
Dissertation

Control of Multi Component Hybrid
Systems through Qualitative Pre-Selection

Wolfgang Kleißl

Institut für Regelungs- und Automatisierungstechnik
Technische Universität Graz

Fakultät für Elektrotechnik und Informationstechnik
Technische Universität Graz

Betreuer: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Nicolaos Dourdoumas

Graz, im November 2006

Abstract

Many technical systems cannot be adequately captured by a single continuous model, but
one uses several such models to capture the system’s behavior at various modes of operation.
A discrete automaton is used to model the transitions among these modes. Control of such
hybrid systems is difficult as continuously valued and discretely valued variables have to be
considered simultaneously.

This work deals with on-line control of a class of multi-component hybrid models. It
proposes to split-up the hybrid control task into two simpler tasks: First a discretely valued
abstraction of the hybrid model is utilized to efficiently pre-select a few promising sequences of
operational modes by discrete search methods. Second, with the pre-selected mode-sequences
specified the hybrid model can be regarded as time-variant continuous model. With this, the
inputs that are applied to the system can be determined numerically.

To perform the qualitative pre-selection efficiently, a novel type of qualitative model
is introduced. This is an abstraction of each of the hybrid model’s components that can
automatically be pre-compiled off-line. The special structure of the qualitative model allows
straightforward simultaneous operation on the individual component models. Additionally,
this structure can be related to the structure of the hybrid model to increase pre-selection
efficiency.

However, qualitative models generally have the drawback that they also model qualitative
behaviors which are not abstractions of any behavior of the hybrid model. If such a behavior
is pre-selected, subsequently no valid numerical solution can be found. So a careful interplay
between qualitative pre-selection and numerical deduction of the system inputs is introduced
that helps to quickly focus onto a valid (sub optimal) solution to the hybrid control task.

i

ii

Kurzfassung

Viele technische Systeme lassen sich nicht ausreichend gut durch ein einzelnes kontinuierliches
Modell beschreiben, sondern man verwendet mehrere solcher Modelle um das Verhalten des
Systems in seinen verschiedenen Betriebszuständen zu beschreiben. Ein diskreter Automat
modelliert dabei die Übergänge zwischen diesen Betriebszuständen. Die Regelung solcher
hybrider Systeme gestaltet sich schwierig, da kontinuierliche und diskretwertige Variablen
simultan beachtet werden müssen.

Diese Arbeit behandelt die online-Regelung einer Klasse solcher Systeme die jede Kompo-
nente eines aus mehreren Komponenten aufgebauten Systems als hybriden Automaten mod-
elliert. Es wird vorgeschlagen, die hybride Regelungsaufgabe in zwei einfachere Teile aufzus-
palten: Zuerst wird eine rein diskretwertige Abstraktion des hybriden Modells herangezogen,
um effizient durch diskrete Suchmethoden wenige günstige Abfolgen von Betriebszuständen
vorzuselektieren. Durch Festlegung dieser Betriebszustände kann das hybride Modell als zeit-
variables kontinuierliches Modell betrachtet werden. Damit können die Eingangsgrößen, die
auf das System aufgeschaltet werden sollen, rein numerisch ermittelt werden.

Um diese Vorselektion effizient durchführen zu können, wird eine neue Art eines qualita-
tiven Modells vorgestellt. Dies ist eine komponentenweise Abstraktion des hybriden Modells,
die automatisch vorab kompiliert werden kann. Die spezielle Struktur des Modells erlaubt
bei der qualitativen Vorselektion, die einzelnen Komponentenmodelle einfach simultan zu
betrachten. Zusätzlich kann diese Struktur an die Struktur des hybriden Modells angelehnt
werden, um noch effizienter vorselektieren zu können.

Qualitative Modelle haben im Allgemeinen aber den Nachteil, dass sie auch qualitative
Verhalten modellieren, die keine Abstraktion eines Verhaltens des hybriden Modells sind.
Wenn die qualitative Vorselektion auf so einem Verhalten basiert, kann nachfolgend numerisch
keine gültige Lösung gefunden werden. Deshalb wird eine gezielte Interaktion zwischen qual-
itativer Vorselektion und numerischer Ermittlung der Eingangsgrößen vorgesehen, die dabei
hilft, rasch auf eine gültige (suboptimale) Lösung der hybriden Regelungsaufgabe zuzus-
teuern.

iii

iv

Vorwort

Die vorliegende Arbeit entstand am Institut für Regelungs- und Automatisierungstechnik
der Technischen Universität Graz. Ich möchte mich bei allen Mitarbeitern dieses Instituts
herzlich bedanken, die mir immer wieder mit Rat und Kritik zur Seite gestanden sind und so
zum Gelingen der Arbeit beigetragen haben.

Meinem Betreuer Prof. N. Dourdoumas danke ich besonders für seine – aufgrund meiner
beruflichen Tätigkeit manchmal strapazierte – Geduld und seine Beharrlichkeit, die mir auch
in schwierigen Zeiten stets ein Anreiz war, meine Arbeit mit Engagement voranzutreiben.

Besonders bedanken möchte ich mich vor allem auch bei Prof. M. Hofbaur, der mir mit
unermüdlichem Einsatz stets für anregende fachliche Diskussionen zur Verfügung gestanden
ist. Seine fundierte Kritik und seine konstruktiven Anregungen waren mir stets wichtig
und haben wesentlich zum Gelingen der Arbeit beigetragen. Danke vor allem auch für das
angenehme und kollegiale Arbeitsklima.

Während der Durchführung meiner Arbeit war ich zeitweise auch als wissenschaftlicher
Mitarbeiter am Institut für Elektrische Meßtechnik und Meßsignalverarbeitung tätig. Herrn
Prof. G. Brasseur danke ich diesbezüglich für die eingeräumten Freiräume, die das Arbeiten
an meiner Dissertation erleichtert haben.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 This Thesis . 2

1.2.1 Related Work . 3
1.2.2 Contributions . 5

1.3 Thesis Outline . 5

2 Motivating Example 7
2.1 Example Hybrid System . 7

2.1.1 Hybrid Model . 8
2.1.2 Hybrid Control Task . 10

2.2 An Intuitive Approach to Hybrid Control . 11
2.3 A First Outline of the Qualitative Model . 13
2.4 An Outline of the Hybrid Control Framework 20
2.5 Qualitative Pre-Selection . 23
2.6 Chapter Summary . 25

3 Multi Component Hybrid Models 29
3.1 Single Component Hybrid Automata . 29

3.1.1 Discrete Evolution . 30
3.1.2 Continuous Evolution . 32
3.1.3 Hybrid execution . 35

3.2 Concurrent Hybrid Automaton . 37
3.3 Formalization of the Hybrid Modeling Framework 38

3.3.1 Hybrid Automaton . 38
3.3.2 Concurrent Automaton . 40

3.4 Chapter Summary . 41

4 Automated Qualitative Abstraction 43
4.1 Model Outline . 44
4.2 Qualitative Abstraction . 45

4.2.1 Basic Automaton Concept . 45
4.2.2 Choice of Qualitative Variables . 46

4.3 Compilation of Hybrid Automata to Qualitative Models 49
4.3.1 Choice of Qualitative Values . 51
4.3.2 Spurious Behaviors and Likelihood Values 51
4.3.3 Summary of Non-Deterministic Automaton Compilation 54

4.4 Compact Compilation as Trajectory Graphs 59

vii

4.4.1 An Excurse to Search . 59
4.4.2 Trajectory Graph Representation of Non-Deterministic Automata . . 65

4.5 Summary . 72

5 Hybrid Control 75
5.1 Outline of the Control Scheme . 75

5.1.1 Hybrid Control Task . 76
5.1.2 Qualitative Control Problem Formulation 78
5.1.3 Numerical Control Problem Formulation 81
5.1.4 Hybrid Control . 82

5.2 Qualitative Pre-Selection . 82
5.2.1 Simultaneous Search in Multiple Graphs 82
5.2.2 N-Step Receding Horizon control with Single-Time-Step Qualitative

Model . 85
5.2.3 Qualitative Pre-Selection by A∗-search 86
5.2.4 Trajectory-Comparison and Spurious Behaviors 91

5.3 Numerical Control . 93
5.3.1 Formulation as Constrained Quadratic Program 93
5.3.2 Model Predictive Control . 95

5.4 Solver Interplay . 97
5.4.1 Spurious behaviors . 97
5.4.2 Enforcing a Certain Stability Criterion 98
5.4.3 Enforcing the Global Optimum of the Hybrid Control Task 100

5.5 Summary . 100

6 Examples 103
6.1 Step-by-Step Example . 103

6.1.1 Compilation . 104
6.1.2 Hybrid Control . 107

6.2 3-Tank Benchmark System . 110
6.2.1 Dynamical Model . 111
6.2.2 Model Components . 111
6.2.3 Qualitative Model . 117
6.2.4 Control . 118
6.2.5 Result . 121

6.3 Traction Control . 123
6.3.1 Hybrid Model . 123
6.3.2 Qualitative Model . 124
6.3.3 Control . 126

6.4 Summary . 128

7 Conclusion 131
7.1 Outlook . 132

Bibliography 135

A Theory 139
A.1 Linearization . 139

viii

A.2 Calculation of Transition Likelihoods . 141
A.3 Causal Analysis . 147
A.4 Binary Decision Diagrams . 150

B Algorithms 155
B.1 Ordering of Variables . 155
B.2 Compilation of tDAGs . 158

ix

x

List of Figures

2.1 Vector fields for the example system . 9
2.2 Mode transition graph for the example system 9
2.3 Reachable states for the mode sequence {m1,m1,m1} 11
2.4 Reachable states for the mode sequence {m1,m1,m3} 12
2.5 Trajectory for mode sequence {m1,m1,m3,m2,m2} and actuation (2.10) . . . 12
2.6 Separation of the state space into 5 qualitative regions 14
2.7 Trajectories emerging from qualitative region ξ1 14
2.8 Graph representing qualitative trajectories starting from state ξ1 17
2.9 Qualitative trajectories starting from state ξ1 17
2.10 tDAG representing qualitative trajectories starting from state ξ1(=̂000) . . . 19
2.11 Cost values for deviations from the reference state 21
2.12 Hybrid control scheme . 23
2.13 Possible ranges for state-transitions ξ1 → ξ3 (m1) and ξ3 → ξ5 (m3). 24
2.14 Shortest path from A to D? . 26
2.15 Best first search for shortest path . 26
2.16 Again: shortest path from A to D? . 27
2.17 Best first search with dynamic programming 27

3.1 Inputs and outputs of a hybrid component model 30
3.2 Commanded mode transitions and an autonomous one 31
3.3 Non-deterministic transition targets . 31
3.4 Approximation of non-linear dynamics by linearization 33
3.5 Hybrid execution . 36
3.6 Interconnection of two hybrid components . 37
3.7 Composition of two hybrid automata . 40
3.8 Example of a concurrent automaton . 41

4.1 Qualitative abstraction of a vector . 45
4.2 Abstraction of a continuous system to an automaton 47
4.3 Example of 3 interconnected components . 48
4.4 Some variants for separating the value-space of a multi-dimensional variable . 49
4.5 Different types of spurious behaviors . 53
4.6 Specification of the example system . 56
4.7 Calculation of Likelihood Values . 58
4.8 Qualitative models for 2 components as DAGs 60
4.9 Searching several models (DAGs) simultaneously 61
4.10 Interdependencies among the model’s variables 62
4.11 Utilizing the structure of a model . 63
4.12 Tree representation of a binary qualitative model 68

xi

4.13 Compaction of a model by likelihood classes 70
4.14 Elimination of binary variables . 73

5.1 Deviations from reference values for qualitative values 79
5.2 Hybrid control scheme . 83
5.3 tDAGs for 2 components . 84
5.4 Simultaneous search in multiple graphs . 85
5.5 Multiple graph-instances for longer time trajectories 86
5.6 Best-first search . 88
5.7 The dynamic programming idea . 89
5.8 Causal graph and ordering of variables determine search graph’s connections 90
5.9 Spurious solution prevents non-spurious solution from being investigated . . . 91
5.10 Handling of spurious behaviors by numerical optimization 99

6.1 Specification of the example system . 104
6.2 Causal graph of the example system . 106
6.3 Binary graphs . 106
6.4 Final trajectory-DAGs (All edges have cost value 0.) 107
6.5 Qualitative trajectory . 108
6.6 Input u and trajectory of xc2 . 110
6.7 3-tank system . 110
6.8 Modeling tanks and valves as separate components 112
6.9 Model structure with artificial components . 113
6.10 Linear model for q13 . 114
6.11 Trajectory DAG for artificial component V13x 116
6.12 Solution to the test scenario for 0 ≤ t ≤ 400 119
6.13 Solution to the test scenario for 380 ≤ t ≤ 800 120
6.14 Solution to the test scenario for 780 ≤ t ≤ 1200 122
6.15 Separation of the state space [p, v, µ]T . 125
6.16 Solution to test scenario 1 with 5-step prediction horizon 127
6.17 Solution to test scenario 2 with 2-step prediction horizon 128
6.18 Solution to test scenario 2 with 5-step prediction horizon 129

A.1 Calculation of likelihood values . 145
A.2 Approximations of a polytope’s hyper-volume 146
A.3 Detection of dependent variables in a set of equations 149
A.4 Causal graph . 149
A.5 Graphical representation of a boolean function 151
A.6 Elimination of duplicate terminals . 152
A.7 Elimination of redundant tests in BDDs . 153
A.8 Elimination of duplicate non-terminals . 153
A.9 Reduced Binary Decision Diagram . 153

B.1 Illustration of the ’Trans2TDAG’ algorithm 161

xii

List of Symbols and Abbreviations

x Continuous state vector
x(i) Continuous state vector of i’th component
x(i)

k Vector of continuous states of i’th component at time tk

x
(i)
j,k The j’th element of vector x(i)

k

X Qualitative abstraction of state vector x
ξ Qualitative values of the abstracted continuous state X
X Domain of qualitative values of X
xd Discrete state (operational mode)
Xd Domain of discrete state xd

xh Hybrid state

u Vector of continuous inputs
uk Vector of continuous inputs at time k
uj,k The j’th element of vector uk

U Qualitative abstraction of continuous inputs u
υ Qualitative values of the abstracted continuous input U
U Domain of qualitative values of U
ud Discrete (command) inputs
Ud Domain of discrete inputs ud

y Vector of continuous outputs
yk Vector of continuous outputs at time k
yj,k The j’th element of vector yk

Y Qualitative abstraction of continuous outputs y
µ Qualitative values of the abstracted continuous output Y
Y Domain of qualitative values of Y
yd Discrete outputs
Yd Domain of discrete outputs yd

w Vector of continuous intermediate variables
wk Vector of continuous intermediate variables at time k
wj,k The j’th element of vector wk

W Qualitative abstraction of continuous intermediate variables w
ω Qualitative values of the abstracted continuous intermediate variable W
W Domain of qualitative values of W

xiii

T Transition variable
τ A specific mode transition
T Domain of transitions

A Hybrid automaton
A(i) Hybrid automaton representing the i’th component
CA Concurrent hybrid automaton

Q Qualitative trajectory
Q Domain of possible qualitative trajectories

P Polytopic region in a multidimensional value space

R(α), S(α) Set of variables depending on index α

a, A Scalar value
a Vector
A Matrix

BDD Binary Decision Diagram

CSP Constraint Satisfaction Problem

MLD Mixed Logical Dynamical Systems

MPC Model Predictive Control

PWA Piecewise Affine Model

tDAG Trajectory Directed Acyclic Graph

xiv

Chapter 1

Introduction

1.1 Motivation

Modern technology demands an automated on-line hybrid control scheme that is
suitable for controlling multi-component systems which can exhibit a large variety
of different modes of operation.

Modern technology, for example in the chemical, automotive or aeronautic industry, in-
creasingly demands automatic control of complex systems. These systems do not only exhibit
continuous dynamics, but this continuous evolution is also interleaved with discrete changes
of the mode of operation. Such hybrid systems generally are difficult to control, as continuous
dynamics and discrete evolution among modes of operation are dependent upon one another.
Accordingly, hybrid control requires simultaneous deduction of the continuous actuation ap-
plied to the system together with the discrete commands that drive the system through a
suitable sequence of modes of operation.

What makes control of hybrid systems additionally difficult is the usually very large
number of possible mode-sequences. This can be especially large, if the hybrid model not
only describes the nominal behavior of the system, but also includes modes of operation that
capture the system’s behavior during the occurrence of certain faults. If there are built-in
redundancies in the hybrid system, including such fault-modes enables the control system
to possibly counteract the fault’s effects by utilizing the still fully operational parts of the
system (reconfiguration).

Especially when multi-component systems are considered, even including only few such
fault modes for each component results in a huge number of different (faulty) modes of
operation for the overall system. Because of this large number, establishing an off-line control
scheme (i.e. a control scheme that pre-defines a control strategy before the system starts
operating for each of these faulty situations as well) would be practically impossible for
larger systems. Furthermore, a major part of the work would be devoted to accounting for
very unlikely combinations of faults in various components. For larger systems, therefore, an
on-line control scheme that does not rely on pre-determined control strategies, but reacts on
a given situation at run-time of the system seems advantageous.

The requirement of an on-line reaction to a given situation naturally constrains the time
available for deducing appropriate control. So a feasible sequence of future operational modes
and continuous actuation have to be determined very efficiently. For larger systems it is
certainly impossible to take the intuitive hybrid control approach that determines continuous
actuation for each mode sequence separately and then selects the sequence and actuation

1

2 CHAPTER 1. INTRODUCTION

that provides best results.
If, however, a few good mode-sequences can be pre-selected efficiently, this approach’s ad-

vantage can still be exploited: A hybrid model with specified mode-sequence can be regarded
as time-variant continuous model. This allows us to utilize well established methods from
control theory to determine the continuous actuation for the hybrid system.

A natural approach to perform this efficient pre-selection is to take a look at the system’s
behavior at an abstracted level. If both, continuous evolution and discrete mode changes, are
captured by a qualitative model among discretely-valued variables only, the hybrid control
problem can be reformulated as discrete search problem. A task efficiently solved by some
well established tools from the field of artificial intelligence (AI).

However, as this qualitative pre-selection only operates on an approximate model and,
therefore, only provides approximate solutions, an additional coordinated interplay with the
numerical control generation has to be established to validate results and assure convergence
of the overall hybrid control scheme.

1.2 This Thesis

The proposed hybrid control scheme for complex multi-component systems builds
upon a specialized formulation of an automatically compiled qualitative model to
efficiently solve the hybrid control problem on-line by a two-phase symbolic/numeric
control deduction and a coordinated interplay between the two phases.

The task of the proposed control scheme is to provide on-line hybrid control for a class
of multi-component hybrid systems. Each component can show various modes of operation,
where each mode itself may exhibit linear or affine continuous dynamics. The control scheme
utilizes a two-phase symbolic/numeric control deduction approach. First, discrete search
based on an abstracted description of the system’s behavior and an abstraction of the control
goal provides an efficient pre-selection of a few ’good’ and feasible mode-sequences.

Constrained on-line computation time and the large amount of possible mode-sequences
require to perform this search very efficiently. This demands the introduction of a novel
qualitative modeling scheme. To be able to consider continuous and discrete dynamics si-
multaneously, this qualitative model captures the hybrid model’s mode changes exactly and
provides the same type of encoding for an abstraction of the continuous dynamics.

Not to overburden computational resources by computing this abstraction on-line, the
qualitative model is pre-compiled off-line. This, however, requires that the model encompasses
every possible mode-change and every possible abstracted continuous behavior of the hybrid
system. To still keep the size of this model manageable, the abstraction of the hybrid system’s
behavior is performed for each of the system’s components separately. Furthermore, each of
these component models is encoded by a compact graphical representation. This graphical
representation yet serves another purpose which is at least as important as the compact
encoding: It provides the possibility to explicitly represent the underlying structure of the
hybrid system in the qualitative model. This helps in searching the model for promising
mode sequences more efficiently.

Still, a well known and unavoidable problem of such qualitatively abstracted models
is, that they generally not only provide abstractions of behaviors of the original numerical
model, but also model additional qualitative behaviors that do not correspond to any valid
behavior of the numerical model. To be able to bias qualitative search towards valid behaviors,

1.2. THIS THESIS 3

’cost values’ are compiled into the qualitative model, which roughly discriminate qualitative
behaviors that rather likely represent valid behaviors of the hybrid model from invalid ones.

The result of the qualitative pre-selection procedure is a small number of promising mode-
sequences, their associated discrete input commands that drive the hybrid system through
these mode sequences and a qualitatively abstracted version of the continuous behavior to-
gether with the associated continuous dynamics. These latter approximations require further
numerical refinement.

Although the mentioned ’cost values’ help to focus pre-selection onto valid abstracted
behaviors, it still cannot be guaranteed that a pre-selected mode sequence allows a valid
solution to the hybrid control task. Therefore, the numerical control-refinement step also has
to include a validation of the qualitatively pre-selected mode-sequences. With this numerical
validation, invalid sequences are discarded and qualitative pre-selection is resumed to provide
alternative mode-sequences until a valid solution is found. With a valid mode-sequence pre-
selected, the numerical refinement of continuous actuation can be reformulated and solved as
a mathematical (quadratic) program.

A careful interplay between qualitative pre-selection and numerical control refinement
helps in pre-selecting only mode sequences that pass the validation with high probability. So
computationally demanding numerical control generation doesn’t need to be performed too
often.

This altogether allows the application of the proposed control scheme to on-line control
hybrid systems that are composed of several components.

1.2.1 Related Work

Methodologies used for modeling, control and diagnosis of hybrid systems emerge from both
fields, control theory and computer science. As these communities speak largely different
languages, the resulting frameworks for hybrid systems are different as well. The proceedings
of the annual conference on hybrid systems (Hybrid Systems: Computation and Control,
HSCC [2, 42] and earlier volumes) provide a good overview of recent developments in hybrid
systems research.

Hybrid Models

Modeling paradigms range from rather computer science oriented approaches to approaches
more biased towards control theory with high emphasis on continuous dynamics [13]. An
example of the former kind is [1], where a timed automata approach is used to model real-time
systems. More control theory linked approaches include the following paradigms: Piecewise
affine (PWA) systems [48] split up the state- and input- space into distinct regions, where
the system can show different continuous dynamics in each of these regions. Mixed logic
dynamic (MLD) systems [9] are models of linear dynamic equations that are subject to linear
inequalities involving real and integer variables. [20] utilizes max-min-plus-scaling systems
to model a class of discrete event systems. However, it has been shown that all these classes
of hybrid systems are equivalent [28].

A component based hybrid modeling approach emphasizing complex continuous dynamics
is found in [30, 31]. Here the individual components of a complex system are modeled by
individual hybrid automata. The overall model then combines these individual automata to
represent what is called a concurrent hybrid automaton.

4 CHAPTER 1. INTRODUCTION

Qualitative Models

Qualitative modeling approaches are a widespread field as well. As some representative
examples for the qualitative abstraction of continuous dynamics, qualitative simulation [36]
and the concept of non-deterministic automata [39, 40] are mentioned. This non-deterministic
automaton concept is also applied to discrete event systems [24].

Qualitative simulation directly abstracts the underlying physics of the modeled dynam-
ics to qualitative differential equations (qde), which represent an abstracted version of the
differential equations used in a numerical model of the dynamics. On the other hand, non-
deterministic automata separate the state-space of the dynamics into distinct regions and ab-
stract the dynamic behavior as non-deterministic transitions among these qualitative states.

An issue in all these approaches is the generation of appropriate landmarks to distinguish
qualitative regions. For example, [49, 47] provide a framework for the automatic generation
of such landmarks for a given task. And the paper [18] starts with a very coarse separation
and then refines landmarks until a specific question can be answered.

Hybrid Control and Reconfiguration

Literature presents several approaches to hybrid control that either deal with restricted classes
of hybrid systems [55, 17] or are restricted in the sense that they work best with systems
showing only few modes to keep the computational effort manageable.

Model predictive control (MPC) [41] and similar concepts are a popular tool for on-line
control of hybrid systems. In [9, 6] the hybrid control problem is reformulated with MLD
systems in order to solve it through powerful linear- or quadratic programming solvers. A
recent extension [8] to this utilizes an additional (symbolic) CSP solver on the same problem
formulation to focus the numerical solver. MPC is also applied to max-min-plus-scaling
systems [21, 52]. [32] utilizes dynamic programming for optimal control of constrained PWA
systems with disturbances. On a more global scope than calculating low-level control, [34]
addresses the supervisory control of discrete-event hybrid systems.

In addition to the standard hybrid control problem, [51] explicitly addresses hybrid re-
configuration issues without utilizing qualitative methods by applying MPC to mixed-logic-
dynamic (MLD) systems. It utilizes the well known benchmark example of a 3-tank system
to demonstrate the approach. In comparison, [4] presents a similar example but address the
hybrid reconfiguration problem by utilizing qualitative abstractions. Another symbolic way
to address the reconfiguration problem emerging from the field of artificial intelligence (AI)
is called reactive planning. An example for such an automatic planning engine is presented
in [54].

The complementary problem to hybrid control, hybrid estimation and diagnosis is treated
in the books [31, 26], for example.

Qualitative Reasoning

Qualitative reasoning methods like constraint-satisfaction are a very widespread topic in
literature. The books [46, 22] provide an overview on this topic. The hybrid control scheme
that is subject of this thesis concentrates on discrete search and especially search for paths
in graphs. An overview of search algorithms that operate on graphs is presented in [23] and
an especially efficient type of so called best first search algorithms known as A∗ is presented
in [27] and a link to graph theory is presented in [25].

1.3. THESIS OUTLINE 5

On-line Numerical Control Design

A popular tool for on-line numerical controller design for systems subject to constraints
is model predictive control (MPC), a receding horizon control strategy where the modeled
future behavior of a system over a finite prediction horizon is corrected by the system inputs
to optimally approximate a given control goal. A good overview over various formulations of
MPC is found in [41].

For rather simple systems, the solution to this receding horizon problem can be explicitly
calculated off-line and expressed as piecewise linear state-feedback [7, 10]. For more complex
systems, the solution is calculated on-line.

Operating with a finite receding prediction horizon requires some additional measures to
ensure stability of the closed loop system. Some formulations guaranteeing stability of the
closed-loop system are presented in the survey-paper [43]. Stability issues for PWA systems
are discussed in [38].

1.2.2 Contributions

The main contributions of this thesis are along the following lines of research:

Automated Generation of a Qualitative Model

This thesis presents a method that automatically generates a qualitative model from a hybrid
model. The qualitative modeling framework is especially tailored to the task of run-time
hybrid control. So, the qualitative model shows some special features that are advantageous
in searching the model for a sequence of modes of operation that is suitable to meet a desired
control goal. These features are the very compact graphical representation of the model and
an explicit representation of structural properties of the underlying hybrid system in the
model.

Run-time Qualitative Control Deduction

Control deduction at system run-time may be advised for complex systems, since an over-
whelming number of modes of operation for these systems prevents calculation of a separate
controller for each situation. To meet time-constraints related to the on-line control deduc-
tion, an efficient pre-selection of feasible mode-sequences has to be performed.

Utilization of the specialized qualitative modeling scheme allows to reformulate this pre-
selection as shortest path search, what makes well established efficient solvers like A∗ appli-
cable. Formulation of the search problem according to the underlying structure of the hybrid
system itself, further, increases efficiency.

1.3 Thesis Outline

The following chapter provides a first motivating example for the proposed two-phase qual-
itative/numerical approach to hybrid control. It also informally outlines the control scheme
in a way that omits most low-level detail. Further, the chapter briefly presents some of the
most important tools and theory that are utilized throughout the control approach.

Chapter 3 formalizes the class of complex multi-component hybrid systems that is tackled
with the presented hybrid control scheme.

6 CHAPTER 1. INTRODUCTION

Chapter 4, then, formalizes the qualitative modeling framework. It also deals with the
automated abstraction of the hybrid model in detail.

With this qualitative model at hand, Chapter 5 first formalizes the two-phase hybrid
control scheme in Section 5.1. Section 5.2 illustrates how the the qualitative search can be
performed efficiently by exploiting the special formulation of the qualitative model. Finally,
Section 5.3 deals with the subsequent numerical refinement of the continuous actuation and
Section 5.4 presents how a careful interplay between the two solvers further helps in increasing
efficiency.

Chapter 6 illustrates the proposed hybrid control scheme by some examples. Chapter 7
summarizes the thesis, Appendix A provides some theoretical background and Appendix B
outlines some algorithms used in the thesis.

Chapter 2

Motivating Example

In this chapter, a hybrid control task for a simple academic single-component system will be
solved intuitively. This shall motivate the proposed hybrid control scheme and shall give a
first glance on the hybrid control framework and the underlying qualitative modeling. Not
to loose focus on the overall story by discussing low level details in this introductory chapter,
formalisms and through explanations are left out whenever possible.

Nevertheless, this chapter will at least provide a glimpse onto all necessary modeling and
control deduction steps and the tools and theory utilized for them. This shall provide a
good intuition of the overall control scheme which will then be formalized for more complex
multi-component systems in the subsequent chapters 3-5.

Section 2.1 first introduces the example system that guides through the chapter. Addi-
tionally, the control objective is defined and some key difficulties in achieving it are pointed
out.

Section 2.2 provides an intuitive solution to the hybrid control problem obtained by merely
’looking at’ the system and trying to determine a good solution by some’educated guessing’.
This approach of a human looking at the system’s dynamics and quickly coming up with a
good solution by reasoning will motivate the intention to introduce qualitative pre-selection
as a first step in solving the hybrid control problem.

Consequently, Section 2.3 provides a first outline of a qualitative modeling scheme that
enables to focus and automatize the previous sections ’guessing’. Further, the considerations
that motivate the utilization of a very specialized type of qualitative model are discussed.

Section 2.4 finally outlines the overall hybrid control procedure composed of qualitative
pre-selection (of promising sequences of modes of operation), numerical refinement (of con-
tinuous actuation) and a careful interplay between the two.

2.1 Example Hybrid System

This section introduces a simple hybrid control example where some intuitive understanding
of the system’s dynamics and some human reasoning quickly can provide a good idea of how to
solve a hybrid control task. The underlying procedure followed by the human controller shall
motivate utilization of automated qualitative reasoning as a tool to quickly and moreover
automatically provide these good ideas for more complex systems.

7

8 CHAPTER 2. MOTIVATING EXAMPLE

2.1.1 Hybrid Model

The utilized example is a simple single-component hybrid model with three modes of opera-
tion {m1, m2,m3}. Continuous dynamics for each of these modes mi are specified by linear,
time invariant state-space models

d

dt
x = Aix + biu, 1

more specifically for the example:

mode m1 :
d

dt
x =

[−0.5 −1
1 −0.5

]
x +

[
0.2
0

]
u (2.1a)

mode m2 :
d

dt
x =

[−0.2 0.17
0.15 −0.2

]
x +

[−0.06
−0.1

]
u (2.1b)

mode m3 :
d

dt
x =

[
0.85 1
−1 0.85

]
x +

[
0.2
0

]
u, (2.1c)

where x = [x1, x2]T represents the system’s continuous state and the continuous input u
stands for the continuous actuation applied to the system. Figure 2.1 shows the vector fields
of the three modes of operation for u = 0 and u = 1, respectively.

In addition to applying continuous actuation u to the system, its behavior can be influ-
enced by changing the mode of operation (denoted the system’s discrete state xd) utilizing
the so called command input ud. This command input can take one out of three discrete
values, i.e.

ud = {switch-to-m1, switch-to-m2, switch-to-m3} . (2.2)

However, to make control of the system not too easy, it is assumed that the mode m2

may only be activated when the system’s state x = [x1, x2]T is within a certain region, i.e.

x1 ≤ −0.75, x2 ≤ −0.75. (2.3)

This is illustrated in Figure 2.2, where the system’s modes of operation are represented by
the nodes. The labels of the edges connecting them represent the conditions under which the
corresponding mode-change takes place.

What, as in many real systems, further complicates control are constraints on the contin-
uous state and input of the system. The actuation u is limited to

0 ≤ u ≤ 1 (2.4)

and the state x of the system has to be kept inside the region displayed in Figure 2.1, i.e.

−1 ≤ x1 ≤ 1 (2.5a)
−1 ≤ x2 ≤ 1 . (2.5b)

In spirit of digital control, changes in the continuous actuation u(t) and mode-change
commands ud can only be issued at the sampling times

tk = t0 + kTs, k = 0, 1, . . .

1For a more compact display, the time-dependence of variables (e.g. x(t), u(t)) is not explicitely mentioned
whenever possible.

2.1. EXAMPLE HYBRID SYSTEM 9

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(a) mode m1 and actuation u = 0

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(b) mode m1 and actuation u = 1

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(c) mode m2 and actuation u = 0

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(d) mode m2 and actuation u = 1

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(e) mode m3 and actuation u = 0

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

(f) mode m3 and actuation u = 1

Figure 2.1: Vector fields for the example system

Figure 2.2: Mode transition graph for the example system

10 CHAPTER 2. MOTIVATING EXAMPLE

where t0 and Ts = 1.5 denote the initial time and sampling period (1.5 seconds) of the digital
control system, respectively. The continuous actuation u is kept constant within the sampling
period at

u(t) = uk, tk ≤ t < tk+1

In the same sense, the sampled continuous state xk of the system is given by

xk =
[

x1,k

x2,k

]
= x(tk)

and the discrete state is kept at

xd(t) = xd,k, tk−1 < t ≤ tk.

Since for digital control only the system quantities at sample times tk are decisive, the models
(2.1) describing the system’s continuous dynamics are rewritten in discrete-time form

xk+1 = Φixk + bdiuk.

With the above standard conventions in digital control, the transition matrices Φi and the
input vectors bdi can be obtained by

Φi = eAiTs and bdi =
∫ Ts

0
eAiτbi dτ

The example system’s continuous dynamics for each mode of operation m1, m2,m3, hence,
are described by the models

m1 : xk+1 =
[

0.03 −0.47
0.47 0.03

]
xk +

[
0.15
0.12

]
uk (2.6a)

m2 : xk+1 =
[

0.76 0.19
0.17 0.76

]
xk +

[−0.09
−0.14

]
uk (2.6b)

m3 : xk+1 =
[

0.25 3.57
−3.57 0.25

]
xk +

[
0.34
−0.44

]
uk (2.6c)

2.1.2 Hybrid Control Task

The task of automatic control is to actuate the hybrid system such that its hybrid state
follows a particular trajectory, reaches a specific state in the state-space or remains within
the vicinity of a desired operational point. As particular control objective for the example,
the system’s continuous state state shall be moved towards the goal state

xg =
[−0.75
−0.75

]
(2.7)

without violating any of the constraints (2.4-2.5). The limited continuous actuation and
the relatively large sampling time make the control task difficult to achieve, but allow to
demonstrate many aspects of the proposed control scheme.

At time t0, the system is at the hybrid initial state

xd,0 = m1 (2.8a)

x0 =
[−0.75

0.75

]
. (2.8b)

2.2. AN INTUITIVE APPROACH TO HYBRID CONTROL 11

2.2 An Intuitive Approach to Hybrid Control

To motivate the further developments, this control task shall now be solved intuitively by a
human. For this, we first do not deal with the dynamic equations (2.6) in detail, but just
take a quick look at the corresponding vector fields graphically displayed in Figure 2.1 on
page 9.

As a brief description of these vector fields, we can qualitatively classify the vector fields
for mode m1 as counter-clockwise stable spirals for all continuous acuation within the allowed
range of 0 ≤ uk ≤ 1 and the behavior of the system’s state at mode m3 can be classified as
unstable clockwise spirals. The discrete state m2 is the only mode of operation where the
limited actuation 0 ≤ uk ≤ 1 results in a significant change of the vector field around the
goal state xg = [−0.75,−0.75]T . One can qualitatively classify stable trajectories towards
the center of the state space for zero actuation and stable trajectories towards points in the
lower left of the state space for larger actuation. With this, one can reason that only mode
m2 is capable of keeping the continuous state near the goal.

Utilizing this qualitative understanding of the system’s dynamics to solve the hybrid
control task, one immediately gets the intuition that the stable counter-clockwise trajectories
of mode m1 quickly traverse the system’s state from its initial value in the upper left region
(x0 = [−0.75, 0.75]T) towards the goal state in the lower left region (xg = [−0.75,−0.75]T),
where (according to Figure 2.2 on page 9) the system can be switched to the stabilizing mode
m2.

However, after this first qualitative analysis of the control problem and quick reasoning
about a possible solution one needs to validate ones intuition by taking a closer look at
dynamic equation (2.6a) for the pre-selected mode m1. This detailed numerical treatment
tells that with the limited actuation (2.4) the system’s state cannot directly reach the state-
space region (2.3) what would be necessary for switching to mode m2. Figure 2.3 illustrates
this fact by showing the reachable state-space regions for the mode-sequence {m1, m1,m1}.

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

Figure 2.3: Reachable states for the mode sequence {m1,m1,m1}

This figure together with the qualitative classification of the behaviors for mode m3 as
unstable clockwise spirals provides a further idea: If the system behaves according to mode

12 CHAPTER 2. MOTIVATING EXAMPLE

m1 until the continuous state passes by the goal region, one could use the unstable mode m3

to reverse the direction of the state movement and let it proceed right towards the goal-area
(2.3).

Trying to validate the results of qualitative reasoning numerically again, one observes
that this new pre-selected mode-sequence {m1,m1,m3} allows trajectories that move the
continuous state to the goal region. This is illustrated by displaying the reachable states in
Figure 2.4.

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

Figure 2.4: Reachable states for the mode sequence {m1,m1,m3}

Here one is allowed to switch to mode m2 which is qualitatively considered as being
able to keep the system’s state near the goal. So one can pre-select a mode-sequence
{m1,m1,m3,m2, m2, . . .}.

−1 0 1

−1

−0.5

0

0.5

1

x
1

x
2

m
1

m
1

m
3

m
2

m
2

Figure 2.5: Trajectory for mode sequence {m1, m1,m3,m2,m2} and actuation (2.10)

2.3. A FIRST OUTLINE OF THE QUALITATIVE MODEL 13

With the mode-sequence specified, the hybrid model simply can be regarded as time-
variant continuous model, specifically

x1 = Φ1x0 +bd1u0

x2 = Φ1x1 +bd1u1

x3 = Φ3x2 +bd3u2 (2.9)
x4 = Φ2x3 +bd2u3

x5 = Φ2x4 +bd2u4

...

and the continuous actuation can be determined by well established methods from the field
of control theory, e.g. Model Predictive Control [41]. An exemplary result of such a control
design determines continuous actuation u0, . . . u4 as

u0 = 0 u1 = 0 u2 = 0.16 u3 = 1 u4 = 0.87. (2.10)

The resulting trajectory for the continuous state of the hybrid system is depicted in Figure
2.5, where the dots indicate sampled states.

2.3 A First Outline of the Qualitative Model

In this section, the intuitive reasoning previously used to solve the example shall be put onto
a more firm basis in order to integrate it into an automatic hybrid control scheme. For this,
it is first defined how the hybrid system’s behavior is specified qualitatively.

To obtain such a qualitative model, the continuous state- and input-space of the hybrid
model (2.6) are separated into a finite number of qualitatively distinct regions. This gives
the opportunity to approximately capture the continuous dynamics of the hybrid model in
terms of a finite set of relations among discretely valued variables.

This will be illustrated right after some more details on this qualitative separation have
been discussed: The separation should be reasonably coarse to keep the qualitative model
compact. However, it is advisable that the qualitative separation at least captures all the
qualitative distinctions and constraints provided by the original hybrid automaton. For the
example, this means that one needs to qualitatively discriminate the state space region defined
by (2.3) – where a transition to mode m2 is possible – against all other regions of the state
space. Making this distinction will later on allow to exactly capture the discrete part of the
hybrid model in our qualitative model.

In this introductory chapter, we choose a very coarse separation that primarily distin-
guishes the sign of the individual states x1 and x2. This may not be very well suited for
solving general control tasks on the example, but it is well suited for the presentation here,
because it helps to point out some details on the control scheme by compact illustrations.
However, to be able to exactly capture the discrete part of the hybrid model, specifically the
distinction between state-space regions where mode transitions to m2 are possible and those
where they are not, an additional qualitative region is specified: The lower left region of the
constrained state space given by the mode-transition-requirement (2.3). Figure 2.6 displays
the resulting qualitative separation of the constrained state space (2.5) into 5 different qual-
itative regions ξ1, . . . , ξ5. For the same illustrative reasons a very coarse separation of the
state space was selected, only one single qualitative region is utilized as abstraction of the
constrained input space (2.4).

14 CHAPTER 2. MOTIVATING EXAMPLE

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3 ξ

4

ξ
5

x
1

x
2

Figure 2.6: Separation of the state space into 5 qualitative regions

With this qualitative separation, continuous trajectories of the hybrid model can be en-
coded as finite set of relations among the qualitatively abstracted variables. To keep the
qualitative model compact, only trajectories for a small time-horizon, (e.g. tk → tk+1) are
encoded. This single time-step qualitative model can later on be used consecutively for
reasoning about longer trajectories.

To provide an example, it is shown how continuous trajectories emerging from the state
space region covered by qualitative state ξ1 according to mode m1 are encoded as ’qualitative
trajectories’. The hybrid model’s equation for describing these trajectories is (2.6a):

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

ξ
5

x
1

x
2

Figure 2.7: Trajectories emerging from qualitative region ξ1

2.3. A FIRST OUTLINE OF THE QUALITATIVE MODEL 15

m1 : xk+1 =
[

0.03 −0.47
0.47 0.03

]
xk +

[
0.15
0.12

]
uk.

Due to this equation and limited actuation 0 ≤ uk ≤ 1 (2.4) all states xk+1 lie within the
region depicted in Figure 2.7.

This covers parts of the state space regions that belong to qualitative states ξ1 to ξ4. So,
to capture all these trajectories qualitatively we have to distinguish four different abstracted
trajectories: trajectories leading from state ξ1 with mode m1 to states ξ1, ξ2, ξ3 or ξ4,
respectively.

With qualitative variables Xk and Xk+1 to denote the qualitatively abstracted state at
times tk and tk+1, respectively, and the notational convention that the operational mode valid
from time tk to tk+1 is denoted xd,k+1, these trajectories can be encoded qualitatively as2

(Xk = ξ1 ∧ xd,k+1 = m1 ∧ Xk+1 = ξ1) ∨
(Xk = ξ1 ∧ xd,k+1 = m1 ∧ Xk+1 = ξ2) ∨
(Xk = ξ1 ∧ xd,k+1 = m1 ∧ Xk+1 = ξ3) ∨
(Xk = ξ1 ∧ xd,k+1 = m1 ∧ Xk+1 = ξ4) .

This introduces ambiguity to the qualitative model, as for a single source state (Xk = ξ1)
and operational mode (xd,k+1 = m1) there are multiple destination states Xk+1.

If one, however, looks at Figure 2.7, one observes that most of the destination states are
inside the region covered by qualitative state ξ3. This is now utilized to partially resolve the
ambiguity by associating likelihood values to each of the ambiguous qualitative trajectories.
A simple way to calculate such likelihoods (denoted L) is to draw a sufficiently large number
of random samples for values xk within a qualitative state and determine associated values
xk+1 by the hybrid model. For the above example trajectories, these likelihoods are

Xk xd,k+1 Xk+1 L
ξ1 m1 ξ1 0.13
ξ1 m1 ξ2 0.03
ξ1 m1 ξ3 0.74
ξ1 m1 ξ4 0.10 .

To complete the qualitative model, qualitative trajectories emerging from all 5 qualitative
states according to all 3 operational modes are recorded. Completing the qualitative model

2As in this presentation the whole range of allowed continuous inputs u is covered by only one single
qualitative value, to keep the display compact, the input is omitted from this display of qualitative trajectories.

16 CHAPTER 2. MOTIVATING EXAMPLE

for all other states Xk and modes xd,k+1 results in:

Xk xd,k+1 Xk+1 L Xk xd,k+1 Xk+1 L
ξ1 m1 ξ1 0.13 ξ3 m1 ξ4 0.87
ξ1 m1 ξ2 0.03 ξ3 m2 ξ3 0.87
ξ1 m1 ξ3 0.74 ξ3 m2 ξ5 0.13
ξ1 m1 ξ4 0.10 ξ3 m3 ξ1 0.10
ξ1 m2 ξ1 0.73 ξ3 m3 ξ2 0.01
ξ1 m2 ξ2 0.07 ξ3 m3 ξ3 0.03
ξ1 m2 ξ3 0.20 ξ3 m3 ξ4 0.01
ξ1 m3 ξ1 0.00 ξ3 m3 ξ5 0.00
ξ1 m3 ξ2 0.07 ξ4 m1 ξ2 1.00
ξ1 m3 ξ4 0.01 ξ4 m1 ξ4 0.00
ξ2 m1 ξ1 0.80 ξ4 m2 ξ2 0.04
ξ2 m1 ξ2 0.20 ξ4 m2 ξ3 0.19
ξ2 m2 ξ1 0.00 ξ4 m2 ξ4 0.77
ξ2 m2 ξ2 0.97 ξ4 m3 ξ3 0.04
ξ2 m2 ξ3 0.01 ξ4 m3 ξ4 0.01
ξ2 m2 ξ4 0.02 ξ4 m3 ξ5 0.02
ξ2 m3 ξ2 0.00 ξ5 m1 ξ4 1.00
ξ2 m3 ξ4 0.05 ξ5 m2 ξ3 0.00
ξ3 m1 ξ2 0.12 ξ5 m2 ξ5 0.98
ξ3 m1 ξ3 0.00

(2.11)

Such a model could be captured in terms of a non-deterministic automaton [39, 40].
However, for larger examples or more fine grained qualitative abstractions such a model would
be rather large in size. So a more compact representation that is very similar to so called
Ordered Binary Decision Diagrams (OBDDs) [3] (also see appendix A.4) will be utilized.
Similar to OBDDs, one represents the qualitative model in terms of a directed, acyclic graph
(DAG), where each qualitative trajectory (each ’line’ in the above table) is represented by a
path from the root node of the graph to one of its leaves. The various leaves of that so-called
trajectory-DAG (tDAG) represent the different likelihood values. The successive layers of
the graph represent the successive columns of (2.11) and the graph’s edges leaving a node
in a particular layer represent a particular qualitative value of the corresponding qualitative
variable. To define this succession for our example, we specify the ordering:

Xk ≺ xd,k+1 ≺ Xk+1.

A graph that, based on this ordering, illustrates the first ten lines of (2.11) is shown in Figure
2.8.

This graphical representation, however, isn’t very compact yet, because it uses a separate
leaf node for each distinct likelihood value. And this, moreover, is in contradiction to our
qualitative modeling idea: We want to obtain an abstracted (thus only approximative) model
of a hybrid system that gives a quick intuition of the system’s possible behaviors. To give this
quick intuition, it is not necessary to consider likelihood values that are calculated to a few
digits behind the comma, but a rough distinction of e.g. ’likely’, ’rather unlikely’ and ’very
unlikely’ qualitative trajectories seems appropriate. In the example, we define this qualitative
separation as:

L ≥ 0.33 → likely
0.33 > L ≥ 0.033 → rather unlikely
0.033 > L → very unlikely.

2.3. A FIRST OUTLINE OF THE QUALITATIVE MODEL 17

Figure 2.8: Graph representing qualitative trajectories starting from state ξ1

Figure 2.9: Qualitative trajectories starting from state ξ1

For, again, the first ten lines of (2.11) the graphical representation obtained according to this
qualitative separation of trajectory-likelihoods is shown in Figure 2.9.

We later on want to utilize such a graphical representation of the qualitative model to
formulate qualitative pre-selection as shortest path search. Therefore, we want to represent
qualitative trajectory-likelihoods by path-lengths in the graph. For this, the qualitative
trajectory-likelihoods are represented by numeric cost values CL such that less likelihood
corresponds to a higher cost value. For the example, we choose:

likely → CL = 0
rather unlikely → CL = 0.8

very unlikely → CL = 3.7.

Treating these cost values as path-lengths in the graph allows to map likelihoods to edge
lengths in the graph.

Additionally, as the tDAG is based on Binary Decision Diagrams, the values of all variables
in the qualitative model have to be represented as expressions among binary variables:

X → XB1 XB2 XB3 xd → xB1
d xB2

d

ξ1 0 0 0 m1 0 0
ξ2 0 0 1 m2 1 0
ξ3 0 1 0 m3 0 1
ξ4 0 1 1
ξ5 1 0 0

18 CHAPTER 2. MOTIVATING EXAMPLE

With this binary representation of qualitative values, the model with approximated transition
likelihood costs for abstracting continuous evolution of the hybrid model for time tk to tk+1

displays as:

Xk xd,k+1 Xk+1 CL Xk xd,k+1 Xk+1 CL

000 00 000 0.8 010 00 011 0
000 00 001 3.7 010 10 010 0
000 00 010 0 010 10 100 0.8
000 00 011 0.8 010 01 000 0.8
000 10 000 0 010 01 001 3.7
000 10 001 0.8 010 01 010 3.7
000 10 010 0.8 010 01 011 3.7
000 01 000 3.7 010 01 100 3.7
000 01 001 0.8 011 00 001 0
000 01 011 3.7 011 00 011 3.7
001 00 000 0 011 10 001 0.8
001 00 001 0.8 011 10 010 0.8
001 10 000 3.7 011 10 011 0
001 10 001 0 011 01 010 0.8
001 10 010 3.7 011 01 011 3.7
001 10 011 3.7 011 01 100 3.7
001 01 001 3.7 100 00 011 0
001 01 011 0.8 100 10 010 3.7
010 00 001 0.8 100 10 100 0.
010 00 010 3.7

(2.12)

For, again, the first ten lines of this qualitative model, we present the according graphical
representation as trajectory-DAG in Figure 2.10. This graph encodes all qualitative trajecto-
ries starting from Xk = ξ1=̂(XB1

k = 0∧XB2
k = 0∧XB3

k = 0). In this graph, all 10 trajectories
are represented by directed paths from the root node to one of the leaves. Additionally, the
approximated likelihood costs CL of the trajectories are mapped to the graphs edges such
that the sum of all edge values of a path equals the likelihood cost CL of the corresponding
trajectory.

Discrete mode transitions are represented by a similar tDAG to obtain the same type of
qualitative model for both, qualitatively abstracted continuous dynamics and discrete mode
transitions. This simplifies reasoning because then both types of evolution can be treated
simultaneously without utilizing different tools to handle both of them.

The compactness of the representation of the qualitative model as tDAGs may not be
obvious for the small example in Figure 2.10. However, things get more impressive when
bigger models or larger time-horizons are considered. For example a qualitative model for
representing continuous evolution and discrete mode transitions, both for a 3-step time-
horizon tk → tk+3, needs to encompass

7266 qualitative trajectories, each represented by 27 binary variables.

However, it’s corresponding tDAG, based on a variable-ordering

xd,k ≺ Xk ≺ ud,k ≺ xd,k+1 ≺ Xk+1 ≺ ud,k+1 ≺ xd,k+2 ≺ Xk+2 ≺ ud,k+2 ≺ xd,k+3 ≺ Xk+3

only consists of
952 nodes and 1287 directed edges. (2.13)

2.3. A FIRST OUTLINE OF THE QUALITATIVE MODEL 19

Figure 2.10: tDAG representing qualitative trajectories starting from state ξ1(=̂000)

We have to mention that, similar to Binary Decision Diagrams, the size of the tDAG can
strongly depend on the specified ordering of variables. However, experience shows that defin-
ing the ordering among qualitative variables based on the causal interdependencies among
the hybrid model’s equations is generally a good choice for obtaining small graphs.

Summarizing, as result of automated qualitative modeling for the introductory example,
we obtain a tDAG that qualitatively captures all continuous trajectories as well as the possible
discrete mode transitions for a time horizon tk to tk+3. This model is generated at ’compile
time’, i.e. before the hybrid control task is performed. So compactness of representation is
more important than time-efficiency of its compilation.

Further, it has to be noticed that – despite of its compact representation – a qualitative
model which results from a separation of the state-, input- and output space generally grows
exponentially with the dimensionality of the system. However, with our hybrid modeling
framework (Section 3) it is assumed that a hybrid system can be described by rather low-
dimensional hybrid models for the various components of the system. The system’s overall
complex behavior results from interaction among these components.

20 CHAPTER 2. MOTIVATING EXAMPLE

2.4 An Outline of the Hybrid Control Framework

We will now demonstrate how the compiled qualitative model can be utilized for an automated
on-line pre-selection of promising mode sequences. To introduce this pre-selection procedure
and its integration into an automated hybrid control framework, a very simple formulation
will be presented first. Then some drawbacks of this basic formulation are pointed out and
we present how qualitative pre-selection can be performed more efficiently.

The basic reason why we propose to utilize qualitative pre-selection of promising mode-
sequences as first stage in hybrid control is that the hybrid control task is solved more easily
when treated at a level of abstraction that only utilizes discretely-valued variables. This
enables to reformulate investigation of different qualitatively abstracted hybrid trajectories
as finite constraint satisfaction problem (CSP) or to look for such trajectories by discrete
search among a finite number of possibilities. Efficient solvers from the field of artificial
intelligence (AI) can be applied to such formulations.

To demonstrate this on our example, we define the control task to quickly traverse the
continuous state of the hybrid system from its initial state x0 = [−0.75, 0.75]T towards the
goal state xg = [−0.75,−0.75]T without violating the constraints on state (2.5) and input
(2.4). This task shall be solved by a receding horizon control strategy that, at each time
tk, evaluates finite N = 3 time-step trajectories (tk → tk+3) and determines actuation with
respect to these.

For qualitative pre-selection, not only the hybrid model but also the hybrid control task
has to be abstracted to the qualitative domain. The bounding constraints on state and input
are already captured by the qualitative model as only trajectories satisfying the constraints
are included in the model. The abstracted control goal can be formulated qualitatively as:
Quickly traverse the hybrid system from its qualitatively abstracted initial state X0 = ξ1

near the abstracted goal state Xg = ξ5.
To evaluate the ’distance’ of a qualitative state Xk from its reference value, we introduce

reference-cost variables CR,k. These reference-costs CR,k are then – in a weighted sense –
utilized together with the previously introduced likelihood costs CL,k to determine the quality
of qualitative trajectories. To specify the values for the reference-costs, each qualitative region
Xk = ξi receives a cost value CR,k = cRi associated to each qualitative region Xk = ξi that
corresponds to the minimum distance from any continuous state xk qualitatively abstracted
by Xk = ξi to the goal state xg. This is shown in Figure 2.11.

At time t0, qualitative pre-selection of a ’good’ trajectory can now be formulated as
discrete search problem for an assignment to qualitative variables

xd,0, X0, xd,1, X1, xd,2, X2, xd,3, X3.

Consecutively analyzing the qualitative model ((2.11) on page 16) for times t0 → t1, t1 → t2
and t2 → t3 allows to determine possible abstractions X0 . . . X3. A similar model that was not
explicitly displayed would be utilized to model allowed mode changes, such that for example
a mode change to xd,k+1 = m2 is only possible, if Xk = ξ5.

The qualitative trajectory ’nearest’ to the goal is

xd,0 = m1 X0 = ξ1

xd,1 = m1 X1 = ξ3 CR,1 = 0.25 (line 3 in (2.11))
xd,2 = m3 X2 = ξ5 CR,2 = 0 (line 28 in (2.11))
xd,3 = m2 X3 = ξ5 CR,3 = 0 (last line in (2.11))

2.4. AN OUTLINE OF THE HYBRID CONTROL FRAMEWORK 21

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
g

c
R 1

=0.75 c
R 2

=1.1

c
R 3

=0.25

c
R 4

=0.75

c
R 5

=0

x
1

x
2

Figure 2.11: Cost values for deviations from the reference state

We choose to not consider likelihood costs here (weight them by 0), so this ’nearest’ trajectory
is the ’qualitatively best’ one. It specifies a mode-sequence

xd,1 = m1, xd,2 = m3 xd3 = m2

for the hybrid system. To solve the hybrid control task, however, continuous actuation has
to be determined (numerically), yet.

To solve this task, for example Model Predictive Control (MPC) can be used. Determi-
nation of the continuous actuation u of the hybrid model (2.6, page 10) by MPC is rather
straightforward, because with a specified mode sequence the hybrid model can be considered
as standard time-variant continuous model, specifically:

x1 =
[

0.03 −0.47
0.47 0.03

]
x0 +

[
0.15
0.12

]
u0

x2 =
[

0.25 3.57
−3.57 0.25

]
x1 +

[
0.34
−0.44

]
u1

x3 =
[

0.76 0.19
0.17 0.76

]
x2 +

[−0.09
−0.14

]
u2 .

However, although the above qualitative trajectory (and, thus, the mode sequence) is a
valid trajectory according to the qualitative model, MPC fails. With this time-variant con-
tinuous model, no continuous actuation u0, u1, u2 can be determined such that no constraint
is violated. This is due to a well known and unavoidable problem related to qualitative
modeling in general: A model that is obtained by abstracting all possible trajectories of
a continuously valued model to qualitative trajectories may generally also allow additional
qualitative trajectories which are not an abstraction of any trajectory of the original model.
In literature, these additional qualitative behaviors are called spurious behaviors [36]. We will
present how we are trying to avoid such spurious behaviors with high likelihood in the next
section. However, since it isn’t possible to generally avoid them with certainty, will will show

22 CHAPTER 2. MOTIVATING EXAMPLE

now how the hybrid modeling framework is able to handle situations when a qualitatively
determined mode sequence does not allow a valid numerical solution.

If a pre-selected mode-sequence is based on such a spurious behavior, it won’t be pos-
sible to numerically determine continuous actuation for the pre-selected time-variant model
without violating any constraint. If such a violation of constraints is detected, qualitative
pre-selection (i.e. search for the qualitatively next-best trajectory) is resumed. This new
trajectory, specifies an alternative mode-sequence and, hence, another time-variant continu-
ous model. This new model, again, is utilized to try to refine continuous actuation. If this
model still is based on a pre-selected spurious behavior, successively new mode sequences are
requested until one that allows a valid numerical solution is found.

In the example, the first mode-sequence that allows to a valid numerical solution is

xd,1 = m1, xd,2 = m1, xd,3 = m3.

A valid continuous actuation that keeps the respective time-variant continuous model within
its constraints is:

u0 = 0, u1 = 0, u2 = 0.

After evolving one time step according to pre-selected mode xd,1 = m1 and numerically
determined actuation u0 = 0, state

x1 =
[−0.38
−0.33

]

is reached and qualitative pre-selection restarts form the (abstracted) hybrid state

xd,1 = m1, X1 = ξ3.

The resulting trajectory that is obtained by the described receding horizon control strat-
egy for the next few time steps is the same as obtained by the ’intuitive’ solution from Section
2.2 and is displayed in Figure 2.5 on page 12.

The outlined approach to hybrid control can be summarized as an interplay between
a qualitative pre-selection engine and subsequent numerical control deduction (MPC for a
time-variant continuous model):

1. Qualitative abstraction of the current hybrid state and control goal

2. Qualitative pre-selection

• Utilize a pre-compiled qualitative model to determine a hybrid trajectory close to
the goal

• The mode sequence specified by the qualitative trajectory allows to regard the
hybrid model as time-variant continuous model.

3. Numerical refinement of the continuous actuation

• Try to determine continuous actuation for the time-variant continuous model such
that no constraints are violated

• If a necessary violation of constraints is detected, go back to 2 and request pre-
selection of the qualitatively next best trajectory

4. Hybrid Evolution

2.5. QUALITATIVE PRE-SELECTION 23

• Apply command inputs (determined during qualitative pre-selection) and contin-
uous actuation (determined by numerical refinement) to the hybrid system

• At next sample time: restart at 1.

This is illustrated graphically in Figure 2.12.

Figure 2.12: Hybrid control scheme

2.5 Qualitative Pre-Selection

The benefit of performing hybrid control through qualitative pre-selection is that an ab-
stracted, thus simplified, description of the hybrid system’s behavior can be analyzed more

24 CHAPTER 2. MOTIVATING EXAMPLE

easily than the detailed numerical model. Qualitative pre-selection only has to select a good
solution among a finite number of possible discrete trajectories.

However, the number of these trajectories can be quite large for complex systems. So
sophisticated search strategies have to be utilized and a well suited problem formulation has
to be determined.

Additionally, there is always the risk of encountering spurious behaviors that provide
mode-sequences which do not allow valid solutions to subsequent numerical refinement of
continuous actuation. In principle, the outlined control scheme can cope with such a situation
as shown above. However, numerical verification of a pre-selected qualitative trajectory needs
some computational effort. So one should not have to try too many different mode sequences
until a satisfactory solution is found. This requires to avoid spurious behaviors with high
likelihood.

Like before, this introductory chapter won’t go into detail and formalism here, but just
highlights the most important concepts of the qualitative pre-selection scheme. First, we
discuss how we can modify the qualitative pre-selection as outlined above such that spurious
behaviors are avoided with high likelihood. In this hybrid control scheme, possible spurious
behaviors emerge from the fact that only single-time step transitions between qualitative
states are included in the qualitative model, but qualitative pre-selection needs to reason
about longer trajectories. Additionally, the trajectories of the hybrid model do start from a
specific numerical initial state. For example, the qualitative model 2.11 allows a trajectory

xd,0 = m1, X0 = ξ1, xd,1 = m1, X1 = ξ3, xd,2 = m3, X2 = ξ5. (2.14)

However, with the specific initial state x0 = [−0.75; 0.75]T such a trajectory is not possible.
This is illustrated in Figure 2.13. Trajectories that lead from ξ3 to ξ5 with mode m3 may
only start from a very small region inside ξ3 and this region cannot directly be reached from
the initial state. When one considers the very small size of the region in ξ3 that allows
the state-transition to ξ5, it seems rather likely that a qualitative trajectory containing this
qualitative transition might be spurious.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ξ
1

ξ
1

ξ
2

ξ
3

ξ
4

ξ
5

x
0

x
1

x
1

x
2

Figure 2.13: Possible ranges for state-transitions ξ1 → ξ3 (m1) and ξ3 → ξ5 (m3).

2.6. CHAPTER SUMMARY 25

In the presented qualitative model (2.12), this is captured by the likelihood-cost value
CL associated to each trajectory. Considering these likelihood costs CL together with the
reference costs CR for evaluating the ’quality’ of a qualitative trajectories can largely help in
avoiding spurious behaviors.

Still, avoiding spurious behaviors alone is not enough, as the (though finite) number of
possible qualitative trajectories may be quite large. It is necessary to utilize an efficient
search strategy to quickly select among all possible qualitative trajectories. As a result of
this pre-selection, in principle, one is only interested in the qualitatively best (i.e. near the
goal and most probably non spurious) trajectory. Thus, so-called best-first search is utilized.
These search-strategies explore the search space by starting with an empty assignment of
qualitative variables and then consecutively assigning values to the different variables until
a solution is found. As search intends to find the best solution first, always only the best
of the (partial) assignments is explored for one more variable. This basic idea is illustrated
by the expansion of a search tree in Figure 2.15a-e, where the graph shown in Figure 2.14 is
explored for the shortest path from node A to D.

Still, search can be performed more efficiently by A∗-search, a sophisticated variant of
best-first search that utilizes ideas from dynamic programming (DP) [11] to stop further
exploring assignments that won’t ever turn out to be better than others. To give an example,
in Figure 2.16 both assignments

a = 0, b = 1 with C = 3
a = 1, b = 1 with C = 4

lead to the same node in the graph. Therefore, both will only have the same possible extension
(c = 1). So it doesn’t make sense to investigate the worse of the two (a = 1, b = 1) any
further. This is presented in Figure 2.17a-d.

2.6 Chapter Summary

Numerical control deduction for hybrid systems is a demanding task. Intuitively solving a
hybrid control task by taking a qualitative view on the dynamics of a simple example hybrid
model motivated the idea to utilize qualitative pre-selection of mode-sequences as an approach
to hybrid control.

This approach splits up the task of on-line hybrid control deduction into two separate sub-
tasks, each of which can be solved more easily than the hybrid control task itself, because
each of the sub tasks operates only in one domain – discrete or continuous. Specifically, these
sub-tasks are qualitative pre-selection of a sequence of operational modes and numerical
refinement of continuous actuation.

With a pre-selected mode sequence, the hybrid control task can be regarded as control
of a standard time-variant continuous model. This makes numerical deduction of continuous
actuation much easier, as no discretely valued variables have to be considered.

Further, qualitative pre selection only operates on a simplified, symbolic representation of
the hybrid system’s behavior. This allows efficient tools for solving discrete-search problems
to be applied.

However, taking a qualitative (abstracted) view of the hybrid system’s operation intro-
duces the problem of spurious behaviors. These are trajectories predicted by the simplified
qualitative model which are not possible for the detailed numerical model. Such wrong pre-
dictions lead to an impossibility of numerical deduction of continuous actuation.

26 CHAPTER 2. MOTIVATING EXAMPLE

Figure 2.14: Shortest path from A to D?

(a) Start from empty assignment
and explore a

(b) Explore best unexpanded
node further

(c) Continue exploration from best
node

(d) A path A → D is found, but
there are better nodes

(e) The best node specifies a path
path A → D

(f) Best path

Figure 2.15: Best first search for shortest path

2.6. CHAPTER SUMMARY 27

Figure 2.16: Again: shortest path from A to D?

(a) Start from empty assignment
and explore a

(b) Explore best unexpanded
node further

(c) Two explored paths lead to the
same node in the graph

(d) Best path A → D is found

(e) Best path

Figure 2.17: Best first search with dynamic programming

28 CHAPTER 2. MOTIVATING EXAMPLE

If such a spurious behavior is pre-selected, this impossibility is detected and qualitative
pre-selection is requested to provide another mode-sequence. However, frequently predict-
ing such spurious behaviors is prohibitive, as the numerical treatment of the time-variant
continuous model – though much easier than hybrid control itself – still is computationally
intensive.

So in this chapter a qualitative model was introduced that utilizes cost values to indicate
whether a qualitative behavior is rather likely to be spurious or not. With this additional
information available, qualitative pre-selection can be biased towards mode-sequences that
allow trajectories that are both: close to a specified goal and non-spurious with high likeli-
hood.

Additionally, the qualitative model is set up in a way that allows off-line compilation and
compact storing. This saves computational resources for on-line qualitative pre-selection and
numerical control refinement.

In this introductory chapter, simple examples were utilized to informally demonstrate the
basic concepts of the proposed approach to automated on-line hybrid control. The subsequent
chapters now provide formalization of these concepts and put the statements made in this
introduction on a firm basis.

Chapter 3

Multi Component Hybrid Models

The proposed hybrid control scheme aims at control of multi-component systems that evolve
in a hybrid continuous/discrete manner (hybrid systems). The state of these systems evolves
according to different continuous dynamics for distinct modes of operation and this continuous
evolution is interleaved with discrete changes of the operational mode.

This very general description of hybrid systems, however, allows a wide variety of differ-
ent systems to be captured. Since these systems may be very different, developing a single
framework that fits to all of them well isn’t easy. Therefore, depending on the type of hy-
brid systems considered, in literature there exists a wide range of different hybrid modeling
schemes, some putting more emphasis on continuous dynamics (e.g. [13, 31]), some empha-
sizing discrete dynamics (e.g. [1]).

With respect to continuous dynamics, in this thesis it is assumed that the underlying hy-
brid systems at each operational mode only exhibit continuous dynamics that can adequately
be captured in terms of linear or affine difference and algebraic equations. Additionally, it
is assumed that complexity of the behavior of the overall system mainly results from tight
interaction among the various parts (components) of the system, whereas each component
itself can be captured by a rather simple hybrid model.

Section 3.1 starts with a presentation of the hybrid automaton model that we use to
model each of the components of a multi-component hybrid system. This hybrid model is a
restricted variant of the hybrid automaton presented in [30, 31].

Section 3.2 shows how the overall model for a hybrid system is obtained by stringing
together the various component automata.

Section 3.3 then provides formalization for both, the individual component automata as
well as their interconnection. This overall model is captured as a concurrent hybrid automaton
[30, 31].

3.1 Single Component Hybrid Automata

Systems composed of several components generally are difficult to describe by a single model
since the number of different operational modes for the overall system can be very large.
A system composed of 10 components each of which evolves according to 5 different modes
of operation can show 510 ≈ 10.000.000 different overall operational modes. However, a
component based modeling approach only needs to record models for 5 · 10 = 50 different
operational modes. The complexity of the behavior of the overall system is not explicitly
represented in the model (making it unreasonably large) but is just an implicit consequence

29

30 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

Figure 3.1: Inputs and outputs of a hybrid component model

of interactions among the much simpler component models.
Each of the components of the system is represented by a model that describes transitions

of the operational mode (discrete state) xd of the component as well as the dynamic evolution
of its continuous internal state x. These evolutions can be influenced by a discretely valued
command input ud and continuously valued actuation u. The operation of the system can be
observed by a discretely valued output yd and continuously valued outputs y (Figure 3.1).
This thesis does not deal with hybrid estimation [31], so full measurement of the discrete
mode xd and continuous state x is assumed throughout, such that

yd = xd

y = Ci · x Ci =
[

I
Ci

]
.

(3.1)

Here, I is the identity matrix and Ci determines additional outputs depending on the oper-
ational mode xd = mi. This is a restriction with respect to the hybrid modeling framework
in [31], but it shall be relaxed in the future.

3.1.1 Discrete Evolution

To build a model for a component of a hybrid system, first its operational modes mi have to be
identified. For example, these could represent the system being operating in standby-mode,
operating normally or in some specific faulty manner.

Next, the conditions under which the operational mode of the system changes have to be
determined. It is assumed that these mode-changes only can take place at the sample times

tk = t0 + k · Ts (3.2)

of the digital control, where t0 is the initial time and Ts specifies the sampling period. These
mode transitions can either be so-called commanded transitions that only depend on the
discrete command input ud or autonomous transitions that additionally depend on the current
continuous inputs u and the system’s dynamic state x. The expressions that determine when
a transition is taken are called the transition guards. Not to introduce ambiguity, these
transition guards have to be formulated such that in any case only one of the expressions
guarding all transitions leading ’away’ from a particular mode may evaluate to ’true’.

As example, three different values of the command input ud = {turn on, turn off, reset}
are used to switch a system on and off and to recover from faults, respectively. Additionally,
the continuous input u dropping below a bound u < 0 autonomously leads to the specified

3.1. SINGLE COMPONENT HYBRID AUTOMATA 31

Figure 3.2: Commanded mode transitions and an autonomous one

fault in the system. These mode-transitions can be expressed in terms of a graph like Figure
3.2. We observe that the transition leading to the fault mode must additionally be guarded
by an expression ud 6= turn off because otherwise two guards would evaluate to true if
ud = turn off and u < 0. Whenever the guards of all transition edges leading away from
the current mode evaluate to false, the so-called no-transition is taken and the operational
mode remains unchanged.

As far as mentioned so far, the model only includes transitions that are certain. That
means, given the current discrete state xd, continuous state x, command input ud and contin-
uous actuation u the model exactly specifies the subsequent operational mode. To allow more
general models, ambiguous transitions that lead to multiple follow-up states are included in
the modeling framework. This can be utilized to specify probabilistic distributions among
several possible target modes of a transition.

Again for the example, turning the system in Figure 3.2 on could be successful only with
a probability of 95%. 5% of the times when one attempts to turn on the system, it just stays
at standby mode. Such probabilistic ambiguities can graphically be expressed by splitting
up a transition edge after the associated guard into multiple arcs that lead to different target
modes. These arcs are labeled according to their probability such that the sum of probabilities
over all arcs sums up to 1. For the example system, such a non-deterministic transition is
displayed in Figure 3.3.

Figure 3.3: Non-deterministic transition targets

32 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

3.1.2 Continuous Evolution

The dynamic system at each discrete state xd = mi is captured in terms of its continuously
valued state

x = [x1, . . . , xnx]T

and receives continuously valued inputs

u = [u1, . . . , unu]T .

Its operation can be observed through the outputs

y =
[
y1, . . . , yny

]T

and is described in terms of an affine model

d

dt
x = Aci x + Bci u + eci (3.3a)

y = Cci x + Dci u + fci, (3.3b)

where the index i of the constant matrices Aci, Bci, Cci, Dci, and the constant vectors eci,
and fci indicates the dependence upon a particular operational mode mi.

Why Affine models

The choice to model the dynamic system by a set of affine models is a restriction compared
to [30], where more general non-linear models are allowed. However with the intended task of
run-time hybrid control in mind, this restriction in introduced to be able to rely on simpler
methods for numerical controller design (linear Model Predictive Control for time-variant
systems) than would be necessary in the more general non-linear case.

It has to be noticed, however, that such nonlinear models

d

dt
x = fx(x,u) (3.4a)

y = fy(x,u), (3.4b)

where f(·) stands for a differentiable function, can (arbitrarily close) be approximated by a
set of affine models that are obtained by a Taylor-Series expansion (Appendix A.1) of the
function around a number of (continuous) operational points

〈xOP ,uOP 〉 .
If that operational point was a steady state

〈xOP ,uOP 〉 = 〈xSS ,uSS〉
of the system, that means that

fx(xSS ,uSS) != 0,

Taylor series-expansion of fx and fy would lead to constant vectors ecSS = 0 and fcSS = 0
equal to zero. So, as a result of linearization one would obtain a linear model

d

dt
x = AcSS x + BcSS u

y = CcSS x + DcSS u.

3.1. SINGLE COMPONENT HYBRID AUTOMATA 33

The limitation to linearization around steady states, however, is over-restrictive. Control
tasks may require operation of the systems far away from these particular steady state points.
In this case, the linear models cannot adequately describe the system behavior and would
thus lead to degraded controller performance.

If, however, linearizations around several non-steady states are available as well, the con-
troller can always rely on an affine model that closely approximates the non-linear continuous
dynamics of the system.

In a hybrid modeling sense the non-linear dynamics (3.4) of a system at a particular mode
mi are represented as set of affine models, each of which is valid in a certain region of the
state-space (Piecewise affine model [48]). For this, the operational mode mi of the non-linear
system is ’split up’ into several new operational modes mj , each of which is associated with
one of the affine linearizations. Transitions among these new discrete states are guarded by
the borders of the corresponding regions of the state space.

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

x
2

2x−1

4x−4

x

d
x
/
d
t

(a) Linearized approximations (b) Separation into new operational modes

Figure 3.4: Approximation of non-linear dynamics by linearization

This is illustrated in Figure 3.4, where the model

xd = m1 :
d

dt
x = x2

is linearized around operational points xOP1 = 1 and xOP2 = 2 to obtain affine models

xd = m1A :
d

dt
xc = 2x− 1

xd = m1B :
d

dt
xc = 4x− 4.

The former one better approximates the non-linear model as long as x < 1.5, whereas the
latter is the better approximation for continuous states x > 1.5.

The linearization around the steady-state xSS = 0, i.e.

dx(t)/dt = 0

certainly does not suffice to approximate the non-linear behavior in the region depicted in
Figure 3.4a.

34 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

However, although a set of affine linearizations can closely approximate the function
fx = x2, clearly no linearization can capture the finite-escape time property

d

dt
x(t) = x(t)2 → x(1/x0) = ∞

of this non-linear model.
Approximating non-linear continuous dynamics by a set of affine models certainly makes

the hybrid model’s discrete dynamics more complex by introducing new discrete states and
new autonomous transitions, i.e. transitions that are not commanded by particular discrete
inputs but that are imposed by the continuous dynamics of the system itself. So the choice
of the number of operational points xOPi for obtaining linearizations has to be a compromise
between quality of approximation and increase in complexity of the discrete dynamics.

Discrete time operation

The model (3.3) is defined in a continuous-time manner. The intended on-line hybrid con-
troller, however, operates in discrete time and calculates new controls only at times

tk = k · Ts, (3.5)

where Ts denotes the sampling period of the hybrid controller. The continuous inputs u are
kept constant within the sampling period at

u(t) = uk tk ≤ t < tk+1. (3.6)

Similarly,

xk = x(tk) (3.7a)
xd,k = xd(tk) (3.7b)
yk = y(tk) (3.7c)

denote sampled continuous state, discrete state and output respectively.
With the transition matrix

Φi(Ts) = eAci Ts (3.8)

the general solution to the dynamic model (3.3) at time t = Ts is

x(Ts) = Φi(Ts) · x(0) +
∫ Ts

0
Φi(Ts − τ) ·Bci · u(τ) dτ +

∫ Ts

0
Φi(Ts − τ) · eci. (3.9)

Since with the above conventions u(τ) = u0 is constant during the interval 0 ≤ t < Ts we
can rewrite this equation in the form

x1 = Ai x0 + Bi u0 + ei (3.10)

where, after substitution of variables, the matrices Ai, Bi and vector ei are calculated as

Ai = Φ(Ts) (3.11a)

Bi =
∫ Ts

0
Φi(τ)Bci dτ (3.11b)

ei =
∫ Ts

0
Φi(τ)eci dτ. (3.11c)

3.1. SINGLE COMPONENT HYBRID AUTOMATA 35

In the same way, xk+1 can be calculated from xk and uk and we get the discrete-time model

xk+1 = Ai xk + Bi uk + ei (3.12a)
yk = Ci xk + Di uk + fi (3.12b)

Sampling does not change the output-equation of (3.3), so we have

Ci = Cci (3.13a)
Di = Dci (3.13b)
fi = fci. (3.13c)

Due to the discrete-time operation of the hybrid controller, the modeling framework only
allows discrete time models (3.12) to capture the hybrid system’s continuous dynamics at
each operational mode. These discrete time models do not necessarily have to result from
sampling of continuous-time system behavior (3.11), but, of course, can also describe more
general systems which, themselves, operate in discrete-time.

3.1.3 Hybrid execution

With the utilized modeling framework, changes in continuous actuation u as well as changes
in the operational mode xd can only take place at times tk. For the discrete state xd, standard
hybrid systems notation

xd,k+1 = xd(t) tk < t ≤ tk+1 (3.14)

is used. Note here the difference in index numbering and inequality signs to the input

uk = u(t) tk ≤ t < tk+1. (3.15)

Following these conventions

• the continuous state xk, the discrete state xd,k and the output yk are sampled at times
tk,

• instantly, new controls uk and ud,k are calculated right at tk as well,

• continuous actuation is kept constant at uk for the sampling period.

• Further, at tk the guards of possible mode transitions are evaluated and possibly enforce
a mode change so that xd(t) = xd,k+1 immediately after the sampling time tk.

This mode change takes place in an infinitely short time ε and we denote

t′k = tk + ε.

The hybrid system, then, evolves according to this new discrete state xd,k+1 until the next
sampling time tk+1.

36 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

Figure 3.5: Hybrid execution

Discontinuities in the continuous state x

Apart from continuous evolution of the continuous state x during a sampling period (i.e. from
time tk to tk+1), additionally instant resets of the continuous state x are allowed, whenever a
transition between operational modes takes place. Like the operational mode, the continuous
state x changes from time tk to time t′k. This is modeled as

x′k = Rji xk + rji,

where indices j and i indicate the transition from discrete states xd,k = xd,j to xd,k+1 = xd,i.
During the time

t′k ≤ t ≤ tk+1

the continuous state x evolves from x′k to xk+1 according to the dynamics imposed by discrete
state xd,k+1 and the continuous input uk.

3.2. CONCURRENT HYBRID AUTOMATON 37

Introduction of this new intermediate continuous state x′k forces a modification to the
model (3.12). With the possible state-reset included, continuous evolution of the hybrid
system during a sampling period can be modeled as:

x′k = Rji xc,k + rji (3.16a)
xk+1 = Ai x′k + Bi uk + ei (3.16b)
yk+1 = Ci xk+1 + Di uk+1 + fi (3.16c)

A time-line illustration of the evolution of that hybrid model is presented in Figure 3.5.

3.2 Concurrent Hybrid Automaton

To be able to capture more complex systems composed of several components, the hybrid
models for each of these components have to be combined to form an overall model. To
keep the modeling-complexity manageable even for larger compositions, no single hybrid
automaton for the overall system shall be developed. Instead, the overall model basically
sticks to the component models and only defines their interconnection and their connection
to the outside world. An illustration of an interconnection of two hybrid components is shown
in Figure 3.6.

Figure 3.6: Interconnection of two hybrid components

38 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

In terms of notation, u is used to denote the continuous actuation that can be applied to
the overall system from the outside world. Likewise, y provides the the continuous outputs to
the outside world and w denotes intermediate variables that connect various components of
the overall model but do not have a connection to the outside. Similarly, ud and yd represent
the command inputs and discrete outputs of the overall model.

For notational distinction between inputs and outputs of the overall model and inputs
and outputs of the specific components, a superscript (i) will be used to denote the variables
used in the model for component i. For example x(i) denotes the continuous state of the i’th
component of the overall model.

The interconnections of the overall model are modeled by specifying which variables of
each component model are represented by which variable in the overall model. For example
for the system depicted in Figure 3.6 this interconnection specification looks like:

determined by... provided to...
u ext. u(1)

w y(1) u(2)

y y(2) ext.

ud ext. u
(1)
d , u

(2)
d

yd1 y
(1)
d ext.

yd2 y
(2)
d ext.

3.3 Formalization of the Hybrid Modeling Framework

3.3.1 Hybrid Automaton

The hybrid model describing a component of the overall system can formally be expressed
very similarly to a discrete-time probabilistic hybrid automaton (PHA) [30, 31].

Each component is modeled by a hybrid automaton (HA) A. This automaton is formally
expressed as tuple

A = 〈xh,uh,yh, F, T,X,U,Xd,Ud, Ts〉 : (3.17)

• the hybrid state
xh = 〈xd,x〉

is composed of the discrete mode xd with finite domain

xd ∈ Xd = {m1, . . . , ml}
and the continuous state x with constrained state-space

x ∈ X ⊂ IRnx .

The constrained state space is defined as polytope in IRnx :

X = {x | Mx x < mx}

• the input
uh = 〈ud,u〉

is composed of a finite set of discrete commands

ud ∈ Ud

3.3. FORMALIZATION OF THE HYBRID MODELING FRAMEWORK 39

and limited continuous actuation

u ∈ U ⊂ IRnu ,

where
U = {u | Mu u < mu}

• the output
yh = 〈yd,y〉

provides direct observation of the hybrid state xh plus possible additional continuous
outputs. (These can, later, serve as input in other components).

• continuous evolution of the hybrid automaton is specified by a function F that relates
an affine model

xk+1 = Aix′k + Biuk + ei

yk = Cixk + Diuk + fi
(3.18)

with

Ci =
[

I
Ci

]

to each discrete state xd = mi ∈ Xd of the automaton. If F denotes the set of all these
models, F takes the form

F : Xd → F

• discrete evolution among operational modes is specified by the definition of transitions
τi. Each of these transitions is represented by a triple

τi = 〈ci, pi, ri〉

– ci denotes the guard of the transition. The guard is a boolean function in terms
of boolean expressions b(ud) on the discrete command input ud and polytopic
constraints on the continuous state- and input-space

ci = b(ud) ∧ (Pu u < pu) ∧ (Px x < px) .

A transition is taken if and only if the associated guard is true.

– When a transition is taken, pi specifies possible target modes as probability dis-
tribution among the set of discrete states X .

– Additionally, there is a function ri associated to each of the target modes mj of a
transition that resets the continuous state to

x′k = Rij xk + rij .

The function T associates a subset of these transitions τi to each operational mode. If
T denotes the set of all transitions and 2T is the set of all subsets thereof, the function
T can takes the form

T : Xd → 2T

• Ts denotes the sampling time of the automaton. This is only important, as in this
hybrid modeling framework all automata that are connected have to have synchronous
sampling.

40 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

3.3.2 Concurrent Automaton

Two hybrid automata A1 and A2 only can be composed within the modeling framework,
if they operate synchronously with common sampling time Ts. The automata can only be
connected via their continuous inputs and outputs. They do not share common states.

The hybrid automata presented above can only model single components. The compo-
sition of several such automata, however, does not yet specify the interconnections among
them, nor does it specify the systems connection to the outside world (Figure 3.7). The in-

Figure 3.7: Composition of two hybrid automata

terconnection of the hybrid system’s components and the system’s connection to the outside
world is specified by a concurrent hybrid automaton (cHA). Formally, this automaton CA is
expressed as tuple

CA = 〈uh,yh,wh, C,A〉 : (3.19)

• uh = 〈ud,u〉 specifies the exogenous command inputs ud and inputs u for continuous
actuation provided to the automaton from the outside world.

• yh = 〈yd,y〉 defines the outputs that can be observed from the outside world.

• wh = 〈wd,w〉 specifies intermediate variables that do interconnect individual compo-
nent automata Ai but have no connection to the outside world.

• Using these variables, the connection specification C determines the interconnection of
the components by relating each individual input and output of each component to an
individual input, output or intermediate variable of the concurrent automaton.

• A specifies the composition of the component-automata Ai.

• Full measurement of the hybrid state xh has to be assured for operation within the
hybrid control framework.

An example specification of a concurrent automaton around composed component au-
tomata as in Figure 3.7 is shown in Figure 3.8a. A more intuitive display is given in Figure
3.8b.

3.4. CHAPTER SUMMARY 41

(a) Composition of automata with specified interconnection

(b) Simpler display for the same concurrent automaton

Figure 3.8: Example of a concurrent automaton

3.4 Chapter Summary

This chapter presented the formalism that defines the class of hybrid models that can be
controlled by the hybrid control scheme that will be formalized in the following chapters. This
class of models captures complex system behavior as a set of interconnected hybrid automata.
This representation of complex systems as several simpler components will be beneficial for
qualitative modeling, because it allows to keep the qualitative models compact and allows to
handle model complexity by efficient qualitative reasoning among the components.

42 CHAPTER 3. MULTI COMPONENT HYBRID MODELS

Chapter 4

Automated Qualitative Abstraction

This chapter specifies automatic compilation of a compact qualitative model that
is especially suited for efficient pre-selection of promising sequences of operational
modes

The concurrent probabilistic hybrid automaton defined in Chapter 3 is a powerful tool
to model complex systems that exhibit both, continuous and discrete dynamics. It gives
a compact representation of systems composed of several components by relying on rather
simple models for each component and putting those under a shell that defines their inter-
connection in a natural sense. However, this modeling framework utilizes different types of
variables to model continuous and discrete dynamics of hybrid systems. While continuous
dynamics are modeled as equations among continuously-valued variables, discrete changes of
the operational mode of the system are captured in terms of an automaton that is described
by discretely valued variables.

Chapter 2 gave a first motivation, how an abstract, qualitative, view on a hybrid system’s
behavior can help in solving control tasks. A (beforehand compiled) qualitative model is
utilized to efficiently solve the control task on an abstracted level. The result of this qualita-
tive control generation then specifies the discrete part of the hybrid control, leaving only the
continuous part left to numerical control generation. This way, the complex hybrid control
task is split into two much less complex ones: An abstracted control problem posed on a
qualitative model and a standard numerical control problem posed on a purely (though time
variant) continuous model.

Efficiency and accuracy of the qualitative pre-selection highly depend on form and ac-
curacy of the qualitative model representing the hybrid system. This chapter introduces
formalization of a qualitative modeling framework that is especially designed to be efficiently
utilized for the intended pre-selection task. The chapter outlines the automated compilation
of that qualitative model from the hybrid model.

Section 4.1 first details the requirements on the qualitative model that are needed to
be met to utilize it in hybrid control. The following sections, then, present the details of
automated qualitative modeling: Selecting qualitative variables and domains (Section 4.2)
and compilation of a first qualitative model (Section 4.3). Section 4.4 finally introduces a
specialized graphical representation of that model that fulfills all requirements relevant for
utilization in hybrid control.

43

44 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

4.1 Model Outline

The qualitative model is intended to serve in on-line control of hybrid systems. I.e. the
actuation that is provided to the system is generated from a model of the system at run-
time. Model Predictive Control (MPC) [41] is an example of such an on-line control scheme
for continuous systems.

For our multi-component hybrid systems, an on-line control strategy provides the advan-
tage that it allows to react on the current ’situation’ the system is in (e.g. system state,
occurred faults, present constraints) without pre-specifying a separate controller for each op-
erational mode of the overall system. Interactions among the various system components can
result in an overwhelming number of overall modes for the system. Accounting for each of
these modes in advance and specifying a distinct controller for each of them often is hardly
manageable.

However, on the other hand, determination of the system’s actuation at run-time has to
be performed in ’real-time’. This means for the qualitative model, that it has to be compiled
off-line. This, of course, demands that the qualitative model has to encompass all possible
behaviors of the original hybrid model. This may seem as troublesome as compiling a separate
controller for each operational mode, and it is certainly somewhat true if one only looks at
the overall hybrid system as a whole. If, however, each component is abstracted separately,
all abstracted behaviors of the hybrid system can be captured by a set of (in comparison)
rather small qualitative models.

This compromise, however, adds new demands to the on-line pre-selection performed on
the qualitative model. It is not possible to deduce the required discrete control on behalf of
a single overall model, but the controller has to reason among several interacting component
models. To make this reasoning more efficient, the qualitative component models will be
represented in a structured sense that is founded on the structure (i.e. the interdependencies)
of the system’s components. This structured representation allows to simultaneously reason
among the various component models almost as if they were a single overall model.

So far, requirements on the qualitative model can be summarized as:

• Constrained time for on-line control deduction requires off-line compilation of the qual-
itative model.

• Complexity of the overall system behaviors requires component based qualitative mod-
eling.

• Required efficiency of on-line qualitative reasoning demands a well structured represen-
tation of the component models.

However, one major problem immanent to qualitative models in general has not been
considered yet: If a detailed numerical model is abstracted to a qualitative one, it is generally
unavoidable that the qualitative model will additionally model some behaviors that are not
an abstraction of any behavior of the detailed model. These additional behaviors of the
qualitative model are called spurious behaviors [36].

So if hybrid control only works with a qualitative model in first place, one has to be
aware that the result of qualitative pre-selection could be based on such a spurious behavior
and, thus, could be invalid. Checking the qualitatively determined results with the numerical
model detects such a case and qualitative reasoning about another behavior can be continued.
However, with respect to the constrained on-line computation time it is advantageous to take
measures that help to pre-select a valid solution right in first place.

4.2. QUALITATIVE ABSTRACTION 45

So an additional requirement will be included to qualitative modeling:

• It is required that the model contains indicators that tell how likely a particular quali-
tative behavior is spurious.

4.2 Qualitative Abstraction

The intention followed by qualitative modeling is to capture the complex hybrid behavior of
a system by an abstracted model among discretely valued variables only. With such a model
one can reason about behaviors of the hybrid systems by utilizing efficient discrete search
techniques. Simultaneous treatment of the discretely valued variables and abstractions of the
continuously valued ones doesn’t require different tools to handle both types of variables.

4.2.1 Basic Automaton Concept

As basis for the qualitative model for each component, an abstraction of each of the system’s
components that is similar to a non-deterministic automaton [39, 40] is utilized. This type
of qualitative model abstracts the continuously valued variables of a model to qualitative
variables by separating the value-space of each such variable into distinct regions. Each of
these regions represents a different value of the qualitative variable.

In this work, continuously valued variables are denoted by lowercase letters a for scalars or
lowercase boldface letters a for vectors. The corresponding qualitative variables are denoted
by uppercase letters A and their valuations (qualitative values) by lowercase Greek letters α.

continuously valued variable qualitative variable qualitative values
states x,x X ξ1, ξ2, . . .
inputs u,u U υ1, υ2, . . .
outputs y,y Y µ1, µ2, . . .
other w,w W ω1, ω2, . . .

Regardless whether the corresponding continuously valued variable is a scalar or a vector,
qualitative variables are always scalars. The dimensionality of the continuous variable only
contributes to the dimensionality of the regions represented by the qualitative values. An
example is given in Figure 4.1 where a variable x = [x1, x2]T is abstracted.

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

Figure 4.1: Qualitative abstraction of a vector

x ∈ {x1, x2 | −1 ≤ x1 < 0, 0 ≤ x2 < 1} ←→ X = ξ1

x ∈ {x1, x2 | 0 ≤ x1 < 1, 0 ≤ x2 < 1} ←→ X = ξ2

x ∈ {x1, x2 | −1 ≤ x1 < 0, −1 ≤ x2 < 0} ←→ X = ξ3

x ∈ {x1, x2 | 0 ≤ x1 < 1, −1 ≤ x2 < 0} ←→ X = ξ4

46 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

In this example, the 2 dimensional variable x is separated into 4 equally-sized rectangu-
lar qualitative regions. Yet, the proposed qualitative modeling scheme allows more general
separations into polytopes

Hix ≤ ki ←→ X = ξi.

With such a separation (for the state x as well as for input u and output y), a continuous
model

xk+1 = Axk + Buk

yk = Cxk + Duk

can be abstracted to an automaton with states ξi in the following way: The automaton allows
a transition labeled υl and µm from one state Xk = ξi to another state Xk+1 = ξj if and
only if the continuous model allows trajectories from xk inside the region represented by ξi

to xk+1 inside the region represented by ξj while observing an output yk inside region µm if
there is applied an input uk inside region υl.

Generally, trajectories starting from different points in a region represented by Xk = ξi

will not always lead to the same qualitative region Xk+1. So the automaton will show am-
biguous transition targets. To partially resolve this ambiguity, each ambiguous transition to
a specific target is additionally labeled with a probability value p that indicates the likeli-
hood to encounter a trajectory to a corresponding state xk+1 while observing output an yk

in region µm if state xk and input uk are uniformly sampled from their qualitative regions ξi

and υl.
An example for this is shown in Figure 4.2 for a state space separation as in Figure 4.1

and a continuous model

xk+1 =
[

0.15 0.60
−0.12 0.63

]
xk. (4.1)

The major drawback of a value-space separation as used in non-deterministic automata
and the reason why such concepts were only moderately successful in the past is that the
complexity increases exponentially with the dimensionality of the space. However, this draw-
back is not too striking with our hybrid models that are utilized here. This class of hybrid
models aims at systems composed of several components, each of which can be described by
a low-dimensional model. So the complexity of the individual abstractions of the individual
low-dimensional component models will be manageable.

4.2.2 Choice of Qualitative Variables

The non-deterministic automaton model outlined above operates on a continuous model of
a single component only. This is well in accordance to the intended qualitative abstraction
of multi-component systems, as this abstraction is going to be performed component-wise
anyway. However, it is necessary to additionally demand that the individual abstractions of
the components are represented in a way that makes simultaneous reasoning among all of
them easy.

As a first step towards this, we want to use the same qualitative representation for a
variable that interconnects several components in all those component models. The fact
that generally not all outputs of one component will serve as inputs in one other component
provides constraints on the choice of the qualitative separation of these outputs. To be
more illustrative, an example will aid in the discussion of this topic: Three components are

4.2. QUALITATIVE ABSTRACTION 47

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(a) trajectories starting in region ξ1

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(b) trajectories starting in region ξ2

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(c) trajectories starting in region ξ3

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(d) trajectories starting in region ξ4

(e) non-deterministic automaton

Figure 4.2: Abstraction of a continuous system to an automaton

48 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

interconnected by the connection specification

determined by... provided to...
w1 y

(1)
1 u

(2)
1 , u

(3)
2

w2 y
(1)
2 u

(2)
2 , u

(3)
1

w3 y
(1)
3 u

(2)
3

The first column represents the variable name in the overall model, the second specifies
which variable of which component specifies its value and the third column specifies where
the variable serves as input. Superscripts in brackets indicate the component while subscripts
denote the ’position’ in the vector, e.g. u(3) = [u(3)

1 , u
(3)
2]T denotes the input to component

number 3. An outline of this interconnection is depicted in Figure 4.3.

Figure 4.3: Example of 3 interconnected components

Using a single qualitative variable W to represent the whole vector w = [w1, w2, w3]T

would allow a partitioning of the value-space as depicted in Figure 4.4a1. However, with such
a partitioning it is not directly possible to compile a separate non-deterministic automaton
for each component, as the partitioning cannot directly be used for the input of component
3 (u(3) = [w2, w3]T). This would require an additional nontrivial mapping function that
projects the depicted partitioning onto the input u(3).

This problem certainly is avoided, if each scalar variable w1, w2 and w3 is represented
by a separate qualitative variable W1, W2 and W3. So the partitioning of the value-space of
the inputs (u(2), u(3)) and outputs (y(1)) of the three components is necessarily rectangular.
Figure 4.4b).

However, looking at Figure 4.3, it can be observed that w1 and w2 are, both, determined
by component 1 and are, both, used in component 2 as well as component 3. Only w3

is different in that (although as well being determined by component 1) it is only used in
component 2. So a more general partitioning can be allowed, if a single qualitative variable
(W1) is selected to represent all variables ([w1, w2]T) that share their ’origin’ (component 1)
and ’destinations’, (components 2 and 3). But another qualitative variable(W2) has to be
selected to represent w3. This guarantees that qualitative variables can be used for compiling
the separate non-deterministic automata without non-trivial mappings from the qualitative
variables of one component to those of another, but it allows more general than rectangular
partitions (Figure 4.4c).

Following this argument, a rule for selecting qualitative variables can be given:

• Represent all continuously valued variables of a multi-component system that are de-
termined by the same component (or are all determined by external inputs) and that
influence the same set of components together by a single qualitative variable.

1The 3D plots of the qualitative separations are generated using the multi-parametric toolbox [37] for
MATLAB

4.3. COMPILATION OF HYBRID AUTOMATA TO QUALITATIVE MODELS 49

(a) common partitioning of w1, w2 and w3 (b) independent partitioning of w1, w2 and w3

(c) common partitioning only of w1 and w2 but
independent partitioning of w3

Figure 4.4: Some variants for separating the value-space of a multi-dimensional variable

This rule naturally implies that the continuous state vector x(i)
c of each component is

represented by a single qualitative variable Xi as well.

4.3 Compilation of Hybrid Automata to Qualitative Models

Non-deterministic automata usually are used as qualitative approximations of continuous
models. Nevertheless, the discrete mode transitions of hybrid automata can be incorporated
into such an automaton as well. This provides the advantage, that the continuous and the
discrete part of a hybrid model can uniformly be represented by the same qualitative model.

The previous section outlined the basics of qualitative modeling by non-deterministic au-
tomata and how such non-deterministic automata models can approximate the continuous
dynamics of the individual components of a multi-component continuous model. Further, it
discussed how the interconnection of the various components influences the choice of quali-
tative variables.

In this section we more formally show how to approximate each hybrid component model
as such an automaton. As basis for this, the hybrid model for each of the components is needed
together with the determined set of qualitative variables and according finite partitionings of
the continuous variable spaces. Since the main intention of this work is control of physical

50 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

systems, it can be assumed that the value space for each continuously valued variable is
bounded. These bounds are integrated into the qualitative model by associating qualitative
values only to polytopic regions within these bounds.

To compile the automaton, in principle, one first enumerates all possible ’initial condi-
tions’. That is, all combinations of

• discrete states xd,k = mi ∈ Xd

• qualitatively distinguished continuous states Xk = ξi ∈ X

• discrete input commands ud,k ∈ Ud

• qualitatively abstracted continuous inputs, which themselves are an enumeration of all
possible combinations of valuations of the corresponding qualitative variables Uj,k =
υi ∈ Uj and Wj,k = ωi ∈ Wj .

Next, for each of these ’initial conditions’, one evaluates all possible discrete mode-
transitions xdk

→ xd,k+1 – including the possibility of the so-called ’no-transition’, i.e. the
mode staying the same – and the associated discrete outputs yd,k+1. Here it is necessary to
notice, that these transitions may not only be guarded on boolean functions of the discrete
command inputs but as well on the continuous state xk and input uk being in certain (poly-
topical) regions of the value-space. This has implications on the partitioning into qualitative
values, as later discussed in Section 4.3.1.

For the resulting enumeration of ’initial conditions’ and follow-up-modes, one can now
determine all possible continuous outputs and follow-up states by utilizing the continuous
dynamic models associated to the respective operational modes.

xd,k = ma

xd,k+1 = mb

xk+1 = Ambxk + Bmbuk + emb

yk = Cmaxk + Dmauk + fma

How to evaluate qualitative abstractions and likelihoods for these continuous outputs and
trajectories will be shown in Section 4.3.2.

So the basic qualitative model finally lists all possible combinations of

• ’initial conditions’ as given above

• follow-up discrete states xd,k+1 = mi ∈ Xd

• discrete outputs yd,k+1

• abstracted follow up continuous states Xk+1 = ξi ∈ X

• and the associated valuations for the qualitative output variables Yj,k = µi ∈ Yj and
Wj,k = ωi ∈ Wj .

Each of these combinations represents a transition in a non-deterministic automaton from
a particular state < xd,k, Xk > to a state < xd,k+1, Xk+1 >. The transition is guarded by
< yd,k+1, Uk,Wk, Yk >. The transition additionally has an associated likelihood value that is
calculated as shown in section 4.3.2.

4.3. COMPILATION OF HYBRID AUTOMATA TO QUALITATIVE MODELS 51

4.3.1 Choice of Qualitative Values

Before calculation of likelihood values is discussed, we first take a closer look at the parti-
tioning of the value-space of continuously valued variables to specify qualitative values.

Since the modeled hybrid systems are assumed to be physical systems, it can be assumed
that the value space for each continuously valued variable is bounded. These bounds are
integrated into the qualitative model by associating qualitative values only to polytopic re-
gions within these bounds. If qualitative variables are chosen properly (section 4.2.2), the
partitioning of the value-space of the associated continuously valued variables into polytopic
regions can in principle be chosen quite arbitrarily. However, this partitioning may have some
influence on the performance of the qualitative pre-selection.

It further has to be noticed that discrete mode transitions of hybrid automata may be
guarded by conditions that evaluate, whether the continuous state xk or input uk is inside
or outside of certain polytopes in the value-space of these variables.

As it should be avoided do introduce unnecessary ambiguity into the part of the qualitative
model that represents the discrete part of the hybrid model, it is required that the qualitative
model allows to uniquely check these conditions.

So qualitative values for each variable have to be chosen such that the corresponding
regions either are completely inside or outside of these polytopes. If the qualitative variable
is used in more than one component, of course all transition guards of all these compo-
nent’s hybrid models have to be taken into account to determine the necessary qualitative
distinctions.

Throughout this work it is assumed that such a separation is possible for a given inter-
connection of components. A counterexample, where this would not be possible, is a guard
condition

[1 1]
[

u1

u2

]
≤ 0

if the interconnection of components forces to abstract u1 and u2 to separate qualitative
variables U1 and U2 what results in a necessarily rectangular partitioning of the value space
of [u1, u2]T .

Despite these necessary qualitative distinctions, the partitioning of value spaces into qual-
itatively distinct regions can be chosen quite arbitrarily. Making efficient use of this freedom,
however, remains subject to further research beyond the scope of this work. In diagnosis, there
exist approaches to introduce qualitative distinctions on basis of the intended observation-
task ([47]). These, however, cannot be directly applied to the case here, as no assumptions
on the subsequent control tasks are made at compile-time of the qualitative model. Our ex-
amples on multi-component systems (with low-dimensional components) indicate, however,
that usually a partitioning into a reasonably small number of rectangular regions is sufficient.

4.3.2 Spurious Behaviors and Likelihood Values

The introduction to this section provided a discussion on how a hybrid automaton can be
transformed into a non-deterministic automaton by enumerating all possible transitions

< xd,k, Xk >→< xd,k+1, Xk+1 >

of its state. In addition, the associated guard-tuples

< ud,k, yd,k+1, Uk,Wk, Yk >

52 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

were evaluated.
This section will now deal with the problem to associate likelihood values to the transitions

which are used to partially resolve ambiguity among the transitions. Here, two different
likelihoods are distinguished. The first one is imposed by the probabilistic nature of the
hybrid model itself. Recall that our hybrid modeling framework (Section 3.3) allows to specify
a probability-distribution among several transition target modes. The second likelihood is
occurring only due to the qualitative abstraction itself.

As already indicated by Figure 4.2 on page 47, generally not even with a specific mode
all trajectories that satisfy Xk = ξi (Uk = υi) will lead to follow up states that have the
same qualitative abstraction Xk+1 = ξj . However, as the figure indicated, some valuations
for Xk and Xk+1 are satisfied for trajectories emerging from a large region while others are
only satisfied by trajectories starting in ’distant corners’ of the considered qualitative region.

As a heuristic, qualitative search for good mode sequences and command inputs that
satisfy a given control goal, should not rely too much on these very unlikely qualitative state
transitions, because they might turn out to be spurious behaviors.

Spurious behaviors are a well known and unfortunately unavoidable problem of general
abstracted models. According to Kuipers’ original definition [36], spurious behaviors are
sequences of qualitative values that – although valid for the qualitative model – are not
abstractions of any possible behavior of the original numerical model.

In this work, the term spurious behavior is used in a somewhat wider sense that, however,
still captures the idea. In addition to Kuipers’ definition, here the term also is used for
sequences of qualitative values that do not represent an abstraction of any trajectory of
the numerical model that starts from a specific initial state inside the qualitative region
represented by the qualitative initial state.

The following figures will provide illustration for that. Once more the single-mode model
(4.1)

xk+1 =
[

0.15 0.60
−0.12 0.63

]
xk.

that has already been illustratively abstracted to a non-deterministic automaton in Figure
4.2 is utilized.

As illustration for the reasons of spurious behaviors resulting from the widened defini-
tion including specific initial states, trajectories starting from qualitative state Xk = ξ1 are
considered. In Figure 4.5a it can be observed, that trajectories starting from states xk in
most of the region related to ξ1 (87.5% of the area covered by ξ1) reach states xk+1 that
lie in the region related to qualitative value ξ2. Only a small area in the lower left of the
region related to qualitative state ξ1 (12.5%) provides starting points for trajectories that
reach states xk+1 that again lie inside the region covered by ξ1. The qualitative model allows
trajectories ξ1 → ξ2 as well as trajectories ξ1 → ξ1. However, for the specific initial state
x0 = [−0.5 0.5]T the next state x1 = [−0.225 0.375]T lies inside region ξ2.

So, for this specific initial state (and in fact for initial states that lie in 87.5% of the
region covered by ξ1), the qualitative trajectory ξ1 → ξ1 is spurious. This discrimination of
areas that provide starting points for trajectories that show specific qualitative abstractions
usually is the basis for calculating transition-likelihoods in non-deterministic automata.

The other type of spurious behaviors (which is in accordance to Kuipers’ definition) is
illustrated in Figure 4.5b. According to Figure 4.2e, the qualitative model allows qualitative
trajectories ξ1 → ξ2 as well as ξ2 → ξ4. So the model allows a qualitatively abstracted

4.3. COMPILATION OF HYBRID AUTOMATA TO QUALITATIVE MODELS 53

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(a) Different qualitative follow-up states from dif-
ferent initial states

−1 0 1

−1

−0.5

0

0.5

1

ξ
1

ξ
2

ξ
3

ξ
4

x
1

x
2

(b) Spurious behaviors in Kuipers’ sense

Figure 4.5: Different types of spurious behaviors

trajectory Xk = ξ1, Xk+1 = ξ2, Xk+2 = ξ4. However, it is not possible to find any trajectory

xk+1 = Axk

xk+2 = Axk+1

that correspond to that abstracted trajectory.
If the area in the state space that can be reached by trajectories that abstract to qualitative

trajectories ξ1 → ξ2 covers only a very small portion of the area that corresponds to qualitative
state ξ2 it is rather likely that this area does not provide starting points for trajectories that
abstract to ξ2 → ξ4. So the small area indicates that it is rather likely that extending the
qualitative trajectory ξ1 → ξ2 for one further time-step leads to a spurious behavior. To
contribute to this, an additional heuristic likelihood indicator of a qualitative trajectory is
included which represents the area of the region in Xk+1 = ξj that can be reached from states
Xk = ξi compared to the whole area of the region represented by qualitative value ξj .

Summarizing, the likelihood value associated to each transition specification in the non-

54 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

deterministic automaton, i.e.

< xd,k, Xk, ud,k, yd,k+1, Uk, Yk, xd,k+1, Xk+1 >

is calculated as:

• According to the specification of the hybrid model, with specified command input ud,k

and qualitative values for continuous state and input (Xk and Uk), the guard condi-
tion for a certain transition from mode xd,k is satisfied. According to the model, this
transition leads to the specified mode xd,k+1 with probability pD.

• With modes xd,k and xd,k+1 specified, only trajectories starting inside a region (hyper-
volume V1) of the value-space of [

x
u

]

as specified by the valued of Xk and Uk reach states xk+1 inside the region specified
by Xk+1. This hyper-volume V1 divided by the hyper-volume V2 of the whole region
specified by the values of Xk and Uk is the likelihood value Lc1. A low value Lc1

indicates that a specific qualitative transition is spurious for many numerical initial
conditions that correspond to the qualitative initial conditions (Figure 4.5a).

• The hyper-volume V3 of the region that can be reached by the considered trajectories
inside the state and output-space represented by the values of Xk+1 and Yk divided by
the hyper-volume V4 of the whole region represented by the values of Xk+1 and Yk is the
likelihood value Lc2. A low value Lc2 indicates that many states xk+1 and associated
outputs yk represented by qualitative state Xk+1 and output Yk cannot be reached form
states xk that correspond to Xk. So if the model is utilized for estimating qualitative
trajectories beyond k + 1, it is rather likely that they will be spurious (Figure 4.5b).

• The likelihood-value associated to the transition in the non-deterministic automaton is

L = pd · Lc1 · Lc2.

More details on the calculation of likelihood values Lc1 and Lc2 including some approxi-
mations that can be evaluated more efficiently and further illustrations are given in Appendix
A.2. It has to be noticed here, that qualitative trajectories that are an abstraction of partic-
ular numerical trajectories only if they start or end at a border of the respective qualitative
regions, will receive a likelihood value of 0. Because of this 0 likelihood, such qualitative
trajectories are not included in the qualitative model.

4.3.3 Summary of Non-Deterministic Automaton Compilation

With calculation of the likelihood values, compilation of the non-deterministic automaton
abstraction of a component of the hybrid model is completed. The interconnection among
these various component models is represented by using the same qualitative variable for
abstracting an output of one component and all the inputs in other components this output
is connected to. So if the model of one component specifies a specific qualitative value for
this variable, this value is used in all the other components as well.

Enumeration of all possible ’initial conditions’, all possible follow-up modes, discrete out-
puts, qualitatively abstracted continuous follow-up states and abstracted continuous outputs

4.3. COMPILATION OF HYBRID AUTOMATA TO QUALITATIVE MODELS 55

guarantees that the qualitative model covers abstractions for all possible hybrid trajectories
of the hybrid automaton.

However, unavoidably, the qualitative model generally also will include some spurious
behaviors. To provide a rough indication whether a qualitative trajectory

< xd,k, Xk >→< xd,k+N , Xk+N >

is likely to be spurious or not, likelihood values Lc1 and Lc2 are associated to each transition
in the non-deterministic automaton which contribute to whether the specified transition is
valid for states x and inputs u that cover a large portion of the value space represented by
qualitative values of Xk and Uk and whether possible states xk+1 that can be reached from
there by this transition cover a large portion of the value-space specified by Xk+1.

This second likelihood value is necessary, since the automaton only encodes transitions

< xd,k, Xk >→< xd,k+1, Xk+1 >

but it has to be utilized it for reasoning about longer qualitative trajectories

< xd,k, Xk >→< xd,k+N , Xk+N > .

It has to be confessed that computation of a non-deterministic automaton abstraction
from a hybrid automaton can be a computationally intensive task and that the resulting
model can be of considerable size. However, as with component-based hybrid modeling
generally only abstraction of low-dimensional hybrid models is required, this keeps the com-
putational burden and model-size manageable. Further, compilation of the qualitative model
is performed off-line in advance to the on-line operation of the qualitative hybrid controller.
So the required computation time is not of major importance.

The non-deterministic automaton model already satisfies some of the requirements postu-
lated for the qualitative model in order to be useful for qualitative hybrid control. However,
subsequently a different graphical representation of the non-deterministic automaton model
will be specified. This new representation additionally will be very compact and will be able
to very well represent the underlying ’structure’ of the composed hybrid system. This repre-
sentation of structure helps in the simultaneous treatment of the various component models
and proves most useful in focusing search towards ’good’ qualitative trajectories.

Illustrative Example

To illustrate compilation of the non-deterministic automaton and our likelihood values we
consider a simple 2-component hybrid system:

component 1: mode 1: xk+1 = −0.8 · xk − 0.2 · uk

yk = xk

mode 2: xk+1 = −0.9 · xk + 0.2 · uk

yk = xk

component 2: mode 1: xk+1 = −0.1 · xk + uk

yk = xk

mode 2 : xk+1 = −0.1 · xk − uk

yk = xk .

(4.2)

56 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

The following constraints apply:

component 1: 0 ≤ u ≤ 1
−1 ≤ x ≤ 1
−1 ≤ y ≤ 1

component 2: −1 ≤ u ≤ 1
0 ≤ x ≤ 1
0 ≤ y ≤ 1 .

The discrete transition specifications and interconnection of the components are presented
in Figure 4.6. If additionally the no-transitions are explicitly mentioned, transition guard
conditions and target modes are:

component 1: mode 1: t1 : 0 ≤ x ≤ 1 → m1

t2 : −1 ≤ x < 0 → m2

mode 2: t1 : 0 ≤ x ≤ 1 → m1

t2 : −1 ≤ x < 0 → m2

component 2: mode 1: t1 : switch-2-m1 → m1

t2 : switch-2-m2 → m2

mode 2: t1 : switch-2-m1 → m1

t2 : switch-2-m2 → m2

(a) Interconnection

(b) Transition specification for
component 1; Transitions do not
reset the continuous state

(c) Transition specification for
component 2; Transitions do not
reset the continuous state

Figure 4.6: Specification of the example system

According to our guidelines for the selection of qualitative variables, we abstract the con-
tinuous state x(1) of component 1 and the continuous state x(2) of component 2 to qualitative
variables X1 and X2, respectively. Additionally, in the interconnection of the 2 components
we have 1 variable (u) that is an external input provided to component 1, we have 1 variable
(w) that is an output provided by component 1 to component 2 and we have 1 variable (y)

4.3. COMPILATION OF HYBRID AUTOMATA TO QUALITATIVE MODELS 57

that is provided by component 2 and serves as external output. As each of these variables
is provided by and provided to different components, according to our guidelines, we abstract
each of them to a different qualitative variable U , W and Y , respectively.

To separate the constrained value spaces into qualitative regions, we choose to distinguish
only the sign:

X1 = ξ1 ←→ −1 ≤ x(1) < 0 X1 = ξ2 ←→ 0 ≤ x(1) ≤ 1
X2 = ξ3 ←→ 0 ≤ x(2) ≤ 1
U = υ1 ←→ 0 ≤ u ≤ 1
W = ω1 ←→ −1 ≤ w < 0 W = ω2 ←→ 0 ≤ w ≤ 1
Y = µ1 ←→ 0 ≤ y ≤ 1

This captures the necessary distinction of regions x < 0 and x > 0 imposed by the mode-
transition specification of component 1.

To compile the non-deterministic automaton for each component, we first have to identify
the automaton’s states, i.e. the qualitative abstractions of the component’s hybrid state
< x(i), x

(i)
d >:

component 1: m1, ξ1 m1, ξ2 m2, ξ1 m2, ξ2

component 2: m1, ξ3 m2, ξ3

For each of these qualitative states < Xk, xd,k > and all combinations of qualitatively ab-
stracted inputs (possible values: υ1 for component 1 and ω1 and ω2 and switch-2-m1 and
switch-2-m2 for component 2 in our example), possible values of qualitative abstracted
states < Xk+1, xd,k+1 > and outputs (Wk for component 1 and Yk for component 2) have to
be determined by the hybrid model.

As example for this we demonstrate this determination of qualitative trajectories (together
with the calculation of likelihood values) for component 1 and

Xk = ξ1, xd,k = m1, Uk = υ1 .

The hybrid model for component 1, mode m1 specifies

yk = xk,

the mode-transition-specification specifies that with Xk = ξ1 a mode change

xd,k = m1 → xd,k+1 = m2 with pd = 1

occurs and the hybrid model for this new mode m2 specifies

xk+1 = −0.9 · xk + 0.2 · uk.

With this, the output wk of component 1 can take only values that abstract to Wk = ω1 and
only continuous states xk+1 can be reached that satisfy Xk+1 = ξ2

2.
However, not all allowed values for xk and uk that correspond to ξ1 and υ1 lead to

values xk+1 within the constraints. Comparing ’possible’ values to all that correspond to the
qualitative regions leads to likelihood value

Lc1 = 0.97,

2We do not take trajectories into account that are only possible if values at the borders of the respective
qualitative regions are considered, because for these trajectories the calculated likelihoods would be 0.

58 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

Figure 4.7: Calculation of Likelihood Values

as illustrated in Figure 4.7. Additionally, not all values for xk+1 and wk that correspond to
qualitative regions ξ2 and ω1 can be reached. This leads to a likelihood value

Lc2 = 0.19.

So the qualitative trajectory’s likelihood is

L = pd · Lc1 · Lc2 = 0.19 .

This is no likelihood in a probabilistic sense such that the values related to all possible
trajectories starting from a specific qualitative state sum up to 1, but it is just an indication
whether a particular qualitative trajectory bears a higher or a lower risk to be part of a
spurious behavior. 3 But in trade-off for a heuristic that, as we believe, helps to better
estimate whether a qualitative behavior is spurious, we accept to drop this probabilistic
interpretation.

Proceeding like above for all qualitative trajectories leads to the model for component 1:

x1d,k X1,k Uk Wk x1d,k+1 X1,k+1 L
mode 1 ξ1 υ1 ω1 mode 2 ξ2 0.19
mode 1 ξ2 υ1 ω2 mode 1 ξ1 0.20
mode 2 ξ1 υ1 ω1 mode 2 ξ2 0.19
mode 2 ξ2 υ1 ω2 mode 1 ξ1 0.20

And the model for component 2 is

x2d,k X2,k Wk Yk ud,k x2d,k+1 X2,k+1 L
mode 1 ξ3 ω1 µ1 switch-2-m2 mode 2 ξ1 0.90
mode 1 ξ3 ω2 µ1 switch-2-m1 mode 1 ξ1 0.90
mode 2 ξ3 ω1 µ1 switch-2-m2 mode 2 ξ1 0.90
mode 2 ξ3 ω2 µ1 switch-2-m1 mode 1 ξ1 0.90

The two component models are connected by their shared variable Wk, which has to have
the same value in both models.

3To keep this probabilistic interpretation we would have set Lc2 to 1 and include an additional qualitative
state to the automaton that covers all regions where constraints are violated.

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 59

4.4 Compact Compilation as Trajectory Graphs

The non-deterministic automaton model already satisfies most of the requirements we in-
troduced in Section 4.1, as it provides a component-based off-line qualitative abstraction
of multi-component hybrid systems. And, additionally, the introduced likelihood values as-
sociated to the state-transitions in the non-deterministic automaton provide a heuristic to
estimate whether a particular trajectory through the states of the automaton is likely to be
spurious with respect to the hybrid model.

It is, however, furthermore required to find a representation of those qualitative component-
models, that can more intuitively be treated simultaneously. This new, structured, repre-
sentation will additionally support more efficient qualitative reasoning as it allows to exploit
structural properties of the hybrid model for focusing onto promising qualitative trajectories.

Before we discuss these issues in more detail, we take a glimpse at the intended control
task that has to be fulfilled with the qualitative model.

4.4.1 An Excurse to Search

The task of qualitative pre-selection is to search the qualitative component models for qual-
itative behaviors (i.e. assignments to all the qualitative variables of all component models)
regarding a finite time-horizon

tk → tk+N .

One problem at this is that the qualitative model only is compiled for hybrid trajectories
involving a single component and a time-horizon of

tk → tk+1.

However, this qualitative automaton model is utilized to reason among several components
and for longer time horizons. So, as illustrated above, the qualitative trajectories predicted
by the automaton model bear the risk to be spurious. To contribute to this, the modified
likelihood values were introduced.

Another problem is implied by the necessary component-wise abstraction of the hybrid
model: Qualitative pre-selection cannot simply operate on single qualitative model, but needs
to reason among several ’overlapping’ component models.

In principle, this could be done on behalf of the non-deterministic automata as follows:

• Look at all transitions leaving the automata’s states < x
(i)
d,k, X

(i)
k >

• determine the sets of qualitative values that satisfy the guard conditions for at least
one transition in all component automata simultaneously

• Follow these transitions to determine the automata’s next states < x
(i)
d,k+1, X

(i)
k+1 >

No further detail will be presented on this procedure here, but it has to be noticed that it is
not straightforward how the required sets of qualitative values can be evaluated efficiently.
Instead, it is temporarily postulated that one had been able to encode the qualitative models
as ’well structured’ (we go into detail about this later) directed acyclic graphs (DAGs).

60 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

Figure 4.8: Qualitative models for 2 components as DAGs

A Motivation for Directed Acyclic Graphs

Figure 4.8 shows two directed acyclic graphs, each representing a component of a multi
component model. The nodes of the graphs represent qualitative variables and the edges
represent qualitative values.

The first graph encodes the qualitative state transitions

current state guard- -condition next state
X1k Uk Wk X1k+1

ξ1 υ1 ω2 ξ1

ξ1 υ2 ω1 ξ2

ξ2 υ1 ω1 ξ1

ξ2 υ2 ω2 ξ2

(4.3)

for a component with input U , state X1 and output W . The second component uses W as
input to update state X2. Graph 2 encodes the associated qualitative state transitions

current state guard condition next state
X2k Wk X2k+1

ξ1 ω1 ξ1

ξ2 ω1 ξ2

ξ2 ω2 ξ1

(4.4)

It can be observed, that both graphs were built upon the same pre-specified ordering of
variables

X1k ≺ X2k ≺ Uk ≺ Wk ≺ X1k+1 ≺ X2k+1 (4.5)

This common ordering provides the advantage, that both graphs can straightforwardly
be processed simultaneously. This is demonstrated by searching for an assignment to the
variables Uk, Wk, X1k+1 and X2k+1 starting from the initial state

X1k = ξ1 X2k = ξ2.

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 61

(a) Initial state (b) Step 2 (c) Step 3

(d) Step 4 (e) ...continued

(f) Search tree

Figure 4.9: Searching several models (DAGs) simultaneously

Illustration for this is provided in Figure 4.9
Search is conducted following the same ordering of variables (4.5) as is used for building

the graphs. Parallel to building up the search tree according to this ordering, one can think
of traversing along the model-graphs to – informally speaking – evaluate the ’effects’ of the
selected variable assignments. Search starts at the root node (1) of both graphs.

According to the ordering of variables (4.5) exploration of the graphs starts with the
initial state X1k = ξ1 which forces to traverse the arc from node (1) to node (2) in graph 1.
X2k = ξ1 forces to traverse from node (1) to node (2) in graph 2.

Now search starts exploring possible assignments to Uk, e.g. Uk = υ1. This forces
traversing from node (2) to node (4) in graph 1. Node (2) of graph 2, where one is assumed
to ’be at’ at the moment already represents a variable (Wk) that is ordered beyond the actual
variable Uk. This means, that model 2 does not provide any constraint on Uk here and, thus
one only has to look at graph 1 for the moment.

Next, Wk is processed, while at node (4) in graph 1 and at node(2) in graph 2. Both
these nodes represent the same variable Wk, so both models provide constraints on Wk.
Unfortunately, model 1 only allows Wk = ω2 (there is only this edge leaving node (4))while
model 2 only permits Wk = ω1. So no assignment is found that satisfies both models and
search has to back-track one step (of course, going back to node (2) in graph 1) and to
investigate another assignment to variable Uk.

This way, search is continued until an assignment to all variables is found. The exploration
of the model-graphs along this process is displayed in Figure 4.9a-e and the corresponding
search tree is depicted in Figure 4.9f.

62 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

Figure 4.10: Interdependencies among the model’s variables

This demonstrates, how searching for an assignment to qualitative variables by processing
them sequentially and utilizing models represented as DAGs helps to search multiple over-
lapping component models simultaneously. The use of such DAGs as qualitative models will
further be motivated by the observation that a clever ordering of variables can be utilized for
exploiting structural properties of the underlying hybrid model’s structure to make search
more efficient, as is discussed in the following.

Further Motivation by Including Structure

So far, compilation of qualitative models as non-deterministic automata was presented and
some motivation for representing them as DAGs has been obtained by a short excurse to
qualitative pre-selection. Before it will be discussed how to actually build such DAGs, mo-
tivation for the graphical representation shall further be increased by taking yet another
short excurse: We will investigate how a clever ordering of variables that is common to the
construction of all the DAGs can help to make search more efficient.

For this, a simple example system consisting of two components is utilized:

component 1: x1,k+1 = x1,k + uk (4.6a)
wk = x1,k (4.6b)

component 2: x2,k+1 = x2,k + wk (4.6c)
yk = x2,k + wk (4.6d)

To keep the presentation simple, purely continuous models with scalar inputs, outputs and
states for both components are assumed as this provides more compact illustrations and as
the same arguments can equivalently be applied to hybrid systems as well.

The specific numerical values in these equations aren’t interesting here, but only the
’structure’ of this model, that is, the interdependencies among the qualitative variables is
relevant. These interdependencies are illustrated by Figure 4.10. For more complex hybrid
systems, such a graph can be built upon a causal analysis [50] of the model (Appendix A.3).

Figure 4.11 shows this causal graph for time t0 beyond t2. These illustrations are used
as an aid in the following discussion how the system’s structure can be exploited to make
qualitative search more efficient.

In Figure 4.11a it can be observed that the system’s initial state x1,0, x2,0 (together with
the inputs u0, u1 . . .) is sufficient to determine all other variables. That means, all edges

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 63

(a) x1,0, x2, 0 plus current and future inputs determine all other vari-
ables

(b) Out of {x1,0, x2,0, w0, u0, x1,1} the subset of variables
{x2,0, w0, x1,1} (plus the current and future inputs) is enough
to determine all other variables

(c) Out of {x1,0, x2,0, u0, w0, x1,1, y0, x2,1} the subset of variables
{x1,1, x2,1} (plus the current and future inputs) is enough to deter-
mine all other variables

Figure 4.11: Utilizing the structure of a model

64 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

of the graph that lead to the undetermined variables can be reached from x1,0, x2,0 or the
inputs.

If a search algorithm now sequentially processes variables

w0 ≺ u0 ≺ x1,1 ≺ . . .

the situation is like depicted in Figure 4.11b: Out of all the specified variables, i.e.

{x1,0, x2,0, u0, w0, x1,1} (4.7)

the subset
{x2,0, w0, x1,1} (4.8)

(together with the inputs u1, u2 . . .) is sufficient to determine all undetermined variables.
The influence of

{x1,0, x2,0, u0} (4.9)

is already subsumed in these variables.
So, the search algorithm that determines assignments to qualitative variables according

to the specified sequence, can already at this point (after processing x1,1) compare some of
the investigated assignments (i.e. assignments to the variables (4.7). Since the subset (4.8) of
these variables is enough to specify all undetermined variables, only the best (quality issues
will be discussed later) trajectory with a specific assignment to these variables (4.8) needs to
be investigated further.

The idea to compare partial assignments during a search process and to only stick to the
best ones for further investigation is one of the key ideas that makes Dynamic Programming
[5, 11] an efficient tool for discrete optimization. What is utilized when dropping the worse
partial assignments is Belman’s principle of optimality which states that the tail of an optimal
solution is, itself, the optimal solution from its starting point.

A similar situation to Figure 4.11b is depicted in Figure 4.11c, if the next variables are
further processed according to ordering

y0 ≺ x2,1 ≺

Here, partial assignments can be compared with respect to variables

{x1,1, x2,1}.

Both illustrations, Figure 4.11b-c are provided to point out that with the proposed
component-based modeling approach a clever ordering of variables usually not only allows
comparison with respect to the overall model’s state at particular times but with respect
to other small sets of variables as well. This is important, because it allows a search algo-
rithm that processes variables sequentially to drop a lot of (partial) assignments from further
investigation. This largely helps in focusing search onto good solutions.

It has to be noticed here, however, that these ideas only were demonstrated on a con-
tinuous and not a qualitative model intentionally. Because of possible spurious behaviors,
application of these principles to our case, where a qualitatively abstracted model is utilized
for pre-selecting mode sequences of a hybrid model, unfortunately, is not strictly straightfor-
ward. However, the motivation still is given here in anticipation of Chapter 5 where it will
be shown how to utilize a slightly modified variant of the mentioned comparisons that also
is applicable for qualitative pre-selection.

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 65

4.4.2 Trajectory Graph Representation of Non-Deterministic Automata

The sections above gave motivation to represent the qualitative models as directed acyclic
graphs, because this allows an intuitive simultaneous treatment of all component models and,
moreover, allows to utilize dynamic programming for focusing search onto good solutions by
representing structure in the model as pre-specified ordering of variables. Additionally, the
component models are compiled off-line and, hence, have to be stored for on-line use. So a
compact representation of the models is required.

These three requirements

• representation as directed acyclic graph

• compact compilation

• pre-specified ordering of variables that is represented in the graph,

in principle, makes Binary Decision Diagrams (BDDs) [14, 3] an ideal choice as representation
of the qualitative models. A brief introduction to these diagrams as they are utilized in this
work are given in Appendix A.4.

Such diagrams are used for compactly representing all solutions of boolean functions as
directed acyclic graphs. The qualitative models – as described in Section 4.3 – however, are
encoded as non-deterministic automata. So BDDs cannot directly be applied, but a very
similar type of graph can be introduced. We call it trajectory directed acyclic graph (tDAG).
Similarly to BDDs, this graph is directed, acyclic, compact and it is built upon a pre-specified
ordering of variables. Further, it can be generated and be operated on by similar operations
as are used for generating and operating on BDDs.

This section, now, presents all the necessary steps of generating a tDAG from a non-
deterministic automaton model and outlines the link between the tDAG and a BDD.

Ordering of Variables

One motivation for selecting a directed-acyclic-graph-representation for the qualitative model
is the possibility to incorporate structural information on the hybrid model as pre-specified
ordering of variables into the graph.

The graph is built such that each node corresponds to a qualitative variable and each edge
that leads away from a node corresponds to a particular qualitative value for that variable.
According to the specified ordering of variables, these edges only lead to nodes representing
variables that come later in the ordering. The edges that lead away from the nodes cor-
responding to the last variable in the ordering lead to the terminal nodes representing the
likelihood values. This way, an acyclic graph is obtained.

To simultaneously search multiple graphs, as briefly outlined above in section 4.4.1, a
common pre-specified ordering among variables is utilized in all graphs. Additionally, this
ordering of variables shall represent the hybrid system’s structure. For this, first a graph
that displays the dependencies among the qualitative variables as given by the equations of
the hybrid model is obtained (Appendix A.3). Based on this causal graph, then qualitative
variables have to be ordered into a sequence. To give a formalization of this we introduce
the notation of the child variable C(V) and the parent variable P (V) of a variable V . These
relations are defined by the same relations among the corresponding nodes in the graph.

Assuming a pre-specified sequence

V1 ≺ V2 ≺ . . . Vα ≺ . . . VN , (4.10)

66 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

based on the index α we define:

• The set of specified variables

S(α) = {V1, . . . , Vα} (4.11)

• The set of unspecified variables

S(α) = {Vα+1 . . . , VN} (4.12)

• The set of variables required to be able to determine the the unspecified variables

R(α) =
{
P (V) | V ∈ S(α) P (V) /∈ S(α)

}
(4.13)

• And the set of determined variables, the influence of which is already subsumed by the
specification of other determined variables

R(α) = {Vi | Vi ∈ S(α), Vi /∈ R(α)} (4.14)

If a search algorithm proceeds by sequentially assigning values to variables according to
the specified sequence (4.10), these partial assignments can be compared to each other at
each index α, where the influence of a variable gets subsumed, i.e.

R(α) 6= R(α− 1). (4.15)

With two such indices α1 and α2 that satisfy

R(α1) 6= R(α1 − 1) (4.16)
R(α2) 6= R(α2 − 1) (4.17)
R(i) = R(i− 1) | α1 < i < α2 (4.18)

and D(i) as the number of distinct values of variable Vi, the ’maximum search graph width’
(MGW) can be defined as

MGW (α1, α2) =
α2∏

i=α1+1

D(i). (4.19)

To obtain a good ordering of variables that allows many comparisons of partial as-
signments during search and keeps the search graph narrow the following heuristic can be
used: Start with the variables representing the initial state. Further, given the beginning
V1 ≺ . . . ≺ Vi of a sequence of variables

• for each variable Vα ∈ R(i) there is a minimum set of variables {Vi+1 . . . Vi+β} such that

Vα ∩ R(i + β) = {}
if the variables are added to the sequence in any ordering

• for each such additional sequence, there is a minimum ’maximum search graph width’

MGW (i + 1, i + β)

• choose the next variable in the sequence Vi+1 = V out of the set {Vi+1 . . . Vi+β} that
leads to

min
α

MGW (i + 1, i + β)

An algorithm that determines such an ordering is given in Appendix B.1.

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 67

Binary Graph-Representation of Non Deterministic Automaton

A non-deterministic automaton as compiled in section 4.3 is defined in terms of a set of quali-
tative transitions. This can equivalently be regarded as an automaton with states < X, xd >,
where each qualitative transition specifies a transition among these states. These transitions
the would be labeled with the required qualitative inputs that have to be applied in order to
take the transition and the qualitative outputs that would be observed. Additionally, each
transition is labeled with a likelihood value. This value, however, has no strict probabilistic
interpretation but is just a heuristic indicator that helps to determine whether a qualitative
behavior bears a high risk to be spurious or not.

This qualitative model shall be utilized in on-line hybrid control for an efficient pre-
selection of promising sequences of operational modes for the individual components. To
perform this task efficiently we want to change the representation of the component models.
We already outlined our motivation to represent them as directed acyclic graphs. This is
advantageous because it helps to incorporate information on the structure of the hybrid model
into the qualitative model. Additionally, this representation makes simultaneous treatment
of the individual component models straightforward. We call this graphical representation of
our qualitative model a trajectory directed acyclic graph (tDAG).

Since this graph is based on Ordered Binary Decision Diagrams (OBDDs), we first have
to encode qualitative trajectories as binary expressions. For this, each qualitative value of a
variable is uniquely encoded as a binary expression, i.e. in terms of sequences of values 0 and
1. That means, to represent a qualitative variable with N qualitative values, we need

n = dlog2(N)e

binary qualitative variables, where d·e stands for rounding up to the next integer value. We
use a superscript B to denote binary qualitative variables, e.g.

X → XB1 XB2 XB3 xd → xB1
d xB2

d

ξ1 0 0 0 m1 0 0
ξ2 0 0 1 m2 1 0
ξ3 0 1 0 m3 0 1
ξ4 0 1 1
ξ5 1 0 0

The next important thing that is needed to generate an Ordered Binary Decision Diagram
from our qualitative model is to specify an ordering among these binary variables. The
structure and size of the OBDD strongly depend on this ordering so we have to be careful when
defining it. By specifying this ordering, we want to represent the ’structure’ of the hybrid
model in the qualitative model such that this information can be exploited to keep search for
promising mode sequences focused. Above, we outlined a way how such an ordering among
the qualitative variables can be obtained based on a causal analysis among the hybrid models
equations. Only the qualitative variables have to be replaced by their binary counterparts.

Based on this ordering, we can generate a graph (a tree) the nodes of which represent
the binary variables. Each node can be left by two edges, one represents value 0 for this
variable and the other represents value 1. To generate such a graph, each (binary encoded)
qualitative trajectory can be represented as a path through this tree from the first variable
in the ordering down to the last, such that the edges leaving a node point to that variable
in the qualitative trajectory which comes next in ordering. The edges that leave the nodes

68 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

representing the last variable in ordering point toward special leaf nodes which represent the
likelihood value of the respective qualitative trajectory.

For example, a qualitative model with binary variables B1k, B2k, B1k+1 and B2k+1 is
given as

B1k B2k B1k+1 B2k+1 L
0 0 0 1 0.570
0 0 1 1 0.013
0 1 1 1 0.726
1 0 0 0 0.521
1 0 0 1 0.007
1 0 1 0 0.012
1 0 1 1 0.0002
1 1 1 0 0.663
1 1 1 1 0.009

With an ordering among these variables specified as

B1k ≺ B2k ≺ B1k+1 ≺ B2k+1

the resulting tree looks like shown in Figure 4.12. This graph is very similar to an OBDD

Figure 4.12: Tree representation of a binary qualitative model

with the exception that the leaf nodes represent likelihood values instead of boolean values
true and false.

However, the same reduction techniques as for OBDDs can be applied to obtain a more
compact representation. That is

• Duplicate leaf nodes – that is, ones that represent the same likelihood value – can be
combined to a single node and the edges pointing towards one of the duplicates get
redirected towards that single node.

• Duplicate non-terminals – that is, two nodes in the graph that both have one common
target node their 1-edge is pointing to and one common target node their 0-edge is
pointing to – can be combined likewise.

• Redundant tests – that is, a node the 0-edge and the 1-edge of which point to the same
target node – can be eliminated. All edges that pointed to this node get redirected to
that target.

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 69

A more detailed description to these reduction operations is found in Appendix A.4.
The problem with respect to these reduction operations in our context is, that with

OBDDs the two latter ones are particularly successful because the first one combines all
leaves of the tree to just two nodes representing the two boolean values true and false.
However, terminal nodes in the tDAG represent a (usually very large) number of different
likelihood numbers! So a large number of nodes will remain after the reduction.

However, our likelihood values do not have a strict probabilistic interpretation anyway.
They just serve as heuristic indicators that help to determine whether a particular qualitative
trajectory bears a high risk of being spurious or not. With this in mind it seems justified to
approximate them in order to obtain more compact models.

Approximation for Reducing Graph Size

A Binary Decision Diagram generally is a very compact representation of a boolean function,
if the underlying ordering of variables is chosen appropriately. However, this statement does
not hold so far for our trajectory graphs, if they use terminal nodes that represent the
likelihood values as calculated for each transition specification.

The qualitative models are utilized to quickly reason about a good (though not neces-
sarily the best) sequence of operational modes that can be utilized to greatly simplify the
subsequent numerical determination of continuous controls. This numerical refinement addi-
tionally provides a verification of the qualitative pre-selection and detects possible spurious
behaviors.

Further, the calculated likelihood values generally are no exact probabilities imposed by a
stochastic behavior of the hybrid system itself, but are just heuristic indicators that help to
determine whether a particular qualitative trajectory might be spurious. So, in this context
of our qualitative model, it seems justified to regard these likelihoods on a qualitative basis
as well. Utilizing just a few different likelihood values to discriminate qualitative trajectories
that bear a very high risk of contributing to spurious behaviors from others where this risk
is almost neglectable even provides a more focussed view on the ’nature’ of a qualitative
trajectories than the original likelihood values.

Combining similar likelihood values to a ’likelihood class’ and, hence using only a single
leaf node in the graph as terminal node for the respective qualitative trajectories can help in
largely reducing the model size. An open question remains how to cleverly group likelihood
values into such likelihood classes. In our examples an evenly spaced separation of the range
of likelihood values (0 to 1) into up to 4 regions usually works well. To get best approxima-
tion, each likelihood class then is assigned the mean likelihood value of the likelihoods of all
qualitative trajectories that belong to the class. With M specifying the number of likelihood
classes, Nj specifying the number of qualitative trajectories that belong to the jth class and
Lji being the likelihood value of the ith transition specification that belongs to the jth class,
the numerical likelihood value assigned to each class is

Lj =
1

Nj

Nj∑

i=1

Lji (4.20)

and the overall quality of the approximation of transition likelihoods by the M likelihood
classes can be evaluated by the approximation inaccuracy

a =
1∑M

j=1 Nj

M∑

j=1

Nj∑

i=1

(
Lji − Lj

)2

 (4.21)

70 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

This value together with the number of likelihood classes can be utilized to find a good
compromise between the approximation of transition likelihood values and model size. Good
approximations with respect to this measure can be obtained by an algorithm [45] that utilizes
a histogram of likelihood values as input.

An example is provided in Figure 4.13, where trajectory graphs for different numbers of
likelihood classes are shown. The calculation of likelihood values for this example are based
on the model

xk+1 =
[

0 0.9
−0.96 0

]
x +

[
0.12
0.1

]

with the state vector x = [x1, x2]T abstracted to a qualitative variable with 4 values, based
on the sign of x1 and x2. This qualitative variable X has a binary representation with B1 = 1
and B2 = 1 indicating the positive sign of x1 and x2, respectively.

(a) no approximation

(b) 3 likelihood classes (c) 2 likelihood classes

Figure 4.13: Compaction of a model by likelihood classes

4.4. COMPACT COMPILATION AS TRAJECTORY GRAPHS 71

The calculated transition specifications and likelihood values are

B1k B2k B1k+1 B2k+1 no approximation 3 classes 2 classes
0 0 0 1 0.570 0.546 0.620
0 0 1 1 0.013 0.009 0.009
0 1 1 1 0.726 0.694 0.620
1 0 0 0 0.521 0.546 0.620
1 0 0 1 0.007 0.009 0.009
1 0 1 0 0.012 0.009 0.009
1 0 1 1 0.0002 0.009 0.009
1 1 1 0 0.663 0.694 0.620
1 1 1 1 0.009 0.009 0.009

If no approximation is used, the resulting trajectory graph consists of 22 nodes and the
approximation inaccuracy clearly is a = 0 (Figure 4.13a). If likelihood values are separated
into 3 distinct classes, the resulting trajectory graph is reduced to 15 nodes and the approx-
imation inaccuracy is a = 3.7 · 10−4 (Figure 4.13b). If likelihood values are separated into
only 2 distinct classes, the resulting trajectory graph is further reduced to 12 nodes and the
approximation inaccuracy increases to a = 2.8 · 10−3 (Figure 4.13c).

Final tDAG

The qualitative model as specified so far, already satisfies the requirements postulated in
Section 4.1. The hierarchical structure of the trajectory graphs that is based on a com-
mon ordering of qualitative variables allows an intuitive simultaneous reasoning among all
component models. The carefully selected ordering of variables allows efficient utilization of
dynamic programming for searching the models. And, last but not least, component based
modeling and the use of only a few likelihood classes allow to obtain reasonably small mod-
els, although they represent an explicit enumeration of all possible qualitative trajectories for
time tk → tk+1.

To motivate one last change in representation of the qualitative model, a further brief look
ahead to on-line qualitative pre-selection (Chapter 5) is taken: In on-line qualitative hybrid
control, the models will be used to reason about ’good’ qualitative trajectories, where quality
of a qualitative trajectory is defined in terms of a high likelihood and a good correspondence
to actual reference values for certain variables. While the exact definition of this ’quality’ of
trajectories is not yet relevant here, we already notice two things:

• Evaluation of the correspondence to reference values will only be accomplished effi-
ciently, if a qualitative variable is fully specified (i.e. if only values for some of the
binary variables that contribute to a qualitative variable are specified, this measure
usually cannot be evaluated efficiently.)

• Evaluation of transition likelihoods can only be done in the current representation of
qualitative models, if a full path through the graph is specified

To enable a good interaction between the two criteria for evaluating trajectory-quality
(likelihood and matching a reference) it would be helpful to be able to evaluate both at the
same time based on partial assignments of variables.

Hence, representation of the graphs is changed such that transition likelihoods can be
estimated on behalf of partial paths in the graph as well. This is accomplished by mapping

72 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

the likelihood values of the terminal nodes to the edges of the graph. This requires the edges
likelihoods to be set such that multiplying all edge-likelihoods along a path from the root
node to a leaf node leads to the likelihood value represented by that node.

With this, the search for a likely trajectory shall be formulated as a shortest path search
on the graph. To be able to utilize standard algorithms for this, the likelihood values are
represented as path lengths, where an optimal likelihood of 1 represents a path length of 0 and
the impossible likelihood 0 represents an infinitely long path. To accomplish this, approximate
likelihood-class values L are mapped to likelihood costs CL by taking the standard approach

CL = − ln(L). (4.22)

This maps the multiplication of edge likelihoods to a summation of edge lengths. Additionally,
path costs are normalized

CL,i = CL,i −min(CL),

such that the most likely path always is normalized to a length of 0.
If, now, transition likelihoods are represented by edge-lengths in the graph, this allows

a search algorithm to discriminate more likely partial variable assignments against rather
unlikely ones as well. However, during qualitative pre-selection not only the likelihood-
costs of a qualitative trajectory have to be considered, but also its correspondence to a given
reference trajectory has to be evaluated. As already postulated above, this evaluation can only
be accomplished efficiently, if a qualitative variable is fully specified (i.e. all corresponding
binary variables are known). As long as only some of its corresponding binary variables are
known, only the transition likelihoods compiled into the qualitative model can be utilized to
focus search onto ’good’ solutions.

So, since in-between points in the model graphs where qualitative variables are fully
specified only transition likelihood will guide search for ’good’ qualitative trajectories, it is
useful only to include these qualitative variables as nodes into the final model graph. All
paths in between these nodes are then explicitly represented as separate edges.

An algorithm that achieves this is given in Appendix B.2. In fact, this algorithm only
removes the binary variables from the graph and, again, replaces them by the original qual-
itative variables. This way, the model graphs, at each node, will not only allow a binary
decision among values 0 and 1, but will allow to decide among a possibly larger number of
different qualitative values. These possible choices are sorted, such that the choice with the
lowest associated edge-cost is ordered first.

An example is provided in Figure 4.14, where the binary version of a trajectory graph
(Figure 4.14a) is transformed to its final representation as tDAG (Figure 4.14b).

4.5 Summary

This chapter presented a type of qualitative model, that can be used to very compactly
abstract the class of hybrid systems as defined in Chapter 3.

Compactness of the model is achieved by abstracting the hybrid model component-wise
and by utilizing a compact graphical representation similar to reduced Ordered Binary De-
cision Diagrams. Further, the various component models all utilize the same pre-specified
ordering of variables to define a hierarchic architecture of the graphs, so that they can si-
multaneously be processed intuitively, if a shortest path search algorithm proceeds according
to the same ordering of variables. Moreover, the specification of this ordering based on the

4.5. SUMMARY 73

(a) Binary trajectory graph

(b) Corresponding tDAG

Figure 4.14: Elimination of binary variables

74 CHAPTER 4. AUTOMATED QUALITATIVE ABSTRACTION

structure of the hybrid model allows efficient utilization of dynamic programming ideas during
search.

The presented type of qualitative model is based on a non-deterministic automaton and,
likewise, encodes only transitions of the qualitatively abstracted hybrid state for times tk →
tk+1 and is re-used for reasoning about longer time-trajectories. However, it differs from
a non-deterministic automaton in that it makes use of only a small number of heuristic
likelihood classes, instead of specifying a separate likelihood for each state-transition.

The likelihood classes are utilized to overcome an unavoidable problem of qualitative
modeling: spurious behaviors. These are qualitative trajectories that are not an abstraction
of any possible trajectory of the hybrid model with a given initial state. However, the
likelihood classes help to estimate whether there is a high risk that a particular qualitative
trajectory leads to a spurious behavior. The likelihood classes do not provide estimates
that lead exact results on the probability of spuriosity, but nevertheless they help to focus
qualitative search towards trajectories that are non-spurious.

Compilation of the qualitative model – especially the basic non-deterministic automaton
– can be a computationally intensive task for higher dimensional models as this requires an
enumeration of all valuations of all qualitative variables. However, with the component-based
hybrid modeling scheme of Chapter 3 and component-based qualitative abstraction, fairly
low-dimensional models can be assumed that have to be abstracted. Moreover, compilation
is performed off-line. So computation time is not a prime issue.

The qualitative model in its final representation is a set of directed acyclic graphs, each
abstracting a component of the hybrid model. Each graph consists of a set of nodes that,
each (except the terminal nodes), represent a qualitative variable. The nodes are connected
by edges, where each of the edges represents a set of qualitative values. Additionally, each
edge has a path length that is determined by the approximated likelihood values.

Chapter 5

Hybrid Control

This chapter specifies an on-line hybrid control scheme that makes efficient use
of a pre-compiled qualitative model to quickly pre-select promising sequences of
operational modes before numerically refining continuous actuation and verifying
the results

The previous chapter presented off-line compilation of a special type of qualitative model.
This model will now be used for qualitatively pre-selecting sequences of operational modes
and discrete actuation in an on-line hybrid control scheme.

In Section 5.1, the overall hybrid control scheme is outlined. It is composed of two parts:

• a qualitative part, that solves a discrete control task posed on a symbolic model

• a numerical part, that solves a continuous control task posed on a continuous time-
variant model.

Then, the qualitative pre-selection is thoroughly discussed in Section 5.2. This qualitative
pre-selection is an important part in the hybrid control scheme because it needs to quickly
evaluate a sequence of operational modes that allows to actuate the system such that it closely
follows a specified reference behavior. To achieve this task, the specialized qualitative model
developed in Chapter 4 is utilized and a qualitative abstraction of the hybrid control goal is
determined to reformulate hybrid control as discrete shortest-path search on the qualitative
model.

The qualitative model is especially designed, such that this discrete search can be per-
formed by an class of search algorithms known as A∗-search [35] very efficiently. These
algorithms work especially well with the presented qualitative model, because they can di-
rectly exploit the structural information on the hybrid model that has been compiled into
the qualitative model.

Section 5.3 addresses the subsequent numerical refinement of continuous actuation and
Section 5.4 finally discusses the issue of spurious behaviors and how the hybrid control scheme
handles and avoids them by a careful interplay between the qualitative and the numerical
solver.

5.1 Outline of the Control Scheme

Hybrid control is difficult to achieve for multi-component systems, because one has to (dis-
cretely) select among a huge number of discrete mode-sequences, while simultaneously eval-
uating continuous dynamics and determining continuous actuation.

75

76 CHAPTER 5. HYBRID CONTROL

This procedure is greatly simplified by splitting it into two distinct operations:

• discrete qualitative pre-selection of promising mode sequences

• numerical evaluation of continuous system inputs.

The idea behind this procedure is to separate the control task into the above two domains,
qualitative control of a symbolic model and numerical control of a time-variant continuous
model and – what is the key idea to the procedure – to encode the constraints imposed by
the respective other control task in the language of the respective domain.

This means, qualitative control operates on the qualitative part of the hybrid control
problem, while being supported with a qualitative encoding of the constraints imposed by
the continuous dynamics. Likewise, subsequent numerical control operates on the continuous
dynamics part of the hybrid control problem. However with the discrete mode sequence
specified, (thus, the qualitative control already folded into the hybrid model), the remaining
control task can be formulated solely in the continuous domain.

This allows to use the two solvers sequentially instead of the simultaneous operation
required in other hybrid control formulations such as the control of mixed logic dynamic
systems (MLD) [9]. A recent development in that line of research, also, uses a dedicated
qualitative solver to support the numerical control design [8], however, the two solvers are
still required to operate simultaneously.

5.1.1 Hybrid Control Task

To outline the two-step approach to hybrid control, first the continuous control task is defined.
The continuous part of the hybrid control problem is specified by an N -step finite horizon
optimization problem of trajectories involving continuous states

x =

x(1)

x(2)

...
x(L)

(where x(i) denotes the continuous state of the ith component in a hybrid model with L
components) and the external inputs

u = [u1, . . . , uM]T .

For these variables, reference values at different times within the receding horizon of
length N can be defined at system run-time, i.e.

{
r(1)
x,1, . . . , r

(L)
x,1

}
{ru1,0, . . . , ruM,0}{

r(1)
x,2, . . . , r

(L)
x,2

}
{ru1,1, . . . , ruM,1}

...
...{

r(1)
x,N , . . . , r(L)

x,N

}
{ru1,N−1, . . . , ruM,N−1}

Deviations from these reference values, then, are defined as

e(i)
x,k = x(i)

k − r(i)
x,k

eui,k = ui,k − rui,k.

5.1. OUTLINE OF THE CONTROL SCHEME 77

With respect to the receding horizon control strategy, for these deviations from the con-
tinuous reference-values, a cost value

cRc =
N∑

k=1

(
L∑

i=1

q
(i)
x,k e(i)

x,k

T
e(i)

x,k +
M∑

i=1

qui,k−1e
2
ui,k−1

)
(5.1)

is defined, where we can use design parameters

q
(i)
x,k and qui,k−1

to put more emphasis on certain components or times.
Similarly, reference values for the operational mode for each component and time can

be specified. However, these references cannot directly be used to derive penalty costs for
deviations thereof, because no specification is made what makes a particular operational node
being ’close’ to another. So, besides run-time definition of reference modes

r
(i)
d,k,

as design parameter, just specification of penalty costs

q
(i)
d,k

for any other mode than the reference is allowed

e
(i)
d,k =

{
0 if x

(i)
d,k = r

(i)
d,k

1 if x
(i)
d,k 6= r

(i)
d,k

. (5.2)

So, the cost value for deviations from reference modes is evaluated

cRd =
N∑

k=1

L∑

i=1

q
(i)
d,ke

(i)
d,k (5.3)

The hybrid control task is now, to actuate the hybrid system by its

continuous inputs uT = [uT
0 , . . . ,uT

N−1] (5.4a)
discrete inputs uT

d = [ud1,0, . . . , udO,0, . . . , ud1,N−1, . . . , udO,N−1], (5.4b)

such that the resulting cost values are minimal, i.e. the hybrid control task is to determine
u and ud such that

min
u,ud

(cRc + cRd) (5.5)

However, beforehand a qualitative reasoning step is utilized to quickly pre-select discrete
inputs and a mode sequence. Although this control scheme, in principle, can determine this
optimal solution (as will be pointed out in Section 5.4.3), it is by far more efficient to allow
sub-optimal solutions. For more complex systems, this is necessary to keep the computational
burden manageable.

So with c∗Rc and c∗Rd being the values at the optimal solution to (5.5), in fact, the modified
hybrid control problem

determine u and ud such that cRc + cRd ≈ c∗Rc + c∗Rd (5.6)

is solved.

78 CHAPTER 5. HYBRID CONTROL

5.1.2 Qualitative Control Problem Formulation

A major part in obtaining a problem formulation that allows separation of the hybrid control
task into qualitative pre-selection and subsequent numerical control refinement has already
been achieved by compiling the continuous dynamics of the hybrid model at each mode
into the qualitative model. What is left, is to abstract formulation (5.6) to be used in the
qualitative domain.

The discrete cost value cRd is already defined in terms of the discrete operational modes,
so it can directly be used in the qualitative model. The definition of the continuous cost
value cRc, however, has to be qualitatively abstracted to be usable with respect to qualitative
values. Unlike the discrete modes, where there was the problem that no ’function’ could
be obtained for evaluating the distance between two qualitative values, for the qualitative
abstractions of continuously valued variables such a distance can be evaluated on behalf of
the definition of the polytopic regions that are represented by each qualitative value.

Along this argument the deviation E
(i)
x,k of a qualitative value X

(i)
k = ξα from the reference

value r(i)
x,k can be defined similar to (5.2). For this, the definition of qualitative values by

polytopic regions
Hαx ≤ kα ←→ X = ξα

is utilized to define the set P of all values ’inside the qualitative value’.

P(ξα) = {x | Hαx ≤ Kα}

With this, the deviation E
(i)
x,k of a qualitative value X

(i)
k = ξα from the reference value

r(1)
x,k is defined as

E
(i)
x,k = min

x
(i)
k ∈P(ξα)

(
x(i)

k − r(i)
x,k

)T (
x(i)

k − r(i)
x,k

)

and similarly
Eui,k = min

ui,k∈P(υα)
(ui,k − rui,k)

2 .

Determination of these values, however, requires the solution of a quadratic program.
As reference values are determined at system run-time, values E

(i)
x,k and Eui,k cannot be

pre-compiled and solving a quadratic program for each such evaluation during qualitative
pre-selection is prohibitive.

Therefore, once again an approximation will be used that under-estimates the distances
E

(i)
x,k and Eui,k: The smallest bounding ball B(·) for each qualitative value’s polytopic region

is pre-compiled and its center cB and radius rB are stored.
With

P(ξα) = P(B(ξα))

being the range of all states x inside the smallest bounding ball around the polytope related
to qualitative value ξα, approximative values

E
(i)
x,k = min

x
(i)
k ∈P(ξα)

(
x(i)

k − r(i)
x,k

)T (
x(1)

k − r(i)
x,k

)
(5.7)

Eui,k = min
ui,k∈P(υα)

(ui,k − rui,k)
2 (5.8)

for the deviations from reference values can be defined.

5.1. OUTLINE OF THE CONTROL SCHEME 79

These distances most easily can be evaluated at system run-time by

E
(i)
x,k =

(
|cB(ξα)− r(i)

x,k| − rB(ξα)
)T (

|cB(ξα)− r(i)
x,k| − rB(ξα)

)
(5.9)

Eui,k = (cB(υα)− rui,k − rB(υα))2 (5.10)

with the only exception that they additionally are limited to zero from below. An illustration
of these distance-values E is shown in Figure 5.1.

(a) Minimum distance from reference value to polytope

(b) Easy-to-compute-approximation of the distance from refer-
ence value to polytope

Figure 5.1: Deviations from reference values for qualitative values

With these approximations, the qualitative abstraction of the cost value cRc can be defined

80 CHAPTER 5. HYBRID CONTROL

as

CRc =
N∑

k=1

(
L∑

i=1

q
(i)
x,kE

(i)
x,k +

M∑

i=1

qui,k−1Eui,k−1

)
(5.11)

So, the qualitative control task can be formulated as a discrete search for the system’s
actuation, i.e.

abstracted continuous inputs U = [U1,0, . . . , UM,0, . . . , U1,N−1, . . . , UM,N−1]
discrete inputs ud = [ud1,0, . . . , udO,0, . . . , ud1,N−1, . . . , udO,N−1],

such that the qualitative approximations of the cost values are minimal

min
U∈U , ud∈Ud

(CRc + cRd) . (5.12)

However, since the qualitative model and the control task formulation are only approxi-
mations of the hybrid model and the hybrid control task, respectively, it cannot be guaranteed
that the optimal solution

U∗,u∗d

to the qualitative control task (5.12) is an abstraction of the optimal solution to the hybrid
control task (5.5).

However, if qualitative values are chosen with an appropriate granularity, this solution
to the qualitative control task should at least be an abstraction of a sub-optimal solution
according to (5.6). But even this may not hold since the solution to the qualitative control
task can be based on a spurious behavior. That means, it is not an abstraction at all of any
valid trajectory the hybrid model can exhibit from its given initial state. If this is the case,
the subsequent the numerical control will detect such a situation and qualitative search is
resumed to provide the next-best qualitative solution.

To reduce the risk of finding solutions to the qualitative control problem that are spurious
behaviors, the likelihood values related to qualitative trajectories are included into the qual-
itative control problem formulation. These likelihood values are compiled into the graphical
representation of the qualitative model as edge-lengths of a directed, acyclic graph. They
provide an indication whether a particular qualitative trajectory-segment bears a higher or
a lower risk to lead to a spurious solution.

To formalize this for qualitative control, a particular valuation of all qualitative variables
within the N -step receding horizon is called a qualitative trajectory Q. Based on this and
the qualitative model definition, an additional cost value CL can be specified that penalizes a
high risk of spuriosity as the follows: CL is the sum of all edge-costs along the paths (through
all tDAGs) that are specified by the qualitative trajectory Q.

Additionally, to bias qualitative search towards more ’likely’ or more ’accurate’ solutions,
scaling factors sL and sR are allowed as design parameters. High values of sL lead to con-
centration on most likely non-spurious qualitative trajectories on the one hand and high
values of sR emphasize qualitative trajectories that pretend to be (they might be spurious!)
abstractions of very good hybrid trajectories on the other hand.

With these scaling factors (and Q denoting the set of all possible qualitative trajectories),
the qualitative control problem is finally defined as search for a qualitative trajectory Q that
achieves

min
Q∈Q

(sLCL + sR (CRc + cRd)) . (5.13)

5.1. OUTLINE OF THE CONTROL SCHEME 81

5.1.3 Numerical Control Problem Formulation

The solution Q to the qualitative control problem (5.13) specifies all discrete variables of
the hybrid model for all times in the N -step receding horizon, but it specifies the continuous
variables only to the extent of a polytope.

Therefore, an additional numerical control-deduction step is needed to specify these vari-
ables in more detail. This numerical control formulation, however, has not to be posed on
the complex ’original’ hybrid model, because the solution Q to the qualitative control task
already specifies a sequence M(i) of operational modes for each component of the hybrid
model.

Continuous Model Representation of each Component

This allows to regard each component-hybrid-automaton

A(i) = 〈x(i)
h ,u(i)

h ,y(i)
h , F (i), T (i),X(i),U(i),X (i)

d ,U (i)
d , Ts〉

as a time-variant continuous model. The constraints related to the determined mode-transitions
can be expressed in terms of a polytope the model inputs have to be in.

Due to the specified mode sequence, the continuous part of the hybrid model can be
expressed as time-variant continuous model

y(i)
k = C(i)

k x(i)
k + D(i)

k u(i)
k + f (i)

k(
x(i)

k

)′
= R(i)

k x(i)
k + r(i)

k

x(i)
k+1 = A(i)

k+1

(
x(i)

k

)′
+ B(i)

k+1u
(i)
k + e(i)

k+1

(5.14)

The unusual part in these equations comes from the definition of a state-reset
(
x(i)

k

)′
= R(i)

k x(i)
k + r(i)

k

specified for each mode transition. If the mode stays the same,
(
x(i)

k

)′
= x(i)

k .
Regarding the automaton-part of the hybrid model, the mode sequence Q, of course

specifies all discretely valued variables. However, the satisfaction of the guards of the involved
mode transitions is assured with respect to the discrete actuation u

(i)
d,0, . . . , u

(i)
d,N−1 only. The

involved polytopic constraints on the continuous states and inputs have to be passed on to the
continuous control problem as well as the limited allowed range of each continuous variable
has to be considered. These constraints can, all together, be expressed as:

H(i)
x,kx

(i)
k ≤ k(i)

x,k

H(i)
u,ku

(i)
k ≤ k(i)

u,k

H(i)
y,ky

(i)
k ≤ k(i)

y,k.

(5.15)

If the initial states x(i)
0 are known, the component models (5.14) can be used to reformulate

the constraints on states and outputs as constraints on the inputs as well. For example,

dropping superscripts and assuming
(
x(i)

k

)′
= x(i)

k :

Hx,1x1 ≤ kx,1

Hx,1 (A1x0 + B1u0 + e1) ≤ kx,1

Hx,1B1u0 ≤ kx,1 −Hx,1A1x0 −Hx,1e1

82 CHAPTER 5. HYBRID CONTROL

All terms on the right are known, so we can write

Hu0 ≤ k

If additionally notation
uT = [uT

0 , . . . ,uT
N−1]

is used, all constraints on states, inputs and outputs together can compactly be expressed as

Huu ≤ ku. (5.16)

With this and the specification of the cost value cRc (5.1), the remaining continuous
control task is to determine inputs u∗ such that

min
Huu∗≤ku

cRc. (5.17)

Notation u∗ is used to express that this is the optimal input with respect to the hybrid
control problem for a specified mode sequence only. This hasn’t necessarily to be equal to the
continuous input u∗ that leads to the optimal solution of the hybrid control problem (5.5).

5.1.4 Hybrid Control

Both simplified control problems (5.13) and (5.17) are solved. Then, in spirit of receding
horizon control, the discrete commands ud,0 specified by the ’qualitative solution’ Q and the
continuous actuation u0 specified by the ’continuous solution’ u∗ are applied to the hybrid
system and the controller waits until at the next sample time a new N -step hybrid control
problem is solved.

An illustrative view of this control scheme (already displayed as Figure 2.12) is repeated
here in Figure 5.2.

5.2 Qualitative Pre-Selection

This section, details how to solve the qualitative control problem, i.e. to search the qualitative
model for an assignment to qualitative variables Q ∈ Q that leads to a minimal cost value
with respect to

min
Q∈Q

(sLCL + sR (CRc + cRd))

5.2.1 Simultaneous Search in Multiple Graphs

The first problem encountered when searching the qualitative model for an assignment Q of
qualitative values is, that the qualitative model is presented in form of multiple graphs, which
each encode qualitative trajectories of a single component and a single time-step. However,
the fact that all graphs are built with respect to the same ordering of variables

V1 ≺ V2 ≺ . . . Vα ≺ Vα+1 ≺

makes a simultaneous treatment of all graphs straightforward. To demonstrate this, we first
recall how these tDAGs represent the overall qualitative model. Each node in such a tDAG
(except the leaf nodes) represents a qualitative value. The nodes are left by edges that
represent allowed choices of qualitative values for the variable. So assigning a qualitative

5.2. QUALITATIVE PRE-SELECTION 83

Figure 5.2: Hybrid control scheme

value to a qualitative variable corresponds to traversing along an edge in the tDAG. This
way, valid qualitative trajectories, i.e. valid assignments to all qualitative variables, specify
a path through each component tDAG. If a hybrid model consists of several interconnected
component models, the respective tDAGs are ’connected’ by shared variables, which means
that nodes representing these variables occur in several tDAGs.

In Figure 5.3 two tDAGs representing such interconnected components are illustrated.
Shared variables are V1, V3 and V5, whereas V2 is only constrained by the first component
and V4 is only constrained by the second. From these model graphs one could construct an
overall model graph by investigating for each assignment of qualitative values to V1 . . . V5

whether it specifies a path through both graphs. For example the assignment

V1 = ν1 V2 = ν2 V3 = ν2 V4 = ν1 V5 = ν1

84 CHAPTER 5. HYBRID CONTROL

Figure 5.3: tDAGs for 2 components

specifies a path through both graphs (via nodes 1, 2 and 10 in tDAG 1 and via nods 1, 2,
4 and 6 in tDAG 2). So this assignment of qualitative values represents a valid qualitative
trajectory of the overall model, whereas an assignment containing

V1 = ν1 V2 = ν1

is invalid, because this specifies a path to node 5 in tDAG1 (thus constraining V3 to ν1) and
to node 2 in tDAG2 (thus constraining V3 to ν2). No qualitative value for V3 can be found
that allows to continue a path in both tDAGs.

Compilation of such an overall model often is not manageable for more complex systems.
Instead, we are going to investigate only a very focussed branch of it on-line by searching for
qualitative trajectories according to the same ordering of variables that was used to build the
component tDAGs. Each partial assignment Q of variables

V1 ≺ V2 ≺ . . . Vα

specifies a path from the root node of each graph to a particular node. We call this the ’active
node’ A(i) of each of the i graphs.

If now possible assignments for the next variable Vα+1 are investigated, just all the graphs
have to be considered, the active nodes A(i) of which represents just that variable Vα+1. All
the other graphs do not pose any constraints on variable Vα+1 in the respective branch of the
graph.

All the qualitative model graphs’ edges have an associated likelihood-cost value cL. Ad-
ditionally, the corresponding qualitative values determine reference cost values CRc and cRd.
To focus search onto good qualitative trajectories, these cost values are used to further inves-
tigate the graphs along that edge that leads to minimal costs. Of course, a particular choice
of a qualitative value is only allowed, if all active nodes that represent variable Vα+1 are left
by an edge that is labeled with that value. The target nodes of these edges, then, become
the new active nodes of these graphs.

5.2. QUALITATIVE PRE-SELECTION 85

(a) Construction of the overall model graph with ’active node’ labels at each
node of the overall model graph. Grayed active nodes correspond to variables
that come later in ordering

Figure 5.4: Simultaneous search in multiple graphs

An example for the construction of such an overall model from the two separate model
graphs displayed in Figure 5.3 is shown in Figure 5.4. This is the graph that has to be
searched for the shortest path. We notice, however, that this overall search tree as a whole
is built here for illustrative reasons only. During qualitative pre-selection, only those parts of
the graph that lie along a very focussed branch towards good solutions will actually be built
and investigated.

5.2.2 N-Step Receding Horizon control with Single-Time-Step Qualitative
Model

This procedure for searching multiple graphs simultaneously is not only used to evaluate
qualitative variables in multiple components, but it is also needed to reason about longer
time-trajectories.

The hybrid control problem is posed as an N -step receding horizon control problem and
so qualitative trajectories tk → tk+N need to be evaluated. However, to keep the model size
small, only qualitative trajectories for times tk → tk+1 have been compiled. These models
have to be utilized to reason about longer time trajectories. This is easily achieved by utilizing
multiple instances of the compiled model graphs to represent qualitative trajectory segments
at different times.

In Figure 5.5, two instances of a component-model graph are used to reason about tra-
jectories tk → tk+1 → tk+2. Like various component models overlap with respect to the
components’ input and output variables, the graphs representing trajectories at different
times overlap with respect to the state variables.

86 CHAPTER 5. HYBRID CONTROL

(a) Compiled model graph

(b) Two instances of this graph are used to reason about longer time trajectories

Figure 5.5: Multiple graph-instances for longer time trajectories

5.2.3 Qualitative Pre-Selection by A∗-search

Basis for qualitative search for a good trajectory, i.e. for the qualitative trajectory that
satisfies (5.13)

min
Q∈Q

(sLCL + sR (CRc + cRd)) (5.18)

is an overall qualitative model graph that covers all components of the hybrid model and
allows reasoning about time trajectories tk → tk+N . However, this graph is not pre-compiled,
but instead very focussed branches of that graph are built on-line by utilizing the pre-compiled
component models.

Best First Shortest Path Search

Although no explicit representation of the overall qualitative model is available, one can
intuitively treat all component tDAGs simultaneously to build the ’interesting’ branches of
that model graph, if a search algorithm proceeds assigning values to qualitative variables in a
sequence according to the pre-specified ordering of variables that was used for the construction
of the trajectory DAGs.

5.2. QUALITATIVE PRE-SELECTION 87

This way, qualitative pre-selection can be formulated as shortest path search through the
overall model graph. The ’interesting’ branches of this overall model graph are generated
on-line. For this, the individual component models determine the constraints on allowed
qualitative values as well as the likelihood costs CL imposed by a particular qualitative value.
Additionally, for the qualitative value also reference costs CRc and cRd can be determined by
the qualitatively abstracted control problem formulation (e.g. bounding ball approximation
for estimating the distance from a qualitative value to a reference value). These cost values
determine the edge-length

sLCL + sR (CRc + cRd)

of the corresponding edge in the overall model graph.
The fact that our primary interest is to find only the shortest path, i.e. the best qualitative

trajectory Q as defined in 5.18, motivates to utilize best-first-search as a variant of shortest
path search that will explore the search tree in a way, such that the first path through the
graph that is found certainly is the shortest one.

This means, exploration starts at the root node and ’expands’ the search graph (i.e. it
investigates possible assignments to the corresponding variable and determines the associated
edge-costs). Each of the newly explored nodes is assigned a ’utility value’ equal to the edge-
length1 by which it is reached. Then best-first search selects the (yet unexpanded) node with
lowest utility value and expands it further. The utility value of this node’s child nodes is the
original utility value increased by the length sLCL + sR(CRc + cRd) of the edge that connects
the two.

The algorithm proceeds always expanding the node with lowest utility value, until it
detects a leaf node that has a lower utility than all other unexpanded nodes. The path from
the root node to this leaf then is the shortest path from the root node to any leaf in the
graph.

An efficient variant of this search algorithm always expands a node to its ’best’ child.
The subsequent children only get expanded sequentially as so-called ’follow up’ expansions, if
one of the (already explored) children, gets expanded itself. To illustrate this search variant,
the graph depicted in Figure 5.4 is searched for the shortest path from the root to one of its
leaves. Progress of search is illustrated in Figure 5.6.

Dynamic Programming

Another strategy for performing shortest-path search is provided by dynamic programming
[11]. This type of search makes intensively use of Bellman’s principle of optimality, which
states, that the tail of an optimal solution is, itself, the optimal solution from its starting
point. In terms of our qualitative pre-selection this can be expressed as: if two (partial) paths
starting at the root node reach a common node in the overall model graph – and, hence, both
have the same optimal tail – the longer one surely is not part of the optimal solution (Figure
5.7).

To utilize this principle in qualitative pre-selection, we have to notice that the overall
model graph in fact is no ’tree’ but a graph where several paths can lead to the same node.
The on-line generation of the overall model graph from the individual component models as
outlined so far does not illustrate this yet, but only leads to trees. To generate the overall
model graph not as a tree but as connected graph, we need to utilize additional information.

1That is the sum sLCL + sR(CRc + cRd) of the edge-lengths associated to the respective qualitative value
in all individual component models and the reference costs associated to the qualitative value.

88 CHAPTER 5. HYBRID CONTROL

(a) Search starts at the root node and ex-
plores its best child

(b) The unexplored node with the best util-
ity value is selected and its best child is ex-
plored. Additionally, another of the root
nodes children is explored (follow-up expan-
sion)

(c) The node with lowest utility value and
its parents are expanded

(d) Again, only the best child is explored

(e) The node with best utility and its parent
is expanded. After this expansion, the node
with best utility is a leave node and so the
shortest path is found

Figure 5.6: Best-first search

5.2. QUALITATIVE PRE-SELECTION 89

Figure 5.7: The dynamic programming idea

Here the ’structure’ of the hybrid model, i.e the causal dependencies among the hybrid
models equations come into play. These can be represented as causal graph (Section 4.4.1,
Appendix A.3). Such a graph illustrates which variable in the model directly influences
which other variables (i.e. the variable occcurs in an equation or transition specification that
determines the other variable).

Based on a specified ordering of variables

V1 ≺ V2 ≺ . . . Vα ≺ Vα+1 ≺ . . . ,

by the causal graph one can evaluate which subset of variables

R(α) ⊆ {V1, . . . Vα} ,

together with the external inputs, completely specifies all other variables

S(α) = {Vi | i > α, Vi is not anexternal input}

(recall page 65).
The influence of all those variables from V1 to Vα which are not included in R(α) is

already subsumed by the variables in R(α) – just like in a standard continuous model all past
states xk−i, i = 1, 2, . . . are subsumed in the current state xk. This has an implication on
qualitative pre-selection, because if two different assignments for variables V1, . . . Vα only differ
in values for those ’subsumed’ variables, they can only be extended by the same assignments
for variables Vi, i > α. Therefore, like in the graph 5.7 where only the shortest path to each
node is investigated further, only the best assignment of variables V1, . . . , Vα that contains a
particular assignment to variables R(α) needs to be investigated further.

In fact, (for each α) the qualitative assignments to variables R(α) can be regarded as an
’identifier’ for a particular node representing Vα in the overall model graph. If two qualitative
assignments specify the same qualitative values for the variables R(α), the corresponding
paths in the overall model graph lead to the same node and we can use the principle of
optimality to only investigate the one with the lower utility value further. The sets R(α) can
be determined at compile-time of the qualitative model from the causal graph of the hybrid
model and the pre-specified ordering of variables.

However, it has to be noticed here that – because of possible spurious behaviors – the
principle of optimality only holds with respect to the qualitative pre-selection and not with
respect to the hybrid control problem. This means, we can stop to further investigate certain
paths in the model as described above and we will still obtain the qualitatively best solution
as shortest path through the overall model graph. However, this may be a spurious solution,
while the paths that weren’t investigated further could be non-spurious. A more detailed
discussion on this topic and on the implications for qualitative pre-selection follows in section
5.2.4.

90 CHAPTER 5. HYBRID CONTROL

(a) causal graph

(b) causal tDAG (c) overall model graph

Figure 5.8: Causal graph and ordering of variables determine search graph’s connections

The presentation here will continue by providing an illustrative example for a connected
overall model graph in Figure 5.8. There, Figure 5.8b shows a tDAG and Figure 5.8a shows
the model’s causal graph. Based on this, the resulting overall model graph is displayed in
Figure 5.8c. By the causal graph and the ordering of variables A0 ≺ B0 ≺ A1 ≺ . . . we
determine that once A0, B0 and A1 are known, the influence of A0 on the yet unspecified
variables is subsumed by B0 and A1. So both paths that are given by qualitative values

A0 = α1 B0 = β1 A1 = α1

A0 = α2 B0 = β1 A1 = α1

lead to the same node in the overall model graph.

A∗-search

A search strategy that does both, searching a graph in best-first manner, while utilizing
dynamic programming principles to compare partial paths through the graph is so-called A∗-
search [27]. Usually, A∗-search additionally utilizes an ’admissible heuristic’, that is a value
which is added to the utility value of investigated nodes and is an ’optimistic estimate’ (i.e. it
always underestimates) of the path length from the node to a leaf of the graph. However, we
haven’t found a way how we can determine such an admissible heuristic from our qualitative
component based models efficiently, so we always set this heuristic value to 0.

A∗-search is the ideal search strategy for qualitative pre-selection, because

• pre-selection only is interested in the best solution

• the search problem is posed in a well structured way that leads to a very ’connected’2

2Many nodes in the graph can be reached by multiple paths.

5.2. QUALITATIVE PRE-SELECTION 91

Figure 5.9: Spurious solution prevents non-spurious solution from being investigated

overall model graph. This allows intensive utilization of the principle of optimality to
compare partial qualitative trajectories.

Summarizing, the qualitative control problem

min
Q∈Q

(sLCL + sR (CRc + cRd))

is posed as shortest path search in a search graph that is highly connected (i.e. there are lot
of nodes shared by several paths through the graph so that intensive use of the principle of
optimality can be made. The overall model graph’s edges represent likelihood costs which are
easily evaluated from the pre-compiled component models and approximative cost-values for
deviations from reference values. These are evaluated at system run-time by easy-to-calculate
’optimistic’ approximations.

The shortest path through the graph specifies a qualitative trajectory Q, which itself
represents values for the discretely values variables and qualitative abstractions of the con-
tinuously valued variables specified by polytopical regions in the value-space of the variables.
Of this qualitative trajectory, in spirit of receding horizon control, the discrete command
inputs calculated for time tk are applied to the system (if subsequent numerical optimization
validates Q to be non-spurious) and the mode sequence is utilized to simplify the subsequent
numerical refinement of all other (continuous) variables.

5.2.4 Trajectory-Comparison and Spurious Behaviors

What is still left to discuss, is the influence of utilization of the principle of optimality in
qualitative search on the hybrid control problem, if spurious behaviors are encountered. The
problem with this is, that a qualitatively better, but spurious behavior can stop a qualitatively
slightly worse, but non-spurious behavior from being investigated further. In worst case, this
way all valid solutions could be missed because they were compared to qualitatively better
spurious qualitative trajectories.

To illustrate this, the example search graph depicted in Figure 5.9 is utilized under the
assumption that the qualitative trajectory

• α1, β1, γ1

– is spurious

– allows no solution of the hybrid control problem

• α2, β2, γ1

– is a valid trajectory

92 CHAPTER 5. HYBRID CONTROL

– leads to a cost function-value of 2 for the hybrid control problem

• α1, β2, γ2

– is a valid trajectory

– but leads to a very high cost function-value of 20 for the hybrid control problem

If standard best-first search is utilized, trajectory α1, β1, γ1 is found first, rejected and
α2, β2, γ1 is found next providing a good solution to the hybrid control problem.

If, however, dynamic programming is used, of course also α1, β1, γ1 is found first, and
rejected. However, α2, β2, γ1 is compared to the former trajectory after variable B and
is dropped from further investigation. So α1, β2, γ2 is determined as next-best solution,
providing a very bad solution to the hybrid control problem.

Preventing dynamic programming from being used would solve the problem, but signifi-
cantly spoil performance of qualitative pre-selection. In fact, most of our effort on building
the qualitative model would be spoiled.

So we take a closer look at the interplay between qualitative pre-selection and numerical
control refinement: The idea was that trajectories were compared and eliminated from further
investigation, because it was certain that they would only allow the same ’tails’. If one
could now guarantee, that two partial qualitative trajectories would not only show none but
the same tails in the qualitative search graph, but additionally could only lead to the same
numerical optimization problem, then those could still safely be compared and only the best
one needed to be investigated further.

Here, the special problem set-up for the subsequent numerical refinement-step in our
hybrid control scheme comes into play. Of the qualitative trajectory Q only the mode-
sequence and the associated transition guards on the continuous variables are needed to
uniquely define the numerical optimization. (The following list is an anticipation to the
following section, but it is mentioned here to provide a concise overview)

• The mode sequence specifies the time-variant continuous model

– So the quality function is uniquely determined

• The mode-transitions specify the associated constraints on input and state.

• No other constraints but the limited range for the input-, output- and state spaces as
defined for the overall hybrid model are needed.

– So all the constraints are uniquely determined as well

It is sufficient to guarantee that some partial qualitative trajectories can only lead to the
same mode-transition-sequences in order to be able to compare them and to eliminate the
worse ones. This can be guaranteed, if, for variable ordering

V1 ≺ V2 ≺ . . . Vα ≺ Vα+1 ≺ . . . ,

two partial trajectories
{V1, . . . Vα}

share the same assignments
R(α) ⊆ {V1, . . . Vα} ,

and additionally specify the same mode-transition-sequence.

5.3. NUMERICAL CONTROL 93

5.3 Numerical Control

The mode sequences specified by the solution Q to the qualitative control problem (5.13) allow
to regard the hybrid model as time-variant continuous model and to formulate a continuous
control problem (5.17). This section discusses how this formulation is obtained from the
hybrid model (with specified mode sequence) and solved.

5.3.1 Formulation as Constrained Quadratic Program

To formulate the control problem, each of the model’s variables and the resulting cost value
cRc is expressed in terms of the inputs and the initial state. The specified mode sequence
allows to regard each component of the hybrid model as

y(i)
k = C(i)

k x(i)
k + D(i)

k u(i)
k + f (i)

k(
x(i)

k

)′
= R(i)

k x(i)
k + r(i)

k

x(i)
k+1 = A(i)

k+1

(
x(i)

k

)′
+ B(i)

k+1u
(i)
k + e(i)

k+1

Consecutively these equations can be used, to determine all variables x(i)
k ,

(
x(i)

k

)′
, y(i)

k in

terms of the components initial states x(i)
0 and the inputs u(i)

0 . . .u(i)
N−1 only.

If the inputs u(i)
0 . . .u(i)

N−1 of the individual components are further expressed by the

outputs y(j)
k of other components and the external inputs uk as given by the connection-

specification C of the concurrent automaton, one can explicitly express each variable x(i)
k ,

y(i)
k ,

(
x(i)

k

)′
of all components i and for all times k in terms of the initial state

x0 =

x(1)
0
...

x(L)
0

and the vector of inputs

u =

u0
...

uN−1

 .

This is only possible straightforwardly, if there are no algebraic loops in the model. An
algebraic loop is a circular dependency among variables (see Appendix A.3). This can occur,
if direct feed-through (D(i)

k 6= 0) through several components leads to a loop in the outline
of the model structure (its causal graph)3. Throughout the present work, however, it is
assumed that no algebraic loops are present in any combination of operational modes of the
components, and so one can directly express each of the models variables vi in terms of the
initial state and input in the form

vi = mvi

[
x0

u

]
+ mvi.

3Such a case requires simultaneously solving a set of equations for the variables that are involved in the
loop. This can be done algorithmically in for the models here (and for more general polynomial functions) by
calculation of so called Groebner Bases [15, 16].

94 CHAPTER 5. HYBRID CONTROL

This allows to express all range-limitations and the polytopic constraints involved in the
mode-transition in terms of the initial state and input as well. More specifically, for the
vector v of all constrained variables

Hvv ≤ Kv

Hv [M1vu + M2vx0 + mv] ≤ Kv

is expressed as
HvM1vu ≤ Kv −HvM2x0 −Hvmv

or more compactly written
Hu ≤ K. (5.19)

Likewise, with notation

xT =
[
x(1)

1

T
, . . . , x(L)

1

T
, . . . , x(1)

N

T
, . . . , x(L)

N

T
]

and reference values

rT
x =

[
r(1)
x,1

T
, . . . , r(L)

x,1

T
, . . . , r(1)

x,N

T
, . . . , r(L)

x,N

T
]

rT
u = [ru1,0, . . . , ruM,0, . . . , ru1,N−1, . . . , ruM,N−1] ,

one can write
x = Ax0 + Bu + v. (5.20)

and the deviations from the reference value of x

e = x− rx

= Ax0 + Bu + v − rx

and more compactly written

e = Bu− r1

This can be used to express the cost value cRc (5.1) as

cRc = [Bu− r1]
T Qx [Bu− r1] + [ru − u]T Qu [ru − u]

what is further

cRc = uT [BQxB + Qu]u− 2 · [rT
1 QxB + rT

uQu

]
u + rT

1 [Qx + Qu] r1

and again more compactly
cRc = uTQu + 2qTu + r0 (5.21)

The last term is independent of the inputs u. So it doesn’t shift the location of the
optimum and one can formulate the numerical control problem in the standard form of a
quadratic program

min
(

1
2
uTQu + qTu

)
w.r.t. Hu ≤ K. (5.22)

5.3. NUMERICAL CONTROL 95

5.3.2 Model Predictive Control

This quadratic program is used in Model Predictive Control (MPC) [41] to determine contin-
uous actuation for the hybrid system. MPC is an receding horizon optimal control strategy
that, at each time k, uses a model to make an N -step-ahead prediction of trajectories and
optimize them with respect to given reference values by determining a sequence of inputs
u(k),u(k|k + 1), . . .u(k|k + N − 1). MPC notation u(k|k + i) is used to indicate that this is
the prediction of uk+i made at time tk.

These inputs are usually determined by formulating a linear or quadratic (5.22) optimiza-
tion problem, that compares the trajectories that are predicted for the unactuated system to
the reference values. The deviation of the two is then tried to be optimally counteracted by
future actuation.

Of the calculated inputs u(k),u(k|k + 1), . . .u(k|k + N − 1), however, only the first one
(u(k)) is actually applied to the plant and the controller waits for the next sample-time
tk+1 to again make predictions for N -step ahead trajectories and to optimize them by inputs
u(k + 1),u(k + 1|k + 2), . . .u(k + 1|k + N).

To achieve offset-free tracking of constant reference values for an asymptotically stable
plant (i.e. the system remains at its current mode in all components and the overall model
behavior is asymptotically stable, what does not necessarily require all component models to
be stable), an integrative correction of deviations for model and real plant can be introduced,
by ’correcting’ the given reference values. With notation

xT
k =

[
x(1)T

k , . . . ,x(L)T

k

]

and
rT
x,k =

[
r(1)T

x,k , . . . , r(L)T

x,k

]

the corrected reference values are

rx,·,corr = rx,· − (x(k)− x(k − 1|k)) . (5.23)

Stability

An important issue with respect to any controller design is stability. Concerning general
hybrid systems, establishing a stability theory is yet an unresolved problem. And a through
discussion about stability issues for Model Predictive Control of hybrid systems goes be-
yond the scope of this thesis. Only two criteria that help to achieve stability under certain
constraints are presented.

The first one is very simple to explain. However, its applicability is very restricted. This
stability test utilizes the quality function (5.21) itself to search for continuous actuations that
lead to stable trajectories by enforcing a steady decrease in its function value. This way, the
quality function serves as Lyapunov function and stability is assured. However, this stability
test does not provide any measures to guarantee that at the next time-step there will exist
a valid solution. So this test can mainly be used for hybrid systems, that have some kind of
’fail safe’ mode that can always be reached and for which a stabilizing controller is available.

The second criterion [41] is somewhat more complicated but allows a wider applicability.
To motivate this approach, one first notices that the danger of possibly encountering insta-
bility comes from the fact that MPC only performs an N -step-ahead prediction and does not
make any assumptions what ’danger’ may lie beyond that horizon. The idea to overcome
this weakness is to reformulate the finite-horizon optimization problem (5.22) as an infinite

96 CHAPTER 5. HYBRID CONTROL

horizon problem. In this case, Bellman’s principle of optimality applies and it is assured that
the value of the optimization function does not increase with time-index k.

This may seem irrealistic at first sight, but turns out to be achievable if the qualitative
controller is forced to – at the end of the receding horizon – drive the hybrid system to an
operational mode (i.e. a mode for each component, of course)

• that exhibits an asymptotically stable dynamic behavior of the overall model (which
not necessarily demands asymptotically stable behavior for each component)

• that is governed by a linear (not an affine) overall model

• and at which the system may remain infinitely long.

That mode is characterized by the dynamics

xk+1 = Axk + Buk.

Additionally, the input remains constant at

u(k|k + i) = 0 ∀ i ≥ N

beyond the prediction horizon. To formulate the infinite horizon optimization problem in an
extension to (5.22) the term

cextra =
∞∑

i=N+1

x(k|k + i)TQx(k|k + i)

is added.
To evaluate this term, the predictions of x beyond the receding horizon are calculated.

With u(k|k + i) = 0 ∀ i ≥ N one has

x(k|k + N + i) = Ai x(k|k + N)

and, hence, can write

cextra = x(k|k + N)T

(∞∑

i=0

AT i
QAi

)
x(k|k + N).

With notation

Q̃ =
∞∑

i=0

AT i
QAi,

one can additionally write

AT Q̃A =
∞∑

i=1

AT i
QAi.

This row converges for asymptotically stable A and, thus the two infinite sums can be sub-
tracted to obtain

AT Q̃A− Q̃ = Q, .

This is a Lyapunov equality and it is solved for Q̃ to replace the definition of cextra. It further
has to be noticed that if Q > 0 and A is stable then Q̃ > 0 as well.

This way, finally the infinite horizon control problem that ensures stability can be refor-
mulated as a finite-receding horizon control problem extended by a weighting of the ’final
state’, i.e.

cextra = x(k|k + N)T Q̃ x(k|k + N).

5.4. SOLVER INTERPLAY 97

5.4 Solver Interplay

This last section now discusses how a careful interplay between the two solvers – the qual-
itative search engine to solve the qualitative control problem and pre-select a sequence of
operational mode and the numerical optimization that refines continuous actuation – ensures
that a good solution to the original hybrid control problem can be found efficiently.

5.4.1 Spurious behaviors

A spurious behavior is defined to be a qualitative trajectory, that is not an abstraction of any
trajectory of the hybrid system from its given initial value. To evaluate whether a pre-selected
trajectory is spurious, the constrained quadratic program for the resulting time variant con-
tinuous model is specified such that each qualitative value of the pre-selected trajectory is
represented as polytope-constraint on the corresponding continuously valued variable. Like
shown above, utilizing the continuous model imposed by the qualitative trajectory, these
polytopic constraints can be represented as polytopic constraints on the system-inputs (5.19)

Hstrictu ≤ kstrict.

If these inequalities have an empty solution, the qualitative trajectory is spurious and
the numerical solver would request the next-best qualitative trajectory from the qualitative
search engine. However, qualitative pre-selection merely is interested in a good solution of
the original hybrid control problem. If such one could be obtained even based on a spurious
behaviors, one will be satisfied with that as well.

If only the mode sequence is extracted from a qualitative trajectory to specify which
continuous model is used and which polytopic guards on the continuous variables apply
because of the required mode-transitions – but no additional constraints are used to force
continuously valued variables to the regions specified my the respective qualitative values –
a more general continuous control problem can be posed, involving polytopic constraints

Hrelaxed u ≤ Krelaxed.

that only represent constraints on continuous variables imposed by the definition of the hybrid
model itself (e.g. limited actuation) and the necessary polytopic constraints on the required
mode transitions.

With this formulation, the posed continuous control problem can be regarded to be spec-
ified for a whole set of qualitative trajectories. If this formulation does not allow variables u
so that all constraints are fulfilled, all qualitative trajectories that specify a common sequence
of operational modes and mode transitions can together be ruled out.

So, in fact, two advantages are gained:

• The same optimization is performed over several qualitative trajectories without the
need of any additional work

• A failed optimization does not only rule out a single qualitative trajectory, but a whole
set of qualitative trajectories at once, what can largely help to quickly focus search onto
valid solutions.

Illustration on this is provided in Figure 5.10, where control for the model

xk+1 = xk + uk + 1.2 ∀ k ≤ 2
xk+1 = xk + uk ∀ 3 ≤ k ≤ 4

98 CHAPTER 5. HYBRID CONTROL

is calculated and actuation is limited to −1 ≤ uk ≤ 1, the state is constrained to −1 ≤ xk ≤ 2
and the mode-change at t3 requires 1 ≤ x3 ≤ 2. The reference value for x is zero for all times.

Figure 5.10a shows the situation of a spurious behavior. Here, no valid solution can be
found if the polytopical constraints for all qualitative values are used. Figure 5.10b shows
the situation, where an alternative qualitative trajectory is provided that, however, specifies
the same mode sequence. Here, a valid solution can be found, but this is not the optimal
one as indicated by the dotted line. Figure 5.10c finally shows the situation, where only the
necessary range- and transition constraints are used. The optimal trajectory that is possible
with the specified mode sequence is found. All three optimizations use the same quality
function and all constraints used in problem setup c). The former two only add additional
constraints, what doesn’t seem useful because this cannot lead better results than problem
setup c).

This procedure of ’covering’ all qualitative trajectories that share a common mode se-
quence at once in a single optimization problems has important implications on the qualita-
tive pre-selection procedure as well, as it allows to compare partial qualitative trajectories
if they lead to the same node in the overall qualitative model and specify the same mode-
transition-sequence. The details about this were already pointed out in Section 5.2.4.

5.4.2 Enforcing a Certain Stability Criterion

If the first of the two stability criteria presented on page 95 is utilized – i.e. a steady decrease
in the quality function of (5.21) is required – one can use solver interplay to qualitatively
pre-select valid trajectories more efficiently.

In qualitative search, three different cost values are utilized

• Cost value CRc, that approximately evaluates deviations of the qualitatively abstracted
continuous variables from given reference values

• Cost value CRd, that evaluates deviations from specified ’preferred operational modes’

• Cost value CL, that gives an indication whether a qualitative trajectory is likely to be
spurious.

Only the first of these values (CRc) is an abstraction of the value (cRc) of the quality
function (5.21). The cost values are defined such that the one used in the qualitative model
(CRc) always underestimates the one used for continuous optimization (CRc ≤ cRc).

All three cost values, however, are used to guide qualitative search. So it won’t always
pre-select the best trajectory with respect to meeting the stability criterion.

Completely dropping the other two cost values, however, is not possible with respect to
CRd because this directly represents the cost value cRd used in the definition of the hybrid
control problem and dropping it would change this definition. And dropping the likelihood
costs can be disadvantageous because spurious behaviors would be encountered frequently.

So, still all three values are used to guide search. However, the three different values are
count-up separately during search. This way, at time k, one can can stop investigating a
partial qualitative trajectory further, if the corresponding cost value CRc,k already exceeds
last time’s cost value of the numerical optimization

CRc,k > cRc,k−1 (5.24)

because then surely
cRc,k ≥ CRc,k > cRc,k−1.

5.4. SOLVER INTERPLAY 99

0 2 4 6

−1

0

1

2

3

x
0 r

transition guard

t

x

(a) Qualitative pre-selection provides a spurious behav-
ior and no solution to the numerical control problem is
found

0 2 4 6

−1

0

1

2

3

x
0 r

transition guard

t

x

(b) Qualitative pre-selection provides another behavior
that allows a – yet suboptimal – numerical solution

0 2 4 6

−1

0

1

2

3

x
0 r

transition guard

t

x

(c) Qualitative pre-selection provides the spurious be-
havior of figure a), but the numerical problem setup
utilizes only the necessary constraints and so the opti-
mal solution is found

Figure 5.10: Handling of spurious behaviors by numerical optimization

100 CHAPTER 5. HYBRID CONTROL

So in fact, one tries to solve the modified qualitative control problem

min
Q∈Q,CRc<cRc,k−1

sLCL + sR (CRc + cRd) (5.25)

5.4.3 Enforcing the Global Optimum of the Hybrid Control Task

The hybrid control scheme is designed to quickly provide suboptimal solutions to the hybrid
control problem (5.6). It can, of course, be utilized to determine the optimal solution as
well. The performance with respect to computation time, however, will usually degrade
significantly. To determine the optimal solution, search starts with qualitative pre-selection
as usual and numerical refinement of the continuous inputs is performed. This specifies the
hybrid trajectory for tk → tk+1, and the function value cRc + cRd of the hybrid problem
definition can be evaluated.

However, one can only be sure that this is the optimal solution with respect to a given
mode-sequence, but one cannot be sure that one has pre-selected the optimal mode sequence.
So further mode-sequences need to be investigated and qualitative pre-selection of alternative
trajectories that lead to new mode sequences is resumed. As termination criterion for this
procedure, similar to the above case of stability enforcement, a comparison of qualitative cost
values CRc + CRd and the results cRc + cRd of already specified hybrid trajectories is used.

As cost values for the qualitative control problem are defined, such that

CRc ≤ cRc

CRd ≤ cRd,

it is assured that the optimal solution to the hybrid control problem is found as soon as no
more qualitative trajectories can be found that provide alternative mode-sequences to those
already investigates and that satisfies

CRc + CRd ≤ c∗Rc + c∗Rd,

where c∗Rc and c∗Rd are the values related to the up-to-here best solution to the hybrid control
problem.

With the intention to determine the optimal solution, it is usually a good choice to to use a
weighting sL of zero for the likelihood costs in the formulation (5.13) of the qualitative control
problem. This allows to utilize the up-to-here best hybrid trajectory cost value cRc + cRd as
a stop-criterion to investigate partial qualitative trajectories further, as it ensures – by the
utilized best-first search strategy – that the optimal solution is found as soon as a node in
the search tree becomes active that has

CRc + CRd > c∗Rc + c∗Rd.

This search for the optimal solution of the hybrid control problem, however, usually
requires computation of multiple numerical optimizations and, therefore, is computationally
intensive.

5.5 Summary

Hybrid control is a difficult task for complex hybrid systems. This chapter presented a control
scheme that significantly simplifies this task by breaking it up into two separate tasks, one

5.5. SUMMARY 101

only operating in the discrete domain and the other purely remaining in the continuous
domain.

The benefit of this procedure is, that the high complexity of the hybrid control task is
first regarded on an abstracted (qualitative) level. The solution to the hybrid control task,
regarding this qualitative view, is then used to specify the discrete part of the hybrid control
problem and only a standard continuous optimization problem remains open for the further
refinement of continuous actuation.

However, efficiency of the overall control scheme requires a very efficient qualitative rea-
soning among a huge (discrete) number of possible qualitative trajectories. Therefore, most
emphasis is put on posing a problem formulation that is especially well suited to be solved
by an efficient best-first search strategy, A∗-search. The qualitative model compiled in Chap-
ter 4 allows very efficient operation of the A∗ search strategy, because the well structured
graphical representation of the qualitative model allows to build a search graph, that is not
a tree-like structure where each branch has to be evaluated from root to leaf in order be
compared to other branches, but partial qualitative trajectories can frequently be compared
to one another and search only needs to stick to the best ones.

To allow these comparisons on behalf of the qualitative model only, it would be necessary
that the we could rule out to encounter spurious behaviors. Although this not the case for our
qualitative models it is possible to make similar statements because of the aid of subsequent
numerical refinement that is utilized in the hybrid control scheme.

This numerical refinement of continuous actuation for a time-variant continuous model can
be formulated as constrained quadratic program. It serves two purposes: First, it validates
qualitative trajectories to be non-spurious, and second, it provides optimization for a whole
set of qualitative trajectories with respect to continuous actuation at once. Especially this
latter fact is the one, that allows to compare partial qualitative trajectories during qualitative
pre-selection, if it can be assured that they would lead to the same MPC problem setup.

Although the two solvers (qualitative shortest path search and quadratic programming)
do not need to operate simultaneously (what is the main advantage of the proposed control
scheme), but operate sequentially, a careful interplay between the two is utilized to handle
spurious behaviors as well as to focus search onto trajectories that meet certain stability
requirements.

Even as the presented method mainly is designed to quickly provide good approximative
solutions to the optimal hybrid control problem, interplay between the two solvers can be
utilized to focus onto the optimal solution as well.

102 CHAPTER 5. HYBRID CONTROL

Chapter 6

Examples

In this chapter, all steps compilation of a qualitative model and qualitative hybrid control are
summarized by an example. Then, simulation-results for compilation and qualitative hybrid
control of several example systems are presented. The intention of this chapter mainly is
to demonstrate applicability of the presented method to control of various different systems
and to discuss difficulties and possible future improvements of the method. The MATLAB-
toolbox utilized for obtaining these results only uses uncompiled code and no measures were
undertaken to optimize the code with respect to computational performance. So performance
of the hybrid control scheme with respect to computation time will not be discussed in much
detail here.

6.1 Step-by-Step Example

As first example to summarize qualitative modeling (utilizing the algorithms provided in the
appendix) and qualitative hybrid control, the two component system depicted in Figure 6.1
is studied. Due to the simplicity of the example, many results such as the trajectory DAGs
can easily be displayed.

Continuous dynamics for the components are captured by

component 1: mode 1: xk+1 = −0.8 · xk − 0.2 · uk

yk = xk

mode 2: xk+1 = −0.9 · xk + 0.2 · uk

yk = xk

component 2: mode 1: xk+1 = −0.1 · xk + uk

yk = xk

mode 2 : xk+1 = −0.1 · xk − uk

yk = xk.

(6.1)

The following constraints apply:

component 1: 0 ≤ u ≤ 1
−1 ≤ x ≤ 1
−1 ≤ y ≤ 1

component 2: −1 ≤ u ≤ 1
0 ≤ x ≤ 1
0 ≤ y ≤ 1.

103

104 CHAPTER 6. EXAMPLES

(a) Interconnection

(b) Transition specification for
component 1; Transitions do not
reset the continuous state

(c) Transition specification for
component 2; Transitions do not
reset the continuous state

Figure 6.1: Specification of the example system

The discrete transition specifications and interconnection of the components are presented
in Figure 6.1. If additionally the no-transitions are explicitly mentioned, transition guard
conditions and target modes are:

component 1: mode 1: t1 : 0 ≤ x ≤ 1 → m1

t2 : −1 ≤ x < 0 → m2

mode 2: t1 : 0 ≤ x ≤ 1 → m1

t2 : −1 ≤ x < 0 → m2

component 2: mode 1: t1 : switch-2-m1 → m1

t2 : switch-2-m2 → m2

mode 2: t1 : switch-2-m1 → m1

t2 : switch-2-m2 → m2

6.1.1 Compilation

To compile the hybrid component models into a qualitative model, first qualitative variables
have to be determined. Straightforwardly, we choose to abstract each continuous variable by
a separate qualitative variable.

Next, the continuous domains of the variables are separated into qualitatively distinct
regions. To obtain a very simple model that can easily be displayed, qualitative values for
variables X1, X2, U , W and Y are chosen such that the just the sign of x1, x2, u, w and y
is distinguished. That is

X1 = ξ1 ←→ −1 ≤ x(1) < 0 X1 = ξ2 ←→ 0 ≤ x(1) ≤ 1
X2 = ξ1 ←→ 0 ≤ x(2) ≤ 1
U = υ1 ←→ 0 ≤ u ≤ 1
W = ω1 ←→ −1 ≤ w < 0 W = ω2 ←→ 0 ≤ w ≤ 1
Y = µ1 ←→ 0 ≤ y ≤ 1

(6.2)

6.1. STEP-BY-STEP EXAMPLE 105

This captures the necessary distinction of regions x < 0 and x > 0 imposed by the mode-
transition specification of component 1.

Compilation of the non-deterministic Automaton

With the qualitative variables specified, the non-deterministic automaton representation of
each component can be determined. The non-deterministic automaton model representing
component 1 is specified by the following table. The columns of the table correspond to
the qualitatively abstracted hybrid initial state, the transition guard labels (of the non-
deterministic automaton) and the qualitatively abstracted hybrid target state of the transi-
tion.

x1d,k X1,k Uk Wk T1,k x1d,k+1 X1,k+1 Likelihood
mode 1 ξ1 υ1 ω1 t2 mode 2 ξ2 0.19
mode 1 ξ2 υ1 ω2 t1 mode 1 ξ1 0.20
mode 2 ξ1 υ1 ω1 t2 mode 2 ξ2 0.19
mode 2 ξ2 υ1 ω2 t1 mode 1 ξ1 0.20

(6.3)

The model for component 2 is

x2d,k X2,k Wk Yk ud,k T2,k x2d,k+1 X2,k+1 Likelihood
mode 1 ξ1 ω1 µ1 switch-2-m2 t2 mode 2 ξ1 0.90
mode 1 ξ1 ω2 µ1 switch-2-m1 t1 mode 1 ξ1 0.90
mode 2 ξ1 ω1 µ1 switch-2-m2 t2 mode 2 ξ1 0.90
mode 2 ξ1 ω2 µ1 switch-2-m1 t1 mode 1 ξ1 0.90

(6.4)

Compilation of the trajectory graphs

This non-deterministic automaton model now can be represented as trajectory-DAG utilizing
the algorithms in Appendix B. For this, first an ordering among the qualitative variables
has to be specified. To represent the hybrid model’s ’structure’ in the qualitative model,
this ordering among variables is derived from the hybrid model’s causal graph. This can be
achieved for example by utilizing the algorithm

OrderedList← OrderVariables(Graph,Variables,Initials,Inputs)

that is given in the Appendix B. Here, graph is the hybrid model’s causal graph as shown
in Figure 6.2, but with variables replaced by their respective qualitative counterparts, and

variables : [Yk, T1,k, xd1,k+1,Wk, Uk, X1,k+1, ud,k, T2,k, xd2,k+1, X2,k+1] ,
initials : [xd1,k, X1,k, xd2,k, X2,k] ,
inputs : [Uk, ud,k]

(6.5)

This way, the algorithm provides an ordering

Yk ≺ T1,k ≺ xd1,k+1 ≺ Wk ≺ Uk ≺ X1,k+1 ≺ ud,k ≺ T2,k ≺ xd2,k+1 ≺ X2,k+1. (6.6)

that can be used consecutively for k=0,1,. . ., such that

xd1,0 ≺ X1,0 ≺ xd2,0 ≺ X2,0 ≺
≺ Y0 ≺ T1,0 ≺ xd1,1 ≺ W0 ≺ U0 ≺ X1,1 ≺ ud,0 ≺ T2,0 ≺ xd2,1 ≺ X2,1 ≺
≺ Y1 ≺ T1,1 ≺ xd1,2 ≺ W1 ≺ U1 ≺ X1,2 ≺ ud,1 ≺ T2,1 ≺ xd2,2 ≺ X2,2 ≺ . . .

106 CHAPTER 6. EXAMPLES

Figure 6.2: Causal graph of the example system

With the ordering of variables specified, binary decision diagram-like graphs that represent
all transition specifications of each non-deterministic automaton ((6.3) and (6.4)) as paths
from the root nodes of the graphs to one of their leaves can be compiled.

To generate those graphs, qualitative variables are encoded as binary-valued expressions:

ξ1, µ1, ω1, υ1 → 0
ξ2, ω2, υ2 → 1

switch-2-m1,mode 1 → 0
switch-2-m2,mode 2 → 1

(6.7)

Further, the likelihood values associated to each transition of the non-deterministic au-
tomata are grouped into likelihood classes. As the likelihoods for all transitions in each
component model are almost equal, only one likelihood class with value L is used. To later
formulate qualitative pre-selection as shortest path search, cost values C = − ln(L/Lmin) are
used instead of the likelihoods. So C = 0 for all transitions.

Figure 6.3: Binary graphs

The modified non-deterministic automata specifications (binary representation and like-
lihood classes; additionally, variables with only one qualitative value are omitted because the

6.1. STEP-BY-STEP EXAMPLE 107

qualitative model does not pose constraints on these variables) look like

x1d,k X1,k T1,k x1d,k+1 Wk X1,k+1 C
0 0 1 1 0 1 0
0 1 0 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 1 0 0

x2d,k Wk ud,k T2,k x2d,k+1 C
0 0 1 1 1 0
0 1 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 0

This table can be represented as binary trajectory graph utilizing algorithm

BDAG← Trans2DAG(BTransitions,LikelihoodCosts,BIndex)

or by first representing the table as tree and then utilizing standard BDD reduction tech-
niques. The graphs are shown in Figure 6.3.

With binary values (6.7) again replaced by qualitative values, the final compressed trajectory-
DAGs are obtained as shown in Figure 6.4.

Figure 6.4: Final trajectory-DAGs (All edges have cost value 0.)

6.1.2 Hybrid Control

The control task is to let the continuous state of component 2 follow a reference trajectory.
A prediction horizon of 2 steps is used and the control task is formulated as constrained
quadratic optimization

min eTe subject to Hu ≤ k

where

e =
[

xc2,k+1

xc2,k+2

]
−

[
xref,k+1

xref,k+2

]
u =

[
uk

uk+1

]

108 CHAPTER 6. EXAMPLES

and the constraints Hu ≤ k are given by the limited range of each continuously valued
variable and probably some additional constraints that need to be satisfied in order to meet
the guard condition for a specific transition.

Specifically, at k = 0 the system is at state

xc1,0 = −0.1 xd1,0 = mode1 xc2,0 = 0.1 xd2,0 = mode1

and trajectories shall follow the reference

xref,i = 0.75 i = k + 1, k + 2, . . .

Online execution

First, the qualitative initial state has to be determined.

xc1,0 = −0.1 → X1,0 = ξ1 xc2,0 = 0.1 → X2,0 = ξ1

Next, utilizing the trajectory DAGs (Figure 6.4) consecutively for 2 time-steps, the ’best
qualitative trajectory’ Q has to be determined. This is the qualitative trajectory that leads
to the smallest sum CL of edge costs through all trajectory DAGs plus the costs CR for
deviations from the given reference values.

min
Q∈Q

(sL · CL + sR · CR)

For this particular example, the choice of weights sL and sR is irrelevant, as there is only one
valid solution, anyway. This solution is shown in Figure 6.5.

Figure 6.5: Qualitative trajectory

This so-called qualitative trajectory specifies the mode-sequence for both components, i.e.

xd1,0 = mode1, xd1,1 = mode2, xd1,2 = mode1
xd2,0 = mode1, xd2,1 = mode2, xd2,2 = mode1

6.1. STEP-BY-STEP EXAMPLE 109

the necessary discrete inputs

ud,0 = switch-2-m2 ud,1 = switch-2-m1

and a sequence of transitions

T1,0 = t2 T1,1 = t1
T2,0 = t2 T2,1 = t1

From the mode sequence and the specification (6.1) of the hybrid model we have

y0 = xc20 = 0.1
w0 = xc10 = −0.1

xc11 = −0.9 · xc10 + 0.2 · u0 = 0.09 + 0.2 · u0

xc21 = −0.1 · xc20 − w0 = 0.09
y1 = xc21 = 0.09
w1 = xc11 = 0.09 + 0.2 · u0

xc12 = −0.8 · xc11 − 0.2 · u0 = −0.072− 0.16 · u0 − 0.2 · u1

xc22 = −0.1 · xc21 + w1 = 0.081 + 0.2 · u0

and can, thus, express the deviation e of the state of component 2 from the reference trajectory
as

e =
[

0.09
0.081

]
+

[
0

0.2

]
· u0 −

[
xref,k+1

xref,k+2

]
.

Likewise, the constraints on the continuously valued variables – the limited range and
the constraints xc1,1 < 0 and xc1,2 ≥ 0 imposed by the specified transition sequence – can be
expressed in terms of u0 and u1 as

1 0
−1 0
0 1
0 −1

[
u0

u1

]
≤

1
0
1
0

 .

So, the constrained optimization

min eTe subject to

1 0
−1 0
0 1
0 −1

[
u0

u1

]
≤

1
0
1
0

can be solved and one obtains
u0 = 1 u1 =?1.

Since the optimization leads to a valid solution, the qualitative trajectory is verified to
be non-spurious and the determined inputs for time 0

u0 = 1 ud,0 = switch-2-m2

1Any value of u1 from 0 to 1 is valid and leads to the same value of the optimization function. The
calculated value for u1, thus, only depends on the implementation of the utilized solver.

110 CHAPTER 6. EXAMPLES

are applied to the system.
The system then proceeds until the next sample time and hybrid control ’restarts’ from

the new system state.
The resulting trajectory of xc2 and the associated continuous input u is displayed in Figure

6.6. The discrete input is a alternating sequence of values switch-2-m2 and switch-2-m1,
and the modes of components 1 and 2 change at each time k.

0 5 10
0

0.2

0.4

0.6

0.8

1

k

w
2

x
c2

u

Figure 6.6: Input u and trajectory of xc2

6.2 3-Tank Benchmark System

As an example to illustrate the applicability of the presented hybrid control scheme to more
complex systems, the well known ’COSY’ 3-Tank benchmark problem [29] is used, that has
been studied for a wide range of different hybrid control strategies in literature [4, 51, 53].

Figure 6.7: 3-tank system

This system (Figure 6.7) consists of three tanks that are connected by 4 valves that can
be fully opened or fully closed by discrete control inputs. The two outer tanks can be filled
by pumps that can continuously vary the flow of water qp in the range

0 ≤ qp ≤ 1.

The task is to control the water level in the middle tank. The original definition of the
benchmark problem assumes that the level of this tank can only be measured qualitatively to
be above or below two certain threshold values. As the presented control-scheme, however,
has to assume full measurement of the systems state, this restriction has to be omitted here.

6.2. 3-TANK BENCHMARK SYSTEM 111

What makes control more difficult is, that valves can operate faulty, i.e. they can be stuck
open or stuck closed. Additionally, there can occur a leak in tank 1.

With respect to these faults, the original benchmark problem suggests some specific test
cases:

• Nominal operation: There is no fault in the system, but all valves except V1 are kept
closed. Tank two remains empty and is only used as backup for tank 1 in case of faults.

• Valve V1 is closed and blocked

• Valve V1 is open and blocked

• Tank 1 is leaking, i.e. valve VL is open.

As no specific ’nominal’ behavior in as distinguished with our control scheme, direct use
this specification is not possible here as well. Only weights in the optimization function are
used to bias the controller towards usage of tank 1.

6.2.1 Dynamical Model

The water flow through an opened valve is calculated utilizing Toricelli’s law,

Qij = S · sign(hi − hj) ·
√

2g · |hi − hj |. (6.8)

For all valves the flow out of tank 3 and the possible leak in tank 1, parameters are:

g = 9.81 S = 0.36

Valves V1 and V2 are at h = 0.3 above the bottom of the tank. So it has to be distinguished,
whether the water levels in the neighboring tanks are above or below h = 0.3. If the water
level in a tank is below h = 0.3, this tank’s water height has to be set to h = 0.3 in Toricelli’s
law to calculate the flow through V1 or V2.

The dynamics of the tanks are modeled by

d

dt
h =

1
A
·
∑

Q (6.9)

with
A = 154.

6.2.2 Model Components

The 3-tank benchmark system’s dynamics are different for many operational modes, i.e. the
valves being open or closed, being faulty or operating correctly, tanks leaking or not, water
levels above or below h = 0.3.

To abstract the dynamics of the overall system (3-dimensional state-space with tank
water-levels being the states, 2-dimensional input space with pump flows being the inputs,
many operational modes) to a single qualitative model is difficult because the effort to compile
the non-deterministic automaton scales exponentially with the dimensionality of the state and
input space. With the current implementation of our Qualitative Hybrid Control toolbox for
Matlab, compilation of such a model was not possible because the necessary enumeration of
all qualitative trajectories even exceeded the maximum matrix size allowed by Matlab.

112 CHAPTER 6. EXAMPLES

So first an approximate model is obtained that separates the overall system into several
components. Unfortunately, for this example the performance of the resulting hybrid con-
troller significantly depends on this separation and the structure of the component models
and we cannot determine in advance, how to separate the overall model in order to ob-
tain acceptable performance. The model structure presented below has only been developed
through many simulations by ’trial and error’. Moreover, the model could only be obtained
utilizing some work-arounds so that, in fact, we have to confess that this example is not very
well suited to be solved with the proposed qualitative modeling and hybrid control scheme.
Nevertheless we include this well known example here to demonstrate our approach to hybrid
control on an example that is well known in literature.

Specifically, we model the flow through each valve V1, V2, V13, V23 as a separate model-
component. Likewise, the three tanks T1, T2 and T3 are modeled separately, as well. This is
outlined in Figure 6.8.

Figure 6.8: Modeling tanks and valves as separate components

Although this seems a reasonable choice, it poses some problems with respect to the
hybrid control. An obvious reason for this is, that component inputs and, thus, the other
component’s outputs they are connected to are assumed to remain constant in between sam-
pling times, which is not true for the real system. This assumption, however, is a reasonably
close approximation of the real system behavior, if the sampling interval is small.

A probably less obvious reason is, that component outputs are updated at every sample
time, but a mode change only occurs immediately afterwards. That means, modeling the
valves just by algebraic equations that linearly approximate Toricelli’s law in the open mode
and that provide zero output in closed mode will delay the effect of inducing an opening or
closing of a valve by one sample time, what degrades controller performance.

To overcome this, one can take some work-around, such that the components for the
valves always provide an output representing the flow of water that would occur if the valve
was open. The discrete command inputs are then utilized to change modes for the tank
models, such that valve flows are considered or ignored, depending on the valves position.

This way, however, overall complexity of the model increases, because for example the
second tank has to consider 44 = 256 distinct modes, because each valve can either be ok
and open, ok and closed, stuck open or stuck closed. Although continuous dynamics are the

6.2. 3-TANK BENCHMARK SYSTEM 113

same for many of these modes, the possible mode transitions are different.
This large number of necessary modes can be reduced by yet another work-around: For

each valve, one more artificial component is introduced that does not model any continuous
dynamics, but just decides on behalf of commands, the state of the valve and water levels,
whether the tank model has to consider or ignore the water flow calculated by the (other)
valve-component.

Again, here occurs the problem that this component cannot utilize an output to provide
this information to the tank models, because otherwise again a delay of one sampling step
would be introduced. Instead these artificial models have to be formulated such that the
discrete command input is constrained to values that are valid within the current operating
condition of the valve and current water levels. This will be detailed later but first the
modified model structure is presented in Figure 6.9.

Figure 6.9: Model structure with artificial components

It can be noticed here, that the water level of tank 3 is not provided to the artificial
components. To make the model simpler, it is assumed that the water level of tank 3 always
is below h3 = 0.3. This will let the model make significantly wrong predictions for high water
levels in the middle tank. However, as the benchmark problem always specifies the target
water level of tank 3 as h3 ≤ 0.3, this approximation should still turn out to work well.

Component models for valves

By Toricelli’s Law, the flow of water through valve V13 is

Q13 = S · sign(h1 − h3) ·
√

2g · |h1 − h3|.

For our class of hybrid models, we need linear or affine approximations of this non-linear
relation to model water flow through the valves. To keep the model simple, we only want to
use one single linearization to approximate Toricelli’s Law for the whole range of water levels
0 ≤ h1 ≤ 0.6, 0 ≤ h3 ≤ 0.3.

114 CHAPTER 6. EXAMPLES

−0.2 −0.1 0 0.1 0.2
−1

−0.5

0

0.5

1

h
1

−h
3

Q
1

3

Torricelli

Linearizations

Used approx.

Figure 6.10: Linear model for q13

Forming linearizations around an operational point does not provide sufficiently accurate
approximations here, as is illustrated in Figure 6.10, so we instead model water flow through
the valve linearly dependent on the difference in water height such that cases of equal water
level and water levels that are different by h1−h3 = 0.12 are captured exactly. With g = 9.81
and S = 0.36 this linear approximation is

Q13 = 4.6 · (h1 − h3), (6.10)

what is, again, illustrated in Figure 6.10.
This model for valve V13 has to be used in a sampled control system. So, with the

present class of hybrid models, this would assume Q13,k to remain constant during sampling
interval tk → tk+1. If the sampling interval is sufficiently small, this is a good approximation.
However, the influence of the input q1,k provided by pump P1 on the water level h3,k+1 in
tank 3 is not captured. During the design process of this control system, degraded controller
performance was observed whenever utilizing models that do not capture this influence.

So to evaluate the effect of input q1,k on the flow of water through valve V13 during the
sampling interval tk → tk+1, a simplified system of tanks 1 and 3 connected by valve V13 is
utilized. By the above linearization and (6.9), this system can be modeled

d

dt

[
h1

h3

]
=

1
A
·
[−4.6 4.6

4.6 −4.6

]
·
[

h1

h3

]
+

1
A
·
[

1
0

]
qp1, (6.11)

and the sampled model with sampling time Ts = 10 looks like
[

h1

h3

]

k+1

=
[

0.775 0.225
0.225 0.775

]
·
[

h1

h3

]

k

+
[

0.057
0.008

]
qp1,k. (6.12)

With
q13,k =

A

Ts
(h3,k+1 − h3,k)

valve V13 is modeled as

Q13,k = 3.46 · h1,k − 3.46 · h3,k + 0.12 · qp1,k. (6.13)

6.2. 3-TANK BENCHMARK SYSTEM 115

Similarly,
Q23,k = 3.46 · h2,k − 3.46 · h3,k + 0.12 · qp2,k. (6.14)

The upper valves are modeled likewise, with the only exception that h3 is set to h3 = 0.3,
so that

Q1,k = 3.98 · h1,k + 0.14 · qp1,k − 1.19 (6.15)
Q2,k = 3.98 · h2,k + 0.14 · qp2,k − 1.19 (6.16)

Artificial valve models

The above valve-models only exhibit one operational mode. So these models do not consider
whether there really is water flowing through the valves or not. For reasons outlined above,
this is left to other parts of the overall model, i.e. the tank models. Not to have to consider
too many different modes in these tank models, the here presented artificial valve models are
utilized. These models constrain the choice of command inputs such that an open command
can only be issued if the valve is not stuck closed (and additionally for valves V1 and V2 if
the water levels of tank 1 or, respectively, tank 2 is above 0.3). A close command on the
other hand only is only possible if the respective valve is not stuck open. This way, after
an allowed open command, the corresponding valve is certainly carrying flow, while after an
allowed close command, the valve is certainly carrying no flow.

So, the commands can directly be used in the component-models representing the tanks
to evaluate whether to consider or not the flow calculated by one of the component models
representing the valves.

For valve V1, allowed commands are:

failure mode h1 allowed commands ud1

normal operation ≥ 0.3 open, close
normal operation < 0.3 close

stuck open ≥ 0.3 open
stuck open < 0.3 close
stuck closed ≥ 0.3 close
stuck closed < 0.3 close

With this table it is once again pointed out that – to keep models simple – the water level
h3 of the middle tank is assumed to be h3 ≤ 0.3. For valve V2, the table is the same with h1

replaced by h2 and ud1 replaced by ud2.
For valves V13 and V23, the allowed commands are

failure mode allowed commands ud13, ud23

normal operation open, close
stuck open open
stuck closed close

To constrain command inputs to allowed values, the three modes of operation normal
operation, stuck open, stuck closed plus one additional mode invalid are modeled.
Discrete dynamics are such, that the operational mode stays the same, if an allowed command
is issued and that the mode changes to be invalid otherwise. Continuous dynamics for the
invalid mode are set such that the continuous state is set to a value out of bounds. Continuous
dynamics for all other modes are set such that the value is within its allowed bounds. With
this, the qualitative model later on restricts a choice of command inputs to allowed values.

116 CHAPTER 6. EXAMPLES

This is illustrated on behalf of example of valve V13, where

xk+1 = 2

if the mode is invalid,

xk+1 = 0.5

otherwise and bounds are set to

0 ≤ x ≤ 1,

where this whole region is represented by qualitative value ξ1. If, for example, mode xd,k is
stuck closed and ud,k is open, the next mode xd,k+1 would be invalid. However, according
to the algorithms presented in Chapter 4, no transition with this combination of values would
not be recorded when compiling the non-deterministic automaton, because the probability to
have a continuous state Xk+1 = ξ1 here is zero. The resulting non-deterministic automaton
looks like

xd,k Xd,k ud,k xd,k+1 Xdk+1 L
normal operation ξ1 open normal operation ξ1 1
normal operation ξ1 close normal operation ξ1 1

stuck open ξ1 open stuck open ξ1 1
normal closed ξ1 close normal closed ξ1 1

and, thus, the compressed t-DAG as shown in Figure 6.11 only allows the command input to
be chosen according to the allowed values. It does not constrain the choice of ud,k in normal
operation, but forces ud,k to be appropriately, if the valve is stuck.

Figure 6.11: Trajectory DAG for artificial component V13x

Component models for tanks

With water flows through the valves modeled as above and choices of command inputs con-
strained such that they indicate if a valve is truly carrying flow or not, the three tanks can be
easily modeled by (6.9). With (again) sampling time Ts = 10 (the sampling time is required

6.2. 3-TANK BENCHMARK SYSTEM 117

to be the same for all components) the resulting models are:

h1,k+1 = A1,i · h1,k +
[

0.065 −b1,i −b13,i

]

qp1,k

Q1,k

Q13, k

 (6.17)

h2,k+1 = 1 · h2,k +
[

0.065 −b2,i −b23,i

]

qp2,k

Q2,k

Q23, k

 (6.18)

h3,k+1 = 0.74 · h3,k +
[

b1,i b2,i b13,i b23,i

]

Q1,k

Q2,k

Q13,k

Q23, k

 (6.19)

There, A1,i = 1 if tank 1 is not leaking and A1,i = 0.74 otherwise. Values b·,i = 0.065
if the corresponding command input is open and b·,i = 0 otherwise. A presentation of an
enumeration of all possible combinations thereof for the three tank models is omitted.

6.2.3 Qualitative Model

The models (6.17) indicate that changes in water levels are rather small from one sample
to the next. To capture this dynamic behavior, a sufficiently fine-grained separation of the
value space of water levels is required. The partitioning of allowed water levels

0 ≤ (h1, h2, h3) ≤ 0.6

is chosen to be separated into

16 equally sized intervals.

With a qualitative separation of valve flows Qi, one mainly wants to provide an oppor-
tunity to the controller to decide which valves to open. So only a rough distinction is made
here, that only distinguishes cases:

−Qextr ≤ q < 0 negative
0 ≤ q < 0.4 small

0.4 ≤ q < 0.65 normal
0.65 ≤ q < Qextr large,

(6.20)

where Qextr is the calculated flow if tank 1 or 2 is full and tank 3 is empty, which is 2.77 for
valves V13 and V23 and 1.58 for valves V1 and V2.

The input flow provided by the two pumps

0 ≤ (qp1, qp2) ≤ 1

is represented by a single qualitative value.
The resulting compressed trajectory graphs all have a size below 5000 nodes, which is a

quite compact representation compared to the non-deterministic automata, the specifications
of which contain up to more than 100.000 transitions. The trajectory graphs are compiled
with likelihood values all combined into one single likelihood class. This significantly con-
tributes to the compactness of the graphs. However, this way transition likelihoods cannot
be used to bias qualitative search towards most likely non-spurious trajectories.

118 CHAPTER 6. EXAMPLES

6.2.4 Control

As the hybrid control scheme does not distinguish between nominal operation and reconfigu-
ration in case of faults, one cannot directly utilize the test cases provided with the definition
of the benchmark problem.

• Nominal operation: There is no fault in the system, but all valves except V1 are kept
closed. Tank two remains empty and is only used as backup for tank 1 in case of faults.

• Valve V1 is closed and blocked

• Valve V1 is open and blocked

• Tank 1 is leaking, i.e. valve VL is open.

However, the ideas behind these faults will be followed by introduction of comparable faults
here. As control goal, a constant value for the water level in tank 3 is used. If this reference-
value for the water level changes, this change is not known to the controller in advance.

The following test scenario is used:

• There are no faults in the system, the water levels are at h1 = 0.2, h2 = h3 = 0.08.
The reference-level is h3,ref = 0.13.

• At time t = 200 (sample step k = 20), the reference level changes to h3,ref = 0.25.

• At time t = 400, a fault occurs and the valve V13 gets stuck closed.

• At time t = 500, the valve becomes operational again and the reference value changes
to h3,ref = 0.13.

• At time t = 800, another fault occurs and valve V13 gets stuck open this time.

• At time t = 1000, the valve V13 becomes operational again, but tank 1 starts to leak.

To formulate the control objective as mathematical program, we set the optimization
function

J = 100 · (h3,k+1 − h3,ref)2 + (qp1,k − 0.5)2 + 2 · q2
p2,k (6.21)

This means, a prediction horizon of just one step is used, what works well for this tank
system. The different weights and reference values for the inputs (water flow through the
pumps) are just included to bias the controller towards usage of tank 1, what is the nominal
behavior in the original definition of the benchmark problem.

The result to simulations (the non-linear model of the 3-tank system is considered as the
real system behavior, no disturbances occur) for this test scenario is displayed in Figures
6.12-6.14.

For the first few sample times, the control task is solved by qualitatively pre-selecting
to keep valve V13 open and then numerical refinement of the continuous actuation more
accurately determines the flow through pumps P1 and P2, such that the water level of tank
3 almost reaches its reference value. Since, in this example, not any measures are taken to
obtain offset-free tracking of constant references (e.g. updating reference values by comparing
predictions and measured data [41]) and since the model does not exactly capture the non-
linear system behavior, the reference-value is not exactly reached. However, the deviation
between linearized model and non-linear system is small in this operational point and the

6.2. 3-TANK BENCHMARK SYSTEM 119

0 100 200 300 400

time

V23 open

closed closed

V13 open

V1 open

closed closed

(a) Valve positions

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

time

p
u

m
p

e
d

 w
a

te
r

fl
o

w
s

q
p1

q
p2

(b) Input flows

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

time

ta
n

k
 w

a
te

r
le

v
e

ls h
1

h
3

h
2

h
3,ref

(c) mode m2 and actuation u = 0

Figure 6.12: Solution to the test scenario for 0 ≤ t ≤ 400

reference value h3,ref = 0.13 is almost reached (h3(190) = 0.129). When a change in water
reference level to h3,ref = 0.25 is demanded at t = 200, qualitative pre-selection first decides
that valve V23 shall additionally be opened to support a more quickly rise in h3 by filling it
from tank 2 as well.

This choice is not optimal at t = 200 because the water level of tank 2 is still too low and
tank 3 empties some of its content into tank 2. The rough qualitative separation of valve
flows chosen when building the qualitative model, however, does not allow to correctly decide
that the loss of water from tank 3 into tank 2 exceeds the additional in-flow into tank 3 due
to up2. This once again illustrates, that the presented method cannot guarantee to provide
optimal solutions, but nevertheless, supporting filling of tank 3 by the second pump clearly
is an intuitively good solution to quickly get h3 closely to its new reference value.

Figure 6.12 shows, how a quick rise in water level h3 later on is further supported by
additionally opening valve V1, once this is allowed (remember the artificial valve components
that constrain command inputs) when h1 ≥ 0.3. Finally, when h3 is close to the reference
value, the biases in weight and reference values for pumps P1 and P2 let qualitative pre-
selection decide that level-control for tank 3 is solely performed via tank 1 again. Also at
this operational point, the match between linearized model and non-linear system is good

120 CHAPTER 6. EXAMPLES

and h3(390) = 0.248 which is almost h3,ref = 0.25.

400 500 600 700 800

time

V23 open

closed

V13 open

closed

V1 open

closed

(a) Valve positions

400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

time

p
u

m
p

e
d

 w
a

te
r

fl
o

w
s

q
p1

q
p2

(b) Input flows

400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

time

ta
n

k
 w

a
te

r
le

v
e

ls h
1

h
3

h
2

h
3,ref

(c) mode m2 and actuation u = 0

Figure 6.13: Solution to the test scenario for 380 ≤ t ≤ 800

When at t = 400 the valve V13 gets stuck closed2, the controller has to find a reconfigu-
ration that does not require valve V13 to be opened. This is not to be understood as some
additional reconfiguration routine that starts acting as the fault occurs. It is just ordinary
qualitative pre-selection that keeps operating as it was before. The only difference between
pre-selection at time t = 390 (before the fault) and t = 400 (after the fault) is the changed
initial state (V13 is stuck closed instead of operating normally). For the new initial state,
the qualitatively best solution according to the given cost function at time t = 400 is to open
valve V1 and to remain controlling water level h3 solely via tank 1. This is illustrated in
Figure 6.13. Since the linearized model does not match the non-linear plant as well in this
operational point, the tracking error h3 − href increases.

A good illustration of the limitations of the presented control scheme is provided in the
same Figure after t = 500 when the valve V13 becomes operational again and the reference
value changes back to h3,ref = 0.13. A solution would be to keep valve V1 open. However,
the bias weights and reference values for qp1 and qp2, together with the rough qualitative
separation of water flows through the valves, the deviations between linearized models and

2As full measurement of the hybrid state is assumed, the controller gets aware of that fault immediately!

6.2. 3-TANK BENCHMARK SYSTEM 121

non-linear plant and the short prediction horizon let the qualitative pre-selection decide to
control h3 via tank 1 at one time (thus, numerical refinement lets h1 drop). Then, at the
next sample time with a changed initial state, the qualitatively best solution corresponds
to controlling water level h3 via tank 2. Here, numerical refinement sets qp1 to its bias
qp1 = 0.5 (because there is no influence on h3 in this mode during the prediction horizon
and h1 increases again. The resulting next initial state, unfortunately, leads to tanks 1 and
3 being connected again,. . .

It is easy to find other weights and optimization functions that do not exhibit this switch-
ing performance (which certainly is not a very good performance with respect to the required
level control of h3) here. However, it is not easy to estimate whether these changed parame-
ters might lead to equally bad behavior in other situations. As the control scheme does not
handle different faults and control goals differently, it is not possible to tailor the controller
to improved performance in certain situations without influencing its behavior in others.

On the other hand, this can be considered a benefit as well: The controller does not need
to be tailored or be especially designed for certain situations. Although no guarantee can be
given on obtaining an especially ’nice’ behavior of the control system in all situations, the
mixed qualitative/quantitative control scheme will at least keep the system ’near’ the goal, as
long as this is possible at all. This can be especially helpful, when the system under control
can exhibit lots of failure modes and combinations of faults in several components, as the
designer does not have to account for all these faults separately.

At time t = 800, the valve V13 gets stuck open, and – after an initial unavoidable increase
in h3 such that h3 > h2 – the controller decides qualitatively, that the control goal can be
satisfied best, if additionally tank 2 is connected to tanks 1 and 3, because then the increase
in h3 can be reduced by draining off some water into tank 2. Finally, only V13 remains open
and the reference value is reached with high accuracy.

At time t = 1000 – the valve V13 is operational again – a leak in tank 1 occurs. So the
tank is disconnected from tank 3 and level-control of h3 is taken over via the back-up tank 2.

6.2.5 Result

To compare the result of this test scenario to the results presented in other work [4, 51, 53]
is somewhat difficult, as other work addresses the 3-tank benchmark problem in its original
definition with dedicated nominal modes, fault modes and with h3 only measurable by 2
threshold sensors.

Since in this work full state measurement is assumed, the task of detecting faults is not
dealt with and also the reduced measurement-accuracy for tank 3 isn’t handled. However, it
has been shown that the remaining part of the benchmark reconfiguration problem can be
solved with the proposed mixed qualitative/quantitative control scheme as well. The major
difference to the cited work is, that the control scheme presented here does not distinguish
dedicated nominal modes and fault modes, but intuitively reacts on a given initial situation,
no matter whether nominal or faulty. This provides the benefit, that not all faults have to
be explicitly accounted for but introduces the drawback, that controller performance cannot
be improved independently for specific situations by tailoring parameters.

A major problem that was encountered with this example was not directly related to the
control scheme itself, but originated from an earlier stage: As the control scheme is designed
to operate on a specific class of hybrid systems, a given plant has to be represented within
this model class. Such a representation is not unique for a given plant and it turned out that
controller performance is significantly different for different hybrid model representations

122 CHAPTER 6. EXAMPLES

800 900 1000 1100 1200

time

V23 open

closed

V13 open

closed

V1

closed

(a) Valve positions

800 900 1000 1100 1200

0

0.2

0.4

0.6

0.8

1

time

p
u

m
p

e
d

 w
a

te
r

fl
o

w
s

q
p1

q
p2

(b) Input flows

800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

time

ta
n

k
 w

a
te

r
le

v
e

ls h
1

h
3

h
2

h
3,ref

(c) mode m2 and actuation u = 0

Figure 6.14: Solution to the test scenario for 780 ≤ t ≤ 1200

(although all of comparable complexity).
Also, performance of the controller with respect to the computational effort necessary for

qualitative pre-selection significantly depends on the adjustable parameters. As an example
time 0 ≤ t ≤ 210 is taken. The ’progressive best first search’ algorithm as given in [31]
extended by dynamic programming is utilized for qualitative pre-selection.

If the prediction horizon is set to 1, for the first 20 sample steps the algorithm for quali-
tative pre-selection needs a mean value of

1-step prediction horizion: 225 node expansions per sample step.

With longer prediction horizons this is

2-step prediction horizion: 392 node expansions per sample step
3-step prediction horizion: 587 node expansions per sample step.

While this is a rather moderate increase in computational effort with respect to the prediction
horizon, the situation is different for the next time, immediately after the change of the
reference value.

6.3. TRACTION CONTROL 123

Whereas 1061 node expansions are necessary in case of a single step prediction horizon,
14505 node expansions are necessary for a prediction horizon of 2 steps. This results from
the fact that a sequence of 4 spurious qualitative trajectories is predicted first. For the same
reason, with a 3-step prediction horizon, no valid solution is found within reasonable time.

This degraded performance for longer prediction horizons is a property of this particular
example, because for the slow-moving tank-system with reasonably short sampling time, a
single step prediction horizon was chosen to obtain a very compact model. This allowed
qualitative trajectory likelihoods to be combined into one single class. For longer prediction
horizons, a distinction of very unlikely trajectories and a more fine-grained separation of
valve-flows certainly is advised to avoid pre-selection of spurious behaviors.

The prediction horizon is not the only influence on the computational effort necessary for
qualitative pre-selection. For example adding the term

+10 · (h1,k+1 − 0.26)2 + 10 · (h2,k+1 − 0.26)2

to the optimality function reduces the number of node expansions for the first 20 sample
steps to 60, 110 and 142 node expansions per sample step for a prediction horizon of 1, 2 and
3 sample steps, respectively3.

The problem with this is, that one cannot clearly estimate the influence of a change in one
of the adjustable parameters on the controller performance, both in terms of the necessary
computational effort and the ’quality’ of the resulting hybrid trajectories.

6.3 Traction Control

An argument sometimes heard with qualitative methods in control theory is that they work
well with tanks and might perform badly on other systems. As an argument against this,
an example of a traction control task taken from [12] is presented. This example it is just
included to demonstrate performance of the proposed control-scheme on a system that does
not consist of tanks. However, the presented method is by orders of magnitude too slow to
be applicable to traction control of a car in real time.

6.3.1 Hybrid Model

The article [12] demonstrates, that sufficient results for traction control can be achieved on
a real car system with a rather simple hybrid model.

The basic model of the cars dynamics uses the vehicles translatorial speed v and the
rotational engine speed ω as state variables. These are influenced by the inputs τ which is
the torque resulting from combustion and τt which is the frictional torque of the tire.

The engine torque τ is the variable by which the system is actually controlled and the
frictional torque τt of the tire is a parameter that depends on the road condition (described
by the coefficient of friction µ) and the wheel slip s

s =
w

i
− v

r
, (6.22)

where i is the total drive-line gear ratio between ω and v and r is the tire radius. In [12], the
non-linear dependence of τt on s and µ is captured as a piecewise-affine hybrid model

τt = k1s + k2µ + k3

3It has to be noticed that this also changes the pre-selected mode-sequence command inputs.

124 CHAPTER 6. EXAMPLES

where parameters ki, i=1. . . 3 change depending on whether

0.21s− 5.37µ ≤ −0.61

or not.
With a sampling interval of Ts = 20ms, gear ratio i = 13.89 and tire radius r = 0.298

the cited article provides the following piecewise affine model for the car’s dynamics: If
0.21s− 5.37µ ≤ −0.61 the model is stable:

ω
v
µ

k+1

=

0.983 0.784 −0.354
2.31e− 4 0.989 4.86e− 3

0 0 1

ω
v
µ

k

+

4.83e− 2
5.66e− 6

0

 τ +

1.09e− 1
−1.50e− 3

0

Whereas if 0.21s− 5.37µ > −0.61 the model is unstable:

ω
v
µ

k+1

=

1.0005 −2.18e− 2 −6.53
6.44e− 6 1.0003 8.97e− 2

0 0 1

ω
v
µ

k

+

4.87e− 2
1.56e− 7

0

 τ+

0.816
−1.12e− 2

0

Mainly to obtain better illustrations, a new system state [p, v, µ]T that is obtained by the
invertible state transformation

p
v
µ

 =

0.21
i −0.21

r −5.37
0 1 0
0 0 1

ω
v
µ

is introduced such that p ≤ −0.61 corresponds to the stable mode and p > −0.61 corresponds
to the unstable mode.

The car’s dynamics with respect to these state variables are

p
v
µ

k+1

=

0.974 1.22e− 5 −0.157
1.51e− 2 1 8.62e− 2

0 0 1

p
v
µ

k

+

7.36e− 4
5.66e− 6

0

 τ+

2.75e− 3
−1.50e− 3

0

for p ≤ −0.61 and

p
v
µ

k+1

=

1.0008 −2.24e− 5 −0.160
−4.21e− 4 1 8.74e− 2

0 0 1

p
v
µ

k

+

7.47e− 4
1.56e− 7

0

 τ+

2.05e− 2
−1.12e− 2

0

for p > −0.61.

6.3.2 Qualitative Model

According to the example definition, ω is limited to values 0 ≤ ω ≤ 1000, v is limited by
0 ≤ v ≤ 25. The engine torque τ is limited by −20 ≤ τ ≤ 176 and the maximum change ∆τ
of the engine torque from one sample time to the next is limited by −40 ≤ ∆τ ≤ 40. µ is
assumed to be 0.2 ≤ µ ≤ 0.8 what approximately corresponds to road conditions from ice to
dry concrete.

Additionally, the above model only is valid for non-negative wheel slip s

s =
w

i
− v

r
≥ 0.

6.3. TRACTION CONTROL 125

With these limitations, the newly introduced parameter p satisfies −4.3 ≤ p ≤ 14.2.
A 2-component qualitative model is compiled. Component 1 exhibits only one mode and

updates the engine torque τ as
τk+1 = τk + ∆τ (6.23)

Component 2 abstracts the vehicle’s dynamics. This component exhibits one out of 2
modes and a mode change occurs, if parameter p rises above or drops below -0.61.

For qualitative abstraction, the value range of variables is partitioned as follows: ∆τ is
just partitioned with respect to its sign, τ is separated into qualitative regions of width 40
around the value 0. (So, in fact, there is one smaller region 140 ≤ τ ≤ 176.)

The road condition µ is just distinguished to be very slippy (0.2 ≤ µ < 0.4), moderately
slippy (0.4 ≤ µ < 0.6) or good (0.6 ≤ µ ≤ 0.8).

The only required qualitative distinction is whether parameter p is above or below the
value of -0.61. To capture the dynamic behavior of the vehicle correctly, it is important to
estimate whether this parameter p remains below -0.61 or can be forced to get smaller than
-0.61 for certain engine torques. Due to the very small sampling interval, the vehicle dynamics
only allow very small changes from one sampling to the next. Therefore, for very high or
very low values of this parameter, no mode change will be predicted within a reasonably
large prediction horizon. So a fine-grained qualitative separation in regions far away from
p = −0.61 does not contribute to better qualitative predictions.

A fine grained partitioning of p is only introduced in regions where a mode change could
occur within a prediction horizon of approximately 10 steps. In this region−0.66 ≤ p ≤ −0.31
very fine grained qualitative regions of width 0.025 around -0.61 are established, whereas all
values p < −0.66 and p > −0.31 are combined to one respective qualitative value.

Additionally, to obtain the final qualitative separation of the vehicle-dynamics state
[p, v, µ]T , each qualitatively distinct region with respect to p and µ additionally gets sep-
arated into 3 equally sized qualitative regions with respect to v. This qualitative separation
is shown in Figure 6.15.

(a) Overall state space (b) Detailed display near p = −0.61

Figure 6.15: Separation of the state space [p, v, µ]T

For compilation of the qualitative models, transition likelihoods are separated into 2
discinct classes by utilizing Otsu’s method [45].

In order to achieve good results, an extension to this qualitative model is necessary due
to the particular way, deviations from given reference values are evaluated for qualitative
values during pre-selection (see Section 5.1.2). I.e., for the purpose of evaluating deviations

126 CHAPTER 6. EXAMPLES

from references, the state-space region represented by each qualitative value is represented
by a bounding ball. With respect to this example this is problematic – it is anticipated here,
that only parameter p shall be controlled towards a specified reference value – because most
qualitative values representing the state of component 2 have wide extension in directions of
µ and especially v, but only small extension in the direction of p. Therefore, the bounding
ball provides a very bad approximation for the values p associated to a particular qualitative
value.

This could be circumvented on the one hand by scaling p, v and µ to p′, v′ and µ′, such
that the bounding ball of the region represented by a qualitative value is mainly dependent
on the region’s extension in direction of p′. This, however, could introduce problems with
respect to limited accuracy of numerical computations.

So another approach is followed and a third component is introduced to the model,which
just copies the dynamics of variable p from component 2, i.e.

pk+1 = 0.974 · pk +
[

1.22e− 5 −0.157 7.36e− 4
]

v
µ
τ

k

+ 2.75e− 3

for p ≤ −0.61 and

pk+1 = 1.0008 · pk +
[−2.24e− 5 −0.160 7.47e− 4

]

v
µ
τ

k

+ 2.05e− 2

for p > −0.61.
So, if this new artificial component 3 receives µk and vk from component 2, it will make the

same predictions for p as component 2, as well. However, as the state of the new component
only consists of variable p, the bounding-ball is a very good approximation for evaluating
deviations from a reference value.

6.3.3 Control

Traction control is investigated in two test cases

• The vehicle standing still on an icy surface with wheels rotating quickly

• The vehicle accelerating quickly on a dry surface, suddenly changing to ice

The first of these cases is also included in the article [12]. However, a comparison of
results is difficult as the article deals with measured data, whereas here only simulation
result without disturbances are presented. The initial condition is given by τ = 0 and

ω = 180 v = 0 µ = 0.3,

which corresponds to the modified initial state

p = 1.13 v = 0 µ = 0.3.

This indicates that components 2 and 3 are in the unstable mode.
Now, traction control is performed with a prediction horizon of length 5 and an optimality

function

J =
N∑

i=1

(pk+i + 0.7)2

6.3. TRACTION CONTROL 127

is used to obtain high acceleration of the car near the border of instability at p=-0.61. For
qualitative pre-selection, likelihood costs are emphasized 1000 times stronger than reference
costs, thus, mainly sticking to the most likely non-spurious qualitative trajectories only.

0 0.5 1 1.5 2

−0.5

0

0.5

1

t

p

(a) Parameter p

0 0.5 1 1.5 2
0

0.5

1

1.5

2

t

v

(b) Vehicle velocity

0 0.5 1 1.5 2

−20

−10

0

10

20

30

40

t

τ

(c) Engine torque

0 0.5 1 1.5 2
0

50

100

150

t

ω

(d) Wheel speed

Figure 6.16: Solution to test scenario 1 with 5-step prediction horizon

The resulting engine torque τ that is applied to the system, and the resulting trajectories
of p and v and ω are shown in Figure 6.16. Samples at times where the system is in the
unstable mode are indicated by small red ’×’. Results obtained for shorter or longer prediction
horizons are almost equivalent. However, it once again has to be noticed that the utilized
implementation of the qualitative hybrid control scheme as MATLAB toolbox is by orders of
magnitude too slow to be able to calculate control for this system in real time (sample time
Ts = 0.02).

Results obtained for the second test case are more interesting. Here, a situation is in-
vestigated where the car and the engine stand still and the road surface is dry concrete
(µ = 0.7). After t = 1.2, the road condition suddenly changes gets very slippy (µ = 0.2) and
changes back to µ = 0.7 at t = 3. The control goal, again, is to keep the parameter p at
value p = −0.7, providing high acceleration of the car while avoiding to be in the instable
(slipping) mode. Adjustable parameters for this test case are the same as in for the previous
case.

Two exemplary results for a prediction horizon of N = 2 and N = 5 are presented in
Figures 6.17 and 6.18. Although these plots look quite similar, it can be observed different
performance of the controller when parameter p gets near its reference value pref = −0.7
around time t = 2.35. With short prediction horizons, there is an overshoot in p, because if
qualitative pre-selection does not predict a mode-change from instable to stable early enough,

128 CHAPTER 6. EXAMPLES

0 1 2 3 4
−4

−3

−2

−1

0

1

2

t

p

(a) Parameter p

0 1 2 3 4
0

1

2

3

4

5

6

7

t

v

(b) Vehicle velocity

0 1 2 3 4

0

50

100

150

t

τ

(c) Engine torque

0 1 2 3 4
0

100

200

300

400

500

t

ω

(d) Wheel speed

Figure 6.17: Solution to test scenario 2 with 2-step prediction horizon

torque τ cannot be increased sufficiently early to keep p above -0.7.
On the other hand, it is interesting to notice, that there is no further decrease of the

observed overshoot in p once the prediction horizon goes beyond N = 6. This is, because
in the qualitative model a fine-grained qualitative partitioning of values p was only provided
near -0.61. If this area of fine-grained qualitative separation was increased to higher values
of p, performance could be improved further by longer prediction horizons.

However, in this example much longer prediction horizons are prohibitive, anyway, because
the computational effort necessary for qualitative pre-selection does not increase sub-linearly
with respect to the prediction horizon as was the case for the 3-tank system. Again, the mean
number of search node expansions per sampling and the same algorithm as for the 3-tank
system are used to evaluate the computational effort.

Prediction horizon Mean number- Maximum number of node expansions
2 30 94
3 69 641
4 152 1010
5 264 2020

6.4 Summary

In this chapter first qualitative modeling and qualitative hybrid control was summarized by
working out a simple example in detail. Then two more complex example systems were inves-

6.4. SUMMARY 129

0 1 2 3 4
−4

−3

−2

−1

0

1

2

t

p

(a) Parameter p

0 1 2 3 4
0

1

2

3

4

5

6

7

t

v

(b) Vehicle velocity

0 1 2 3 4

0

50

100

150

t

τ

(c) Engine torque

0 1 2 3 4
0

100

200

300

400

500

t

ω

(d) Wheel speed

Figure 6.18: Solution to test scenario 2 with 5-step prediction horizon

tigated to demonstrate applicability of the hybrid control approach. As result, it is observed
that qualitative hybrid control is able to handle the complexity of the COSY benchmark
problem on the one hand and can handle non-tank hybrid systems on the other hand as well.

However, the examples also demonstrated that qualitative hybrid control often is no ’out-
of-the-box’ solution for a given example and some tailoring may be required. This tailoring
can be necessary for both, building and structuring of the hybrid model itself on the one hand
and tuning of adjustable parameters on the other hand. As far as this work has proceeded,
no rules can be formulated yet, which could guide this tailoring.

Performance of qualitative hybrid control, both, with respect to quality of the achieved
trajectories and with respect to computational efficiency, can significantly depend on a par-
ticular selection of the adjustable parameters.

130 CHAPTER 6. EXAMPLES

Chapter 7

Conclusion

In this thesis, a hybrid control scheme was presented which allows to tackle a class of com-
plex multi-component systems by first abstracting the complex hybrid control task to the
qualitative level, where it is solved more easily. The solution to this abstracted control task
then allows to reformulate the original hybrid control task as control of standard time-variant
systems.

Basis for this approach is a class of especially tailored qualitative models that allow
compact component-wise off-line compilation on the one hand and facilitate efficient on-line
search for good solutions to the qualitative control problem on the other. This is achieved by
a well-structured graphical representation of the model that is a very compact encoding of
all possible qualitative trajectories each individual component may exhibit regarding a 1-step
time horizon.

To keep the qualitative model reasonably small, component-wise abstraction and encoding
of only single time-step qualitative trajectories were necessary. This requires, however, that
qualitative on-line reasoning about possible behaviors of the hybrid model has to concurrently
operate on several qualitative component models instead of operating just on a single overall
model.

To make this simultaneous reasoning among the individual component models most ef-
ficient, all the model graphs are constructed to be acyclic and directed with respect to a
pre-specified common ordering of variables. This allows an intuitive focussed on-line con-
struction of those parts of the single overall model that describe behaviors of the hybrid
system which promise to be valid solutions to the hybrid control task. With this graphical
representation, the control task on the abstracted, qualitative, level can be formulated as
shortest path search.

Furthermore, the common ordering of variables can be utilized to incorporate structural
information on the hybrid model into the qualitative model, such that the resulting overall
model graph is highly connected and discrete dynamic programming can be utilized to solve
this shortest path search more efficiently.

In fact, qualitative pre-selection is formulated as shortest path search through a highly
connected graphical representation of the overall qualitative model that is intuitively and
efficiently generated on-line from the individual component models. We suggest to utilize
A∗-search to perform this shortest path search. This is a best-first-search strategy and, thus,
allows to investigate (and, hence, requires to generate) the overall model only at very focussed
branches towards promising solutions to the control task. Further, by utilization of dynamic
programming ideas it allows to exploit the structural information that was compiled into the
model in a way that lead to a highly connected search graph.

131

132 CHAPTER 7. CONCLUSION

The result of solving the hybrid control task on the abstracted level by qualitative pre-
selection is the specification of a sequence of operational modes for each of the components,
together with the associated discrete inputs that have to be applied to the system and the
constraints on continuous states and inputs that have to be satisfied in order to drive the
system through the pre-selected mode sequence. Continuous inputs, themselves, however are
only specified on an abstracted level and require further numerical refinement.

The specified sequence of operational modes allows to regard the hybrid model as stan-
dard time-variant continuous model. Further, the constraints on the range of values for the
variables in the continuous model may be expressed by linear inequalities in the hybrid sys-
tems continuous inputs. This allows to formulate the last remaining issue to solve the hybrid
control task – numerical refinement of continuous inputs – as constrained quadratic program.

A well known method from control theory that handles on-line receding horizon control of
constrained time-variant systems and builds upon such a mathematical program formulation
is model predictive control. In the presented hybrid control scheme, model predictive control
not only numerically refines continuous inputs but also ensures stability of the overall control,
as it either validates a qualitatively pre selected mode sequence and determines an according
stable controller or it rejects the pre-selection because of spuriosity and hands back to the
qualitative pre-selection to resume path-search for the next-best qualitative trajectory.

This interplay between the two solvers, in principle, can be utilized to determine the
optimal solution to the hybrid control task. However, this claim of optimality is usually
dropped in trade off for a much faster operation what makes the control scheme available to
more complex systems.

Applicability of the proposed method was demonstrated on examples of different complex-
ity. The example problems were sufficiently solved by the presented method. This, however,
sometimes needed non-intuitive tuning of adjustable parameters and significantly different
results were obtained for different selections of these parameters.

7.1 Outlook

However, the presented qualitative modeling and hybrid control scheme is still under devel-
opment and some questions still remain open and are subject to ongoing research:

• Up to now it has not yet been possible to specify rules how to choose the polytopic
regions related to the qualitative values and how to cleverly choose other adjustable
parameters. As examples indicate, such rules would be very advantageous, as the deter-
mined solution to a given hybrid control task can be very sensitive to these parameters.

• Full measurement of the hybrid state at each time is assumed in the present work. A
combination of hybrid control and a hybrid estimation scheme developed for the same
class of hybrid systems [31] will help to relax this requirement in the future.

• A main chance that is thought to further improve the presented control method is
related to the search of alternative mode-sequences, if the first result of the qualitative
pre-selection turns out to be spurious. In this case, qualitative search is resumed from
the point where the spurious solution was found and it looks for qualitative trajectories
that provide alternative mode sequences. Advanced techniques form the field of artificial
intelligence could help to evaluate the reasons why the trajectory failed and could help
to avoid making the same ’mistake’ in another trajectory.

7.1. OUTLOOK 133

• It will be further investigated how the presented control scheme could be applied to an
extended class of hybrid systems that does not need to specify input/output causality
of each component. The proposed control scheme should be able to handle this task
because qualitative pre-selection does not require any assumptions on such causality
and for subsequent model predictive control causality can be determined on-line by
causal analysis with the aid of the pre-selected mode sequence.

• And last but not least, some work ought to be done to extend the control framework
to non-linear or asynchronously sampled hybrid systems. Non-linearity is assumed
to be manageable by the qualitative modeling and pre-selection quite well. However,
further investigations are needed on the interplay between qualitative pre-selection and
an appropriate numerical verification and refinement of continuous actuation.

134 CHAPTER 7. CONCLUSION

Bibliography

[1] Alur, R. and D. L. Dill: 1994, ‘A Theory of Timed Automata’. Theoretical Computer
Science 126(2), 183–235.

[2] Alur, R. and G. J. Pappas (eds.): 2004, ‘Hybrid Systems: Computation and Control,
HSCC 2004’, Vol. 2993 of Lecture Notes in Computer Science. Springer-Verlag.

[3] Andersen, H.: 1997, ‘An Introduction to Binary Decision Diagrams’. Technical Report
Lecture Notes for 49285 Advanced Algorithms E97, Department of Information Tech-
nology, Technikal University of Denmark, Lyngby, Denmark.

[4] Askari, J., B. Heiming, and J. Lunze: 1999, ‘Controller Reconfiguration Based on a
Qualitative Model: A Solution of Three-Tanks Benchmark Problem’. In: Proceedings of
the European Control Conference ECC99. Karlsruhe, Germany. Paper ID: F1039-3.

[5] Belman, R.: 1957, Dynamic Programming. Princeton, NJ: Princeton University Press.

[6] Bemporad, A., F. Borrelli, and M. Morari: 2000, ‘Optimal Controllers for Hybrid Sys-
tems: Stability and Piecewise Linear Explicit Form’. In: Proceedings of the 39th IEEE
Conference on Decision and Control, Sydney, Vol. 2. pp. 1810–1815.

[7] Bemporad, A., F. Borrelli, and M. Morari: 2002a, ‘Model Predictive Control Based on
Linear Programming - The Explicit Solution’. IEEE Transactions on Automatic Control
47(12), 1974–1985.

[8] Bemporad, A. and N. Giorgetti: 2002, ‘A sat-based hybrid solver for optimal control of
hybrid systems’. In: A. R. and G. Pappas (eds.): Hybrid Systems: Computation and
Control, Vol. 2289 of Lecture Notes in Computer Science. pp. 126–141.

[9] Bemporad, A. and M. Morari: 1999, ‘Control of systems integrating logic, dynamics and
constraints’. Automatica 35(3), 407–427.

[10] Bemporad, A., M. Morari, D. Vivek, and E. Pistikopoulos: 2002b, ‘The explicit linear
quadratic regulator for constrained systems’. Automatica 38(1), 3–20.

[11] Bertsekas, D.: 1995, Dynamic Programming and Optimal Control, Vol. 2. Athena Sci-
entific.

[12] Borrelli, F., A. Bemporad, M. Fodor, and D. Hrovat: 2006, ‘An MPC/Hybrid System
Approach to Traction Control’. IEEE Transactions on Control Systems Technology
14(3), 541–552.

135

136 BIBLIOGRAPHY

[13] Branicky, M.: 1995, ‘Studies in hybrid systems: modeling, analysis, and control’. Ph.D.
thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge,
MA.

[14] Bryant, R.: 1986, ‘Graph Based Algorithms for Boolean Function Manipulation’. IEEE
Transactions on Computers C-35(8), 677–691.

[15] Buchberger, B.: 1970, ‘An Algorithmical Criterion for the Solvability of Algebraic Sys-
tems of Equations (German)’. Aequationes Mathematicae 4(3), 347–383.

[16] Buchberger, B. and F. Winkler: 1998, ‘Groebner Bases and Applications’. In: Pro-
ceedings of the internat. conference ”33 Years of Groebner Bases”, Vol. 251 of London
Mathematical Science.

[17] Cassandras, C., D. Pepyne, and Y. Wardi: 2001, ‘Optimal control of a class of hybrid
systems’. IEEE Transactions on Automatic Control 46(3), 398–415.

[18] Chutinan, A. and B. Krogh: 1998, ‘Computing Polyhedral Approximations to Flow
Pipes for Dynamic Systems’. In: Proceedings of the 37th IEEE Conference on Decision
and Control, Vol. 2. pp. 2089–2094.

[19] Clarke, E., O. Grumberg, and D. Peled: 1999, Model Checking. Cambridge, Mass.: MIT
Press.

[20] De Schutter, B.: 1996, ‘Max Algebraic System Theoty for Discrete Event Systems’.
Ph.D. thesis, Faculty of Applied Sciences, K.U. Leuven, Leuven, Belgium.

[21] De Schutter, B. and T. van den Boom: 2001, ‘Model predictive control for max-plus-
linear discrete event systems’. Automatica 37(7), 1049–1056.

[22] Dechter, R.: 2003, Constraint Processing. San Francisco, CA: Morgan Kaufmann.

[23] Even, S.: 1979, Graph Algorithms, Computer Software Engineering Series. Rockville,
Maryland: Computer Science Press.

[24] Förstner, D., M. Jung, and J. Lunze: 2002, ‘A discrete-event model of asynchronous
quantised systems’. Automatica 8, 1277–1286.

[25] Goldberg, A. and C. Harrelson: 2004, ‘Computing the Shortest Path: A∗ meets Graph
Theory’. Technical Report MSR-TR-2004-24, Microsoft Research.

[26] Hamscher, W., L. Console, and J. DeKleer: 1992, Readings in Model-Based Diagnosis.
San Mateo, Calif.: Morgan Kaufmann.

[27] Hart, P., N. Nilsson, and B. Raphael: 1968, ‘A formal basis for the heuristic determi-
nation of minimum cost paths’. IEEE Transactions on System Science and Cybernetics
SCC-4(2), 100–107.

[28] Heemels, W., B. De Schutter, and A. Bemporad: 2001, ‘Equivalence of Hybrid Dynam-
ical Models’. Automatica 37(7), 1085–1091.

[29] Heiming, B. and J. Lunze: 1999, ‘Definition of the Three-Tank Benchmark Problem for
Controller Reconfiguration’. In: Proceedings of the European Control Conference.

BIBLIOGRAPHY 137

[30] Hofbaur, M. and B. Williams: 2002, ‘Mode Estimation of Probabilistic Hybrid Systems’.
In: C. Tomlin and M. A. Greenstreet (eds.): Hybrid Systems: Computation and Control,
HSCC 2002. pp. 253–266.

[31] Hofbaur, M. W.: 2005, Hybrid Estimation of Complex Systems, Vol. 319 of Lecture Notes
in Control and Information Sciences (LNCIS). Springer.

[32] Kerrigan, E. and D. Mayne: 2002, ‘Optimal control of constrained piecewise affine sys-
tems with bounded disturbances’. In: Proceedings of the 41st IEEE Conference on
Decision and Control, Vol. 2. Las Vegas, USA, pp. 1552–1557.

[33] Kleissl, W.: 2002, ‘Structural Analysis of Hybrid Systems’. Master’s thesis, Institute of
Automation and Control, Graz University of Technology, Graz, Austria.

[34] Koutsoukos, X. D., P. J. Antsaklis, J. A. Stiver, and M. Lemmon: 2000, ‘Supervisory
Control of Hybrid Systems’. Proceedings of the IEEE 88(7), 1026–1049.

[35] Kreindler, E. and P. Sarachlik: 1964, ‘On the concepts of controllability and observability
of linear systems’. IEEE Transactions on Automatic Control 9(2), 129–136.

[36] Kuipers, B.: 1994, Qualitative Reasoning: Modeling and Simulation with incomplete
Knowledge. Cambridge, MA: MIT Press.

[37] Kvasnica M. and Grieder, P. and Baoti, M. ć: 2004, ‘Multi Parametric Toolbox (MPT)’.

[38] Lazar, M., W. Heemels, S. Weiland, and A. Bemporad: 2004, ‘Stabilization Conditions
for Model Predictive Control of Constrained PWA Systems’. In: Proceedings of the 43rd
IEEE Conference on Decision and Control, Vol. 5. pp. 4595–4600.

[39] Lunze, J.: 1992, ‘Qualitative modeling of continuous variable systems by means of non-
deterministic automata’. Journal of Intelligent System Engineering 1(1), 22–30.

[40] Lunze, J.: 1994, ‘Qualitative Modeling of linear dynamical systems with quantized state
measurements’. Automatica 30(3), 417–431.

[41] Maciejowski, J.: 2002, Predictive Control with Constraints. Essex, UK: Pearson Educa-
tion Ldt.

[42] Maler, O. and A. Pnueli (eds.): 2003, ‘Hybrid Systems: Computation and Control,
HSCC 2003’, Vol. 2623 of Lecture Notes in Computer Science. Springer-Verlag.

[43] Mayne, D., J. Rawlings, C. Rao, and P. Sckaert: 2000, ‘Constrained model predictive
control: Stability and Optimality’. Automatica 36(6), 789–814.

[44] Nayak, P.: 1995, Automated Modelling of Physical Systems. Berlin: Springer.

[45] Otsu, N.: 1979, ‘A threshold selection method from gray-level histograms’. IEEE Trans-
actions on Systems, Man and Cybernetics 9(1), 62–66.

[46] Russell, S. and P. Norvig: 2003, Artificial intelligence: a modern approach, Prentice Hall
series in artificial intelligence. NJ: Pearson Education, 2 edition.

[47] Sachenbacher, M. and P. Struss: 2003, ‘Automated Qualitative Domain Abstraction’.
In: G. Gottlob and T. Walsh (eds.): Proceedings of the 18th International Conference
on Artificial Intelligence IJCAI’03. Acapulco, Mexico, pp. 382–387.

138 BIBLIOGRAPHY

[48] Sontag, E.: 1981, ‘Nonlinear regulation: The piecewise linear approach’. IEEE Trans-
actions on Automatic Control AC-26(2), 346–358.

[49] Struss, P.: 2002, ‘Automated Abstraction of Numerical Simulation Models – Theory and
Practical Experience’. In: Proceedings of the 16th international workshop on qualitative
reasoning. Spain, pp. 161–168.

[50] Travé-Massuyès, L. and R. Pons: 1997, ‘Causal ordering for Multiple Mode Systems’.
In: Proceedings of the 11th Workshop on Qualitative Reasoning (QR97). Pavia, Italy,
pp. 203–214.

[51] Tsuda, K., D. Mignone, G. Ferrari-Trecate, and M. Morari: 2001, ‘Reconfiguration
Strategies for Hybrid Systems’. In: Proceedings of the 2001 American Control Confer-
ence, Vol. 2. Arlington, Virginia, pp. 868–873.

[52] van den Boom, T. and B. de Schutter: 2001, ‘Model predictive control for perturbed
max-plus-linear systems: a stochastic approach’. In: Proceedings of the 40th IEEE
Conference on Decision and Control, Vol. 5. Florida, USA. 4535–4540.

[53] Villa, J. L., M. Duque, A. Gauthier, and N. Rakoto-Ravalontsalama: 2003, ‘MLD Con-
trol of Hybrid Systems: Application to the Three-TankBenchmark Problem’. IEEE pp.
666–671.

[54] Williams, B., M. Ingham, S. Chung, and P. Elliot: 2003, ‘Model-based progrmming of
intelligent embedded systems and robotic space explorers’. In: Proceedings of the IEEE,
Vol. 91. pp. 212–237.

[55] Xu, X. and P. Antsaklis: 2001, ‘An approach for solving general switched linear quadratic
optimal control problems’. In: Proceedings of the 40th IEEE Conference on Decision ad
Control, Vol. 3. pp. 2478–2483.

Appendix A

Theory

A.1 Linearization

Linearization is used to approximate a non-linear model

dx(t)
dt

= f(x,u) (A.1)

for small deviations from an operational point specified by x0 and u0 by a linear model

dx(t)
dt

= Ax + Bu. (A.2)

First, the simplified case where the right-hand side in (A.1) is a scalar non-linear function
in a single variable f(x) is considered. If this function can be differentiated infinitely many
times it can be expressed by a Taylor series expansion around a base-point x = a as:

f(x) =
∞∑

n=0

(x− a)n · f (n)(a)
n!

(A.3)

where f (n)(a) denotes the nth derivative of the function f(x) evaluated at the point x = a,
i.e.

f (n)(a) =
∂nf(x)

∂xn

∣∣∣∣
x=a

(A.4)

If only small deviations of x from that base-point x = a are considered, the function
can closely be approximated by the first few terms of the sum in (A.3). Specifically, for
linearization only the constant and the linear term are considered such that

f(x) ≈ f(a) +
∂f(x)

∂x

∣∣∣∣
x=a

· (x− a). (A.5)

If, additionally, the base point x = a is a zero of the function f(x), i.e.

f(a) = 0 (A.6)

the function f(x) around this point x = a can be approximated by

f(x) ≈ ∂f(x)
∂x

∣∣∣∣
x=a

· (x− a). (A.7)

139

140 APPENDIX A. THEORY

Extending this concept to the non-linear model (A.1), with

x = [x1, . . . , xNx]T

u = [u1, . . . , uNu]T

and
f(x,u) = [f1(x,u), . . . , fNx(x,u)]T ,

linearized approximations of f(x,u) are obtained as follows.
If the model (A.1) is linearized around a steady-state of the model indicated by

f(xSS ,uSS) = 0 (A.8)

(A.1) can be approximated by a linear model

d

dt
x = ASSx + BSSu (A.9)

where

ASS =

∂f1(x,u)
∂x1

∣∣∣
x=xSS ,u=uSS

. . . ∂f1(x,u)
∂xNx

∣∣∣
x=xSS ,u=uSS

...
. . .

...
∂fNx(x,u)

∂x1

∣∣∣
x=xSS ,u=uSS

. . . ∂fNx(x,u)
∂xNx

∣∣∣
x=xSS ,u=uSS

 (A.10)

BSS =

∂f1(x,u)
∂u1

∣∣∣
x=xSS ,u=uSS

. . . ∂f1(x,u)
∂uNu

∣∣∣
x=xSS ,u=uSS

...
. . .

...
∂fNx(x,u)

∂u1

∣∣∣
x=xSS ,u=uSS

. . . ∂fNx(x,u)
∂uNu

∣∣∣
x=xSS ,u=uSS

 (A.11)

If the model (A.1) is linearized around other values x = x0 and u = u0, it can be
approximated by an affine model

d

dt
x = A0x + B0u + e (A.12)

where

A =

∂f1(x,u)
∂x1

∣∣∣
x=x0,u=u0

. . . ∂f1(x,u)
∂xNx

∣∣∣
x=x0,u=u0

...
. . .

...
∂fNx(x,u)

∂x1

∣∣∣
x=x0,u=u0

. . . ∂fNx(x,u)
∂xNx

∣∣∣
x=x0,u=u0

 (A.13)

B =

∂f1(x,u)
∂u1

∣∣∣
x=x0,u=u0

. . . ∂f1(x,u)
∂uNu

∣∣∣
x=x0,u=u0

...
. . .

...
∂fNx(x,u)

∂u1

∣∣∣
x=x0,u=u0

. . . ∂fNx(x,u)
∂uNu

∣∣∣
x=x0,u=u0

 (A.14)

e =

f1(x0,u0)
...

fNx(x0,u0)

 (A.15)

A.2. CALCULATION OF TRANSITION LIKELIHOODS 141

A.2 Calculation of Transition Likelihoods

When compiling the qualitative models, a likelihood-value has to be determined for each
transition of the non-deterministic automaton model. This automaton model qualitatively
approximates a hybrid automaton (Section 3.3).

Such a hybrid model specifies

• Transition likelihoods to reach certain discrete states xd,k+1 while observing the discrete
outputs yd,k+1, given discrete state xd,k, discrete commands ud,k, continuous state xk

and continuous actuation uk

• The continuous state xk+1 that is reached, given continuous state x′k, continuous input
uk and discrete operational mode xd,k+1.

• The continuous output yk, given the continuous state xk, continuous input uk and
discrete operational mode xd,k.

Whereas the transitions in the non-deterministic automaton model are determined in
terms of qualitative values that specify

• the current discrete state xd,k

• the current input commands ud,k

• the assumed next discrete state xd,k+1

• the assumed discrete outputs yd,k+1

• a polytopic region
Hx1xk ≤ kx1

the current continuous state xk is in

• a polytopic region
Huuk ≤ ku

the current continuous inputs uk are in

• a polytopic region
Hyyk ≤ ky

the current continuous outputs yk are assumed to be in

• a polytopic region
Hx2xk+1 ≤ kx2

the next continuous state xk+1 is assumed to be in.

From both these specifications, various likelihood values have to be determined:

• Likelihood value pd specifies the mode-transition likelihood imposed by the hybrid
model itself and can directly be determined from the model’s transition specification
T .

142 APPENDIX A. THEORY

• Likelihood value Lc1 compares the size of regions of states xk and inputs uk that actually
lead to states and outputs specified by

Hx2xk+1 ≤ Kx2 and Hyyk ≤ Ky

to the size of the regions specified by the polytopes

Hx1xk ≤ Kx1 and Huuk ≤ Ku

• Likelihood value Lc2 compares the region of states xk+1 that actually can be reached
by trajectories that satisfy the given qualitative abstraction to all those specified by

Hx2xk+1 ≤ Kx2

While the first of these likelihood values (cP) can directly be looked up in the transition
specification T of the hybrid model and does not require further calculations, determination
of the two others requires a closer look.

Hyper-Volume of a Polytope

First of all, the hyper-volume of a polytope has to be defined. If a polytopic region P is
defined by

P : Hx ≤ k (A.16)

a ’polytope-membership-function’ FP(x) is specified as

FP(x) =
{

1 ∀ x | Hx ≤ K
0 otherwise

(A.17)

With this function and x = [x1, . . . , xN]T , the hyper-volume VP of the polytope P can be
calculated by

VP =
∫ ∞

x1=−∞
. . .

∫ ∞

xN=−∞
FP(x) dxN . . . dx1 (A.18)

Calculation of the Input-Space Likelihood

The transition-specification of the non-deterministic automaton is only a valid abstraction
for trajectories of the hybrid model that satisfy

xk+1 = Axdk+1xk + Bxdk+1uk + exdk+1 (A.19a)
yk = Cxdkxk + Dxdkuk + fxdk. (A.19b)

Additionally, the transition specification determines that

Hx1xk ≤ kx1 (A.20a)
Huuk ≤ ku (A.20b)
Hyyk ≤ ky (A.20c)

Hx2xk+1 ≤ kx2 (A.20d)

A.2. CALCULATION OF TRANSITION LIKELIHOODS 143

Combining (A.19) and (A.20) leads to

Hx1xk ≤ kx1 (A.21a)
Huuk ≤ ku (A.21b)

Hy(Cxdkxk + Dxdkuk + fxdk) ≤ ky (A.21c)
Hx2(Axdk+1xk + Bxdk+1uk + exdk+1) ≤ kx2 (A.21d)

what specifies a polytope Pv1

Pv1 : Hv1

[
x
u

]
≤ kv1 (A.22)

with

Hv1 =

Hx1 0
0 Hu

HyCxdk HyDxdk

Hx2Axdk+1 Hx2Bxdk+1

 (A.23a)

kv1 =

kx1

ku

ky −Hyfxdk

kx2 −Hx2exdk+1

 (A.23b)

of valid initial conditions that lead to abstracted trajectories as specified by the transition-
specification of the non-deterministic automaton. This polytope is compared to the polytope
Pin

Pin : Hin

[
x
u

]
≤ Kin (A.24)

with

Hin =
[

Hx1 0
0 Hu

]
(A.25a)

kin =
[

kx1

ku

]
(A.25b)

that covers all initial conditions of the transition specification.
The likelihood value Lc1 is then calculated as

Lc1 =
VPv1

VPin

(A.26)

Calculation of the Output-Space Likelihood

The polytope Pv1 (A.22) specifies states xk and inputs uk so that the resulting trajectories
have a qualitative abstraction as given by the considered transition specification of the non-
deterministic automaton.

For calculating the output-space likelihood Lc2 this polytope has to be propagated through
the model

xk+1 = Axdk+1xk + Bxdk+1uk + exdk+1 (A.27)

144 APPENDIX A. THEORY

This results in a polytope Pv2 specified by the ’polytope-membership-function’

FPv2(xk+1) =

1 ∀xk+1

∣∣∣∣ xk+1 = Axdk+1xk + Bxdk+1uk + exdk+1, Hin

[
xk

uk

]
< kin

0 otherwise
(A.28)

This polytope is then compared to the polytope Pout

Pout : Hx2xk+1 < kx2 (A.29)

that covers all continuous states xk+1 of the transition specification.
The likelihood value Lc2 is then calculated as

Lc2 =
VPv2

VPout

(A.30)

Example

As example, likelihood values Lc1 and Lc2 for the transition specification

Hx1 = Hu = Hy = Hx2 =
[

1
−1

]

Kx1 = Ku = Ky = Kx2 =
[

1
0

]

xk+1 = 1 · xk + 2 · uk

yk = 1 · xk − 1 · uk − 0.1

are calculated. Based on this, one straightforwardly calculates the hyper-volumes

VPin = 1
VPout = 1

The valid input-space is determined by the polytope

Pv1 :

1 0
−1 0
0 1
0 −1
1 −1
−1 1
1 2
−1 −2

[
x
u

]
≤

1
0
1
0

1.1
−0.1

1
0

which after elimination of redundant inequalities is expressed as

Pv1 :

0 −1
−1 1
1 2

[
x
u

]
≤

0
−0.1

1

 .

Its hyper-volume is
VPv1 = 0.135

A.2. CALCULATION OF TRANSITION LIKELIHOODS 145

leading to a likelihood value

Lc1 =
VPv1

VPin

= 0.135

States xk in polytope Pv1 are propagated through the model

xk+1 = 1 · xk + 2 · uk

and lead to states xk+1 in the polytopic region

Pv2 :
[

1
−1

]
xk+1 ≤

[
1

−0.1

]

which contains a hyper-volume of
VPv2 = 0.9.

This gives a likelihood-value

Lc1 =
VPv2

VPout

= 0.9

Illustration for these calculations is provided in Figure A.1.

0 0.5 1

0

0.5

1

x
k

u
k

0

0.5

1

y
k

0 0.5 1

x
k+1

Figure A.1: Calculation of likelihood values

Approximative Computation of Hyper-Volumes

While calculation of hyper-volumes of the polytopes in the above example is accomplished
fairly easy, this can be a computationally more intensive task for arbitrary polytopes of
higher dimensionality. Therefore, it is sometimes advisable to perform these computations in
approximative manner.

Utilization of approximations seems further justified, as not even the exactly calculated
values would be used in the qualitative model as they are combined into likelihood classes
anyway.

146 APPENDIX A. THEORY

Bounding Box Approximation

The idea is to approximate arbitrary polytopes

P : Hx < K

by the bounding box

B(P) :
[

I
−I

]
x ≤

[
max
−min

]
(A.31)

where I represents the identity matrix and max is the vector of maximum Cartesian coordi-
nates of the polytope and min is the vector of minimum coordinates (Figure A.2a).

The hyper-volume of the bounding box is then easily evaluated as

VB(P) =
∏

(max−min) (A.32)

(a) Bounding box approximation (b) Estimation of the hyper-volume by sampling

Figure A.2: Approximations of a polytope’s hyper-volume

Approximation by sampling

A more accurate but computationally more intensive approximation of the hyper-volume of
a polytope can be achieved by sampling. The idea is to draw a number of N uniformly
distributed sample-points x from the bounding box (with known hyper-volume VB(P). Next,
these samples are checked against the inequalities

Hx ≤ K

describing the polytope one is interested in and the number N0 of sample points that satisfy
the inequalities is evaluated (Figure A.2b).

The hyper-volume of the the polytope can then be approximated by

VP ≈ VB(P)
N0

N
(A.33)

A.3. CAUSAL ANALYSIS 147

A.3 Causal Analysis

Causal analysis is an algorithmic way to determine the interdependencies of variables from a
given set of ’equations’ or ’relations’ and to display these as directed graph.

In terms of the utilized hybrid models, these can be

• Equations with specified dependent variable, e.g.

xk+1 = a · xk + b · uk

• Discrete transition specifications with specified ’dependent variable’

• Algebraic constraints with unspecified ’dependent variable’, e.g.

a + b = 0

• exogenous input specifications

The first type of equations is the easiest one to handle. These equations can either describe
continuous dynamics of a component model

xk+1 = Aixk + Biuk + ei

or specify component outputs

yk = Cixk + Diuk + fi.

For these equations, the dependent variables (xk+1,yk) are directly identified and one only
has to determine the independent ones. These can – with x = [x1, . . . , xN]T and other vectors
specified accordingly – be

• the variables xi,k, if the corresponding columns of matrix A (or C, respectively) are
not equal to zero in any operational mode

• the variables ui,k, if the same holds with respect to B or D, respectively

• the operational mode xd,k+1, if any of A,B, e depend on the operational mode

• the operational mode xd,k, if any of C,D, f depend on the operational mode

The second type can be treated similarly. The ’next’ operational mode xd,k+1 is always
the dependent variable, whereas independent variables can be

• the discrete input ud,k, if any transition guard contains a boolean condition on ud,k.

• the continuous state xi,k if any transition guard contains a polytope-constraint

Hxk ≤ K

and the corresponding column of H is not zero

• the continuous inputs ui,k if the equivalent holds for polytope-guards

Huk ≤ K

148 APPENDIX A. THEORY

• the current discrete state xd,k, if the transition specifications are not the same for all
’source modes’ xd,k

The third type is somewhat more difficult to treat, as the dependent variable has to
be determined by the structure imposed by other equations and exogenous inputs. These
equations occur in a more general formulation of hybrid models, when inputs and outputs
are not specified explicitly, but are only commonly treated as set of terminal variables

w = [wi, . . . , wN]T

and input/output relations are specified as

fi = Cixk + Diwk.

With such equations, one cannot directly determine a dependent variable, but has to prelim-
inarily indicate all variables that contribute to each equation as independent.

However, it is known from the concurrent hybrid automaton specification which variables
are exogenous inputs. These are different in that they are not determined by any equation.

Once, all equations and respective variables are identified, the structure imposed by the
set of equations can be evaluated. It only has to be noticed, that the same variable at different
times, (i.e. x1,0, x1,1, x1,2, . . .) is treated as distinct variables in the following process.

Find Dependent Variables

If there are some equations that do not have dedicated dependent variables, these can be
determined by the structure imposed by the overall set of equations through the following
algorithmic procedure.

First, a so-called bipartite graph has to be built that has one side with a node for each
equation and one side for with a node for each variable that occurs in any of the equations.

Each equation node is then connected to its dedicated dependent variable or to all prelim-
inarily independent variables, if there is no dedicated dependent one. As exogenous inputs are
clearly not dependent in any equation they get an extra equation node each, which they are
connected to. This prevents that they will get dedicated ’dependent’ in any other equation
in the following process.

An example of such a graph that represents equations

eq1 : 0 = f(a, b, u)
eq2 : 0 = f(a, b)
eq3 : 0 = f(b, c)
eq4 : 0 = f(b, c, d)
ex : u

is displayed in Figure A.3a. To determine a single dependent variable for each equation, a
set of arcs of the graph has to be identified, such that each equation-node on the left side is
connected to a single variable node on the right side and vice versa.

This task is accomplished by formulating it as maximum-flow optimization problem for
a network as shown in Figure A.3b, where each arc except the big feedback-line can carry
exactly one amount of flow. More detailed treatment of this causal analysis and algorithms
that solve this tasks are found in [23, 44]. The flow in the network then determines the
dependent variable of each equation.

A.3. CAUSAL ANALYSIS 149

(a) Bipartite Graph relating vari-
ables and equations

(b) Solution by Flow-Maximization

Figure A.3: Detection of dependent variables in a set of equations

This bipartite matching procedure additionally can detect structural deficiencies in the
set of equations, e.g. conflicting situations where variables would be determined by several
equations or by non at all [33]. In this work it is assumed that the hybrid automata are
specified correctly and no such deficiencies exist.

For the example, a solution is displayed in Figure A.3. However, a careful look at this
figure shows another possible solution that relates variable a to equation eq1 and relates
variable b to equation eq2. Such ambiguities in the solution indicate circular interdependencies
among the variables, so-called algebraic loops. The loop in this example will display even
more explicitly, when the causal graph is constructed.

Causal Graph

The so-called causal graph displaying the interdependencies among the variables imposed by
a set of equations can now directly be constructed by the following rules:

• create a node for the dependent variable of each equation (including the exogenous
inputs)

• for each equation, draw a directed edge from all independent variables of the equation
to the dependent one

Figure A.4: Causal graph

The graph for the above example is displayed in Figure A.4. It is clear to see that there is a
loop among variables a and b, which tells that a depends on b depends on a. . . In more complex
graphs, such circular interdependencies can be detected together with the involved variables
by the algorithmic detection of ’strongly connected components’ [23]. Such an algebraic loop
and can cause severe problems in the proposed control framework. So throughout this work
systems with acyclic causal graphs have to be assumed.

150 APPENDIX A. THEORY

A.4 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [3, 14] provide a compact encoding of boolean functions
as directed acyclic graphs (DAGs).

The three main reasons – illustrated below – to select BDD-like trajectory-graphs to
represent qualitative models are

• BDDs can be utilized to represent sets of particular valuations among symbolic variables
as DAG.

• BDDs provide a very compact encoding of boolean functions [14].

• BDDs can be generated based on a pre-specified ordering of variables that is represented
as hierarchy in the DAG

Boolean Representation of Valuations among Symbolic Variables

A boolean function is a logical expression among variables that can take values 1 (true) or
0 (false). The function itself evaluates to one of these values, depending on the valuation
of the variables. These function-values depending on the valuations of the variables can be
expressed in terms of a truth-table that lists an enumeration of all possible valuations of the
variables and associates the corresponding function-value to each valuation.

Similarly, a set of valuations among symbolic variables can be represented as truth-table,
if each symbolic value of a variable is uniquely encoded by boolean variables. All valuations
among all the symbolic variables that are included in the set receive a boolean function value
of 1, all others receive 0.

An example is used to further on support understanding of BDD generation and com-
pactness by illustration:

set of sympolic valuations
variable: R S
valuations: r0 s0

r0 s1

r2 s0

r3 s0

(A.34)

representation by boolean expressions
R B1 B2

r0 0 0
r1 0 1
r2 1 0
r3 1 1

S B3

s0 0
s1 1

(A.35)

A.4. BINARY DECISION DIAGRAMS 151

associated truth table
B1 B2 B3 function value
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(A.36)

First Simple BDD Construction

A BDD represents such a truth-table as DAG, where non-terminal vertices represent boolean
variables and terminal nodes represent function-values.

The graph is constructed based on a pre-specified ordering of variables. The first of the
ordered variables corresponds to the root node of the BDD and there is a directed edge
leading from this node for each of the variable’s valuations (0, 1).

Each of the edges leads to one of two other nodes, each representing the variable that is
second in ordering. This way, graph construction is continued until the nodes representing
the last variable in ordering. The edges leaving the corresponding nodes then are connected
to respective new terminal nodes that are labeled with the boolean function values. These
function values are determinated from the truth table or boolean function by evaluating the
valuation of boolean variables specified by the arcs along the path from the root node of the
graph down to the terminal node.

This first simple construction of a BDD for the above example and a variable ordering

B1 ≺ B2 ≺ B3

that determines variable B1 to be ordered first is displayed in Figure A.5. The edges and
terminal nodes are labeled with the corresponding boolean values. Additionally, these values
are indicated by solid lines for boolean value 1 and dotted lines for boolean value 0.

Figure A.5: Graphical representation of a boolean function

152 APPENDIX A. THEORY

Reduction of Binary Decision Diagrams

This graphical representation of a boolean function can, now, significantly be compacted.
This is achieved by three different operations.

The first step is to eliminate duplicate terminals. These are terminal nodes that represent
the same truth value. To eliminate the duplicates, all edges leading to a duplicate terminal
are redirected to one single node and all other duplicates of this node are removed. This
operation itself does not provide much compaction, however it paves the way for the two
further ones.

The result of this operation on the terminal nodes of the graph is shown for the example
in Figure A.6.

Figure A.6: Elimination of duplicate terminals

The second operation to reduce size of the BDD is the elimination of redundant tests
in the graph. These are indicated by nodes that have both, their 0-edge and their 1-edge
pointing to the same node in the graph. Such nodes indicate that the value of the variable
they are representing is not relevant for particular parts of the boolean function. All edges
that lead to such a node are redirected to the node’s only child-node and the node and its
two edges are removed from the graph.

This operation is illustrated for the example in Figure A.7. Figure A.7a shows that
elimination of duplicate terminals made obvious two redundant tests in the boolean function
and Figure A.7b displays the BDD after the reduction.

The third operation eliminates duplicate non-terminals in the graph. These are nodes that
represent the same variable and, all, have their 0-edges leading to one common node and their
1-edges commonly leading one other node. All edges pointing to one of these duplicate non-
terminals are redirected to a single one thereof and the other duplicates, together with all
their outbound edges, are removed from the graph.

The reduced example graph shows two such duplicates in Figure A.8a. The result of the
reduction operation is displayed in Figure A.8b.

These operations are repeated until no further reductions are possible and the final BDD
is obtained. The final reduced BDD for the example is given in Figure A.9.

Usually, such a reduced BDD is a very compact representation of the original boolean
function. However, the size of this graph largely depends on the specified ordering of variables.
Computing an optimal ordering of variables for a given boolean function is a demanding task,
but [19] points out that it is usually a good heuristic to order ’dependent’ variables near each
other.

A.4. BINARY DECISION DIAGRAMS 153

(a) Graph indicating two redundant tests (b) BDD after elimination of the re-
dundant tests

Figure A.7: Elimination of redundant tests in BDDs

(a) Graph indicating two duplicate
non-terminals

(b) BDD after elimination
of the duplicates

Figure A.8: Elimination of duplicate non-terminals

Figure A.9: Reduced Binary Decision Diagram

154 APPENDIX A. THEORY

Appendix B

Algorithms

B.1 Ordering of Variables

The algorithms presented here are not tailored to increase their efficiency but just outlined
to provide understanding of their operation. This is justified as they are only utilized for
off-line compilation and not for time-critical online calculations.

It has to be noticed that in this appendix the term ’variable’ will also be used for a node
that represents the variable in a graph.

Algorithm: OrderedList← OrderVariables(Graph,Variables,Initials,Inputs)

Input:
Acyclic causal graph (i.e. structure describing dependencies among all variables)
Set of all variables
Set of all initial variables
Set of all external input variables

Output: Ordered list of all variables

Description: The algorithm generates an ordered list for a set of variables by utilizing
a graph that represents interdependencies among the variables. It utilizes a heuristic that
allows the respective next ’comparison of partial assignment’ in the qualitative pre-selection
procedure as soon as possible

OrderedList←{}
Known← Initials
Remaining← setdiff(Variables,Known)
while not empty(Remaining)

NextVar ← GetNextVariable(Graph,Variables,Known,Inputs)
OrderedList ← append(OrderedList,NextVar)
Known ← append(Known,NextVar)
Remaining ← setdiff(Remaining,NextVar)

end

155

156 APPENDIX B. ALGORITHMS

Algorithm: NextVar← GetNextVariable(Graph,Variables,Known,Inputs)

Input:
Acyclic causal graph (i.e. structure describing dependencies among all variables)
Set of all variables
Set of all initial variables and variables already put into ordering
Set of all external input variables

Output: Next variable(s) to be added to the ordered list of all variables

Description: The algorithm utilizes the interdependencies imposed by the graph to deter-
mine the next variable in ordering. It uses the following heuristic:

Out of the set of all known variables, the graph’s structure probably imposes that only a
subset of these variables (plus the inputs) is needed to determine all other variables.

Further, partial assignments in qualitative search can be compared, if after specifying a
new variable some other variable falls out of this set of ’needed variables’.

The strategy is now – for all these variables that are ’needed’ – to evaluate the additional
variables that are required to be determined until this particular variable falls out of the
’needed’ set (i.e. the ’additionally needed’ variables). As a criterion which of the ’needed’
variables, then, is attempted to be removed from the ’needed’ set, the following heuristic is
used: Choose that variable for which the associated ’additionally needed’ set has a minimal
product of domain-sizes. The domain-size of a variable is the number of possible distinct
valuations.

If the variable is chosen, one variable out of the associated needed set that is already
specified by the ’known’ variables (i.e. a variable that has no or only ’known’ parents in the
graph) is selected as next variable in the ordering.

The algorithm uses some sub-functions on the graph that are only briefly explained here:

Outputs←GetSpecifiedOutputs(Graph,Known)
Returns all children of know variables that themselves are no know variables and have no
children

Reachable←GetReachable(Graph,Known,Inputs)
Determines all variables that are located along any path of directed edges starting at any of
the known variables or inputs

Influences←GetInfluences(Graph,Variables)
Determines all variables that are located along any path of directed edges that ends at the
specified variables

Children←GetChildren(Graph,variable)
Returns the children of a variable in the graph

B.1. ORDERING OF VARIABLES 157

Code:

if empty(GetSpecifiedOutputs(Graph,Known))

Undetermined←setdiff(Variables,Known)

Influences←GetInfluences(Graph,Undetermined)

Needed←intersect(Known,Influences)

Test←Needed

bestValue←∞
while not empty(Test)

v←extractAvariable(Test)

C←GetChildren(Graph,v)

Required←GetInfluences(Graph,C)

AdditionallyNeeded←setdiff(Required,Known)

value←product(domainSize(Additionally Needed))

if value¡bestValue

bestValue←value

bestTest←v

bestAdditional←Additionally Needed

end

Test←setdiff(Test,v)

end

NewVar←extractAvariable(bestAdditional)

else

NewVar←GetSpecifiedOutputs(Graph,Known)

end

158 APPENDIX B. ALGORITHMS

B.2 Compilation of tDAGs

Although trajectory graphs are based on Binary Decision Diagrams (BDDs) and can be
constructed and manipulated very similarly, they differ in that they do not use exactly two
terminal nodes representing boolean values true and false, but allow an arbitrary number
of terminal nodes representing transition likelihood costs.

In principle, construction of the trajectory DAGs could be accomplished by the same basic
procedure illustrated in appendix A.4. One could start with a tree-structure to represent the
set of qualitative transitions – encoded as boolean truth table – and associated likelihood
costs and then perform the reduction steps as presented in the appendix.

The algorithm presented here is an alternative that directly constructs tDAGs in their
reduced from the specification of transition likelihoods.

Algorithm:
tDAG ← Trans2TDAG(Transitions,LikelihoodCosts,OrderingIndex,Domains)

Input:
A matrix of transition specifications, where each line represents a single transition specifica-
tion and the columns represent the qualitative variables
A vector of the likelihood-costs associated to the lines of the transition-matrix
A vector of position indices associated to the columns of the matrix. This vector specifies
the qualitative variables’ positions in the common ordering of variables pre-specified for the
overall qualitative model.
The list of possible valuations for each variable

Output: A compact, directed acyclic graph encoding the set of qualitative transition spec-
ifications. Apart from the terminal node, this graph consists of nodes that represent the
qualitative variables Each of the nodes is left by a number of edges that represent particular
values of the variable. Additionally, each edge is labeled with a cost value, such that the sum
of edge costs along each directed path from the root node of the graph to one of its terminals
matches this terminal’s associated cost value.

Description: Compilation of this graph is a 3-step procedure:

• Determination of a binary representation of the transition specification

• Compilation of a Binary Decision Diagram like directed acyclic graph that represents
this binary transition specification

• Compilation of a representation of this graph, that, again uses the original multi-valued
qualitative variables and associated qualitative values

These steps are handled by different algorithms as follows:

BIndex ← Index2BIndex(OrderingIndex,Domains)
BTransitions ← Symbol2Binary(Transitions,Domains)
BDAG ← Trans2DAG(BTransitions,LikelihoodCosts,BIndex)
tDAG ← BDAG2tDAG(BDAG,Domains)

B.2. COMPILATION OF TDAGS 159

Algorithm:
BIndex ← Index2BIndex(OrderingIndex,Domains)

Input:
Vector of indices of qualitative variables corresponding to the columns of the transition ma-
trix in the common, pre-specified ordering of variables of the overall model
Domains of the qualitative variables to decide on the necessary binary variables

Output: Vector of index numbers for the binary representations

Description: The necessary number of binary variables to represent a multi-valued sym-
bolic variable with domain-size D is

dlog2(D)e.

Accordingly, index values are adapted by inserting new values between the original index
value and the next integer value

BIndex←{}
for i from 1 to length(OrderingIndex)

idx←OrderingIndex(i)
B← dlog2(length(Domains(i))e
for plus from 0 to B-1

BIndex←append(BIndex,idx+plus/B
end

end

Algorithm:
BTransitions ← Symbol2Binary(Transitions,Domains)

Input:
Matrix of transition specifications, where each line represents a single transition specification
and the columns represent the qualitative variables
Domains of the qualitative variables as a list of qualitative symbols for each qualitative vari-
able

Output:
Matrix of transition specifications, where the columns represent the binary variables used for
encoding the qualitative ones

Description: The columns of the transition matrix are adapted to the binary-variable-
representation by encoding the list-index of each symbol as binary number. For this, the
convention is used that the variable with the lowest index (by the definition of algorithm
’Symbol2Binary’ this is corresponds to the ’leftmost’ column in the binary representation of
a single column of the transition matrix) is the ’most significant bit’ (MSB).

160 APPENDIX B. ALGORITHMS

BTransitions←{}
for col from 1 to NumberOfColumns(Transitions)

Bcolumns←{}
for row from 1 to NumberOfLines(Transitions)

Symbol←Transitions(row,col)
BinaryCode←(BinaryNumberOf(IndexInListOf(Domain(col),Symbol)
Bcolumns←AddLineBelow(Bcolumns,BinaryCode)

end BTransitions←AddColumnsOnRight(BTransitions,Bcolumns)
end

Algorithm:
BDAG ← Trans2DAG(BTransitions,LikelihoodCosts,BIndex)

Input:
Binary valued matrix of transition specifications, where each line represents a single transition
specification and the columns represent the binary variables used to encode the qualitative
symbols
Vector of likelihood costs; each element is associated to the corresponding line of the transition
matrix
Vector of (introduced) ordering-indices corresponding to the columns of the transition matrix

Output:
BDD-like encoding of the transition specification.

Description: This algorithm constructs a BDD-like directed acyclic graph representing
the binary transition specifications. For this, the transition specification together with the
likelihood values is treated similarly to a boolean truth-table.

Direct construction of the graph starts from the terminal nodes. The algorithm then
determines the necessary parent nodes for these and connects them to the terminals. Then
graph construction is resumed from these parent nodes to their respective parents, until the
root node is reached. An illustrative example for this is provided below. (Figure B.1)

BDAG←CreateANodeForEachDistinctTerminalValue
for all terminal nodes

lines←FindLinesWithTheAssociatedCostValue(LikelihoodCosts)
AddAsExpansionInfoTo(BDAG(the terminal node),LikelihoodCosts(lines,all columns)
AddAsIndexInfo(BDAG(the terminal node),∞)

end
LayerCounter←length(BIndex)+1 while LayerCounter¿0
LayerCounter←LayerCounter-1 for all nodes in the topmost layer

CombinedExpansionMatrix←VerticalConcentation(ExpansionInfo(NodesInLayer))
end PossibleNewNodes←UnionOfLines(CombinedExpensionMatrix(all lines,all-but-

last columns))
Group these PossibleNewNodes with respect to outbound edges an targets

%example: a line in PossibleNewNodes is 010 and a node in the current topmost

B.2. COMPILATION OF TDAGS 161

% layer has an ExpansionInfo that includes the line 0100, this tells that the
% possible node is connected to the target node (because of the common 010
% by its 0-edge (because of the 0 in the last column)

for all identified groups AddNewNodeTo(BDAG,TheGroup)
AddAsExpansionInfoTo(BDAG(TheGroup),PossibleNewNodes(TheGroup))
AddAsIndexInfo(BDAG(TheGroup),BIndex(LayerCounter))
if both edges of the group point to the same child node

AddInfo’IsTmp’To(BDAG(TheGroup))
end
AddDirektedEdges(BDAG(TheGroup),Targets(TheGroup)), however
if one of the targets is marked as ’IsTmp’

AddDirektedEdge(BDAG(TheGroup),Child(Target(TheGroup))) instead
end

end
Remove all nodes marked ’IsTmp’ from the graph, except those of the topmost layer

end

(a) Transition
Specification

(b) Terminal nodes and groups for next layer

(c) Further construction of the graph (d) Final graph

Figure B.1: Illustration of the ’Trans2TDAG’ algorithm

162 APPENDIX B. ALGORITHMS

Algorithm:
tDAG ← BDAG2tDAG(BDAG,Domains)

Input:
Directed acyclic graph (DAG) that represents transition specifications by utilizing binary
representations for the symbolic values

Output:
DAG that represents the same transition specifications but uses the original symbolic values

Description: This algorithm removes the binary representation of symbolic values that was
needed for BDD generation. Additionally, it maps the cost values associated to the terminal
nodes to the graphs edges, such that the sum of edge costs along each directed path from the
root node of the graph to one of its terminals matches this terminal’s associated cost value.

tDAG←BDAG(RootNode)
NodeList←BDAG(RootNode)
while not emptyNodeList

node←NodeList(first)
var←GetVariableOf(BDAG(node))
symbols←Domains(var)
for all symbols

sym←the next symbol
BinarySequence←Symbol2Binary(sym)
if it is possible to follow a path according to BinarySequence from node

% Notice: check the levels of the node along the path, as BinarySequence does
% not specify that exactly the sequence of edges has to be taken, but that
% at particular index-levels a particular edge has to be taken

target←TargetNodeOfTheSpecifiedPath
NodeList←union(NodeList,target)
if not IsIn(tDAG,target)

AddNodeTo(tDAG,target)
end
AddEdge(tDAG(node),tDAG(target));
AddEdgeLabel(tDAG(node),tDAG(target),sym);

end
end
NodeList←setdiff(NodeList, node);

end
Recursively assign to each node of tDAG the minimum likelihood costs of its children
for all edges in tDAG

AssignCostValueToEdge(Cost(destination node)−Cost(source node)
% This works because one terminal node always has value 0

end

