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Abstract

Circuits of neurons in the brain perform diverse cortical computations in paral-
lel, endowing the organism with diverse cortical modalities, e.g. motor control,
vision, and audition; and higher order cognitive processes, e.g. planning, and de-
cision making. It is believed that these computations are carried out by network
of neurons in cortical microcircuits, where each microcircuit is composed of rather
stereotypical circuit of neurons within a cortical column. A characteristic prop-
erty of these cortical circuits is the presence of abundant feedback connections,
be it on the level of recurrent axon collaterals projecting back onto the same neu-
ron, or on the network level between different cortical areas. This thesis explores
the functional role of neural feedback in enhancing the computational power of
generic neural microcircuits. It is shown that feedback endows standard models
for neural circuits with the capability to emulate arbitrary Turing machines. In
fact, with a suitable feedback such circuits can simulate any dynamical system, in
particular any conceivable analog computer. Under realistic noise conditions the
computational power of these circuits is obviously reduced. However it is demon-
strated through computer simulations that feedback also provides a significant
gain in computational power for quite detailed models of cortical microcircuits
with in-vivo-like high levels of noise. Furthermore neurocomputational models
using generic neural microcircuits with feedback are explored in the context of
motor control, decision making, and “action selection in presence of decisions”.
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Zusammenfassung

Schaltkreise von Neuronen im Hirn führen unterschiedliche Berechnungen par-
allel aus, welche den Organismus mit verschiedenen kortikalen Fähigkeiten, wie
z.B. Motorkontrolle, Sehen, Hören und kognitiven Prozessen höherer Ordnung
ausstatten. Es wird angenommen, dass diese Berechnungen von Netzwerken von
Neuronen in kortikalen Mikroschaltkreisen durchgeführt werden, in welchen je-
der Schaltkreis aus annähernd stereotypischen Schaltkreisen von Neuronen inner-
halb einer kortikalen Säule zusammengesetzt ist. Eine charakteristische Eigen-
schaft dieser kortikalen Schaltkreise ist das Vorhandensein von mannigfaltigen
Rückkopplungen, sei es auf dem Level von axonalen Kollateralen, welche zurück
auf das selbe Neuron projizieren, oder auf dem Netzwerklevel zwischen verschie-
denen kortikalen Arealen. Diese Arbeit untersucht die funktionelle Rolle von neu-
ronalen Rückkopplungen für die Verbesserung der Rechenfähigkeiten von generi-
schen neuronalen Mikroschaltkreisen. Es wird gezeigt, dass Rückkopplungen Stan-
dardmodelle von neuronalen Mikroschaltkreisen mit der Fähigkeit der Emulati-
on von beliebigen Turingmaschinen ausstatten. Mit geeigneten Rückkopplungen
können solche Schaltkreise jedes dynamische System simulieren, insbesondere je-
den vorstellbaren analogen Computer. Unter realistischen Rausch-Bedingungen
sind die Rechenfähigkeiten dieser Schaltkreise offensichtlich reduziert. Allerdings
wird durch Computersimulationen gezeigt, dass Rückkopplungen auch zu einer
signifikanten Steigerung der Rechenfähigkeiten von detaillierten Modellen von
kortikalen Mikroschaltkreisen mit in-vivo artigen hohen Rauschleveln führt. Wei-
ters werden Computermodelle neuronaler Informationsverarbeitung, welche gene-
rische neuronale Mikroschaltkreise mit Rückkopplungen verwenden, im Kontext
von Motorkontrolle, Entscheidungsfindung und Handlungsselektion in Entschei-
dungssituationen untersucht.
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Chapter 1

Introduction and Overview

The brain performs a wide range of complex computations in real-time, thereby
endowing an organism with diverse cortical modalities essential for survival. It is
believed that these computations are performed by network of neurons in cortical
microcircuits, where each microcircuit is composed of rather stereotypical circuit
of neurons within a cortical column. A characteristic property of these cortical
circuits is the presence of abundant feedback connections, e.g. pyramidal neurons
in the cortex typically have in addition to their long projecting axon, a large
number of axon collaterals that provide feedback to the local circuit [1]. Abundant
feedback connections also exist on the network level between different brain areas
[2]. A vast body of existing neurophysiological evidence implies that diverse
forms of neural feedback signals play an important role in cortical computations,
for example:

- Deactivating the feedback signal from visuoparietal cortex to cat area 18
(part of the primary visual cortex), decreases the signal strength in both
orientation and direction maps and almost destroys the global layout of
direction maps, thereby suggesting the strong contribution of this feedback
signal to the emergence of direction selectivity in early visual areas [3].

- Unilateral destruction of lateral olivocochlear (LOC) efferents, i.e. the feed-
back synapses from lateral superior olive (LSO) to cochlea corrupts the nor-
mal interaural correlation in response amplitudes to sounds of equal inten-
sity, suggesting that lateral olivocochlear feedback maintains the binaural
balance in neural excitability essential for correct localization of sounds in
space [4]. Also, selective removal of these LOC efferent synapses has been
shown to increase the probability of acute acoustic injury, implying the role
of LOC feedback in modulating the cochlear nerve excitability [5].

- Sending a controlled external feedback that is consistent with a leaky or
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1 Introduction and Overview

unstable integrator to the occulomotor neural integrator of goldfish over
tens of minutes to hours, causes the occulomotor integrator to become pro-
gressively more unstable or leaky respectively. Normal external feedback
signal returns the occulomotor integrator to stability, demonstrating that
external visual feedback plays a vital role in gradually tuning the stability
of the neural integrator [6].

An open research question concerning neural feedback is its exact functional role
in computations carried out by cortical microcircuits. This work presents theoret-
ical and simulation results that characterize the gain in computational power that
neural feedback can provide in generic neural microcircuits[7, 8]. Furthermore,
neurocomputational models are presented that demonstrate the role of feedback
in tasks involving motor control [9, 10], working memory and decision making
[11] and integrating the sense-think-decide-act phases involved in action selection
in presence of decisions [12].

1.1 Computational role of neural feedback

The theoretical results described in chapter 2 show that feedback endows standard
models for neural circuits with the capability to emulate arbitrary Turing ma-
chines. In fact, with a suitable feedback they can simulate any dynamical system,
in particular any conceivable analog computer. Under realistic noise conditions
the computational power of these circuits is necessarily reduced. It is demon-
strated through computer simulations that feedback also provides a significant
gain in computational power for quite detailed models of cortical microcircuits
with in-vivo-like high levels of noise. In particular it enables generic cortical
microcircuits to carry out computations that combine information from working
memory and persistent internal states in real-time with new information from
online input streams.

Quite demanding real-time computations with fading memory1 can be carried
out by generic cortical microcircuit models [13]. But many types of computations

1A map (or filter) F from input- to output streams is defined to have fading memory if its
current output at time t depends (up to some precision ε) only on values of the input u during
some finite time interval [t − T, t]. Formally, a filter F has fading memory if there exists for
every ε > 0 some δ > 0 and T > 0 so that |(Fu)(t)− (Fv)(t)| < ε for any t ∈ R and any input
functions u,v with ‖u(τ) − v(τ)‖ < δ for all τ ∈ [t − T, t].

Note that fading memory is just a continuity property (that is characteristic for filters whose
output is defined via one or several integrals over the input functions) which implies graceful
decay of the output precision when there is noise on the input: the most relevant bits of the
output value (Fu)(t) depend only on the most relevant bits of u(s) for arguments s from some
finite domain [t − T, t]. It is easy to see that any linear filter, and each higher order term of a
Volterra series, is time invariant and has fading memory.
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1.2 Movement generation and control

in the brain, for example computations that involve memory or persistent internal
states, cannot be modeled by such fading memory systems. On the other hand
concrete examples of artificial neural networks [14] and cortical microcircuit mod-
els [10] suggest that their computational power can be enlarged through feedback
from trained readouts. Furthermore the brain is known to have an abundance
of feedback connections on several levels: within cortical areas, where pyramidal
cells typically have in addition to their long projecting axon a number of local
axon collaterals, between cortical areas, and between cortex and subcortical struc-
tures. But the computational role of these feedback connections has remained
open. We present here a computational theory which characterizes the gain in
computational power that a fading memory system can acquire through feedback
from trained readouts, both in the idealized case without noise and in the case
with noise. This theory simultaneously characterizes the potential gain in com-
putational power resulting from training a few neurons within a generic recurrent
circuit for a specific task. Applications of this theory to cortical microcircuit
models provide a new way of explaining the possibility of real-time processing of
afferent input streams in the light of learning-induced internal circuit states that
might represent for example working memory or rules for the timing of behavior.

1.2 Movement generation and control

How can complex movements that take hundreds of milliseconds be generated by
stereotypical neural microcircuits consisting of spiking neurons with a much faster
dynamics? Chapter 3 demonstrates that simple linear readouts from generic neu-
ral microcircuit models consisting of spiking neurons and dynamic synapses can
be trained to generate and control rather complex movements. Using biologically
realistic neural circuit models to generate and control movements is not so easy,
since these models are made of spiking neurons and dynamic synapses which ex-
hibit a rich inherent dynamics on several temporal scales. This tends to be in
conflict with movement control tasks that require focusing on a relatively slow
time scale.

Preceding work on movement control, has drawn attention to the need of taking
the “embodiment of motor systems”, i.e. the inherent dynamics of sensors and
actuators into account. This approach is taken one step further in this chapter,
as it provides a method for also taking into account the “embodiment of neural
computation”, i.e. the inherent dynamics and spatial arrangement of neural
circuits that control the movements. Hence it may be seen as a first step in
a long range program where abstract control principles for biological movement
control and related models developed for artificial neural networks [15] can be
implemented and tested on arbitrarily realistic models for the underlying neural
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1 Introduction and Overview

circuitry.

The feasibility of this approach is demonstrated in this chapter by showing that
simple linear readouts from a generic neural microcircuit model can be trained
to control a 2-joint robot arm, which is a common benchmark task for testing
methods for nonlinear control [16]. Such movement generation is independent of
the arm-model used and the type of feedbacks that the circuit receives. This is
demonstrated by considering two different models of a two-jointed arm, a stan-
dard model from robotics and a standard model from biology, that each generate
different kinds of feedback. It turns out that both the spatial organization of
information streams, especially the spatial encoding of slowly varying input vari-
ables, and the inherent dynamics of the generic neural microcircuit model have a
significant impact on its capability to control movements. In particular it is shown
that the inherent dynamics of neural microcircuits allows these circuits to cope
with rather large delays for proprioceptive and sensory feedback. In fact it turns
out that their performance is optimal for delays that lie in the range of 50 to 280
ms. Additionally it is shown that the generic neural microcircuit models possess
significant amount of temporal integration capabilities. It is also demonstrated
that this new paradigm of motor control provides generalization capabilities to
the readouts. Furthermore, it is shown that the same neural microcircuit model
can be trained simultaneously to predict the results of such feedbacks, and by
using the results of these predicted feedbacks it can improve its performance
significantly in cases where feedback arrives with other delays, or not at all.

This work complements preceding work where generic neural microcircuit mod-
els were used in an open loop for a variety of simulated sensory processing tasks
([17], [18], [19]). It turns out that the demands on the precision of real-time com-
putations carried out by such circuit models are substantially higher for closed-
loop applications such as those considered in this chapter. Somewhat similar
paradigms for neural control based on artificial neural network models have been
independently explored by Herbert Jaeger [20].

1.3 Goal-directed movement in presence of de-

cisions

Decision making lies towards the end-stage of one of the most taxing problems
organisms face: action selection in an uncertain world [21]. The interval discrimi-
nation task [22, 23] is one of the classical experimental paradigms that is employed
to study working memory and decision making. The experiment typically involves
four phases, viz. the initial loading (L) of the first stimulus, maintaining (M) this
stimulus in working memory till the subsequent stimulus is presented, making a
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1.3 Goal-directed movement in presence of decisions

binary decision (D), and finally acting (A) on this decision, usually by pressing
one of the two buttons corresponding to the binary choice.

The precise computational and biophysical mechanism(s) through which the
brain is able to execute this load-maintain-decide-act (LMDA) sequence is not
understood. Several theoretical and modeling studies have tried to look at seg-
regated phases of this sequence and give possible explanations for their working
[24, 25, 26]. Typically neurocomputational models of working memory fail to
address how the decisions made by neurons in the prefrontal cortex (PFC), are
converted into motor commands, which are executed by the sensori-motor system
[22, 27, 28]. Similarly, models for computational motor control tend to ignore the
first three phases (LMD), that are responsible for generation of motor commands
[29, 9, 10].

Several interesting modeling approaches for tasks involving working memory
and decision making have been proposed recently [22, 28, 30]. These models
propose different mechanisms e.g. precise tuning of mutual inhibition [22], fine-
tuning of a heterogeneous recurrent network [30], using an integral feedback signal
for inhibitory control [28]; to obtain the persistent neural activity which in turn
stores information in the working memory. Despite existing evidence that shows
synaptic learning as a responsible mechanism for working memory related tasks
[23], all the models described above use static (no learning involved) neural cir-
cuits.

Chapter 4 proposes a neurocomputational architecture that uses synaptic learn-
ing mechanisms (simply linear regression), and is able to integrate the four phases
(LMDA) involved in the process of action selection in presence of a decision, into
a unified computational framework. Essentially the neural model described in
this chapter integrates two distinct cortical functions viz., working memory and
decision making carried out by the neurons in PFC, and subsequent action se-
lection executed by the sensorimotor system. More precisely, it is demonstrated
that delayed-decision tasks that are followed by action selection, can be solved, if
feedback from trained linear readouts is provided to generic neural microcircuits
whose internal dynamics has not been optimized for any particular computational
task. Two classical experimental paradigms for interval-discrimination task are
modeled that use different mechanisms to encode external sensory inputs. For
comparison with earlier models of working memory, the unified framework is used
to build a spiking neural network model of two-interval discrimination [22]. Ad-
ditionally, to demonstrate that this computational paradigm is task-independent,
robust to how the external sensory inputs are encoded, and is capable of inte-
grating the A phase, another spiking neural network model is presented for the
delayed-match-to-sample task [23], followed by an arm movement to the decided
goal position.
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1 Introduction and Overview

The core principles behind the working of this model make the assumption
that the cortex can be thought of as an ultra-high dimensional dynamical sys-
tem, where the afferent inputs arriving from thalamus and the recurrent cortical
feedbacks are churned in a non-linear way to obtain a high-dimensional projection
of the low-dimensional input space. Preceding work has demonstrated that such
high dimensional transient dynamics provides the neural circuit with analog fad-
ing memory that provides the circuit enough computational power for performing
open-loop sensory processing tasks [17, 13].

Analog fading memory by itself is not powerful enough to render the circuits
the power to hold information in working memory. The obvious reason being that
analog fading memory by itself has an upper limit on the order of tens of msec,
depending on the time constants of synapses and neurons in the neural circuit [13],
whereas typically the working memory holds information on the order of seconds.
Recent results show that feedback from trained readout neurons that are part
of generic neural circuit can induce multiple co-existing “partial attractors” in
the circuit dynamics [7, 8]. This result is further extended in this chapter to
demonstrate that even in the presence of feedback noise, such “partial attractor”
states can be held by generic neural circuits on the time-scales of several seconds,
that is obviously a requirement for tasks involving working memory.
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Chapter 2

Computational aspects of

feedback in neural circuits

It had previously been shown that generic cortical microcircuit models can perform com-
plex real-time computations on continuous input streams, provided that these compu-
tations can be carried out with a rapidly fading memory. This chapter investigates
the computational capability of such circuits in the more realistic case where not only
readout neurons, but in addition a few neurons within the circuit have been trained
for specific tasks. This is essentially equivalent to the case where the output of trained
readout neurons is fed back into the circuit. It is shown that this new model over-
comes the limitation of a rapidly fading memory. In fact, it is proved that in the
idealized case without noise it can carry out any conceivable digital or analog compu-
tation on time-varying inputs. But even with noise the resulting computational model
can perform a large class of biologically relevant real-time computations that require
a non-fading memory. This chapter demonstrates these computational implications of
feedback through computer simulations of detailed cortical microcircuit models that are
subject to noise and have a complex inherent dynamics and also provides a summary of
theoretical results. It is shown that the application of simple learning procedures (such
as linear regression or perceptron learning) to a few neurons enables such circuits to
represent time over behaviorally relevant long time spans, to integrate evidence from
incoming spike trains over longer periods of time, and to process new information con-
tained in such spike trains in diverse ways according to the current internal state of the
circuit. In particular it is shown that such generic cortical microcircuits with feedback
provide a new model for working memory that is consistent with a large set of biological
constraints.

Although this chapter examines primarily the computational role of feedback in cir-

cuits of neurons, the mathematical principles on which its analysis is based apply to

a variety of dynamical systems. Hence they may also throw new light on the com-

putational role of feedback in other complex biological dynamical systems, such as for

example genetic regulatory networks.
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2 Computational aspects of feedback in neural circuits

2.1 Introduction

The neocortex performs a large variety of complex computations in real-time. It
is conjectured that these computations are carried out by a network of cortical
microcircuits, where each microcircuit is a rather stereotypical circuit of neurons
within a cortical column. A characteristic property of these circuits and net-
works is an abundance of feedback connections. But the computational function
of these feedback connections is largely unknown. Two lines of research have
been engaged in order to solve this problem. In one approach, which one might
call the constructive approach, one builds hypothetical circuits of neurons and
shows that (under some conditions on the response behavior of its neurons and
synapses) such circuits can perform specific computations. In another research
strategy, which one might call the analytical approach, one starts with data-
based models for actual cortical microcircuits, and analyses which computational
operations such “given” circuits can perform under the assumption that a learn-
ing process assigns suitable values to some of their parameters (e.g. synaptic
efficacies of readout neurons). An underlying assumption of the analytical ap-
proach is that complex recurrent circuits, such as cortical microcircuits, cannot
be fully understood in terms of the usually considered properties of their compo-
nents. Rather, system level approaches that address directly the dynamics of the
resulting recurrent neural circuits are needed to complement the bottom-up anal-
ysis. This line of research started with the identification and investigation of so
called canonical microcircuits [31]. Several issues related to cortical microcircuits
have also been addressed in the work of Grossberg; see [32] and the references
therein. Subsequently it was shown that quite complex real-time computations on
spike trains can be carried out by such “given” models for cortical microcircuits
([17, 33, 13, 34], see [35] for a review). A fundamental limitation of this approach
was that only those computations could be modeled which can be carried out
with a fading memory, more precisely only those computations that only require
to integrate information over a time span of 200 or 300 ms (its maximal length de-
pends on the amount of noise in the circuit and the complexity of the input spike
trains [36]). In particular, computational tasks that require a representation of
elapsed time between salient sensory events or motor actions [37], or an internal
representation of expected rewards [38, 39, 40], working memory [41], accumu-
lation of sensory evidence for decision making [42], the updating and holding of
analog variables such as for example the desired eye position [6], and differential
processing of sensory input streams according to attentional or other internal
states of the neural system [43] could not be modeled in this way. Previous work
on concrete examples of artificial neural networks [14] and cortical microcircuit
models [10] had already indicated that these shortcomings of the model might
arise only if one assumes that learning affects exclusively the synapses of readout
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2.1 Introduction

neurons that project the results of computations to other circuits or areas, with-
out giving feedback into the circuit from which they extract information. This
scenario is in fact rather unrealistic from a biological perspective, since pyramidal
neurons in the cortex typically have in addition to their long projecting axon a
large number of axon collaterals that provide feedback to the local circuit [1].
Abundant feedback connections also exist on the network level between different
brain areas [2]. This chapter shows that if one takes feedback connections from
readout neurons (that are trained for specific tasks) into account, generic cortical
microcircuit models can solve all of the previously listed computational tasks.
In fact, one can demonstrate this also for circuits whose underlying noise levels
and models for neurons and synapses are substantially more realistic than those
which had previously been considered in models for working memory and related
tasks.

It is shown in section 2.2.1 that the significance of feedback for the compu-
tational power of neural circuits and other dynamical systems can be explained
on the basis of general principles. Theorem 2.2.1 implies that a large class of
dynamical systems, in particular systems of differential equations which are com-
monly used to describe the dynamics of firing activity in neural circuits, gain
universal computational capabilities for digital and analog computation as soon
as one considers them in combination with feedback. A further mathematical re-
sult (Theorem 2.2.2) implies that the capability to process online input streams
in the light of non-fading (or slowly fading) internal states is preserved in the
presence of fairly large levels of internal noise. On the basis of this theoret-
ical foundation one can explain why the computer models of generic cortical
microcircuits, which are considered in section 2.2.2, are able to solve the previ-
ously mentioned benchmark tasks. These results suggest a new computational
model for cortical microcircuits, which includes the capability to process online
input streams in diverse ways according to different “instructions” that are imple-
mented through high-dimensional attractors of the underlying dynamical system.
The high-dimensionality of these attractors results from the fact that only a
small fraction of synapses need to be modified for their creation. In comparison
with the commonly considered low dimensional attractors, such high-dimensional
attractors have additional attractive properties such as compositionality (the in-
tersection of several of them is in general non-empty), and compatibility with
real-time computing on online input streams within the same circuit.

The presentation of theoretical results for abstract models (without proofs) is
given in section 2.2.1. Details to the computer simulations of more detailed corti-
cal microcircuit models (discussed in section 2.2.2) can be found in section 2.4.1
of section 2.4. A discussion of the results described in this chapter is given in
section 3.9.
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2 Computational aspects of feedback in neural circuits

2.2 Results

Two types of models for neural circuits were considered:

1. Mean field models, such as those defined by equation (2.6) in section 2.2.1,
which model the dynamics of firing rates of neurons in neural circuits. These
models have the advantage that they are theoretically tractable, but they
have the disadvantage that they do not reflect many known details of cor-
tical microcircuits. However it is shown in [8] that the theoretical results
that are mentioned in section 2.2.1 hold for fairly large classes of dynamical
systems. Hence they potentially also hold for some more detailed models
of neural circuits.

2. Section 2.2.2 considers quite detailed models of cortical microcircuits con-
sisting of spiking neurons (see the description in section 2.2.2 and 2.4.1). At
present these models cannot be analyzed directly by theoretical methods,
hence one can only present statistical data from computer simulations. The
simulation results show that feedback has in these more detailed models a
variety of computational consequences that have been derived analytically
for the simpler models of section 2.2.1. This is not totally surprising insofar,
as the computations that are considered in the more detailed models can be
approximately described in terms of time-varying firing rates for individual
neurons.

In both types of models the focus is on computations that transform time-
varying input streams into time-varying output streams. The input streams are
modeled in section 2.2.1 by time-varying analog functions u(t) (that might for
example represent time-varying firing rates of neurons that provide afferent in-
puts), and in section 2.2.2 by spike trains generated by Poisson processes with
time-varying rates. Output streams are analogously modeled by time-varying
firing rates, or directly by spike trains. I believe that such online computa-
tions, which transform time-varying inputs into time-varying outputs, provide
a better framework for modeling cortical processing of information than com-
putations that transform a static vector of numbers (i.e., a batch input) into a
static output. Mappings from time-varying inputs to time-varying outputs are
referred to as filters (or operators) in mathematics and engineering. A frequently
discussed reference class of linear and nonlinear filters are those which can be
described by Volterra- or Wiener series (see e.g. [44]). These filters can equiv-
alently be characterized as those filters which are time-invariant (i.e., they are
input-driven and have no “internal clock”) and have a fading memory (see [13]).
Fading memory means intuitively that the influence of any specific segment of
the input stream on later parts of the output stream becomes negligible when
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the length of the intervening time interval is sufficiently large. It is shown in the
next two subsections that feedback endows a circuit, that by itself can only carry
out computations with fading memory, with flexible ways of combining fading-
memory-computations on time varying inputs with computational operations on
selected pieces of information in a non-fading memory.

2.2.1 Theoretical Analysis

The dynamics of firing rates in recurrent circuits of neurons is commonly modeled
by systems of nonlinear differential equations of the form

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aijxj(t) + bi · v(t)) , i = 1, . . . , n , (2.1)

or

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aijxj(t)) + bi · σ(v(t)) , i = 1, . . . , n (2.2)

([45, 46, 47, 48]). Here each xi, i = 1, . . . , n, is a real-valued variable which
represents the current firing rate of the ith neuron or population of neurons in a
recurrent neural circuit, and v(t) is an external input stream. The coefficients
aij, bi denote the strengths of synaptic connections, and the λi > 0 denote time
constants. The function σ is some sigmoidal activation function (nondecreasing,
with bounded range). In most models of neural circuits, the parameters are
chosen so that the resulting dynamical system has a fading memory for preceding
inputs. If one makes the synaptic connection strengths aij in (2.1) or (2.2) so
large that recurrent activity does not dissipate, the neural circuit tends to exhibit
persistent memory. But it is usually quite difficult to control the content of this
persistent memory, since it tends to be swamped with minor details of external
inputs (or initial conditions) from the distant past. Hence this chaotic regime
of recurrent neural circuits (see [49] for a review) is apparently also not suitable
for biologically realistic online computations that combine new information from
the current input with selected (e.g., behaviorally relevant) aspects of external or
internal inputs from the past.

Recurrent circuits of neurons (e.g. those described by equations (2.1) or (2.2))
are from a mathematical perspective special cases of dynamical systems. The
subsequent mathematical results show that a large variety of dynamical systems,
in particular also fading memory systems of type (2.1) or (2.2), can overcome
in the presence of feedback the computational limitations of a fading memory

11



2 Computational aspects of feedback in neural circuits

without necessarily falling into the chaotic regime. In fact, feedback endows
them with universal capabilities for analog computing, in a sense that can be
made precise in the following way (see Fig. 2.1A-C for an illustration):

Theorem 2.2.1 A large class Sn of systems of differential equations of the form

x′
i(t) = fi(x1(t), . . . , xn(t)) + gi(x1(t), . . . , xn(t)) · v(t), i = 1, . . . , n (2.3)

are in the following sense universal for analog computing:

This system (2.3) can respond to an external input u(t) with the dynamics of any
nth order differential equation of the form

z(n)(t) = G(z(t), z′(t), z′′(t), . . . , z(n−1)(t)) + u(t) (2.4)

(for arbitrary smooth functions G : R
n → R) if the input term v(t) is replaced in

(2.3) by a suitable memoryless feedback function K(x1(t), . . . , xn(t), u(t)), and if a
suitable memoryless readout function h(x(t)) is applied to its internal state x(t) =
〈x1(t), . . . , xn(t)〉: one can achieve then that h(x(t)) = z(t) for any solution z(t)
of (2.4).

Also the dynamic responses of all systems consisting of several higher order
differential equations of the form (2.4) can be simulated by fixed systems of the
form (2.3) with a corresponding number of feedbacks.

This result says more precisely that for any nth order differential equation (2.4)
there exists a (memory-free) feedback function K : R

n × R → R and a memory-
free readout function h : R

n → R (which can both be chosen to be smooth,
in particular continuous) so that, for every external input u(t), t ≥ 0, and each
solution z(t) of the forced system (2.4) there is an input u0(t) with u0(t) ≡ 0 for
all t ≥ 1, so that the solution x(t) = 〈x1(t), . . . , xn(t)〉 of the fixed system (2.3)

x′(t) = f(x(t)) + g(x(t))K(x(t), u(t) + u0(t)) , x(0) = 0 (2.5)

(for f : R
n → R

n consisting of 〈f1, . . . , fn〉 and g : R
n → R

n consisting of
〈g1, . . . , gn〉) is such that

h(x(t)) = z(t) for all t ≥ 1 .

Note that the function u0(t), that is added to the input for t < 1 (whereas
u0(t) = 0 for t ≥ 1), allows the system (2.3) (and (2.5)) to simulate with a
standardized initial condition x(0) = 0 any solution of (2.4) with arbitrary initial
conditions.

12



2.2 Results

Figure 2.1: Computational architectures considered in Theorems 2.2.1 and 2.2.2. (A)
A fixed circuit C whose dynamics is described by the system (2.3). (B) An arbitrary
given nth order dynamical system (2.4) with external input u(t). (C) If the input v(t)
to circuit C is replaced by a suitable feedback K(x(t), u(t)), then this fixed circuit C
can simulate the dynamic response z(t) of the arbitrarily given system shown in B, for
any input stream u(t). (D) Arbitrary given finite state machine (FSM) A with l states.
(E) A noisy fading memory system with feedback can reliably reproduce the current
state A(t) of the given FSM A, except for time points t shortly after A has switched
its state.
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2 Computational aspects of feedback in neural circuits

Theorem 2.2.1 implies that even if some fixed dynamical system (2.3) from
the class Sn has fading memory, a suitable feedback K and readout function h
will enable it to carry out specific computations with persistent memory. In fact,
it can carry out any computation with persistent memory which could possibly
be carried out by any dynamical system (2.4). To get a clear understanding of
this universality property, one should note that the feedback function K and the
readout function h depend only on the function G that characterizes the simu-
lated system (2.4), but not on the external input u(t) or the particular solution
z(t) of (2.4) that it simulates. Hence Theorem 2.2.1 implies in particular that
any system (2.3) that belongs to the class Sn has in conjunction with several
feedbacks the computational power of a universal Turing machine (see [50] or [51]
for relevant concepts from computation theory). This follows from the fact that
every Turing machine (hence any conceivable digital computation, most of which
require a persistent memory) can be simulated by systems of equations of the
form (2.4) (this was shown in [52] for the case with continuous time, and in
[53, 54] for recurrent neural networks with discrete time; see [55] for a review).
But possibly more relevant for applications to biological systems is the fact that
any fixed system (2.3) that belongs to the class Sn is able to emulate any conceiv-
able continuous dynamic response to an input stream u(t) if it receives a suitable
feedback K(x(t), u(t)), where K can always be chosen to be continuous. Hence
one may argue that these systems (2.3) are also universal for analog computing
on time-varying inputs.

The class Sn of dynamical systems that become through feedback universal for
analog computing subsumes systems of the form

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aij · xj(t)) + bi · v(t) , i = 1, . . . , n ; (2.6)

for example if the λi are pairwise different and aij = 0 for all i, j, and all bi

are nonzero. Fewer restrictions are needed if more then one feedback to the
system (2.6) can be used. Systems of the form (2.1) or (2.2) are of a slightly
different form, since there the activation function σ (that has a bounded range)
is applied to the term v(t)). But such systems (2.1), (2.2) can still be universal
for all bounded analog responses of arbitrary dynamical systems (2.4), which are
arguably the only ones of interest in a biological context. This follows from the
fact that if the external input u(t) of the system (2.4), as well as the resulting
solution z(t) and its derivatives z(i)t for i ≤ n − 1, stay within some bounded
range, then the values of the feedback v(t) that is needed for the simulation of
(2.4) by (2.3) will also stay within a bounded range. More precisely, one has that:

For each constant c > 0 there is a constant C > 0 such that: for every external
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input u(t), t ≥ 0, and each solution z(t) of the forced system (2.4) such that

|u(t)| ≤ c and
∣

∣z(i)(t)
∣

∣ ≤ c for all i = 0, . . . , n − 1 , for all t ≥ 0

the input u0 can be picked so that the feedback

v(t) = K(x(t), u(t) + u0(t)) t ≥ 0

to (2.1) or (2.2) satisfies:

|v(t)| ≤ C for all t ≥ 0 .

Thus, if we know a priori that we will only deal with solutions of the differential
equation (2.4) that are bounded by c, and inputs are similarly bounded, we could
also consider instead of (2.3) a system such as x′(t) = f(x(t)) + g(x(t))σ(v(t))
with f, g : R

n → R
n, where some bounded activation function σ : R → R (e.g.

q · tanh(v), for a suitable constant q) is applied to the term v(t) (like in (2.2)).
The resulting feedback term σ(K(x(t), u(t) + u0(t))) is then of a mathematical
form which is adequate for modeling feedback in neural circuits.

Theorem 2.2.1 implies that a generic neural circuit may become through feed-
back a universal computational device, which can not only simulate any Turing
machine, but also any conceivable model for analog computing with bounded dy-
namic responses. The “program” of such arbitrary simulated computing machine
gets encapsulated in the static functions K that characterize the memoryless
computational operations that are required from feedback units, and the static
readout functions h. Since these functions are static, i.e. time-invariant, and
continuous, they provide suitable targets for learning. More precisely, in order to
train a generic neural circuit to simulate the dynamic response of an arbitrary
dynamical system, it suffices to train - apart from readout neurons - a few neu-
rons within the circuit (or within some external loop) to transform the vector
x(t), that represents the current firing activity of its neurons, and the current
external input u(t) into a suitable feedback value K(x(t), u(t)). This could for
example be carried out by training a suitable feedforward neural network within
the larger circuit, which can approximate any continuous feedback function K
[56]. Furthermore I will show in section 2.2.2 that these feedback functions K
can in many biologically relevant cases be chosen to be linear, so that it would
in principle suffice to train a single neuron to compute K.

It is known that the memory capacity of such circuit is reduced to some finite
number of bits if these feedback functions K are not learnt perfectly, or if there are
other sources of noise in the system. More generally, no analog circuit with noise
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2 Computational aspects of feedback in neural circuits

can simulate arbitrary Turing machines [57]. But the subsequent Theorem 2.2.2
shows that fading memory systems with noise and imperfect feedback can still
achieve the maximal possible computational power within this a-priori limitation:
they can simulate any given finite state machine (FSM). Note that any Turing
machine with tapes of finite length is a special case of a FSM. Furthermore any
existing digital computer is a FSM, hence the computational capability of FSM’s
is actually quite large.

In order to avoid the cumbersome mathematical difficulties that arise when one
analyses differential equations with noise, Theorem 2.2.2 is formulated on a more
abstract level, resorting to the notion of fading memory filters with noise. One
assumes here that the input-output behavior of those dynamical systems with
noise, for which one wants to determine the computational impact of (imprecise)
state feedback, can be modeled by fading memory filters with additive noise
on their output. The assumption that the amplitude of this noise is bounded
is a necessary assumption according to [58]. Please refer to [33], [13], [59] for
further discussions of the relationship between models for neural circuits and
fading memory filters. In particular it was shown in [59] that every time-invariant
fading memory filter can be approximated by models for neural circuits, provided
that these models reflect the empirically found diversity of time constants of
neurons and synapses.

Theorem 2.2.2 Feedback allows linear and nonlinear fading memory systems,
even in the presence of additive noise with bounded amplitude, to employ for
real-time processing of time-varying inputs the computational capability and non-
fading states of any given FSM (see Fig. 2.1D-E).

The external input u(t) can in this case be injected directly into the fading
memory system, so that the feedback K(x(t)) depends only on the internal state
x(t) (see Fig. 2.1E).

2.2.2 Applications to Generic Cortical Microcircuit Mod-

els

This section examines the computational aspects of feedback in recurrent circuits
of spiking neurons that are based on data from cortical microcircuits. The dynam-
ics of these circuits is substantially more complex than the dynamics of circuits
described by equ. (2.6), since it is based on action potentials (spikes) rather than
firing rates. Hence one can expect at best that the temporal dynamics of firing
rates in these circuits of spiking neuron is qualitatively similar to that of circuits
described by (2.6).
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The preceding theoretical results imply that it is possible for dynamical sys-
tems to carry out computations with persistent memory without acquiring all
the computational disadvantages of the chaotic regime, where the memory ca-
pacity of the system is dominated by noise. Feedback units can create selective
“loopholes” into the fading memory dynamics of a dissipative system, that can
only be activated by specific patterns in the input or circuit dynamics. In this
way the potential content of persistent memory can be controlled by feedback
units that have been trained to recognize such patterns. This feedback may arise
from a few neurons within the circuit, or from neurons within a larger feedback
loop. The task to approximate a suitable feedback function K is less difficult
than it may appear on first sight, since it suffices in many cases to approximate
a linear feedback function. The reason is that sufficiently large generic cortical
microcircuit models have an inherent kernel property [36], in the sense of machine
learning [60]. This means that a large reservoir of diverse nonlinear responses to
current and recent input patterns is automatically produced within the recurrent
circuit. In particular, nonlinear combinations of variables a, b, c, . . . (that may
result from the circuit input or internal activity) are automatically computed at
internal nodes of the circuit. Consequently numerous low degree polynomials in
these variables a, b, c, . . . can be approximated by linear combinations of outputs
of neurons from the recurrent circuit. An example of this effect is demonstrated
in Fig. 2.3G, where it is shown that the product of firing rates r3(t) and r4(t) of
two independently varying afferent spike train inputs can be approximated quite
well by a linear readout neuron. The kernel property of biologically realistic cor-
tical microcircuit models is apparently supported by the fact that these circuits
have many additional nonlinearities besides those that appear in the equations
(2.1), (2.2), (2.6).

One formal difference between neurons in the mean field model (2.6) and more
realistic models for spiking neurons is that the input to a neuron of the latter
type consists of postsynaptic potentials, rather than of firing rates. Hence the
time-varying input x(t) to a readout neuron is in this section not a vector of
time-varying firing rates, but a smoothed version of the spike trains of all presy-
naptic neurons. This smoothing is achieved through application of a linear filter
with an exponentially decaying kernel, whose time constant of 30 ms models time
constants of receptors and postsynaptic membrane of a readout neuron in a qual-
itative fashion. Thus, if w is a vector of synaptic weights, then w ·x(t) models the
impact of the firing activity of presynaptic neurons on the membrane potential
of a readout neuron.

The following refers to those neurons where the weights of synaptic connections
from neurons within the circuit are adapted for a specific computational task
(rather than chosen randomly from distributions that are based on biological
data, like for all other synapses in the circuit) as readout neurons. The output of a
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2 Computational aspects of feedback in neural circuits

readout neuron was modeled in most of the simulations simply by a weighted sum
w ·x(t) of the previously described vector x(t). Such output can be interpreted as
the time-varying firing rate of a readout neuron. However I show in Fig. 2.3 that
these readout neurons can (with a moderate loss in performance) also be modeled
by spiking neurons, exactly like the other neurons in the simulated circuit. This
demonstrates that not only those circuits that receive feedback from external
readout neurons, but also generic recurrent circuits in which a few neurons have
been trained for a specific task, acquire computational capabilities for real-time
processing that are not restricted to computations with fading memory.

Theorem 2.2.2 suggests that the training of a few of its neurons enables generic
neural circuits to employ persistent internal states for state-dependent process-
ing of online input streams. Previous models for non-fading memory in neural
circuits [61, 62, 41, 63] proposed that it is implemented through low-dimensional
attractors in the circuit dynamics. These attractors tend to freeze or entrain the
whole state of the circuit, and thereby shut it off from the online input stream
(although independent local attractors could emerge in local subcircuits under
some conditions [62]). In contrast, the generation of non-fading memory through
a few trained neurons does not entail that the dynamics of the circuit is domi-
nated by their persistent memory states. For example, when a readout neuron
gives during some time interval a constant feedback K(x(t)) = c, this only con-
strains the circuit state x(t) to remain in the sub-manifold {x : K(x) = c} of its
high-dimensional state space. This sub-manifold is in general high-dimensional.
In particular, if K(x) is a linear function w · x, which often suffices as I will
show, the dimensionality of the sub-manifold {x : K(x) = c} differs from the
dimension of the full state space only by 1. Hence several such sub-manifolds
have in general a high-dimensional intersection, and their intersection still leaves
sufficiently many degrees of freedom for the circuit state x(t) to also absorb con-
tinuously new information from online input streams. These sub-manifolds are
in general not attractors in a strict mathematical sense. Rather, their effective
attraction property (or noise-robustness) results from the subsequently described
training process (“teacher forcing”). This training process produces weights w

which have the property that the resulting feedback w · x̃(t) moves a trajec-
tory of circuit states that goes through states x̃(t) in the neighborhood of the
sub-manifold {x : K(x) = c} closer to this sub-manifold.

Generic cortical microcircuit models were simulated consisting of 600 integrate-
and-fire (I&F) neurons (for Fig. 2.3, 2.4), and circuits consisting of 600 Hodgkin-
Huxley (HH) neurons (for Fig. 2.5), in either case with a rather high level of noise
that reflects experimental data on the high conductance state in vivo [64]. These
circuits were not constructed for any particular computational task. In particular,
sparse synaptic connectivity between neurons was generated (with a biologically
realistic bias towards short connections) by a probabilistic rule. Synaptic parame-
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ters were chosen randomly from distributions that depend on the type of pre- and
postsynaptic neurons (in accordance with empirical data from [65], [66]). More
precisely, biologically realistic models were used for dynamic synapses whose indi-
vidual mixture of paired-pulse depression and facilitation (depending on the type
of pre- and postsynaptic neuron) was based on these data. It has previously been
shown in [36],[34] that the presence of such dynamic synapses extends the time
span of the inherent fading memory of the circuit. However the computational
tasks that are considered in this paper require, apart from a non-fading memory,
only a fading memory with a rather short time span (in order to make the es-
timation of the current firing rate of input spike trains feasible). Therefore the
biologically more realistic dynamic synapses could be replaced in this model by
simple static synapses, without a change in the performance of the circuit for the
subsequently considered tasks. All details of the simulated microcircuit models
can be found in section 2.4.1. Details of the subsequently discussed computer
experiments are given in sections 2.4.2 - 2.4.4.

I tested 3 different types of computational tasks for generic neural circuits with
feedback. The same neural circuit can be used for each task, only the organization
of input- and output streams needs to be chosen individually (see Fig. 2.2). The
following procedure was applied to train readout neurons, i.e. to adjust the
weights of synaptic connections from neurons in the circuit to readout neurons
for specific computational tasks (while leaving all other parameters of the generic
microcircuit model unchanged):

• First those readout neurons were trained that provide feedback, then the
other readout neurons.

• During the training of readout neurons that provide feedback, their actual
feedback was replaced by a noisy version of their target output (“teacher
forcing”).

• Each readout neuron was trained by linear regression to output at any time
t a particular target value f(t). Linear regression was applied to a set of
data points of the form 〈x(t), f(t)〉 for many time points t, where x(t) is
a smoothed version of the spike trains of presynaptic neurons (as defined
before).

Note that teacher forcing with noisy versions of target feedback values trains these
readouts to correct errors resulting from imprecision in their preceding feedback
(rather than amplifying errors). This training procedure is responsible for the
robustness of the dynamics of the resulting closed-loop circuits, in particular for
the “attractor” properties of the effectively resulting high-dimensional attractors.
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2 Computational aspects of feedback in neural circuits

Figure 2.2: Organization of input- and output streams for the 3 computational
tasks considered in the computer simulations. Each input stream consisted of multiple
spike trains, that provided synaptic inputs to individually chosen subsets of neurons in
the recurrent circuit (which is indicated by a gray rectangle). In (A) and (C) these
input streams consisted of multiple Poisson spike trains with a time-varying firing rate
ri(t). In (B) the input consisted of a burst (“cue”) in one spike train (which marks the
beginning of a time interval) and independent Poisson spike train (“noise”) in the other
input channels. The actual outputs of the readouts (that were trained individually for
each computational task) in panels (A, B, C) is shown in Figures 2.3, 2.4, 2.5.
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Figure 2.3: State-dependent real-time processing (A) 4 input streams, consisting
each of 8 spike trains generated by Poisson processes with randomly varying rates
ri(t), i = 1, . . . , 4 (rates plotted in (B); all rates are given in Hz). The 4 input streams
and the feedback were injected into disjoint sets of neurons in the circuit. (C) Resulting
firing activity of 100 out of the 600 I&F neurons in the circuit. Spikes from inhibitory
neurons marked in red. (D) Target activation times of the high-dimensional attractor
(blue shading), spike trains of 2 of the 8 I&F neurons that were trained to create the
high-dimensional attractor by sending their output spike trains back into the circuit,
and average firing rate of all 8 neurons (lower trace). (E and F) Performance of linear
readouts that were trained to switch their real-time computation task in dependence
of the current state of the high-dimensional attractor: output 2 · r3(t) instead of r3(t)
if the high-dimensional attractor is on (E), output r3(t)+ r4(t) instead of |r3(t)− r4(t)|
if the high-dimensional attractor is on (F). (G) Performance of linear readout that
was trained to output r3(t) · r4(t), showing that another linear readout from the same
circuit can simultaneously carry out nonlinear computations that are invariant to the
current state of the high-dimensional attractor.
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In the first computer experiment, readout neurons were trained to turn a high-
dimensional attractor on or off (Fig. 2.3D), in response to bursts in 2 of the
4 independent input spike trains. More precisely, 8 neurons were trained to
represent in their firing activity at any time the information in which of the
input streams 1 or 2 a burst had most recently occurred. If it had occurred
most recently in stream 1, they were trained to fire at 40 Hz, and if a burst
had occurred most recently in input stream 2, they were trained not to fire.
Hence these neurons were required to represent the non-fading state of a simple
FSM, demonstrating in an example the computational capabilities predicted by
Theorem 2.2.2. Fig. 2.3G demonstrates that the circuit retains its kernel property
inspite of the feedback injected into the circuit by these readouts. But beyond the
emulation of a simple FSM, the resulting generic cortical microcircuit is able to
combine information stored in the current state of the FSM with new information
from the online circuit input. For example, Fig. 2.3E shows that other readouts
from the same circuit can be trained to amplify their response to specific inputs if
the high-dimensional attractor is in the “on”-state. Readouts can also be trained
to change the function that they compute if the high-dimensional attractor is in
the on-state (Fig. 2.3F). This provides an example for an online reconfigurable
circuit. The readout neurons that provide feedback had been modeled in this
computer simulation like the other neurons in the circuit: by I&F neurons with
in-vivo like background noise. Hence they can be viewed equivalently as neurons
within an otherwise generic circuit.

Another difficult problem in computational neuroscience is to explain how neu-
ral circuits can implement a parametric memory, i.e. how they can hold and
update an analog value, that may represent for example an intended eye-position
that a neural integrator computes from a sequence of eye-movement commands
[67], an estimate of elapsed time [37], or accumulated sensory evidence [42]. Var-
ious designs have been proposed for parametric memory in recurrent circuits,
where continuous attractors (also referred to as line attractors) hold and update
an analog value. But these approaches are inherently brittle [63], and have prob-
lems in dealing with high noise or online circuit inputs. On the other hand Fig. 2.4
shows that dedicated circuit constructions are not necessary, since feedback from
readout neurons in generic cortical microcircuits models can also create high-
dimensional attractors that hold and update an analog value for behaviorally
relevant time spans. In fact, due to the high-dimensional character of the re-
sulting high-dimensional attractors, two such analog values can be stored and
updated independently (Fig. 2.4C,D), even within a fairly small circuit. In this
example the readouts that provide feedback were simply trained to increase or
reduce their feedback at each time point. Note that the resulting circuit activity
is qualitatively consistent with recordings from neurons in cortex and striatum
during reward expectation [38],[39],[40]. A similar ramp-like rise and fall of ac-
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Figure 2.4: Representation of time for behaviorally relevant time spans in a generic
cortical microcircuit model. (A) Afferent circuit input, consisting of a cue in one
channel (red) and random spikes (freshly drawn for each trial) in the other channels.
(B) Response of 100 neurons from the same circuit as in Fig. 2.3, which has here two
co-existing high-dimensional attractors. The autonomously generated periodic bursts
with a periodic frequency of about 8 Hz are not related to the task, and readouts were
trained to become invariant to them. (C and D) Feedback from two linear readouts
that were simultaneously trained to create and control two high-dimensional attractors.
One of them was trained to decay in 400 ms (C), and the other in 600 ms (D) (scale
in nA is the average current injected by feedback into a randomly chosen subset of
neurons in the circuit). (E) Response of the same neurons as in (B), for the same
circuit input, but with feedback from a different linear readout that was trained to
create a high-dimensional attractor that increases its activity and reaches a plateau
600 ms after the occurrence of the cue in the input stream. (F) Feedback from the
linear readout that creates this continuous high-dimensional attractor.
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tivity as shown in panels C, D, F has also been recorded in neurons of posterior
parietal cortex of the macaque in experiments were the monkey had been trained
to classify the duration of elapsed time [37]. The high-dimensionality of the con-
tinuous attractors in this model makes it feasible to constrain the circuit state
to stay simultaneously in more than one continuous attractor, thereby making
it in principle possible to encode complex movement plans that require specific
temporal relationships between individual motor commands.

This model for parametric memory in cortical circuits is consistent with high
noise: Fig. 2.5G shows the typical trial-to-trial variability of a neuron in the sim-
ulated circuit of HH neurons with in-vivo like background noise. It qualitatively
matches the “wide diversity of neural firing drift patterns in individual fish at all
states of tuning” that was observed in the horizontal occulomotor neural integra-
tor in goldfish [6], and the large trial-to-trial variability of neurons in prefrontal
cortex of monkeys reported in [38]. In addition, this model is consistent with
the surprising plasticity that has been observed even in quite specialized neu-
ral integrators [6], since continuous attractors can be created or modified in this
model by changing just a few synaptic weights of neurons that are immediately
involved. It does not require the presence of long-lasting postsynaptic potentials,
NMDA-receptors, or other specialized details of biological neurons or synapses,
although their inclusion in the model is likely to provide additional temporal
stability [41]. Rather it points to complementary organizational mechanisms on
the circuit level, that are likely to enhance the controllability and robustness of
continuous attractors in neural circuits. The robustness of this learning-based
model can be traced back to the fact that readout neurons can be trained to cor-
rect undesired circuit responses resulting from errors in their previous feedback.
Furthermore such error correction is not restricted to linear computational opera-
tions, since the previously demonstrated kernel property of these generic circuits
allows even linear neurons to implement complex nonlinear control strategies
through their feedback. As an example I demonstrate in Fig. 2.5 that even un-
der biologically realistic high noise conditions a linear readout can be trained to
update a continuous attractor1 (Fig. 2.5D), to filter out input activity2 during
certain time intervals in dependence of the current state of the continuous at-
tractor (Fig. 2.5E), or to combine3 the time-varying analog variable encoded by

1This readout was trained to output at any time t an approximation CA(t) of the integral
∫ t

0
(r1(s) − r2(s))ds over the difference of both input rates. Feedback values were injected as

input currents into a randomly chosen subset of neurons in the circuit. Scale in nA shows
average strength of feedback currents (also for Fig. 2.5 panel H).

2This readout was trained to output 0 as long as CA(t) stayed below 0.83 nA, and to output
r2(t) once CA(t) had crossed this threshold, as long as CA(t) stayed above 0.66 nA (i.e., in
this test run during the shaded time periods).

3This readout was trained to output r1(t)−CA(t), i.e. a combination of external and internal
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2 Computational aspects of feedback in neural circuits

the current state CA(t) of the continuous attractor with a time-varying variable
r1(t) that is delivered by an online spike input. Hence intention-based informa-
tion processing [43] and other tasks that involve a merging of external inputs
and internal state information can be implemented in this way. Fig. 2.5C shows
that a high-dimensional attractor need not entrain the firing activity of neurons
in a drastic way, since it just restricts the high-dimensional circuit dynamics
x(t) to a slightly lower dimensional manifold of circuit states x(t) that satisfy
w · x(t) = f(t) for the current target output f(t) of the corresponding linear
readout. On the other hand Fig. 2.5E shows that the activity level CA(t) of the
high-dimensional attractor can nevertheless be detected by other linear readouts,
and can simultaneously be combined in a nonlinear manner with a time-varying
variable r2(t) from one afferent circuit input stream, while remaining invariant to
the other afferent input stream.

Finally, the same generic circuit also provides a model for the integration of
evidence for decision making that is compatible with in-vivo like high noise condi-
tions. Fig. 2.5H depicts the time course of the same neural integrator as in panel
D, but here for the case where the rates r1, r2 of the 2 input streams assume in 8
trials 8 different constant values after the first 100 ms (while assuming a common
value of 65 Hz during the first 100 ms). The resulting time course of the contin-
uous attractor is qualitatively similar to the meandering path towards a decision
threshold that has been recorded from neurons in area LIP where firing rates
represent temporally integrated evidence concerning the dominating direction of
random dot movements (see Fig. 5A in [42]).

Control experiments (see Fig. 2.6) show that the feedback is essential for the
performance of the circuit for these computational tasks.

2.3 Discussion

A theoretically founded model is presented in this chapter for real-time computa-
tions on complex input streams with persistent internal states in generic cortical
microcircuits. This model does not require a handcrafted circuit structure or bi-
ologically unrealistic assumptions such as symmetric weight distributions, static
synapses that do not exhibit pair-pulsed depression or facilitation, or neuron mod-
els with low levels of noise that are not consistent with data on in-vivo conditions.
This model only requires the assumption that adaptive procedures (synaptic plas-
ticity) in generic neural circuits can approximate linear regression. Furthermore,
in contrast to classical learning paradigms for attractor neural networks, it is
here not required that a large fraction of synaptic parameters in the circuit are

variables, at any time t (both r1 and CA normalized into the range [0, 1]).
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Figure 2.6: Evaluation of the dependence of the performance of the circuit in Fig. 2.5
on the feedback strength (i.e., on the mean amplitude of current injection from the read-
out back into neurons in the circuit). For each feedback strength that was evaluated,
the readouts were trained and tested for this feedback strength like for the preceding
experiments. Error bars in B-D denote standard error. These control experiments show
that the feedback is essential for the performance of the circuit.

27



2 Computational aspects of feedback in neural circuits

changed when a new computational task is introduced, or a new item is stored
in working memory. Rather, it suffices if those neurons that provide the circuit
output and a few neurons that provide feedback are subject to synaptic plasticity.
Such minimal circuit modifications have the advantage that thereby created at-
tractors of the circuit dynamics are high-dimensional. It is shown that the circuit
state can be simultaneously in several of such high-dimensional attractors, and
still retain sufficiently many degrees of freedom to absorb and process new infor-
mation from online input streams. In particular, I have shown in Fig. 2.3 and 2.5
how bottom-up processing can be reconfigured in dependence of discrete internal
states (implemented through high-dimensional attractors) by turning certain in-
put channels on or off, and by changing the computational operations that are
applied to input variables. Furthermore I have shown in Fig. 2.5 that analog
variables, which are extracted from an online input stream, can be combined in
real-time computations with analog variables that are stored in high-dimensional
continuous attractors. This provides in particular a model for the implementation
of intention-based information processing [43] in cortical microcircuits.

It remains open how learning signals can induce neurons in a biological organ-
ism to compute specific linear feedback functions. But at least this this problem
is reduced to the feasibility of perceptron-like learning (or more abstractly: to
linear regression) for single neurons. Subsequent research will have to deter-
mine whether these learning requirements (which can partially be reduced to
spike-timing dependent plasticity [68]) can be justified on the basis of results on
unsupervised learning and reinforcement learning [69] in biological organisms.

Whereas it was previously already known that one can construct specific cir-
cuits that have universal computational capabilities for real-time computing on
analog input streams, Theorems 2.2.1 and 2.2.2 of this chapter imply that a
large variety of dynamical systems (in particular generic cortical microcircuits)
can acquire through feedback such universal capabilities for computations that
map time-varying inputs to time-varying outputs. It should be noted that these
universal computational capabilities differ from the well known but much weaker
universal approximation property of feedforward neural networks (see [56]), since
not only the static output of an arbitrary continuous static function is approx-
imated, but the dynamic response of arbitrary differential equations of higher
order to time-varying inputs.

The theoretical results of this chapter also provide an explanation for the as-
tounding computational capability and flexibility of echo state networks [14]. In
addition they can be used to analyze computational aspects of feedback in other
biological dynamical systems besides neural circuits. Several such systems, for ex-
ample genetic regulatory networks, are known to implement complex maps from
time-varying input streams (e.g. external signals) onto time-varying outputs (e.g.
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transcription rates). But little is known about the way in which these maps are
implemented. Whereas feedback in biological dynamical systems is usually only
analyzed and modeled from the perspective of control, I propose that an analy-
sis of its computational aspects is likely to yield a better understanding of the
computational capabilities of such systems.

2.4 Materials and Methods

2.4.1 Details of the Cortical Microcircuit Models

This section complements the general description of the simulated corti-
cal microcircuit models from section 2.2.2, providing in particular all miss-
ing data that are needed to reproduce the simulation results. The orig-
inal code that was used for these simulations is online available from
http://www.lsm.tugraz.at/research/index.html.

Each circuit consisted of 600 neurons, which were placed on the integer grid
points of a 5 × 5 × 24 grid. 20% of these neurons were randomly chosen to be
inhibitory. The probability of a synaptic connection from neuron a to neuron b
(as well as that of a synaptic connection from neuron b to neuron a) was defined as
C ·exp(−D2(a, b)/λ2), where D(a, b) is the Euclidean distance between neurons a
and b, and λ is a parameter which controls both the average number of connections
and the average distance between neurons that are synaptically connected (we set
λ = 3). Depending on whether the pre- or postsynaptic neuron were excitatory
(E) or inhibitory (I), the value of C was set according to [66] to 0.3 (EE), 0.2
(EI), 0.4 (IE), 0.1 (II), yielding an average of 10900 synapses for the chosen
circuit size. External inputs and feedbacks from readouts were connected to
populations of neurons in the circuit with randomly chosen connection strengths.

I&F neurons: A standard leaky-integrate-and-fire neuron model was used,
where the membrane potential Vm of a neuron is given by:

τm

dVm

dt
= −(Vm − Vresting) + Rm · (Isyn + Iinject + Inoise) (2.7)

where tm is the membrane time constant (30 ms), which subsumes the time
constants of synaptic receptors as well as the time constant of the neuron mem-
brane. Other parameters: absolute refractory period 3 ms (excitatory neurons),
2 ms (inhibitory neurons), threshold 15 mV (for a resting membrane potential
Vresting, assumed to be 0), reset voltage drawn uniformly from the interval [13.8,
14.5 mV] for each neuron, input resistance Rm, 1 MΩ, constant non-specific back-
ground current Iinject uniformly drawn from the interval [13.5 nA, 14.5 nA] for
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2 Computational aspects of feedback in neural circuits

each neuron, an additional time-varying noise input current Inoise was drawn
every 5 ms from a Gaussian distribution with mean 0 and SD chosen for each
neuron randomly from the uniform distribution over the interval [4.0 nA, 5.0 nA].
For each simulation, the initial condition of each I&F neuron, i.e., its membrane
voltage at time t = 0, was drawn randomly (uniform distribution) from the in-
terval [13.5 mV, 14.9 mV]. Finally, Isyn(t) is the sum of input currents supplied
by the explicitly modeled synapses.

HH-neurons: Single compartment HH neuron models were used with passive
and active properties modeled according to [70, 71]. The membrane potential
was modeled by

Cm

dV

dt
= −gl(V − El) − INa − IKd − IM −

1

a
Inoise − Isyn , (2.8)

where Cm = 1 µF/cm2 is the specific membrane capacitance, gL = 0.045 mS/cm2

is the leak conductance density, EL = −80 mV is the leak reversal potential,
and Isyn(t) is the input current supplied by explicitly modeled synapses (see the
definition below). The membrane area a of the neuron was set to be 34636 µm2

as in [70]. The term Inoise(t) (see the precise definition below) models smaller
background input currents from a large number of more distal neurons, causing a
depolarization of the membrane potential and a lower input resistance commonly
referred to as ’high conductance state’ (for a review see [64]).

In accordance with experimental data on neocortical and hippocampal pyrami-
dal neurons ([72, 73, 74, 75]) the active currents in the HH neuron model comprise
a voltage dependent Na+ current INa ([76]) and a delayed rectifier K+ current
IKd ([76]). For excitatory neurons a non-inactivating K+ current IM ([77]) re-
sponsible for spike frequency adaption was included in the model.

The voltage-dependent Na+ current was modeled by:

INa = gNam
3h(V − ENa)

dm

dt
= αm(V )(1 − m) − βm(V )m

dh

dt
= αh(V )(1 − h) − βh(V )h

αm =
−0.32(V − VT − 13)

exp[−(V − VT − 13)/4] − 1

30



2.4 Materials and Methods

βm =
0.28(V − VT − 40)

exp[(V − VT − 40)/5] − 1

αh = 0.128 exp[−(V − VT − VS − 17)/18]

βh =
4

1 + exp[−(V − VT − VS − 40)/5]

where VT = −63 mV , and the inactivation was shifted by 10 mV toward hy-
perpolarized values (VS = −10 mV ) to reflect the voltage dependence of Na+

currents in neocortical pyramidal cells [78]. The peak conductance densities for
the INa current was chosen to be 500pS/µm2.

The delayed rectifier K+ current was modeled by:

IKd = gKdn
4(V − EK)

dn

dt
= αn(V )(1 − n) − βn(V )n

αn =
−0.032(V − VT − 15)

exp[−(V − VT − 15)/5] − 1

βn = 0.5 exp[−(V − VT − 10)/40]

The peak conductance densities for the IKd current was chosen to be 100pS/µm2.

The noninactivating K+ current was modeled by:

IM = gMn(V − EK)

dn

dt
= αn(V )(1 − n) − βn(V )n

αn =
0.0001(V + 30)

1 − exp[−(V + 30)/9]

βn =
−0.0001(V + 30)

1 − exp[(V + 30)/9]

The peak conductance density for the IM current was chosen to be 5pS/µm2.
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2 Computational aspects of feedback in neural circuits

For each simulation the initial condition of each neuron, i.e. the membrane
voltage at time t = 0, was drawn randomly (uniform distribution) from the
interval [-70, -60] mV.

The total synaptic background current, Inoise(t), was a sum of two inde-
pendent currents:

Inoise(t) = ge(t)(V − Ee) + gi(t)(V − Ei) ,

where ge(t) and gi(t) are time-dependent excitatory and inhibitory conductances.
The values of respective reversal potentials were Ee = 0 mV and Ei = −75 mV .

The conductances ge(t) and gi(t) were modeled according to [70] as a one-
variable stochastic process similar to an Ornstein-Uhlenbeck process:

dge(t)

dt
= −

1

τe

[ge(t) − ge0] +
√

Deχ1(t)

dgi(t)

dt
= −

1

τi

[gi(t) − gi0] +
√

Diχ2(t)

where ge0 = 0.012 µS and gi0 = 0.057 µS are average conductances, τe = 2.7 ms
and τe = 10.5 ms are time constants, De = 0.0067 µS2/s and Di = 0.0083 µS2/s
are noise diffusion constants, χ1(t) and χ2(t) are Gaussian white noise of zero
mean and unit standard deviation.

Since these stochastic processes are Gaussian, they can be integrated by an
exact update rule:

ge(t + ∆t) = ge0 + [ge(t) − ge0] exp(−∆t/τe) + Ae N1(0, 1)

gi(t + ∆t) = gi0 + [gi(t) − gi0] exp(−∆t/τi) + Ai N2(0, 1)

where N1(0, 1) and N2(0, 1) are normal random numbers (zero mean, unit SD)
and Ae and Ai are amplitude coefficients given by:

Ae =

√

De τe

2

[

1 − exp

(

−2∆t

τe

)]

Ai =

√

Di τi

2

[

1 − exp

(

−2∆t

τi

)]

.
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According to [70], this model captures the spectral and amplitude character-
istics of the input conductances of a detailed biophysical model of a neocortical
pyramidal cell that was matched to intracellular recordings in cat parietal cor-
tex in vivo. Furthermore the ratio of the average contributions of excitatory
and inhibitory background conductances was chosen to be 5 in accordance with
experimental studies during sensory responses [79, 80, 81]. The maximum con-
ductances of the synapses were chosen from a Gaussian distribution with a SD of
70% of its mean (with negative values replaced by values chosen from an uniform
distribution between 0 and two times the mean).

The (short term) dynamics of synapses was modeled according to the model
proposed in [65], with the synaptic parameters U (use), D (time constant for
depression), F (time constant for facilitation) randomly chosen from Gaussian
distributions that model empirically found data for such connections (see supple-
mentary information). This model predicts the amplitude Ak of the EPSC for
the kth spike in a spike train with interspike intervals ∆1, ∆2, . . . , ∆k−1 through
the equations

Ak = w · uk · Rk

uk = U + uk−1(1 − U)exp(−∆k−1/F )

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)exp(−∆k−1/D)

with hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values for
the first spike are u1 = U and R1 = 1 (see [82] for a justification of this version
of the equations, which corrects a small error in [65]).

The postsynaptic current for the kth spike in a presynaptic spike train, that had
been generated at time tk, is modeled for t ≥ tk +∆ (where ∆ is the transmission
delay) by Ak exp(−(t − tk − ∆)/τs) with τs = 3 ms (τs = 6 ms) for excitatory
(inhibitory) synapses. The transmission delays ∆ between neurons were chosen
uniformly to be 1.5 ms for EE-connections, and 0.8 ms for the other connections.
The total synaptic input current Isyn(t) was modeled by the sum of these
currents for all synapses onto a neuron.

Synaptic parameters: Depending on whether a and b were excitatory (E)
or inhibitory (I), the mean values of the three parameters U,D, F (with D,F
expressed in seconds, s) were chosen according to [66] to be .5, 1.1, .05 (EE),
.05, .125, 1.2 (EI), .25, .7, .02 (IE), .32, .144, .06 (II). The SD of each of these
parameters was chosen to be 50% of its mean. The mean of the scaling parameter
w (in nA) was chosen to be 70 (EE), 150 (EI), -47 (IE), -47 (II). The SD of the
parameter w was chosen to be 70% of its mean and was drawn from a gamma
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distribution. In the case of input synapses the parameter w had a value of 70 nA
if projecting onto a excitatory neuron and -47 nA if projecting onto an inhibitory
neuron.

The synaptic weights w of readout neurons were computed by linear regres-
sion to minimize the mean squared error (w ·x(t)−f(t))2 with regard to a specific
target output function f(t) (which is described for each case in the text or figure
legends) for a series of randomly generated time-varying circuit input streams
u(t) of length up to 1 second. Up to 200 such time-varying input streams u(t)
were used for training, amounting to at most 200 seconds of simulated biological
time for training the readouts.

The performance of trained readouts was evaluated by measuring the correla-
tion between w ·x(t) and the target function f(t) during separate testing episodes
where the circuit received new input streams u(t) (that were generated by the
same random process as the training inputs).

All simulations were carried out with the software package CSIM [83], which is
freely available from http://www.lsm.tugraz.at. It uses a C++-kernel with Matlab
interfaces for input generation and data analysis. As simulation time step I chose
0.5 ms.

2.4.2 Technical Details to Figure 2.3

4 randomly generated test input streams, each consisting of 8 spike trains (see
Fig. 2.3A), were injected into 4 disjoint (but interconnected) subsets of 5×5×5 =
125 neurons in the circuit consisting of 600 neurons. Feedbacks from readouts
were injected into the remaining 100 neurons of the circuit. The set of 100 neurons
for which the firing activity is shown in Fig. 2.3C contained 20 neurons from each
of the resulting 5 subsets of the circuit.

Generation of input streams for training and testing: The time-varying firing
rate ri(t) of the 8 Poisson spike trains that represented input stream i was chosen
as follows. The baseline firing rate for streams 1 and 2 (see the lower half of
Fig. 2.3A) was chosen to be 5 Hz, with randomly distributed bursts of 120 Hz
for 50 ms. The rates for the Poisson processes that generated the spike trains for
input streams 3 and 4 were periodically drawn randomly from the two options
30 Hz and 90 Hz. The actual firing rates (i.e. spike counts within a 30 ms window)
resulting from this procedure are plotted in Fig. 2.3B.

In order to demonstrate that readouts that send feedback into the circuit can
just as well represent neurons within the circuit, we had chosen the readout
neurons that send feedback to be I&F neurons with noise, like the other neurons
in the circuit. Each of them received synaptic inputs from a slightly different
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randomly chosen subset of neurons within the circuit. Furthermore the signs of
weights of these synaptic connections were restricted to be positive (negative) for
excitatory (inhibitory) presynaptic neurons.

The 8 readout neurons that provided feedback were trained to represent in
their firing activity at any time the information in which of input streams 1
or 2 a burst had most recently occurred. If it occurred most recently in input
stream 1, they were trained to fire at 40 Hz, and they were trained not to fire
whenever a burst had occurred most recently in input stream 2. The training
time was 200 s (of simulated biological time). After training, their output was
correct 86% of the time (average over 50 s of input streams; counting the high-
dimensional attractor as being in the on-state if the average firing rate of the 8
readout neurons was above 34 Hz). It was possible to train these readout neurons
to acquire such persistent firing behavior, although they only received input from
a circuit with fading memory, because they were actually trained to acquire the
following behavior: fire whenever the rate in input stream 1 becomes higher than
30 Hz, or if one can detect in the current state x(t) of the circuit traces of recent
high feedback values, provided the rate of input stream 2 stayed below 30 Hz.
Obviously this definition of the learning target for readout neurons only requires
a fading memory of the circuit.

The readouts for the other 3 tasks achieved in 50 tests for new inputs over 1 s
(that had been generated by the same distribution as the training inputs, see the
preceding description) the following average performance:

Task of panel E: Mean correlation: 0.85
Task of panel F: Mean correlation: 0.63
Task of panel G: Mean correlation: 0.86 .

2.4.3 Technical Details to Figure 2.4

The same circuit as for Fig. 2.3 was used. First 2 linear readouts with feedback
were simultaneously trained to become highly active after the occurrence of the
cue in the spike input, and then to linearly reduce their activity, but each within
a different time span (400 versus 600 ms). Their feedback into the circuit con-
sisted of 2 time-varying analog values (representing time-varying firing rates of
2 population of neurons), which were both injected (with randomly chosen am-
plitudes) into the same subset of 350 neurons in the circuit. Their weights w

were trained by linear regression for a total training time of 120 s (of simulated
biological time), consisting of 120 runs of length 1 s with randomly generated
input-cues (a burst at 200 Hz for 50 ms) and noise inputs (5 spike trains at 10
Hz).
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2.4.4 Technical Details to Figure 2.5

Time-varying firing rates for the two input streams (consisting each of 8 Poisson
spike trains) were drawn randomly from values between 10 and 90 Hz. The 16
spike trains from the 2 input streams, as well as feedback from trained read-
outs were injected into randomly chosen subsets of neurons. In contrast to the
experiment for Fig. 2.3, these circuit inputs were not injected into spatially con-
centrated clusters of neurons, but to a sparsely distributed subset of neurons
scattered throughout the 3-dimensional circuit. As a consequence, the firing ac-
tivity CA(t) of the high-dimensional attractor (see Fig. 2.5D) cannot be readily
detected from the spike raster in Fig. 2.5C. Both the linear readout that sends
feedback, and subsequently the other two linear readouts (whose output for a test
input to the circuit is shown in Fig. 2.5E,F), were trained by linear regression
during 140 s of simulated biological time.

Average performance of linear readouts on 100 new test inputs of length 700 ms
(that had been generated from the same distribution as the training inputs):

Task of panel D: Mean correlation: 0.82
Task of panel E: Mean correlation: 0.71
Task of panel F: Mean correlation: 0.79 .
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Chapter 3

Movement generation with

circuits of spiking neurons

How can complex movements that take hundreds of milliseconds be generated by stereo-

typical neural microcircuits consisting of spiking neurons with a much faster dynamics?

This chapter shows that linear readouts from generic neural microcircuit models can be

trained to generate basic arm movements. Such movement generation is independent

of the arm-model used and the type of feedbacks that the circuit receives. It is demon-

strated by considering two different models of a two-jointed arm, a standard model from

robotics and a standard model from biology, that each generate different kinds of feed-

back. Feedbacks that arrive with biologically realistic delays of 50–280 ms turn out to

give rise to the best performance. If a feedback with such desirable delay is not available,

the neural microcircuit model also achieves good performance if it uses internally gener-

ated estimates of such feedback. Existing methods for movement generation in robotics

that take the particular dynamics of sensors and actuators into account (“embodiment

of motor systems”) are taken one step further with this approach, which provides meth-

ods for also using the “embodiment of motion generation circuitry”, i.e., the inherent

dynamics and spatial structure of neural circuits, for the generation of movements.

3.1 Introduction

Using biologically realistic neural circuit models to generate movements is not
so easy, since these models are made of spiking neurons and dynamic synapses
which exhibit a rich inherent dynamics on several temporal scales. This tends
to be in conflict with movement tasks that require sequences of precise motor
commands on a relatively slow time scale. However it is shown that without
the construction of any particular circuit, training a linear readout to take a
suitable weighted sum (with fixed weights after training) of the output activity of

37



3 Movement generation with circuits of spiking neurons

a fairly large number of neurons in a generic neural microcircuit model provides
a very general paradigm for movement generation. It is obviously reminiscent
of a number of experimental results (see e.g. [84]) which show that a suitable
weighted sum of the activity from a fairly large number of cortical neurons in
monkeys predicts quite well the trajectory of hand positions for a variety of arm
movements. Obviously the neural microcircuit model assumes here a similar role
as a kernel for support vector machines in machine learning (see [85] and [86] for
details).

This chapter demonstrates that controllers made from generic neural microcir-
cuits are functionally “generic” in the sense that readouts from such circuits can
learn to control the arm irrespective of the model that is used to describe the
arm dynamics, the type of feedbacks used (visual or proprioceptive), and also the
type of movements that are generated. This is shown here by teaching the same
generic neural circuit to generate reaching movements for two different models,
with different kinds of feedbacks. The first model used (Model 1) is the standard
model of a 2-joint robot arm described in [16]. The other model [87, 88] comes
from biology and relates the activity of neurons in the cortical motor area M1 to
the kinematics of the arm (Model 2).

It turns out that both the spatial organization of information streams, espe-
cially the population coding of slowly varying input variables, and the inherent
dynamics of the generic neural microcircuit model have a significant impact on
its capability to generate movements. In particular it is shown that the inherent
dynamics of neural microcircuits allows these circuits to cope with rather large
delays for proprioceptive and sensory feedback. In fact it turns out that the per-
formance of this generic neurocontroller is optimal for feedback delays that lie in
the biologically realistic range of 50 to 280 ms. Furthermore, it is shown that
other readout neurons from the same neural microcircuit model can be trained
simultaneously to estimate results of such feedbacks, and that in the absence of
real feedbacks the precision of reaching movements can be improved significantly
if the circuit gets access to these estimated feedbacks.

This work complements preceding work where generic neural microcircuit mod-
els were used in an open loop for a variety of sensory processing tasks ([17], [18],
[85]). It turns out that the demands on the precision of real-time computations
carried out by such circuit models are substantially higher for closed-loop appli-
cations such as those considered in this chapter. The paradigm for movement
generation discussed in this chapter is somewhat related to preceding work [89],
where a fixed parametrized system of differential equations was used instead of
neural circuits, and to the melody-generation and prediction of chaotic time series
with artificial neural networks in discrete time of [20, 14]. In these other models
no effort is made to choose a movement generator whose inherent dynamics has
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3.2 Generic neural microcircuit models

a similarity to that of biological neural circuits. It has not yet been sufficiently
investigated whether feedback, especially feedback with a realistic delay, can have
similarly beneficial consequences in these other models.

No effort was made in this chapter to make the process by which the neural
circuit model (more specifically: the readouts from this circuit) learns to generate
specific movement primitives in a biologically realistic fashion. Hence the results
of this chapter only provide evidence that a generic neural microcircuit can hold
the information needed to generate certain movement primitives, and that it can
generate a suitable slow dynamics with high precision.

The structure of this chapter is as follows: Section 3.2 describes the neural
microcircuit model. This is followed by the description of the robot arm model
(Model 1) in section 3.3. Sections 3.4, 3.5, and 3.6 present results of computer
simulations for Model 1. Section 3.7 repeats the experiment described in section
3.4 for the biologically motivated arm model (Model 2). Finally section 3.8 dis-
cusses robustness issues related to this new paradigm for movement generation.

A preliminary version of some results from this chapter (for movements of
just one fixed temporal duration, and without Model 2) have previously been
presented at a conference [10].

3.2 Generic neural microcircuit models

In contrast to common artificial neural network models, neural microcircuits in
biological organisms consist of diverse components such as different types of spik-
ing neurons and dynamic synapses, that are each endowed with an inherently
complex dynamics of its own. This makes it difficult to construct neural circuits
out of biologically realistic computational units that solve specific computational
problems, such as generating arm movements to various given targets. In fact,
the generation of a smooth arm movement appears to be particularly difficult for
a circuit of spiking neurons, since the dynamics of arm movements takes place
on a time scale of hundreds of milliseconds, whereas the inherent dynamics of
spiking neurons takes place on a much faster time scale. This chapter demon-
strates that this problem can be solved, even with a generic neural microcircuit
model whose internal dynamics has not been adjusted or specialized for the task
of creating arm movements, by taking as activation command for a muscle at any
time t a weighted sum w × z(t) of the vector z that describes the current firing
activity of all neurons in the circuit.1 The weight vector w, which remains fixed
after training, is the only part that needs to be specialized for the generation of

1As usual a constant component is formally included in z(t) so that the term w × z(t) may
contain some fixed bias.
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3 Movement generation with circuits of spiking neurons

a particular movement task. Each component of z(t) models the impact that a
particular neuron v may have on the membrane potential of a generic readout
neuron. Thus each spike of neuron v is replaced by a pulse of unit amplitude 1
that decays exponentially with a time constant of 30 ms. In other words: z(t) is
obtained by applying a low-pass filter to the spike trains emitted by the neurons
in the generic neural microcircuit model. Note that it is already known that hand
trajectories of monkeys can be recovered from the current firing activity z(t) of
neurons in motor cortex through the same types of weighted sums as considered
in this chapter [84].

In principle one can of course also view various parameters within the circuit
as being subject to learning or adaptation, for example in order to optimize the
dynamics of the circuit for a particular range of control tasks. However this
has turned out to be not necessary for the applications described in this chap-
ter, although it remains an interesting open research problem how unsupervised
learning could optimize a circuit for motor control tasks. One advantage of just
viewing the weight vector w as being plastic is that learning is quite simple and
robust, since it just amounts to linear regression – in spite of the highly nonlinear
nature of the control tasks to which this set-up is applied. Another advantage
is that the same neural microcircuit could potentially be used for various other
information processing tasks (e.g. prediction of sensory feedback, see section 3.6)
that may be desirable for the same or other tasks.

The generic microcircuit models used for the closed loop control tasks described
in this chapter were similar in structure to those that were earlier used for various
sensory processing tasks in an open loop. More precisely, the circuits considered
consisted of 600 leaky-integrate-and-fire neurons arranged on the grid points of a
20×5×6 cube in 3D (see Fig. 3.1). 20 % of these neurons were randomly chosen to
be inhibitory. Synaptic connections were chosen according to a biologically real-
istic probability distribution that favored local connections but also allowed some
long range connections. Biologically realistic models for dynamic synapses were
employed instead of the usual static synapses of artificial neural network models.
Parameters of neurons and synapses were chosen to fit data from microcircuits
in rat somatosensory cortex (based on [66] and [65]), see section 3.10.

In order to test the noise robustness of movement generation by the neural
microcircuit model the initial condition of the circuit was randomly drawn (initial
membrane potential for each neuron drawn uniformly from the interval [13.5 mV,
14.9 mV], where 15 mV was the firing threshold). In addition a substantial
amount of noise was added to the input current of each neuron throughout the
simulation at each time-step, a new value for the noise input current with mean
0 and SD of 1 nA was drawn for each neuron and added (subtracted) to its input
current.
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3.2 Generic neural microcircuit models

Figure 3.1: Spatial arrangement of neurons in the neural microcircuit models con-
sidered in this chapter. The neurons in the 6 layers on the left hand side encode the
values of the 6 input/feedback variables xdest, ydest, θ1(t − ∆), θ2(t − ∆), τ1(t), τ2(t) in
a standard population code. Connections from these 6 input layers (shown for a few
selected neurons), as well as connections between neurons in the subsequent 6 process-
ing layers are chosen randomly according to a probability distribution discussed in the
text (a typical example is shown).

The neural circuit receives in the case of the arm model that is considered in
sections 3.3 - 3.6 (Model 1) analog input streams from 6 sources (from 8 sources in
the experiment with internal predictions discussed in Fig. 3.8 and 3.9). A critical
factor for the performance of these neurocontrollers is the way in which these
time-varying analog input streams are fed into the circuit. The outcomes of the
experiments discussed in this chapter would have been all negative if these analog
input streams were fed into the circuit as time-varying input currents. Apparently
the variance of the resulting spike trains were too large to make the information
about the slowly varying values of these input streams readily accessible to the
circuit. Therefore a standard form of population coding ([90] was applied. Each
of the 6 time varying input variables was mapped onto an array of 50 symbolic
input neurons with bell-shaped tuning curves (see section 3.10). Thus the value
of each of the 6 input variables is encoded at any time by the output values of the
associated 50 symbolic input neurons (of which at least 43 neurons output at any
time the value 0). The neurons in each of these 6 input arrays are connected2 with
one of the 6 layers consisting of 100 neurons in the circuit of 100×6 ((20×5)×6)
integrate-and-fire neurons, providing a time-varying input current to a randomly
selected subset of integrate-and-fire neurons on that layer; see Fig. 3.1.

2λ = 3.3, in the formula for the connection probability given in the section 3.10.
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3 Movement generation with circuits of spiking neurons

3.3 A 2-joint robot arm as a benchmark nonlin-

ear control task

Figure 3.2: Closed loop application of a generic neural microcircuit. The weight
vectors of the linear readouts from this circuit that produce the next motor commands
τ1(t+1), τ2(t+1) are the only parameters that are adjusted during training. After train-
ing the neural circuit receives in this closed loop as inputs a target position xdest, ydest

for the tip of the robot arm (in cartesian coordinates; these input remain constant
during the subsequent arm movement) as well as feedback θ1(t − ∆), θ2(t − ∆) from
the arm representing previous values of joint angles delayed by an amount ∆, as well
as “efferent copies” τ1(t), τ2(t) of its preceding motor commands. All the dynamics
needed to generate the movement is then provided by the inherent dynamics of the
neural circuit in response to the switching on of the constant inputs (and in response
to the dynamics of the feedbacks). During training of the readouts from the generic
neural circuit the proprioceptive feedbacks θ1(t−∆), θ2(t−∆) and the efferent copies of
previous motor commands τ1(t), τ2(t) are replaced by corresponding values for a target
movement which are given as external inputs to the circuit (“imitation learning”).

Initially a generic neural microcircuit model was trained (see Fig. 3.1 and
Fig. 3.2) to control a standard model for a 2-joint robot arm (Model 1), see
Fig. 3.3. This model is used in [16] as a standard reference model for a complex
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3.3 A 2-joint robot arm as a benchmark nonlinear control task

nonlinear control task (see in particular ch. 6 and 9). It is assumed that the arm
is moving in a horizontal plane, so that gravitational forces can be ignored.

1
l

2
l

11
, mI

22
, mI

Θ , τ1 1

Θ , τ2 2

l
c1

l
c2

Figure 3.3: Standard model of a 2-joint robot arm.

Using the well-known Lagrangian equation in classical dynamics, the dynamic
equations for this arm model are given by equation 4.1:

[

H11 H12

H21 H22

] [

θ̈1

θ̈2

]

+

[

−hθ̇2 −h(θ̇1 + θ̇2)

hθ̇1 0

] [

θ̇1

θ̇2

]

=

[

τ1

τ2

]

(3.1)

with θ = [θ1 θ2]
T being the two joint angles, τ = [τ1 τ2]

T being the joint input
torques to the two joints, and

H11 = m1lc1
2 + I1 + m2[l1

2 + lc2
2 + 2 l1lc2 cos θ2] + I2

H12 = H21 = m2l1lc2 cos θ2 + m2lc2
2 + I2

43



3 Movement generation with circuits of spiking neurons

H22 = m2lc2
2 + I2

h = m2l1lc2 sin θ2 .

Equation 4.1 can be compactly written as:

H(θ) θ̈ + C(θ, θ̇) θ̇ = τ

where H represents the inertia matrix, and C represents the matrix of Coriolis
and centripetal terms. I1, I2 are the moments of inertia of the two joints. The
values of the parameters that were used in these simulations were: m1 = 1,m2 =
1, lc1 = 0.25, lc2 = 0.25, I1 = 0.03, I2 = 0.03.

The closed loop control system that was used is shown in Fig. 3.2. During
training of the weights of the linear readouts from the generic neural microcircuit
model the circuit was used in an open loop with target values for the output
torques provided by equation 4.1 (for a given target trajectory {θ1(t), θ2(t)}),
and feedbacks from the plant replaced by the target values of these feedbacks for
the target trajectory. The delay ∆ of the proprioceptive or sensory feedback is
assumed to have a fixed value of 200 ms, except for section 3.6 which describes
the impact of this value for the precision of the movement. For each such target
trajectory 20 variations of the training samples were generated, for which at each
time step3 t a different noise value of 10−5 × ρ was added to each of the input
channels where ρ is a random number drawn from a gaussian distribution with
mean 0 and SD 1, multiplied by the current value of that input channel. The
purpose of this extended training procedure was to make the readout robust with
regard to deviations from the target trajectory caused by faulty earlier torque
outputs given by the readouts from the neural circuit (see section 3.8). Each
target trajectory had a time duration of 500 ms.

3.4 Teaching a generic neural microcircuit

model to generate basic movements

As a first task, the generic neural microcircuit model described in section 3.2, was
taught to generate with the 2-joint arm described in section 3.3, the 4 movements
indicated in Fig. 3.4. In each case the task was to move the tip of the arm
from point A to point B on a straight line, with a biologically realistic bell-
shaped velocity profile. The two readouts from the neural microcircuit model

3All time steps were chosen to have a length of 2 ms, except for the experiment reported in
Fig. 3.6, where a step size of 1 ms was used to achieve a higher precision.
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Figure 3.4: Initial position A and end position B of the robot arm (Model 1) for 4
target movements, scaled in meters. The target trajectory of the tip of the robot arm
and of the elbow are indicated by dashed and dashed/dotted lines. One sees clearly that
even simple linear movements of the tip to the arm require quite nonlinear movements
of the elbow.

were trained by linear regression to output the joint torques required for each of
these movements.4

20 noisy variations of each of the 4 target movements were used for the training
of the two readouts by linear regression, as specified in section 3.3. Note that each
readout is simply modeled as a linear gate with weight vector w applied to the
liquid state x(t) of the neural circuit. This weight vector is fixed after training,
and during validation all 4 movements are generated with this fixed weight vector

4 Training data were generated as follows: For a given start point 〈xstart, ystart〉 and target
end point 〈xdest, ydest〉 of a movement (both given in cartesian coordinates) an interpolating
trajectory of the tip of the arm was generated according to the following equation given in [91]:

x(t) = xstart + (xstart − xdest) · (15τ4 − 6τ5 − 10τ3)

y(t) = ystart + (ystart − ydest) · (15τ4 − 6τ5 − 10τ3)

where τ = t/MT and MT is the target movement time (in this case MT = 500 ms). From this
target trajectory for the endpoint of the robot arm, target trajectories of the angles Θ1,Θ2 of
the robot arm were generated by applying standard equations from geometry (see e.g. [92]).
From these the target trajectories of the torques were generated according to equ. (4.1).
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Figure 3.5: Target trajectories of the tip of the robot arm as in Fig. 3.4 (solid) and
resulting trajectories of the tip of the robot arm in a closed loop for one of the test
runs (dashed). The dots around the target end points show the end-points of the tip
of the robot arm for 10 test runs for each of the movements (enlarged inserts show
a 20 cm × 20 cm area with target end point B marked by a black open triangle.
Differences are due to varying initial conditions and simulated inherent noise of the
neural circuit. Nevertheless all movement trajectories converged to the target, with an
average deviation from the target end point of 4.72 cm, and the SD of 0.85 cm (scale
of figures in m).

at the readout.

The performance of the trained neural microcircuit model during validation
in the closed loop (see Fig. 3.2) is demonstrated in Fig. 3.5. When the circuit
receives as input the coordinates 〈xdest, ydest〉 of the endpoint B of one of the target
movements shown in Fig. 3.4, the circuit autonomously generates in a closed loop
the torques needed to move the tip of the 2-joint arm from the corresponding
initial point A to this endpoint B 5.

5In these experiments no effort was made to stabilize the endpoint of the arm at or near
the target position. Rather the movement was externally halted at the end of the allotted time
period of 500 ms. Hence the neural circuit model acts as a movement generator, rather than as
a controller. However I am not aware of a fundamental obstacle which would make it impossible
to teach a circuit to stabilize the arm once it has reached the target position (which the circuit
receives as an extra input).
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Figure 3.6: Demonstration of the temporal integration capability of the neural con-
troller. The data shown are for a validation run for a circuit that has been trained to
generate a movement that requires an intermediate stop and then autonomous contin-
uation of the movement after 50 ms. a) Spike raster of the 600 neurons on the right
hand side of Fig. 3.1. Note that the readout neurons receive at time t only information
about the last few spikes before time t (more precisely: they receive at time t the liquid
state x(t) of the circuit as their only input). b) Target time courses of the joint angles
θ1, θ2, joint torques τ1, τ2 and of the velocity of the tip of the robot arm are shown as
solid line, actual time courses of these variables during a validation run in closed loop
as dashed lines.

Obviously temporal integration capabilities of the controller are needed for the
control of many types of movements. The next experiment was designed to test
explicitly this capability of neurocontrollers constructed from generic circuits of
spiking neurons. Fig. 3.6 shows results for the case where the readouts from
the neural microcircuit have been trained to generate an arm movement with an
intermediate stop of all movement from 225 to 275 ms (see the velocity profile
at the bottom of Fig. 3.6). The initiation of the continuation of the movement
at time t = 275 ms has to take place without any external cue, just on the basis
of the inherent temporal integration capability of the neural circuit. For the
sake of demonstration purposes I chose for the experiment reported in Fig. 3.6 a
feedback delay of just 1 ms, so that all circuit inputs are constant during 49 ms
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of the 50 ms while the controller has to wait, forcing the readouts to decide just
on the basis of the inherent circuit dynamics when to move on. Nevertheless the
average deviation of the tip of the robot arm for 20 test runs (with noisy initial
conditions and noise on feedbacks as before) was just 6.86 cm, and the bottom
part of Fig. 3.6 shows (for a sample test run) that the tip of the robot arm came
to a halt during the period from 225 to 275 ms, and then autonomously continued
to move.

3.5 Generalization capabilities

The trained neurocontroller (with the weights of the linear readouts being the
only parameters that were adjusted during training) had some limited capabil-
ities to generate arm-reaching movements to new targets. For the experiment
reported in Fig. 3.7, the circuit was trained to generate from a common initial
position reaching movements to 8 different target positions, given in terms of
their Cartesian coordinates as constant inputs 〈xdest, ydest〉 to the circuit. After
training the circuit was able to generate with fairly high precision reaching move-
ments to other target points never used during training, provided that they were
located between target points used for training. The autonomously generated
reaching movements moved the tip of the robot arm on a rather straight line
with bell-shaped velocity profile, just as for those reaching movements to targets
that were used for training.

3.6 On the role of feedback delays and au-

tonomously generated feedback estimates

Our model assumes that the neural circuit receives as inputs in addition to the
constant target end points and efferent copies τ1(t), τ2(t) of its movement com-
mands with very little delay, also proprioceptive or visual feedback that provides
at time t information about the values of the angles of the joints at time t − ∆.
Whereas it is quite difficult to construct circuits or other artificial controllers for
imitating movements that can benefit significantly from feedback (for example
with the approach of [89]), especially if this feedback is significantly delayed, it
is shown in Fig. 3.8 that neurocontrollers built from generic neural microcircuit
models are able to generate and control movements for feedbacks with a wide
range of delays. In fact, Fig. 3.8 shows that the smallest deviation between the
target end point 〈xdest, ydest〉 and the actual end point of the tip of the robot
arm is not achieved when this delay ∆ has a value of 0, but for a range of delays
between 50 and 280 ms. In order to make sure that this surprising result is not an
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Figure 3.7: Generation of reaching movements to new target end points that lie
between end points used for training. a) Generalization of movement generation to 5
target end points (small circles) which were not among the 8 target end points (small
squares) that occurred during training. Movements to a new target end point was
initiated by giving its Cartesian coordinates as constant inputs to the circuit. Average
deviation for 15 runs with new target end points: 10.3 cm (4.8 cm for target end points
that occurred during training). b) The velocity profile for one of the movements to a
new target end point (solid line is ideal bell-shaped velocity profile, actual - dashed).
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Figure 3.8: Influence of feedback delay ∆ on movement error. Error is defined as
the difference of desired and observed end-point of movement. The delay ∆ is for
proprioceptive feedbacks θ1(t − ∆), θ2(t − ∆). The curves show the averages and the
vertical bars show the SD of the data achieved for 400 movements for each value of ∆
(4 different movements as shown in Fig. 3.4 repeated 10 different times with different
random initial conditions of the circuit and different online noise for each of 10 randomly
drawn generic neural microcircuit models). Panels a), b), c) show these data for 3
different movement durations: 300, 500, and 700 ms. Panel d) shows in the upper
curve results for a slightly larger neural circuit (consisting of 800 instead of 600 early
integrate-and-fire neurons). The lower (dashed) curve in d) shows the performance of
the same circuits when internally generated estimates of proprioceptive feedbacks (for a
delay of 200 ms) were fed back as additional inputs to the neural circuit. Note that the
use of such internally estimated feedbacks not only improves the movement precision
for all values of the actual feedback delay ∆ expect for ∆ = 200ms, but also reduces
the SD of the precision achieved for different circuits considerably.
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artifact of some particular randomly drawn neural microcircuit model or a par-
ticular arm movement, it has been tested on each of 10 randomly drawn neural
microcircuits with 12 different movements (4 trajectories as shown in figure 3.4,
each created at 3 different speeds, resulting in movement times of 300, 500 and
700 ms). The result of these statistical experiments are reported in Fig. 3.8 a), b),
c). The rightmost point on each of the 3 curves shows the performance achieved
without any feedback (since for this point the delay of the feedback is as large as
the duration of the whole movement). Compared with that, feedback with a suit-
able delay reduces the imprecision of the movement by at least 50 %. Altogether
these data show that the best values for the feedback delay lie in the range of 50
to 280 ms. The upper bound for this interval depends somewhat on the duration
of the movement. A possible explanation for the fact that feedbacks with a delay
of less than 50 ms are less helpful is that in this case the current target circuit
output is very similar to the currently arriving feedback, and hence it is more
difficult for the circuit to learn the map from current feedback to current target
output in a noise-robust fashion. In addition a delayed feedback complements
the inherent temporal integration property of the neural microcircuit model (see
[85]), and therefore tends to enlarge the time constant for the fading of memory in
the closed loop system. Hence these neurocontrollers perform best for a range of
feedback delays that contain typical values of actual delays for proprioceptive and
visual feedback measured in a variety of species (e.g. 120 ms for proprioceptive
feedback and 200 ms for visual feedback is reported in [93]).

In another computer experiment I have examined the potential benefit of using
estimated feedback for the neurocontroller under consideration. Estimation of
feedback is very easy for such neural architecture, since the generic neural mi-
crocircuit model that generates (via suitable readouts) the movement commands
has not been specialized in any way for this movement generation task, and can
simultaneously be used as information reservoir for estimating feedbacks. More
precisely, 2 additional readouts were added and trained to estimate at any time
t the values of the joint angles θ1 and θ2 at time t − 200 ms, i.e., 200 ms earlier.
These delayed values were chosen as targets for these 2 additional readouts during
training, since the previously reported results (see in particular Fig. 3.8b)) show
that a feedback of the actual values of θ1 and θ2 with a delay of 200 ms is quite
beneficial for the precision of the movement that is generated. After training, the
weights of these 2 additional readouts were frozen (like for the first 2 readouts
which produce the movement commands).6 The outputs of these 2 additional

6Since neither the training of the readouts for movement commands nor the training of the
readouts for retrodiction of sensory feedback changes the neural circuit itself, it does not matter
whether these readouts are trained sequentially or in parallel. In these experiments both types
of readouts were trained simultaneously, while the target values of both θ1(t−∆), θ2(t−∆) and
θ1(t− 200), θ2(t− 200) were given to the circuits as additional inputs during training (where ∆
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readouts were also fed back into the circuit (without delay), see Fig. 3.9. Com-
pared with the architecture shown in Fig. 3.2 the neural circuit receives now 2
additional time-varying inputs. These were fed into the circuit in the same way
as the other 6 inputs (described in section 3.2). Thus 2 additional arrays consist-
ing of 50 neurons each were used for a population coding of these time-varying
input variables, and 2 “columns” consisting of 100 neurons each were added of
the neural circuit that received the outputs of these 2 additional input-arrays.

Figure 3.9: Information flow for the case of autonomously generated estimates θ̂(t−
200 ms) of delayed feedback θ(t − 200 ms). Rest of the circuit as in Fig. 3.2.

The top solid line in Fig. 3.8 d) shows the result (computed in the same way
as in the other panels of Fig. 3.8 for the case when the values of the estimates of
θ1(t−200 ms) and θ2(t−200 ms) produced by the 2 additional readouts were not
fed back into the circuit. The bottom dashed line shows the result when these
estimates were available to the circuit via feedback. Although these additional
feedbacks do not provide any new information to the circuit, but only collect
and redistribute information within the neural circuit; this additional feedback
significantly improved the performance of the neurocontroller for all values of the
actual delay ∆ of feedback about the values of θ1 and θ2 (except for ∆ = 200 ms).
The value on the rightmost point of the lower curve for ∆ = 500 ms shows
the improvement achieved by using estimated sensory feedback in case when no
feedback arrives at all, since the total movements lasted for 500 ms. Altogether

is the assumed actual feedback delay plotted on the x-axis in Fig. 3.8 d)).
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3.7 Application to a biological model for arm control

the use of internally estimated feedback improved the precision of the movement
by almost 50 % for most values of the delay of the actual feedback.

3.7 Application to a biological model for arm

control

Whereas in the preceding section I have focused on a model for a robot arm as a
standard example for a highly nonlinear control task, I will demonstrate in this
section that the same paradigm for movement generation can also be applied to
a well known model for cortical control of arm movements in primates [88, 87].
This model proposes a direct relationship between the firing rate cj of individual
neuron j in primary motor cortex M1 (relative to some baseline firing rate C)
and the kinematics (in Cartesian coordinates) and endpoint force fext of the hand,
which is viewed here simply as the tip of a 2-joint arm:

cj(t − d) =
uT

j

2

(

F−1fext(t) + mẍ(t) + kx(t)
)

+ bbuT
j ẋ(t)c . (3.2)

The vector uj denotes the direction in which the end point force is generated
due to activation of muscles by neuron j (assuming cosine tuning of neurons). In
these simulations I simply took 4 unit vectors uj pointing up, down, left, right.
fext(t) is the endpoint force that the hand applies against external objects. x, ẋ,
and ẍ are the position, velocity and acceleration of the hand respectively (we
usually write 〈x, y〉 for the hand position x in a 2-dimensional space).

Although the precise relationship between the activity of neurons in motor
cortex and the activation of individual muscles is extremely complicated and
highly nonlinear, a derivation given in in [88] suggested that equation 3.2 provides
a quite good (almost linear) local approximation to multijoint kinematics over
a small workspace. As a consequence I have applied this model only for arm
movements when the hand moves on the boundaries of a 28.28 cm × 28,28 cm
square.

Since we are only concerned with the movement of the hand in its workspace,
and do not require the hand to exert an endpoint force on external world objects,
fext(t) can be set to 0.
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3 Movement generation with circuits of spiking neurons
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Figure 3.10: Generation of an arm movement for a biological model for cortical
control of muscle activations. a) Spike raster analogous to Fig. 3.6. b) Solid lines denote
target values and dashed lines show performance of simulated readouts c 1, . . . , c4 from
a simulated microcircuit in motor cortex that receives significantly delayed information
about earlier hand positions as feedback (simulating visual feedback to motor cortex).
Scales for c1, . . . , c4 in N , for x, y in m, for the velocity of the hand in m/s.
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3.8 How to make the movement generation noise-robust

For the sake of simplicity, the transmission delay d from cortex to muscles is
also set to 0 (but this model would work just as well for other values of d). This
simplifies the model to:

cj(t) =
uT

j

2
(mẍ(t) + kx(t)) + bbuT

j ẋ(t)c (3.3)

In the computer experiments this model was simulated with the parameter
values b = 10 Ns/m, k = 50 N/m, and m = 1kg suggested in [88].

In order to produce a paradigm for arm control by cortical circuits I took
a generic cortical microcircuit model consisting of 800 neurons as described in
section 3.2. 4 readouts that received inputs from all neurons in this microcircuit
model were trained by linear regression to assume the role of these 4 neurons
in motor cortex that directly control arm muscles resulting in hand movements
according to equation 3.3.7 These readout neurons were trained to produce 4
different hand movements along the edges of a 28.28 cm × 28.28 cm square
whose diagonals were parallel to the x- and y-axis respectively.

The inputs to the neural microcircuit were the coordinates 〈xdest, ydest〉 of the
desired target end point of the hand, efferent copies of the outputs c1(t), . . . , c4(t)
of motor neurons 1, . . . , 4, and feedback x(t − 200) ms, y(t − 200) ms about
preceding hand positions with a delay of 200 ms that is biologically realistic for
visual feedback into motor cortex. The values of these 8 inputs were fed into
the 800 neuron microcircuit model in the same way as for the 8 input circuit
discussed at the end of the preceding section. The results for this experiment are
shown in 3.10. The average deviation over 40 runs of the tip of the arm from
the desired end-point was 0.13 cm with a SD of 7.2295 × 10−2 cm.

It is interesting to note that the generic neural microcircuit can also learn to
generate movements for this quite different arm model. Another point of interest
is that the control performance of the generic neural microcircuit is independent
of the kind of feedbacks that it is receiving (c.f. angles in the earlier model and
position coordinates in this model).

3.8 How to make the movement generation

noise-robust

Mathematical results from approximation theory (see the appendix of [18] and [51]
for details) imply that a sufficiently large neural microcircuit model (which con-

7Target trajectories of the endpoint of the arm were generated for training as described in
footnote 4. Target outputs cj(t) for the readouts were generated from these trajectories by
equation 3.3.
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3 Movement generation with circuits of spiking neurons

tains sufficiently diverse dynamic components to satisfy the separation property)
can in principle (if combined with suitable static readouts) uniformly approximate
any given time-invariant fading memory filter F .

Additional conditions have to be met for successful applications of neural mi-
crocircuit models in closed-loop movement generation tasks, such as those con-
sidered in this chapter. First of all, one has to assume that the approximation
target for the neural microcircuit, some movement generator F for a plant P ,
is a time-invariant fading memory filter (if considered in an open loop). But
without additional constraints on the plant and/or target movement generator
F one cannot guarantee that neural microcircuits L that uniformly approximate
F in an open loop can successfully generate similar movements of the plant P .
Assume that F can be uniformly approximated by neural microcircuit models
L, i.e., there exists for every ε > 0 some neural microcircuit model L so that
‖(Fu)(t) − (Lu)(t)‖ ≤ ε for all times t and all input functions u(·) that may
enter the movement generator. Note that the feedback f from the plant has
to be subsumed by these functions u(·), so that u(t) is in general of the form
u(t) = 〈u0(t), f(t)〉, where u0(t) are external movement commands8 and f(t) is
the feedback (both u0(t) and f(t) are in general multi-dimensional). Assume
that such microcircuit model L has been chosen for some extremely small ε > 0.
Even if the plant P has the common bounded input bounded output (BIBO)
property, it may magnify the differences ≤ ε between outputs from F and out-
puts from L (which may occur even if F and L receive initially the same input
u) and produce for these two cases feedback functions fF (s), fL(s) whose differ-
ence is fairly large. The difference between the outputs of F and L for these
different feedbacks fF (s), fL(s) as inputs may become much larger than ε, and
hence the outputs of F and L with plant P may eventually diverge in this closed
loop. This situation does in fact occur in the case of a 2-joint arm as plant P .
Hence the assumption that L approximates F uniformly within ε cannot guar-
antee that ‖(FuF )(t) − (LuL)(t)‖ ≤ ε for all t (where uF (t) := 〈u0(t), fF (t)〉 and
uL(t) := 〈u0(t), fL(t)〉), since even ‖(FuF )(t) − (FuL)(t)‖ may already become
much larger than ε for sufficiently large t.

This instability problem can be solved by training the readout from the neural
circuit L to create an “attractor” around the trajectory generated by F in the
noise-free case. This is possible because the current liquid state of the circuit
depends not just on the most recent feedback to the circuit, but also on the
preceding stream of feedbacks (therefore the liquid state also contains information
about which particular part of the movement has to be currently carried out) as
well as on the target end-position 〈xdest, ydest〉. If one trains the readout from

8In these experiments u0(t) was a very simple 2-dimensional function with value 〈0, 0〉 for
t < 0 and value 〈xdest, ydest〉 for t ≥ 0. All other external inputs to the circuit were only given
during training.
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circuit L to ensure that ‖(LuF )(t)−(LuL)(t)‖ stays small when uF (·) and uL(·) did
not differ too much at preceding time steps, one can bound ‖(FuF )(t)−(LuL)(t)‖
by ‖(FuF )(t)−(LuF )(t)‖+‖(LuF )(t)−(LuL)(t)‖ ≤ ε+‖(LuF )(t)−(LuL)(t)‖ and
thereby avoid divergence of the trajectories caused by F and L in the closed-loop
system.

This makes clear why it was necessary to train the readouts of the neural
microcircuit models L to produce the desired trajectory not just for the ideal
feedback uF (t) but also for noisy variations of uF (t) = 〈u0(t), fF (t)〉 that represent
possible functions uL(t) that arise if the approximating circuit L is used in the
closed loop.

3.9 Discussion

Whereas traditional models for neural computation had focused on constructions
of neural implementations of Turing machines or other offline computational mod-
els, more recent results have demonstrated that biologically more realistic neural
microcircuit models consisting of spiking neurons and dynamic synapses are well-
suited for real-time computational tasks ([17], [18], [85], [94]). Previously only
sensory processing tasks such as speech recognition or visual movement analysis
([17], [18], [95]) were considered in this context as benchmark tests for real-time
computing. In this chapter I have applied such generic neural microcircuit models
for the first time in a biologically more realistic closed loop setting, where the
output of the neural microcircuit model directly influences its future inputs.

Obviously closed loop applications of neural microcircuit models provide a
harder computational challenge than open loop sensory processing, since small
imprecisions in their output are likely to be amplified by the plant to yield even
larger deviations in the feedback, which is likely to increase even further the
imprecision of subsequent movement commands. This problem can be solved
by teaching the readout from the neural microcircuit during training to ignore
smaller recent deviations reported by feedback, thereby making the target tra-
jectory of output torques an attractor in the resulting closed-loop dynamical sys-
tem. After training, the learned reaching movements are generated completely
autonomously by the neural circuit once it is given the target end position of the
tip of the robot arm as (static) input.

It is demonstrated that the capability of the neural circuit to generate reaching
movements generalizes to novel target end positions of the tip of the arm that lie
between those which occured during training (see Fig. 3.7). The velocity profile
for these autonomously generated new reaching movements exhibits a bell-shaped
velocity profile, like for the previously taught movements. It is proposed to view
the basic arm movements that are generated in this way as possible implementa-
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3 Movement generation with circuits of spiking neurons

tions of muscle synergies, i.e. of rather stereotypical movement templates [96]. In
this interpretation, the learning of a larger variety of arm movements requires su-
perposition of time-shifted versions of several different basic movement templates
of the type as are considered in this chapter. Such learning on a higher level is a
topic of current research.

Surprisingly the performance of the neural microcircuit model for generating
movements not only deteriorates if the (simulated) proprioceptive feedback is
delayed by more than 280 ms, or if no feedback is given at all, but also if this
feedback arrives without any delay. Our computer simulations suggest that the
best performance of such neurocontrollers is achieved if the feedback arrives with
a biologically realistic delay in the range of 50 to 280 ms. If the delay assumes
other values, or is missing altogether, a significant improvement in the precision
of the generated reaching movements can be achieved if additional readouts from
the same neural microcircuit models that generate the movements are taught to
estimate the values of the feedback with an optimal delay of 200 ms, and if the
results of these internally generated feedback estimates are provided as additional
inputs to the circuit (see Fig. 3.8 d).

Apart from these effects resulting from the interaction of the inherent circuit dy-
namics with the dynamics of externally or internally generated feedbacks, also the
spatial organization of information streams in the simulated neural microcircuit
plays a significant role. The capability of such a circuit to generate movements is
quite bad if information about slowly varying input variables (such as externally
or internally generated feedback) is provided to the circuit in the form of a firing
rate of a single neuron (not shown), rather than through population coding (see
description in section 3.2) as implemented for the experiments reported in this
chapter.

Another interesting point to be noted is that this model for motor control can
successfully learn to control the arm movement irrespective of the model that is
used to describe the dynamics of the arm-movement and the types of feedbacks
that the circuit is receiving. One of the two arm models that was tested (see
section 3.7) is a model for cortical control of muscle activation. Hence this model
also provides a new hypothesis for the computational function of neural circuits
in the motor cortex.

Altogether the results presented in this chapter may be viewed as a first step
towards an exploration of the role of the “embodiment of motion generation
circuitry”, i.e., of concrete spatial neural circuits and their inherent temporal
dynamics, in motor control. This complements the already existing work on the
relevance of the embodiment of actuators to motor control [97].
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3.10 Materials and Methods

3.10 Materials and Methods

3.10.1 Specification of Generic Neural Microcircuit Mod-

els

Neuron parameters: membrane time constant 30 ms, absolute refractory period
3 ms (excitatory neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a rest-
ing membrane potential assumed to be 0), reset voltage drawn uniformly from
the interval [13.8, 14.5 mV] for each neuron, constant non-specific background
current Ib uniformly drawn from the interval [13.5 nA, 14.5 nA] for each neuron,
noise at each time-step Inoise drawn from a Gaussian distribution with mean 0
and SD of 1nA, input resistance 1 MΩ. For each simulation, the initial condi-
tions of each I&F neuron, i.e., the membrane voltage at time t = 0, were drawn
randomly (uniform distribution) from the interval [13.5 mV, 14.9 mV].

The probability of a synaptic connection from neuron a to neuron b (as well
as that of a synaptic connection from neuron b to neuron a) was defined as
C ·exp(−D2(a, b)/λ2), where D(a, b) is the Euclidean distance between neurons a
and b and λ is a parameter which controls both the average number of connections
and the average distance between neurons that are synaptically connected (we set
λ = 1.2). Depending on whether the pre- or postsynaptic neuron were excitatory
(E) or inhibitory (I), the value of C was set according to [66] to 0.3 (EE), 0.2
(EI), 0.4 (IE), 0.1 (II).

The (short term) dynamics of synapses was modeled according to the model
proposed in [65], with the synaptic parameters U (use), D (time constant for
depression), F (time constant for facilitation) randomly chosen from Gaussian
distributions that model empirically found data for such connections.

Depending on whether a and b were excitatory (E) or inhibitory (I), the mean
values of these three parameters (with D,F expressed in seconds, s) were chosen
according to [66] to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25, .7, .02 (IE),
.32, .144, .06 (II). The SD of each parameter was chosen to be 50% of its mean.
The mean of the scaling parameter A (in nA) was chosen to be 70 (EE), 150
(EI), -47 (IE), -47 (II). In the case of input synapses the parameter A had a
value of 70 nA if projecting onto a excitatory neuron and -47 nA if projecting
onto an inhibitory neuron. The SD of the A parameter was chosen to be 70% of
its mean and was drawn from a gamma distribution. The postsynaptic current
was modeled as an exponential decay exp(−t/τs) with τs = 3 ms (τs = 6 ms) for
excitatory (inhibitory) synapses. The transmission delays between neurons were
chosen uniformly to be 1.5 ms (EE), and 0.8 ms for the other connections.

The following input convention was applied. Each input variable is first scaled
into the range [0,1]. This range is linearly mapped onto an array of 50 symbolic
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3 Movement generation with circuits of spiking neurons

input neurons. At each time step, one of these 50 neurons, whose number n(t) ∈
{1, . . . , 50} reflects the current value in(t) ∈ [0, 1] which is the normalized value
of input variable i(t) (e.g. n(t) = 1 if in(t) = 0, n(t) = 50 if in(t) = 1). The
neuron n(t) then outputs at time t the value of i(t). In addition the 3 closest
neighbors on both sides of neuron n(t) in this linear array get activated at time t
by a scaled down amount according to a Gaussian function (the neuron number

n outputs at time step t the value i(t) · 1
σ
√

2π
e

−(n−n(t))2

2π2 , where σ = 0.8).
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Chapter 4

From memory based decisions to

decision based movements

Interval discrimination task is a classical experimental paradigm that is employed to

study working memory and decision making and typically involves four phases. First

the subject receives a stimulus, then holds it in the working memory, then makes a de-

cision by comparing it with another stimulus, and finally acts on this decision, usually

by pressing one of the two buttons corresponding to the binary decision. This chapter

demonstrates that simple linear readouts from generic neural microcircuits that send

feedback of their activity to the circuit, can be trained using identical learning mecha-

nisms to perform quite separate tasks of decision making and generation of subsequent

motor commands. In this sense, the neurocomputational algorithm presented here is

able to integrate the four computational stages into a single unified framework. The

algorithm is tested using two-interval discrimination and delayed-match-to-sample ex-

perimental paradigms as benchmarks.

4.1 Introduction

‘Decision making followed by action selection’ is one of the most demanding and
recurring event in our day to day lives [21]. For example, to choose a drink from
a vending machine, you need to browse through the possible choices, hold the
interesting ones in your working memory, decide which of these choices you want
to buy, and finally press the button corresponding to your choice. The interval
discrimination task [22, 23] is one of the classical experimental paradigms that
is employed to study working memory and decision making. The experiment
typically involves four phases, viz. the initial loading (L) of the first stimulus,
maintaining (M) this stimulus in working memory till the subsequent stimulus is
presented, making a binary decision (D), and finally acting (A) on this decision,
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4 From memory based decisions to decision based movements

usually by pressing one of the two buttons corresponding to the binary choice.

The precise computational and biophysical mechanism(s) through which the
brain is able to execute this load-maintain-decide-act (LMDA) sequence is not
understood. Several theoretical and modeling studies have tried to look at seg-
regated phases of this sequence and give possible explanations for their working
[24, 25, 26]. Typically neurocomputational models of working memory fail to
address how the decisions made by neurons in the prefrontal cortex (PFC), are
converted into motor commands, which are executed by the sensori-motor system
[22, 27, 28]. Similarly, models for computational motor control tend to ignore the
first three phases (LMD), that are responsible for generation of motor commands
[29, 9, 10].

Several interesting modeling approaches for tasks involving working memory
and decision making have been proposed recently [22, 28, 30]. These models
propose different mechanisms e.g. precise tuning of mutual inhibition [22], fine-
tuning of a heterogeneous recurrent network [30], using an integral feedback signal
for inhibitory control [28]; to obtain the persistent neural activity which in turn
stores information in the working memory. Despite existing evidence that shows
synaptic learning as a responsible mechanism for working memory related tasks
[23], all the models described above use static (no learning involved) neural cir-
cuits.

This chapter proposes a neurocomputational architecture that uses synaptic
learning mechanisms (simply linear regression), and is able to integrate the four
phases (LMDA) involved in the process of action selection in presence of a de-
cision, into a unified computational framework. Essentially the neural model
described here integrates two distinct cortical functions viz., working memory
and decision making carried out by the neurons in PFC, and subsequent action
selection executed by the sensorimotor system. More precisely, it is demonstrated
that delayed-decision tasks that are followed by action selection, can be solved, if
feedback from trained linear readouts is provided to generic neural microcircuits
whose internal dynamics has not been optimized for any particular computational
task. Two classical experimental paradigms for interval-discrimination task are
modeled that use different mechanisms to encode external sensory inputs. For
comparison with earlier models of working memory, the unified framework is used
to build a spiking neural network model of two-interval discrimination [22]. Ad-
ditionally, to demonstrate that this computational paradigm is task-independent,
robust to how the external sensory inputs are encoded, and is capable of inte-
grating the A phase, another spiking neural network model is presented for the
delayed-match-to-sample task [23], followed by an arm movement to the decided
goal position.

The core principles behind the working of this model make the assumption
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that the cortex can be thought of as an ultra-high dimensional dynamical sys-
tem, where the afferent inputs arriving from thalamus and the recurrent cortical
feedbacks are churned in a non-linear way to obtain a high-dimensional projection
of the low-dimensional input space. Preceding work has demonstrated that such
high dimensional transient dynamics endows the neural circuit with analog fad-
ing memory (see Appendix) that can provide the circuit enough computational
power for performing open-loop sensory processing tasks [17, 13, 59].

Analog fading memory by itself is not powerful enough to render the circuits
the power to hold information in working memory. The obvious reason being
that analog fading memory by itself has an upper limit on the order of tens of
milliseconds, depending on the time constants of synapses and neurons in the
neural circuit [13], whereas typically working memory holds information on the
order of seconds. Recent results show that precisely tuned synaptic feedback can
be a possible mechanism for maintaining persistent memory[98, 99], and that
feedback from trained readout neurons can induce multiple co-existing “partial
attractors” in the circuit dynamics [7, 8]. These results are further extended
here to demonstrate that even in the presence of feedback noise, such “partial
attractor” states can be maintained by generic neural circuits on the time-scales
of several seconds, that is obviously a requirement for tasks involving working
memory. The results presented in this chapter indicate that simple linear readouts
from generic neural microcircuit models, that send their output as a feedback
signal to the circuit, can be a plausible model of how the interval discrimination
task is executed, and a subsequent action is chosen.

4.2 Generic Neural Microcircuit Models

In contrast to artificial neural networks, neural microcircuits in biological or-
ganisms are composed of diverse components such as different types of spiking
neurons and dynamic synapses, each endowed with an inherently complex dy-
namics of its own. This poses a challenge to construct neural circuits out of
biologically realistic computational units that solve specific computational prob-
lems, e.g. decision making or motor control. In fact, decision making and motor
control are particularly challenging, since these tasks occur on the time scales of
seconds, where as the inherent dynamics of spiking neurons takes place on a much
faster timescale. This chapter demonstrates that this problem can be solved, if
feedback from trained readouts is available to generic neural microcircuits whose
internal dynamics has not been adjusted or specialized for any particular com-
putational task, by taking at any time t, a weighted sum w × y(t) of the vector
y that describes the current firing activity of all neurons in the neural circuit.
The weight vector w, which remains fixed after training, is the only part that
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4 From memory based decisions to decision based movements

needs to be optimized or specialized for the generation of any particular compu-
tational task (decision making or motor control). Each component of y(t) models
the impact that a particular neuron v may have on the membrane potential of a
generic linear readout neuron, which is trained for some specific computational
task. The value of y(t) is obtained by applying a low-pass filter to the spike trains
emitted by neurons in the generic neural microcircuit model. Note that this is
not biologically unrealistic as it has been shown previously that such weighted
sums contain behavior-relevant information [84].

For the experiments described in this chapter, generic cortical microcircuit
models consisting of integrate-and-fire neurons were used, with a high level of
noise that reflects experimental data. Biologically realistic models of dynamic
synapses were used whose individual mixture of pair-pulsed depression and fa-
cilitation (depending on the type of pre- and postsynaptic neuron) was based
on experimental data [65, 66]. These circuits were not created for any specific
computational task. Sparse synaptic connectivity between neurons was generated
(with a biologically realistic bias towards short-range connections) by a proba-
bilistic rule, and synaptic parameters were chosen randomly from distributions
that depended on the type of pre- and postsynaptic neurons (in accordance with
empirical data from [65, 66]). The neurons in the generic cortical microcircuit
models were placed on the integer-points of a 3-D grid, and 20% of these neurons
were randomly chosen to be inhibitory. The probability of a synaptic connection
from neuron a to neuron b (as well as that of a synaptic connection from neuron b
to neuron a) was defined as C ·exp(−D2(a, b)/λ2), where D(a, b) is the Euclidean
distance between neurons a and b, and λ is a parameter which controls both the
average number of connections and the average distance between neurons that
are synaptically connected. Depending on whether the pre- and postsynaptic
neurons were excitatory (E) or inhibitory (I), the value of C was set according
to [66] to 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II).

Neuron Parameters. Membrane time constant 30 ms, absolute refractory pe-
riod 3 ms (excitatory neurons), 2 ms (inhibitory neurons), threshold 15 mV (for
a resting membrane potential assumed to be 0), reset voltage drawn uniformly
from the interval [13.8, 14.5] mV, constant non-specific background current Ib

uniformly drawn from the interval [13.5, 14.5] nA for each neuron, noise at each
time-step Inoise drawn from a Gaussian distribution with mean 0 and SD chosen
for each neuron randomly from a Gaussian distribution over the interval [4.0, 5.0]
nA, input resistance 1 MΩ, the initial condition for each neuron, i.e. its mem-
brane potential at time t = 0, was drawn randomly (uniform distribution) from
the interval [13.5, 14.9] mV.

Synaptic Parameters. The short term dynamics of synapses was modeled
according to the model proposed in [65], with the synaptic parameters U (use),
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D (time constant for depression), F (time constant for facilitation) randomly
chosen from Gaussian distributions that model empirically found data for such
connections. This model predicts the amplitude Ak of the EPSC for the kth spike
in a spike train with interspike intervals ∆1, ∆2, . . . , ∆k−1 through the equations

Ak = w · uk · Rk

uk = U + uk−1(1 − U)exp(−∆k−1/F )

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)exp(−∆k−1/D)

with hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values for
the first spike are u1 = U and R1 = 1 (see [82] for a justification of this version of
the equations, which corrects a small error in [65]). Depending on whether a and
b were excitatory (E) or inhibitory (I), the mean values of the three parameters
U,D, F (with D,F expressed in seconds, s) were chosen according to [66] to be
0.5, 1.1, 0.05 (EE), 0.05, 0.125, 1.2 (EI), 0.25, 0.7, 0.02 (IE), 0.32, 0.144, 0.06
(II). The SD of each of these parameters was chosen to be 50% of its mean.
The mean of the scaling parameter w (in nA) was chosen to be 70 (EE), 150
(EI), -47 (IE), -47 (II). In the case of input synapses the parameter w had a
value of 70 nA if projecting onto a excitatory neuron and -47 nA if projecting
onto an inhibitory neuron. The SD of the parameter w was chosen to be 70% of
its mean and was drawn from a gamma distribution. The postsynaptic current
was modeled by an exponential decay exp(−t/τs) with τs = 3 ms (τs = 6 ms) for
excitatory (inhibitory) synapses. The transmission delays between neurons were
chosen uniformly to be 1.5 ms (EE), and 0.8 ms for the other connections.

4.3 Results

The experiments for tasks described in this chapter consisted of two distinct
phases. In the first phase linear readouts that received inputs from the circuit,
were trained in an open-loop fashion to perform diverse computational tasks (e.g.
to make decisions, to generate a motor command or to predict the joint angles
during the arm movement). During open-loop training, the feedback from read-
outs performing diverse computational tasks were simulated by a noisy version
of their target output (“teacher forcing”). More precisely, at each time-step t, a
different noise value of 0.0001 × ρ × f(t) was added, where ρ is a random num-
ber drawn from a Gaussian distribution with mean 0 and SD 1, and f(t) is the
current value of the feedback signal (signal-dependent noise). Note that teacher
forcing with noisy versions of target feedback values trains these readouts to cor-
rect errors resulting from imprecision in their preceding feedback (rather than
amplifying errors). Each readout neuron was trained by linear regression to out-
put at any time t, a particular target value f(t). Linear regression was applied to
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4 From memory based decisions to decision based movements

a set of data points of the form 〈y(t), f(t)〉, for many time points t, where y(t) is
the output of low-pass filters applied to the spike-trains of pre-synaptic neurons,
and f(t) is the target output. Note that this form of training keeps the internal
dynamics of the neural circuit intact, and only modifies the weight vector w, that
corresponds to the projection of the circuit dynamics onto a linear readout for
the generation of any particular computational task. Performance of a readout
was measured in terms of the correlation value of its target and observed signals
during any trial for all experiments reported in this chapter.

The training phase was followed by a subsequent closed-loop validation phase.
During validation, teacher-signals to the generic neural microcircuits were re-
placed by actual feedback from trained readouts. A standard form of population
coding [100] was employed to encode feedback signals. Each feedback signal was
mapped onto an array of 50 symbolic neurons with bell-shaped tuning curves1.
Thus the value of feedback signal is encoded at any time by the output values of
the associated 50 symbolic neurons (of which at least 43 neurons output at any
time the value 0).

In principle, if significantly larger circuits are used, thereby providing the neu-
ral microcircuits with more robust kernels, then one can also send this feedback
directly to the neurons in the generic neural microcircuit. Nevertheless, popula-
tion coding of feedback variables is suitable in context of this chapter as previous
studies demonstrate that neurons in PFC process information via a population
code [101, 102, 103]. Also population coding in M1 neurons has been shown
to predict movement direction in 2-D [104], as well as 3-D [105, 106, 107, 108]
space, movement trajectories [109, 110, 111], and several other variables crucial
for motor control [112, 113, 114, 115].

4.3.1 The two-interval discrimination task.

In the actual experimental protocol for two-interval discrimination task, a pre-
trained subject is presented with two frequencies f1 and f2, separated by a certain
delay interval. Initially the frequency f1 is loaded into working memory, and its
value is maintained during the delay phase, and on presenting the f2 frequency,
the subject is required to decide whether “f1 > f2?”. A key feature of these

1The following convention was applied. Each feedback signal is first scaled into the range
[0,1]. This range is linearly mapped onto an array of 50 symbolic neurons. At each time step,
one of these 50 neurons, whose number n(t) ∈ {1, . . . , 50} reflects the current value fn(t) ∈ [0, 1]
which is the normalized value of the feedback signal f(t) (e.g. n(t) = 1 if fn(t) = 0, n(t) = 50 if
fn(t) = 1). The neuron n(t) then outputs at time t the value of f(t). In addition the 3 closest
neighbors on both sides of neuron n(t) in this linear array get activated at time t by a scaled
down amount according to a gaussian function (the neuron number n outputs at time step t

the value f(t) · 1

σ
√

2π
e

−(n−n(t))2

2π2 , where σ = 0.8).
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4.3 Results

vibrotactile sensory inputs arriving from secondary somatosensory cortex (S2) to
PFC is that they arrive through identical neural pathways [28], and are encoded
by simple monotonic coding [22, 116, 117]. Two kinds of neurons have been
observed in PFC which show opposite activities in response to the above question
[22]. The first type of neurons, called “+” neurons from now, show an increase in
their activity during the D phase, when the answer to the above question is “yes”,
and the second type of neurons, called “-” neurons from now, show an increase
in their neural activity when the answer to the above question is “no”. The
information required to carry out the task is present in the firing activity of “+”
and “-” neurons independently, and the reason for the simultaneous presence of
both these sets is till now unknown [22], though it has been suggested by Romo’s
group that this may be important for robustness in decision making.

ro+(t)

ro (t)−

z−1

z−1

ro+(t+1)

ro (t+1)−

Model
PFC
Circuit

f
1 f

2

Vibrotactile Input

Figure 4.1: Closed-loop setup for the two-interval discrimination task. The weight
vectors of the “+” and “-” readouts from this circuit, that produce the decision signal,
are the only parameters that are adjusted during training. The model PFC circuit is
made of 300 integrate-and-fire neurons arranged on the integer points of a 20 × 5 × 3
cube. The circuit receives 2 frequencies 〈f1, f2〉 as external input through the same
input lines that have been encoded using a simple monotonic code, and two feedback
signals 〈ro+(t), ro−(t)〉 from the “+” and “-” readouts. The task is to answer the
question if “f1 > f2? The “+”(“-”) neurons show an increase in their activity when the
answer to the above question is “yes”(“no”). The notation z−1 denotes a unit time-step
delay in the feedback signal.

In this setup, the “+” and “-” neurons are modeled as simple linear readouts
that send feedback of their activity to the neural circuit (see Fig. 4.1). The
generic neural microcircuit used in this experiment consisted of 300 integrate-
and-fire neurons arranged on the grid-points of a 20 × 5 × 3 cube in 3D. In
addition to the feedback, the circuit receives external sensory input composed of
2 frequencies (f1 and f2). These vibrotactile frequencies f1 and f2 are presented
during the L and D phases respectively (see Fig. 4.1 and also Fig. 4.2 A)
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Figure 4.2: (A) External frequencies 〈f1 = 18, f2 = 26〉 Hz) for one of the close-
loop validation trials. (B) Stimulus frequencies used in this study. The target (black)
and observed (red) values for the (C) “+” readout, and the (D) “-” readout. (E) A
blowup of 200 ms of resulting firing activity of 100 randomly chosen neurons in the
circuit. Responses of the (F) “+” and (G) “-” readouts for each of the frequency
pairs. The colorbar at upper left indicates the value of f1 used in each trial. (H) Mean
and standard error of correlation values (between the target and observed values) of
“+” readout for trials with progressively higher pruning percentage. (I) The resulting
matrix of correlation values where each square shows the mean correlation value over
10 runs for a particular frequency pair, for a particular pruning percentage. The control
correlation values (no pruning) are shown in the row on the top.
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4.3 Results

through the same input lines, and are coded using simple monotonic coding2. In
the training phase the circuit was trained for 100 trials with the training data
composed of 10 noisy versions of each of the 10 input pairs 〈f1, f2〉 (see Fig. 4.2
B). The target functions of “+” and “-” readouts are as described above (see
Appendix for details). During each trial3, f1 and f2 are presented for 0.5 s each,
during the L and D phases respectively. In the closed-loop validation phase, the
performance was validated for 100 trials, with the external sensory inputs for
these validation trials being 10 noisy versions of each of the 10 input frequency
pairs (not seen during training).

Fig. 4.2 E shows a 200 ms blowup of the circuit response of 100 randomly
chosen neurons (activity of inhibitory neurons shown in red) during one of the
closed-loop validation runs (f1 = 18 Hz, f2 = 26 Hz). The panels C and D of Fig.
4.2 show the target (black) and observed (red) values of the “+” and “-” readouts
during this run4. Panel F and G show the closed-loop validation response of the
“+” and “-” readouts for the 10 pairs of input frequencies, 〈f1, f2〉 (note the
similarity to Fig. 1, panels C and D in [22], which show the actual data from
“+” and “-” neurons in PFC during the two-interval discrimination task).

Robustness. To test the robustness of the neural model, experiments were done
where after the readouts have been trained, a subset κn (κn progressively in-
creased from 0.5% to 5% in 10 trials such that κn ⊂ κn+1) of synapses converging
onto the “+” readouts were randomly chosen and pruned (synaptic weight set to
0). The resulting setup was tested for 100 trials using 10 noisy versions of each
of the 10 frequency pairs 〈f1, f2〉

5. Panels H and I of Fig. 4.2 show the result of
these robustness tests. Panel H shows the mean and standard error of correlation
values between the target and observed values of “+” neuron for progressively
higher levels of pruned synapses6. Panel I shows the resulting matrix of same
correlation values, where each square shows the mean correlation value for 10
validation runs using noisy versions of a particular frequency pair 〈f1, f2〉, for
a particular pruning percentage. The control correlation values (no pruning)
are shown in the row on the top (over 100 validation runs, mean = 0.9625,

2The external input composed of f1 and f2 was encoded by a simple monotonic code by a
set of 50 input neurons with variable transmission delays ∆, uniformly drawn from the interval
[0 10] ms.

3Each trial lasted for 3.5 s, with a simulation time-step of 10 ms. The duration of L, M, and
D phases were 0.5, 2.0, and 0.97 seconds respectively. The cue stimulus f1 was presented for
0.5 s during the L phase (starting at t = 0.03 s), which was followed by the M phase (starting
at t = 0.53 s). The probe stimulus was presented for 0.5 s from the start of D phase (starting
at t = 2.53 s).

4With the correlation values between target and observed signals being 0.97976 for the “+”
neuron and 0.954118 for the “-” neuron respectively.

5Using the same 100 pairs of input frequencies 〈f1, f2〉 for all levels of pruning.
6For 100 validation runs for each level of pruning.
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4 From memory based decisions to decision based movements

SD = 0.0173). Results indicate that the model shows graceful degradation in
presence of suboptimal inputs, and the performance of this model is compa-
rable to other more traditional models of attractor based neural computation [25].

4.3.2 Delayed-match-to-sample followed by a goal-

directed arm movement.

The decisions taken in the PFC region are acted upon by the motor commands
issued by the M1 neurons of the sensorimotor system. To demonstrate that the
neurocomputational paradigm presented in this chapter is capable of integrating
the A phase, and is task independent, delayed-match-to-sample was chosen as an
alternative interval discrimination paradigm. In this task, a pre-trained subject
is presented with a cue visual stimulus during the L phase (for example a small
colored square on a predetermined region of the screen), which is followed by
a delay period (M phase), and subsequently in the D phase two simultaneous
probe stimuli are presented at two different places on the screen, and the subject
is required to decide which of the probe stimuli has the same color as the cue
stimulus, by pressing one of the two buttons corresponding to the binary choice
in the A phase [23].

Fig. 4.3 shows the setup used in this experiment7. For added biological realism,
the neurocomputational function of PFC and M1 were modeled using two separate
generic cortical microcircuits. The circuit modeling PFC function consisted of 500
integrate-and-fire neurons arranged on the grid points of a 20 × 5 × 5 cube and
the circuit modeling M1 was made of 1000 integrate-and-fire neurons arranged
on the grid points of a 20 × 5 × 10 cube.

The model PFC circuit received 3 external inputs (Ccue, the cue color; Cleft,
the left probe color; Cright, the right probe color), and 2 feedback signals (from
the “left” and “right” readouts). The cue stimulus was presented during the L
phase and the probe stimuli were presented during the D phase, at 3 different
locations on the workspace of the arm (see Fig. 4.5 panels A and B). The neurons
in the model PFC circuit made projections to two linear readouts (called “left”
and “right” readouts from now on) which had similar functionality as the “+”
and “-” readouts in the two-interval discrimination task. The “left” readout
showed high activity during the D phase, if the answer to the question “Ccue =
Cleft?” was positive. The “right” readout behaved exactly opposite to this and
showed increased activity in the D phase, if the probe stimulus shown on the right

7For this experiment, the external inputs were encoded using population coding in the similar
fashion as the feedback from trained readouts. For details of the coding paradigm, see section
4.2.
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Figure 4.3: Block diagram depicting the setup used in the delayed-match-to-sample
experiment. The circuit modeling PFC function consisted of 500 integrate-and-fire
neurons arranged on the grid points of a 20×5×5 cube and the circuit modeling M1 was
made of 1000 integrate-and-fire neurons arranged on the grid points of a 20×5×10 cube.
The model PFC circuit received 3 color stimulus 〈Ccue, Cleft, Cright〉 as external inputs,
and 2 feedback signals 〈roleft(t), roright(t)〉) from the “left” and “right” readouts. The
“left”(“right”) neurons show an increase in their activity when Ccue = Cleft(Cright). In
addition to the response of the “left” and “right” readouts, the model M1 circuit receives
4 additional external inputs (Xleft, Yleft, Xright, Yright, the X and Y coordinates of the

center of the left and right probe regions), and 4 feedback signals (θ̂1(t), θ̂2(t), τ1(t),
τ2(t)). The task is to move the arm to the center of the probe region that matches in
color to the cue stimuli.
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Figure 4.4: (A) The left column shows external stimuli to the model PFC circuit
during one of the closed loop validation runs. The right column shows the colors of
the cue, left and right stimuli used in trials. The target (black) and observed (red)
values for the (B) “left” readout, and the (D) “right” readout. Responses of the
(C) “left” and (E) “right” readouts for each of the color triplets. Target (black) and
observed (red) motor commands (joint torques) generated in the A phase for the (F)
shoulder and (G) elbow joints. The target (black), predicted (red) and actual (blue
dashed) values for the joint angles for the (H) shoulder and (I) elbow joints. (J) The
movement of the tip of the robot arm from the resting phase to the decided end-point
occurred with a biologically realistic bell-shaped velocity profile. (K) Histogram of
correlation values between target and observed signals for readouts that made decisions
(“left” and “right”), issued motor commands 〈τ1(.), τ2(.)〉, and predicted the joint angles
〈θ̂1(.), θ̂2(.)〉. The last two plots from the right in panel K also show the histogram of
correlation for between the actual joint angles and their target values (shown in blue).
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matched the cue stimulus. Please see Appendix for details about target functions
for these readouts.

The output of the “left” and “right” readouts were sent as inputs to the model
M1 circuit. In addition, the circuit also received 4 external inputs (Xleft, Yleft,
Xright, and Yright; the X and Y coordinates of the center of the left and right probe
regions), and 4 feedback signals (2 motor and 2 proprioceptive feedbacks). The
arm model used in this experiment (for details, see Appendix) is the standard
model of a 2-joint robot arm described in [16].

The neurons in the model M1 circuit made projections to 4 linear readouts.
Two of these readouts 〈θ̂1(.), θ̂2(.)〉 were trained to predict the current values
of the shoulder and elbow joint angles. The other 2 readouts 〈τ1(.), τ2(.)〉 were
trained to generate joint torques to drive the arm from its resting position to the
center of the probe region that matched the stimuli (see Fig. 4.5 panels A and
B).

During the open-loop training, the circuit was trained for 100 trials8 using 10
noisy versions of each of the 5 input color triplets 〈Ccue, Cleft, Cright〉 (see Fig. 4.4
A, right side). The target trajectory followed by the tip of the arm was generated
using the minimum-jerk model (for details see Appendix) described in [91]. For
the closed loop validation phase, 100 trials were performed using 20 noisy versions
of each of the 5 input color triplets.

Fig. 4.4 shows the result of a closed loop validation run. The target (black)
and observed (red) response of the “left” and “right” readouts are shown in panel
B and D respectively. The panels C and E of Fig. 4.4 show the response of the
“left” and “right” readouts for the 5 input stimuli (each line drawn in the color
of corresponding cue stimulus). Panels F and G show the target (black) and
observed (red) motor commands (joint torques) generated in the A phase. Panels
H and I show the target (black), predicted (red) and actual (blue dashed) values
for the joint angles. The movement of the tip of the robot arm from the resting
phase to the decided end-point occurred with a biologically realistic bell-shaped
velocity profile shown in panel J.

Robustness. The columns in panel K of Fig. 4.4 demonstrate the performance
of this setup over 100 closed-loop validation runs. More precisely, these result
show the histogram of correlation values between the target and observed signals
for the “left” (mean = 0.9962, SD = 0.0018) and “right” (mean = 0.9942, SD

8Each trial lasted for 2.5 s, with a simulation time-step of 10 ms. The duration of L, M,
D and A phases were 0.32, 1.0, 0.6, and 0.5 seconds respectively. The cue stimulus Ccue was
presented for 0.32 s during the L phase (starting at t = 0.08 s), which was followed by the M
phase (starting at t = 0.4 s). Cleft and Cright are presented simultaneously for 0.6 s from the
start of D phase (starting at t = 1.4 s). The A phase (starting at t = 2.0 s) consisted of moving
the arm from the initial resting position to the decided position in 0.5 s (see Fig. 4.4, panel A,
left side)
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Figure 4.5: Typical movement performed by the arm when the cue stimulus matches
the stimulus shown on the (A) left, or (B) right probe location. In both panels, O
denotes the position of the end point of arm before movement initiation. L, R and
C denote the position of the left, right, and cue stimulus. (C) Target trajectories of
the tip of the arm during a movement to the left or right probe location (solid), and
the actual trajectories for one validation run to the left (dashed) and one to the right
(dashed). The open (closed) circles represent the location of the end-point for other
trials at the end of movement when the target location was the center of the left (right)
probe region. (D) Histogram of error values for the 100 trials, where the error was
defined as the Euclidean distance between the target and observed end-point of the
arm.
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= 0.0018) readouts, the readouts that computed the joint torques (τ1(.) : mean
= 0.9246, SD = 0.0247; τ2(.) : mean = 0.9571, SD = 0.0019), and the readouts
that predicted the joint angles (θ̂1(.) : mean = 0.6344, SD = 0.4411; θ̂2(.) : mean
= 0.9899, SD = 0.0047). The last two plots from the right in panel K also show
the histogram of correlation for the actual joint angles with the target (shown in
blue, for θ1 : mean = 0.9733, SD = 0.0282, for θ2 : mean = 0.9887, SD = 0.0035).

The panels A (B) of Fig. 4.5 shows typical movement performed by the arm
when the cue stimulus matches the stimulus shown on the left (right) probe
location. In both panels, O denotes the position of the end point of arm before
movement initiation. L,R and C denote the position of the left, right, and cue
stimulus. Panel C of Fig. 4.5 shows the target trajectories of the tip of the arm
during a movement to the left or right probe location (solid), and the actual
trajectories (dashed) for one validation run to the left and one to the right. The
open (closed) circles represent the location of the end-point for other trials, at
the end of movement, when the target end point was the center of the left (right)
probe region. Panel D shows the histogram of error values for the 100 trials,
where the error was defined as the Euclidean distance between the target and
observed end-point of the arm, for each trial (mean = 0.1083 m, SD = 0.0784 m).

4.3.3 Memory and decision signals from untrained neu-

rons in neural microcircuits

Recordings from randomly chosen task-related neurons in PFC show a strong cor-
relation to memory and decision signals during a working memory task [118, 22].
The results shown in Fig. 4.6 show that randomly chosen neurons from generic
neural microcircuits used in both the tasks discussed in this chapter, also con-
tain strong correlation to the working memory and decision signals. Panel A of
Fig. 4.6 shows the target (solid) and observed (dashed) performance of the “+”
readout during one of the closed-loop validation runs9 of the two-interval discrimi-
nation task. Panel B shows a mean peri-stimulus time histogram (PSTH) derived
from responses of 50 randomly chosen neurons from the layer of 100 neurons that
received this feedback signal in the neural microcircuit used in this experiment.
It was observed that the PSTH signal has strong correlation10 with the observed
value of the “+” readout indicating that the neurons in the generic circuit con-
tained information about the decision signal. Panel C and D show similar results
for a closed-loop validation run during the delayed-match-to-sample task for the

9With the correlation between target and observed signal being 0.979545.
10With the correlation between the PSTH signal and the observed value of the “+” readout

being 0.903421.
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Figure 4.6: Memory and decision signals from untrained neurons in neural microcir-
cuits. (A) The target (solid) and observed (dashed) performance of the “+” readout
during one of the closed-loop validation runs for the two-interval discrimination task.
(B) The PSTH obtained by recording the activity of 50 randomly chosen neurons from
the layer of 100 neurons that received this feedback signal in the neural microcircuit
used in this experiment. Strong correlation was observed between the PSTH signal and
the observed value of the “+” readout indicating that the neurons in the generic circuit
contained information about the decision signal. Panel C and D show similar results for
the “left” readout, during a closed-loop validation run for the delayed-match-to-sample
task.
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“left” readout11. It is to be noted that unlike the response of trained readouts,
the PSTH’s shown in panel B and D show the recordings from neurons in the
circuits which were not trained for any specific tasks.

4.4 Discussion

This chapter describes a new neurocomputational paradigm that uses synaptic
learning mechanisms to present a unified model for decision making followed by
action selection. The model is unified in the sense that identical learning al-
gorithm (simple linear regression) is used to train readouts that make decisions
based on the activity of model PFC circuit, and the readouts that generate mo-
tor commands or predict the joint angles based on the activity of the model
M1 circuit. Biologically realistic neural microcircuit models composed of spiking
neurons and dynamic synapses were used to generate models for two different
interval discrimination paradigms. Initially, for comparison with other models
of working memory, a model was presented in section 4.3.1 for the two-interval
discrimination task that incorporated the L, M and D phases involved in working
memory and decision making. Additionally to show that this paradigm can be
extended to incorporate the A phase, is robust of how external inputs are en-
coded, and is task independent, another model was presented in section 4.3.2 for
the delayed-match-to-sample task with a goal directed movement of a two-jointed
robot arm during the A phase. Note that the A phase for the two-interval dis-
crimination task could easily have been implemented in an identical manner to
the delayed-match-to-sample task, but was avoided to prevent redundancy.

A prominent feature of this neural model is that synaptic learning only occurs
at synapses that project the activity in the neural microcircuit models onto the
linear readout neurons, leaving the circuit dynamics intact. A key advantage
of this learning mechanism is that since only the readouts, and not the neural
circuit itself, have to adapt to specific computational tasks, the same circuit
can support completely different computations in parallel. In principle one can of
course also view various parameters within the circuit as being subject to learning
or adaptation, for example in order to optimize the dynamics of the circuit for
a particular range of computational tasks. However this has turned out to be
not necessary for the tasks described in this chapter, although it remains an
interesting open research problem how unsupervised learning could optimize a
circuit for some particular computational task.

It is to be noted however that although spiking neural circuits were used to
model the interval-discrimination tasks for added biological realism, it is not a

11With the correlation value between the target and observed signal being 0.99789, and the
correlation between the observed value and the PSTH being 0.909589.
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requirement, and any recurrent circuit would give similar results, as long as it
has the kernel property. Readouts make a binary decision by reaching one of the
states corresponding to the decision made by them. The actual point of time when
the readout makes a decision can be thought of as a threshold crossing event, i.e.
the first time when the readout crosses a threshold after the presentation of the
probe stimulus in the D phase.

It should be noted that in principle, the task described in section 4.3.2 can
also be performed by a single large neural microcircuit. Instead 2 separate neural
microcircuits were used to model the functionality of PFC and M1 individually
for added biological realism, with the synaptic input from PFC to M1 being opti-
mized by linear regression. Note that the sparse, long-range synaptic projections
from M1 to PFC were not modeled, as they were not required for this task. More
precisely, these recurrent projections were not modeled since the decision making
process is not influenced by the current action performed, so this feedback had
no computational relevance. The author is confident that adding these synapses
would not have changed the performance, but this was not tested.

The feedback from the trained readouts played an apparently important role
in the neural model described above. Although the generic neural microcircuits
used to model the PFC and M1 circuits are endowed with fading memory due to
the kernel property of the circuits, this is not sufficient for holding information in
working memory for longer timespans ranging in the order of seconds. Apparently
the feedback from trained readouts provides the circuit with additional needed
information that falls outside the window of fading memory, hence enhancing the
information present in the circuit dynamics.

Obviously closed-loop applications of generic neural microcircuit models like
the ones discussed in this chapter present a harder computational challenge than
open-loop sensory processing tasks, since small imprecisions in their output are
likely to be amplified by the plant (e.g. the arm model) to yield even larger
deviations in the feedback, which is likely to further enhance the imprecision
of subsequent outputs. This problem can be solved by teaching the readouts
from the neural microcircuit during training to ignore smaller recent deviations
reported by feedback, thereby making the target trajectory of output torques an
attractor in the resulting closed-loop dynamical system. It is not claimed that
such teacher-signals are biologically realistic, but however they can be interpreted
for example in context of movement generation, as the movements shown by an
instructor during learning of a new motor-skill (“imitation learning”).

One of the potential drawbacks of earlier models of working memory [22, 28]
is their inability to capture the temporal dynamics of real PFC neurons during
the delay period [21]. While the real PFC neurons show a monotonic increase
or decrease in their firing rate during the D phase, the neurons in these models
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have a stationary firing rate in this phase. The neural algorithm presented in
this chapter is able to overcome this challenge, as the readouts can successfully
“learn” to decode the value of the original cue stimuli from its temporally decayed
value.

According to the “internal model” hypothesis [119, 120], there exists an internal
model for each of the tasks that we have learned throughout our lives. One
outcome of such a hypothesis would be that a given neuron may participate with
a different synaptic weight in a number of neural assemblies, each supporting a
different internal model. Interestingly, this is reflected in our setup too, as neurons
in the generic neural circuit make synaptic projections to the set of readouts with
different synaptic weights assigned for each task.

This study also demonstrates the ability of generic neural microcircuit models
to hold “partial attractor” states in their circuit dynamics for significantly longer
and biologically relevant time-scales ranging in the order of a couple of seconds,
even in the presence of noise. The role of feedback in enhancing the inherent
fading memory of a neural circuit is also demonstrated. Further it also shows the
potential of generic neural circuits to integrate the mechanisms involved in the
sense-think-decide-act sequence involved in decision making followed by action
selection, that happen at significantly longer time-scales. The idea of an uniform
modus-operandi across cortical regions is not only attractive, but also intuitively
plausible. Further work is needed to explore the ideas presented here in detail.

4.5 Materials and methods

The model for the two-joint robot arm. The model can be described us-
ing the well known Lagrangian equation in classical dynamics. The dynamic
equations for this arm model are given by equation 4.1:

[

H11 H12

H21 H22

] [

θ̈1

θ̈2

]

+

[

−hθ̇2 −h(θ̇1 + θ̇2)

hθ̇1 0

] [

θ̇1

θ̇2

]

=

[

τ1

τ2

]

(4.1)

with θ = [θ1 θ2]
T being the two joint angles, τ = [τ1 τ2]

T being the joint input
torques to the two joints, and

H11 = m1lc1
2 + I1 + m2[l1

2 + lc2
2 + 2 l1lc2 cos θ2] + I2

H12 = H21 = m2l1lc2 cos θ2 + m2lc2
2 + I2

H22 = m2lc2
2 + I2
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h = m2l1lc2 sin θ2 .

Equation 4.1 can be compactly written as:

H(θ) θ̈ + C(θ, θ̇) θ̇ = τ

where H represents the inertia matrix, and C represents the matrix of
Coriolis and centripetal terms. I1, I2 are the moments of inertia of the two
joints. The values of the parameters that were used in simulations were:
m1 = 1,m2 = 1, lc1 = 0.25, lc2 = 0.25, I1 = 0.03, I2 = 0.03.

The minimum-jerk model. For a given start point 〈xstart, ystart〉 and target
end point 〈xdest, ydest〉 of a movement (both given in Cartesian coordinates), an
interpolating trajectory of the tip of the arm was generated according to the
following equation given in [91]

x(t) = xstart + (xstart − xdest) · (15ζ4 − 6ζ5 − 10ζ3)

y(t) = ystart + (ystart − ydest) · (15ζ4 − 6ζ5 − 10ζ3)

where ζ = t/MT and MT is the target movement time (in this case
MT = 500 ms). From this target trajectory for the endpoint of the robot
arm, the target trajectories of the joint angles θ1, θ2 of the robot arm were
generated by applying standard equations from geometry (see e.g. [121]). From
these the target trajectories of the torques were generated according to equ. (4.1).

The target values for the “+” and “-” neurons. The target values for these
readouts were 0 before the onset of L phase. Following this the target values for
these readouts during L, M, and D phases were modeled as simple scaled sigmoids.
More precisely, for a pair of input frequencies, 〈f1, f2〉, the target value for the
“+” readout, f+(t) is given by:

f+(t) =































































0 0 ≤ t < 0.03 s
(f1 + 20)

1 + e−(−5+10· t−0.03
0.5

)
0.03 < t ≤ 0.53 s

0.7 · (f1 + 20) +

(

0.3 · (f1 + 20)

1 + e−(5−10· t−0.53
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)

)

0.53 < t ≤ 2.53 s

0.7 · (f1 + 20) +

(

60 − 0.7 · (f1 + 20))

1 + e−(−5+10· t−2.53
0.97

)

)

2.53 < t ≤ 3.5 s, f1 > f2

0.7 · (f1 + 20)

1 + e−(5−10· t−2.53
0.97

)
2.53 < t ≤ 3.5 s, f1 < f2

(4.2)
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And in similar fashion, the target value for the “-” readout, f−(t) is given by:

f−(t) =































































0 0 ≤ t < 0.03 s
(64 − f1)

1 + e−(−5+10· t−0.03
0.5

)
0.03 < t ≤ 0.53 s

0.7 · (64 − f1) +

(

0.3 · (64 − f1)

1 + e−(5−10· t−0.53
2

)

)

0.53 < t ≤ 2.53 s

0.7 · (64 − f1)

1 + e−(5−10· t−2.53
0.97

)
2.53 < t ≤ 3.5 s, f1 > f2

0.7 · (64 − f1) +

(

60 − 0.7 · (64 − f1))

1 + e−(−5+10· t−2.53
0.97

)

)

2.53 < t ≤ 3.5 s f1 < f2

(4.3)

The target functions for the “left” and “right” neurons. The target
values for these readouts were 0 before the onset of L phase. Following this the
target values for these readouts during L and D phases were modeled as simple
scaled sigmoids. The target values during the M phase was modeled as a linear
decay. The target value during the A phase was obtained by extrapolating the
value reached during the D phase. The sample and probe colors were encoded by
their hue values that were scaled in the range [0, 1]12. More precisely, for a color
triplet 〈Ccue, Cleft, Cright〉, the target value for the “left” readout, fleft(t) is given
by:

fleft(t) =



























































0 0 ≤ t < 0.08 s
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1 + e−(−5+10· t−0.08
0.32
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0.08 < t ≤ 0.40 s
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(

1 − 0.7 · (Ccue + 0.1))

1 + e−(−5+10· t−1.40
0.60
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)

1.40 < t ≤ 2.0 s, Ccue = Cleft

0.7 · (Ccue + 0.1)

1 + e−(5−10· t−1.40
0.60

)
1.40 < t ≤ 2.0 s, Ccue = Cright

fleft(2.0) t > 2.0
(4.4)

And in similar fashion, the target value for the “right” readout, fright(t) is given
by:

12Keeping the saturation and intensity values at 100%
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fright(t) =
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1 + e−(−5+10· t−0.08
0.32

)
0.08 < t ≤ 0.40 s
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0.7 · (1 − Ccue) +
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0.60

)

)

1.40 < t ≤ 2.0 s, Ccue = Cright

fright(2.0) t > 2.0
(4.5)
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Chapter 5

Conclusions

Chapter 2 demonstrated that persistent memory and online switching of real-
time processing can be implemented in generic cortical microcircuit models by
training a few neurons (within or outside of the circuit) through very simple
learning processes (linear regression, or alternatively – with some loss in perfor-
mance – perceptron learning). The resulting high-dimensional attractors can be
made noise-robust through training, thereby overcoming the inherent brittleness
of constructed attractors. The high dimensionality of these attractors, which
is caused by the small number of synaptic weights that are fixed for their cre-
ation, allows the circuit state to move in or out of other attractors, and to absorb
new information from online inputs, while staying within such high-dimensional
attractor. The resulting virtually unlimited computational capability of fading
memory circuits with feedback can be explained on the basis of the theoretical
results.

Chapter 3 demonstrated that simple linear readouts from generic neural micro-
circuit models consisting of spiking neurons and dynamic synapses can be trained
to generate and control rather complex movements. Whereas traditional models
for neural computation had focused on constructions of neural implementations of
Turing machines or other offline computational models, more recent results have
demonstrated that biologically more realistic neural microcircuit models are well-
suited for real-time computational tasks ([17], [18],[19], [94]). Whereas related
work had so far focused on sensory processing tasks such as speech recognition
or visual movement analysis ([17],[18], [95]) I have applied such models here for
the first time in a biologically more realistic closed loop setting, where the output
of the neural microcircuit model directly influence its future inputs. Obviously
closed loop applications of neural microcircuit models provide a harder compu-
tational challenge than open loop sensory processing, since small imprecisions in
their output are likely to be amplified by the plant to yield even larger devia-
tions in the feedback, which is likely to increase even further the imprecision of
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subsequent movement commands. This problem can be solved by teaching the
readout from the neural microcircuit during training to ignore smaller deviations
reported by feedback, thereby making the target trajectory of output torques
an attractor in the resulting closed-loop dynamical system. After training, the
learned reaching movements are generated completely autonomously by the neu-
ral circuit once it is given the target end position of the tip of the robot arm as
(static) input. Furthermore the capability of the neural circuit to generate reach-
ing movements automatically generalizes to novel target end positions of the tip
of the robot arm that did not occur during training (see Fig. 3.7). Furthermore
the velocity profile for these autonomously generated new reaching movements
exhibits a bell-shaped velocity profile, like for the previously taught movement
primitives. Surprisingly the performance of the neural microcircuit model for
generating movement primitives not only deteriorates if the (simulated) propri-
oceptive feedback is delayed by more than 280 ms, or if no feedback is given at
all, but also if this feedback arrives without any delay. The best performance
is achieved if the feedback arrives with a significant delay in the range of 50 to
280 ms. If the delay assumes other values, or is missing altogether, a significant
improvement in the precision of the generated reaching movements is achieved
after additional readouts from the same neural microcircuit models that generate
the movements have been taught to estimate the values of the feedback with an
optimal delay of 200 ms, and if the results of these internally generated feedback
estimates are provided as additional inputs to the circuit (see Fig. 3.8 b). Apart
from these effects resulting from the interaction of the inherent circuit dynamics
with the dynamics of external or internally generated feedbacks, also the spatial
organization of information streams in the simulated neural microcircuit plays a
significant role. The capability of such a circuit to generate movements is quite
bad if information about slowly varying input variables (such as external or in-
ternally generated feedback) is provided to the circuit in the form of a firing rate
of a single neuron (not shown), rather than through the firing activity of a spa-
tially extended array of inputs (see description in section 3.2) as implemented
for the experiments reported in this chapter. Thus altogether these results may
be viewed as a first step towards an exploration of the role of the “embodiment
of neural computation” in concrete spatially extended neural circuit models and
their resulting inherent temporal dynamics. This may complement the already
existing work on the relevance of the embodiment of actuators to motor control
[97], and might possibly lead to a better understanding of biological motor con-
trol, and also provide new ideas for the design of robot controllers. The paradigm
for movement generation discussed in this chapter is somewhat related to pre-
ceding work [89], where abstract systems of differential equations were used, and
to the melody-generation with artificial neural networks in discrete time of [20].
In these preceding models no effort was made to choose a movement generator

84



whose inherent dynamics has a similarity to that of biological neural circuits. It
has not yet been sufficiently investigated whether feedback; especially feedback
with a realistic delay, can have similarly beneficial consequences in these other
models. No effort was made to make the process by which the neural circuit
model (more specifically: the readouts from this circuit) learn to generate spe-
cific movement primitives in a biologically realistic fashion. Hence the results of
this chapter only provide evidence that a generic neural microcircuit can hold the
information needed to generate certain movement primitives, and once it has this
information it can automatically use it to generate movements to other given tar-
gets. In some organisms such information is provided through the genetic code,
often in combination acquired from observation or trial-and-error. It remains to
be explored to what extent a neural microcircuit model can also learn through
trial-and-error (i.e., reinforcement learning) to execute basic movements, or to
combine movement primitives to yield more complex movements. I believe that
the control framework presented in this chapter, based on a model for a neural
system that can be chosen to be as complex and biologically realistic as one wants
to, provides a quite fruitful platform for investigating the possible role and inter-
action of genetic information as well as various biological learning mechanisms,
since it allows us to explore the role of biologically realistic models for neural
system in the context of a functional closed-loop model where complex real-world
movement control tasks can be addressed.

Possibly some of the results reported in chapter 3 also provide new ideas for
tackling complex robot control tasks even in contexts where superior performance
rather than biological realism in required. As indicated in [19], there are vari-
ous methods for abstracting salient computational functions of generic neural
microcircuits in ways that can be implemented much more efficiently on digital
computers than a straightforward simulation of a neural microcircuit (see [122]).
In this way the inspiration from biological movement control may give rise to
new methods for real-time adaptive robot control that help to solve some of the
challenging open problems in that area.

Chapter 4 presents a new neurocomputational paradigm that uses synaptic
learning mechanisms to present a unified model for working memory and deci-
sion making using biologically realistic neural microcircuit models composed of
spiking neurons and dynamic synapses. Additionally results for the two-interval-
discrimination task show that the neural algorithm is task independent. It is to
be noted however that although spiking neural circuits were used to model the
interval-discrimination tasks for added biological realism, it is not a requirement,
and any recurrent circuit would give similar results, as long as it has the kernel
property.

Readouts make a binary decision by reaching one of the states corresponding
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to the decision made by them. The actual point of time when the readout makes
a decision can be thought of as a threshold crossing event, i.e. the first time when
the readout crosses a threshold after the presentation of the probe stimulus in
the D phase.

It was found that using population coding to encode the inputs projecting on
to model PFC circuits was essential to obtain the demonstrated results. Using
a population of neurons to encode each analog input stream is not unrealistic,
as sufficient evidence exists in current literature of its existence. It is however
not claimed here that the precise mechanism of population coding used in this
chapter is the one used in cortical circuitry of PFC.

The feedback from the trained readouts played an apparently important role
in the neural model described above. Although the generic neural microcircuits
used to simulate the model PFC circuit are endowed with fading memory due to
the kernel property of the circuits, this is not sufficient for holding information in
working memory for longer timespans ranging in the order of seconds. Apparently
the feedback from trained readouts provides the circuit with additional needed
information that falls outside the window of fading memory, hence enhancing the
information present in the circuit dynamics.

This study also demonstrates the ability of generic neural microcircuit models
to hold “partial attractor” states in their circuit dynamics for significantly longer
and biologically relevant time-scales ranging in the order of a couple of seconds,
in presence of noise. Also a point of interest is the robustness of this neurocom-
putational model to factors such as synaptic pruning, and feedback noise.

According to the “internal model” hypothesis [119, 120], there exists an internal
model for each of the tasks that we have learned throughout our lives. One
outcome of such a hypothesis would be that a given neuron may participate with
a different synaptic weight in a number of neural assemblies, each supporting a
different internal model. Interestingly, this is reflected in our setup too, as neurons
in the generic neural circuit make synaptic projections to the set of readouts with
different synaptic weights assigned for each task.

The results presented in chapter 4 demonstrate the role of feedback in enhanc-
ing the inherent fading memory of a neural circuit. Further it also shows the
ability of generic neural circuits to model working memory and decision making,
which happens at significantly longer time-scales.
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