extracts object features from the observed scene
and publishes it along with its time stamp to a resource manager. On a higher level
of the architecture user agents can then take feature sets from all available resource
managers to perform the actual vision application.

Resource managers are, therefore, entities to decouple the sensors from the user
agents so that every agent can take advantage of information from all sensors. They
demonstrated their approach in a smart room with four cameras of different view
angle. Computation is done on standard workstations. Inaccurate localization of
objects stemming from using only one camera could be corrected by using aggre-
gated data from all cameras.



Chapter 3

A Software Framework for
Autonomous Embedded Smart
Cameras

3.1 SmartCam Hardware Platform Overview

The basis for the work presented in this thesis is the SmartCam hardware platform
[Bra05, BDM+06]. It is a highly flexible platform comprising a sensing unit, a process-
ing unit, and a communication unit. A hardware architecture overview is depicted in
Figure 3.1.

In the sensing unit the images are acquired by a 30 frames per second (fps) VGA
CMOS sensor. The sensor is connected to one DSP via a FIFO memory to it’s exter-
nal memory interface to optimize image data throughput. Nevertheless, this direct
connection to a single DSP poses several difficulties concerning image data distri-
bution to different DSPs and, of course, fault tolerance considerations. Given the
sensor’s logarithmic characteristics it is able to eliminate substantial problems that
CCD sensors are inherently suffering from. However, this logarithmic characteris-
tic introduces substantial complexity of sensor control that have to be addressed by
the software framework.

Actual image and video analysis is taking place in the processing unit. This
central unit of the SmartCam is designed to comprise up to ten DSPs for maximum
computing performance. The number of DSPs can flexibly be adapted to the actual
analysis performance requirements. Due to the characteristic processing steps in
video analysis and the high computing power requirements high-end fixed-point
DSPs are employed.

The communication unit’s main part is the network processor that is at the same
time the responsible unit for camera management tasks. Furthermore, the network
processor also serves as the communication host for internal communication via
the local PCI bus, as well as for external IP-based communication over wired and
wireless connections.

In the software the inherent flexibility of the hardware design as well as the
internal bus and external IP communication have to be reflected to fully exploit the

32



3.1. SmartCam Hardware Platform Overview 33

Ethernet WLAN

Serial GPRS

Communication

Cam Control

µC

Interfaces

In
te

rf
a

c
e



Sensing

(Infrared -)
Flash

PTZ / Dome
Interface

PCI

RAM (EMIF-A)

Processing

.

.

.

RAM (EMIF-B)

CMOS-
Sensor

RAM (EMIF-A)

RAM (EMIF-B)

C6415

IR
IS



C6415

Figure 3.1: The SmartCam hardware architecture. It comprises a sensing unit, a
processing unit, and a communication unit. Up to ten DSPs provide the necessary
computing power for video analysis algorithms.



3.2. Software Framework Requirements 34

architecture. Furthermore, the potentially many processors in the system have to be
efficiently utilized. A trade-off between the number of running services, Quality-
of-Service (QoS) and power consumption, as well as redundancy for fault-tolerance
has to be found dynamically by the software framework.

3.2 Software Framework Requirements

Given the flexible hardware architecture described in Section 3.1 and the intended
application domain of video surveillance several requirements are imposed on the
software framework. The software framework has to meet them to fully exploit the
flexible hardware architecture in order to provide the basis for innovative surveil-
lance applications.

• Flexibility of algorithm configurations, i.e., how tasks are composed to build
the application.

• Scalability concerning the number and the different types of employed
surveillance tasks.

• Low resource consumption of the framework so that resources are spared for
surveillance tasks and image buffers, i.e., for the application.

• Low performance overhead to allow real-time operation of surveillance tasks.
At least frame rate requirements of all tasks have to be met.

• Provide means for detecting and mitigating faults in the system to reach some
degree of autonomy and, therefore, aid operators and minimize maintenance
effort.

• Provide appropriate interfaces and mechanisms that algorithms can be devel-
oped using a high-level model-based development process.

As the heart of the whole system the software framework is responsible to make
smart cameras capable of innovative and increasingly complex video surveillance
applications. By meeting the above requirements the presented architecture takes
the SmartCam another step towards intelligent video surveillance.

3.3 Software Framework Architecture

In the current software architecture the flexible allocation of algorithms onto differ-
ent cameras in a surveillance network is realized by a mobile agent system (MAS).
The MAS is hosted on the network processor and each video analysis algorithm
is represented by a software agent that is able to migrate in the whole network of
smart cameras. Actual image processing and video analysis, however, is performed
on the DSPs. Note that the presented framework approach is not restricted to using
a MAS. But the transparent agent migration and communication mechanisms make
it an interesting solution for our prototype implementation. Another argument for



3.3. Software Framework Architecture 35

User Mode (Application Layer)

Kernel Mode

SmartCam Framework Middleware Layer

Directory

Service
(DS)

Application

(e.g., RTP Video-
Streaming Server)

Resource
Monitor

(RM)

Linux Kernel

DSP-Framework

DSP/BIOS
real-time operating system

PCI
Messaging

DSP Algorithms

DSP-
Resource
Manager

(RM)

SmartCam-Framework DSP-Framework

DSP Kernel Module

PCI Messaging and Synchronization

Network-Processor DSP

PCI Bus

Processor
Boundary

Algorithm 1

(e.g., MPEG-4
Encoding)

Publisher-
Subscriber

Manager (PSM)

CMOS
Sensor

Interface

Medium

Abstraction
(MAO)

Software-Framework

Dynamic
Loader

Publisher-
Subscriber
Manager
(PSM)

Medium
Abstraction

(MAO)

Directory
Service

(DS)

Monitoring/
Diagnosis
and Fault

Handling Unit

Algorithm 2

(e.g., Stationary
Vehicle

Detection)

Algorithm n

(e.g., Vehicle
Tracking)

Algorithm
Migration /
Dynamic
Loading

(e.g., MAS)

Monitoring/
Diagnosis and
Fault Handling

Unit

Other
Standard

Linux
Applications

Figure 3.2: The overall software architecture of our smart camera. In the left part
of the figure the so-called SmartCam-Framework is illustrated while the right part
shows the so-called DSP-Framework.

a MAS is the platform-independence achieved by its Java implementation. The re-
sulting performance penalty may be of interest in further research but is of little
relevance to the work presented in this thesis.

To ease application development for this platform of heterogeneous processors
an abstract programming model is used. The network processor as the central unit
hosts the application logic. That is, the interconnections of agents representing
the algorithms form the actual surveillance application. All DSPs on the camera
are viewed only as computing power providers. Every algorithm executed on a
DSP is represented by a special entity on the network processor. In other words
every entity representing a video analysis algorithm carries a DSP binary that can
be downloaded to a DSP so that it can perform the video processing there.

The software architecture of our smart camera is designed for flexibility and
reconfigurability. It consists of several layers which can be grouped into (i) the
DSP-Framework (DSP-FW), running on the DSPs, and (ii) the SmartCam-Framework
(SC-FW), running on the network processor. This architecture is based on the ab-
straction that the application logic is running on the network processor and loads
and unloads the actual analysis algorithms onto the DSPs as needed. An overview
of the software architecture of our smart camera is depicted in Figure 3.2.

SmartCam Framework The SC-FW that is illustrated in the left part of Figure 3.2
serves two main purposes. First, it provides an abstraction of the DSPs to ensure
platform independence of the application layer. Second, the application layer uses
the provided communication methods, i.e., internal messaging to the DSPs and



3.4. The Publisher-Subscriber Middleware 36

external IP-based communication, to exchange information or offer data relay ser-
vices for the DSP-FW. Modules of this part of the software architecture support ap-
plication development in that they provide high-level interfaces to DSP algorithms
and functions of the DSP-FW. Especially, the MAS system makes extensive use of
these services to access the DSPs. To further ease application development the XS-
cale processor is operated by LINUX. Thus, the SmartCam-Framework is running
on top of a standard LINUX kernel.

DSP Framework This part of the software architecture, as indicated in the right
part of Figure 3.2, runs on every DSP in the system. The main purposes of the DSP-
Framework are (i) the abstraction of the hardware and communication channels,
(ii) the support for dynamic loading and unloading of application tasks, and (iii)
the management of on-chip and off-chip resources of the DSP. Of course, the sen-
sor interface module is only needed on the DSP to which the image sensor is con-
nected. The key functionality in the DSP-Framework is the publisher-subscriber
middleware that is described in Section 3.4. These service management facilities
are needed to allow algorithms on different DSPs to establish connections to each
other dynamically. The DSP-Framework is built upon the DSP/BIOS operating
system from Texas Instruments.

Dynamic Loading All video analysis algorithms and also some framework com-
ponents can be loaded and unloaded at runtime by the Dynamic Loader module. Ac-
tually, only modules of the DSP-FW in dark shade in Figure 3.2 have to be available
at startup. All other components can be dynamically loaded at runtime. Therefore,
the framework and the application can easily be extended or adapted to dynamic
changes in the system’s environment if desired.

The dynamic loading facilities are also the basis for more sophisticated services
like load distribution [Bra05], dynamic power management [Mai06], and graceful
degradation to cope with faults.

3.4 The Publisher-Subscriber Middleware

The publisher-subscriber architecture is an integral part of the DSP-FW and the SC-
FW. It aims at providing seamless and flexible connections between the algorithms
running on the DSPs. Furthermore, it has to provide the basic means for supporting
application reconfigurations aimed at reducing power consumption or realizing
graceful degradation in case of failures.

From the framework’s point of view every video analysis algorithm is a sepa-
rate entity that is executed in its own thread. Interconnections of the algorithms are
defined by the application. In previous work we used statically defined relations
among different data services, i.e., algorithms, to simplify inter-task communica-
tion. This resulted in a very efficient message exchange over the PCI bus. How-
ever, the static bindings of data producers and consumers substantially restricted
flexibility in dynamically combining algorithms. Furthermore, algorithms had to
directly invoke PCI communication primitives which reduces portability.



3.4. The Publisher-Subscriber Middleware 37

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration Registration

Look-up /
Add Item

Data

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Figure 3.3: Fundamental relations between objects of the publisher-subscriber ar-
chitecture. Only local connections within a single DSP are sketched.

To overcome these limitations a publisher-subscriber middleware layer (PS-
MW) has been introduced. It provides the algorithms on the DSPs with basic
message-oriented communication facilities that are transparent concerning the un-
derlying transport medium. Additionally, a directory service was added to enable
dynamic service discovery. It is important to mention that the major goal of our
efforts was to provide these services with minimum overhead to save resources
on the DSPs. Additional information on several details of the publisher-subscriber
architecture described in the following can be found in [Tre06].

3.4.1 Architecture Description

As previously described applications for the SmartCam are organized as different
algorithms. These algorithms are interconnected depending on the data flow re-
quired by the surveillance application. Each algorithm is running in its own task.
For communication between algorithms an operating system mechanism called
mailbox is employed. Mailboxes provide buffered communication and also allow
for synchronization as tasks can be blocked when they are waiting for data deliv-
ered by the mailbox.

In video applications a large amount of data has to be handled. To use the
limited memory of the DSPs efficiently image data is not copied when sent be-
tween algorithms on the same DSP. Only references to actual data are exchanged.
Small messages like system commands or monitored performance information are
directly posted to mailboxes.

Figure 3.3 depicts the situation for two algorithms residing on the same DSP.
The first algorithm provides a data service X that the second uses for further pro-
cessing.

The core of our publisher-subscriber architecture is realized as an efficient
object-oriented implementation. In the following the different objects of the PS-
MW are briefly described.



3.4. The Publisher-Subscriber Middleware 38

Publisher-Subscriber Manager Object The publisher-subscriber manager (PSM) is
the authority where algorithms can register as data providers or data consumers.
That is, they register a publication or a subscription, respectively. There is one PSM
running on each DSP and on the XScale. Registration is available through a sim-
ple interface. When an algorithm wants to register a service it first instantiates a
publisher or subscriber object depending on whether a publication or subscription
is needed. This object then registers itself with the PSM. In this process it is also
assigned a unique number so that other algorithms can reference the service. The
newly registered service is also added to the directory service where it can then
be looked up based on its unique identification number or its properties. As algo-
rithms can reside on different DSPs within a SmartCam it is also necessary that each
PSM can discover services that have registered with a different PSM. Therefore, the
network processor also hosts a PSM that relays service requests between PSMs on
different DSPs.

Properties Object Properties objects (PrO) are used to describe published data and
subscriptions as well. Each publisher and subscriber object owns a PrO that iden-
tifies the details of provided and subscribed data services, respectively. Therefore,
a PrO represents the Quality-of-Service (QoS) configuration of a data service. Al-
gorithms derive their own PrO from an abstract class and add additional features
as needed. Examples for basic properties include image resolution and frame rate.
The MPEG-4 algorithm extends these by adding quantization level, bit rate and
other algorithm-specific properties. In the service discovery process the PrOs are
used to match subscribers to appropriate publishers by comparing their properties.
By using a description in terms of properties it is possible to let an application ob-
ject (algorithm) decide whether an available service meets its requirements or not.
If there are several similar services available algorithms make their decision based
on the information offered through PrOs. It is the responsibility of every algorithm
to provide the necessary information for offered (data) services when the service is
registered with the PSM. Typically, this is done during the initialization phase of an
algorithm.

Publisher Object Every task that provides data services instantiates one publisher
object (PO) for each message type it wants to publish to other tasks. On instanti-
ation the PO then handles the registration with the PSM. Every publisher keeps a
PrO that contains a description of the provided service. When data is ready for
transmission from the algorithm the PO posts a reference to this data as a message
to the mailboxes of all subscribers registered for this service. If there are subscribers
residing on different DSPs an intermediate subscriber is used. This procedure is de-
scribed in more detail in Section 3.4.2.

Subscriber Object A task that requires a data service of another algorithm in-
stantiates a subscriber object (SO). The SO in turn registers with the PSM. In order
to receive data a mailbox is created using operating system services. A mailbox is
a buffered communication mechanism that blocks writing and reading tasks if the



3.4. The Publisher-Subscriber Middleware 39

buffer is full or no data is available, respectively. To define the required data quality
each SO owns a PrO. In the registration process the PSM looks up the appropriate
service using the directory service DS (cf. Section 3.4.3). If a fitting service, i.e., a
PO with a matching PrO, is discovered then the discovered publisher stores a ref-
erence to the mailbox of the requesting SO. Messages are then transferred through
this mailbox.

3.4.2 Medium Abstraction and Remote Subscription

In case of algorithms residing on different DSPs, i.e., a so-called remote subscription,
an extension to the plain architecture described above is needed. A special object
for abstracting from the communication medium is used to establish the connec-
tion. This medium abstraction object (MAO) is part of the middleware layer and is
present on every processor of the platform. That is, a MAO is available on each
DSP and the network processor (XScale). In general it is possible to use it for dif-
ferent communication media. But currently it is only used for providing abstract
communication over the local PCI bus of the SmartCam. Figure 3.4 illustrates the
case of two algorithms residing on two different DSPs in more detail.

A remote subscription scenario is very similar to the single DSP case. It can
be seen from Figure 3.4 that the situation on the involved DSPs is the same as it
is in the single DSP case (cf. Figure 3.3). But now the MAO takes the role of the
local SO and PO on the involved DSPs, respectively. That is, on the DSP with the
data source (task A on DSP 1) the MAO instantiates a proxy SO and on the DSP
with the data sink (task B on DSP 2) a proxy PO is created. These proxy objects
behave like normal publishers and subscribers, respectively. They exchange data
by means of posting messages to the SO mailboxes. As previously described, in
case of large data, i.e., video frames, only references to local buffers are transferred.
In contrast to that the MAO objects transfer the actual data through the medium
they are bound to. That is the local PCI bus in this case.

As the PCI bus has limited transfer capacity it is necessary to limit the number of
remote subscriptions so that real-time operation is possible. This is realized by the
use of a dedicated resource manager (RM) that keeps record of available resources.

3.4.3 Directory Service and Service Discovery

For a convenient service discovery the DSP middleware, i.e., the DSP-FW, provides
a directory service (DS) where all published services are listed together with their
properties. Currently, the search algorithm of the DS uses only a simple descrip-
tion to find appropriate publishers for registering subscribers. That is, only a mes-
sage type and important QoS parameters are used to choose the best matching data
service. To support applications that need more control over the selection of pub-
lishers and subscribers, respectively, it is also possible that a list of similar services
is returned. It is then the application’s responsibility to choose one.

The DS is organized as a collection of simple lists because of the relatively small
number of entries. Each entry has an identification number that is a system-wide



3.4. The Publisher-Subscriber Middleware 40

Algorithm 1
(provides service X)

Publisher
Object
(PO)

Service X

Subscriber
Object 
(SO)

Service X

Properties
Object
(PrO)

Service X

Properties
Object
(PrO)

Service X

Algorithm 2
(requires service X)

Mailbox

Directory
Service

(DS)

Publisher-
Subscriber
Manager
(PSM)

Registration

Data

Creates Creates

Data

Task A Task B

Data Source Data Sink

Publisher-
Subscriber
Manager
(PSM)

Directory
Service

(DS)

Medium 
Abstraction 

Object
(MAO)

Publisher
Object
(PO)

Service X

Properties
Object
(PrO)

Service X

Subscriber
Object
(SO)

Service X

Properties
Object
(PrO)

Service X

Mailbox

Medium 
Abstraction 

Object
(MAO)

Publisher-
Subscriber
Manager
(PSM)

on the network 
processor

D
at

a

D
at

a

Look-up /
Add Item

Look-up /
Add Item

Registration

In
iti

at
e 

cr
ea

tio
n 

of
 in

te
rm

ed
ia

te
 S

ub
sc

rib
er

 O
bj

ec
t

In
iti

at
e 

cr
ea

tio
n 

of
 in

te
rm

ed
ia

te
 P

ub
lis

he
r 

O
bj

ec
t

Creates
Creates

R
egistration

Get remote
registration 
information

Get remote
registration 
information

R
eg

is
tr

at
io

n

DSP 1 DSP 2

Network Processor

Processor boundaries

Figure 3.4: Extended publisher-subscriber architecture to connect algorithms run-
ning on different DSPs. These remote connections beyond DSP boundaries are es-
tablished via intermediate publishers and subscribers. The special medium ab-
straction object (MAO) is used to abstract from PCI communication.



3.5. Dynamic Component Composition 41

unique key identifying publishers and subscribers. These keys are created on in-
stantiation of a publisher or subscriber.

If there is no matching PO or SO for a registering SO or PO, respectively, then a
remote service discovery process is initiated by the local PSM. In a remote lookup
the local PSM queries the PSM residing on the XScale that in turn keeps records of
PSMs of all other DSPs. The PSMs use their associated directory services to look up
the requested service. Therefore, all available services in the system are taken into
account in this search.

In the future it will be possible to extend the DS to build on more abstract service
descriptions to even better support QoS management. That is, to allow algorithms
to choose an appropriate service by providing a textual description most likely pro-
vided in XML format. However, to use XML information a parser is needed. As we
do not want to load the DSPs unnecessarily it can be imagined that the parsing is
done on the network processor and the data is then passed back to the correspond-
ing DSP. Since the network processor is operated by LINUX standard XML parsers
could be used which significantly reduces development effort.

3.5 Dynamic Component Composition

3.5.1 Dynamic Loading and Reconfiguration

As described earlier a central aspect of our smart cameras is the dynamic loading
and unloading of video analysis algorithms at runtime. The Dynamic Loader module
from Texas Instruments is able to dynamically link and load DSP binaries and has
been integrated into the DSP-FW.

Furthermore, each algorithm has to support different QoS levels that can be
changed at runtime. A required change in the QoS configuration is signaled by
the DSP-FW using a special command message type. Commands are not time-
critical and are, therefore, not treated as important as normal data services with
tight timing requirements.

In general there are two different types of trigger sources for reconfiguration
actions. One source of triggers for these reconfigurations are alarms generated by
the analysis algorithms. Another possibility for triggering a reconfiguration are
events raised by internal system-level services like the load distribution service
[BRS05], the power management facility [MRS05], or a failure management service.

3.5.2 DSP Algorithm Component Model

To support the dynamic reconfiguration of algorithms, i.e, their composition and
change of attributes, in our surveillance applications it is necessary for each algo-
rithm to comply with a special component model—the DSP Algorithm Component
Model (DACM)—as indicated by Figure 3.5. The DACM is based on the XDAIS al-
gorithm component model from Texas Instruments [Ins02]. It extends the XDAIS
model to support dynamic loading and the publisher-subscriber communication
scheme, as well as by adding crucial entries in the algorithm’s resource descrip-
tions to address all critical system resources. In the XDAIS model the focus is on



3.5. Dynamic Component Composition 42

Resource 
management 

interface

Alive-
messaging 
interface

Algorithm
control

interface

DSP binary

Resource 
requirements / 

performance ratings

. .
 . 

.

Data
outputs

. . . .

Data
inputs

DSP Algorithm 
component

Entry
for dynamic 

loading
Reconfigurable 

algorithm attributes

Figure 3.5: Principle structure of a DACM component.

design time integration and, therefore, resource ratings are only provided in the
component documentation.

In the DACM all components have to provide all their resource information
at runtime to allow for dynamic component composition. It further defines the
necessary interfaces and algorithm descriptions that are required by the framework
to load an algorithm, i.e., a component, at runtime. Only algorithms following the
DACM can be dynamically composed at runtime.

The DACM is the basis for a safe composition of video analysis algorithms at
runtime. As mentioned earlier each algorithm in our system is a component fol-
lowing the DACM. That is, each algorithm provides well defined interfaces and
descriptions of its resource requirements and average performance ratings for each
of its QoS levels. Algorithm characteristics that have to be exhibited by each algo-
rithm component are collected in Table 3.1.

In the framework the resource manager module keeps track of already allocated
resources and available resources. Based on this information and the algorithm
characteristics the framework can decide whether a component can be (dynami-
cally) integrated into the system. Note that the enhanced direct memory access con-
troller (EDMA) of the DSPs is a critical resource as image analysis is very memory
intensive and data is mostly copied by EDMA to keep CPU load as low as possible.

3.5.3 Ressource Monitoring and Component Composition

The PS-MW has to ensure proper component composition when new algorithms
are loaded at runtime. As a basis the framework uses the component resource
descriptions provided by each algorithm following the DACM to determine the
component’s resource requirements. Now to decide upon the feasibility of a com-
position the available resources in the system have to be calculated and compared



3.5. Dynamic Component Composition 43

Required Services from other components
QoS levels
Resource requirements

EDMA channels and their priorities
EDMA tables
EDMA interrupts

Performance Ratings
CPU utilization for each QoS level
Transfer frequency of each EDMA channel
Transfer length of each EDMA channel

Table 3.1: Example algorithm information as provided by the DACM.

to the resource requirements. The resource monitoring module in the framework
constantly computes resource loading.

Resource Monitoring

Countable resource metrics like the number of used EDMA channels, EDMA tables,
and EDMA transfer complete interrupts are quite easy to determine for each algo-
rithm. In the software framework this is achieved by a EDMA manager that is the
only authority to request EDMA related resources. Therefore, it is also easy to check
whether a component’s resource requirements can be met by a simple comparison
of available and demanded resources. Only if enough resources are available the
component is loaded and started. The actual composition is then simply realized
by the PS-MW. All required data services are looked up and connected adequately
as described in Section 3.4.

On the other hand, it is quite hard to provide exact characteristics of more com-
plicated resource metrics like CPU utilization, PCI bus utilization, and EDMA con-
troller utilization—they are also subject to constant fluctuations which makes accu-
rate a priori characterization impossible. However, these metrics are typically criti-
cal in terms of real-time operation of the system. As they are dynamically changing
it is necessary for the framework to observe them constantly. If limits are going to
be violated the framework initiates a graceful degradation in QoS of less important
algorithms. That is, the QoS levels of low priority algorithms are reduced. Prioriti-
zation of algorithms is defined by the application.

An implicit assumption for this procedure is that a lower QoS level results in
reduced resource utilization. In case that QoS reduction does not yield enough
resources for the most important algorithms to run then the least important al-
gorithms are removed from the system until the remaining more important algo-
rithms can be run. This procedure ensures that as many algorithms as possible re-
main functional. However, if high priority tasks have to be degraded in their QoS
too much or they have to be removed the application’s requirements cannot be met
any more and a system failure notice is generated. Application requirements are



3.5. Dynamic Component Composition 44

provided to the framework by the means of a degradation policy and the above
mentioned prioritization.

Information about PCI bus utilization is not part of an algorithm description.
As algorithms are composed at runtime it cannot be determined a priori by the
algorithm designer whether local mailbox communication or remote PCI commu-
nication will be used at algorithm deployment. However, for system stability it is
important not to overload the PCI bus. Therefore, PCI utilization is monitored by
the resource manager on the network processor. To do so it collects measurements
of the traffic through the MAOs of all DSPs and the network processor. This is
possible because the MAO is the unit on each processor where all traffic to other
processors is routed through. Therefore, overall PCI bus load in a single SmartCam
i, i.e., LoadPCI,i, can be computed as

LoadPCI,i = LoadPCI,XScale +

N∑

n=1

LoadPCI,DSPn, (3.1)

where N is the number of DSPs and LoadPCI,XScale and LoadPCI,DSPn denote the
load in bytes per second measured at the MAO of the XScale and DSP n, respec-
tively.

Utilization of the EDMA resources on the DSPs is a critical metric for overall
system performance because image data is mostly transferred by EDMA. If the
EDMA subsystem is overloaded the timely operation of all algorithms is at risk.
To improve the reliability of the system especially with respect to timeliness it is
necessary to avoid resource overloading. EDMA controller load generated from an
algorithm is estimated from the algorithm’s characteristics provided by the DACM.
It can be noted as LoadEDMA =

∑
LoadEDMA,l, where l = 1, . . . , L are the L hard-

ware priority queues of the EDMA controller and

LoadEDMA,l =

K∑

c=1

length(c, l) freq(c, l) (3.2)

denotes the transfer bandwidth of priority queue l taking into account all of the
K channels c. The function length(c, l) yields the number of bytes transferred on
channel c iff channel c is assigned priority l. It returns zero for all other values of
l. Similarly, freq(c, l) yields the number of transfers issued per second on channel c

iff c is assigned priority l.
The third critical system resource is memory. As the PS-MW provides a dy-

namic environment it is key to estimate dynamic memory usage of algorithms
and to monitor dynamic memory availability. Fortunately, it is relatively straight-
forward to profile memory consumption of algorithms at design time. Therefore,
algorithm resource descriptions can be made quite accurate. Monitoring of free dy-
namic memory resources is done by querying operating system memory manage-
ment facilities. It is, therefore, easy to decide whether an algorithm component’s
memory requirements can be met.

However, due to the high dynamic execution environment on a SmartCam
memory fragmentation can be a problem. Without garbage collection or other so-
phisticated memory management policies the only way to resolve this problem is



3.5. Dynamic Component Composition 45

to monitor the fragmentation. If a critical level of fragmentation is reached it is nec-
essary to remove all algorithms and reload them again. Fortunately, a high level
of fragmentation is very unlikely. The coarse-grained partitioning into whole algo-
rithms as components that are dynamically loaded and unloaded make sure that
mostly large memory blocks are allocated and freed.

Component Composition

Given the resource requirements information in the algorithm description of the
DACM and the continuous monitoring of actual resource occupancy as described
in Section 3.5.3 the basic step of the composition process is a comparison of required
to available resources.

If feasibility with respect to resource requirements of the algorithm is confirmed
the algorithm is loaded by the dynamic loader facility. On load of the algorithm it
registers with the PSM. That is, it queries for services it requires and publishes
services it provides. In this respect our approach is somewhat different to other
component-based middleware because the algorithm is loaded even if required
services are currently not available in the system. However, then the algorithm
is put to sleep because it cannot do its work. But if at a later time another com-
ponent is inserted that provides the missing service then the sleeping algorithm is
brought back to work by the PSM. With this simple mechanism we can load algo-
rithms without bothering about the sequence of algorithms defined by data-flow
dependencies.

Another relaxation in our component composition approach compared to stan-
dard middleware technology is that there is some degree of freedom concerning
service querying. In general it is necessary that service interfaces, i.e., output of
one component and input of another component, completely match in order to be
connected. This is in principle also true for this approach but with the introduction
of different QoS levels it is also possible for a component to accept services that do
not match up to a certain extent. Of course, it is required that key attributes have
to match. But it is up to the algorithm to decide which ones it is able to accept even
if diverting.

In that respect it is possible that there are several services available in the system
that potentially match a new components requirements. Then this component has
to choose one of these. Generally, the one with the highest QoS level would be the
best choice. But especially in abnormal situations like failure conditions and the like
the situation might be different. Then it could be the case that using a lower quality
service can allow the algorithm to at least provide rudimentary functionality. This
is a basic feature that is exploited when graceful degradation is used to cope with
faults that lead to resource failures.

3.5.4 Component Performance Monitoring

It is important for several reasons to continually monitor all components in the sys-
tem for their performance. First, it allows the framework to reason about likely
deadline misses that compromise real-time operation. Second, performance mea-



3.5. Dynamic Component Composition 46

Time

H
ea

p 
m

em
or

y

algorithm's
maximum rating

threshold value

normal
operation

suspicious
operation

faulty
operation

Figure 3.6: Simple example for heap allocation problems. The algorithm allocates
more dynamic memory than it specified to the framework.

surements can be used to reason about the fitness of components which is impor-
tant for fault-tolerance mechanisms.

Dynamic Memory Usage

Especially, memory consumption of a component observed over time can exhibit
buffer management problems in algorithms or other memory leaks. Of course,
only dynamic memory allocation in heap memory is observed. Operating system
primitives are used to determine current memory usage for each task in the system.
This is sufficient since every algorithm runs in its own execution task.

Figure 3.6 illustrates a simple example where an algorithm uses up more heap
than it specified to the framework. The maximum rating it provided at registration
time is marked as well as a threshold value that can be set to deal with measure-
ment errors. If the threshold value is surpassed a problem with the algorithm’s
memory management is very likely. This simple mechanism is one possibility for
the framework to monitor algorithms for correct behavior. Note that the threshold
value is arbitrarily set by the system integrator based on experience and experi-
mental examination.

Execution Time

Execution times are constantly measured by hooks in the PS-MW at the inputs and
the outputs of all algorithms (cf. Figure 3.7. That is, a system counter is captured
each time a hook function is called in a Subscriber or a Publisher, respectively. By
this mechanism current computation time in CPU cycles is determined as the dif-
ference TAi,exec = |TAi,out − TAi,in|, where TAi,in represents the counter value at
the time when all inputs of algorithm Ai were ready. TAi,out stands for the counter
value when all outputs of algorithm Ai were ready. Algorithms are typically such
that they perform a loop in that they take some input data, transform it somehow,



3.5. Dynamic Component Composition 47

Algorithm
Ai

Subscriber Publisher
Data IN

TAi,in = getCounter() TAi,out = getCounter()

Data OUT

Figure 3.7: Basic mechanism to get an estimate for algorithm execution times.

and produce some output data. Therefore, measuring the CPU cycles from the mo-
ment an algorithm receives data to the moment it post the output is a good estimate
for its execution time.

As a side product the input frame rate of an algorithm can be checked by ob-
serving two subsequent input counter values TAi,in[n] and TAi,in[n+1]. An estimate
Efframe

[n + 1] for the current input frame rate of algorithm Ai at sample time n + 1
is then given by

Efframe
[n + 1] =

fCPU

|TAi,in[n] − TAi,in[n + 1]|
(3.3)

where fCPU denotes the clock frequency of the CPU. By continually observing these
frame rate estimates problems can be detected early so that interventions are likely
to prevent failures.

Communication Delay

Another performance rating that can be observed by the framework is communica-
tion delay. That is, the delay from a publisher to its associated subscribers is evalu-
ated. As the execution time the communication delay is also an estimate based on
capturing a counter at well defined interaction points in the publisher-subscriber
subsystem.

In Figure 3.8 the principle is illustrated for two algorithms Ai and Ai+1, re-
spectively. Note that the same measurement points are involved as used for the
execution time estimation. But in this case the probe points of different algorithms
are used.

The estimate EAi→Ai+1
[n] for the communication delay at sample time n can be

written as

EAi→Ai+1
[n] =

|TAi,out[n] − TAi+1,in[n]|

fCPU
(3.4)

with fCPU being the CPU clock frequency.
A trend of communication delay estimates over a certain time can reveal tim-

ing problems. Possible causes could be high loads on the CPU or the PCI bus.
Single absolute values of communication delay can be used to uncover real-time
problems. For example, the sum of all execution times and communication delays



3.6. Fault Handling in a Network of Smart Cameras 48

Algorithm
Ai

Publisher

TAi,out = getCounter() TAi+1,in  = getCounter()

Subscriber
Algorithm

Ai+1

Figure 3.8: Basic mechanism to get an estimate for communication delay from al-
gorithm Ai to algorithm Ai+1.

in a processing chain determine the maximum possible frame rate at the system
perspective.

3.6 Fault Handling in a Network of Smart Cameras

To take a step towards autonomous operation of smart cameras middleware-based
fault tolerance mechanisms have been introduced into the software framework.
The main management parts of this fault tolerance architecture (FTA) are hosted on
the network processor within the SC-FW, whereas mainly low-level monitoring is
included in the DSP-FW of each DSP.

The principle idea of the FTA is to introduce some degree of fault-tolerance
without imposing additional hardware costs. That is, even sophisticated software
replication techniques are not considered as they also require additional hardware.
Tight cost requirements in the embedded video surveillance market demand for
trading system dependability for unit price.

But nevertheless it is possible to exploit domain-specific knowledge and the
cooperation feature of smart cameras to provide some fault-tolerance. That is, sim-
ple metrics are used to detect and localize faults and then graceful degradation is
employed to mitigate fault effects to prevent system failures.

This is especially interesting as there is an increasing trend towards integrating
third-party algorithms. Generally, these external algorithms have to be considered
less trustworthy than algorithms developed in-house. Unfortunately, also in-house
software is unlikely to be completely correct. Therefore, it makes sense to use fault-
tolerance mechanisms to increase system dependability in spite of potentially un-
reliable (software) components.

In case of hardware failures the dynamic reconfiguration features of the
SmartCam described earlier in this chapter are now used to provide the above men-
tioned fault-tolerance mechanisms. First, it is possible to migrate algorithms to
different cameras. This is, of course, only feasible if the application is such that
affected algorithms are not bound to dedicated cameras. By migrating algorithms
resources are freed locally so that failed hardware could be tolerated. Second, algo-
rithm’s QoS levels can be reduced so that less resources are occupied. This graceful
degradation is only feasible to a certain extent as the application might require



3.6. Fault Handling in a Network of Smart Cameras 49

minimum QoS for dedicated algorithms. But with these actions the chances are
better that most services can be provided at least at some degraded level instead of
resulting in a system failure.

In order to improve efficiency fault-tolerance is provided by the software frame-
work rather than by each application, i.e., algorithm. Such a middleware-based ap-
proach reduces code size because fault-tolerance code has to be included only once
in the whole system. Furthermore, there are two levels of fault-tolerance mecha-
nisms to be considered. First, at the node level the view is restricted to a single
smart camera. This is the level of self-diagnosis where different means for detect-
ing faults within the multi-processor architecture of a SmartCam are employed.
Second, the system level or network level involves mutual monitoring of neighbor-
ing cameras, i.e., nodes. On this level communication problems and inconsistencies
in scene observations can be detected.

In the following the fault classes and fault handling procedures provided by the
middleware framework are introduced. It is outside of the scope of this thesis to
take into account every possible fault scenario. Rather it is the aim of this work to
increase service availability by simple techniques that impose minimal overhead in
the system.

3.6.1 Considered fault classes

As far as this work is concerned only a subset of all possible faults within a single
SmartCam or in a network of collaborating SmartCams is considered.

Algorithm faults The main focus of the FTA is to provide some higher level fault
detection for algorithms based on application-specific knowledge. That is,
analysis results of different algorithms are often related to each other. For
example, in case of a traffic jam two stationary vehicle detection algorithms
on two adjacent cameras have to come to the same decision—at least after
some limited time interval. If one algorithm detects the traffic jam and the
other fails to do so it can be deduced that one of them exhibits incorrect be-
havior. There are other cases where inconsistent observations of two or more
algorithms suggest a failure of one of them.

It is assumed that all smart cameras are geographically collocated and that
all nodes know their neighbors, i.e., the network topology. These assump-
tions result from the main application area of traffic video surveillance along
highways or in tunnels. There the collocation is very regular and linear with
relatively constant overlapping of observed scenes.

Furthermore, in future work it should be considered to make algorithms more
robust by incorporating self-checks. These could be plausibility tests of input
data and its own analysis results. In the framework there is a simple interface
that allows an algorithm to rate its input or outputs as credible or not. The
FTA then decides how to use this information for further diagnosis.

Communication faults It is essential for a network of cooperating smart cameras
to have mutual communication paths readily available to exchange informa-



3.6. Fault Handling in a Network of Smart Cameras 50

tion about the observed scene. Furthermore, a smart camera can only pro-
vide its functionality if it is able to communicate its analysis results and video
streams to interested entities in the system. The middleware framework em-
ploys a simple messaging protocol between neighboring nodes to check mu-
tual reachability. These so called alive- or heartbeat-messages are exchanged
regularly. Missing messages over a preset time span results in the correspond-
ing node to be considered as down.

To save bandwidth these alive messages are sent in intervals of a few sec-
onds. If there is other interaction between two neighboring nodes then no
additional alive messages are sent. By this overall messaging overhead can
be reduced to a minimum.

Hardware faults As the main focus of the FTA is handling software problems it
makes sense, however, also to treat several hardware problems. This class is
considered mainly because it is relatively easy to handle them in the given
framework for dynamic reconfiguration and coping with algorithm prob-
lems. In detail the following hardware faults are considered for fault han-
dling: DSP outages and outage of a whole SmartCam.

3.6.2 Fault handling procedures

To cope with the above-mentioned fault-classes different counter measures are
used by the FTA.

Algorithm reload If an algorithm shows unexpected behavior it has to be
restarted. That is, the algorithm is reloaded on the DSP. This procedure takes
only a couple of milliseconds.

As the reboot of a DSP takes significantly longer than the reload of an algo-
rithm, it is advisable to first try if reloading the algorithm in question solves
the problem. But if restarting or even repeated restarting does not lead to a
successful recovery, rebooting the DSP can be of assistance. Incorrect behav-
ior of all algorithms running on one DSP indicates a malfunction caused by
the DSP and a reboot is necessary.

Graceful degradation A key mechanism for increasing service availability is to de-
grade some functionality in spite of risking overall system failure. There are
basically two basic means for degrading a service. First, its QoS level can be
reduced. A simple but realistic assumption we make here is that higher QoS
results in increased resource usage. Second, an algorithm can be shut down
completely.

A special importance measure is assigned to each active algorithm to decide
about the order in which algorithms are considered for degradation. The
lower this importance of an algorithm the earlier it is considered for degrada-
tion actions. That is, algorithms with lowest importance are first reduced in
their QoS levels or shut down completely, respectively. The FTA also has to
be able to modify each algorithm’s importance as needed to gradually adapt
to the needs of the environment, i.e., application requirements.



3.7. Middleware-Based Fault-Tolerance Architecture for Smart Cameras 51

DSP reboot The reboot of a DSP is necessary if a DSP crashed or is under the strong
suspicion to have at least partially crashed (e.g., temporary malfunction of the
RAM).

Node reboot In case that a node recognizes that it is isolated from the rest of the
network it can decide to undergo a reboot procedure to eliminate possible
transient network (stack) problems. Rebooting in this case is unproblematic
because if network communication failed it does not contribute to system
goals any more. But chances are that a transient problem is eliminated after
reboot.

Operator notification An operator, i.e., some global monitoring authority, has to
be informed if any unexpected behavior is noticed. If a node repeatedly
shows abnormal behavior despite automatic recovery actions human inspec-
tion and maintenance actions are inevitable. Therefore, all detected fault
events subsequent counter measures are logged so that an operator can re-
trieve the information on demand.

Furthermore, a node must always be informed about the operational reliability
of its neighbors. That is, if a node diagnoses itself as (partially) faulty its direct
neighbors have to be informed about these fault condition. This is to simplify cred-
ibility checks in neighboring nodes. Because if a node testifies itself als faulty the
others can skip the voting process and exclude the faulty camera’s results from
further consideration.

3.7 Middleware-Based Fault-Tolerance Architecture for

Smart Cameras

As introduced in Section 3.6 the SmartCam software framework incorporates the
fault tolerance architecture (FTA) that provides fault-tolerance as middleware ser-
vices. The FTA comprises several units on the network processor and the DSPs.
Figure 3.9 illustrates the principle relationships of the different components.

Every algorithm on the DSP that is subject to the FTA monitoring is registered
with the PSM so its input and output connections are known. Furthermore, the
algorithm descriptions as described in Section 3.5.2 provide the basis for decisions
on the algorithm’s resource usage. Most interesting in this respect are the algo-
rithm’s name for identification, its current QoS level and what other QoS levels
are offered, the resources requirements for the current QoS level, the current im-
portance measure assigned by the application developer, and information about
the algorithm’s typical execution time. As said before this information is extracted
from the resource description the DACM requires for each algorithm and the reg-
istration information at the PSM.

The principle functionality of the involved framework components is described
in the following. For a more elaborate treatment of the details of the monitoring and
diagnosis architecture for the SmartCam refer to [Kla06].



3.7. Middleware-Based Fault-Tolerance Architecture for Smart Cameras 52

DSP-MDU

Resource
Manager

Alg1 | QoS | Importance | data fields

Node State Manager

LoggerList of Algorithms 

Migration/Dynamic 
Loading Facilities

Voter

Resource 
Checker
Module

Network Processor DSP
Processor 
boundary

MDU on Node i

Alg2 | QoS | Importance | data fields

Algoritm 1

Algoritm 2

MDU of
Node i-1

MDU of
Node i-1

Publisher-
Subscriber
Manager

Algorithms and their attributes

to Operator

Figure 3.9: Overview of the fault tolerance architecture as it is included in the
SmartCam software framework.

Resource Checker Module The main part of the FTA resides in the so-called mon-
itoring and diagnosis unit (MDU) on the network processor. On the DSP the only
module in addition to already described framework components of the DSP-FW is
the resource checker module (RCM). Relevant data concerning projected and actual
resource usage of each active algorithm are conducted into the RCM. Resources de-
manded by the algorithms are compared to the resources available in the system.
Necessary resource information is queried from the RM residing on the DSP. The
RCM determines whether sufficient resources are available and also communicates
its data to the node state manager (NSM) on the network processor.

Node State Manager The node state manager (NSM) is the central entity of the
FTA. It determines a node’s state by evaluating data from the RCM, the voter and
the analysis results of the currently active algorithms.

The most simple decisions are these that are based only on resource usage in-
formation. Because they are comparisons of metrics that are readily available. A
more sophisticated monitoring approach is achieved by judging analysis results
in view of results of other algorithms within the same node or from neighboring
nodes. In this respect the application developer programs conditions for analysis
results into the NSM. Typically these conditions are also quite simple but to come
to a monitoring and diagnosis decision it is necessary to consider several variables
possibly from different nodes. For example, in video traffic surveillance a condition
can require the traffic statistics of adjacent nodes to match within a given tolerance



3.7. Middleware-Based Fault-Tolerance Architecture for Smart Cameras 53

reflecting measurement deviations—provided that there are no crossings along the
scene observed by the involved cameras. The voter unit compares the node’s anal-
ysis results with the results of the two closest neighboring nodes. Deviations are
then feed to the NSM that changes the node’s state if applicable. A reasonable
frequency for voting analysis results from algorithms is once in a few seconds de-
pending on the application requirements. It makes sense to compare results not too
often to allow for a reasonable change of the environment, i.e., traffic flow in the
above traffic statistics example. Furthermore, as the voting process involves data
from neighboring nodes bandwidth considerations in the network also suggest a
reasonable frequency.

Note that this regular communication of analysis results also serves as alive
messaging between the nodes. Therefore, no polling of dedicated alive messages is
required as long as algorithms are exchanging analysis results.

Different none-exclusive states or modes characterize the system on node level
as well as on system level. They are described in Section 3.7.1 and Section 3.7.2,
respectively.

Logger The node’s state is recorded by the logger framework unit. This data can
be used to detect abnormal behavior in the long term behavior of a node like peri-
odical failures of the hardware or software due to, e.g., environmental conditions.
Depending on the node’s state appropriate actions are induced by the NSM and
recorded by the logger.

Furthermore, logged data can be retrieved by remote clients, i.e., operator work-
stations. Especially, for system maintenance this information is valuable. Addition-
ally, the logger collects fault and failure histories of monitored entities so that each
components reliability can be scrutinized from this data. One interesting use case
for logged faults, failures, and reconfiguration actions is post-mortem system anal-
ysis for tracking errors.

Reloading In case of the necessity of a reload or unload, the NSM instructs the
migration and dynamic loading facility (MDL) to reload or unload the algorithm in
question. The MDL induces the reload or in case of an unload performs the unload
and updates the list of current algorithms residing on the DSP. This list holds infor-
mation including which algorithm runs on which DSP on this node as well as on
the two closest neighboring nodes. In that way, the status quo can be restored after
rebooting from a DSP crash. Should the network processor have to reboot too, the
list of former active algorithms can be retrieved from up to two neighbors. This so
called distributed information introduces a form of redundancy that contributes to
the systems recovery capabilities and reduces initialization times.

3.7.1 Node Level Modes

As mentioned earlier the NSM distinguishes two different mode categories. The
first, called node level modes comprises five distinct modes that a single node can be
determined to be in. These five modes are briefly described in the following.



3.7. Middleware-Based Fault-Tolerance Architecture for Smart Cameras 54

• In normal mode all algorithms work correctly and sufficient resources are pro-
vided.

• In low resources mode insufficient resources are available, due to, e.g., a mem-
ory leak.

• In DSP crash mode one or more DSPs have crashed. This event is detected by a
watchdog timer. If there is no active communication within a reasonable time
interval the DSP is considered to have crashed.

• In algorithm crash mode one or more algorithms have crashed. Detection is
achieved similar to the recognition of a DSP crash if there are no alive mes-
sages from the algorithm under test any more.

• In malfunctioning communication device mode communication to other nodes is
not possible. No network communication can be established. Therefore, the
node’s contribution to overall system functionality is non-existent. However,
it makes sense to keep the algorithms working so that they do not have to
re-initialize when the network becomes available again.

In normal mode everything is fine and no further actions are needed. In case
of low resources one or more algorithms have to be switched to a lower QoS level.
Alternatively, one or more algorithms have to be unloaded in order to ensure a
continual functional system. These algorithms are determined via their current
importance. Resource problems also include lack in bandwidth for sending video
streams.

In case of a partial node crash, i.e., some but not all DSPs are non-functional, the
neighboring nodes have to be informed. Additionally, the load distribution service
described in [Bra05] can be triggered to compute a new algorithm allocation. If
the resulting reconfiguration leads to a situation in that a node Ni cannot deliver
necessary data for it’s neighbors’ voting processes node Ni−1 becomes the new
neighbor of node Ni+1. If node Ni has sufficiently recovered from the crash the
original configuration is re-established again. Note that the list of formerly active
algorithms on node Ni is retained on nodes Ni−1 and Ni+1. Without this change of
neighbors it would not be possible to further perform a majority voting.

3.7.2 System Level Modes

By considering system level observations and events the NSM distinguishes system
level modes. Based on results from multiple nodes sharing monitoring information
and exploiting application specific knowledge such system level modes can be de-
fined. Note that especially system level modes are not only domain-specific but
also very application-specific. That is, they have to be defined by the application
developer. For the video surveillance scenario in our project we decided on the
following three system level modes.

• traffic jam mode, referring also to stop-and-go traffic applies in case of



3.8. High-Level Software Development for DSPs 55

– the detection of many stationary vehicles in a small area.

– a very low average vehicle speed.

– a significant thinning of the traffic flow behind the perceived cause of
the traffic jam (i.e., an accident or construction site).

• In obstacles mode the road is blocked by, e.g., lost cargo.

• In inconsistent observations mode, one or both neighboring nodes observed dif-
ferent events.

3.8 High-Level Software Development for DSPs

As stated in previous sections future video surveillance systems integrate image ac-
quisition and analysis with compression and network communication functionality
into a single embedded device [WOL02]. High performance DSPs are often used to
provide the required processing power. Such complex configurations impose sig-
nificant challenges on the software development. Tight resource constraints have to
be met while facing increasing application complexity and pressing time-to-market
demands. Although modern DSPs offer substantial computational resources code
optimization is mostly crucial for media applications [KMGK03, BBRS04].

It is a major challenge in embedded software development to increase the level
of abstraction while meeting tight resource constraints [SVM01]. Recently added
support for DSP targets in the synthesis tools for Simulink [The06] simplifies high-
level development for such platforms. Block-oriented modeling also supports hier-
archical designs that promote reuse and address algorithmic complexity. Validation
by simulation is already available in early development stages. Synthesis tools in
combination with target specific components are used to generate production code
for the embedded platform.

For this work model-based development and synthesis using the Simulink envi-
ronment have been explored. The intended scenario is to directly integrate synthe-
sized algorithmic code into an intelligent embedded multi-DSP camera for video
surveillance. An overview of the model-based development process together with
an evaluation of the quality of DSP code synthesized using the Real-Time Work-
shop Embedded Coder (RTW-EC) for Simulink is presented in the following. For
a more elaborate description of the model-based development process for video
analysis algorithms using Simulink refer to [Gös05].

3.8.1 Model-Based Development of Embedded Video Surveillance Ap-
plications

Model-based design is a generic development paradigm that addresses system
specification, validation by simulation, model analysis, synthesis, and test. The
key idea is to build a model that satisfies the requirements and to use this model
(or automatically transformed models) for all further development steps including
code generation.



3.8. High-Level Software Development for DSPs 56

Figure 3.10: Generic model-based development process [The06, KSLB03].

In Figure 3.10 the basic steps of a model-based development process for video
analysis applications are illustrated. Basically, all development phases depicted
in Figure 3.10 are supported by Matlab/Simulink together with the RTW-EC and
the Embedded Target for Texas Instruments C64x DSPs (ET). Algorithmic design
(research phase) is usually performed using a high-level development environment
such as Matlab or C/C++ libraries. System level design translates the well-defined
algorithms into the domain of the modeling-language. Simulation is employed
to maintain a validated reference. Optionally, the model can be instrumented for
target-side testing. Finally, code is synthesized and can be executed on the target.
The overall build process of the Simulink environment is illustrated in Figure 3.11.

Taking into account timing constraints and resource requirements of algorithms
in the video surveillance domain, highly efficient code is needed. Unfortunately,
current modeling systems do not provide special video analysis function blocks
that yield efficient DSP code. Algorithms have to be modeled by intricate compo-
sitions of simple blocks that are often transformed to suboptimal code. Therefore,
optimizations are needed to generate efficient code. Modifications on synthesized
code are not an option. They would break up the mapping between model and
generated code such that the model-based design process would be corrupted. The
only choice is to optimize the model.

For that purpose tools like Simulink provide mechanisms to extend their built-
in functionality. Such blocks can be written in a traditional programming language
(e.g. C/C++). When implementing custom modules to improve efficiency of syn-
thesized code one has to consider two important issues.



3.8. High-Level Software Development for DSPs 57

Figure 3.11: The complete build process that generates code from a Simulink
model using the Real-Time Workshop program contained in the development suite
[The06].



3.8. High-Level Software Development for DSPs 58

1. Function granularity. Fine-grained modules with very basic functionality en-
sure high flexibility and reusability. Coarser-grained modules, however, offer
better opportunities for optimizations by the compiler [BBRS04].

2. Optimization level. Generic implementations in ANSI C ensures platform
portability. Target specific C implementation, i.e., C plus intrinsic instructions
and compiler directives, on the other hand, make use of proprietary hardware
features, e.g., direct memory access (DMA) and, therefore, yield performance
gains.

In Section 4.4 an experimental evaluation of the model-based development ap-
proach for automatic code generation of video analysis algorithms is presented. A
discussion of the major findings and conclusions are also summarized there.

3.8.2 Integration of Automatically Generated Components

An interesting extension to the work presented in [Gös05] is the possibility of in-
tegrating automatically generated modules directly into the software framework
of the SmartCam. This is possible if the presented component model described in
Section 3.5.2 is reflected in the modeling environment. That is, code generation tem-
plates have to be adjusted to use dedicated interface calls for resource management
and inter-component communication. In the presented framework all components
have to communication via the PS-MW described in Section 3.4. Furthermore, a
special block has to be provided that lets the algorithm component developer spec-
ify the algorithm’s performance figures, resource requirements and other informa-
tion that is required for compliance with the DACM. It has to be ensured that the
resulting binary generated from the code generator is executable on top of the soft-
ware framework running on the DSPs. In Simulink the custom block feature and
custom code generation templates are the means to adjust the environment for a
special domain, a custom hardware platform, and a specialized software frame-
work.

Figure 3.12 illustrates the process of integrating automatically generated algo-
rithm components with the software framework into the final application. The
three different developer roles contribute to different parts of the development
process. It is interesting to note that the algorithm developers are quite loosely
coupled to the rest of the process. This is achieved by the high-level development
approach provided by Matlab/Simulink and automatic code generation. As it is
often the case that algorithm developers are not familiar with the hardware plat-
form it makes sense to shield them from device details so that they can concentrate
on efficient and robust algorithms. On the other hand, platform experts and appli-
cation domain experts implement the code generation templates and the software
framework that make algorithm development transparent to the hardware details.
By adhering to standard interfaces required by the framework, i.e., the component
model, it is possible to generate algorithms from high-level models so that the bi-
nary components can be integrated into the final application.

Unfortunately, as the overall model-based development process leads to a lot of
effort that has to be invested upfront it makes sense only to switch completely to



3.8. High-Level Software Development for DSPs 59

Algorithm
Developer

Automatic
Code-

Generation

High-Level
Algorithm Model

Domain-Specific
Code-Generation

Templates

DSP Software
Framework

Application
Development
(Combining
Algorithms)

Hardware-Platform
Expert

Domain
Expert

Algorithms
(Software

Components)

Final
Application
(Product)

Algorithm
Developer

Automatic
Code-

Generation

High-Level
Algorithm Model

Domain-Specific
Code-Generation

Templates

DSP Software
Framework

Application
Development
(Combining
Algorithms)

Hardware-Platform
Expert

Domain
Expert

Algorithms
(Software

Components)

Final
Application
(Product)

Figure 3.12: Development process that uses automatic code generation and inte-
gration of generated components into the framework.



3.8. High-Level Software Development for DSPs 60

the model-based paradigm. That is, block libraries have to be created that provide
domain-specific functionality. More than that, the hardware platform and the basic
software framework have to be reflected in the models. General support for dif-
ferent processors, e.g., the Texas Instruments C64x DSPs, is already integrated into
Matlab/Simulink. But for custom boards the board-specific features have to be in-
tegrated manually. For the incorporation of framework behavior into the modeling
environment it can be said that this is only necessary if simulation for component
validation is intended. However, simulation is a key benefit from component de-
velopment in Simulink.

It is also interesting to note that there are other commercial model-based de-
velopment environments on the market now. Of course, the ideas presented
above are also suitable for environments other than Matlab/Simulink. One of
the most promising developments is the integration of the model-based paradigm
and code generation in National Instruments’ LabVIEW suite [Nat06]. Like Mat-
lab/Simulink the LabVIEW integrated development environment also directly
supports Texas Instruments hardware. It is, therefore, a matter of availability and
a company’s preferences which system fits best. Unfortunately, the different de-
velopment environments are not compatible. Maybe in the future a standard for
model-based development will arise that would ease exchange of models between
different development suites.



Chapter 4

Implementation and Experimental
Evaluation

In this chapter several experimental results are presented to better illustrate the
performance of the software framework developed in this work. A short introduc-
tion to the details of the evaluation environment used for testing the PS-MW and
the FTA can be found in Section 4.1. A performance analysis of the light-weight
publisher-subscriber middleware (PS-MW) is given in Section 4.2. All experiments
have been performed on our SmartCam prototype platform. Key figures for mem-
ory consumption and timing measurements are presented. Section 4.3 summarizes
performance figures for fault detection times based on fault injection experiments
on the prototype. At the end of the chapter Section 4.4 presents an experimen-
tal evaluation of the high-level software development approach described in Sec-
tion 3.8. For these measurements a different evaluation platform was used for sim-
plicity reasons. A short description of the used platform is included therein.

4.1 Prototype Platform as Evaluation Environment

As previously mentioned the SmartCam prototype was used for the experimen-
tal evaluation. The basis of the platform is an Intel IXDP425 development board
comprising an Intel IXP425 XScale network processor running at 533 MHz. It is
equipped with 16 MB of flash memory and 256 MB of SDRAM. Two to four ATEME
NVDK PCI boards each comprising a Texas Instruments TMS320C6415 DSP run-
ning at 600 MHz are plugged into the base board. Each NVDK is equipped with
264 MB of SDRAM.

The XScale is operated by a LINUX kernel version 2.6.10 and the DSPs run the
Texas Instruments DSP/BIOS real-time operating system kernel as provided with
the Code Composer Studio 3.0 development environment. Framework compo-
nents have been used as they are described in Chapter 3.

A picture of the SmartCam prototype is presented in Figure 4.1. All major parts
as described above are marked in the image. Further details of the SmartCam are
presented in Section 3.1. A more elaborate treatment of the hardware platform and
its use for traffic surveillance can be found in [BDM+06] and [Bra05], respectively.

61



4.1. Prototype Platform as Evaluation Environment 62

Figure 4.1: The SmartCam prototype comprising an Intel IXDP425 baseboard, two
ATEME NVDK DSP boards, a GSM/GPRS module, and a CMOS image sensor. A
Ethernet connection serves as the main communication medium.

For the evaluation of the code synthesis capabilities of the Matlab/Simulink de-
velopment environment a simpler platform was used as described in Section 4.4.
A single DSP development board was chosen to better concentrate on actual per-
formance evaluation of the generated code. As it comprises the same type of DSP
that is also used in the SmartCam the presented results are also significant for the
SmartCam prototype.

4.1.1 Demonstration Application

As described in Section 3.4 there are several units on the DSPs and the network
processor that comprise the publisher-subscriber middleware (PS-MW). Basically,
there are corresponding entities on each processor that provide the same function-
ality. But due to the different operating systems on the DSPs and the network pro-
cessor there are slight differences in the implementation of the inter-process com-
munication. In the following the basic implementation principles are described. A
more elaborate treatment of the implementation details can be found in [Tre06].

To better illustrate the interaction of involved framework units a special demon-
stration application was developed. It is a simple video surveillance application
hosted on the SmartCam prototype platform. For simplicity only the robust MPEG-
4 encoder algorithm was chosen for this demonstrator. This algorithm was adapted
to the PS-MW. That is, the dedicated interfaces were implemented and it was pre-
pared to be capable for being dynamically loaded. As stated earlier in this thesis it
was one of the design goals to have multiple instances of the same algorithm run-
ning on one smart camera. Therefore, the demonstrator hosts two instances with
potentially different QoS levels on a single SmartCam.

Although the demonstration application is intentionally kept as simple as pos-
sible it is also relevant for current surveillance tasks. It is often required to have one



4.1. Prototype Platform as Evaluation Environment 63

MPEG-4
high quality

MPEG-4
low quality

RTP streaming
high quality
(to operator)

RTP streaming
low quality
(to archive)

M
A

O


(P
C

I)


M
A

O


(P
C

I)


M
A

O


(P
C

I)

DSP 1

DSP 2

Network processor

CMOS sensor

Raw image server

PO

S
O


S

O


P
O


P

O


S
O


S

O


S
O


S

O


P
O


P

O


P
O


S

O


Figure 4.2: Demonstration application resembling a simple surveillance scenario
where a high quality stream is sent to an operator terminal and a lower quality
stream is archived to a network storage.

camera streaming to two different destinations. A high quality stream is sent to an
operator for observation and a lower quality stream is archived to a permanent
storage device. This scenario is depicted in Figure 4.2.

4.1.2 Dynamic loading

A prerequisite for dynamic reconfiguration of algorithm compositions is a facility
for dynamic loading and linking. In our software framework the Dynamic Loader
(DL) from Texas Instruments is used to dynamically load and link DSP algorithm
binaries at runtime. Of course, the DL can also be used to unload algorithms, i.e.,
components, when they are not needed any more.

On load a uniform entry point is called from the DL. In this entry function the
algorithm creates its own task and allocates needed resources by using a dedicated
interface to the software framework. Furthermore, POs and SOs are created in
order to register published services and subscriptions with the PS-MW (cf. Sec-
tion 3.4).

Note that each algorithm also registers a SO for receiving algorithm control
commands from the framework or other algorithms. Public algorithm attributes
are configured through this command interface. After this initialization phase the



4.2. Performance Analysis of the Publisher-Subscriber Middleware 64

actual DSP algorithm contained in the newly loaded component starts its compu-
tations.

4.1.3 Extension to the Fault Tolerance Architecture

Test Algorithms For the evaluation of the FTA simplified algorithms are used
to simulate real algorithms. These test algorithms (TA) are used because they ease
fault injection experiments. Furthermore, there are also not all intended algorithms
available for the SmartCam platform up to now. Several algorithms are available
as prototypes written in high-level languages in a form not appropriate for the em-
bedded smart camera platform. Nevertheless, these algorithm prototypes are still
to be ported to the target platform by platform experts. In the future this problem
could be circumvented by using the model-based development approach described
earlier in this work in Section 3.8.

Long Term Statistics In the implementation the special situation of traffic surveil-
lance results in the need for improving decision based on unreliable analysis re-
sults. Therefore, a dedicated long term statistics unit (LTS) is added. A timer for
periodic comparisons with relatively long intervals, e.g., 24 hours, triggers an ad-
ditional voting process using the node’s and its neighbors’ long term statistics data.
Thus, small deviations in the frequently taken measurements, that culminate in a
major deviation can be detected. Note that the video-based algorithms for comput-
ing traffic statistics like average vehicle speed show an accuracy of quite less than
100%. Given current statistics algorithms, the use of traffic statistics to prove faulty
behavior of an algorithm is not an exact procedure. Only significantly different
statistics can be used for diagnosing faults. The resulting extension of the FTA is
illustrated in Figure 4.3.

4.2 Performance Analysis of the Publisher-Subscriber Mid-

dleware

4.2.1 Memory Requirements

An important requirement for the task communication framework on the DSPs of
the SmartCam is to use only little memory to save it for the analysis algorithms.
Although our middleware was implemented in C++ the memory footprint is only
15.78 KB. It can be seen from Table 4.1 that the runtime memory consumption is
also low.

Total memory consumption overhead, of course, depends on the number of
published services and subscriptions in the system as each of them requires a PrO
and a PO or SO, respectively—and of course each object has a corresponding entry
in the DS. In a typical setting there are two algorithms per DSP and each algorithm
provides one service and subscribes to one service. Together with the management
objects this yields a typical total memory overhead of the middleware of 3.71 KB
per DSP.



4.2. Performance Analysis of the Publisher-Subscriber Middleware 65

DSP-MDU

Resource
Manager

Alg1 | QoS | Importance | data fields

Long Term Statistics 
(LTS)

Node State Manager

Logger

Timer

List of Algorithms 

Migration/Dynamic 
Loading Facilities

Voter

Resource 
Checker
Module

Network Processor DSP
Processor 
boundary

MDU on Node i

Alg2 | QoS | Importance | data fields

Algoritm 1

Algoritm 2

MDU of
Node i-1

MDU of
Node i-1

Publisher-
Subscriber
Manager

Algorithms and their attributes

to Operator

Figure 4.3: The extended fault tolerance architecture to cope with deviations of
statistical analysis results on different cameras.

Middleware Memory Usage

Component (in bytes)
Publisher-Subscriber
Manager (PSM) 472
Directory Service (DS) 256
Publisher Object (PO) 192
Subscriber Object (SO) 96
Properties Object (PrO) 34-72

Table 4.1: Memory requirements of middleware objects.



4.2. Performance Analysis of the Publisher-Subscriber Middleware 66

Initialization

Component time [µs]
Publisher-Subscriber
Manager (PSM) 4.68

Directory Service (DS) 9.90
Creation/Registration
Publisher Object (PO) 10.17

Creation/Registration
Subscriber Object (SO) 11.01

Table 4.2: Initialization times of PS-MW components.

Transfer Mode Value [µs]
Mailbox only 1.04
With PS-MW 1.21

Table 4.3: Message transfer times for plain mailbox communication and for a trans-
fer using our publisher-subscriber middleware.

4.2.2 Initialization and Communication Overhead

As the PS-MW adds some management overhead to the system we measured the
times spent in the initialization phase of the PS-MW at system start-up, i.e., initial-
ization of the PSM and the DS. Additionally, PO and SO creation and registration
times were examined. The results for the different PS-MW objects are collected in
Table 4.2. Initialization of the PSM and the DS is performed once at system startup.
Creation and registration is performed whenever an according object is instanti-
ated.

To assess the overhead in message transfer time when employing our light-
weight PS-MW we have performed some simple experiments. Several different
scenarios have been examined. First, the time spent for a plain mailbox commu-
nication between two tasks was measured. After that the same tasks have been
adapted to use the PS-MW. That is, they communicated via a PO at the sender and
a SO (including a mailbox) at the receiving task. In this experiment the time spent
from sending the message at the publisher until it was received at the subscriber
was measured. Note that in this scenario one publisher with exactly one connected
subscriber was examined, i.e., a unicast communication scheme. All these took
only tasks on the same DSP into account. The results are summarized in Table 4.3.
The overhead in this simple configuration amounts to 16.35% compared to simple
mailbox transfers.

In another scenario we examined the multicast communication scheme, i.e., one
publisher with several subscribers connected to it. The significant time measure in
this case is the overall time needed to transfer the published message to all sub-
scribed tasks. Again, only tasks on the same DSP were considered. It can be seen



4.2. Performance Analysis of the Publisher-Subscriber Middleware 67

 0

 5

 10

 15

 20

 1  2  3  4  5  6  7  8  9  10

T
im

e 
[u

s]

Number of subscribers

Pri(Pub)>Pri(Subs)
Pri(Pub)=Pri(Subs)
Pri(Pub)<Pri(Subs)

Figure 4.4: Transfer time in a multicast scenario increases depending on the num-
ber of subscribers and the priorities of publisher and subscriber tasks (denoted
“Pri(Pub)” and “Pri(Subs)”).

Number Transfer time per SO [µs]
of SOs PPO > PSO PPO = PSO PPO < PSO

1 4.72 5.72 4.39
2 3.87 6.30 5.11
3 4.00 6.54 4.51
6 5.59 6.98 4.13

Table 4.4: Message transfer time from a single publisher to multiple subscribers
depending on the number of subscribers and the task priorities. PPO and PSO

denote task priorities of the publisher and the subscribers, respectively.

from Figure 4.4 that transfer time increases almost linearly with the number of sub-
scribers.

The influence of the scheduler of the DSP/BIOS real-time operating system was
examined by measuring message transfer times depending on the task priorities of
publisher and subscriber tasks. Table 4.4 summarizes the results of these measure-
ments and Figure 4.4 illustrates that transfer time is almost equal when the pub-
lisher and the subscriber have the same priority or the publisher has the highest
priority. When the subscribers have the highest priority the transfer time increases
significantly. This is due to additional task switches when subscribers block on
mailboxes.

There are slight fluctuations depending on the number of overall tasks running
on the DSP and their according priorities. That is due to internal management
structures of the DSP/BIOS scheduler. Fortunately, the message transfer time per
subscriber is relatively constant with respect to the number of subscribers and the
task priorities.



4.3. Evaluation of the Fault Tolerance Architecture 68

Number Transfer overhead [µs]
of SOs 2 DSPs 3 DSPs 4 DSPs

1 3.49 - - - -
2 4.69 5.24 - -
3 5.91 6.44 7.49

Table 4.5: Message transfer overhead time for publisher and subscribers residing
on different DSPs. Overhead is given compared to direct PCI transfers without the
PS-MW.

In another experiment the transfer times between tasks on different DSPs have
been analyzed. The results are summarized in Table 4.5. The overhead in this
case stems from the indirection in the involved MAOs and the proxy PO as well as
the proxy SOs. It can be seen from the table that multiple subscribers on the same
remote DSP yield less overhead than if they all reside on different DSPs. This is due
to less management overhead in the target MAO. Also note that data is transferred
only once to each DSP even if there are multiple subscribers for that data on the
DSP.

4.3 Evaluation of the Fault Tolerance Architecture

Besides the PS-MW as the core of the software framework also the fault-tolerance
architecture (FTA) has been evaluated. For simplicity the performance of the FTA
was evaluated by experiments with dedicated test algorithms instead of real video
analysis algorithms. A test algorithm (TA) is a piece of code suited for the frame-
work that mimics the behavior of a surveillance algorithm. Its output is faked by
a parameterizable data generator. For example, a test algorithm for traffic statistics
outputs values for average vehicle speeds, the number of vehicle passed by and the
like without any real video analysis. To test the FTA the output can be influenced
to yield correct or erroneous data.

Therefore, a TA is well suited for fault injection experiments where faulty be-
havior of video analysis algorithms can be simulated. Fault injection is well suited
for the evaluation of the FTA. No real faults have to be provoked and adequate test
patterns can be applied. Thus, different fault scenarios can be examined easily.

Every TA is launched as a single task. It implements the standard interfaces
needed to be deployed within the software framework. This includes also an ap-
propriate algorithm description as it is required by the framework. The simulated
analysis results are generally the same as from the real algorithm but can be in-
fluenced by the experimenter. Outputs of the TAs are, therefore, as meaningful as
those of the actual algorithms with respect for their use with the FTA.

As with normal algorithms TAs also communicate using the publisher-
subscriber middleware. In the prototype implementation, communication within
a node is conducted via the local PCI bus whereas inter-node communication is
IP-based via a standard Ethernet connection.



4.3. Evaluation of the Fault Tolerance Architecture 69

Algorithm QoS Importance Minimum

Levels QoS Level

MPEG-4 Encoder (MPEG) Q1, Q2, Q3 5 Q2

Stationary Vehicle Detection (SVD) Q1, Q2 2 Q2

Traffic Statistics (STAT) Q1, Q2 1 —

Table 4.6: Algorithms and their attributes for the example traffic surveillance appli-
cation.

To evaluate the fault-tolerance architecture two key metrics are used as the eval-
uation criteria:

• the time elapsed to fault recognition and

• the time required for the execution of counter measures.

In order to demonstrate the FTA’s ability to detect faults and to illustrate its
reactions two example fault scenarios are presented in the following:

1. Scenario 1: Inconsistent observations of algorithms on different nodes, and

2. Scenario 2: A crashed DSP.

The surveillance setting assumed for the two scenarios comprises three smart
camera nodes Ni−1, Ni, Ni+1 along a highway where the cameras are equipped
as the prototype described in Section 3.1. It is the assumed application design that
three algorithms run on each camera to observe the scene. The algorithms and their
attributes of this example application are listed in Table 4.6.

The importance measure of an algorithm denotes its value for the application.
That is, an algorithm with a higher importance number provides more value to
the application as one with a lower importance. Therefore, algorithms with lower
importance figures are degraded first. Note that in general only the relative value
of two algorithm’s importance is important. But it is advisable that there is one
maximum value which implies that algorithms of this maximum importance are
absolutely required to fulfill application requirements. That is, if an algorithm of
maximum importance has to be shut down due to fault conditions the application
does not fulfill its requirements any more. This case then is not a graceful degrada-
tion any more. At best it can be seen as best effort operation that has to be treated
by external intervention. Currently, having a MPEG-4 stream is considered as the
minimum requirement for a video surveillance system as it allows at least human
analysis if all other algorithms fail. It is also important that a minimum QoS level
is specified for maximum importance algorithms so that it is clear which quality is
needed for analysis by the operator.

Note also that importance values are fixed in this example. Nevertheless, the
FTA allows for dynamic changes of each algorithm’s importance to accommodate
to different states observed in the environment. For example, in a traffic jam all
algorithms might be reduced in their importance as it is not very likely that the



4.3. Evaluation of the Fault Tolerance Architecture 70

situation changes a lot. On the other hand side, after an accident the video stream,
i.e., the MPEG, and the SVD are rather important to detect consecutive events.

The following considerations are based on performance numbers presented in
earlier work [BRS04]. Over the PCI bus a transfer rate of 15 MB/s for commu-
nication between a DSP and the XScale is assumed as the lower bound for small
messages. The size of the transferred messages is always 128 bits consisting of
a 32-bit message ID and 96 bits of data. These include the algorithm’s reference
number and analysis results, e.g., the considered time interval and the number
of vehicles counted during this interval. Therefore, every message sent over the
PCI bus via the PS-MW was measured to result in an average transfer time of
tmsg,PCI = 0.031ms.

4.3.1 Scenario 1: Inconsistent Observations

Given are three camera nodes Ni−1, Ni, Ni+1 along a highway. Node Ni is observ-
ing an area characterized by stop-and-go traffic and it is in normal mode. It hosts
an MPEG-4 encoder (MPEG) on one DSP and a stationary vehicle detection (SVD)
on the second DSP. The SVD on node Ni is faulty and, therefore, does not detect
any stationary vehicles during time interval t. The two neighboring nodes Ni−1

and Ni+1, however, register a number of x and y stationary vehicles during time
interval t, respectively.

System Response to Scenario 1

As node Ni’s neighbor’s observations are not consistent with those of node Ni this
indicates a malfunction as it is not very likely to have stop-and-go traffic in two
medium sized regions but neither passing nor stationary vehicles in between. Evi-
dently, the voter’s output does not match the SVD’s output and the NSM indicates
a malfunction of the SVD. The NSM instructs the migration and dynamic loading
facility (MDL) to reload the SVD. It sets the node to inconsistent observation mode
and sends this information to the logger. The SVD is reloaded and initialized. As
most problems with algorithm’s detection results are due to transient buffer prob-
lems it is likely that the re-initialization solves the problem and the algorithm works
properly again. If the problem persists the algorithm has to be removed and the op-
erator has to be notified. From tests with real algorithms it was found that detection
problems arise almost periodically after some time. Note that the reload strategy
allows normal operation at least in between re-initialization intervals. Even if this
interval is long enough so that the algorithm is not completely removed the log
allows to identify a recurring problem with the algorithm.

Time to Fault Detection The SVD sends its output every two seconds to the ACM
and the voter, respectively. The voter’s output is sent to the NSM, thus, two mes-
sages have to be sent and the first message is sent τ seconds after the occurrence of
the fault. The voter’s output reaches the NSM within a time interval of

tdetection = τ + 2 · tmsg,PCI = τ + 0.062ms (4.1)



4.3. Evaluation of the Fault Tolerance Architecture 71

Algorithm QoS QoS CPU RAM

Level Description [MIPS] internal external

MPEG-4 Q1 PAL 20 fps 2840 400 kB 0
MPEG-4 Q2 PAL 10 fps 1920 400 kB 0

SVD Q1 CIF 12 fps 3600 500 kB 17 MB
SVD Q2 QCIF 12 fps 900 330 kB 4 MB

Table 4.7: Resource requirements for surveillance tasks according to [BBRS04].

where τ ≤ 2s is the interval of alive messages specified in the framework.

Time Required for Counter Measures To handle the problem the system’s reac-
tion results in the sending of one more message to the MDL to reload the SVD. The
time treload,SV D required for reloading the SVD was measured to be 46 ms. Addi-
tional time treg,SV D = 1 ms for registering and starting the algorithm has also to
be considered. Initialization of the SVD takes approximately 10 frames which cor-
responds to tinit,SV D = 500 ms in case of QoS level Q2 with 10 fps. The total time
spent on counter measures adds up to

tcounter = tmsg,PCI + treload,SV D + treg,SV D + tinit,SV D (4.2)
tcounter = 0.031ms + 46ms + 17ms + 500ms (4.3)
tcounter = 563.031ms (4.4)

It can be seen from the above result that the overhead of the FTA is negligible
compared to the algorithm-specific re-initialization times. Of course, algorithms
with less initialization time result in less out time of the service in case of necessary
reconfiguration.

4.3.2 Scenario 2: DSP Crash

In this scenario the MPEG encoder operates at QoS level Q1 and an importance of 5
on DSP 1. Additionally, the SVD runs with QoS level Q1 and an importance value
of 2 on DSP 2. Then the DSP 2 crashes and cannot be rebooted so that the system
has to proceed with only one remaining DSP.

System Response to Scenario 2

As the network processor maintains a list of currently active algorithms along with
their importance values and DSP assignments the node state manager (NSM) can
determine that the SVD algorithm is missing on the node.

This is because DSP 2 has not reacted to polling from the MDU for one sec-
ond. A message is sent to the NSM informing that DSP 2 crashed. As resources
demanded by the MPEG encoder and the SVD on the highest QoS level exceed the
remaining DSP’s computational power of 4800 MIPS (cf. Table 4.7) the NSM has
to reconfigure the system. Note that image scaling and the shutter control for the
image sensor takes approximately 1900 MIPS which is also considered by the NSM.



4.3. Evaluation of the Fault Tolerance Architecture 72

Since the SVD has the lower importance the NSM calculates whether it is pos-
sible to have the MPEG encoder run on QoS level Q1 and the SVD on QoS level
Q2. Hence this is not feasible due to the above-mentioned overhead of 1900 MIPS
the NSM subsequently determines that it is possible to run the MPEG encoder on
Q2 in combination with the SVD on Q2. In that way the node chooses to gracefully
degrade the QoS as opposed to a degradation of the service availability. The NSM
instructs the MDL to load the SVD onto DSP 1, the MPEG encoder’s QoS level is
adjusted, and relevant information is sent to the logger. When loading of the SVD
onto DSP 1 is finished the procedure is complete.

Time to Fault Recognition The time elapsed until the fault is recognized is pri-
marily determined by the polling interval tpolling. By adding the transfer time of
the notification message tmsg,PCI from the polling interface results in a detection
time tdetection of

tdetection = tpolling + tmsg,PCI (4.5)
tdetection = 1000ms + 0.031ms (4.6)
tdetection = 1000.031ms. (4.7)

Time Required for Counter Measures Again the measures for treload,SV D,
treg,SV D, and tinit,SV D of the SVD introduced in Section 4.3.1 can be used to com-
pute the time for handling the problem. Additionally, the times for readjusting the
MPEG-4 encoder’s QoS level and the time tadapt,MPEG for the encoder adapting
to the new QoS level have to be considered. The MPEG needs only one frame for
adaptation which corresponds to tadapt,MPEG = 100ms, respectively. Furthermore,
two message sending times are involved in the handling of this scenario. First, the
MDL has to be notified to reload the SVD. Second, the MPEG encoder has to be
commanded to switch to QoS level Q2. Therefore, the time for necessary reconfig-
urations to handle the detected problem computes to

tcounter = 2 · tmsg,PCI + treload,SV D + treg,SV D + tinit,SV D + tadapt,MPEG (4.8)
tcounter = 0.062ms + 46ms + 17ms + 500ms + 100ms (4.9)
tcounter = 663.062ms. (4.10)

4.3.3 Summary

Both of the above scenarios show that the detection and reconfiguration overhead
is dominated by algorithm-specific initialization times. Current algorithm imple-
mentations often rely on building some kind of models of the scene. The quality of
the analysis depends strictly on the quality of the models. Therefore, many frames
are used to build-up the models before actual analysis is performed. The encoder
algorithms are better in this respect as they do not rely on sophisticated scene mod-
els.

The presented brief results are based on quite restrictive figures for communi-
cation times. That is, typically communication is much faster over the PCI bus. But



4.4. Evaluation and Discussion of Model-Based Development of Video Analysis
Algorithms using Simulink 73

Figure 4.5: The Simulink model of the motion detection algorithm as it was used
for the evaluation experiments.

to have some upper limit of the detection times the minimum measured PCI speed
was considered.

4.4 Evaluation and Discussion of Model-Based Develop-

ment of Video Analysis Algorithms using Simulink

Experiments were conducted using the Matlab/Simulink R14 modeling environ-
ment (changed from R13 to R14). A Texas Instruments C6416 DSP Starter Kit to-
gether with the Code Composer Studio v2.21 IDE (CCS) was used as the devel-
opment environment. The following four different implementations of a motion
detection algorithm (MD) with different levels of optimization were profiled and
compared:

i Reference. A manually coded, hand-optimized C implementation exploiting
the hardware capabilities of the TI C64x DSP.

ii Unoptimized model. The implementation synthesized from an ad hoc model
without special optimization.

iii Generic optimizations. An implementation synthesized from a model where
generic optimizations were applied. Target independent ANSI-C constructs
were integrated. Substantial improvements are achieved by extracting iter-
ative parts of the model and put them into custom blocks implemented in
C. Nesting loops to support compiler optimizations is a very promising ap-
proach here.

iv Target-specific optimizations. An implementation synthesized from a model
where target specific custom blocks were used. Adapted code segments from
the manually coded reference (i) written in C were integrated.

The model of this simple motion detection algorithm used for the evaluation is
presented in Figure 4.5

For the tests a video format with a resolution of 368 x 272 pixels was used. A
model was created for each case listed above. From each model code was gener-
ated and imported to CCS for profiling. Profiling is also supported in the Simulink



4.4. Evaluation and Discussion of Model-Based Development of Video Analysis
Algorithms using Simulink 74

Module

Reference

imple-

mentation

(i)

Non-

optimized

model (ii)

Generically

optimized

model (iii)

Target-

specific

optimized

model (iv)

Downsampling 628752 27665088 5030016 639014
Buffering/Un-
buffering 1408 37876 1592 1592
Sum of absolute dif-
ferences 1520 85024 26832 1536
Generate pre-alarm 432 44116 3296 448
Overall 632112 27832104 5061736 642590

Table 4.8: Profiling results in CPU cycles split among different parts of the algo-
rithm. Ratings for all implementation variants are collected.

Reference

imple-
mentation

(i)

Non-
optimized

model (ii)

Generically
optimized

model (iii)

Target-

specific
optimized

model (iv)

Code size 148 345 346 346
Data memory 111 115 116 116

Table 4.9: Memory consumption in KB. The code size and the memory required for
data storage and buffers are summarized for each implementation variant.



4.4. Evaluation and Discussion of Model-Based Development of Video Analysis
Algorithms using Simulink 75

environment but CCS offers more control over the profiling process. Results from
CPU load profiling are summarized in Table 4.8.

Data memory consumption of the different examined cases differs only slightly
(cf. Table 4.9). Input video frame buffers make up about 85% of the total data
memory consumption. The rest is used for past frames for frame differencing. The
synthesized executables require more than twice the program memory of the refer-
ence implementation.

Code generated from the initial unoptimized model (ii) was 44 times slower
than the reference (i). With generic optimizations (iii) the execution time could be
reduced to 18% compared to the unoptimized model (ii). But this code was still
eight times slower than the reference (i). The second level of optimization utilized
embedded C segments from the reference as a simple target specific optimization.
Now the obtained performance was similar to that of the reference (i). Only an
overhead of about two percent is still imposed by the modeling environment. With
generic optimization (iii) the code was about 7.88 times slower than the code with
target specific optimizations (iv).

An important reason for the poor performance of the code generated from the
unoptimized model (ii) is that generated code often contains multiple sequential
loops. In the manually optimized version operations are compacted to a single
loop. Compilers are then able to better parallelize instructions resulting in a per-
formance gain. Additionally, blocks that are only used to interface special function
blocks in the model often result in redundant code in the synthesis process.

Another reason for performance losses is the inefficient use of the memory sub-
system. Even simple functional blocks such as buffering and unbuffering can lead
to degraded performance of synthesized code. Using DMA features of the target
processor could substantially increase data transfer performance. Especially, video
analysis algorithms benefit from DMA because a lot of data has to be transferred
from and to memory. It is almost always possible to fully load the CPU while DMA
transfers are performed in the background.

It is also shown that the use of specialized DSP instructions improves perfor-
mance. In Simulink such specialized code is incorporated into the model via cus-
tom blocks that directly make use of target specific instructions or call into opti-
mized (assembly) libraries. Of course, there is a one-time overhead for implement-
ing such custom blocks. However, they can then be easily reused in similar projects
without substantial effort.

These code profiling experiments of a motion detection algorithm indicate that
model-based design is a promising approach for embedded video surveillance ap-
plications. Reusability and maintainability of the software are promoted by the
high-level design. However, complex embedded video surveillance applications
with their resource limitations require rather efficient algorithm implementations
that often cannot be satisfied by code generation from simple models. Therefore,
model optimization is necessary because optimizing the generated code would cor-
rupt the model-based development flow.

In Simulink custom blocks can be used for model optimizations. Generally,
there are two major optimization levels. First, generic optimization concentrates
on hardware independent model modifications. Target specific modifications, on



4.4. Evaluation and Discussion of Model-Based Development of Video Analysis
Algorithms using Simulink 76

the other hand, are not easily portable to different hardware any more. Never-
theless, they yield the most performance improvements in the synthesized code.
To maximize the use of custom optimizations a domain specific library of custom
blocks can be created and reused for similar projects.

Future work in this area may concentrate on the use of the code generation
framework of Simulink to synthesize algorithmic code for an embedded smart
traffic surveillance camera [BBRS04]. The code generation templates have to be
adapted so that generated code can be used as dynamically loadable modules in
the software framework that is currently developed.



Chapter 5

Conclusion

There is a strong trend towards intelligent infrastructures to ease everyday live. In
traffic surveillance, e.g., networks of embedded intelligent cameras are introduced.
These cameras provide on-site video analysis to detect dangerous traffic situations
and compute traffic statistics that can be used for traffic management. High perfor-
mance embedded computing platforms are required to provide enough computing
power for the video analysis algorithms. In previous work [BBRS04] we developed
the SmartCam that is a heterogeneous multi-processor prototype of an embedded
smart camera. It comprises a network processor and several DSPs.

Because of the limited resources of the embedded platform it is not possible to
run all analysis algorithms simultaneously. Therefore, all algorithms are loaded
and unloaded on demand at runtime. To support communication between these
dynamically changing algorithms on the DSPs a middleware layer that supports
loose coupling of tasks is required. Furthermore, a network of smart cameras has
to be robust and tolerant with respect to algorithm failures and other unexpected
behavior. As video surveillance applications are also getting increasingly complex
it is necessary to introduce new development paradigms to keep the time-to-market
low. The software framework for a smart camera has, therefore, to allow for high-
level development.

In this work a real-time publisher-subscriber middleware (PS-MW) for the
SmartCam platform is described. It is a very light-weight architecture that sup-
ports loose coupling of tasks in the given dynamic application environment. By
introducing only minimal indirection it also provides little transfer time overhead.
Transparent communication within a single DSP and between different DSPs via
the local PCI bus is supported. To abstract from the PCI bus a special proxy mech-
anism is used. An experimental evaluation on the SmartCam prototype shows that
our PS-MW has a memory footprint of as little as 15.78 KB. Transfer time over-
head in case of communication between tasks on the same DSP is only 16.35%. In
a multicast scenario the PS-MW scales well in that the transfer time per subscriber
is almost constant with respect to the number of subscribers. Due to the efficient
abstraction mechanism the message transfer time overhead compared to a direct
PCI transfer is also in the order of several microseconds.

The software framework comprises also a fault-tolerance architecture that pro-
vides monitoring and diagnosis, as well as graceful degradation to cope with

77



5.1. Future Work 78

unexpected behavior. We concentrate on software fault-tolerance because hard-
ware redundancy results in prohibitive device cost. The dynamic reconfigurability
achieved by the PS-MW serves as the basis for the graceful degradation scheme.
For detection of problems application-specific knowledge is exploited. The redun-
dancy of several cameras observing overlapping or adjacent scenes is exploited.
Comparing corresponding algorithm results from neighboring cameras allows to
detect problems with algorithms.

Additionally, the framework provides a component model for DSP algorithms.
This set of dedicated interfaces and component descriptions is a prerequisite to use
high-level development paradigms for algorithm development. An improved de-
velopment process is presented that reduces overall development time. Tradition-
ally, there are different roles for developing smart cameras. Especially, algorithm
developers are experts for video analysis but are often not familiar with the tar-
get hardware platform. Thus, the development process is rather inefficient because
platform experts have to port algorithms from high-level modeling environments
to the target hardware. By using these high-level algorithm models directly for
code synthesis overall development time is reduced. As synthesized code has to
be efficient on the target hardware this work presents an evaluation of the per-
formance of code synthesized from Matlab/Simulink as an example model-based
development environment for embedded DSP systems.

5.1 Future Work

Advanced middleware services to improve QoS and power management as well as
additional fault tolerance mechanisms should be further investigated. The goal is
to achieve a system of autonomously operating smart cameras for pervasive intel-
ligent infrastructure applications.

Therefore, also more algorithms are needed that take advantage of multiple
camera systems. That is, algorithms should be designed to intensively exploit in-
formation from neighboring nodes. Robustness of algorithms, as well as overall
system reliability could be well improved.

Multiple sensor integration is also an area of current research in the SmartCam
project. By using information from many different sensors it is likely also to im-
prove detection accuracy.

For future applications in rural areas and also for easier installation wireless
network communication for a network of smart cameras is currently explored. The
aim is to provide robust and energy-aware wireless communication among a dense
network of many SmartCams. It is an important aspect that the software framework
supports these new communication paradigm. Hence, challenges such as hidden
station and other problems of multiple-node highly distributed systems have to be
taken into account. Fortunately, the flexible design of the framework allows for
relatively easy extensions for additional communication means.

In some application domains it might be of interest to have a high-reliability
version of a smart camera where hardware cost unit price are not that important
design considerations. Then it could be investigated to include automatic replica-



5.1. Future Work 79

tion mechanisms into the framework. It can be imagined that crucial framework
components are automatically replicated and synchronized to provide a highly re-
liable computing environment. Algorithms could also be replicated. With algo-
rithms it would make sense to let the application decide on the replication scheme
to account for different operational modes.



Bibliography

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing,
2004.

[BBRS04] Michael Bramberger, Josef Brunner, Bernhard Rinner, and Helmut
Schwabach. Real-Time Video Analysis on an Embedded Smart Cam-
era for Traffic Suveillance. In Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 174–181, 2004.

[BDJ+06] Michael Bramberger, Andreas Doblander, Milan Jovanovic, Andreas
Klausner, Arnold Maier, Bernhard Rinner, and Allan Tengg. Embed-
ded Smart Cameras as Key Components in Reactive Sensor Systems.
In Proceedings of the International Conference on Cognitive Systems with
Interactive Sensors, Paris, France, March 2006.

[BDM+06] Michael Bramberger, Andreas Doblander, Arnold Maier, Bernhard
Rinner, and Helmut Schwabach. Distributed smart cameras for
surveillance applications. Computer, 39(2):68–75, February 2006.

[BDR+99] Douglas Bernard, Richard Doyle, Ed Riedel, Nicolas Rouquette, Jay
Wyatt, Mike Lowry, and Pandurang Nayak. Autonomy and soft-
ware technology on NASA’s Deep Space One. IEEE Intelligent Systems,
14(3):10–15, May-June 1999.

[BGK+06] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai,
Janos Sztipanovits, and Sandeep Neema. Developing applications us-
ing model-driven design environments. Computer, 39(2):33–40, Febru-
ary 2006.

[BN03] Tom D. Bracewell and Priya Narasimhan. A middleware for depend-
able distributed real-time systems. In Proceedings of the Joint Systems
and Software Engineering Symposium, April 2003.

[Bra05] Michael Bramberger. Distributed Dynamic Task Allocation in Clusters of
Embedded Smart Cameras. PhD thesis, Institute for Technical Informat-
ics, Graz University of Technology, Graz, Austria, June 2005.

80



BIBLIOGRAPHY 81

[BRS04] Michael Bramberger, Bernhard Rinner, and Helmut Schwabach. An
Embedded Smart Camera on a Scalable Heterogeneous Multi-DSP
System. In Proceedings of the European DSP Education and Research Sym-
posium, November 2004.

[BRS05] Michael Bramberger, Bernhard Rinner, and Helmut Schwabach. A
Method for Dynamic Allocation of Tasks in Clusters of Embedded
Smart Cameras. In Proceedings of the International Conference on Sys-
tems, Man and Cybernetics, pages 2595–2600, Hawaii, U.S.A., October
2005.

[BSGR03] Christian Becker, Gregor Schiele, Holger Gubbles, and Kurt Rother-
mel. BASE—a micro-broker-based middleware for pervaisve comput-
ing. In Proceedings of the First IEEE International Conference on Perva-
sive Computing and Communications, pages 443–451. IEEE, March 23-26
2003.

[BWGS03] Krishnakumar Balasubramanian, Nanbor Wang, Chris Gill, and Dou-
glas C. Schmidt. Towards composable distributed real-time and em-
bedded software. In Proceedings of the 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Systems, pages 226–233,
Guadalajara, Mexico, January 2003.

[CBCP01] Michael Clarke, Gordon S. Blair, Geoff Coulson, and Nikos Parla-
vantzas. An Efficient Component Model for the Construction of
Adaptive Middleware. In R. Guerraoui, editor, Proceedings of the
2001 IFIP/ACM International Conference on Distributed Systems Plat-
forms, number 2218 in Lecture Notes in Computer Science, pages 160–
178. Springer, 2001.

[Cou99] Geoff Coulson. A configurable multimedia middleware platform.
IEEE MultiMedia, 6(1):62–76, January-March 1999.

[DeM95] Linda G. DeMichiel. The component object model specification. Tech-
nical report, Microsoft Corporation, November 1995.

[DeM02] Linda G. DeMichiel. Enterprise JavaBeans Specification Version 2.1.
Technical report, SUN Microsystems, November 2002.

[DGRS05] Andreas Doblander, Dietmar Gösseringer, Bernhard Rinner, and Hel-
mut Schwabach. An Evaluation of Model-Based Software Synthe-
sis from Simulink Models for Embedded Video Applications. In-
ternational Journal of Software Engineering and Knowledge Engineering,
15(2):343–348, April 2005.

[DMRS05a] Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut
Schwabach. Improving Fault-Tolerance in Intelligent Video Surveil-
lance by Monitoring, Diagnosis and Dynamic Reconfiguration. In Pro-
ceedings of the Third IEEE-Workshop on Intelligent Solutions in Embedded
Systems, Hamburg, Germany, pages 194–201, 2005. ISBN 3-902463-03-1.



BIBLIOGRAPHY 82

[DMRS05b] Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut
Schwabach. Increasing Service Availability in Intelligent Video
Surveillance Systems by Fault Detection and Dynamic Reconfigura-
tion. In Proceedings of the Telecommunications and Mobile Computing
Workshop on Wearable and Pervasive Computing, Graz, Austria, March
2005.

[DMRS06] Andreas Doblander, Arnold Maier, Bernhard Rinner, and Helmut
Schwabach. A Novel Software Framework for Power-Aware Recon-
figuration in Distributed Embedded Smart Cameras. In Proceedings
of the 12th IEEE International Conference on Parallel and Distributed Sys-
tems, volume 1, pages 281–288, Minneapolis, Minnesota, USA, July
2006. IEEE Computer Society.

[DMRZ06] Andreas Doblander, Arnold Maier, Bernhard Rinner, and Andreas Zo-
ufal. An Efficient Middleware for Power-Aware Service Reconfigura-
tion in Multi-DSP Smart Cameras. In Proceedings of the 2nd IEEE Inter-
national Conference on Information and Communication Technologies: From
Theory to ApplicationsSoftware Engineering, pages 1093–1094, Damas-
cus, Syria, April 2006. IEEE.

[Dor03] Kevin Dorow. Flexible fault tolerance in configurable middleware for
embedded systems. In Proceedings of the 27th Annual International Com-
puter Software and Applications Conference, pages 563–569, 3-6 Novem-
ber 2003.

[DRTZ06a] Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, and An-
dreas Zoufal. A light-weight Publisher-Subscriber Middleware for
Dynamic Reconfiguration in Networks of Embedded Smart Cameras.
In Proceedings of the 5th WSEAS International Conference on Software
Engineering, Parallel and Distributed Systems, Madrid, Spain, February
2006. World Scientific and Engineering Academy and Society.

[DRTZ06b] Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, and An-
dreas Zoufal. A Middleware Framework for Dynamic Reconfigu-
ration and Component Composition in Embedded Smart Cameras.
WSEAS Transactions on Computers, 5(3):574–581, March 2006.

[FH03] Christof Fetzer and Karin Högstedt. Self-*: A data-flow oriented
component framework for pervasive dependability. In Proceedings of
the Eighth IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems, pages 66–73. IEEE, 15-17 January 2003.

[FMR00] G. L. Foresti, C. Mähönen, and C. S. Regazzoni. Multimedia video-based
surveillance systems. Kluwer Academic Publishers, 2000.

[FSF03] Joni Fraga, Frank Siqueira, and Fábio Favarim. An adaptive fault-
tolerant component model. In Proceedings of the Ninth IEEE Interna-
tional Workshop on Object-Oriented Real-Time Dependable Systems, pages
179–186, Capri Island, Italy, 2003.



BIBLIOGRAPHY 83

[GHN03] Fabíola Greve, Michel Hurfin, and Jean-Pierre Le Narzul. OPEN
EDEN: a Portable Fault Tolerant CORBA Architecture. In Proceedings
of the Second International Symposium on Parallel and Distributed Com-
puting, pages 88–95, 2003.

[Gös05] Dietmar Gösseringer. Evaluation of a Model-Based Design Approach
for Embedded Image Processing Algorithms. Master’s thesis, Insti-
tute for Technical Informatics, Graz University of Technology, 2005.

[Gro04] Object Management Group. Common Object Request Broker Architec-
ture: Core Specification (Version 3.0.3), chapter 23. Object Management
Group, March 2004.

[Gro05a] Object Management Group. http://www.omg.org/technology/
documents/formal/components.htm, November 2005.

[Gro05b] Object Management Group. http://www.omg.org/, 2005.

[HÅCT04] Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törn-
gren. SaveCCM—a component model for safety-critical real-time sys-
tems. In Proceedings of the 30th EUROMICRO Conference, pages 627–
635, 2004.

[HC01] D. K. Hammer and M. R. V. Chaudron. Component-based software
engineering for resource-constraint systems: What are the needs? In
Proceedings of the Sixth Internation Workshop on Object-Oriented Real-
Time Dependable Systems, pages 91–94, January 8-10 2001.

[HGC+00] K. H. Hong, W. S. Gan, Y. K. Chong, K. K. Chew, C. M. Lee, and T. Y.
Koh. An integrated environment for rapid prototyping of DSP algo-
rithms using Matlab and Texas Instruments TMS320C30. Microproces-
sors and Microsystems, 24:349–363, 2000.

[HLKK00] Joshua Haines, Vijay Lakamraju, Israel Koren, and C. Mani Krishna.
Application-level fault tolerance as a complement to system-level
fault tolerance. The Journal on Supercomputing, 16:53–68, 2000.

[Ins02] Texas Instruments. TMS320 Algorithm Standard—Rules and Guidelines.
Texas Instruments, October 2002. Literature Number: SPRU352E.

[KBE99] Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar. Con-
trol theory-based foundations of self-controlling software. IEEE Intel-
ligent Systems, 14(3):37–45, May-June 1999.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-
puting. Computer, 36(1):41–50, January 2003.

[Kim01] K. H. Kim. Middleware of real-time object based fault-tolerant dis-
tributed computing systems: Issues and some approaches. In Proceed-
ings of the Pacific Rim International Symposium on Dependable Computing,
pages 3–8, Seoul, Korea, December 2001.



BIBLIOGRAPHY 84

[KKL04] George Kola, Tevfik Kosar, and Miron Livny. Phoenix: Making Data-
intensive Grid Applications Fault-tolerant. In Fifth IEEE/ACM Inter-
national Workshop on Grid Computing, pages 251–258, 2004.

[KL03] Jesung Kim and Insup Lee. Modular code generation from hybrid
automata based on data dependency. In Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages
160–168. IEEE, 27-30 May 2003.

[Kla06] Karima Klamminger. Design and implementation of a fault tolerance
concept in a network of smart cameras. Master’s thesis, Institute for
Technical Informatics, Graz University of Technology, 2006. (to ap-
pear).

[KMGK03] Kerem Karaday, Vishal Markandey, Robert J. Gove, and Yongmin
Kim. Strategies for mapping algorithms to mediaprocessors for high
performance. Micro, 23(4):58–70, July–August 2003.

[KS99] Gabor Karsai and Janos Sztipanovits. A model-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):46–53, May-June
1999.

[KSLB03] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty.
Model-integrated development of embedded software. Proceedings of
the IEEE, 91(1):145–164, January 2003.

[KZSR01] Deepak R. Karuppiah, Zhigang Zhu, Prashant Shenoy, and Ed-
ward M. Riseman. A fault-tolerant distributed vision system architec-
ture for object tracking in a smart room. In B. Schiele and G. Sagerer,
editors, Proceedings of the Second International Workshop on Computer Vi-
sion Systems, volume 2095 of Lecture Notes in Computer Science, pages
201–219. Springer, 2001.

[Lad99] Robert Laddaga. Creating robust software through self-adaptation.
IEEE Intelligent Systems, 14(3):26–29, May-June 1999.

[LLWO04] Chang Hong Lin, Tiehan Lv, Wayne Wolf, and I. Burak Ozer. A Peer-
to-Peer Architecture for Distributed Real-Time Gesture Recognition.
In Proceedings of the 2004 IEEE International Conference on Multimedia
and Expo, pages 57–60, 2004.

[LWD+06] Chang Hong Lin, Wayne Wolf, Andrew Dixon, Xenofon Koutsoukos,
and Janos Sztipanovits. Design and Implementation of Ubiquitous
Smart Cameras. In Proceedings of the IEEE International Conference
on Sensor Networks, Ubiquitous, and Trustworthy Computing, volume 1,
pages 32–39. IEEE, June 2006.

[Lyu95] Michael R. Lyu, editor. Software Fault Tolerance. Number 3 in Trends
in Software. John Wiley & Sons, January 1995.



BIBLIOGRAPHY 85

[Mai06] Arnold Maier. Dynamic Power-Aware Camera Configuration in Dis-
tributed Embedded Surveillance Clusters. PhD thesis, Institute for
Technical Informatics, Graz University of Technology, Graz, Austria,
February 2006.

[MBC04] Rui S. Moreira, Gordon S. Blair, and Eurico Carrapatoso. Supporting
Adaptable Distributed Systems with FORMAware. In Proceedings of
the 24th International Conference on Distributed Computing Systems Work-
shops, pages 320–325, 23-24 March 2004.

[MCE02] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile com-
puting middleware. In Enrico Gregori, Giuseppe Anastasi, and Ste-
fano Basagni, editors, Advanced Lectures on Networking: NETWORK-
ING 2002 Tutorials, volume 2497 of Lecture Notes in Computer Science,
pages 20–52. Springer, 2002.

[Mic05a] Microsoft. .Net Home Page. http://www.microsoft.com/net,
November 2005.

[Mic05b] Sun Microsystems. http://www.sun.com, July 2005.

[MJO+05] Derek Messie, Mina Jung, Jae C. Oh, Shweta Shetty, Steven Nord-
strom, and Michael Haney. Prototype of fault adaptive embed-
ded software for large-scale real-time systems. In Proceedings of th
12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems, pages 498–505, April 2005.

[Mod06] Mihir Mody. XDAIS-DM (XDM): A step towards the “plug and play”
architecture for multimedia codecs. TI Developer Conference, Febru-
ary 2006. http://www-s.ti.com/sc/techlit/sprp496.pdf.

[MPT04] Annukka Mäntyniemi, Minna Pikkarainen, and Anne Taulavuori. A
framework for off-the-shelf software component development and
maintenance. VTT Publications VTT-PUBS-525, VTT Technical Re-
search Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN-02044
VTT, Finland, April 2004. ISBN 951-38-6368-7.

[MRS05] Arnold Maier, Bernhard Rinner, and Helmut Schwabach. A Hier-
archical Approach for Energy-Aware Distributed Embedded Intelli-
gent Video Surveillance. In Proceedings of the IEEE/IFIP International
Workshop on Parallel and Distributed Embedded Systems, pages 12–16,
Fukuoka, Japan, 2005.

[MRSS06] Arnold Maier, Bernhard Rinner, Wolfgang Schriebl, and Hel-
mut Schwabach. Online Multi-Criterion Optimization for Dy-
namic Power-Aware Camera Configuration in Distributed Embedded
Surveillance Clusters. In Proceedings of the 20th IEEE International Con-
ference on Advanced Information Networking and Applications, pages 307–
312, Vienna, Austria, April 2006.



BIBLIOGRAPHY 86

[Nat06] National Instruments, Inc. National instruments website, September
2006. http://www.ni.com/.

[NGYS00] Balachandran Natarajan, Aniruddha Gokhale, Shalini Yajnik, and
Douglas C. Schmidt. DOORS: Towards High-performance Fault Tol-
erant CORBA. In International Symposium on Distributed Objects and
Applications, pages 39–48, 2000.

[NK02] Carsten Nitsch and Udo Kebschull. The use of runtime configuration
capabilities for network embedded systems. In Proceedings of the 2002
Design, Automation and Test in Europe Conference and Exhibition, page
1093. IEEE Computer Society, March 4-8 2002.

[NMMS00] N. Narasimhan, L.E. Moser, and P.M. Melliar-Smith. Transparent con-
sistent replication of Java RMI objects. In International Symposium on
Distributed Objects and Applications, pages 17–26, 2000.

[Obj02] Object Management Group. Minimum CORBA 1.0. http://www.
omg.org, 2002.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-based approach
to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, May-
June 1999.

[PCSH99] Gerardo Pardo-Castellote, Stan Schneider, and Mark Hamilton.
NDDS: The Real-Time Publish-Subscribe Middleware. http://www.
rti.com, 1999. Real-Time Innovations, White paper.

[PM01] Esmond Pitt and Kathy McNiff. Java.rmi: The Remote Method Invocation
Guide. Addison Wesley, 2001.

[Pop98] Alan Pope. The CORBA Reference Guide: Understanding the Common
Oject Request Broker Architecture. Addison Wesley, 1998.

[Pul01] Laura L. Pullum. Software Fault Tolerance Techniques and Implementa-
tion. Artech House Publishers, 2001.

[QXcMw05] Yang Qun, Yang Xian-chun, and Xu Man-wu. A framework for dy-
namic software architecture-based self-healing. ACM SIGSOFT Soft-
ware Engineering Notes, 30(4):1–4, July 2005.

[RGS95] Ragunathan Rajkumar, Mike Gagliardi, and Lui Sha. The real-
time publisher/subscriber inter-process communication model for
distributed real-time systems: Design and implementation. In Pro-
ceedings of the Real-Time Technology and Applications Symposium, pages
66–75. IEEE, 15-17 May 1995.

[Sch02] Douglas C. Schmidt. Middleware for real-time and embedded sys-
tems. Communications of the ACM, 45(6):43–48, June 2002.



BIBLIOGRAPHY 87

[Sch06] Douglas C. Schmidt. Model-driven engineering. Computer, 39(2):25–
31, February 2006.

[Ses97] Roger Sessions. COM and DCOM: Microsoft’s Vision for Distributed Ob-
jects. John Wiley & Sons, 1997.

[SKN03] Charles P. Shelton, Philip Koopman, and William Nace. A framework
for scalable analysis and design of system-wide graceful degradation
in distributed embedded systems. In Proceedings of the Eighth IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems,
pages 156–163. IEEE, 2003.

[SLS+04] Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong, and Jan-
ice McNair. Airborne traffic surveillance systems - video surveillance
of highway traffic. In Proceedings of the ACM 2nd international workshop
on Video Surveillance and Sensor Networks, pages 131–135, 2004.

[SM04] Tim Schattkowsky and Wolfgang Mueller. Model-based specification
and execution of embedded real-time systems. In Proceedings of the De-
sign, Automation and Test in Europe Conference and Exhibition, volume 2,
pages 1392–1393, 16-20 February 2004.

[SNT02] Diana Szentiványi and Simin Nadjm-Tehrani. Building and Evaluat-
ing a Fault-Tolerant CORBA Infrastructure. In Proceedings of the Work-
shop on Dependable Middleware-Based Systems, pages –, 2002.

[SNT04] Diana Szentiványi and Simin Nadjm-Tehrani. Middleware support
for fault tolerance. In Qusay H. Mahmoud, editor, Middleware for Com-
munications, pages 439–464. John Wiley & Sons Ldt., 2004.

[SS03] Minseok Song and Heonshik Shin. A QoS degradation policy for rev-
enue maximization in fault-tolerant multi-resolution video servers.
IEEE Transactions on Consumer Electronics, 49(2):392–402, May 2003.

[SSBG03] S. Sastry, Janos Sztipanovits, R. Bajcsy, and H. Gill. Scanning the
issue—special issue on modeling and design of embedded software.
Proceedings of the IEEE, 91(1):3–10, January 2003.

[ST03] Mercury Computer Systems and Thales. Light Weight CORBA Com-
ponent Model. Technical report, Object Management Group, 2003.

[SV02] Alberto Sangiovanni-Vincentelli. Defining platform-based design,
February 2002. EEDesign Magazine of EETimes (EEDesign.com).

[SVM01] Alberto Sangiovanni-Vincentelli and Grant Martin. A vision for em-
bedded software. In Proceedings of the International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems, pages 1–7, At-
lanta, Georgia, USA, November 2001. ACM.

[Szy97] Clemens Szyperski. Component Software—Beyond Object-Oriented Pro-
gramming. Addison Wesley Longman Limited, 1997.



BIBLIOGRAPHY 88

[Tei05] Egon Teiniker. A Novel Component Platform for Logistics Software Prod-
uct Lines. PhD thesis, Institute for Technical Informatics, Graz Univer-
sity of Technology, 2005.

[Tel06] Telelogic. Telelogic website, September 2006. http://www.
telelogic.com/.

[The01] The Object Management Group. Real-Time CORBA 2.0. http://
www.omg.org, September 2001.

[The06] The MathWorks, Inc. MathWorks Website, September 2006. http:
//www.mathworks.com/.

[TMK+02] Egon Teiniker, Stefan Mitterdorfer, Christian Kreiner, Zsolt Kovács,
and Reinhold Weiss. Local components and reuse of legacy code
in the CORBA component model. In Proceedings of the 28th Euromi-
cro Conference. Institute for Technical Informatics, Graz University of
Technology, IEEE, 2002.

[Tre06] Norbert Trenkwalder. Implementierung und Evaluierung eines
Frameworks für DSP basierte Smart Cameras. Master’s thesis, In-
stitute for Technical Informatics, Graz University of Technology, 2006.
(to appear).

[WGC+02] Michael Winter, Thomas Genßler, Alexander Christoph, Oscar Nier-
strasz, Stéphane Ducasse, Roel Wuyts, Gabriela Arévalo, Peter Müller,
Chris Stich, and Bastiaan Schönhage. Components for Embedded
Software—The PECOS Approach. In Proceedings of the 2002 Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 19–26. ACM, 2002.

[WH99] Michael W. Whalen and Mats P.E. Heimdahl. On the requirements
of high-integrity code generation. In Proceedings of the 4th IEEE Inter-
national Symposium on High-Assurance Systems Engineering, pages 217–
224, 17-19 November 1999.

[Wha05] Whatis.com. http://searchvb.techtarget.com/
sDefinition/0,290660,sid8_gci211826,00.html, July
2005.

[WOL02] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded systems.
Computer, 35(9):48–53, September 2002.

[WP99] David Wybo and David Putti. A qualitative analysis of automatic
code generation tools for automotive powertrain applications. In Pro-
ceedings of the 1999 IEEE International Symposium on Computer Aided
Control System Design, pages 225–230, Kohala Coast-Island of Hawaii,
Hawaii, USA, August 1999. IEEE.


