# DIPLOMARBEIT

Kraftbasierte Bemessung erdbebenbeanspruchter Mauerwerksbauten auf der Grundlage von Eurocode 8

> ausgeführt am Institut für Betonbau

> > durch Gerald Lanz

Betreuer O. Univ.-Prof. Dipl.-Ing. Dr. techn. Lutz Sparowitz

Graz, Juni 2007

# Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche erkenntlich gemacht habe.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Graz, 11. Juni 2007

Unterschrift

# Danksagung

Ich danke Herrn O.Univ.-Prof. Dipl.-Ing. Dr. techn. Lutz Sparowitz für die Betreuung dieser Diplomarbeit.

Weiters möchte ich mich bei Herrn Dipl.-Ing. Karl Heinz Schlöglmann und Herrn Dipl.-Ing. Dr. techn. Helmut Hartl bedanken, die mir durch zahlreiche wissenschaftliche Ratschläge geholfen haben, diese Arbeit in eine erfolgreiche Richtung zu lenken.

Abschließend danke ich Herrn Dipl.-Ing. Dr. techn. Gottfried Stimmeder und Herrn Dipl.-Ing. (FH) Mario Kubista für die entgegengebrachte Hilfsbereitschaft, der Firma Wienerberger Ziegelindustrie GmbH für die Ermöglichung und die finanzielle Unterstützung dieser Diplomarbeit, sowie meinem ehemaligen Lehrer, Herrn Dipl.-Ing. Johann Loibnegger, der mich erstmalig auf das Thema Erdbebeningenieurwesen aufmerksam machte.

# Kurzfassung

### Titel: Kraftbasierte Bemessung erdbebenbeanspruchter Mauerwerksbauten auf der Grundlage von Eurocode 8

**Schlagwörter:** Mauerwerk, Eurocode 8, kraftbasierte Bemessungsverfahren, Antwortspektrum, Zeitverlauf, Verfüllziegel

Die derzeit gültigen nationalen Normen sollen Anfang 2009 im Zuge der europäischen Harmonisierung durch die entsprechenden Eurocodes endgültig ersetzt werden. An das Baumaterial Ziegelmauerwerk werden dadurch – insbesondere hinsichtlich seismischer Einwirkungen – normativ höhere Anforderungen gestellt.

Im Auftrag der Firma Wienerberger Ziegelindustrie GmbH wird ein vorgegebenes viergeschoßiges Wohngebäude für die Erdbeben-Bemessungssituation in Österreich analysiert. Der Berechnung wird die maximale Bemessungsbodenbeschleunigung der Erdbebenzone 3 zugrunde gelegt. Die Beanspruchungsgrößen infolge Erdbebeneinwirkung werden mit Hilfe des vereinfachten Antwortspektrumverfahrens, des multimodalen Antwortspektrumverfahrens sowie des Zeitverlaufsverfahrens ermittelt.

Ein Vergleich der verwendeten Berechnungsverfahren und -ergebnisse zeigt, dass dem vereinfachten Antwortspektumverfahren gegenüber den anderen Verfahren bei annähernd vergleichbaren Ergebnissen hinsichtlich Zeitaufwand und Komplexität der Vorzug zu geben ist.

Da das vorliegende Gebäude in einer Gebäuderichtung große Öffnungen bzw. zu geringe Schubwandquerschnitte aufweist, kann der Schubnachweis nicht erbracht werden. Zur Erhöhung der Schubtragfähigkeit werden Lösungsvorschläge gegeben. Auf die Substitution von Planziegelmauerwerk einer aussteifenden Ziegelwand durch Verfüllziegelmauerwerk mit der Erarbeitung eines Bemessungsvorschlages wird detailliert eingegangen.

# Abstract

# Title: Force-Based Seismic Design of Masonry According to Eurocode 8

**Keywords:** Eurocode 8, masonry, force based design method, response spectrum, time-history, filling brick

Due to the European harmonization the current valid national standards will be replaced by the Eurocodes at the beginning of 2009. Regarding seismical effects normative demands on masonry increase significantly.

By the order of Wienerberger Ziegelindustrie GmbH a four-storey building was analysed seismically. The calculation is based on the maximum design ground acceleration of the Austrian seismic zone 3. Seismic effects are determined by the lateral force method of analysis, the modal response spectrum analysis and the time-history analysis.

A comparison of the used calculation-procedures and -results ranks first the lateral force method of analysis because of its low expenditure of time and simplicity by nearly identical results.

Large openings and too few shear walls in one direction of the selected building would lead to shear failure. For this reason several solutions for increasing shear resistance are shown. One significant hollow clay brick stiffening wall is substituted by a filling brick one. Therefor design recommendations are developed.

# Inhaltsverzeichnis

| 1 | Einl | tung 1                                                                                                                                     |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1  | Problemstellung und Motivation                                                                                                             |
|   | 1.2  | Auftrag und Ziel                                                                                                                           |
|   | 1.3  | Abgrenzung                                                                                                                                 |
| 2 | Erdl | ebeneinwirkung 3                                                                                                                           |
|   | 2.1  | Seismologische Grundlagen                                                                                                                  |
|   |      | 2.1.1 Arten von Erdbeben                                                                                                                   |
|   |      | 2.1.2 Merkmale von Erdbeben                                                                                                                |
|   |      | 2.1.3 Erdbebenskalen                                                                                                                       |
|   |      | 2.1.4 Erdbebenwellen                                                                                                                       |
|   | 2.2  | Erdbeben in Österreich                                                                                                                     |
|   |      | 2.2.1 Geschichtliche Entwicklung                                                                                                           |
|   |      | 2.2.2 Schadensbeben in Österreich                                                                                                          |
|   | 2.3  | Erdbebenzonen                                                                                                                              |
|   |      | 2.3.1 Bemessungsbodenbeschleunigung                                                                                                        |
|   |      | 2.3.2 Bedeutungskategorien und Bedeutungsbeiwerte                                                                                          |
|   | 2.4  | Baugrundbeschaffenheit                                                                                                                     |
|   | 2.5  | Darstellung der Erdbebeneinwirkung                                                                                                         |
|   |      | 2.5.1 Ermittlung von elastischen Antwortspektren                                                                                           |
|   |      | 2.5.2 Antwortspektren gemäß [ÖNORM EN 1998-1]                                                                                              |
|   |      | 2.5.3 Zeitverläufe der Bodenbewegung                                                                                                       |
|   |      |                                                                                                                                            |
| 3 | Kra  | basierte Berechnungsverfahren 24                                                                                                           |
|   | 3.1  | Ersatzkraftverfahren                                                                                                                       |
|   |      | 3.1.1 Theoretische Grundlagen $\ldots 24$                                                                                                  |
|   |      | 3.1.2 Anwendungsgrenzen gemäß [ONORM EN 1998-1]                                                                                            |
|   |      | 3.1.3 Einwirkungsermittlung gemäß [ONORM EN 1998-1] 28                                                                                     |
|   | 3.2  | Multimodales Antwortspektrumverfahren 34                                                                                                   |
|   |      | 3.2.1 Theoretische Grundlagen 34                                                                                                           |
|   |      | 3.2.2 Anwendungsgrenzen gemäß [ONORM EN 1998-1]                                                                                            |
|   |      | 3.2.3 Einwirkungsermittlung gemäß [ONORM EN 1998-1]                                                                                        |
|   | 3.3  | Zeitverlaufsverfahren                                                                                                                      |
|   |      | 3.3.1 Theoretische Grundlagen $\ldots$ 40                                                                                                  |
|   |      | 3.3.2 Anwendungsgrenzen gemäß [ONORM EN 1998-1]                                                                                            |
|   |      | 3.3.3 Einwirkungsermittlung gemäß [ONORM EN 1998-1] 41                                                                                     |
| 4 | Ben  | essung von Mauerwerksbauten für Erdbebeneinwirkung 43                                                                                      |
|   | 4.1  | Anwendungsbereich                                                                                                                          |
|   | 4.2  | Baustoffe und Ausführung                                                                                                                   |
|   |      | 4.2.1 Mindestfestigkeit von Mauersteinen                                                                                                   |
|   |      | $4.2.2  \text{M\"ortel} \dots \dots$ |
|   |      | 4.2.3 Mauerwerksverbund                                                                                                                    |

|   | 4.3  | Bauwe    | erkstypen und Verhaltensbeiwerte                                                   | 44  |
|---|------|----------|------------------------------------------------------------------------------------|-----|
|   | 4.4  | Tragw    | rerksberechnung                                                                    | 45  |
|   | 4.5  | Ausleg   | gungskriterien und Konstruktionsregeln                                             | 45  |
|   |      | 4.5.1    | Zusätzliche Anforderungen für unbewehrtes Mauerwerk                                | 45  |
|   |      | 4.5.2    | Zusätzliche Anforderungen für eingefasstes Mauerwerk                               | 46  |
|   |      | 4.5.3    | Zusätzliche Anforderungen für bewehrtes Mauerwerk                                  | 46  |
|   | 4.6  | Sicher   | heitsnachweise                                                                     | 47  |
|   |      | 4.6.1    | Regeln für "einfache Mauerwerksbauten"                                             | 47  |
| 5 | Vors | stellung | g des Projekts                                                                     | 49  |
|   | 5.1  | Allgen   | neines                                                                             | 49  |
|   | 5.2  | Baust    | offe                                                                               | 49  |
|   |      | 5.2.1    | Decken und Kellergeschoß                                                           | 49  |
|   |      | 5.2.2    | Tragende Wände                                                                     | 49  |
|   | 5.3  | Geom     | etrie                                                                              | 50  |
|   |      | 5.3.1    | Planskizzen                                                                        | 50  |
|   | 5.4  | Einwi    | rkungen nach [ÖNORM EN 1991-1-1] sowie [ÖNORM B 1991-1-1]                          | 50  |
|   |      | 5.4.1    | Ständige Einwirkungen                                                              | 50  |
|   |      | 5.4.2    | Veränderliche Einwirkungen                                                         | 51  |
|   |      | 5.4.3    | Anwendung der Regeln für "einfache Mauerwerksbauten"                               | 55  |
| 6 | Mus  | sterstat | ik "Vereinfachtes Antwortspektrumverfahren"                                        | 56  |
| - | 6.1  | Erdbe    | beneinwirkung                                                                      | 56  |
|   | -    | 6.1.1    | Allgemeines                                                                        | 56  |
|   |      | 6.1.2    | Ermittlung der Gesamtmasse des Bauwerks                                            | 56  |
|   |      | 6.1.3    | Abschätzung der Eigenschwingungsdauer gemäß [ÖNORM EN 1998-1].                     | 59  |
|   |      | 6.1.4    | Gesamterdbebenkraft                                                                | 59  |
|   |      | 6.1.5    | Verteilung der horizontalen Erdbebenkräfte                                         | 59  |
|   | 6.2  | Ermit    | tlung der Schnittkräfte für die Bemessung                                          | 61  |
|   |      | 6.2.1    | Tragfähigkeitsbedingung                                                            | 61  |
|   |      | 6.2.2    | Schnittkräfte für den Nachweis unbewehrter Mauerwerkswände unter                   |     |
|   |      |          | vorwiegend vertikaler Belastung                                                    | 62  |
|   |      | 6.2.3    | Schnittkräfte für den Nachweis unbewehrter Mauerwerkswände unter<br>Schubbelestung | 72  |
|   | 63   | Remes    |                                                                                    | 77  |
|   | 0.0  | 631      | Nachweis unbewehrter Mauerwerkswände unter vorwiegend vertikaler                   |     |
|   |      | 0.0.1    | Relasting                                                                          | 77  |
|   |      | 632      | Nachweis unbewehrter Mauerwerkswände unter Schubbelastung                          | 83  |
|   |      | 6.3.3    | Schubnachweis mit Verfüllziegelmauerwerk                                           | 85  |
| 7 | Mus  | sterstat | ik Multimodales Antwortspektrumverfahren"                                          | 101 |
| • | 7 1  | Allgen   | neines                                                                             | 101 |
|   | 7.2  | Syster   | ngeometrie mittels Modellobiekten                                                  | 101 |
|   | 7.3  | Baust    | offe                                                                               | 101 |
|   |      | 7.3.1    | Materialkennwerte                                                                  | 101 |
|   |      | 7.3.2    | Querschnittswerte                                                                  | 102 |
|   | 7.4  | Gener    | ierung des Elementnetzes                                                           | 104 |
|   |      | 7.4.1    | Berechnungsmethode                                                                 | 104 |
|   |      | 7.4.2    | Elementbeschreibungen                                                              | 104 |
|   |      | 7.4.3    | Konvergenzuntersuchung                                                             | 104 |
|   |      |          |                                                                                    |     |

|     | 7.5    | Definition sowie Kombination der Lastfälle und Einwirkungen                                     | 106                  |
|-----|--------|-------------------------------------------------------------------------------------------------|----------------------|
|     |        | 7.5.1 Erdbebeneinwirkung                                                                        | 107                  |
|     |        | 7.5.2 Lastfall "Zufällige Torsionseinwirkung"                                                   | 108                  |
|     |        | 7.5.3 Überlagerung der Bebenkomponenten                                                         | 108                  |
|     |        | 7.5.4 Einwirkungskombination                                                                    | 111                  |
|     | 7.6    | Durchführung der Berechnung                                                                     | 111                  |
|     | 7.7    | Berechnungsergebnisse                                                                           | 111                  |
|     |        | 7.7.1 Eigenfrequenzen. Eigenformen und Auflagerreaktionen                                       | 112                  |
|     | 78     | Bemessung                                                                                       | 113                  |
|     | 1.0    | 7.8.1 Nachweis unbewehrter Mauerwerkswände unter vorwiegend vertikaler                          | 110                  |
|     |        | Belastung                                                                                       | 113                  |
|     |        | 7.8.2 Nachweis unbewehrter Mauerwerkswände unter Schubbelastung                                 | 113                  |
|     |        | 1.0.2 Nachweis undewein ter Mauer werkswahde unter Schubbelastung                               | 110                  |
| 8   | Mus    | terstatik "Zeitverlaufsverfahren"                                                               | 117                  |
|     | 8.1    | Allgemeines                                                                                     | 117                  |
|     | 8.2    | Erdbebeneinwirkung                                                                              | 117                  |
|     |        | 8.2.1 Auswahl der Beschleunigungszeitverläufe                                                   | 117                  |
|     |        | 8.2.2 Modifizierung der Beschleunigungszeitverläufe                                             | 119                  |
|     |        | 8.2.3 Theoretischer Hintergrund der Tragwerksplanungssoftware [SW2]                             | 119                  |
|     |        | 8.2.4 Berechnungsvorgaben                                                                       | 121                  |
|     | 83     | Berechnungsergebnisse                                                                           | 122                  |
|     | 0.0    |                                                                                                 | 122                  |
| 9   | Verg   | leich der Berechnungsverfahren sowie Evaluierung der Ergebnisse                                 | 125                  |
|     | 9.1    | Vergleich der Berechnungsverfahren                                                              | 125                  |
|     |        | 9.1.1 Bauwerksmodell                                                                            | 125                  |
|     |        | 9.1.2 Darstellung der Erdbebeneinwirkung                                                        | 125                  |
|     |        | 9.1.3 Bestimmung der Eigenschwingungsdauer                                                      | 125                  |
|     |        | 9.1.4 Zufällige Torsionswirkungen                                                               | 126                  |
|     | 9.2    | Vergleich der Berechnungsergebnisse                                                             | 126                  |
|     | 0      | 9.2.1 Eigenschwingungsdauer                                                                     | 126                  |
|     | 93     | Evaluierung der Ergebnisse                                                                      | 128                  |
|     | 0.0    | 9.3.1 Normalkraftnachweise                                                                      | 128                  |
|     |        | 9.3.2 Schubkraftnachweise                                                                       | 120                  |
|     |        |                                                                                                 | 120                  |
| 10  | Zusa   | nmmenfassung, Schlussfolgerungen und Ausblick                                                   | 132                  |
|     | 10.1   | Zusammenfassung                                                                                 | 132                  |
|     | 10.2   | Schlussfolgerungen                                                                              | 132                  |
|     | 10.3   | Ausblick                                                                                        | 133                  |
|     |        | 10.3.1 Normalkraftnachweis gemäß [ÖNORM EN 1996-1-1] Anhang C                                   | 133                  |
|     |        | 10.3.2 Schubnachweis unter Berücksichtigung gerissener Bereiche                                 | 133                  |
|     |        | 10.3.3 Zeitverlaufsverfahren vs. Verhaltensbeiwert                                              | 135                  |
|     |        | $10.0.0$ $\Delta_{\rm Cluvellaubvellaubvellautellovellautellovellovelle$                        | TO0                  |
|     |        |                                                                                                 | 100                  |
| Lit | eratu  | rverzeichnis                                                                                    | vi                   |
| Lit | teratu | Allgemeine Literatur                                                                            | vi<br>vii            |
| Lit | teratu | Inverzeichnis         Allgemeine Literatur         Normen und Richtlinien                       | vi<br>vii<br>ix      |
| Lit | teratu | Inverzeichnis         Allgemeine Literatur         Normen und Richtlinien         Onlinequellen | vi<br>vii<br>ix<br>x |

# 1 Einleitung

### 1.1 Problemstellung und Motivation

In Österreich wurde das Erdbebenrisiko lange Zeit kaum beachtet und deutlich unterschätzt, obwohl jährlich im Durchschnitt ca. 40 Erdbeben registriert werden. Diese Beben sind meist schwach, doch ereignen sie sich in jenen Teilen des Bundesgebietes, die für stärkere Beben mit erheblichen Gebäudeschäden bereits aus der Geschichte her bekannt sind. Allein diese Tatsache verdeutlicht die Notwendigkeit einer erdbebensicheren Planung und Konstruktion.

Anfang 2009 werden die derzeit gültigen nationalen Normen im Zuge der europäischen Harmonisierung durch die entsprechenden Eurocodes endgültig ersetzt. Das Baumaterial Ziegelmauerwerk wird dadurch – insbesondere hinsichtlich seismischer Einwirkungen – normativ vor neue Herausforderungen gestellt. Es stehen für die Berechnung der Erdbebeneinwirkung gemäß [ÖNORM EN 1998-1] verschiedenste Verfahren zur Verfügung, deren Eignung für den Mauerwerksbau kritisch zu hinterfragen ist. Für die Bemessung kommt erschwerend hinzu, dass die in der [ÖNORM EN 1996-3] angegebenen vereinfachten Berechnungsmethoden für Bemessungssituationen bei Erdbeben nicht mehr verwendet werden dürfen.

### 1.2 Auftrag und Ziel

Im Auftrag der Firma Wienerberger Ziegelindustrie GmbH soll ein vorgegebenes viergeschoßiges Wohngebäude für die Erdbeben-Bemessungssituation analysiert werden. Sämtlichen Berechnungen soll eine Bemessungsbodenbeschleunigung von  $a_g = 0,99 \text{ m/s}^2$  zugrunde gelegt werden. Diese repräsentiert den Maximalwert der Erdbebenzone 3 in Österreich. Zum Einen soll das erforderliche theoretische Hintergrundwissen der Berechnungsmethoden

- vereinfachtes Antwortspektrumverfahren,
- multimodales Antwortspektrumverfahren und
- Zeitverlaufsverfahren

erarbeitet werden, und zum Anderen soll deren praktische Anwendung anhand des vorgegebenen Wohngebäudes gezeigt werden. Ein Vergleich der Verfahren und -ergebnisse soll die notwendige Hilfestellung zur Beurteilung liefern, welcher Berechnungsmethode hinsichtlich Zeitaufwand und Komplexität der Vorzug zu geben ist.

### 1.3 Abgrenzung

Im Rahmen dieser Diplomarbeit werden ausschließlich die in Abschnitt 1.2 genannten Verfahren gemäß [ÖNORM EN 1998-1] zur Berechnung der Erdbebeneinwirkung herangezogen. Die Erdbeben-Beanspruchungen und die Beanspruchungen infolge anderer, bei der Erdbebenbemessung auftretenden Einwirkungen, werden auf der Grundlage eines

- homogenen,
- isotropen und

• linear-elastischen

Materialmodells ermittelt. Geometrische Nichtlinearitäten bleiben unberücksichtigt. Die Arbeit konzentriert sich hinsichtlich der Bemessung auf den Bereich Mauerwerksbau. Die Bemessung des vorgegebenen Wohnbaus erfolgt ausschließlich kraftbasiert. Auf die Ermittlung von Schnee- und Windlasten wird verzichtet.

# 2 Erdbebeneinwirkung

### 2.1 Seismologische Grundlagen

### 2.1.1 Arten von Erdbeben

Es können zwei Hauptgruppen von Erdbeben unterschieden werden [URL1]:

- natürliche und
- induzierte Erdbeben.

Zu den natürlichen Erdbeben zählen tektonische und vulkanische Beben sowie Einsturzbeben. Tektonische Beben (Dislokationsbeben) werden durch schlagartige Bruchvorgänge in der Erdkruste hervorgerufen. Da sich die Erdkruste infolge geothermischer Strömungen dauernd in Bewegung befindet, ändert sich auch der Spannungszustand entsprechend. Erreichen die tektonischen Spannungen entlang einer meist schon existierenden Bruchfläche (Verwerfung, Plattenrand) die Bruchfestigkeit des Gesteins (Scher-, Zug-, oder Druckfestigkeit), ereignet sich ein Bruch mit plötzlichen Verschiebungen, welcher Auslöser für das Erdbeben ist. Dabei ensteht ein neuer Spannungszustand mit kleineren Spannungen als kurz vor Erreichen der Bruchfestigkeit des Gesteins (Entspannungsvorgang). In Abb. 2.1 sind die Verformungs- und Verschiebungsmöglichkeiten von Gesteinsblöcken, welche zu einem Erdbeben führen, schematisch dargestellt.

Vulkanische Erdbeben entstehen durch rasche örtliche Veränderung der Temperatur- und Druckverhältnisse im Erdinneren. Bezüglich der Auswirkungen auf Bauwerke stehen sie gemeinsam mit den Einsturzbeben (z. B. Dolinen im Karst, Bergbau) zahlen- und stärkemäßig im Hintergrund [Bac02b, Fle93].

Erdbeben, welche durch anthropogene Eingriffe in die Natur verursacht werden, bezeichnet man als induzierte Beben. Als Ursachen können beispielsweise das Auffüllen eines Stausees, Prozesse der Rohstoffentnahme aus dem Erdinneren, Sprengungen und ober- bzw. unterirdische Atombombenexplosionen genannt werden [Ham97].

### 2.1.2 Merkmale von Erdbeben

Der Ausgangspunkt eines Bebens im Erdinneren – der Ort wo der Bruch in der Erdkruste beginnt – wird als Hypozentrum (Herd) bezeichnet (Abb. 2.2). Der Punkt an der Erdoberfläche über dem Herd ist das Epizentrum. Der Abstand h zwischen dem Hypo- und Epizentrum wird als Herdtiefe definiert. Man unterscheidet Flachbeben ( $h \leq 70$  km) und Tiefbeben ( $h \approx$ 70 km bis 700 km). Im Schüttergebiet werden die Bodenbewegungen ohne die Zuhilfenahme von Messinstrumenten verspürt (MSK-Intensität grösser als 3). Linien gleicher Intensität auf der Erdoberfläche werden im Erdbebeningenieurwesen als Isoseisten<sup>1</sup> bezeichnet (Abb. 2.3) [Fle93].

<sup>&</sup>lt;sup>1</sup>iso (griech.) = gleich und seistos (griech.) = erschüttert



Abbildung 2.1: Schematische Darstellung der Entstehung von Erdbeben: a) Verformung und Verschiebung von Blöcken, b) mögliche Blockverschiebungen [Bac02b]



Abbildung 2.2: Schnitt durch das Herdgebiet [Fle93]



Abbildung 2.3: Isoseistenkarte des Bebens vom 27. Februar 1768 in Brunn am Steinfeld [Ham97]

#### 2.1.3 Erdbebenskalen

### Magnitudenskala (Richterskala)

Die Magnitude M ist ein Mass für die bei einem Erdbeben im Herd in Form elastischer Wellen abgestrahlte Energie. Es gilt folgender empirischer Zusammenhang [Bac02b]:

$$\log E = 11, 8 + 1, 5 \cdot M \tag{2.1}$$

Darin stellt E die Herdenergie dar. Ist die Herdlänge  $l_0$  in km bekannt, kann über folgenden empirischen Zusammenhang die Magnitude M berechnet werden [Fle93]:

$$M = 5,65 + 0,98 \cdot \log l_0 \tag{2.2}$$

Um die Magnitudenskala (auch benannt nach ihrem Erfinder C. F. Richter) von der Intensitätsskala zu unterscheiden, wird sie oft als "nach oben offene" Skala bezeichnet. Da es sich – wie aus Glg. 2.1 ersichtlich – um eine logarithmische Skala handelt, weist ein Erdbeben der Magnitude 7 eine ca. 30 Mal größere Herdenergie auf, als ein Erdbeben der Magnitude 6.

$$\log E_1 = 11, 8 + 1, 5 \cdot 7 \to \log E_1 = 1,995 \cdot 10^{22}$$
$$\log E_2 = 11, 8 + 1, 5 \cdot 6 \to \log E_2 = 6,310 \cdot 10^{20}$$
$$\frac{\log E_1}{\log E_2} = \frac{1,995 \cdot 10^{22}}{6,310 \cdot 10^{20}} \cong 30$$

Magnituden können innerhalb folgender Bereiche liegen [Fle93]:

- M=1-2 bei gerade noch spürbaren Flachherdbeben
- M=5-6 bei den stärksten Ereignissen in Österreich und Deutschland seit 1800
- M=8,7 bei den größten Erdbeben auf der Erde seit 1900.

### Intensitätsskala

Die Intensität I ist ein Maß für die Wahrnehmbarkeit eines Erdbebens an der Erdoberfläche und wird von folgenden Parametern beeinflusst [Bac02b]:

- Magnitude
- Frequenzgehalt an der Quelle
- Herdtiefe
- Herdentfernung vom Standort
- Geologie/Topografie
- Lokaler Untergrund/Baugrund
- Frequenzgehalt am Standort
- Dauer des Bebens am Standort

|      |                                                                                                                                                                                                                                                                                                                                                                                |    | Österreich           |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|--|--|
| Grad | Maximale Erdbebenwirkungen an der Erdoberfläche                                                                                                                                                                                                                                                                                                                                | ne | $a_{ m gR}$          |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                |    | m/s <sup>2</sup>     |  |  |
| l    | Nicht fühlbar: Wird nur von Erdbebeninstrumenten registriert.                                                                                                                                                                                                                                                                                                                  |    |                      |  |  |
| II   | Kaum bemerkbar: Wird nur vereinzelt von ruhenden Personen wahrgenommen.                                                                                                                                                                                                                                                                                                        |    |                      |  |  |
| III  | Schwach fühlbar: Wird von wenigen Personen in Gebäuden wahrgenommen, Lampen schwingen leicht.                                                                                                                                                                                                                                                                                  |    |                      |  |  |
| IV   | Deutlich fühlbar: Wird im Freien vereinzelt, in Gebäuden von vielen Personen wahrgenommen. Einige Schlafende erwachen. Geschirr und Fenster klirren.                                                                                                                                                                                                                           | 0  | bis 0,35             |  |  |
| V    | Stark fühlbar: Wird im Freien von einigen, in Gebäuden von allen wachen Personen wahrgenommen. Viele Schlafende erwachen. Hängende Gegenstände pendeln stark, angelehnte Gegenstände können umfallen. Gelegentlich treten Haarrisse im Verputz auf.                                                                                                                            |    |                      |  |  |
| VI   | Leichte Gebäudeschäden: Viele Menschen flüchten aus den Häusern ins Freie.                                                                                                                                                                                                                                                                                                     |    |                      |  |  |
|      | Möbel können von der Stelle gerückt werden. An vielen Hausern entstehen leichte<br>Schäden (Risse im Verputz), von älteren Häusern können Verputzteile, Dachziegel<br>oder Schornsteine herabfallen. Quellschüttungen können sich ändern, es können<br>Trübungen von Quellwässern auftreten.                                                                                   |    | über 0,35<br>bis 0,5 |  |  |
| VII  | Gebäudeschäden: Die meisten Personen erschrecken und flüchten ins Freie.<br>Gegenstände fallen aus Regalen. An vielen Häusern solider Bauart treten mäßige                                                                                                                                                                                                                     | 2  | über 0,5 bis<br>0,75 |  |  |
|      | Schäden auf (kleine Mauerrisse, größere Verputzteile fallen ab, Risse an<br>Schornsteinen, Schornsteine fallen herab). Ältere Gebäude zeigen häufig Mauerrisse<br>oder Schornsteineinstürze, vereinzelt auch Spalten im Mauerwerk – Einsturz von<br>Zwischenwänden. Auftreten oder Versiegen von Quelien. Erdrutsche, Fels- oder<br>Bergstürze können ausgelöst werden.        | 3  | über 0,75<br>bis 1,0 |  |  |
| VIII | Schwere Gebäudeschäden: Viele Personen verlieren das Gleichgewicht. Selbst<br>schwere Möbel werden verschoben und zum Teil umgeworfen. An vielen Gebäuden<br>einfacher Bausubstanz treten schwere Schäden auf, d. h. Giebelteile und<br>Dachgesimse stürzen ein. Einige Gebäude sehr einfacher Bauart stürzen ein.<br>Bodenrisse können auftreten. Bodenverflüssigung möglich. |    |                      |  |  |
| IX   | Zerstörend: Allgemeine Panik unter den Betroffenen. Viele schlecht gebaute oder alte Häuser stürzen ein, andere Gebäude werden stark beschädigt.                                                                                                                                                                                                                               | 4  | über 1,0             |  |  |
| x    | Umfangreiche Zerstörungen: Viele gut gebaute Häuser werden zerstört oder<br>erleiden schwere Beschädigungen. Mögliche Schäden an Dämmen und Brücken.                                                                                                                                                                                                                           |    |                      |  |  |
| XI   | Verwüstend: Die meisten Bauwerke werden zerstört. Straßen werden unbrauchbar.                                                                                                                                                                                                                                                                                                  |    |                      |  |  |
| XII  | Vollständig verwüstend: Hoch- und Tiefbauten werden vernichtet.                                                                                                                                                                                                                                                                                                                |    |                      |  |  |

Abbildung 2.4: Intensitäts-Skala, basierend auf der Europäischen Makroseismischen Skala 1998 (EMS-98) – Kurzfassung [ÖNORM B 1998-1]

Daraus ist ersichtlich, dass ein Erdbeben mit bestimmter Magnitude M eine von Ort zu Ort verschiedene Intensität I besitzen kann. Um die bei einem Erdbeben auftretenden Schäden bzw. Auswirkungen auf Personen zu klassifizieren, wird die zwölfteilige Intensitätsskala (auch makroseismische Skala genannt) verwendet. Die in [ÖNORM B 4015] enthaltene Intensitätsskala beschreibt nicht nur die Auswirkungen eines Erdbebens an der Erdoberfläche, sondern weist den unterschiedlichen Intensitätsgraden auch entsprechende Erdbebenzonen in Österreich zu (Abb. 2.4). Darüber hinaus gilt für Starkbeben in Östereich ( $I \ge 6$  und  $h \approx 10$  km) folgender statistischer Zusammenhang zwischen Magnitude M und Epizentralintensität  $I_0$  (Maximalintensität im Epizentrum) [Fle93]:

$$M = 0, 7 \cdot I_0 - 0, 1 \tag{2.3}$$



Abbildung 2.5: Verschiedene Arten von Erdbebenwellen [Bac02b]

### 2.1.4 Erdbebenwellen

Durch Bruchvorgänge wird im Herd Bewegungsenergie freigesetzt, welche für die Entstehung von Wellen unterschiedlichster Art verantwortlich ist:

- Raumwellen
  - Primärwellen
  - Sekundärwellen
- Oberflächenwellen
  - Love-Wellen
  - Rayleigh-Wellen

Neben Raumwellen, die in der Erdkruste und auch im Erdinneren auftreten, existieren Oberflächenwellen, die sich entlang der Erdoberfläche ausbreiten. Unter den Raumwellen unterscheidet man Primärwellen (P-Wellen, Kompressions-Dilatationswellen) und Sekundärwellen (S-Wellen, Scherwellen). Bei den sog. P-Wellen bewegen sich die Teilchen in Fortpflanzungsrichtung vorwärts und zurück (Abb. 2.5, a). Dabei kann die Ausbreitung im festen Gestein, im flüssigen Magma oder im Wasser erfolgen. Im Gegensatz zu den P-Wellen bewegen sich die Teilchen bei S-Wellen quer zur Fortpflanzungsrichtung hin und her (Abb. 2.5, b). Da flüssiges Magma bzw. Wasser keine Scherfestigkeit besitzt, findet die Ausbreitung nur – etwa halb so schnell wie bei P-Wellen – im festen Gestein statt.

Oberflächenwellen können in Love- und Rayleigh-Wellen eingeteilt werden. Bei Erstgenannten bewegen sich die Erdpartikel horizontal quer zur Fortpflanzungsrichtung (Abb. 2.5, c); Rayleigh-Wellen hingegen sind Wasserwellen sehr ähnlich (Abb. 2.5, d).



Abbildung 2.6: Epizentrenverteilung in Österreich seit 1900 [Ham97]

### 2.2 Erdbeben in Österreich

Obwohl die österreichische Seismizität nicht mit der der Türkei oder Japans vergleichbar ist, so zeigt doch ein Blick in die Geschichte, dass sich auch in Österreich praktisch in jedem Jahrhundert schwere Erdbeben (Epizentralintensität  $I_0 \geq 8$ ) ereignet haben. Allein seit 1900 wurden im österreichischen Bundesgebiet mehr als 1500 wahrnehmbare Erdbeben aufgezeichnet (Abb. 2.6). Folgende Beben waren die Stärksten [Grü98]:

- 8. Okt. 1927, Schwadorf (Niederösterreich), Intensität VIII, Magnitude ca. 5,2
- 7. Okt. 1930, Namlos (Tirol), Intensität VIII, Magnitude ca. 5,3
- 3. Okt. 1936, Obdacher Sattel (Steiermark), Intensität VII-VIII, Magnitude ca. 5,1
- 16. April 1972, Seebenstein (Niederösterreich), Intensität VII-VIII, Magnitude 5,3

Die Epizentrenverteilung spiegelt sich auch in der Erdbebengefährdungskarte Österreichs wieder (Abb. 2.7). Darin zählen etwa 16 % der Fläche zur Erdbebenzone 3 und 4 % zur Erdbebenzone 4 [Fle05]. In diesem Zusammenhang seien noch die bekanntesten seismotektonischen Störungszonen der Vollständigkeit halber erwähnt [Grü98]:

- das Wiener Becken,
- die Mur-Mürztal-Störung,
- die Inntal-Störung und
- die Lavanttal-Störung.



Abbildung 2.7: Erdbebengefährdungskarte für das österreichische Bundesgebiet [Fle05]

### 2.2.1 Geschichtliche Entwicklung

Erst die Entwicklung neuer Meßsysteme (Wiechert-Seismograph) ermöglichte zu Beginn des 20. Jahrhunderts Bodenbewegungen weit unter der menschlichen Fühlbarkeitsgrenze zu messen und zeitgetreu aufzuzeichnen. Ein sogenannter "Wiechert" war immerhin bis zum 10. März 1977 auf der Hohen Warte in Wien in Betrieb [Ham97].

National wurde die Erdbebeneinwirkung erstmals nach dem zweiten Weltkrieg durch die [ÖNORM B 4000-3] geregelt. In der [ÖNORM B 4000-3, 1961-10-01] wurden nur generelle Unterscheidungen getroffen. Es hieß: "Bei Wohnhäusern, nicht aber Hochhäusern, die durch massive Aussenwände, Feuermauern, steife und mindestens 12 cm dicke Scheidemauern oder massive Decken ausgesteift sind, braucht die Beanspruchung der Decken und Wände durch Erdbeben nicht berücksichtigt zu werden. Bei Wohnhäusern, bei denen die um die halbe Dachhöhe verminderte Firsthöhe die Gebäudetiefe nicht überschreitet, brauchen die Auswirkungen von Erdbeben nicht berücksichtigt zu werden. Bei Bauwerken, bei denen schwere Teile auf einzelnen Stützen ruhen, so wie bei turmartigen Bauwerken ist mit einer waagrechten Beschleunigung von mindestens 1/200 der Schwerebeschleunigung zu rechnen. Bei aufragenden Bauteilen sind Wind und Erdbeben zu berücksichtigen."

Weiters wurden Gebiete mit einer waagrechten Beschleunigung b > g/200 global angegeben [ÖNORM B 4000-3]:

- Burgenland: Verwaltungsgebiete Eisenstadt und Mattersburg
- Kärnten: Bezirke St. Veit/Glan, Wolfsberg, Völkermarkt, Klagenfurt-Land
- Niederösterreich: Rax-Semmeringgebiet, Gebiet von Schwechat-Schwadorf-Fischamend, Verwaltungsbezirke Neunkirchen, Baden, Wr. Neustadt, Gerichtsbezirk Hainburg/Donau
- Oberösterreich: Gebiet zwischen Pyhrnpass und Windischgarsten
- Steiermark: Verwaltungsbezirke Bruck/Mur, Judenburg, Knittelfeld, Leoben, Mürzzuschlag, Murau, Liezen
- Tirol: das gesamte Landesgebiet mit Ausnahme von Osttirol und dem Bezirk Kitzbühel
- Vorarlberg: Rheinebene im Bereich Feldkirch-Hohenems

Im Jahr 1979, drei Jahre nach dem schweren Erdbeben von Friaul (Magnitude M = 6, 5 [URL2]), wurde die [ÖNORM B 4015-1] herausgegeben. Von nun an stand der Öffentlichkeit eine Karte mit Erdbebenzonen zur Verfügung, welche die Erdbebengefährdung aller Orte Österreichs gut erkennen ließ. Weitere geplante Teile wurden damals nicht fertig gestellt, da im

| Nr. | Jahr | Monat | Tag | Herdtiefe $[km]$ | Magnitude | Epizentrum   |
|-----|------|-------|-----|------------------|-----------|--------------|
| 1   | 1995 | 11    | 10  | 10               | 4,2       | Judenburg    |
| 2   | 1996 | 01    | 09  | 8                | 4,1       | Ebreichsdorf |
| 3   | 2000 | 07    | 11  | 13               | 4,8       | Ebreichsdorf |
| 4   | 2003 | 07    | 21  | 11               | 4,4       | Niederwölz   |
| 5   | 2003 | 10    | 29  | 6                | $_{3,9}$  | bei Wörgl    |
| 6   | 2004 | 10    | 01  | 10               | $_{3,8}$  | Niklasdorf   |

Tabelle 2.1: Schadensbeben in Österreich seit 1995 mit einer Epizentralintensität vom Grad 6 [Fle05]

Zuge der europäischen Arbeiten am EUROCODE 8 der erste Teil der ÖNORM B 4015 grundlegend überarbeitet werden musste. Erst am 1. Oktober 1997 kam es zur Veröffentlichung einer neuen Fassung der ÖNORM B 4015-1, im August 1999 folgte der zweite Teil. Im Juni 2002 erschien die Version der ÖNORM B 4015, die die beiden Teile 1 und 2 zusammenfasste [URL3]. Am 1. Februar 2007 folgte die bislang letzte Version. Da bis spätestens Ende 2007 in Österreich alle nationalen Anhänge vorliegen, beginnt ab diesem Zeitpunkt die sogenannte Koexistenzperiode. In dieser stehen sowohl die ÖNORMEN EN 199x und die dazugehörigen nationalen Anhänge ÖNORMEN B 199x als auch die ÖNORMEN B 4xxx zur Verfügung. Das Ende der Koexistenzperiode wird mit 31. Dezember 2008 angestrebt, d. h. ab diesem Zeitpunkt sind nur noch die ÖNORMEN EN 199x und die dazugehörigen ÖNORMEN B 199x anzuwenden. Die ÖNORMEN B 4xxx werden zu diesem Zeitpunkt zurückgezogen [ONR 21990].

### 2.2.2 Schadensbeben in Österreich

Jährlich werden in Österreich ca. 40 Erdbeben verspürt. Diese Beben werden nicht im gesamten Bundesgebiet wahrgenommen, sondern meist nur im 10-km-Umkreis des jeweiligen Epizentrums. Damit entspricht auch das Jahr 2006 mit 33 in Österreich verspürten, und dem Erdbebendienst gemeldeten Beben dem langjährigen Durchschnitt. Von diesen 33 Beben ereigneten sich 12 in Kärnten, 9 in Tirol, 6 in der Steiermark, 4 in Oberösterreich und je eines in Vorarlberg und Niederösterreich. Die Bundesländer Salzburg, Burgenland und Wien blieben frei von Erdbeben [URL1].

Erdbeben, die zu Gebäudeschäden führen, treten in Österreich im Durchschnitt alle zwei Jahre auf. Dazu zählen vor allem leichte Gebäudeschäden wie Risse im Verputz, die dem Intensitätsgrad 6 entsprechen. Allein seit 1995 ereigneten sich sechs Erdbeben dieser Kategorie (Tab. 2.1).

Das letzte Erdbeben, das eine Epizentralintensität von 7 aufwies, fand 1972 bei Seebenstein statt. In Guntramsdorf und in Schwarzau stürtzten zwei ältere Gebäude ein, in Wien musste die Feuerwehr über 800 Mal ausrücken, um herabgefallene Schornsteine und Balustradenteile zu sichern [Fle05, Ham97].

### 2.3 Erdbebenzonen

Gemäß [ÖNORM EN 1998-1] wird die seismische Gefährdung mittels der Referenzspitzenbodenbeschleunigung  $a_{gR}$  für die Baugrundklasse A beschrieben. In Österreich wird die Referenz-Spitzenbodenbeschleunigung aufgrund der nationalen seismotektonischen Gegebenheiten durch die Referenzbodenbeschleunigung dargestellt, welche der Erdbebenkarte bzw. dem Ortsverzeichnis der [ÖNORM B 1998-1] entnommen werden kann (Abb. 2.8).



Abbildung 2.8: Isolinien der Referenzbodenbeschleunigung  $a_{qR}$  in m/s<sup>2</sup> [ÖNORM B 1998-1]

Die Referenz-Spitzenbodenbeschleunigung entspricht der Referenz-Wiederkehrperiode<sup>2</sup> der Erdbebeneinwirkung für die Standsicherheitsbedingung, welche verlangt, dass das Bauwerk einer geeignet definierten seismischen Wirkung ohne Auftreten eines lokalen oder globalen Kollapses standhält. Dieser Referenz-Wiederkehrperiode wird ein Bedeutungsbeiwert  $\gamma_i$  gleich 1,0 zugewiesen. Für andere Wiederkehrperioden muss der Bedeutungsbeiwert abgeändert werden.

### 2.3.1 Bemessungsbodenbeschleunigung

Die Bemessungsbodenbeschleunigung ergibt sich aus folgender Gleichung:

$$a_g = \gamma_i \cdot a_{gR} \tag{2.4}$$

 $\operatorname{mit}$ 

| $a_g$      | <br>Bemessungsbodenbeschleunigung für Baugrundklasse A in m/s <sup>2</sup> |
|------------|----------------------------------------------------------------------------|
| $\gamma_i$ | <br>Bedeutungsbeiwert                                                      |
| $a_{gR}$   | <br>Referenzboden<br>beschleunigung in $m/s^2$                             |

In Abhängigkeit von der Bemessungsbodenbeschleunigung können drei Fälle von Seismizität gemäß [ÖNORM B 1998-1] unterschieden werden:

- normale Seismizität;  $\gamma_i \cdot a_{gR} \cdot S > 0, 132 \cdot g \ (1, 29 \text{ m/s}^2)$
- geringe Seismizität;  $\gamma_i \cdot a_{qR} \cdot S \leq 0,132 \cdot g \ (1,29 \,\mathrm{m/s^2})$
- sehr geringe Seismizität;  $\gamma_i \cdot a_{gR} \cdot S \leq 0,043 \cdot g \ (0,42 \,\mathrm{m/s^2})$

 $\operatorname{mit}$ 

$$g$$
 ... Erdschwerebeschleunigung;  $g = 9,81 \text{ m/s}^2$ 

S ... Bodenparameter

In Fällen geringer Seismizität dürfen reduzierte oder vereinfachte Erdbebenauslegungsverfahren für bestimmte Bauwerkstypen oder -kategorien verwendet werden. Bei sehr geringer Seismizität brauchen hingegen die Vorschriften von [ÖNORM EN 1998-1] nicht berücksichtigt zu werden, da in diesem Fall die Windeinwirkung höhere Beanspruchungen als die Erdebebeneinwirkung erzeugt.

 $<sup>^2</sup>T_{\rm NCR} = 475$ Jahre

### 2.3.2 Bedeutungskategorien und Bedeutungsbeiwerte

Hochbauten werden gemäß [ÖNORM EN 1998-1] – abhängig von den Folgen eines Einsturzes für menschliches Leben – vier Bedeutungskategorien zugeordnet:

| Bedeutungs- | Bauwerke                                                | $\gamma_i$ |
|-------------|---------------------------------------------------------|------------|
| kategorie   |                                                         |            |
| Ι           | Bauwerke von geringer Bedeutung für die öffentliche     | 0,8        |
|             | Sicherheit, z. B. landwirtschaftliche Bauten            |            |
| II          | Gewöhnliche Bauwerke, die nicht unter die anderen       | 1,0        |
|             | Kategorien fallen                                       |            |
| III         | Bauwerke, deren Widerstand gegen Erdbeben wichtig       | 1,2        |
|             | ist im Hinblick auf die mit einem Einsturz verbundenen  |            |
|             | Folgen, z. B. Schulen, Versammlungsräume, kulturelle    |            |
|             | Einrichtungen                                           |            |
| IV          | Bauwerke, deren Unversehrtheit während Erdbeben         | 1,4        |
|             | von höchster Wichtigkeit für den Schutz der Bevölkerung |            |
|             | ist, z. B. Krankenhäuser, Feuerwachen, Kraftwerke       |            |

Tabelle 2.2: Bedeutungskategorien für Hochbauten [ÖNORM EN 1998-1]

Die Bedeutungskategorien werden durch verschiedene Bedeutungsbeiwerte  $\gamma_i$  – wie in Tab. 2.2 ersichtlich – charakterisiert. Weitere Beispiele für Bedeutungskategorien sowie eine Festlegung der  $\gamma_i$ -Werte in Abhängigkeit von den Erdbebenzonen und Bedeutungskategorien sind in Tab. 2.3 und Tab. 2.4 für Österreich dargestellt.

| Bedeutungs- | Bauwerke                                 |
|-------------|------------------------------------------|
| kategorie   |                                          |
| III         | Einkaufszentren, Sportstadien            |
| IV          | Bauwerke sowie Anlagen und Einrichtungen |
|             | für das Katastrophenmanagement, Telekom- |
|             | munikationseinrichtungen                 |

|                                              |               |                      | ••                |
|----------------------------------------------|---------------|----------------------|-------------------|
| T 1 11 0 9 W 1                               | D · · 1 · · · | $\mathbf{D}$         | [ONODNI D 1000 1] |
| Labelle 2.3. Weitere                         | Beispiele für | Bedeutungskategorien | IONORNI B 1998-11 |
| <b>1</b> 000000 <b>2.0</b> . <b>1</b> 000000 | Domptoro run  | Bedededigendegerien  |                   |

| 7      |     |         | 1 .     | •        |
|--------|-----|---------|---------|----------|
| Zonen- | Bed | eutun   | lgskate | egorie   |
| gruppe | I   | II      | III     | IV       |
| 0      | 0,8 | $1,\!0$ | $1,\!0$ | $^{1,0}$ |
| 1      | 0,8 | $1,\!0$ | $1,\!0$ | $1,\!0$  |
| 2      | 0,8 | $1,\!0$ | $1,\!1$ | 1,2      |
| 3      | 0,8 | $1,\!0$ | $1,\!4$ | $1,\!4$  |
| 4      | 0,8 | $1,\!0$ | $1,\!4$ | $1,\!4$  |

Tabelle 2.4: Festlegung der  $\gamma_i$ -Werte [ÖNORM B 1998-1]

### 2.4 Baugrundbeschaffenheit

Um den Einfluss der örtlichen Baugrundbeschaffenheit auf die Erdbebeneinwirkung zu berücksichtigen, führt [ÖNORM EN 1998-1] sieben Baugrundklassen ein (Tab. 2.5). Als Parameter dienen [Mes03]:

- die mittlere Scherwellengeschwindigkeit in den ersten 30 Tiefenmetern als wichtigster Kennwert sowie
- die Anzahl der Schläge des Standard Penetration Tests für eine Eindringtiefe von  $30\,\mathrm{cm}$  und
- die undränierte Scherfestigkeit des Bodens.

Gemäß [ÖNORM B 1998-1] sind Baugrunduntersuchungen, die über die statisch erforderlichen Untersuchungen hinausgehen, nur in den Erdbebenzonen 3 und 4 und bei Bauwerken der Bedeutungskategorie III und IV durchzuführen. In allen anderen Fällen darf eine Grobabschätzung der Baugrundklasse vorgenommen werden.

### 2.5 Darstellung der Erdbebeneinwirkung

### 2.5.1 Ermittlung von elastischen Antwortspektren

Ein Einmassenschwinger – das einfachste dynamische System – wird am Fußpunkt durch einen Bodenbeschleunigungszeitverlauf eines zuvor festgelegten Bodentyps angeregt und vollführt eine Schwingung. Die Zeitverläufe dieser Antwortschwingung werden bestimmt, wobei vor allem der Zeitverlauf der

- Relativverschiebung d (Verschiebung zwischen Masse und Fußpunkt des Schwingers)
- Relativgeschwindigkeit v (Geschwindigkeit zwischen Masse und Fußpunkt des Schwingers)
- Absolutbeschleunigung *a* (der Masse des Schwingers)

von großem Interesse sind. Der Maximalwert der Antwortschwingung (Beschleunigung, Geschwindigkeit, Verschiebung) wird über der Eigenfrequenz oder der Eigenschwingzeit aufgetragen. Dieses Prozedere wird für Einmassenschwinger unterschiedlicher Eigenfrequenz bzw. Eigenschwingzeit und Dämpfung wiederholt. Werden die Spektralwerte  $S_d$ ,  $S_v$  und  $S_a$  (Maximalwerte der Antwortschwingungen) jedes Einmassenschwingers aufgetragen und miteinander verbunden, erhält man Antwortspektren der entsprechenden Größe (Abb. 2.9). Das zackige Erscheinungsbild kann durch Berücksichtigung mehrerer Bodenbeschleunigungszeitverläufe geglättet werden.

### Mathematische Beschreibung des Einmassenschwingers

Die Abbildung 2.10 zeigt einen elastischen Einmassenschwinger mit Fußpunkterregung. Durch eine horizontale Bodenbewegung wird die Masse zur Schwingung angeregt. Folgende Kräfte greifen an der Masse an:

- $k \cdot x =$  Federkraft (mit relativer Verschiebung)
- $c \cdot \dot{x} = \text{Dämpfungskraft}$  (mit relativer Verschiebung)
- $m \cdot \ddot{x}_a$  = Trägheitskraft (mit absoluter Beschleunigung)

| Bau-   | Beschreibung des stratigrafischen                 | Parameter         |                  |              |
|--------|---------------------------------------------------|-------------------|------------------|--------------|
| grund- | Profils                                           |                   |                  |              |
| klasse |                                                   |                   |                  |              |
|        |                                                   | $v_{s,30}$ in m/s | N <sub>SPT</sub> | $c_u$ in kPa |
| А      | Fels oder andere felsähnliche                     | > 800             | -                | -            |
|        | geologische Formation, mit höchstens              |                   |                  |              |
|        | 5 m weicherem Material an der                     |                   |                  |              |
|        | Oberfläche                                        |                   |                  |              |
| В      | Ablagerungen von sehr dichtem Sand,               | 360 - 800         | > 50             | > 250        |
|        | Kies oder sehr steifem Ton, mit einer             |                   |                  |              |
|        | Dicke von mindestens einigen zehn                 |                   |                  |              |
|        | Metern, gekennzeichnet durch einen                |                   |                  |              |
|        | allmählichen Anstieg der                          |                   |                  |              |
|        | mechanischen Eigenschaften mit der                |                   |                  |              |
|        | Tiefe                                             |                   |                  |              |
| С      | Tiefe Ablagerungen von dichtem oder               | 180 - 360         | 15 - 50          | 70 - 250     |
|        | mitteldichtem Sand, Kies oder steifem             |                   |                  |              |
|        | Ton, mit Dicken von einigen zehn bis              |                   |                  |              |
|        | mehreren hundert Metern                           |                   |                  |              |
| D      | Ablagerungen von lockerem bis                     | < 180             | < 15             | < 70         |
|        | mitteldichtem kohäsionslosem Boden                |                   |                  |              |
|        | (mit oder ohne einige weiche kohäsive             |                   |                  |              |
|        | Schichten), oder von vorwiegend                   |                   |                  |              |
|        | weichem bis steifem kohäsivem Boden               |                   |                  |              |
| Е      | Ein Bodenprofil bestehend aus einer               |                   |                  |              |
|        | Oberflächen-Alluvialschicht mit $v_s$ -           |                   |                  |              |
|        | Werten nach C oder D und                          |                   |                  |              |
|        | veränderlicher Dicke zwischen etwa                |                   |                  |              |
|        | $5 \mathrm{m}$ und $20 \mathrm{m}$ über steiferem |                   |                  |              |
|        | Bodenmaterial mit $v_s > 800 \mathrm{m/s}$        |                   |                  |              |
| S1     | Ablagerungen bestehend aus (oder                  | < 100             | -                | 10 - 20      |
|        | enthaltend) $eine(r)$ mindestens $10 \text{ m}$   | (indikativ)       |                  |              |
|        | dicke(n) Schicht weicher Tone oder                |                   |                  |              |
|        | Schluffe mit hohem Plastizitätsindex              |                   |                  |              |
|        | (PI > 40) und hohem Wassergehalt                  |                   |                  |              |
| S2     | Ablagerungen von verflüssigbaren                  |                   |                  |              |
|        | Böden, empfindlichen Tonen oder                   |                   |                  |              |
|        | jedes andere Bodenprofil, das nicht in            |                   |                  |              |
|        | den Klassen A bis E oder S1 enthalten             |                   |                  |              |
|        | ist                                               |                   |                  |              |

Tabelle 2.5: Baugrundklassen [ÖNORM EN 1998-1]



Abbildung 2.9: Ermittlung von elastischen Antwortspektren [Bac02b]



Abbildung 2.10: Einmassenschwinger mit Fußpunkterregung [Bac02b]

Wird das Gleichgewicht am System betrachtet, so ergibt sich:

$$m \cdot \ddot{x}_a + c \cdot \dot{x} + k \cdot x = 0 \tag{2.5}$$

Entsprechend der Beziehung  $x_a = x + x_g$  setzt sich die absolute Beschleunigung aus der relativen Beschleunigung und der Bodenbeschleunigung zusammen:

$$\ddot{x}_a = \ddot{x} + \ddot{x}_g \tag{2.6}$$

Es ergibt sich mit

$$m \cdot (\ddot{x} + \ddot{x}_g) + c \cdot \dot{x} + k \cdot x = 0 \tag{2.7}$$

die Bewegungsdifferentialgleichung des Einmassenschwingers mit Fußpunkterregung als

$$\underbrace{\underbrace{m \cdot \ddot{x} + c \cdot \dot{x} + k \cdot x}_{\text{Relativgrößen}} = \underbrace{-m \cdot \ddot{x}_g(t)}_{\text{Anregungskraft}}$$
(2.8)

 $\operatorname{Mit}$ 

$$\omega_0 = \sqrt{\frac{k}{m}} \dots$$
 Eigenkreisfrequenz des ungedämpften Schwingers (2.9)

$$\xi = \frac{c}{2 \cdot m \cdot \omega_0} \dots \text{ Dämpfungsmaß}$$
(2.10)

$$f_0 = \frac{\omega_0}{2 \cdot \pi} = \frac{1}{2 \cdot \pi} \sqrt{k/m} \dots$$
 Eigenfrequenz (2.11)

$$T_0 = 1/f_0 \dots$$
 Eigenperiode (2.12)

führt eine Umformung auf folgende Standardform:

$$\ddot{x} + 2 \cdot \xi \cdot \omega_0 \cdot \dot{x} + \omega_0^2 \cdot x = -\ddot{x}_g(t) \tag{2.13}$$

Die Lösung dieser Bewegungsdifferentialgleichung setzt sich aus einer homogenen und einer partikulären Lösung zusammen:

$$x(t) = x_h(t) + x_p(t)$$
(2.14)

#### Homogene Lösung

Die freie, gedämpfte Eigenschwingung kann aus dem homogenen Teil von Glg. 2.13 ermittelt werden:

$$\ddot{x} + 2 \cdot \xi \cdot \omega_0 \cdot \dot{x} + \omega_0^2 \cdot x = 0 \tag{2.15}$$

Wird zur Lösung der Ansatz

$$x(t) = G \cdot e^{st} \tag{2.16}$$

gewählt, ergibt sich (Gl. 2.16 in Gl. 2.15 eingesetzt) folgendes charakteristisches Polynom:

$$m \cdot s^2 + c \cdot s + k = 0 \tag{2.17}$$

Wird Gl. 2.17 durch *m* dividiert und die bereits bekannte Beziehung  $\omega_o^2 = k/m$  eingesetzt, erhält man:

$$s^{2} + \frac{c}{m} \cdot s + \omega_{o}^{2} = 0.$$
(2.18)



Abbildung 2.11: Bewegungsverlauf bei verschiedenen Dämpfungen [Fle93]

Für  $c \neq 0$  lautet die Lösung von Gl. 2.18:

$$s = -\frac{c}{2 \cdot m} \pm \sqrt{\left(\frac{c}{2 \cdot m}\right)^2 - \omega_o^2} \tag{2.19}$$

Da der Wert unter der Wurzel in Abhängigkeit von c Null, positiv oder negativ sein kann, ergeben sich drei typische Lösungen für s bzw. x(t):

- $c/(2 \cdot m) = \omega_0 \dots$  kritisch gedämpft
- $c/(2 \cdot m) > \omega_0 \dots$  überkritisch gedämpft
- $c/(2 \cdot m) < \omega_0 \dots$  unterkritisch gedämpft

Nur wenn der Wert unter der Wurzel negativ ist, kann es zu einer Schwingung kommen. In den beiden anderen Fällen kehrt der Einmassenschwinger ohne Schwingung in die Nulllage zurück (Abb. 2.11). Wird anstelle des Dämpfungskoeffizienten c die Dämpfungszahl  $\xi$ 

$$\xi = \frac{c}{c_c} = \frac{c}{2 \cdot m \cdot \omega_0} \tag{2.20}$$

eingeführt, lautet die Lösung für s im baudynamisch relevanten Bereich:

$$s = -\xi \cdot \omega_0 \pm \sqrt{(\xi \cdot \omega_0)^2 - \omega_0^2} = -\xi \cdot \omega_0 \pm i \cdot \omega_0 \cdot \sqrt{1 - \xi^2} \text{ für } c < c_c$$
(2.21)

Gl. 2.21 kann durch die Beziehung  $\omega_D = \omega_0 \cdot \sqrt{1-\xi^2}$  weiter vereinfacht werden zu:

$$s = -\xi \cdot \omega_0 \pm i \cdot \omega_D. \tag{2.22}$$

Durch Einsetzen von Gl. 2.22 in Gl. 2.16 erhält man schließlich die homogene Lösung der Differentialgleichung:

$$x(t) = e^{-\xi \cdot \omega_0 \cdot t} \cdot \left( B_1 \cdot \sin\left(\omega_D \cdot t\right) + B_2 \cdot \cos\left(\omega_D \cdot t\right) \right).$$
(2.23)

Abschließend sei erwähnt, dass aufgrund der im Bauwesen vorhandenen geringen Dämpfungszahlen, mit der ungedämpften Eigenfrequenz gerechnet werden darf (bei  $\xi = 5 \% \rightarrow \omega_D/\omega_0 = 0,998$ ).

#### Partikuläre Lösung

Da der homogene Anteil der Lösung infolge der Dämpfung sehr rasch abklingt, verbleibt nur die partikuläre Lösung, welche für eine Bodenbewegung  $x_g(t)$  wie folgt definiert ist:

$$x(t) = -\frac{1}{\omega_D} \cdot \int_0^t \ddot{x}_g(\tau) \cdot e^{-\xi \cdot \omega_0 \cdot (t-\tau)} \cdot \sin(\omega_D \cdot (t-\tau)) d\tau$$
(2.24)

Der Integralausdruck wird als Duhamel-Integral<sup>3</sup> bezeichnet.

#### Bestimmung der Spektralwerte

Die Spektralwerte  $S_d$ ,  $S_v$  und  $S_a$ , welche die Maximalwerte der Antwortschwingungen jedes Schwingers darstellen, ergeben sich demnach wie folgt:

• Maximale Relativverschiebung:

$$S_d(\omega_0,\xi) = |x|_{max} \approx \frac{1}{\omega_0} \cdot \left| -\int_0^t \underbrace{\ddot{x}_g(\tau)}_{a_g} \cdot e^{-\xi \cdot \omega_0 \cdot (t-\tau)} \cdot \sin\left(\omega_0 \cdot (t-\tau)\right) \mathrm{d}\tau \right|_{max}$$
(2.25)

• Maximale Relativgeschwindigkeit:

$$S_{v}(\omega_{0},\xi) = |\dot{x}|_{max} \approx \left| -\int_{0}^{t} \underbrace{\ddot{x}_{g}(\tau)}_{a_{g}} \cdot e^{-\xi \cdot \omega_{0} \cdot (t-\tau)} \cdot \cos\left(\omega_{0} \cdot (t-\tau)\right) \mathrm{d}\tau \right|_{max}$$
(2.26)

• Maximale Absolutbeschleunigung:

$$S_a(\omega_0,\xi) = \left| \ddot{x} + \ddot{x}_g \right|_{max} \approx \omega_0 \cdot \left| \int_0^t \underbrace{\ddot{x}_g(\tau)}_{a_g} \cdot e^{-\xi \cdot \omega_0 \cdot (t-\tau)} \cdot \sin\left(\omega_0(t-\tau)\right) \mathrm{d}\tau \right|_{max}$$
(2.27)

In Gl. 2.25 bis Gl. 2.27 bedeutet t den Zeitpunkt nach Beginn des Erdbebens, für den der Integralausdruck berechnet wird und  $\tau$  ist die Integrationsvariable. Da bei den Gleichungen für  $S_d$  und  $S_a$  die Integralausdrücke auf der rechten Seite gleich sind, besteht zwischen ihnen zusätzlich folgende einfache Beziehung:

$$S_a \approx \omega_0^2 \cdot S_d \tag{2.28}$$

### 2.5.2 Antwortspektren gemäß [ÖNORM EN 1998-1]

### Horizontales elastisches Antwortspektrum

Im Anwendungsbereich von [ÖNORM EN 1998-1] wird die Erdbebenbewegung an einem bestimmten Punkt der Erdoberfläche durch ein elastisches Bodenbeschleunigungsantwortspektrum dargestellt. Für die Horizontalkomponeneten der Erdbebeneinwirkung wird das elastische

<sup>&</sup>lt;sup>3</sup>Die genaue Herleitung ist in [Fle93] nachzulesen.



Abbildung 2.12: Empfohlene elastische Antwortspektren vom Typ 1 und Typ 2 für die Baugrundklassen A bis E [ÖNORM EN 1998-1]

Antwortspektrum  $S_e(T)$  durch folgende Ausdrücke definiert (Abb. 2.12):

$$0 \le T \le T_B : S_e(T) = a_g \cdot S \cdot \left[ 1 + \frac{T}{T_B} \cdot (\eta \cdot 2, 5 - 1) \right]$$
(2.29)

$$T_B \le T \le T_C : S_e(T) = a_g \cdot S \cdot \eta \cdot 2,5 \tag{2.30}$$

$$T_C \le T \le T_D : S_e(T) = a_g \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T_C}{T}\right]$$
(2.31)

$$T_D \le T \le 4 \,\mathrm{s} : S_e(T) = a_g \cdot S \cdot \eta \cdot 2, 5 \cdot \left[\frac{T_C \cdot T_D}{T^2}\right]$$
(2.32)

 $\operatorname{mit}$ 

| $S_e(T)$ | <br>Ordinate des elastischen Antwortspektrums                            |
|----------|--------------------------------------------------------------------------|
| T        | <br>Schwingungsdauer eines linearen Einmassenschwingers                  |
| $a_g$    | <br>Bemessungs-Bodenbeschleunigung für Baugrundklasse A                  |
| $T_B$    | <br>untere Grenze des Bereichs konstanter Spektralbeschleunigung         |
| $T_C$    | <br>obere Grenze des Bereichs konstanter Spektralbeschleunigung          |
| $T_D$    | <br>Wert, der den Beginn des Bereichs konstanter Verschiebungen des      |
|          | Spektrums definiert                                                      |
| S        | <br>Bodenparameter                                                       |
| $\eta$   | <br>Dämpfungs-Korrekturbeiwert mit dem Referenzwert $\eta = 1$ für 5 %   |
|          | viskose Dämpfung bzw. $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ bei abweichen- |
|          | dem Dämpfungsverhältnis                                                  |

In der [ÖNORM EN 1998-1] werden zwei unterschiedliche Spektralformen (Typ 1 und Typ 2) zur Beschreibung der Erdbebeneinwirkung angegeben (siehe Abb. 2.12). In Österreich ist gemäß [ÖNORM B 1998-1] jedoch nur die Spektralform Typ 1 anzuwenden, da der Bereich konstanter Spektralbeschleunigung größer ist und Impulsnahbeben nicht zu erwarten sind. Die in Abhängigkeit von der Baugrundklasse empfohlenen Parameterwerte zur Beschreibung des elastischen Antwortspektrums, sind in der [ÖNORM EN 1998-1] angegeben (Tab. 2.6).

#### Bemessungsspektrum

Die meisten Tragwerke besitzen die Fähigkeit, seismische Energie durch duktiles Verhalten ihrer Bauteile zu dissipieren. Daher darf eine lineare Berechnung auf der Grundlage eines im

| Baugrundklasse | S        | $T_B$ in s | $T_C$ in s | $T_D$ in s |
|----------------|----------|------------|------------|------------|
| А              | 1,0      | 0,15       | 0,4        | 2,0        |
| В              | 1,2      | $0,\!15$   | 0,5        | 2,0        |
| C              | $1,\!15$ | 0,20       | 0,6        | 2,0        |
| D              | 1,35     | 0,20       | 0,8        | 2,0        |
| Е              | 1,4      | $0,\!15$   | 0,5        | 2,0        |

Tabelle 2.6: Parameterwerte zur Beschreibung der empfohlenen elastischen Antwortspektren vom Typ 1 [ÖNORM EN 1998-1]



Abbildung 2.13: Vergleichende Darstellung des horizontalen elastischen Antwortspektrums und des Bemessungsspektrums für Baugrundklasse A, q = 1,5 und  $a_g = 1,0 \,\mathrm{m/s^2}$ 

Vergleich zum elastischen Spektrum abgeminderten Antwortspektrums ( $\rightarrow$  Bemessungsspektrum (Abb. 2.13)) durchgeführt werden. Diese Abminderung wird durch die Einführung des Verhaltensbeiwerts q erzielt.

### Spektralwerte des Bemessungsspektrums

Für die Horizontalkomponeneten der Erdbebeneinwirkung ist das Bemessungsspektrum  $S_d(T)$  durch folgende Gleichungen definiert:

$$0 \le T \le T_B : S_d(T) = a_g \cdot S \cdot \left[\frac{2}{3} + \frac{T}{T_B} \cdot \left(\frac{2,5}{q} - \frac{2}{3}\right)\right]$$
(2.33)

$$T_B \le T \le T_C : S_d(T) = a_g \cdot S \cdot \frac{2,5}{q}$$

$$(2.34)$$

$$T_C \le T \le T_D : S_d(T) = a_g \cdot S \cdot \frac{2,5}{q} \cdot \left[\frac{T_C}{T}\right]$$
 bzw. (2.35)

$$\geq \beta \cdot a_g$$
 (2.36)

$$T_D \le T : S_d(T) = a_g \cdot S \cdot \frac{2,5}{q} \cdot \left[\frac{T_C \cdot T_D}{T^2}\right]$$
 bzw. (2.37)

$$\geq \beta \cdot a_g \tag{2.38}$$

 $\operatorname{mit}$ 



Abbildung 2.14: Ansatz zur Abminderung des Tragwiderstandes bzw. der Ersatzkraft [Bac02b]

| $S_d(T)$ | <br>Ordinate des Bemessungsspektrums                             |
|----------|------------------------------------------------------------------|
| q        | <br>Verhaltensbeiwert                                            |
| $\beta$  | <br>Beiwert für den unteren Grenzwert für das horizontale Bemes- |
|          | sungsspektrum; $\beta = 0, 2$                                    |

#### Verhaltensbeiwert q

Der Verhaltensbeiwert q ist ein Näherungswert des Verhältnisses derjenigen Erdbebenkräfte, die das Bauwerk beanspruchen würden, wenn seine Antwort bei 5 % viskoser Dämpfung vollkommen elastisch wäre, zu den Erdbebenkräften, die zur Bemessung mit dem konventionellen linearen Modell verwendet werden dürfen, um gerade noch eine zufriedenstellende Antwort des Bauwerks sicherzustellen (Abb. 2.14).

$$q = \frac{u_{max}}{u_{el}} \tag{2.39}$$

 $\operatorname{mit}$ 

 $u_{max}$  ... Maximalverschiebung  $u_{el}$  ... Verschiebung zu Fließbeginn

### 2.5.3 Zeitverläufe der Bodenbewegung

Die Zeitverläufe der Bodenbewegungsgrößen Bodenbeschleunigung, Bodengeschwindigkeit und Bodenverschiebung sind für dynamische Berechnungen von großer Bedeutung (Abb. 3.8). Grundlage für die Ermittlung solcher Zeitverläufe ist stets ein gemessenes Beschleunigungsseismogramm. Von diesem kann durch einfache Integration auf den Geschwindigkeits-Zeitverlauf geschlossen werden. Wird eine weitere Integration durchgeführt, kann der Verschiebungszeitverlauf gewonnen werden. Um geringfügige Fehler, welche sich während der Beschleunigungsaufzeichnung durch Eigenschwingungen des Messwertgebers ergeben können, zu korregieren, sind verschiedene Ansätze gebräuchlich. Ein gängiges Korrekturverfahren basiert beispielsweise auf der Minimalisierung der Quadrate der Bodengeschwindigkeiten [Bac02b].



Abbildung 2.15: Zeitverläufe der N-S-Komponente "Tolmezzo" des Friaul-Erdbebens 1976 mit Basislinienkorrektur (Minimalisierung der Quadrate der Bodengeschwindigkeiten) [Bac02b]

# 3 Kraftbasierte Berechnungsverfahren

In der Praxis werden hauptsächlich die nachfolgenden Verfahren bzw. Methoden zur Berechnung der Erdbebeneinwirkung verwendet [Fle93]:

- Ersatzkraftverfahren (= vereinfachtes Antwortspektrumverfahren gemäß [ÖNORM EN 1998-1])
- Antwortspektrenverfahren (= multimodales Antwortspektrumverfahren gemäß [ÖNORM EN 1998-1])
- "pushover"-Berechnung
- Zeitverlaufsverfahren (= Methoden im Zeitbereich)
  - modale Lösung der Bewegungsgleichungen
  - direkte Integration der Bewegungsgleichungen
- Methoden im Frequenzbereich
- statistische (probabilistische) Verfahren.

In den folgenden Abschnitten werden die theoretischen Grundlagen und deren Verankerung in der [ÖNORM EN 1998-1] für das **Ersatzkraft-**, **Antwortspektren-** und **Zeitverlaufs-verfahren** erläutert, welche den kraftbasierten Bemessungsverfahren zuzuordnen sind.

### 3.1 Ersatzkraftverfahren

Da bei diesem Verfahren die Erdbebeneinwirkung durch eine horizontale statische Ersatzkraft dargestellt wird, darf eine statische, lineare Berechnung (es wird elastisches Materialverhalten vorausgesetzt) durchgeführt werden [Bac02b].

### 3.1.1 Theoretische Grundlagen

Beim Ersatzkraftverfahren wird das ganze Bauwerk durch einen Einmassenschwinger (Abb. 2.10) ersetzt. Dessen Frequenz entspricht der Grundfrequenz des Bauwerks. Im Zustand der maximalen Relativverschiebung  $x_{max}$  tritt die maximale Federkraft  $F_{max}$  auf. Diese entspricht der maximalen Beanspruchung des Tragwerks bzw. Bauwerks. Da in diesem Zustand die Geschwindigkeit Null ist, verschwindet somit auch die Dämpfungskraft und es gilt [Bac02b]:

$$F_{max} = k \cdot x_{max} = k \cdot S_d \tag{3.1}$$

Unter Verwendung von Gl. 2.28 wird

$$F_{max} = k \cdot \frac{S_a}{\omega^2} = m \cdot S_a \tag{3.2}$$

 $\operatorname{mit}$ 

$$\omega = \sqrt{k/m}$$
 bzw.  $\omega^2 = k/m.$  (3.3)

Wie aus Gl. 3.2 ersichtlich, kann die maximale Beanspruchung der Feder aus der statischen Einwirkung einer "Trägheitskraft" (= Masse mal maximale Absolutbeschleunigung) ermittelt werden.

#### Definition der Erdbeben-Ersatzkraft

Die Erdbeben-Ersatzkraft ist die totale horizontal auf das Bauwerk wirkende statische Kraft infolge der Erdbebenerregung im Fußpunkt [Bac02b]:

$$F = m \cdot S_a$$

 $\operatorname{mit}$ 

| F     | <br>totale horizontale Erdbeben-Ersatzkraft                               |
|-------|---------------------------------------------------------------------------|
| m     | <br>Masse entsprechend der Dauerlasten und der wahrscheinlich vorhandenen |
|       | beweglichen Nutzlasten oberhalb der Gründung des gesamten Bauwerks        |
| $S_a$ | <br>Spektralbeschleunigung                                                |
|       |                                                                           |

### Abschätzung der Grundfrequenz

Für die Bestimmung der Grundfrequenz eines Bauwerks, welche für die Ermittlung der Spektralbeschleunigung wesentlich ist, stehen verschiedenste Methoden zur Verfügung [Bac02b]:

- grobe Abschätzung mit empirischen Formeln aufgrund der Anzahl der Stockwerke oder der Gebäudeabmessungen
- Berechnung am Ersatzstab nach Rayleigh
- Berechnung am Ersatzstab in elastischem Baugrund
- Ermittlung mit Rechenprogramm am vollständig und diskret modellierten Tragwerk

#### Ersatzkraft nach Normen

Ansätze können folgende Form in den verschiedenen Regelwerken haben [Bac02b]:

$$F = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5 \cdot \alpha_6 \cdot \alpha_7 \cdot \alpha_8 \cdot \bar{a}_g \cdot M \tag{3.4}$$

 $\operatorname{mit}$ 

| $\alpha_1$  | <br>seismischer Faktor oder Zonenfaktor |
|-------------|-----------------------------------------|
| $\alpha_2$  | <br>dynamischer Faktor                  |
| $\alpha_3$  | <br>Baugrundfaktor                      |
| $\alpha_4$  | <br>Dämpfungsfaktor                     |
| $\alpha_5$  | <br>Abminderungsfaktor                  |
| $\alpha_6$  | <br>Risikofaktor                        |
| $\alpha_7$  | <br>Wichtigkeitsfaktor                  |
| $\alpha_8$  | <br>Überfestigkeits-Reduktionsfaktor    |
| $\bar{a}_g$ | <br>Bodenbeschleunigung                 |
| Ň           | <br>Gebäudemasse                        |

Alle Faktoren  $\alpha_1$  bis  $\alpha_8$  haben gemein, dass sie den anzusetzenden Spektralwert der Beschleunigung beeinflussen. Oft ist ein Teil dieser Einflüsse direkt im Bemessungsantwortspektrum eingebaut, oder es werden mehrere Faktoren zu einem Parameter zusammengefasst.

#### Verteilung der Ersatzkraft über die Gebäudehöhe

Ist die totale horizontale Erdbeben-Ersatzkraft berechnet worden, muss diese noch über die Gebäudehöhe verteilt werden. Zu diesem Zweck wird sie in **Kräfte pro Stockwerk** zerlegt. Diese Stockwerk-Ersatzkräfte werden in der Höhe jeder Geschoßdecke im Massenmittelpunkt angreifend angenommen [Fle93].

Maßgebend für die maximale Beanspruchung des Bauwerks ist die maximale Relativverschiebung. Da die maximale Relativverschiebung proportional der maximalen Federkraft ist (Gl. 3.1), folgt, dass die Ersatzkraft proportional zur maximalen Relativverschiebung zu verteilen ist. Wenn höhere Eigenformen vernachlässigt werden, entspricht somit die maximale Relativverschiebung der Grundschwingungsform [Bac02b]. Bei über die Höhe etwa konstanter Massenbelegung wird in der Praxis und auch in Regelwerken von einer dreieckförmigen Verteilung der Ersatzkraft ausgegeangen, welche mathematisch wie folgt ausgedrückt werden kann [Fle93]:

$$F_i = F_{ges} \cdot \frac{m_i \cdot h_i}{\sum\limits_{j=1}^n m_j \cdot h_j}$$
(3.5)

 $\operatorname{mit}$ 

| F          | <br>totale horizontale Erdbeben-Ersatzkraft                   |
|------------|---------------------------------------------------------------|
| $F_i$      | <br>Stockwerk-Ersatzkraft                                     |
| $m_i, m_j$ | <br>Stockwerksmassen                                          |
| $h_i, h_j$ | <br>Höhe des $i$ -ten bzw. $j$ -ten Stockwerks über der Basis |

#### Berücksichtigung der Torsion

Bei Bauwerken können aus zweierlei Gründen Torsionsbeanspruchungen auftreten [Fle93]:

- wegen systembedingter Schwingungskoppelung bei unsymmetrischen Bauwerken
- wegen einer Drehbewegung der Baugrundfläche während des Erdbebens infolge einer ungleichmäßigen Ausbreitung der Erdbebenwellen

Mögliche Näherungsformeln zur Berücksichtigung von Torsionseinwirkungen werden in Abschnitt 7.5.2 angegeben.

### 3.1.2 Anwendungsgrenzen gemäß [ÖNORM EN 1998-1]

Das vereinfachte Antwortspektrumverfahren darf bei Hochbauten angewandt werden, deren Antwort nicht wesentlich durch Beiträge von höheren Schwingungsformen als die Grundeigenform in jeder Hauptrichtung beeinflusst wird. Diese Anforderung gilt als erfüllt, wenn die nachfolgende Bedingung eingehalten wird:

$$T_1 \le \begin{cases} 4 \cdot T_C \\ 2,0 \,\mathrm{s} \end{cases} \tag{3.6}$$

 $\operatorname{mit}$ 

 $T_1$ ...Eigenschwingungsdauer $T_C$ ...obere Grenze des Bereichs konstanter Spektralbeschleunigung

Neben der Einhaltung von Gl. 3.6 müssen sämtliche, nachfolgend beschriebene Regelmäßigkeitskriterien im Aufriss erfüllt sein:



Abbildung 3.1: Kriterien für die Regelmäßigkeit von Gebäuden mit Rücksprüngen [ÖNORM EN 1998-1]

- Alle horizontalen Aussteifungssysteme wie Kerne, tragende Wände oder Rahmen müssen ohne Unterbrechung von ihren Gründungen bis zur Oberkante des Gebäudes verlaufen.
- Horizontalsteifigkeit und Masse der einzelnen Geschoße müssen konstant sein oder ohne sprunghafte Änderungen vom Fundament bis zur Spitze eines Gebäudes abnehmen.
- In Rahmentragwerken sollte das Verhältnis der tatsächlichen Geschoßbeanspruchbarkeit zu der laut Berechnung erforderlichen Beanspruchbarkeit nicht unverhältnismäßig stark zwischen benachbarten Geschoßen variieren.
- Für allmähliche Rücksprünge unter Wahrung der axialen Symmetrie darf der Rücksprung in jedem Stockwerk nicht größer sein als 20 % der vorhergehenden Grundrissabmessung in Richtung des Rücksprungs (Abb. 3.1, a und b).
- Für einen einzelnen Rücksprung innerhalb der unteren 15 % der Gesamthöhe des Haupttragsystems darf der Rücksprung nicht größer als 50 % der vorhergehenden Grundrissabmessung sein (Abb. 3.1, c). In diesem Fall sollte die Tragkonstruktion des unteren Bereichs innerhalb der Vertikalprojektion des Umrisses der oberen Stockwerke derart ausgelegt werden, dass sie mindestens 75 % der horizontalen Schubkräfte aufnehmen kann, die in diesem Bereich eines ähnlichen Gebäudes ohne Vergrößerung der Basis entstehen würde.
- Wenn die Rücksprünge die Symmetrie verletzen, darf in jeder Seitenansicht die Summe der Rücksprünge von allen Geschoßen nicht größer als 30 % der Grundrissabmessung des ersten Geschoßes oberhalb der Gründung oder oberhalb eines starren Kellergeschoßes sein, und die einzelnen Rücksprünge dürfen nicht größer als 10 % der vorhergehenden Grundrissabmessung sein (Abb. 3.1, d).

### 3.1.3 Einwirkungsermittlung gemäß [ÖNORM EN 1998-1]

### Gesamterdbebenkraft

Die Gesamterdbebenkraft  $F_b$  muss in jeder horizontalen Richtung, in der das Bauwerk rechnerisch untersucht wird, nach folgender Formel bestimmt werden:

$$F_b = S_d(T_1) \cdot m \cdot \lambda \tag{3.7}$$

 $\operatorname{mit}$ 

| $S_d(T_1)$ | <br>Ordinate des Bemessungsspektrums bei der Periode $T_1$                                |
|------------|-------------------------------------------------------------------------------------------|
| $T_1$      | <br>Eigenschwingungsdauer des Bauwerks für horizontale Bewegungen in der                  |
|            | betrachteten Richtung                                                                     |
| m          | <br>Gesamtmasse des Bauwerks, oberhalb der Gründung oder über der Ober-                   |
|            | kante eines starren Kellergeschoßes                                                       |
| $\lambda$  | <br>Korrekturbeiwert; $\lambda = 0,85$ wenn $T_1 \leq 2 T_C$ ist und das Bauwerk mehr als |
|            | zwei Stockwerke hat, sonst $\lambda = 1, 0$ ; berücksichtigt die Tatsache, dass beim      |
|            | ersten Eigenschwingungszustand nicht die gesamte Masse mitwirkt                           |

Zur Abschätzung der Eigenschwingungsdauer  $T_1$  des Bauwerks dürfen folgende Gleichungen herangezogen werden:

$$T_1 = C_t \cdot H^{3/4} \tag{3.8}$$

für Hochbauten mit einer Höhe bis zu 40 m, mit
- $C_t$  ... gleich 0,085 für biegesteife räumliche Stahlrahmen, 0,075 für biegesteife räumliche Stahlbetonrahmen und für ausmittig ausgesteifte Stahlrahmen und 0,050 für alle anderen Tragwerke
- H ... ist die Bauwerkshöhe ab Fundamentoberkante oder der Oberkante eines starren Kellergeschoßes in m

Für Hochbauten mit Schubwänden aus Beton oder Mauerwerk kann Gl. 3.8 ebenfalls verwendet werden, der Wert  $C_t$  ergibt sich jedoch aus folgender Gleichung:

$$C_t = 0,075/\sqrt{A_c}$$
(3.9)

 $\operatorname{mit}$ 

$$A_c = \sum \left[ A_i \cdot (0, 2 + (l_{wi}/H))^2 \right]$$
(3.10)

und

| $A_c$    | <br>gesamte wirksame Fläche der Schubwände im Erdgeschoß des Gebäudes in       |
|----------|--------------------------------------------------------------------------------|
|          | $m^2$                                                                          |
| $A_i$    | <br>wirksame Querschnittsfläche der Schubwand $i$ in der betrachteten Richtung |
|          | im Erdgeschoß des Gebäudes in $m^2$                                            |
| Η        | <br>ist die Bauwerkshöhe ab Fundamentoberkante in m                            |
| $l_{wi}$ | <br>Länge der zu den wirkenden Kräften parallelen Schubwand im Erdgeschoss     |
|          | in m; wobei $l_{wi}/H \le 0,9$                                                 |

Alternativ darf die Eigenschwingungsdauer durch folgende Gleichung abgeschätzt werden:

$$T_1 = 2 \cdot \sqrt{d} \tag{3.11}$$

 $\operatorname{mit}$ 

d

... horizontale elastische Verschiebung der Gebäudespitze infolge der in Horizontalrichtung angreifend gedachten Gewichtslasten in m

#### Verteilung der horizontalen Erdbebenkräfte

Werden die Grundmodalformen in den horizontalen Berechnungsrichtungen mit Hilfe baudynamischer Methoden (z. B. Rayleigh-Methode) berechnet, kann die Verteilung der horizontalen Kräfte  $F_i$  mit nachfolgender Gleichung ermittelt werden:

$$F_i = F_b \cdot \frac{s_i \cdot m_i}{\sum s_j \cdot m_j} \tag{3.12}$$

 $\operatorname{mit}$ 

 $F_i$ ...am Stockwerk i angreifende Horizontalkraft $F_b$ ...Gesamterdbebenkraft nach Gl. 3.7 $s_i, s_j$ ...Verschiebungen der Massen  $m_i, m_j$  in der Grundeigenform $m_i, m_j$ ...Stockwerksmassen

Wenn die Grundeigenformen durch mit der Höhe linear zunehmenden Horizontalverschiebungen angenähert werden, sollten die Horizontalkräfte  $F_i$  nach folgendem Ausdruck bestimmt werden:

$$F_i = F_b \cdot \frac{z_i \cdot m_i}{\sum z_j \cdot m_j} \tag{3.13}$$



Abbildung 3.2: Exzentrischer Mehrmassenschwinger (links) und äquivalenter Einmassenschwinger (rechts) [ÖNORM B 1998-1]

 $\operatorname{mit}$ 

 $z_i, z_j \dots$  Höhe der Massen  $m_i, m_j$  über der Ebene, in der die Erdbebeneinwirkung angreift

#### Torsionswirkungen

Falls die horizontale Steifigkeit und die Masse im Grundriss symmetrisch verteilt sind, dürfen die zufälligen Torsionswirkungen dadurch berücksichtigt werden, dass die Beanspruchungen in den einzelnen lastabtragenden Bauteilen mit dem nachfolgend definierten Beiwert  $\delta$  multipliziert werden:

$$\delta = 1 + 0, 6 \cdot \frac{x}{L_e} \tag{3.14}$$

 $\operatorname{mit}$ 

- x ... Abstand des betrachteten Bauteils vom Massenmittelpunkt des Gebäudes im Grundriss, gemessen senkrecht zur Richtung der betrachteten Erdbebeneinwirkung
- $L_e$  ... Abstand zwischen den beiden äußersten Bauteilen, die horizontale Lasten abtragen, gemessen senkrecht zur Richtung der betrachteten Erdbebenwirkung

Alternativ sind in Anhang B der [ÖNORM B 1998-1] Näherungsformeln zur Berücksichtigung der Torsionseinwirkung angegeben. Diese können für mehrgeschoßige Bauwerke, bei denen die lastabtragenden Elemente ohne Unterbrechung über die gesamte Höhe laufen und die relativ gleichmäßige Geschoßdriftverhältnisse über die Bauwerkshöhe aufweisen (Rahmentragwerke und Wandscheibenbauten), herangezogen werden. Beim Berechnungsmodell 3 gemäß [ÖNORM B 1998-1] kann für den exzentrischen Mehrmassenschwinger das Modell eines annähernd äquivalenten Einmassenschwingers verwendet werden (Abb. 3.2). Die Torsionsbeanspruchung wird näherungsweise für beide Erdbebenrichtungen durch folgende Ausmitten berücksichtigt (Abb. 3.3 und Abb. 3.4):

- $e_{max}$
- $e_{min}$



Abbildung 3.3: Erdbeben in *y*-Richtung [ÖNORM B 1998-1]



Abbildung 3.4: Erdbeben in x-Richtung [ÖNORM B 1998-1]

Es bedeuten:

| S                    | <br>Steifigkeitsmittelpunkt                                               |
|----------------------|---------------------------------------------------------------------------|
| M                    | <br>Massenmittelpunkt                                                     |
| $m'=m~\cdot~\lambda$ | <br>mitschwingende Masse                                                  |
| $F_b$                | <br>resultierende Erdbebeneinwirkung                                      |
| $F_b \cdot e_{max}$  | <br>Torsionsmoment                                                        |
| $e_0$                | <br>Abstand Steifigkeitsmittelpunkt–Massenmittelpunkt, $e_0$ ist in Rich- |
|                      | tung der Achsen positiv definiert                                         |
| $e_1$                | <br>Zusatzausmitte zufolge Vereinfachungen beim Berechnungsmodell 3       |
| $e_2$                | <br>Zusatzausmitte für zufällige Abweichungen                             |
| $x_s, y_s$           | <br>Koordinaten des Steifigkeitsmittelpunktes                             |
| $I_{x,1}, I_{y,1}$   | <br>Trägheitsmomente der Wände                                            |
| l                    | <br>Gebäudelänge normal auf die Erdbebeneinwirkung                        |
| b                    | <br>Gebäudetiefe in Richtung der Erdbebeneinwirkung                       |

Der Steifigkeitsmittelpunkt S sowie die anzusetzenden Exzentrizitäten  $e_{max}$  und  $e_{min}$  errechnen sich wie folgt:

$$x_s = \frac{\sum I_{x,i} \cdot x_i}{\sum I_{x,i}} \tag{3.15}$$

$$y_s = \frac{\sum I_{y,i} \cdot y_i}{\sum I_{y,i}} \tag{3.16}$$

$$e_{max} = e_0 + e_1 + e_2 \tag{3.17}$$

$$e_{min} = e_0 - e_2$$
 (3.18)

$$e_1 = 0, 1 \cdot (l+b) \cdot \left(10 \cdot (e_0/l)\right)^{0,3} \le 0, 1 \cdot (l+b)$$
(3.19)

$$e_2 = 0,05 \cdot l \tag{3.20}$$

Falls  $e_0$  negativ ist, sind auch  $e_1$  und  $e_2$  negativ anzunehmen. Bei Wänden aus Mauerwerk sind die Trägheitsmomente in Gl. 3.15 bis Gl. 3.20 durch die Schubflächen (ohne Gurte) zu ersetzen. Mit Hilfe nachfolgender Gleichungen können die Beanspruchungen sämtlicher Wandquerschnitte berechnet werden:

Beanspruchung der Wand k in y-Richtung (Erdbeben in y-Richtung):

$$F_{k} = F_{by} \cdot \frac{I_{x,k}}{\sum I_{x,i}} + e_{max,x} \ (bzw.e_{min,x}) \cdot I_{x,k} \cdot \frac{x'_{k}}{\sum (I_{x,i} \cdot x'_{i}^{2}) + \sum (I_{y,i} \cdot y'_{i}^{2})}$$
(3.21)

Beanspruchung der Wand r in x-Richtung (Erdbeben in y-Richtung):

$$F_r = -F_{by} \cdot e_{max,x} \ (\text{bzw.}e_{min,x}) \cdot I_{y,r} \cdot \frac{y'_r}{\sum (I_{x,i} \cdot {x'_i}^2) + \sum (I_{y,i} \cdot {y'_i}^2)}$$
(3.22)

Beanspruchung der Wand r in x-Richtung (Erdbeben in x-Richtung):

$$F_r = F_{bx} \cdot \frac{I_{y,r}}{\sum I_{y,i}} + e_{max,y} \ (bzw.e_{min,y}) \cdot I_{y,r} \cdot \frac{y'_r}{\sum (I_{x,i} \cdot x'_i^2) + \sum (I_{y,i} \cdot y'_i^2)}$$
(3.23)

Beanspruchung der Wand k in y-Richtung (Erdbeben in x-Richtung):

$$F_{k} = -F_{bx} \cdot e_{max,y} \ (bzw.e_{min,y}) \cdot I_{x,k} \cdot \frac{x'_{k}}{\sum (I_{x,i} \cdot {x'_{i}}^{2}) + \sum (I_{y,i} \cdot {y'_{i}}^{2})}$$
(3.24)

 $x'_k$  ... Abstand des Schubmittelpunktes der Wand k zum Steifigkeitsmittelpunkt  $y'_r$  ... Abstand des Schubmittelpunktes der Wand r zum Steifigkeitsmittelpunkt  $F_{by} = Sd(T_{1,y}) \cdot m \cdot \lambda$  ... resultierende Erdbebeneinwirkung in y-Richtung  $F_{bx} = Sd(T_{1,x}) \cdot m \cdot \lambda$  ... resultierende Erdbebeneinwirkung in x-Richtung

Die Aufteilung der Wandbeanspruchung über die Höhe kann gemäß Gl. 3.13 erfolgen.

#### Überlagerung der Bebenkomponenten

Bei im Grundriss regelmäßigen Gebäuden, die in jeder der beiden Hauptrichtungen durch eigene Bauteile stabilisiert werden, darf die Überlagerung gemäß Abschnitt 3.2.3 entfallen [Mes03].

#### Kriterien für die Regelmäßigkeit im Grundriss

Damit ein Gebäude als im Grundriss regelmäßig klassifiziert werden kann, müssen sämtliche, nachfolgend beschriebene, Regelmäßigkeitskriterien erfüllt sein:

- Hinsichtlich der Verteilung der horizontalen Steifigkeit und der Masse muss das Bauwerk im Grundriss ungefähr symmetrisch bezüglich zweier rechtwinklig zueinander stehender Achsen sein.
- Die Grundrissform muss kompakt sein, d. h. jedes Stockwerk muss durch ein konvexes Polygon umrissen sein.
- Die Steifigkeit der Decken in ihrer Ebene muss im Vergleich zur Horizontalsteifigkeit der vertikalen tragenden Bauteile ausreichend groß sein, so dass die Verformung der Decke sich nur unwesentlich auf die Verteilung der Kräfte an die vertikalen tragenden Bauteile auswirkt.
- Die Schlankheit  $\lambda = L_{max}/L_{min}$  des Gebäudes im Grundriss darf nicht größer als 4 sein, wobei  $L_{max}$  und  $L_{min}$  jeweils die senkrecht zueinander gemessene größte und kleinste Gebäudeabmessung im Grundriss darstellt.
- Für jedes Geschoß und in jeder Berechnungsrichtung x und y müssen die tatsächliche Ausmittigkeit  $e_0$  und der Torsionsradius r die beiden nachfolgenden Bedingungen erfüllen, die für die Berechnungsrichtung y angeschrieben wurden:

$$e_{0x} \leq 0, 30 \cdot r_x \tag{3.25}$$

$$r_x \geq l_s$$
 (3.26)

 $\operatorname{mit}$ 

| $e_{0x}$ | <br>Abstand zwischen dem Steifigkeitsmittelpunkt und dem Massenmittel-       |
|----------|------------------------------------------------------------------------------|
|          | punkt, gemessen in $x$ -Richtung, die senkrecht zur betrachteten Berech-     |
|          | nungsrichtung verläuft                                                       |
| $r_x$    | <br>Quadratwurzel des Verhältnisses zwischen der Torsionssteifigkeit und der |
|          | Horizontalsteifigkeit in $y$ -Richtung (= Torsionsradius)                    |
| $l_s$    | <br>Trägheitsradius der Geschoßmasse im Grundriss                            |



Abbildung 3.5: Dreimassenschwinger mit Federsteifigkeiten und Eigenschwingungsformen [Bac02b]

# 3.2 Multimodales Antwortspektrumverfahren

Dieses Berechnungsverfahren wird für Hochbauten herangezogen, deren Schwingungsverhalten nicht nur durch die Grundeigenform, sondern auch durch höhere Schwingungsformen maßgeblich beeinflusst wird.

#### 3.2.1 Theoretische Grundlagen

Beim multimodalen Antwortspektrumverfahren wird das dynamische Verhalten eines Bauwerks durch einen Mehrmassenschwinger beschrieben. Wird für jede Masse eine Gleichgewichtsbedingung aufgestellt, erhält man beispielsweise für einen Dreimassenschwinger (Abb. 3.5) folgendes Differentialgleichungssystem [Fle93]:

$$m_1 \cdot \ddot{x}_1 + c_{11} \cdot \dot{x}_1 + c_{12} \cdot \dot{x}_2 + c_{13} \cdot \dot{x}_3 + k_{11} \cdot x_1 + k_{12} \cdot x_2 + k_{13} \cdot x_3 = p_1(t)$$
(3.27)

$$n_2 \cdot \ddot{x}_2 + c_{21} \cdot \dot{x}_1 + c_{22} \cdot \dot{x}_2 + c_{23} \cdot \dot{x}_3 + k_{21} \cdot x_1 + k_{22} \cdot x_2 + k_{23} \cdot x_3 = p_2(t)$$
(3.28)

$$m_3 \cdot \ddot{x}_3 + c_{31} \cdot \dot{x}_1 + c_{32} \cdot \dot{x}_2 + c_{33} \cdot \dot{x}_3 + k_{31} \cdot x_1 + k_{32} \cdot x_2 + k_{33} \cdot x_3 = p_3(t)$$
(3.29)

In Matrizenschreibweise hat das Gleichungssystem folgende Form:

$$[M] \cdot \{\ddot{x}\} + [C] \cdot \{\dot{x}\} + [K] \cdot \{x\} = \{P(t)\}$$
(3.30)

mit

γ

$$[M] = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \dots \text{ Massenmatrix (Diagonal matrix)}$$

$$[C] = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \dots \text{Dämpfungsmatrix}$$

$$[K] = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} \dots \text{ Steifigkeitsmatrix}$$

$$\{x\} = \left\{\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right\} \dots \text{ Verschiebungsvektor}$$

$$\{P(t)\} = \left\{ \begin{array}{c} p_1(t) \\ p_2(t) \\ p_3(t) \end{array} \right\} \dots \text{ Belastungsvektor}$$

#### Eigenfrequenzen und Eigenschwingungsformen

Für den frei schwingenden, ungedämpften Mehrmassenschwinger ergibt sich folgendes Gleichungssystem [Fle93]:

$$[M] \cdot \{\ddot{x}\} + [K] \cdot \{x\} = \{0\}$$
(3.31)

Durch Einführung des Lösungsansatzes

$$\{x\} = \{a\} \cdot \sin\left(\omega t + \phi\right) \tag{3.32}$$

lässt sich das homogene Gleichungssystem

$$([K] - \omega^2 \cdot [M]) \cdot \{a\} = \{0\}$$
(3.33)

gewinnen. Dieses hat nur dann von Null verschiedene (nichttriviale) Lösungen, wenn seine Determinante verschwindet:

$$\left| \left[ K \right] - \omega^2 \cdot \left[ M \right] \right| = 0 \tag{3.34}$$

Durch Lösung des vorliegenden Eigenwertproblems lassen sich so viele Eigenkreisfrequenzen  $\omega_i$ bestimmen, wie Freiheitsgrade *n* vorliegen. Die Eigenkreisfrequenzen entsprechen folglich den Nullstellen der Determinante. Die zu den Eigenkreisfrequenzen  $\omega_i$  gehörenden Lösungen  $\{\psi_i\}$ des Gleichungssystems (Gl. 3.33), die sogenannten Eigenvektoren, sind nur als Verhältniswerte darstellbar, und werden auf ihren Größtwert normiert. Sie können zur modalen Matrix (Matrix der Eigenformen)

$$[\psi] = [\{\psi_1\} \ \{\psi_2\} \cdots \{\psi_n\}] \tag{3.35}$$

zusammengefasst werden. Die Eigenformen werden nach wachsenden Eigenkreisfrequenzen geordnet. Die zur niedrigsten Eigenkreisfrequenz  $\omega_1$  bzw. zur höchsten Eigenschwingzeit  $T_1$ gehörende Eigenform wird als Grundschwingungsform bezeichnet. Um mit Hilfe der "modalen Analyse" die Transformation eines komplizierten dynamischen Systems (Gl. 3.30) in ein System von Einmassenschwingern zu ermöglichen, muss von den Orthogonalitätseigenschaften der Eigenvektoren Gebrauch gemacht werden:

$$\{\psi_i\}^T \cdot [M] \cdot \{\psi_j\} = 0 \dots \text{ für } i \neq j$$
(3.36)

$$\{\psi_i\}^T \cdot [K] \cdot \{\psi_j\} = 0 \dots \text{ für } i \neq j$$

$$(3.37)$$



Abbildung 3.6: Rayleigh-Dämpfung [Fle93]

#### Modale Analyse

Der Verschiebungsvektor kann durch Linearkombination der n Eigenformen beschrieben werden [Fle93]:

$$\{x(t)\} = \sum_{i=1}^{n} \{\psi_i\} \cdot y_i(t) = [\psi] \cdot \{y(t)\}$$
(3.38)

 $\operatorname{mit}$ 

 $y_i(t)$  ... generalisierte Koordinate; sie beschreibt, wie stark eine Eigenform die Gesamtschwingung des Systems beeinflusst

Setzt man diesen Ansatz (Gl. 3.38) samt den entsprechenden Ableitungen in die Bewegungsdifferentialgleichung (Gl. 3.30) und multipliziert  $[\psi]^T$  vor, so erhält man:

$$\{\psi_i\}^T \cdot [M] \cdot [\psi] \cdot \{\ddot{y}\} + \{\psi_i\}^T \cdot [C] \cdot [\psi] \cdot \{\dot{y}\} + \{\psi_i\}^T \cdot [K] \cdot [\psi] \cdot \{y\} = \{\psi_i\}^T \cdot \{P(t)\}$$
(3.39)

Falls neben Gl. 3.36 und Gl. 3.37 als dritte Orthogonalitätsbeziehung

$$\{\psi_i\}^T \cdot [C] \cdot \{\psi_j\} = 0 \dots \text{ für } i \neq j$$
(3.40)

gilt, und die Dämpfungsmatrix als Linearkombination der Massen- und Steifigkeitsmatrix  $([C] = \alpha \cdot [M] + \beta \cdot [K];$  Rayleigh-Dämpfung (Abb. 3.6)) dargestellt wird, ergibt sich folgendes entkoppelte Gleichungssystem:

$$\{\psi_i\}^T \cdot [M] \cdot \{\psi_i\} \cdot \ddot{y}_i + \{\psi_i\}^T \cdot [C] \cdot \{\psi_i\} \cdot \dot{y}_i + \{\psi_i\}^T \cdot [K] \cdot \{\psi_i\} \cdot y_i = \{\psi_i\}^T \cdot \{P(t)\}$$
(3.41)

Werden folgende Bezeichnungen

$$\begin{split} M_i^* &= \{\psi_i\}^T \cdot [M] \cdot \{\psi_i\} & \dots & \text{generalisierte Masse} \\ C_i^* &= \{\psi_i\}^T \cdot [C] \cdot \{\psi_i\} & \dots & \text{generalisierte Dämpfung} \\ K_i^* &= \{\psi_i\}^T \cdot [K] \cdot \{\psi_i\} & \dots & \text{generalisierte Steifigkeit} \\ P_i^*(t) &= \{\psi_i\}^T \cdot \{P(t)\} & \dots & \text{generalisierte Last} \end{split}$$

eingeführt, ergibt sich für die Differentialgleichung der Schwingungsform i Gl. 3.42:

$$M_{i}^{*} \cdot \ddot{y}_{i} + C_{i}^{*} \cdot \dot{y}_{i} + K_{i}^{*} \cdot y_{i} = P_{i}^{*}(t)$$
(3.42)

bzw.

$$\ddot{y}_i + 2 \cdot \xi_i \cdot \omega_i \cdot \dot{y}_i + \omega_i^2 \cdot y_i = \frac{P_i^*(t)}{M_i}$$
(3.43)

$$\begin{split} \omega_i^2 &= \frac{K_i^*}{M_i^*} \dots i\text{-te Eigenfrequenz} \\ \xi_i &= \frac{C_i^*}{2 \cdot M_i^* \cdot \omega_i} \dots \text{modale Dämpfungszahl der } i\text{-ten Eigenform} \end{split}$$

Bei einer Fußpunkterregung nimmt der Belastungsvektor aus Gl. 3.30 folgende Form an:

$$\{P(t)\} = -[M] \cdot \{\bar{I}\} \cdot \ddot{x}_g(t) \tag{3.44}$$

Der Übertragungsvektor  $\{\overline{I}\}$  in Gl. 3.44 überprüft, ob die Freiheitsgrade des Systems in Richtung der Bodenbeschleunigung weisen. Für die generalisierte Last in der Schwingungsform *i* folgt somit:

$$P_i^*(t) = -\underbrace{\{\psi_i\}^T \cdot [M] \cdot \{\bar{I}\}}_{\text{Beteiligungsfaktor}} \cdot \ddot{x}_g(t) = -\alpha_i \cdot \ddot{x}_g(t)$$
(3.45)

Liegen die Freiheitsgrade eines Systems in Richtung der Bodenbeschleunigung, kann der Beteiligungsfaktor wie folgt definiert werden:

$$\alpha_i = \sum_{j=1}^p m_j \cdot \psi_{j,i} \tag{3.46}$$

Für den Größtwert der generalisierten Koordinate einer Schwingungsform i erhält man:

$$max \ y_i(t) = \frac{\alpha_i}{M_i^*} \cdot S_d(\omega_i, \xi_i) = \frac{\alpha_i}{M_i^* \cdot {\omega_i}^2} \cdot S_a(\omega_i, \xi_i)$$
(3.47)

Wird dieser in Gl. 3.38 eingesetzt, resultieren daraus der Verschiebungsvektor bzw. in weiterer Folge die Maximalwerte der Schnittkräfte der entsprechenden Schwingungsform (Abb. 3.7). Da die Maxima der Schnittgrößen zu verschiedenen Zeitpunkten auftreten, müssen sie mittels statistischer Methoden überlagert werden. Folgende Überlagerungsformeln sind gebräuchlich:

$$N = \sqrt{\sum_{i=1}^{n} N_i^2 \dots \text{SRSS-Formel}}$$
(3.48)

$$N = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} N_i \cdot \rho_{ij} \cdot N_j} \dots \text{ CQC-Formel}$$
(3.49)

 $\operatorname{mit}$ 

SRSS $\dots$ Square-Root-of-Sum-of-SquaresCQC $\dots$ Complete Quadratic CombinationN $\dots$ Gesamtwert einer beliebigen Schnitt- oder Verschiebungsgröße $N_i, N_j$  $\dots$ Anteil der Eigenform i bzw. j an der Schnitt- oder Verschiebungsgröße

Bei eng aneinander liegenden Eigenfrequenzen sollte unbedingt die CQC-Formel zum Einsatz kommen, da die SRSS-Formel zu unrealistischen Ergebnissen führt.



Abbildung 3.7: Modale Lösung der Bewegungsgleichungen [Fle07]

# 3.2.2 Anwendungsgrenzen gemäß [ÖNORM EN 1998-1]

Das modale Antwortspektrumverfahren muss bei Hochbauten angewandt werden, deren Antwort durch Beiträge von höheren Schwingungsformen als die Grundeigenform beeinflusst wird. Die Antwort aller Modalformen, die wesentlich zur Gesamtantwort beitragen, muss berücksichtigt werden. Diese Bedingung gilt als erfüllt, wenn einer der folgenden Sätze erfüllt ist:

- Die Summe der effektiven Modalmassen der berücksichtigten Modalbeiträge erreicht mindestens 90 % der Gesamtmasse des Bauwerks;
- Alle Modalbeiträge, deren effektive Modalmassen größer sind als 5 % der Gesamtmasse, wurden berücksichtigt.

Wird ein räumliches Modell verwendet, sollten die genannten Bedingungen für jede maßgebende Richtung überprüft werden. Können die Bedingungen nicht erfüllt werden, sollte die minimale Anzahl k von in einer räumlichen Berechnung zu berücksichtigenden Modalbeiträge folgende Gleichungen erfüllen:

| k     | $\geq$ | $3\cdot\sqrt{n}$ | (3.50) |
|-------|--------|------------------|--------|
| $T_k$ | $\leq$ | $0,20\mathrm{s}$ | (3.51) |

| k | <br>Anzahl der berücksichtigten Modalbeiträge                               |
|---|-----------------------------------------------------------------------------|
| n | <br>Anzahl der Geschoße über dem Fundament oder der Oberkante eines starren |
|   | Kellergeschoßes                                                             |
| k | <br>Periode der Modalform $k$                                               |

# 3.2.3 Einwirkungsermittlung gemäß [ÖNORM EN 1998-1]

#### Kombination der Modalbeiträge

Die Antworten in zwei Modalformen i und j dürfen als voneinander unabhängig betrachtet werden, wenn ihre Perioden  $T_i$  und  $T_j$  folgende Bedingung erfüllen:

$$T_i \le 0, 9 \cdot T_i \tag{3.52}$$

Wird Gl. 3.52 erfüllt, darf der Größtwert  $E_E$  einer seismischen Beanspruchungsgröße wie folgt berechnet werden:

$$E_E = \sqrt{\sum E_{Ei}^2} \tag{3.53}$$

 $\operatorname{mit}$ 

$$E_E$$
 ... betrachtete seismische Beanspruchungsgröße (Kraft, Verschiebung)  
 $E_{Ei}$  ... Wert dieser seismischen Beanspruchungsgröße im Modalbeitrag  $i$ 

Ist Gl. 3.52 nicht erfüllt, müssen genauere Verfahren für die Kombination der modalen Größtwerte verwendet werden ("Vollständige Quadratische Kombination").

#### Torsionswirkungen

Wird der Berechnung ein räumliches Modell zugrundegelegt, dürfen die Torsionswirkungen durch Ansetzen von Tosionsmomenten  $M_{ai}$  um die vertikale Achse eines jeden Geschoßes i berücksichtigt werden:

$$M_{ai} = e_{ai} \cdot F_i$$

$$e_{ai} = \pm 0,05 \cdot L_i$$
(3.54)
(3.55)

 $\operatorname{mit}$ 

| $M_{ai}$ | <br>Torsionsmoment, wirkend auf das Geschoß $i$ um seine vertikale Achse         |
|----------|----------------------------------------------------------------------------------|
| $e_{ai}$ | <br>zufällige Ausmittigkeit der Geschoßmasse $i$ für alle maßgebenden Richtungen |
| $F_i$    | <br>Horizontalkraft, wirkend auf das Geschoß $i$                                 |
| $L_i$    | <br>Geschoßabmessung senkrecht zur Richtung der Erdbebeneinwirkung               |

Wenn die Berechnung hingegen unter Verwendung von zwei ebenen Modellen durchgeführt wird, dürfen Torsionswirkungen durch Verdoppelung der zufälligen Ausmittigkeit  $e_{ai}$  nach Gl. 3.55 und Multiplikation der Beanspruchungen mit folgendem Beiwert  $\delta$  berücksichtigt werden:

$$\delta = 1 + 1, 2 \cdot \frac{x}{L_e} \tag{3.56}$$

- x ... Abstand des betrachteten Bauteils vom Massenmittelpunkt des Gebäudes im Grundriss, gemessen senkrecht zur Richtung der betrachteten Erdbebeneinwirkung
- $L_e$  ... Abstand zwischen den beiden äußersten Bauteilen, die horizontale Lasten abtragen, gemessen senkrecht zur Richtung der betrachteten Erdbebenwirkung

#### Überlagerung der Bebenkomponenten

Die Beanspruchungsgrößen infolge des Zusammenwirkens der Horizontalkomponenten der Erdbebeneinwirkung dürfen mittels der folgenden Kombinationen berechnet werden:

$$E_{Edx}"+"0, 30 \cdot E_{Edy}$$
(3.57)  
0, 30 \cdot E\_{Edx}"+"E\_{Edy}   
(3.58)

 $\operatorname{mit}$ 

| "+"       | <br>bedeutet "zu kombinieren mit"                                             |
|-----------|-------------------------------------------------------------------------------|
| $E_{Edx}$ | <br>Beanspruchungsgrößen infolge des Angriffs der Erdbebeneinwirkung in Rich- |
|           | tung der gewählten horizontalen Achse $x$ des Bauwerks                        |
| $E_{Edy}$ | <br>Beanspruchungsgrößen infolge des Angriffs derselben Erdbebeneinwirkung    |
| Ŭ         | in Richtung der dazu senkrechten horizontalen Achse $y$ des Bauwerks          |

# 3.3 Zeitverlaufsverfahren

Zur Berechnung nach der Zeitverlaufsmethode werden künstliche oder aufgezeichnete bzw. simulierte Bodenbeschleunigungszeitverläufe verwendet. Dabei wird eine Verwendung von mindestens drei Zeitverläufen empfohlen. Um die Zeitverläufe der Antwortschwingungen eines Systems ermitteln zu können, muss Gl. 3.30 gelöst werden. Folgende zwei Lösungsverfahren stehen zur Auswahl [Fle93]:

- modale Lösung, nur für linear-elastische Systeme
- direkte Integration<sup>1</sup>, für nichtlineares Bauwerksverhalten und beliebige Dämpfungsmatrizen

#### 3.3.1 Theoretische Grundlagen

#### Modale Lösung der Bewegungsgleichungen (Time History Modal Analysis)

Für linear-elastische Systeme erhält man den Zeitverlauf der *i*-ten modalen Antwortschwingung durch Lösung von Gl. 3.42. Durch Überlagerung der modalen Antworten erhält man den Gesamtverlauf der Schwingungsantworten in den einzelnen Freiheitsgraden [Fle93]. Folgende Vorgehensweise sollte befolgt werden [Bac02b]:

- Bestimmung der Eigenvektoren und Eigenkreisfrequenzen der freien, ungedämpften Schwingung
- Übergang von natürlichen zu modalen (generalisierten) Koordinaten, Differentialgleichungssystem wird entkoppelt
- Integration der entkoppelten Bewegungsgleichungen
- Rücktransformation
- Addition der einzelnen modalen Zeitverläufe der Deformationen und Schnittkräfte in natürlichen Koordinaten
- Bestimmung der maximalen Deformationen und Schnittkräfte

<sup>&</sup>lt;sup>1</sup>Bei dieser Methode wird Gl. 3.30 direkt mit Hilfe eines numerischen Integrationsverfahrens gelöst [Bac02b].

# 3.3.2 Anwendungsgrenzen gemäß [ÖNORM EN 1998-1]

Die Erdbebeneinwirkung darf mit Hilfe von Zeitverläufen der Bodenbeschleunigung und verwandter Größen (Geschwindigkeit und Verschiebung) dargestellt werden. Wird ein räumliches Modell der Berechnung zugrundegelegt, muss die Erdbebenbewegung aus drei gleichzeitig wirkenden Beschleunigungszeitverläufen bestehen, wobei ein und derselbe Beschleunigungszeitverlauf nicht gleichzeitig entlang beider Horizontalrichtungen verwendet werden darf.

## Aufgezeichnete oder simulierte Beschleunigungszeitverläufe

Aufgezeichnete Beschleunigungszeitverläufe, oder Beschleunigungszeitverläufe, die durch eine der Wirklichkeit entsprechende Simulation der Herd- und Fortpflanzungsmechanismen generiert wurden, dürfen verwendet werden, wenn die Musterfunktionen im Hinblick auf die seismotektonischen Merkmale der Herde und der Bodenbeschaffenheit des Standorts ausreichend aussagekräftig sind und ihre Werte auf den Wert  $a_g \cdot S$  für die betrachtete Zone skaliert werden (Abb. 3.3.3 und 3.8). Die Serie der aufgezeichneten oder simulierten Beschleunigungszeitverläufe sollte folgende Regeln erfüllen:

- Es sollten mindestens drei Beschleunigungszeitverläufe verwendet werden.
- Das Mittel der Beschleunigungsspektralwerte für die Nullperiode sollte nicht kleiner sein als der Wert von  $a_g \cdot S$  für den betrachteten Standort.
- Im Periodenbereich zwischen  $0, 2 \cdot T_1$  und  $2 \cdot T_1$  sollte keine Ordinate des mittleren, mit 5% gedämpften elastischen Spektrums (aus allen Zeitverläufen berechnet) kleiner sein als 90% des zugehörigen Werts des mit 5% gedämpften elastischen Antwortspektrums.

# 3.3.3 Einwirkungsermittlung gemäß [ÖNORM EN 1998-1]

Werden Ergebnisse aus mindestens sieben nichtlinearen Zeitverlaufsberechnungen mit aufgezeichneten bzw. simulierten Beschleunigungszeitverläufen gewonnen, sollte der Mittelwert der Antwortgrößen aus allen diesen Berechnungen als Bemessungswert der Beanspruchungsgröße  $E_d$  bei den einschlägigen Nachweisen verwendet werden. Anderenfalls sollte der ungünstigste Wert der Antwortgröße aus allen Berechnungen als  $E_d$  verwendet werden.



Abbildung 3.8: Aufgezeichneter (oben) und auf den Wert $a_g\cdot S$ skalierter Zeitverlauf (unten) der N-S-Komponente des Bebens vom 3. November 1997 in Wr. Neustadt

# 4 Bemessung von Mauerwerksbauten für Erdbebeneinwirkung

Gegenüber der herkömmlichen Bemessung von Mauerwerk gemäß [ÖNORM EN 1996-1-1] ergeben sich für Mauerwerksbauten in Erdbebengebieten zusätzliche Anforderungen, welche von der [ÖNORM EN 1998-1] angegeben und in den folgenden Abschnitten erklärt werden.

# 4.1 Anwendungsbereich

Da die [ÖNORM EN 1996-1-1] nicht die besonderen Anforderungen an den Entwurf, die Berechnung und Bemessung für erdbebengefährdete Bauwerke behandelt, sind Festlegungen zu entsprechenden Anforderungen in [ÖNORM EN 1998-1] enthalten, welche die [ÖNORM EN 1996-1-1] ergänzt und in Einklang mit dieser ist. Als zusätzliche Einschränkung muss erwähnt werden, dass die in [ÖNORM EN 1996-3] angegebenen vereinfachten Berechnungsmethoden nicht für die Bemessung von außergewöhnlichen Einwirkungen verwendet werden dürfen.

# 4.2 Baustoffe und Ausführung

#### 4.2.1 Mindestfestigkeit von Mauersteinen

Die normierte Druckfestigkeit der Mauersteine sollte, außer in Zonen geringer Seismizität ( $\gamma_i \cdot a_{qR} \cdot S \leq 0, 132 \cdot g$ ), nicht geringer als folgende Werte sein:

- senkrecht zur Lagerfuge:  $f_{b,min} = 5 \text{ N/mm}^2$
- parallel zur Lagerfuge in der Wandebene:  $f_{bh,min} = 2\,\mathrm{N}/\mathrm{mm}^2$

Der für den folgenden Erdbebennachweis verwendete Mauerstein POROTHERM 25-38 Objekt Plan erfüllt mit:

- $f_{b,vorh} = 17, 3 \, \text{N/mm}^2$
- $f_{bh,vorh} = 2,0 \,\mathrm{N/mm^2}$

sämtliche in der [ÖNORM EN 1998-1] angegebenen Forderungen.

## 4.2.2 Mörtel

Die Mindestfestigkeit des Mörtels  $f_{m,min}$  beträgt:

- für unbewehrtes oder eingefasstes Mauerwerk:  $f_{m,min} = 5 \text{ N/mm}^2$
- für bewehrtes Mauerwerk:  $f_{m,min} = 10 \,\mathrm{N/mm^2}$

| Mauerwerksart                                                | $t_{ef,min}$ in mm | $(h_{ef}/t_{ef})_{max}$ | $(l/h)_{min}$ |
|--------------------------------------------------------------|--------------------|-------------------------|---------------|
| Unbewehrt, aus natürlichen Mauersteinen                      | 350                | 9                       | 0,5           |
| Unbewehrt, aus beliebig anderen                              | 240                | 12                      | 0,4           |
| Mauersteinen                                                 |                    |                         |               |
| Unbewehrt, aus beliebig anderen                              | 170                | 15                      | 0,35          |
| Mauersteinen bei geringer Seismizität                        |                    |                         |               |
| Eingefasstes Mauerwerk                                       | 240                | 15                      | 0,3           |
| Bewehrtes Mauerwerk                                          | 240                | 15                      | unbegrenzt    |
| Die verwendeten Formelzeichen haben folgende Bedeutung:      |                    |                         |               |
| $t_{ef}$ Wanddicke                                           |                    |                         |               |
| $h_{ef}$ Knicklänge der Wand                                 |                    |                         |               |
| h größere lichte Höhe der an die Wand angrenzenden Öffnungen |                    |                         |               |
| <i>l</i> Länge der Wand                                      |                    |                         |               |

Tabelle 4.1: Empfohlene geometrische Bedingungen für Schubwände [ÖNORM EN 1998-1]

#### 4.2.3 Mauerwerksverbund

Alle nachfolgenden Klassen der Stoßfugenausführung sind erlaubt:

- vollständig vermörtelte Stoßfugen
- unvermörtelte Stoßfugen
- unvermörtelte Stoßfugen mit mechanischer Verbindung zwischen den Mauersteinen

# 4.3 Bauwerkstypen und Verhaltensbeiwerte

Grundsätzlich sollten Mauerwerksbauten folgenden Bauwerkstypen zugeordnet werden:

- Bauwerke aus unbewehrtem Mauerwerk
- Bauwerke aus eingefasstem Mauerwerk
- Bauwerke aus bewehrtem Mauerwerk

Da unbewehrtes Mauerwerk eine geringe Zugfestigkeit und Duktilität besitzt, darf es in Erdbebengebieten nur verwendet werden, wenn die effektive Wanddicke  $t_{ef}$  nicht kleiner als ein in Tab. 6.20 angegebener Mindestwert  $t_{ef,min}$  ist und der Wert von  $a_g \cdot S$  folgenden Grenzwert  $a_{q,urm}$  nicht überschreitet:

•  $a_g \cdot S \leq 0, 20 \cdot g$ 

In Zonen sehr geringer Seismizität ( $\gamma_i \cdot a_{gR} \cdot S \leq 0,043 \cdot g$ ) genügt die Einhaltung der Regeln in [ÖNORM EN 1996-1-1, ÖNORM EN 1996-1-2, ÖNORM EN 1996-2, ÖNORM EN 1996-3].

Die zulässigen Wertebereiche der Höchstbeträge der Verhaltensbeiwerte q sind für die unterschiedlichen Bauwerkstypen in Tab. 4.2 angegeben. Für Bauwerke, welche die Regelmäßigkeitskriterien im Aufriss nicht erfüllen (Abschnitt 3.1.2), sollte ein um 20 % abgeminderter Verhaltensbeiwert verwendet werden, wobei keine Abminderung auf Verhaltensbeiwerte kleiner als 1,5 nötig ist.

| Bauwerkstyp                          | Verhaltensbeiwert $q$ |
|--------------------------------------|-----------------------|
| Unbewehrtes Mauerwerk nach EN 1996   | 1,5                   |
| Unbewehrtes Mauerwerk nach EN 1998-1 | $1,\!5-2,\!5$         |
| Eingefasstes Mauerwerk               | $2,\!0-3,\!0$         |
| Bewehrtes Mauerwerk                  | $2,\!5-3,\!0$         |

Tabelle 4.2: Bauwerkstypen und Höchstbeträge der Verhaltensbeiwerte [ÖNORM EN 1998-1]

# 4.4 Tragwerksberechnung

Das der Tragwerksberechnung zu Grunde gelegte Modell muss die Steifigkeitseigenschaften des ganzen Bauwerks angemessen darstellen. Für die Berechnung darf die ungerissene, elastische Steifigkeit oder die gerissene Steifigkeit, um den Einfluss der Rissbildung auf die Verformungen zu berücksichtigen, verwendet werden. Liegt keine genaue Bestimmung der Steifigkeitseigenschaften vor, kann die gerissene Biege- und Schubsteifigkeit als die Hälfte der elastischen Steifigkeit des ungerissenen Bruttoquerschnitts angesetzt werden.

Eine Umverteilung der durch lineare Berechnung ermittelten Gesamterdbebenkraft auf die einzelnen Wände darf vorgenommen werden, wenn:

- das globale Gleichgewicht eingehalten ist (d. h. die gleiche Gesamterdbebenkraft und die gleiche Position der resultierenden Kraft erreicht wird);
- die Querkraft in keiner Wand um mehr als 25 % reduziert oder um mehr als 33 % erhöht wird; und
- die Konsequenzen der Lastumlagerung für die Decke(n) berücksichtigt werden.

# 4.5 Auslegungskriterien und Konstruktionsregeln

Folgende allgemeine Konstruktionsregeln müssen befolgt werden:

- Hochbauten aus Mauerwerk müssen aus Decken und Wänden bestehen, die in zwei orthogonalen horizontalen und einer vertikalen Richtung miteinander verbunden sind.
- Die Verbindung zwischen Decken und Wänden muss durch Stahlanker oder Stahlbetonringbalken erfolgen.
- Jeder Deckentyp darf verwendet werden, vorausgesetzt die allgemeinen Kontinuitätsanforderungen und eine wirksame Scheibenwirkung sind sichergestellt.
- Schubwände müssen in mindestens zwei orthogonalen Richtungen vorgesehen sein.
- Schubwände sollten die in Tab. 6.20 angegebenen geometrischen Anforderungen erfüllen.

#### 4.5.1 Zusätzliche Anforderungen für unbewehrtes Mauerwerk

Horizontale Stahlbetonbalken bzw. Stahlanker sollten in der Wandebene in der Höhe jeder Decke und in jedem Fall in vertikalen Abständen von nicht mehr als 4 m vorgesehen werden. Diese Balken oder Ringanker sollten über den gesamten Umfang des Gebäudes durchlaufende Verbindungsbauteile darstellen und miteinander verbunden sein. Die Mindestlängsbewehrung der horizontalen Stahlbetonbalken beträgt  $2 \text{ cm}^2$  (z. B. 4  $\emptyset$  8).

# 4.5.2 Zusätzliche Anforderungen für eingefasstes Mauerwerk

Die horizontalen und vertikalen Einfassungsbauteile müssen miteinander verbunden und an den Teilen des Haupttragwerks verankert werden. Um einen ausreichenden Verbund zwischen den Einfassungsbauteilen und dem Mauerwerk zu gewährleisten, dürfen die Einfassungsbauteile erst nach der Ausführung des Mauerwerks betoniert werden. Vertikale Einfassungsbauteile sollten in folgenden Bereichen eingebaut werden:

- an den freien Enden jedes tragenden Wandbauteils
- zu beiden Seiten jeder Wandöffnung mit einer Fläche größer als  $1,5\,\mathrm{m}^2$
- innerhalb einer Wand, falls erforderlich, um einen Maximalabstand von 5 m zwischen den Einfassungselementen einzuhalten
- an Kreuzungspunkten von tragenden Wänden, wenn die nach den oben genannten Regeln angeordneten Einfassungselemente einen Abstand von mehr als 1,5 m haben

Horizontale Einfassungselemente müssen hingegen auf der Höhe jeder Deckenebene in der jeweiligen Wandebene und in jedem Fall in vertikalen Abständen von nicht mehr als 4 m angeordnet werden. Bei der Bewehrung der Einfassungselemente sind folgende Bedingungen zu beachten bzw. zu erfüllen:

- Mindestquerschnitt der Längsbewehrung  $A_s \geq 3\,{\rm cm}^2$  bzw. 1 % der Querschnittsfläche des Einfassungselements
- Mindestquerschnitt der Bügelbewehrung  $A_s \ge 5 \text{ mm}$
- Abstand der Bügelbewehrung  $s \leq 150\,\mathrm{mm},\,\mathrm{mit}~d \geq 5\,\mathrm{mm}$
- Bewehrungsstahl der Klasse B oder C gemäß [ÖNORM EN 1992-1-1]
- Übergreifungslänge an Bewehrungsstößen  $l_s \geq 60 \cdot d_s$

# 4.5.3 Zusätzliche Anforderungen für bewehrtes Mauerwerk

Horizontale Bewehrung sollte in den Lagerfugen mit einem vertikalen Abstand von nicht mehr als 600 mm eingelegt werden, wobei ein Mindestbewehrungsgrad, bezogen auf die Gesamtquerschnittsfläche, von 0.05% nicht unterschritten werden darf. Zusätzlich müssen hohe Bewehrungsgrade der Horizontalbewehrung vermieden werden, um ein Druckversagen der Mauersteine vor dem Fließen des Stahls zu verhindern.

Der Mindestbewehrungsgrad der in einer Wand verteilten Vertikalbewehrung sollte nicht weniger als 0,08 % der horizontalen Bruttoquerschnittsfläche der Wand betragen. Die Anordnung darf in Aussparungen, Hohlräumen oder Löchern in den Mauersteinen erfolgen. Vertikalbewehrung mit einer Mindestquerschnittsfläche von 2 cm<sup>2</sup> sollte in folgenden Bereichen angeordnet werden:

- an beiden freien Enden jedes Wandbauteils
- an jeder Wandkreuzung
- $\bullet\,$ innerhalb der Wand, damit ein Abstand von 5 m zwischen solchen Vertikalbewehrungen nicht überschritten wird

Zusätzlich sind folgende Bedingungen, wie schon bei den zusätzlichen Anforderungen für eingefasstes Mauerwerk erläutert, zu erfüllen:

- Abstand der Bügelbewehrung  $s \leq 150\,\mathrm{mm},$  mit  $d \geq 5\,\mathrm{mm}$
- Bewehrungsstahl der Klasse B oder C gemäß [ÖNORM EN 1992-1-1]
- Übergreifungslänge an Bewehrungsstößen  $l_s \ge 60 \cdot d_s$

In Brüstungen und Stürzen, welche im regelmäßigen Verband mit dem Mauerwerk der angrenzenden Wände ausgeführt werden müssen, sollten Mauersteine mit Aussparungen für das Einlegen der erforderlichen horizontalen Bewehrung vorgesehen werden.

# 4.6 Sicherheitsnachweise

Außer für Gebäude, die den Anforderungen an "einfache Mauerwerksbauten" entsprechen, muss ein Nachweis der Sicherheit des Gebäudes gegen Versagen explizit geführt werden. Regeln, um Bauwerke als "einfache Mauerwerksbauten" einzustufen, sind in der [ÖNORM EN 1998-1] und der [ÖNORM B 1998-1] angegeben. Die wesentlichsten Regeln werden im folgenden Abschnitt kurz erläutert. Für den Nachweis der Sicherheit gegen Versagen muss der Bemessungswert der Beanspruchbarkeit aller tragenden Bauteile nach [ÖNORM EN 1996-1-1] ermittelt werden. In Nachweisen für den Grenzzustand der Tragfähigkeit in der Erdbeben-Bemessungssituation sind folgende Teilsicherheitsbeiwerte zu verwenden:

- $\gamma_m = 1, 5$  (für Mauerwerkseigenschaften)
- $\gamma_s = 1,0$  (für Bewehrungsstahl)

#### 4.6.1 Regeln für "einfache Mauerwerksbauten"

In Abhängigkeit vom Produkt  $a_g \cdot S$  am Gebäudestandort und vom Bauwerkstyp sollte die zulässige Anzahl n der Geschoße über Geländeniveau begrenzt, und Schubwände in zwei orthogonalen Richtungen mit einem Mindestquerschnitt  $A_{min}$  in jeder Richtung vorgesehen werden. Der in Tab. 4.3 angegebene Mindestschubwandquerschnitt wird als Prozentangabe  $p_{A,min}$  der gesamten Gebäudegrundrissfläche je Geschoß angegeben. Diese Werte, die zusätzlich von einem Korrekturbeiwert k abhängen, sind für unbewehrtes Mauerwerk unter Annahme einer Steindruckfestigkeit von  $12 \,\mathrm{N/mm^2}$  und unter Annahme einer Mörteldruckfestigkeit von  $10 \,\mathrm{N/mm^2}$  ermittelt worden.

Für Gebäude, bei denen mindestens 70% der betrachteten Schubwände länger als 2m sind, beträgt der Beiwert  $k = 1 + (l_{av} - 2)/4 \leq 1, 4$ . Dabei ist  $l_{av}$  die mittlere Wandlänge der betrachteten Schubwände in m. In allen anderen Fällen beträgt k = 1. Zusätzlich zu den Bestimmungen der [ÖNORM EN 1998-1] gelten für unbewehrtes Mauerwerk gemäß [ÖNORM B 1998-1] die folgenden Einschränkungen für die Gültigkeit der Tab. 4.3:

- Die Gültigkeit ist nicht gegeben, wenn weniger als 35 % der vertikalen Lasten in einer der ausgezeichneten Richtungen von Schubwänden abgetragen werden.
- Die Anordnung der Wände im Grundriss muss so gestaltet sein, dass große Torsionswirkungen der Erdbebeneinwirkung vermieden werden.
- Alle Decken müssen eine ausreichende Scheibenwirkung in Deckenebene aufweisen und zweiachsig gespannt sein.
- Horizontale Schlitze, die das Ausmaß der [ONORM EN 1996-1-1], Tab. 8.2 überschreiten, sind in den Prozentangaben der Schubwandflächen nicht enthalten und daher extra zu berücksichtigen.

| Beschleunigung am             |                                                                     | $\leq 0,07\cdot k\cdot g$ | $\leq 0, 11 \cdot k \cdot g$             | $\leq 0, 15 \cdot k \cdot g$ |  |
|-------------------------------|---------------------------------------------------------------------|---------------------------|------------------------------------------|------------------------------|--|
| Gebäudestandort $a_g \cdot S$ |                                                                     |                           |                                          |                              |  |
| Bauwerkstyp                   | Anzahl der                                                          | Mindestsumm               | Mindestsumme der Querschnittsflächen von |                              |  |
|                               | Geschoße $n^{**}$                                                   | horizontalen S            | Schubwänden in                           | jeder Richtung               |  |
|                               |                                                                     | der gesamten              | Geschoßflächen                           | $(p_{A,min})$                |  |
| Unbewehrtes                   | 1                                                                   | 2,0% (UF)                 | $2,0\%~({ m UF})$                        | $3,5\%~({ m UF})$            |  |
| Mauerwerk                     | 2                                                                   | 2,0% (UF)                 | $3,5\%~({ m UF})$                        | $4,5\%~({\rm FF})$           |  |
|                               | 3                                                                   | 3,0% (UF)                 | $5,0\% ({ m UF})$                        | n/a                          |  |
|                               | 4                                                                   | 5,0% (UF)                 | $6,0\%~({ m FF})$                        | n/a                          |  |
|                               | 5                                                                   | 6,0% (UF)                 | n/a                                      | n/a                          |  |
| Es bedeuten:                  |                                                                     |                           |                                          |                              |  |
| (UF) ohne S                   | F) ohne Stoßfugenmörtel (Mauerstein-Ausbildung mit Nut und Feder)   |                           |                                          |                              |  |
| (FF) mit St                   | mit Stoßfugenmörtel, die aber nicht nur "fully filled",             |                           |                                          |                              |  |
| sonder                        | sondern auch als Ausbildung mit Mörteltasche zulässig sind          |                           |                                          |                              |  |
| (mehr                         | (mehr als 40% Mörtel in der Stoßfuge) gemäß [ÖNORM EN 1996-1-1]     |                           |                                          | RM EN 1996-1-1]              |  |
| n/a Regelr                    | Regeln für einfache Mauerwerksbauten nicht anwendbar; rechnerischer |                           |                                          |                              |  |
| Nachw                         | Nachweis erforderlich                                               |                           |                                          |                              |  |
| ** Ausge                      | Ausgebaute Dachgeschoße über Vollgeschoßen sind in der Anzahl der   |                           |                                          |                              |  |
| Gesche                        | Geschoße nicht berücksichtigt.                                      |                           |                                          |                              |  |

Tabelle 4.3: Zulässige Anzahl von Vollgeschoßen über Grund und Mindestquerschnittsflächen von Schubwänden für "einfache Mauerwerksbauten" gemäß [ÖNORM B 1998-1]

- Die Geschoßhöhen sollten den Betrag von etwa 3 m nicht wesentlich überschreiten. Ein leichter Dachgeschoßausbau ist nicht extra zu berücksichtigen. Ein schwerer Dachgeschoßausbau (Sargdeckel) gilt als ein zusätzliches Geschoß.
- Bei Außenwänden mit Fenstern zählt für die in der Tab. 4.3 anzurechnende Wandfläche und Wandlänge die Fläche und Länge der Fensterpfeiler. Falls die Fenster keine Parapete besitzen, darf die Fläche der angrenzenden Fensterpfeiler nur zur Hälfte für die erforderliche Schubwandfläche der Tab. 4.3 angerechnet werden.
- Die Schubwände in einer Richtung sollten mit Schubwänden in der dazu orthogonalen Richtung in einem maximalen Abstand von 7 m verbunden werden.
- Die Prozentangaben der Tab. 4.3 wurden für im Hochbau übliche Nutzlasten ermittelt. Die Summe aus ständigen Lasten und der erdbebenwirksamen Nutzlast (30 % der Nutzlast) wurde je Geschoß mit etwa  $8 \text{ kN/m}^2$  angenommen.

Weitere Regeln betreffend des Gebäudegrundrisses sowie der Schubwände eines Gebäudes, welche ebenfalls erfüllt werden sollten, sind in der [ÖNORM EN 1998-1] angegeben. Nur bei Erfüllung sämtlicher Anforderungen kann auf einen expliziten Nachweis der Sicherheit des Gebäudes gegen Versagen verzichtet werden.

# 5 Vorstellung des Projekts

# 5.1 Allgemeines

Nach der theoretischen Einführung wird im Folgenden die Anwendung an einem viergeschoßigen Wohnbau (Abb. 5.1) in Ziegelbauweise gezeigt. Dieser wird anhand von Eurocode 1, Eurocode 2, Eurocode 6 und Eurocode 8 (mit den jeweils gültigen nationalen Anwendungsdokumenten) analysiert. Die Vorgehensweise ist in Abb. 5.2 dargestellt.

Das Gebäude besteht aus einem Kellergeschoß, einem Erdgeschoß, drei Obergeschoßen und einem nicht ausgebauten Dachgeschoß. Sämtliche Außenwände sowie tragende Innenwände werden aus 25 cm starkem, unbewehrten Hochlochziegelmauerwerk hergestellt. Das Kellergeschoß, die Decken und Stiegenlaufplatten werden in Stahlbeton C25/30 gemäß Eurocode 2 ausgeführt. Der Wohnbau wird in Mürzzuschlag ( $\rightarrow$  max. Bemessungsbodenbeschleunigung der Zone 3) auf kiesigem Boden errichtet.

# 5.2 Baustoffe

#### 5.2.1 Decken und Kellergeschoß

Die Geschoßdecken sowie das gesamte Kellergeschoß werden entsprechend [ÖNORM EN 1992-1-1] bzw. [ÖNORM B 1992-1-1] in

| Stahlbeton: | Betongüte: C25/30                                                        |
|-------------|--------------------------------------------------------------------------|
|             | Dichte: $2500 \text{ kg/m}^3$                                            |
|             | Zylinderdruckfestigkeit: $f_{ck} = 25 \mathrm{N/mm^2}$                   |
|             | Mittlere Zugfestigkeit: $f_{ctm} = 2, 6 \mathrm{N/mm^2}$                 |
|             | 5%-Fraktilwert der Zugfestigkeit: $f_{ctk, 0,05} = 1, 8 \mathrm{N/mm^2}$ |
|             | Querdehnzahl: $\nu = 0, 20$                                              |
|             | Elastizitätsmodul: $E_{cm} = 31000 \mathrm{N/mm^2}$                      |

ausgeführt.

#### 5.2.2 Tragende Wände

Die Außenwände sowie die tragenden Innenwände werden aus

| Mauerziegel: | POROTHERM 25-38 Objekt Plan (Abb. 5.3)                                     |
|--------------|----------------------------------------------------------------------------|
|              | Abmessungen <sup>1</sup> B/L/H: $250/375/249$ in mm                        |
|              | Stückgewicht: ca. 22 kg                                                    |
|              | Bruttotockenroh<br>dichte: ca. $942  \text{kg/m}^3$                        |
|              | Ziegelbedarf: $10, 5  \text{Stk/m}^2$                                      |
|              | empfohlene Mörtelart: Dünnbettmörtel                                       |
|              | Mörtelbedarf: ca. $2,51/m^2$                                               |
|              | Prüfkörperabhängige Steindruckfestigkeit: $\bar{f}_b = 15 \mathrm{N/mm^2}$ |
|              | Form-Korrekturfaktor: $\delta = 1.15$                                      |

<sup>&</sup>lt;sup>1</sup>Sämtliche Geometrieparameter und Materialeigenschaften sind den Herstellerunterlagen entnommen.

|              | Normierte Steindruckfestigkeit: $f_b = 17, 3 \mathrm{N/mm^2}$     |
|--------------|-------------------------------------------------------------------|
|              | Mauersteingruppe: 2                                               |
|              | Steinkategorie: I                                                 |
|              | charakteristische Anfangsscherfestigkeit: $0, 30 \mathrm{N/mm^2}$ |
|              |                                                                   |
| bzw. aus     |                                                                   |
|              |                                                                   |
| Mauermörtel: | POROTHERM Dünnbettmörtel                                          |
|              | Tradian radiants: $1500  \mathrm{kg}  /\mathrm{m}^3$              |

Trockenrohdichte:  $1500 \text{ kg/m}^3$ Druckfestigkeit: M10 Haftscherfestigkeit:  $0, 30 \text{ N/mm}^2$ 

hergestellt. In Verbindung mit [ÖNORM EN 1996-1-1] und [ÖNORM B 1996-1-1] resultieren daraus folgende Materialeigenschaften des Mauerwerks:

| POROTHERM 25-38 Objekt Plan und POROTHERM Dünnbettmörtel                   |
|----------------------------------------------------------------------------|
| Dichte: ca. $950 \mathrm{kg/m^3}$                                          |
| Charakteristische Mauerwerksdruckfestigkeit: $f_k = 5, 15 \mathrm{N/mm^2}$ |
| Elastizitätsmodul: $E_{cm} = 5150 \mathrm{N/mm^2}$                         |
| Schubmodul: $G = 2060 \mathrm{N/mm^2}$                                     |
|                                                                            |

# 5.3 Geometrie

# 5.3.1 Planskizzen

#### Grundriß

In Abb. 5.4 wird der Regelgeschoßgrundriss dargestellt.

#### Schnitte

In Abb. 5.5 werden die Schnitte A-A, B-B und C-C dargestellt.

# 5.4 Einwirkungen nach [ÖNORM EN 1991-1-1] sowie [ÖNORM B 1991-1-1]

# 5.4.1 Ständige Einwirkungen

| $0,010\mathrm{m}$              | Klebeparkett                                                | $5,00\mathrm{kN/m^3}$                | $0,05\mathrm{kN/m^2}$                                                                 |
|--------------------------------|-------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|
| $0,060\mathrm{m}$              | Zementestrich                                               | $22,00\mathrm{kN/m^3}$               | $1,32\mathrm{kN/m^2}$                                                                 |
| $0,030\mathrm{m}$              | Trittschalldämmplatte TDPT $30/30$                          | $1,15\mathrm{kN/m^3}$                | $0,04\mathrm{kN/m^2}$                                                                 |
| $0,050\mathrm{m}$              | Gebundene Leichtschüttung                                   | $0,90\mathrm{kN/m^3}$                | $0,05\mathrm{kN/m^2}$                                                                 |
| $0,220\mathrm{m}$              | Stahlbetondecke $C25/30$                                    | $25,00\mathrm{kN/m^3}$               | $5,50\mathrm{kN/m^2}$                                                                 |
|                                | Deckenuntersicht                                            |                                      | $0,30\mathrm{kN/m^2}$                                                                 |
| $0,370\mathrm{m}$              | Regelgeschoßdecke                                           |                                      | $7,30\mathrm{kN/m^2}$                                                                 |
| $0,160{ m m}$<br>$0,220{ m m}$ | Dämmblock S16<br>Stahlbetondecke C25/30<br>Deckenuntersicht | $0,86{ m kN/m^3}$ $25,00{ m kN/m^3}$ | $\begin{array}{c} 0,14{\rm kN/m^2}\\ 5,50{\rm kN/m^2}\\ 0,30{\rm kN/m^2} \end{array}$ |

| $0,380\mathrm{m}$            | Geschoßdecke gegen Dachraum                     |                                      | $6,00\mathrm{kN/m^2}$                             |
|------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------------|
|                              |                                                 |                                      |                                                   |
| $0,010\mathrm{m}$            | Klebeparkett                                    | $5,00  \rm kN/m^3$                   | $0,05\mathrm{kN/m^2}$                             |
| $0,060\mathrm{m}$            | Zementestrich                                   | $22,00 \mathrm{kN/m^3}$              | $1,32  \rm kN/m^2$                                |
| $0,030\mathrm{m}$            | Trittschalldämmplatte                           | $1,15  \rm kN/m^3$                   | $0,04  \rm kN/m^2$                                |
| $0,050\mathrm{m}$            | Gebundene Leichtschüttung                       | $0,90  \rm kN/m^3$                   | $0,05  \rm kN/m^2$                                |
| $0,200\mathrm{m}$            | Stahlbetondecke $C25/30$                        | $25,00 \mathrm{kN/m^3}$              | $5,00  \rm kN/m^2$                                |
| $0,100\mathrm{m}$            | Holzwolle-Mehrschichtplatte                     | $1,85\mathrm{kN/m^3}$                | $0, 19  \mathrm{kN/m^2}$                          |
|                              | Deckenuntersicht                                |                                      | $0,30{\rm kN/m^2}$                                |
| $0,450\mathrm{m}$            | Decke über Kellergeschoß                        |                                      | $7,00 \mathrm{kN/m^2}$                            |
|                              |                                                 |                                      | $\circ \circ \cdot \cdot \cdot \cdot \cdot \circ$ |
| 0.005                        | Geländer (verschmiert)                          | $20.001$ M/ $^3$                     | $0,34 \mathrm{kN/m^2}$                            |
| $0,025{ m m}$                | Verfliesung einschließlich Mörtelbett           | $20,00 \mathrm{kN/m^3}$              | $0,50 \mathrm{kN/m^2}$                            |
| $0,180\mathrm{m}$            | Stahlbetondecke C25/30                          | $25,00 \mathrm{kN/m^3}$              | $4,50 \mathrm{kN/m^2}$                            |
| $0,005{\rm m}$               | Kalkzementmortel                                | $20,00 \mathrm{kN/m^3}$              | $0, 10 \mathrm{kN/m^2}$                           |
| $0,210\mathrm{m}$            | Balkonplatte                                    |                                      | $5,50 \mathrm{kN/m^2}$                            |
|                              |                                                 |                                      | $0.901 \mathrm{NI}/2$                             |
| 0.005                        | Gelander (verschmiert)                          | 20. 00 l-N / 3                       | $0,38 \text{ kN}/\text{m}^2$                      |
| $0,025 \mathrm{m}$           | Stabilitation de la C25 /20 acest Stafen la ile | $20,00 \text{ kN/m}^{\circ}$         | $0, 50 \text{ km}/\text{m}^2$                     |
| $0,250\mathrm{m}$            | Stanibetondecke C25/30 samt Stulenkelle         | $25,00 \mathrm{km/m^{\circ}}$        | $0, 25 \text{ km/m}^2$                            |
| $0,275{ m m}$                | Stiegenplatte                                   |                                      | $1,20\mathrm{KIN}/\mathrm{m}^{-1}$                |
| 0.007 m                      | Dachschindeln $(420/240)$                       | $4.20  k N / m^3$                    | $0.03  kN/m^2$                                    |
| 0,007  m<br>0.025 m          | Vollschalung                                    | 4,29  kN/m<br>5.00 kN/m <sup>3</sup> | $0,03 \text{ kN/m}^2$                             |
| 0,020  m                     | Konterlattung $50/80$ : $a = 0.50$ m            | 5,00 kN/m                            | $0, 13 \text{ kN/m}^2$                            |
| 0,000  m<br>0.025 m          | Vollschalung $30/80, e = 0.30$ m                | $5.00  k N / m^3$                    | $0.13 \mathrm{kN/m^2}$                            |
| 0,020  m<br>0.180 m          | Dachsparren $100/180$ ; e — 0.50 m              | 5,00 kW/m                            | $0.18 \mathrm{kN/m^2}$                            |
| $0,100\mathrm{m}$<br>0.287 m | Dachaufbau (unbeheizter Dachraum)               |                                      | $0.51 \mathrm{kN/m^2}$                            |
| $0,207 \mathrm{m}$           | Dachaulbau (unbeneizier Dachraum)               |                                      | 0,01 KN/III                                       |
| $0.015{ m m}$                | Kalk-Gips-Putz                                  | $18.00  \mathrm{kN/m^3}$             | $0.27  \rm kN/m^2$                                |
| $0.250 \mathrm{m}$           | Mauerstein Porotherm 25-38 Objekt Plan          | $9.42 \mathrm{kN/m^3}$               | $2.36 \mathrm{kN/m^2}$                            |
| $0.015 \mathrm{m}$           | Kalk-Gips-Putz                                  | $18.00 \mathrm{kN/m^3}$              | $0.27 \mathrm{kN/m^2}$                            |
| 0,010                        | Dünnbettmörtel                                  | 10,00 1117 111                       | $0.01 \mathrm{kN/m^2}$                            |
| $0.280\mathrm{m}$            | Innenwand (tragend)                             |                                      | $2.91 \text{ kN/m}^2$                             |
| 0, <b>2</b> 00 m             | Innonwand (oragona)                             |                                      | 2,01111,7111                                      |
| $0,005\mathrm{m}$            | Silikatputz                                     | $18,00  {\rm kN/m^3}$                | $0,09  \rm kN/m^2$                                |
| $0,140{ m m}$                | Wärmedämmverbundsystem                          | $0, 18  \mathrm{kN/m^3}$             | $0,03  \text{kN/m^2}$                             |
| $0,250{ m m}$                | Mauerstein Porotherm 25-38 Objekt Plan          | $9,42{\rm kN/m^3}$                   | $2,36  \mathrm{kN/m^2}$                           |
| $0,015{ m m}$                | Kalk-Gips-Putz                                  | $18,00  \mathrm{kN/m^3}$             | $0,27{\rm kN/m^2}$                                |
| ,                            | Dünnbettmörtel                                  | · /                                  | $0,01  \rm kN/m^2$                                |
| $0,410\mathrm{m}$            | Außenwand                                       |                                      | $2,76\mathrm{kN/m^2}$                             |
|                              |                                                 |                                      |                                                   |

#### 5.4.2 Veränderliche Einwirkungen

#### Nutzlasten

Für die Bemessung von Stützen und Wänden, deren Belastungen aus mehreren Stockwerken herrühren, dürfen gemäß [ÖNORM EN 1991-1-1] die Nutzlasten gleichmäßig über die Deckenflächen der einzelnen Geschoße verteilt angenommen werden. In der [ÖNORM EN 1996-1-1] wird diese Vereinfachung ebenfalls angeführt.

Da aufgrund der Deckenkonstruktion eine Querverteilung der Lasten möglich ist, darf das



Abbildung 5.1: Vorder- und Rückansicht des viergeschoßigen Wohnbaues



Abbildung 5.2: Vorgehensweise



Abbildung 5.3: POROTHERM 25-38 Objekt Plan



Abbildung 5.4: Regelgeschoßgrundriss



Abbildung 5.5: Schnitte A-A, B-B und C-C

Eigengewicht versetzbarer Trennwände ("Zwischenwände") gemäß [ÖNORM EN 1991-1-1] durch eine gleichförmig verteilte Flächenlast  $q_k$  berücksichtigt werden. Für 10 cm breite und 2,75 m hohe Zwischenwände aus Planziegeln mit dem Ziegelformat 10/50/24,9 (B/L/H in cm) kann mit einem Liniengewicht von ca. 231 kg/m gerechnet werden. Bei einem Eigengewicht der versetzbaren Trennwand  $\leq 3 \text{ kN/m}$  ergibt sich gemäß [ÖNORM EN 1991-1-1] folgende gleichförmig verteilte Flächenlast:

•  $q_k = 1, 2 \, \text{kN/m^2}$ 

Da für die Bemessungssituation bei Erdbeben sämtliche Begleiteinwirkungen mit dem Kombinationsbeiwert  $\psi_2$  multipliziert werden müssen, darf die Nutzlast der Dachkonstruktion  $(q_k = 1, 0 \text{ kN/m}^2 \text{ mit } \psi_2 = 0)$  vernachlässigt werden.

| Gleichlast $q_k$ für Kategorie A2 gemäß [ÖNORM B 1991-1-1, Tab. 2] | $1,50\mathrm{kN/m^2}$ |
|--------------------------------------------------------------------|-----------------------|
| Decke über OG 3                                                    | $1,50\mathrm{kN/m^2}$ |
|                                                                    |                       |
| Gleichlast $q_k$ für Kategorie A1 gemäß [ÖNORM B 1991-1-1, Tab. 2] | $2,00\mathrm{kN/m^2}$ |
| Zwischenwandzuschlag $q_k$ für Wandeigengewicht = 3,0 kN/m gem.    | $1,20\mathrm{kN/m^2}$ |
| [ÖNORM EN 1991-1-1, 6.3.1.2(8)]                                    |                       |
| Regelgeschoßdecke und Decke über KG                                | $3,20\mathrm{kN/m^2}$ |
|                                                                    |                       |
| Gleichlast $q_k$ für Kategorie A1 gemäß [ÖNORM B 1991-1-1, Tab. 2] | $4,00\mathrm{kN/m^2}$ |
| Balkonplatte                                                       | $4,00\mathrm{kN/m^2}$ |
|                                                                    |                       |
| Gleichlast $q_k$ für Kategorie A1 gemäß [ÖNORM B 1991-1-1, Tab. 2] | $3,00\mathrm{kN/m^2}$ |
| Stiegenplatte                                                      | $3,00  {\rm kN/m^2}$  |

# 5.4.3 Anwendung der Regeln für "einfache Mauerwerksbauten"

In der [ÖNORM EN 1998-1] sind neben den Berechnungsmethoden

- vereinfachtes Antwortspektrumverfahren,
- multimodales Antwortspektrumverfahren sowie
- Zeitverlaufsverfahren,

ebenfalls Regeln für "einfache Mauerwerksbauten" angegeben. Werden sämtliche – bereits in Abschnitt 4.6.1 erläuterte – Anforderungen erfüllt, muss ein Nachweis der Sicherheit des Gebäudes gegen Versagen nicht explizit geführt werden. Aufgrund der

- Öffnungsgeometrie,
- der Wandlängen und
- der damit verbundenen geringen  $\rho_{A,min}$ -Werte ( $\rho_{Ax,min} = 2,9\%$ ;  $\rho_{Ay,min} = 5,2\%$ )

können die in der [ÖNORM B 1998-1] geforderten Mindestschubwandquerschnitte jedoch nicht erreicht werden, wodurch die Regeln für "einfache Mauerwerksbauten" von vornherein ausscheiden. Im Folgenden wird aus diesem Grund nur auf die Berechnungsmethoden "vAWS, mAWS und ZV" näher eingegangen.

# 6 Musterstatik "Vereinfachtes Antwortspektrumverfahren"

# 6.1 Erdbebeneinwirkung

#### 6.1.1 Allgemeines

Für den in Abschnitt 5.1 festgelegten Standort Mürzzuschlag, Erdbebenzone 3, ist eine Referenzbodenbeschleunigung  $a_{gR}$  von 0,99 m/s<sup>2</sup> gemäß [ÖNORM B 1998-1] anzusetzen. Weiters werden folgende Annahmen getroffen:

- Bedeutungskategorie II;  $\gamma_i = 1, 0$
- Baugrundklasse B

Die Bemessungsbodenbeschleunigung ergibt sich aus Gl. 2.4 zu:

$$a_g = \gamma_i \cdot a_{gR} = 1, 0 \cdot 0, 99 = 0, 99 \,\mathrm{m/s^2}$$

Mit der festgelegten Baugrundklasse ergeben sich folgende Parameterwerte zur Beschreibung des horizontalen elastischen Antwortspektrums  $^1$ :

- S = 1, 2
- $T_B = 0,15 \,\mathrm{s}$
- $T_C = 0, 5 \, \mathrm{s}$
- $T_D = 2,0 \,\mathrm{s}$

Die Parameterwerte zur Definition der Form von vertikalen elastischen Antwortspektren werden an dieser Stelle nicht angegeben, da die Vertikalkomponente in Österreich gemäß [ÖNORM B 1998-1] grundsätzlich nicht relevant ist.

#### 6.1.2 Ermittlung der Gesamtmasse des Bauwerks

Für die Massenermittlung sind folgende Flächen von wesentlicher Bedeutung:

- $A_{AW} = 125, 85 \,\mathrm{m}^2 \,\ldots$  Außenwandfläche
- $A_{IW} = 71,88 \,\mathrm{m}^2 \dots$  Innenwandfläche
- $A_{Decke} = 182,76 \,\mathrm{m}^2 \dots$  Fläche der Regelgeschoßdecke
- $A_{Giebel} = 39,62 \,\mathrm{m}^2 \dots$  Giebelwandfläche
- $A_{DW} = 21,37 \,\mathrm{m}^2 \dots$  Fläche der Wände im Dachgeschoß
- $A_{Dach} = 236, 31 \,\mathrm{m}^2 \dots$  Fläche der Dachhaut

<sup>&</sup>lt;sup>1</sup>In Österreich ist gemäß [ÖNORM B 1998-1] nur die Spektralform Typ 1 anzuwenden.

- $A_{Balkon} = 20,01 \,\mathrm{m}^2 \dots$  Balkonfläche
- $A_{Stiege} = 6,90 \,\mathrm{m}^2 \dots$  Fläche der Stiegenplatte

Da während eines Erdbebens die veränderlichen Lasten meist nicht überall im Bauwerk vorhanden sind, muss die mitschwingende Masse gemäß [ÖNORM EN 1998-1] mittels nachfolgender Kombination ermittelt werden:

$$\sum G_{k,j} "+" \sum \psi_{E,i} \cdot Q_{k,i}$$
(6.1)

 $\operatorname{mit}$ 

| $G_{k,j}$    | <br>charakteristischer Wert einer ständigen Einwirkung $j$                     |
|--------------|--------------------------------------------------------------------------------|
| "+"          | <br>"ist zu kombinieren"                                                       |
| $\psi_{E,i}$ | <br>Kombinations<br>beiwert für eine veränderliche Einwirkung $\boldsymbol{i}$ |
| $Q_{k,i}$    | <br>charakteristischer Wert einer veränderlichen Einwirkung $\boldsymbol{i}$   |
|              |                                                                                |

Die Kombinationsbeiwerte für veränderliche Einwirkungen  $\psi_{E,i}$  müssen wiederum nach folgender Formel berechnet werden:

$$\psi_{Ei} = \varphi \cdot \psi_{2i} \tag{6.2}$$

 $\operatorname{mit}$ 

| $\varphi$   | <br>Berücksichtigung der Art der veränderlichen Einwirkung; in Österreich wird |
|-------------|--------------------------------------------------------------------------------|
|             | der Wert $\varphi = 1,0$ gesetzt                                               |
| $\psi_{2i}$ | <br>Kombinationsbeiwert für den quasi-ständigen Wert einer veränderlichen Ein- |
|             | wirkung <i>i</i>                                                               |

Damit ergeben sich folgende Kombinationsbeiwerte:

- $\psi_{E,NL} = 1, 0 \cdot 0, 3 = 0, 3 \dots$  für Nutzlasten im Hochbau der Kategorie A
- $\psi_{E,Dach} = 1, 0 \cdot 0 = 0 \dots$  für Dächer
- $\psi_{E,Schnee} = 1, 0 \cdot 0 = 0 \dots$  für Schneelasten im Hochbau (für Orte in CEN-Mitgliedsstaaten mit einer Höhe niedriger als 1000 m ü. NN)
- $\psi_{E,Wind} = 1, 0 \cdot 0 = 0 \dots$  für Windlasten im Hochbau

Da in Abschnitt 6.3 die Bemessung unbewehrter Mauerwerkswände unter vertikaler bzw. horizontaler Belastung erfolgt, ist für die weitere Berechnung die Einführung zweier Lastkombinationen erforderlich:

- Lastkombination 1 (LC1,  $N_{min}$  und  $V_{zug}$ )
- Lastkombination 2 (LC2,  $N_{max}$  und  $V_{zug}$ )

# Bauwerksmasse zufolge LC1

Stockwerkslast des 3. OG:

| $V_{3.OG}$ | = | $182,76\cdot 6,00$        | $\dots$ Deckenlasten          |
|------------|---|---------------------------|-------------------------------|
|            | + | $39,62\cdot 2,76$         | Giebelwände                   |
|            | + | $236, 31 \cdot 0, 56$     | $\dots$ Dachlasten            |
|            | + | $21,37\cdot 2,76$         | $\dots$ Wandlasten aus DG     |
|            | + | $(71, 88/2) \cdot 2, 91$  | $\dots$ Innenwandlasten       |
|            | + | $(125, 85/2) \cdot 2, 76$ | $\dots Au eta en wand lasten$ |
|            | + | $(6,90/2)\cdot 7,20$      | $\dots Stiegenlasten$         |
|            | = | $1700, 32\mathrm{kN}$     |                               |

Stockwerkslast des  $2. \text{ OG}^2$ :

| $V_{2.OG}$ | = | $182,76\cdot7,30$    | $\dots$ Deckenlasten    |
|------------|---|----------------------|-------------------------|
|            | + | $20,01\cdot 5,50$    | $\dots$ Balkonlasten    |
|            | + | $71,88\cdot 2,91$    | $\dots$ Innenwandlasten |
|            | + | $125,85\cdot 2,76$   | Außenwandlasten         |
|            | + | $6,90\cdot 7,20$     | $\dots$ Stiegenlasten   |
|            | = | $2050,40\mathrm{kN}$ |                         |

Die Masse des gesamten Bauwerks ergibt sich zufolge der Lastkombination 1 zu:

$$m_{LC1} = 1700, 32 + 2050, 40 \cdot 3 + \frac{71,88}{2} \cdot 2,91 + \frac{125,85}{2} \cdot 2,76 = 8129,78 \text{ kN} \cong 812,98 \text{ t}$$

### Bauwerksmasse zufolge LC2

Stockwerkslast des 3.OG:

| $V_{3.OG}$ | = | $182,76 \cdot (6,00+0,45)$   | $\dots$ Deckenlasten      |
|------------|---|------------------------------|---------------------------|
|            | + | $39,62\cdot 2,76$            | Giebelwände               |
|            | + | $236, 31\cdot 0, 56$         | $\dots$ Dachlasten        |
|            | + | $21,37\cdot 2,76$            | $\dots$ Wandlasten aus DG |
|            | + | $(71, 88/2) \cdot 2, 91$     | $\dots$ Innenwandlasten   |
|            | + | $(125, 85/2) \cdot 2, 76$    | Außenwandlasten           |
|            | + | $(6,90/2) \cdot (7,20+0,90)$ | $\dots$ Stiegenlasten     |
|            | = | $1785,68\mathrm{kN}$         |                           |
|            |   |                              |                           |

Stockwerkslast des 2. OG:

| $V_{2.OG}$ | = | $182,76 \cdot (7,30+0,96)$ | $\dots Deckenlasten$    |
|------------|---|----------------------------|-------------------------|
|            | + | $20,01 \cdot (5,50+1,20)$  | $\dots$ Balkonlasten    |
|            | + | $71,88\cdot 2,91$          | $\dots$ Innenwandlasten |
|            | + | $125,85\cdot 2,76$         | $\dots$ Außenwandlasten |
|            | + | $6,90\cdot(7,20+0,90)$     | $\dots$ Stiegenlasten   |
|            | = | $2256,08\mathrm{kN}$       |                         |
|            |   |                            |                         |

 $<sup>^{2}</sup>$ Die Stockwerkslast des 1. OG und des EG ist gleich der Stockwerkslast des 2. OG

| Variante Nr. |                                  |                    | $T_1$ in s | $f_1$ in Hz |
|--------------|----------------------------------|--------------------|------------|-------------|
| 1            | Gl. 3.8                          | <i>x</i> -Richtung | 0,391      | 2,558       |
|              |                                  | y-Richtung         | $0,\!391$  | 2,558       |
| 2            | Gl. 3.8 mit Gl. 3.9 und Gl. 3.10 | <i>x</i> -Richtung | $0,\!586$  | 1,706       |
|              |                                  | y-Richtung         | $0,\!227$  | $4,\!405$   |
| 3            | Gl. 3.11                         | <i>x</i> -Richtung | $0,\!135$  | $7,\!407$   |
|              |                                  | y-Richtung         | $0,\!107$  | 9,346       |

Tabelle 6.1: Ergebnisse der Ermittlung der Eigenschwingungsdauer nach [ÖNORM EN 1998-1]

Die Masse des gesamten Bauwerks ergibt sich zufolge der Lastkombination 2 zu:

$$m_{LC2} = 1785, 68 + 2256, 08 \cdot 3 + \frac{71, 88}{2} \cdot 2, 91 + \frac{125, 85}{2} \cdot 2, 76 = 8832, 18 \text{ kN} \approx 883, 22 \text{ t}$$

## 6.1.3 Abschätzung der Eigenschwingungsdauer gemäß [ÖNORM EN 1998-1]

Wie schon in Abschnitt 3.1.3 beschrieben, stehen für die Ermittlung der Eigenschwingungsdauer  $T_1$  drei Möglichkeiten zur Verfügung. Einen Vergleich der Resultate veranschaulicht Tab. 6.1. Für die weitere Berechnung wird jedoch der "Plateauwert" des Bemessungsspektrums herangezogen, um konservative – auf der sicheren Seite liegende – Ergebnisse zu erhalten.

#### 6.1.4 Gesamterdbebenkraft

Die anzusetzende Gesamterdbebenkraft kann mit dem vereinfachten Antwortspektrumverfahren ermittelt werden, da die beiden nachfolgenden Bedingungen erfüllt werden:

- $T_1 < 4 \cdot T_C = 4 \cdot 0, 5 = 2 \text{ s bzw. } 2 \text{ s}$
- sämtliche Kriterien für Regelmäßigkeit im Aufriss gemäß [ÖNORM EN 1998-1, 4.2.3.3] werden eingehalten

Da das vorliegende Bauwerk zur Gänze aus unbewehrtem Mauerwerk hergestellt wird, muss aus Tab. 4.2 ein Verhaltensbeiwert mit q = 1, 5 entnommen werden. Mit diesem kann die Ordinate des Bemessungsspektrums im "Plateaubereich" (Abb. 6.1) wie folgt berechnet werden:

$$S_d(T) = a_g \cdot S \cdot \frac{2,5}{q} = 0,99 \cdot 1, 2 \cdot \frac{2,5}{1,5} = 1,98 \,\mathrm{m/s^2}$$

Für die unterschiedlichen Lastkombinationen ergibt sich die in den beiden horizontalen Richtungen anzusetzende Gesamterdbebenkraft zu:

- LC1:  $F_b = S_d(T_1) \cdot m_{LC1} \cdot \lambda = 1,98 \cdot 812,98 \cdot 0,85 = 1368,2 \text{ kN}$
- LC2:  $F_b = S_d(T_1) \cdot m_{LC2} \cdot \lambda = 1,98 \cdot 883,22 \cdot 0,85 = 1486,5 \text{ kN}$

#### 6.1.5 Verteilung der horizontalen Erdbebenkräfte

Die Gesamterdbebenkraft beider Lastkombinationen wird mittels Gl. 3.13 über die Bauwerkshöhe verteilt (Tab. 6.2 und Tab. 6.3). Wären die Grundmodalformen in den horizontalen Berechnungsrichtungen bekannt, könnte die Verteilung der Gesamterdbebenkraft über die Bauwerkshöhe mit Gl. 3.12 ebenfalls ermittelt werden.



Abbildung 6.1: Bemessungsspektrum gemäß [ÖNORM EN 1998-1]; Darstellung des Ordinatenwertes im Plateaubereich

| Decke über | F₅ in t | z <sub>i</sub> in m | m <sub>i</sub> in t | $z_i \cdot m_i$ | F <sub>i</sub> in kN |
|------------|---------|---------------------|---------------------|-----------------|----------------------|
| 3.OG       | 136,82  | 11,77               | 170,03              | 2001,25         | 490,05               |
| 2.OG       | 136,82  | 8,80                | 205,04              | 1804,35         | 441,84               |
| 1.OG       | 136,82  | 5,83                | 205,04              | 1195,38         | 292,72               |
| EG         | 136,82  | 2,86                | 205,04              | 586,41          | 143,60               |
| Summe      |         |                     |                     | 5587,40         |                      |

Tabelle 6.2: Aufteilung der Gesamterdbebenkraft für die Lastkombination 1

| Decke über | F₅ in t | z <sub>i</sub> in m | m <sub>i</sub> in t | z <sub>i</sub> ∙ m <sub>i</sub> | F <sub>i</sub> in kN |
|------------|---------|---------------------|---------------------|---------------------------------|----------------------|
| 3.OG       | 148,65  | 11,77               | 178,57              | 2101,77                         | 516,61               |
| 2.OG       | 148,65  | 8,80                | 225,61              | 1985,37                         | 488,00               |
| 1.OG       | 148,65  | 5,83                | 225,61              | 1315,31                         | 323,30               |
| EG         | 148,65  | 2,86                | 225,61              | 645,24                          | 158,60               |
| Summe      |         |                     |                     | 6047,69                         |                      |

Tabelle 6.3: Aufteilung der Gesamterdbebenkraft für die Lastkombination 2

# 6.2 Ermittlung der Schnittkräfte für die Bemessung

In diesem Abschnitt wird die Ermittlung jener Schnittkräfte demonstriert, mit welchen anschließend die Nachweise im Grenzzustand der Tragfähigkeit geführt werden.

#### 6.2.1 Tragfähigkeitsbedingung

Beim Nachweis für Grenzzustände der Tragfähigkeit eines Querschnitts, Bauteils oder einer Verbindung ist gemäß [ÖNORM EN 1990] zu zeigen, dass nachfolgende Bedingung eingehalten wird:

$$E_d \le R_d \tag{6.3}$$

 $\operatorname{mit}$ 

 $E_d$  ... Bemessungswert der Auswirkung der Einwirkungen  $R_d$  ... Bemessungswert der zugehörigen Tragfähigkeit

# Kombination von Einwirkungen für Bemessungssituationen bei Erdbeben gemäß [ÖNORM EN 1990]

$$\sum_{j\geq 1} G_{k,j} "+" P "+" A_{Ed} "+" \sum_{i\geq 1} \psi_{2,i} \cdot Q_{k,i}$$
(6.4)

 $\operatorname{mit}$ 

| $G_{k,j}$    | <br>charakteristischer Wert einer ständigen Einwirkung $j$                     |
|--------------|--------------------------------------------------------------------------------|
| "+"          | <br>"ist zu kombinieren"                                                       |
| P            | <br>maßgebender repräsentativer Wert einer Vorspannung                         |
| $A_{Ed}$     | <br>Bemessungswert einer Einwirkung infolge Erdbeben                           |
| $\psi_{2,i}$ | <br>Kombinationsbeiwert für den quasi-ständigen Wert einer veränderlichen Ein- |
|              | wirkung $i$                                                                    |
| $Q_{k,i}$    | <br>charakteristischer Wert einer veränderlichen Einwirkung $i$                |

Da beim vorliegenden Gebäude neben den Regelmäßigkeitskriterien im Aufriss auch die Regelmäßigkeitskriterien im Grundriss (siehe folgender Abschnitt) erfüllt sind, und die Wände in den beiden horizontalen Hauptrichtungen die einzigen primären seismischen Bauteile sind, darf angenommen werden, dass die Erdbebeneinwirkung getrennt und ohne die Kombinationen nach Gl. 7.3 und Gl. 7.3 entlang der beiden senkrecht zueinander stehenden horizontalen Hauptachsen des Bauwerks angreift.

#### Regelmäßigkeitskriterien im Grundriss

Die zu erfüllenden Regelmäßigkeitskriterien sind in Abschnitt 3.1.3 erläutert.

- $\lambda = L_{max}/L_{min} = 16,00/13,40 = 1,19 < 4,00 \ \sqrt{}$
- $e_{0x} \le 0, 30 \cdot r_x \to 0, 01 \,\mathrm{m} < 0, 30 \cdot 26, 78 = 8, 03 \,\mathrm{m} \ \sqrt{}$
- $r_x \ge l_s \rightarrow 26,78\,\mathrm{m} > 5,77\,\mathrm{m}$   $\checkmark$
- $e_{0y} \le 0, 30 \cdot r_y \to 0, 35 \,\mathrm{m} < 0, 30 \cdot 7, 25 = 2, 18 \,\mathrm{m} / \sqrt{100}$
- $r_y \ge l_s \to 7,25 \,\mathrm{m} > 5,77 \,\mathrm{m} / 100 \,\mathrm{m}$



Abbildung 6.2: Bezeichnungen für Tragwandsysteme [Bac94]

mit

$$r_x = \sqrt{\frac{\sum (I_{x,i} \cdot x_i'^2) + \sum (I_{y,i} \cdot y_i'^2)}{\sum I_{y,i}}} = \sqrt{\frac{33,96 + 4158,73}{5,84}} = 26,78\,\mathrm{m}$$
(6.5)

$$r_y = \sqrt{\frac{\sum (I_{x,i} \cdot x_i'^2) + \sum (I_{y,i} \cdot y_i'^2)}{\sum I_{x,i}}} = \sqrt{\frac{33,96 + 4158,73}{79,76}} = 7,25 \,\mathrm{m}$$
(6.6)

$$l_s = \sqrt{\frac{I_{pm}}{m}} = \sqrt{\frac{6298560}{55652 + 133415}} = 5,77\,\mathrm{m} \tag{6.7}$$

Das Gebäude kann somit als im Grundriss regelmäßig klassifiziert werden.

# 6.2.2 Schnittkräfte für den Nachweis unbewehrter Mauerwerkswände unter vorwiegend vertikaler Belastung

Um die Laufmeterlast von Mauerwerkswänden ermitteln zu können, kann von folgender Modellvorstellung ausgegangen werden [Bac94]:

Die Lasten werden von den Decken auf die Wandabschnitte weitergeleitet und sind längs dieser als Laufmeterlast gleichmäßig verteilt. Die Laufmeterlast auf Fenster- und Türstürzen geht in Form von Auflagerkräften in die angrenzenden Wandquerschnitte, wo sie sich durch Lastausbreitung ebenfalls gleichmäßig verteilen (Abb. 6.2).

#### Ermittlung der Lasteinzugsflächen

Die einzelnen Dach- bzw. Deckenfelder werden in Analogie zur Dachausmittlung in Einflussfelder (I-XXIII) geteilt. In Ecken wird die Winkelhalbierende<sup>3</sup> als Grenze benachbarter Lasteinzugsflächen angenommen. Die Flächenermittlung der einzelnen Lasteinzugsflächen erfolgt mit Hilfe eines CAD-Programmes.

Vorgangsweise [Sch06]:

- 1. Aufteilung der Lasten auf Wandabschnitte
- 2. Zuweisung von Öffnungsanteilen an Wandquerschnitte

<sup>&</sup>lt;sup>3</sup>Unterschiedliche Auflagersituationen ( $\rightarrow$  gelenkig / eingespannt) werden nicht berücksichtigt.



Abbildung 6.3: Bezeichnung der Wandquerschnitte

3. Aufteilung der Lasteinzugsflächen für Wandabschnitte auf Lasteinzugsflächen für Wandquerschnitte

Die Bezeichnung der einzelnen Wandquerschnitte ist in Abb. 6.3 ersichtlich. Die Dachlasteinzugsflächen werden in Abb. 6.4 und die Deckenlasteinzugsflächen in Abb. 6.5 dargestellt.

#### Ermittlung der spezifischen Lasteinzugsflächen der Wandquerschnitte

Um einen Zusammenhang in  $m^2/m$  zwischen den Flächeneinwirkungen in  $kN/m^2$  und den Beanspruchungen der einzelnen Wandquerschnitte in kN/m herzustellen, müssen die spezifischen Lasteinzugsflächen der Wandquerschnitte ermittelt werden. Die Darstellung der Berechnungsergebnisse erfolgt in Tab. 6.5, Tab. 6.6 und Tab. 6.7. Weiters werden die einzelnen Spalten der Tab. 6.6 im Folgenden erklärt.

- /1/ ... (Teil-)Lasteinzugsfläche i; für die Tab. 6.6 gelten die Einzugsflächen aus Abb. 6.5
- /2/ ... (Teil-)Lasteinzugsfläche  $A_i$

| /3/  | <br>Lastmodifikationsfaktor LMF (Erklärung und Berechnung nachfolgend) für                      |
|------|-------------------------------------------------------------------------------------------------|
|      | die jeweilige Lastfallkombination; hier für die minimale Vertikaleinwirkung                     |
| /4/  | <br>effektive (Teil-)Lasteinzugsfläche $A_{i,eff,min} = A_i \cdot LMF_{i,min}$ für die minimale |
|      | Vertikaleinwirkung; Ermittlung der Gesamtfläche $A_{eff,min,tot}$                               |
| /5/  | <br>analog Spalte /3/, jedoch für die maximale Vertikaleinwirkung                               |
| /6/  | <br>analog Spalte /4/, jedoch für die maximale Vertikaleinwirkung; Ermittlung                   |
|      | der Gesamtfläche $A_{eff,max,tot}$                                                              |
| /7/  | <br>Wandquerschnitt $(WQS)$                                                                     |
| /8/  | <br>Länge $l$ der einzelnen Wandquerschnitte                                                    |
| /9/  | <br>Anführung jener (Teil-)Lasteinzugsflächen, welche einen Beitrag zum jeweili-                |
|      | gen Wandquerschnitt liefern                                                                     |
| /10/ | <br>Summe der beitragenden, effektiven (Teil-)Lasteinzugsflächen je Wandquer-                   |
|      | schnitt und Lastfallkombination; hier für die minimale Vertikaleinwirkung;                      |
|      | Ermittlung der Gesamtfläche $A_{eff,min,tot}$ und Kontrolle mit der Summe aus                   |
|      | Spalte /4/                                                                                      |
| /11/ | <br>spezifische Lasteinzugsfläche $a'$ für die jeweilige Lastfallkombination; hier für          |
|      | die minimale Vertikaleinwirkung                                                                 |
| /12/ | <br>analog Spalte /10/, jedoch für die maximale Vertikaleinwirkung; Ermittlung                  |
|      | der Gesamtfläche $A_{eff,max,tot}$ und Kontrolle mit der Summe aus Spalte /6/                   |
| /13/ | <br>analog Spalte /11/, jedoch für die maximale Vertikaleinwirkung                              |

#### Lastmodifikationsfaktor LMF

Die Größe wird eingeführt, um mit einer Bezugsflächeneinwirkung je Horizontalebene rechnen zu können, d. h. Bereiche mit höheren Belastungen als der Bezugseinwirkung werden durch eine fiktiv höhere Einzugsfläche berücksichtigt [Sch06]. Die in den Tab. 6.5 bis Tab. 6.7 angeführten Lastmodifikationsfaktoren errechnen sich wie folgt:

#### Tab. 6.5:

Berücksichtigung des steileren Nebendaches für den Lastfall Eigengewicht:

$$LMF_{i,G} = \frac{\frac{1}{\cos 35}}{\frac{1}{\cos 25}} = \frac{\cos 25}{\cos 35} = 1,11$$

Tab. 6.6:

LC1: Stiegenauflagerkraft:  $A = (1, 30 \cdot \sqrt{2, 97^2 + 4, 40^2}) \cdot 7, 20 \cdot \frac{1}{2} = 24, 84 \text{ kN}$ Bezugseinwirkung:  $q_d = 6, 00 \text{ kN/m}^2$ 

$$LMF_{XX,min} = \frac{\frac{24,84}{1,05} + 6,00}{6,00} = 4,94$$
 mit  $A_{XX} = 1,05 \,\mathrm{m}^2$ 

Fehlender Balkon in dieser Deckenebene:

$$LMF_{XX'',min} = LMF_{XXII'',min} = LMF_{XXIII',min} = LMF_{XXIII'',min} = 0$$

#### LC2:

Stiegenauflagerkraft:  $A = (1, 30 \cdot \sqrt{2, 97^2 + 4, 40^2}) \cdot (7, 20 + 0, 3 \cdot 3, 00) \cdot \frac{1}{2} = 27,95 \text{ kN}$ Bezugseinwirkung:  $q_d = 6, 00 + 0, 3 \cdot 1, 50 = 6, 45 \text{ kN/m}^2$


Abbildung 6.4: Darstellung der Dachlasteinzugsflächen



Abbildung 6.5: Darstellung der Deckenlasteinzugsflächen

| i             | Ai     | LMFig | Ai eff G          | WQS     | 1     | LEFlinke      | LEF <sub>mittia</sub> | LEFrechte | LEF <sub>tot G</sub> | a' <sub>G</sub> |
|---------------|--------|-------|-------------------|---------|-------|---------------|-----------------------|-----------|----------------------|-----------------|
|               | in m²  | 1,0   | in m <sup>2</sup> |         | in m  |               | mitig                 | reonts    | 101,0                | in m²/m         |
| I             | 12,60  | 1,00  | 12,60             | WX1     | 0,890 |               | II'                   |           | 3,65                 | 4,10            |
| 11'           | 3,65   | 1,00  | 3,65              | WX2     | 2,310 |               | 11"                   |           | 12,31                | 5,33            |
| 11"           | 12,31  | 1,00  | 12,31             | WX3a    | 0,875 |               | 11""                  |           | 4,63                 | 5,29            |
| II'''         | 4,63   | 1,00  | 4,63              | WX3b    | 0,875 |               | Vľ                    |           | 4,63                 | 5,29            |
| III           | 7,98   | 1,00  | 7,98              | WX4     | 2,310 |               | VI"                   |           | 12,31                | 5,33            |
| IV'           | 5,69   | 1,00  | 5,69              | WX5     | 0,890 |               | VI'''                 |           | 3,65                 | 4,10            |
| IV''          | 6,53   | 1,00  | 6,53              | WX6     | 1,975 | Χ'            |                       | IV'       | 11,44                | 5,79            |
| IV'''         | 2,05   | 1,00  | 2,05              | WX7a    | 1,550 | Χ"            |                       | IV"       | 11,07                | 7,14            |
| V             | 7,98   | 1,00  | 7,98              | WX7b    | 1,450 | XVII'         |                       | IV"'      | 3,10                 | 2,14            |
| VI'           | 4,63   | 1,00  | 4,63              | WX7c    | 1,450 | XVII"         |                       | VIII'     | 3,10                 | 2,14            |
| VI''          | 12,31  | 1,00  | 12,31             | WX7d    | 1,550 | XIV'          |                       | VIII''    | 11,07                | 7,14            |
| VI'''         | 3,65   | 1,00  | 3,65              | WX8     | 1,975 | XIV"          |                       | VIII'''   | 11,44                | 5,79            |
| VII           | 12,60  | 1,00  | 12,60             | WX9     | 1,625 |               | XII'                  |           | 5,47                 | 3,37            |
| VIII'         | 2,05   | 1,00  | 2,05              | WX10    | 1,380 |               | XII"                  |           | 6,67                 | 4,83            |
| VIII"         | 6,53   | 1,00  | 6,53              | WX11    | 0,820 |               | XII'''                |           | 3,06                 | 3,73            |
| VIII'''       | 5,69   | 1,00  | 5,69              | WX12    | 0,820 |               | XVI'                  |           | 3,06                 | 3,73            |
| IX            | 14,07  | 1,00  | 14,07             | WX13    | 1,380 |               | XVI"                  |           | 6,67                 | 4,83            |
| X'            | 5,75   | 1,00  | 5,75              | WX14    | 1,625 |               | XVI'''                |           | 5,47                 | 3,37            |
| X"            | 4,54   | 1,00  | 4,54              | WX15    | 0,400 |               | XIX'                  |           | 2,44                 | 6,11            |
| Xľ            | 1,44   | 1,00  | 1,44              | WX16    | 0,400 |               | XIX"                  |           | 2,44                 | 6,11            |
| XI"           | 7,71   | 1,00  | 7,71              | WY1     | 6,050 |               | IX                    |           | 14,07                | 2,33            |
| XII           | 5,47   | 1,00  | 5,47              | VV Y Z  | 5,650 |               |                       |           | 12,60                | 2,23            |
| XII           | 6,67   | 1,00  | 6,67              | VVY3    | 1,450 | XXXIII        | XX'''                 | VIII      | 2,34                 | 1,62            |
| XII           | 3,06   | 1,00  | 3,06              | VVY4    | 4,600 | XX            | XX                    | XI"       | 15,10                | 3,28            |
| XIII          | 1,44   | 1,00  | 1,44              | VVY5    | 0,450 | XX            |                       | XI        | 2,13                 | 4,73            |
|               | 1,11   | 1,00  | 1,11              |         | 5,650 | v             | V\/III!'''            | 111       | 15,90                | 2,82            |
|               | 4,04   | 1,00  | 4,54              |         | 1,450 | <b>VIII</b> " |                       | V\/III!"  | 2,34                 | 2,02            |
|               | 14.07  | 1,00  | 3,75              |         | 4,000 |               | A VIII                |           | 2 12                 | 3,20<br>4 72    |
|               | 2.06   | 1,00  | 2.06              | WV19    | 6,450 | AIII          | XV/                   | AVIII     | 2,13                 | 4,73            |
| XVI<br>X\/I"  | 5,00   | 1,00  | 5,00              | WY110   | 5,650 |               |                       |           | 12 60                | 2,33            |
| XVI<br>XVI''' | 5 47   | 1,00  | 5 47              | Summe   | 3,030 |               | VII                   |           | 236.13               | 2,25            |
| XVII          | 1 05   | 1,00  | 1 05              | Carrino |       |               |                       |           | 200,10               |                 |
| XVII"         | 1 05   | 1 00  | 1 05              |         |       |               |                       |           |                      |                 |
| XVIII'        | 0.69   | 1 00  | 0.69              |         |       |               |                       |           |                      |                 |
| XVIII"        | 3.86   | 1.00  | 3.86              |         |       |               |                       |           |                      |                 |
| XVIII'''      | 3,18   | 1.11  | 3.53              |         |       |               |                       |           |                      |                 |
| XVIII''''     | 2.11   | 1.11  | 2.34              |         |       |               |                       |           |                      |                 |
| XIX'          | 2,20   | 1,11  | 2,44              |         |       |               |                       |           |                      |                 |
| XIX"          | 2,20   | 1,11  | 2,44              |         |       |               |                       |           |                      |                 |
| XX'           | 0,69   | 1,00  | 0,69              |         |       |               |                       |           |                      |                 |
| XX"           | 3,86   | 1,00  | 3,86              |         |       |               |                       |           |                      |                 |
| XX'''         | 3,18   | 1,11  | 3,53              |         |       |               |                       |           |                      |                 |
| XX""          | 2,11   | 1,11  | 2,34              |         |       |               |                       |           |                      |                 |
| Summe         | 234,48 |       | 236,13            | Ι       |       |               |                       |           |                      |                 |

Tabelle 6.5: Spezifische Lasteinzugsflächen für das Dach

| i              | Δ.                | I ME.       | Δ         | LMF.        | Δ         | WOS   | 1     | LEE    | LEE    | LEE     | LEE         | a' .    | LEE         | a'      |
|----------------|-------------------|-------------|-----------|-------------|-----------|-------|-------|--------|--------|---------|-------------|---------|-------------|---------|
|                | in m <sup>2</sup> | Livii i,min | n,eff,min | LIVII i,max | n,eff,max | WQO   | in m  | linke  | mittia | rochte  | LCI tot,min | in m²/m | LLI tot,max | in m2/m |
| /1/            | /2/               | 13/         | ///       | /5/         | /6/       | /7/   | /8/   | IIIIKS | /9/    | Techis  | /10/        | /11/    | /12/        | /13/    |
| 1              | 7.98              | 1.00        | 7.98      | 1.00        | 7.98      | WX1   | 0.890 | 11'    | 101    |         | 2.18        | 2.45    | 2.18        | 2.45    |
| ir             | 2.18              | 1.00        | 2,18      | 1.00        | 2,18      | WX2   | 2,310 |        |        | XXII'   | 9.09        | 3.94    | 9.09        | 3.94    |
| <br>II"        | 9.09              | 1.00        | 9.09      | 1.00        | 9.09      | WX3a  | 0.875 | ii'''  |        | XXII"   | 3.00        | 3.43    | 3.00        | 3.43    |
| II'''          | 3.00              | 1.00        | 3.00      | 1.00        | 3.00      | WX3b  | 0.875 | VI'    |        | XXIII   | 3.00        | 3.43    | 3.00        | 3.43    |
| Ш              | 7,98              | 1,00        | 7,98      | 1,00        | 7,98      | WX4   | 2,310 | VI"    |        | XXIII"  | 9,09        | 3,94    | 9,09        | 3,94    |
| IV'            | 5,69              | 1,00        | 5,69      | 1,00        | 5,69      | WX5   | 0,890 | VI'''  |        |         | 2,18        | 2,45    | 2,18        | 2,45    |
| IV"            | 6,53              | 1,00        | 6,53      | 1,00        | 6,53      | WX6   | 1,975 | Χ'     |        | IV'     | 11,44       | 5,79    | 11,44       | 5,79    |
| IV'''          | 2,05              | 1,00        | 2,05      | 1,00        | 2,05      | WX7a  | 1,550 | Χ"     |        | IV"     | 11,07       | 7,14    | 11,07       | 7,14    |
| V              | 7,98              | 1,00        | 7,98      | 1,00        | 7,98      | WX7b  | 1,450 | XVII'  |        | IV'''   | 3,10        | 2,14    | 3,10        | 2,14    |
| Vľ             | 3,00              | 1,00        | 3,00      | 1,00        | 3,00      | WX7c  | 1,450 | XVII'' |        | VIII'   | 3,10        | 2,14    | 3,10        | 2,14    |
| VI"            | 9,09              | 1,00        | 9,09      | 1,00        | 9,09      | WX7d  | 1,550 | XIV'   |        | VIII''  | 11,07       | 7,14    | 11,07       | 7,14    |
| VI'''          | 2,18              | 1,00        | 2,18      | 1,00        | 2,18      | WX8   | 1,975 | XIV''  |        | VIII''' | 11,44       | 5,79    | 11,44       | 5,79    |
| VII            | 7,98              | 1,00        | 7,98      | 1,00        | 7,98      | WX9   | 1,625 |        |        | XII'    | 3,44        | 2,12    | 3,44        | 2,12    |
| VIII'          | 2,05              | 1,00        | 2,05      | 1,00        | 2,05      | WX10  | 1,380 |        |        | XII"    | 4,62        | 3,35    | 4,62        | 3,35    |
| VIII''         | 6,53              | 1,00        | 6,53      | 1,00        | 6,53      | WX11  | 0,820 |        |        | XII'''  | 2,22        | 2,71    | 2,22        | 2,71    |
| VIII'''        | 5,69              | 1,00        | 5,69      | 1,00        | 5,69      | WX12  | 0,820 |        |        | XVI'    | 2,22        | 2,71    | 2,22        | 2,71    |
| IX             | 9,15              | 1,00        | 9,15      | 1,00        | 9,15      | WX13  | 1,380 |        |        | XVI"    | 4,62        | 3,35    | 4,62        | 3,35    |
| Χ'             | 5,75              | 1,00        | 5,75      | 1,00        | 5,75      | WX14  | 1,625 |        |        | XVI'''  | 3,44        | 2,12    | 3,44        | 2,12    |
| Χ''            | 4,54              | 1,00        | 4,54      | 1,00        | 4,54      | WX15  | 0,400 |        |        | XIX'    | 1,05        | 2,63    | 1,05        | 2,63    |
| XI'            | 1,44              | 1,00        | 1,44      | 1,00        | 1,44      | WX16  | 0,400 |        |        | XIX"    | 1,05        | 2,63    | 1,05        | 2,63    |
| XI"            | 7,71              | 1,00        | 7,71      | 1,00        | 7,71      | WY1   | 6,050 | IX     |        |         | 9,15        | 1,51    | 9,15        | 1,51    |
| XII'           | 3,44              | 1,00        | 3,44      | 1,00        | 3,44      | WY2   | 5,650 | 1      |        |         | 7,98        | 1,41    | 7,98        | 1,41    |
| XII"           | 4,62              | 1,00        | 4,62      | 1,00        | 4,62      | WY3   | 1,450 | XX     |        |         | 5,19        | 3,58    | 5,39        | 3,71    |
| XII'''         | 2,22              | 1,00        | 2,22      | 1,00        | 2,22      | WY4   | 4,600 | XXI"   |        | XI"     | 8,36        | 1,82    | 8,36        | 1,82    |
| XIII           | 1,44              | 1,00        | 1,44      | 1,00        | 1,44      | WY5   | 0,450 | XXI    |        | Xľ      | 2,13        | 4,73    | 2,13        | 4,73    |
| XIII           | 7,71              | 1,00        | 7,71      | 1,00        | 7,71      | WY6   | 5,650 | V      |        |         | 15,96       | 2,82    | 15,96       | 2,82    |
| XIV            | 4,54              | 1,00        | 4,54      | 1,00        | 4,54      |       | 1,450 | VIIII  |        | XVIII   | 1,05        | 0,72    | 1,05        | 0,72    |
| XIV            | 5,75              | 1,00        | 5,75      | 1,00        | 5,75      | VVY8  | 4,600 | XIII   |        | XVIII   | 14,74       | 3,20    | 14,74       | 3,20    |
|                | 9,15              | 1,00        | 9,15      | 1,00        | 9,15      | WY 19 | 0,450 | AIII   |        |         | 2,13        | 4,73    | 2,13        | 4,73    |
| XVI<br>XV/!"   | 2,22              | 1,00        | 2,22      | 1,00        | 2,22      | WT10  | 5,050 |        |        |         | 9,13        | 1,51    | 7 0 8       | 1,01    |
| XVI<br>XV/I''' | 3 44              | 1,00        | 3 11      | 1,00        | 3 11      | Summe | 3,030 |        |        | VII     | 186.24      | 1,41    | 186.44      | 1,41    |
| XVII           | 1.05              | 1,00        | 1.05      | 1,00        | 1.05      | Gamme | 1     |        |        |         | 100,24      |         | 100,44      |         |
| XVII"          | 1,05              | 1,00        | 1,05      | 1,00        | 1,05      |       |       |        |        |         |             |         |             |         |
| XVIII          | 0.69              | 1,00        | 0.69      | 1,00        | 0.69      |       |       |        |        |         |             |         |             |         |
| XVIII''        | 7.03              | 1.00        | 7.03      | 1.00        | 7.03      |       |       |        |        |         |             |         |             |         |
| XVIII'''       | 1.05              | 1.00        | 1.05      | 1.00        | 1.05      |       |       |        |        |         |             |         |             |         |
| XIX'           | 1.05              | 1.00        | 1.05      | 1.00        | 1.05      |       |       |        |        |         |             |         |             |         |
| XIX"           | 1.05              | 1.00        | 1.05      | 1.00        | 1.05      |       |       |        |        |         |             |         |             |         |
| XX             | 1,05              | 4,94        | 5,19      | 5,13        | 5,39      |       |       |        |        |         |             |         |             |         |
| XXI'           | 0,69              | 1,00        | 0,69      | 1,00        | 0,69      |       |       |        |        |         |             |         |             |         |
| XXI"           | 0,65              | 1,00        | 0,65      | 1,00        | 0,65      |       |       |        |        |         |             |         |             |         |
| XXII'          | 4,85              | 0,00        | 0,00      | 0,00        | 0,00      |       |       |        |        |         |             |         |             |         |
| XXII"          | 5,15              | 0,00        | 0,00      | 0,00        | 0,00      |       |       |        |        |         |             |         |             |         |
| XXIII'         | 5,15              | 0,00        | 0,00      | 0,00        | 0,00      |       |       |        |        |         |             |         |             |         |
| XXIII"         | 4,85              | 0,00        | 0,00      | 0,00        | 0,00      |       |       |        |        |         |             |         |             |         |
| Summe          |                   |             | 186,24    |             | 186,44    | l     |       |        |        |         |             |         |             |         |

Tabelle 6.6: Spezifische Lasteinzugsflächen für die Decke über dem 3. OG

| i        | A     |         | A <sub>i off min</sub> |         | A <sub>i eff max</sub> | WQS   | 1     | LEF    | LEF    | LEF      | LEF <sub>tot min</sub> | a' <sub>min</sub> | LEF <sub>tot max</sub> | a' <sub>max</sub> |
|----------|-------|---------|------------------------|---------|------------------------|-------|-------|--------|--------|----------|------------------------|-------------------|------------------------|-------------------|
|          | in m² | 1,11011 | in m <sup>2</sup>      | I,IIIdA | in m <sup>2</sup>      |       | in m  | links  | mittia | rechts   | tot,min                | in m²/m           | loi,max                | in m²/m           |
| /1/      | /2/   | /3/     | /4/                    | /5/     | /6/                    | /7/   | /8/   |        | /9/    |          | /10/                   | /11/              | /12/                   | /13/              |
| I        | 7,98  | 1,00    | 7,98                   | 1,00    | 7,98                   | WX1   | 0,890 | 11'    |        |          | 2,18                   | 2,45              | 2,18                   | 2,45              |
| II'      | 2,18  | 1,00    | 2,18                   | 1,00    | 2,18                   | WX2   | 2,310 | 11"    |        | XXII'    | 12,73                  | 5,51              | 13,02                  | 5,64              |
| 11"      | 9,09  | 1,00    | 9,09                   | 1,00    | 9,09                   | WX3a  | 0,875 | 11'''  |        | XXII"    | 6,86                   | 7,84              | 7,17                   | 8,20              |
| 11""     | 3,00  | 1,00    | 3,00                   | 1,00    | 3,00                   | WX3b  | 0,875 | VI'    |        | XXIII'   | 6,86                   | 7,84              | 7,17                   | 8,20              |
| III      | 7,98  | 1,00    | 7,98                   | 1,00    | 7,98                   | WX4   | 2,310 | VI"    |        | XXIII"   | 12,73                  | 5,51              | 13,02                  | 5,64              |
| IV'      | 5,69  | 1,00    | 5,69                   | 1,00    | 5,69                   | WX5   | 0,890 | VI'''  |        |          | 2,18                   | 2,45              | 2,18                   | 2,45              |
| IV"      | 6,53  | 1,00    | 6,53                   | 1,00    | 6,53                   | WX6   | 1,975 | Χ'     |        | IV'      | 11,44                  | 5,79              | 11,44                  | 5,79              |
| IV'''    | 2,05  | 1,00    | 2,05                   | 1,00    | 2,05                   | WX7a  | 1,550 | X''    |        | IV''     | 11,07                  | 7,14              | 11,07                  | 7,14              |
| V        | 7,98  | 1,00    | 7,98                   | 1,00    | 7,98                   | WX7b  | 1,450 | XVII'  |        | IV'''    | 3,10                   | 2,14              | 3,10                   | 2,14              |
| VI       | 3,00  | 1,00    | 3,00                   | 1,00    | 3,00                   | WX7c  | 1,450 | XVII'' |        | VIII'    | 3,10                   | 2,14              | 3,10                   | 2,14              |
| VI"      | 9,09  | 1,00    | 9,09                   | 1,00    | 9,09                   | WX7d  | 1,550 | XIV'   |        | VIII''   | 11,07                  | 7,14              | 11,07                  | 7,14              |
| VI'''    | 2,18  | 1,00    | 2,18                   | 1,00    | 2,18                   | WX8   | 1,975 | XIV"   |        | VIII'''  | 11,44                  | 5,79              | 11,44                  | 5,79              |
| VII      | 7,98  | 1,00    | 7,98                   | 1,00    | 7,98                   | WX9   | 1,625 |        |        | XII      | 3,44                   | 2,12              | 3,44                   | 2,12              |
| VIII     | 2,05  | 1,00    | 2,05                   | 1,00    | 2,05                   | WX10  | 1,380 |        |        | XII"     | 4,62                   | 3,35              | 4,62                   | 3,35              |
| VIII''   | 6,53  | 1,00    | 6,53                   | 1,00    | 6,53                   | WX11  | 0,820 |        |        | XII'''   | 2,22                   | 2,71              | 2,22                   | 2,71              |
| VIII     | 5,69  | 1,00    | 5,69                   | 1,00    | 5,69                   | VVX12 | 0,820 |        |        | XVI      | 2,22                   | 2,71              | 2,22                   | 2,71              |
|          | 9,15  | 1,00    | 9,15                   | 1,00    | 9,15                   | WX13  | 1,380 |        |        | XVI"     | 4,62                   | 3,35              | 4,62                   | 3,35              |
| X<br>V'' | 5,75  | 1,00    | 5,75                   | 1,00    | 5,75                   | VVX14 | 1,625 |        |        |          | 3,44                   | 2,12              | 3,44                   | 2,12              |
|          | 4,54  | 1,00    | 4,54                   | 1,00    | 4,54                   | WX15  | 0,400 |        |        |          | 1,05                   | 2,03              | 1,05                   | 2,03              |
|          | 7 71  | 1,00    | 7 74                   | 1,00    | 7 71                   | WX10  | 0,400 | IV     |        |          | 1,05                   | 2,03              | 1,05                   | 2,03              |
|          | 3.44  | 1,00    | 3.44                   | 1,00    | 3 11                   | W/V2  | 5,050 | 1      |        |          | 7 08                   | 1,01              | 7 08                   | 1,01              |
| XII"     | 4 62  | 1,00    | 4 62                   | 1,00    | 4 62                   | WY3   | 1 450 | XX     |        |          | 1,50                   | 3.07              | 1,50                   | 3.06              |
| XII'''   | 2 22  | 1,00    | 2 2 2 2                | 1,00    | 2 22                   | WY4   | 4 600 | XXI"   |        | XI''     | 11 76                  | 2.56              | 11 75                  | 2 55              |
| XIII'    | 1 44  | 1,00    | 1 44                   | 1,00    | 1 44                   | WY5   | 0 450 | XXI    |        | XI       | 2 13                   | 4 73              | 2 13                   | 4 73              |
| XIII''   | 7 71  | 1,00    | 7 71                   | 1,00    | 7 71                   | WY6   | 5 650 | V      |        |          | 15.96                  | 2 82              | 15.96                  | 2 82              |
| XIV'     | 4.54  | 1.00    | 4.54                   | 1.00    | 4.54                   | WY7   | 1,450 |        |        | XVIII''' | 1.05                   | 0.72              | 1.05                   | 0.72              |
| XIV"     | 5.75  | 1.00    | 5.75                   | 1.00    | 5.75                   | WY8   | 4.600 | XIII"  |        | XVIII"   | 14.74                  | 3.20              | 14.74                  | 3.20              |
| XV       | 9,15  | 1,00    | 9,15                   | 1,00    | 9,15                   | WY9   | 0,450 | XIII   |        | XVIII'   | 2,13                   | 4,73              | 2,13                   | 4,73              |
| XVI      | 2,22  | 1,00    | 2,22                   | 1,00    | 2,22                   | WY10  | 6,050 |        |        | XV       | 9,15                   | 1,51              | 9,15                   | 1,51              |
| XVI"     | 4,62  | 1,00    | 4,62                   | 1,00    | 4,62                   | WY11  | 5,650 |        |        | VII      | 7,98                   | 1,41              | 7,98                   | 1,41              |
| XVI'''   | 3,44  | 1,00    | 3,44                   | 1,00    | 3,44                   | Summe |       |        |        |          | 203,90                 |                   | 205,07                 |                   |
| XVII'    | 1,05  | 1,00    | 1,05                   | 1,00    | 1,05                   |       | -     |        |        |          |                        |                   |                        |                   |
| XVII"    | 1,05  | 1,00    | 1,05                   | 1,00    | 1,05                   |       |       |        |        |          |                        |                   |                        |                   |
| XVIII'   | 0,69  | 1,00    | 0,69                   | 1,00    | 0,69                   |       |       |        |        |          |                        |                   |                        |                   |
| XVIII''  | 7,03  | 1,00    | 7,03                   | 1,00    | 7,03                   |       |       |        |        |          |                        |                   |                        |                   |
| XVIII''' | 1,05  | 1,00    | 1,05                   | 1,00    | 1,05                   |       |       |        |        |          |                        |                   |                        |                   |
| XIX'     | 1,05  | 1,00    | 1,05                   | 1,00    | 1,05                   |       |       |        |        |          |                        |                   |                        |                   |
| XIX"     | 1,05  | 1,00    | 1,05                   | 1,00    | 1,05                   |       |       |        |        |          |                        |                   |                        |                   |
| XX       | 1,05  | 4,24    | 4,45                   | 4,22    | 4,43                   |       |       |        |        |          |                        |                   |                        |                   |
| XXI'     | 0,69  | 1,00    | 0,69                   | 1,00    | 0,69                   |       |       |        |        |          |                        |                   |                        |                   |
| XXI"     | 0,65  | 6,23    | 4,05                   | 6,21    | 4,04                   |       |       |        |        |          |                        |                   |                        |                   |
| XXII'    | 4,85  | 0,75    | 3,64                   | 0,81    | 3,93                   |       |       |        |        |          |                        |                   |                        |                   |
| XXII"    | 5,15  | 0,75    | 3,86                   | 0,81    | 4,17                   |       |       |        |        |          |                        |                   |                        |                   |
| XXIII    | 5,15  | 0,75    | 3,86                   | 0,81    | 4,17                   |       |       |        |        |          |                        |                   |                        |                   |
| XXIII''  | 4,85  | 0,75    | 3,64                   | 0,81    | 3,93                   |       |       |        |        |          |                        |                   |                        |                   |
| Summe    |       | l       | 203,90                 | I [     | 205,07                 | l     |       |        |        |          |                        |                   |                        |                   |

Tabelle 6.7: Spezifische Lasteinzugsflächen für die Decken über den Regelgeschoßen

$$LMF_{XX,max} = \frac{\frac{27,95}{1,05} + 6,45}{6,45} = 5,13 \text{ mit } A_{XX} = 1,05 \text{ m}^2$$

Fehlender Balkon in dieser Deckenebene:

$$LMF_{XX'',max} = LMF_{XXII'',max} = LMF_{XXIII',max} = LMF_{XXIII'',max} = 0$$

Tab. 6.7:

LC1:

Balkon:  $b_d = 5,50 \,\mathrm{kN/m^2}$ Bezugseinwirkung:  $q_d = 7,30 \,\mathrm{kN/m^2}$ 

$$LMF_{XX,min} = \frac{\frac{24,84}{1,05} + 7,30}{7,30} = 4,24 \quad \text{mit } A_{XX} = 1,05 \,\text{m}^2$$
$$LMF_{XXI'',min} = \frac{\frac{24,84}{0,65} + 7,30}{7,30} = 6,23 \quad \text{mit } A_{XXI''} = 0,65 \,\text{m}^2$$

$$LMF_{XX'',min} = LMF_{XXII'',min} = LMF_{XXIII',min} = LMF_{XXIII'',min} = \frac{5,50}{7,30} = 0,75$$

LC2:

Balkon:  $b_d = 5,50 + 0,3 \cdot 4,00 = 6,70 \text{ kN/m}^2$ Bezugseinwirkung:  $q_d = 7,30 + 0,3 \cdot 3,20 = 8,26 \text{ kN/m}^2$ 

$$LMF_{XX,max} = \frac{\frac{27,95}{1,05} + 8,26}{8,26} = 4,22 \quad \text{mit } A_{XX} = 1,05 \,\text{m}^2$$
$$LMF_{XXI'',max} = \frac{\frac{27,95}{0,65} + 8,26}{8,26} = 6,21 \quad \text{mit } A_{XXI''} = 0,65 \,\text{m}^2$$
$$LMF_{XX'',max} = LMF_{XXII'',max} = LMF_{XXIII',max} = LMF_{XXIII'',max} = \frac{6,70}{8,26} = 0,81$$

# Bemessungswert der am Wandkopf, in Wandmitte und am Wandfuß wirkenden Vertikalkraft

Die Bemessungswerte für die anschließenden Nachweise der Tragfähigkeit unter vorwiegend vertikaler Belastung sind in Tab. 6.8 und in Tab. 6.9 dargestellt. Exemplarisch wird die Ermittlung von  $N_{Ed,2.OG,F}$  des Wandquerschnittes WX1 im Folgenden für die Lastfallkombination 1 erklärt.

$$\begin{split} N_{Ed,2.OG,F} &= 0,69\,\mathrm{kN/m} & \dots N_{Sd} \text{ aus Giebelwand} \\ &+ 0,56\,\mathrm{kN/m^2}\cdot 4,10\,\mathrm{m^2/m} & \dots \mathrm{Dach} \\ &+ 6,00\,\mathrm{kN/m^2}\cdot 2,45\,\mathrm{m^2/m} & \dots \mathrm{Dack} \\ &+ 2,76\,\mathrm{kN/m^2}\cdot 2,75\,\mathrm{m} & \dots \mathrm{Dack} \\ &+ 7,30\,\mathrm{kN/m^2}\cdot 2,45\,\mathrm{m^2/m} & \dots \mathrm{Dacke} \ \text{über 3. OG} \\ &+ 2,76\,\mathrm{kN/m^2}\cdot 2,45\,\mathrm{m^2/m} & \dots \mathrm{Dacke} \ \text{über 2. OG} \\ &+ 2,76\,\mathrm{kN/m^2}\cdot 2,75\,\mathrm{m} & \dots \mathrm{Dacke} \ \text{über 2. OG} \\ &= 50,75\,\mathrm{kN/m} \end{split}$$

| LC 1      | Dach       | Decke über | Decke über  | N <sub>Sd</sub> aus z.B. |                        | 3.OG                   |                        |                        | 2.OG                   |                        |                        | 1.OG                   |                        |                      | EG                   |                      |
|-----------|------------|------------|-------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|
| Wandquer- |            | 3.OG       | Regelgesch. | Giebelwand               | N <sub>Ed,3.OG,K</sub> | N <sub>Ed,3.OG,M</sub> | N <sub>Ed,3.OG,F</sub> | N <sub>Ed,2.OG,K</sub> | N <sub>Ed,2.OG,M</sub> | N <sub>Ed,2.OG,F</sub> | N <sub>Ed,1.OG,K</sub> | N <sub>Ed,1.OG,M</sub> | N <sub>Ed,1.OG,F</sub> | N <sub>Ed,EG,K</sub> | N <sub>Ed,EG,M</sub> | N <sub>Ed,EG,F</sub> |
| schnitt   | a' in m²/m | a' in m²/m | a' in m²/m  | in kN/m                  | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m              | in kN/m              | in kN/m              |
| WX1       | 4,10       | 2,45       | 2,45        | 0,69                     | 17,69                  | 21,49                  | 25,28                  | 43,16                  | 46,96                  | 50,75                  | 68,64                  | 72,44                  | 76,23                  | 94,11                | 97,91                | 101,70               |
| WX2       | 5,33       | 3,94       | 5,51        | 0,69                     | 27,31                  | 31,11                  | 34,90                  | 75,13                  | 78,93                  | 82,72                  | 122,94                 | 126,74                 | 130,53                 | 170,75               | 174,55               | 178,34               |
| WX3a      | 5,29       | 3,43       | 7,84        | 0,69                     | 24,23                  | 28,03                  | 31,82                  | 89,05                  | 92,85                  | 96,64                  | 153,88                 | 157,68                 | 161,47                 | 218,70               | 222,50               | 226,29               |
| WX3b      | 5,29       | 3,43       | 7,84        | 0,69                     | 24,23                  | 28,03                  | 31,82                  | 89,05                  | 92,85                  | 96,64                  | 153,88                 | 157,68                 | 161,47                 | 218,70               | 222,50               | 226,29               |
| WX4       | 5,33       | 3,94       | 5,51        | 0,69                     | 27,31                  | 31,11                  | 34,90                  | 75,13                  | 78,93                  | 82,72                  | 122,94                 | 126,74                 | 130,53                 | 170,75               | 174,55               | 178,34               |
| WX5       | 4,10       | 2,45       | 2,45        | 0,69                     | 17,69                  | 21,49                  | 25,28                  | 43,16                  | 46,96                  | 50,75                  | 68,64                  | 72,44                  | 76,23                  | 94,11                | 97,91                | 101,70               |
| WX6       | 5,79       | 5,79       | 5,79        | 0,00                     | 37,98                  | 41,98                  | 45,98                  | 88,25                  | 92,25                  | 96,25                  | 138,52                 | 142,52                 | 146,52                 | 188,78               | 192,78               | 196,78               |
| WX7a      | 7,14       | 7,14       | 7,14        | 0,00                     | 46,84                  | 50,84                  | 54,84                  | 106,96                 | 110,96                 | 114,96                 | 167,08                 | 171,08                 | 175,08                 | 227,20               | 231,20               | 235,20               |
| WX7b      | 2,14       | 2,14       | 2,14        | 0,00                     | 14,04                  | 18,04                  | 22,04                  | 37,66                  | 41,66                  | 45,66                  | 61,28                  | 65,28                  | 69,28                  | 84,90                | 88,90                | 92,90                |
| WX7c      | 2,14       | 2,14       | 2,14        | 0,00                     | 14,04                  | 18,04                  | 22,04                  | 37,66                  | 41,66                  | 45,66                  | 61,28                  | 65,28                  | 69,28                  | 84,90                | 88,90                | 92,90                |
| WX7d      | 7,14       | 7,14       | 7,14        | 0,00                     | 46,84                  | 50,84                  | 54,84                  | 106,96                 | 110,96                 | 114,96                 | 167,08                 | 171,08                 | 175,08                 | 227,20               | 231,20               | 235,20               |
| WX8       | 5,79       | 5,79       | 5,79        | 0,00                     | 37,98                  | 41,98                  | 45,98                  | 88,25                  | 92,25                  | 96,25                  | 138,52                 | 142,52                 | 146,52                 | 188,78               | 192,78               | 196,78               |
| WX9       | 3,37       | 2,12       | 2,12        | 0,69                     | 15,30                  | 19,10                  | 22,89                  | 38,36                  | 42,16                  | 45,95                  | 61,43                  | 65,23                  | 69,02                  | 84,50                | 88,30                | 92,09                |
| WX10      | 4,83       | 3,35       | 3,35        | 0,69                     | 23,49                  | 27,29                  | 31,08                  | 55,54                  | 59,34                  | 63,13                  | 87,58                  | 91,38                  | 95,17                  | 119,63               | 123,43               | 127,22               |
| WX11      | 3,73       | 2,71       | 2,71        | 0,69                     | 19,04                  | 22,84                  | 26,63                  | 46,41                  | 50,21                  | 54,00                  | 73,78                  | 77,58                  | 81,37                  | 101,16               | 104,96               | 108,75               |
| WX12      | 3,73       | 2,71       | 2,71        | 0,69                     | 19,04                  | 22,84                  | 26,63                  | 46,41                  | 50,21                  | 54,00                  | 73,78                  | 77,58                  | 81,37                  | 101,16               | 104,96               | 108,75               |
| WX13      | 4,83       | 3,35       | 3,35        | 0,69                     | 23,49                  | 27,29                  | 31,08                  | 55,54                  | 59,34                  | 63,13                  | 87,58                  | 91,38                  | 95,17                  | 119,63               | 123,43               | 127,22               |
| WX14      | 3,37       | 2,12       | 2,12        | 0,69                     | 15,30                  | 19,10                  | 22,89                  | 38,36                  | 42,16                  | 45,95                  | 61,43                  | 65,23                  | 69,02                  | 84,50                | 88,30                | 92,09                |
| WX15      | 6,11       | 2,63       | 2,63        | 16,80                    | 36,00                  | 39,80                  | 43,59                  | 62,79                  | 66,59                  | 70,38                  | 89,58                  | 93,38                  | 97,17                  | 116,37               | 120,17               | 123,96               |
| WX16      | 6,11       | 2,63       | 2,63        | 16,80                    | 36,00                  | 39,80                  | 43,59                  | 62,79                  | 66,59                  | 70,38                  | 89,58                  | 93,38                  | 97,17                  | 116,37               | 120,17               | 123,96               |
| WY1       | 2,33       | 1,51       | 1,51        | 4,80                     | 15,16                  | 18,96                  | 22,75                  | 33,78                  | 37,58                  | 41,37                  | 52,39                  | 56,19                  | 59,98                  | 71,00                | 74,80                | 78,59                |
| WY2       | 2,23       | 1,41       | 1,41        | 4,54                     | 14,25                  | 18,05                  | 21,84                  | 32,13                  | 35,93                  | 39,72                  | 50,01                  | 53,81                  | 57,60                  | 67,90                | 71,70                | 75,49                |
| WY3       | 1,62       | 3,58       | 3,07        | 3,59                     | 25,98                  | 29,78                  | 33,57                  | 55,98                  | 59,78                  | 63,57                  | 85,98                  | 89,78                  | 93,57                  | 115,98               | 119,78               | 123,57               |
| WY4       | 3,28       | 1,82       | 2,56        | 3,78                     | 16,54                  | 20,54                  | 24,54                  | 43,22                  | 47,22                  | 51,22                  | 69,91                  | 73,91                  | 77,91                  | 96,60                | 100,60               | 104,60               |
| WY5       | 4,73       | 4,73       | 4,73        | 0,00                     | 31,03                  | 35,03                  | 39,03                  | 73,56                  | 77,56                  | 81,56                  | 116,09                 | 120,09                 | 124,09                 | 158,62               | 162,62               | 166,62               |
| WY6       | 2,82       | 2,82       | 2,82        | 0,00                     | 18,50                  | 22,50                  | 26,50                  | 47,09                  | 51,09                  | 55,09                  | 75,67                  | 79,67                  | 83,67                  | 104,26               | 108,26               | 112,26               |
| WY7       | 1,62       | 0,72       | 0,72        | 3,59                     | 8,82                   | 12,62                  | 16,41                  | 21,66                  | 25,46                  | 29,25                  | 34,51                  | 38,31                  | 42,10                  | 47,36                | 51,16                | 54,95                |
| WY8       | 3,28       | 3,20       | 3,20        | 3,78                     | 24,82                  | 28,82                  | 32,82                  | 56,18                  | 60,18                  | 64,18                  | 87,54                  | 91,54                  | 95,54                  | 118,90               | 122,90               | 126,90               |
| WY9       | 4,73       | 4,73       | 4,73        | 0,00                     | 31,03                  | 35,03                  | 39,03                  | 73,56                  | 77,56                  | 81,56                  | 116,09                 | 120,09                 | 124,09                 | 158,62               | 162,62               | 166,62               |
| WY10      | 2,33       | 1,51       | 1,51        | 4,80                     | 15,16                  | 18,96                  | 22,75                  | 33,78                  | 37,58                  | 41,37                  | 52,39                  | 56,19                  | 59,98                  | 71,00                | 74,80                | 78,59                |
| WY11      | 2,23       | 1,41       | 1,41        | 4,54                     | 14,25                  | 18,05                  | 21,84                  | 32,13                  | 35,93                  | 39,72                  | 50,01                  | 53,81                  | 57,60                  | 67,90                | 71,70                | 75,49                |

Tabelle 6.8: Bemessungswerte der Vertikalkraft für die Lastfallkombination 1

| LC 2      | Dach       | Decke über | Decke über  | N <sub>Sd</sub> aus z.B. |                        | 3.OG                   |                        |                        | 2.OG                   |                        |                        | 1.0G                   |                        |                      | EG                   |                      | Wandquer-     | N <sub>Ed,EG,F</sub> . I <sub>i</sub> |
|-----------|------------|------------|-------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|---------------|---------------------------------------|
| Wandquer- |            | 3.OG       | Regelgesch. | Giebelwand               | N <sub>Ed,3.OG,K</sub> | N <sub>Ed,3.OG,M</sub> | N <sub>Ed,3.OG,F</sub> | N <sub>Ed,2.OG,K</sub> | N <sub>Ed,2.OG,M</sub> | N <sub>Ed,2.OG,F</sub> | N <sub>Ed,1.OG,K</sub> | N <sub>Ed,1.OG,M</sub> | N <sub>Ed,1.OG,F</sub> | N <sub>Ed,EG,K</sub> | N <sub>Ed,EG,M</sub> | N <sub>Ed,EG,F</sub> | schnittslänge |                                       |
| schnitt   | a' in m²/m | a' in m²/m | a' in m²/m  | in kN/m                  | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m                | in kN/m              | in kN/m              | in kN/m              | l, in m       | in kN                                 |
| WX1       | 4,10       | 2,45       | 2,45        | 0,69                     | 18,79                  | 22,59                  | 26,38                  | 46,62                  | 50,42                  | 54,21                  | 74,44                  | 78,24                  | 82,03                  | 102,27               | 106,07               | 109,86               | 0,890         | 97,77                                 |
| WX2       | 5,33       | 3,94       | 5,64        | 0,69                     | 29,09                  | 32,89                  | 36,68                  | 83,26                  | 87,06                  | 90,85                  | 137,44                 | 141,24                 | 145,03                 | 191,62               | 195,42               | 199,21               | 2,310         | 460,17                                |
| WX3a      | 5,29       | 3,43       | 8,2         | 0,69                     | 25,78                  | 29,58                  | 33,37                  | 101,10                 | 104,90                 | 108,69                 | 176,42                 | 180,22                 | 184,01                 | 251,74               | 255,54               | 259,33               | 0,875         | 226,92                                |
| WX3b      | 5,29       | 3,43       | 8,2         | 0,69                     | 25,78                  | 29,58                  | 33,37                  | 101,10                 | 104,90                 | 108,69                 | 176,42                 | 180,22                 | 184,01                 | 251,74               | 255,54               | 259,33               | 0,875         | 226,92                                |
| WX4       | 5,33       | 3,94       | 5,64        | 0,69                     | 29,09                  | 32,89                  | 36,68                  | 83,26                  | 87,06                  | 90,85                  | 137,44                 | 141,24                 | 145,03                 | 191,62               | 195,42               | 199,21               | 2,310         | 460,17                                |
| WX5       | 4,10       | 2,45       | 2,45        | 0,69                     | 18,79                  | 22,59                  | 26,38                  | 46,62                  | 50,42                  | 54,21                  | 74,44                  | 78,24                  | 82,03                  | 102,27               | 106,07               | 109,86               | 0,890         | 97,77                                 |
| WX6       | 5,79       | 5,79       | 5,79        | 0,00                     | 40,59                  | 44,59                  | 48,59                  | 96,41                  | 100,41                 | 104,41                 | 152,24                 | 156,24                 | 160,24                 | 208,06               | 212,06               | 216,06               | 1,975         | 426,73                                |
| WX7a      | 7,14       | 7,14       | 7,14        | 0,00                     | 50,05                  | 54,05                  | 58,05                  | 117,03                 | 121,03                 | 125,03                 | 184,00                 | 188,00                 | 192,00                 | 250,98               | 254,98               | 258,98               | 1,550         | 401,42                                |
| WX7b      | 2,14       | 2,14       | 2,14        | 0,00                     | 15,00                  | 19,00                  | 23,00                  | 40,68                  | 44,68                  | 48,68                  | 66,35                  | 70,35                  | 74,35                  | 92,03                | 96,03                | 100,03               | 1,450         | 145,04                                |
| WX7c      | 2,14       | 2,14       | 2,14        | 0,00                     | 15,00                  | 19,00                  | 23,00                  | 40,68                  | 44,68                  | 48,68                  | 66,35                  | 70,35                  | 74,35                  | 92,03                | 96,03                | 100,03               | 1,450         | 145,04                                |
| WX7d      | 7,14       | 7,14       | 7,14        | 0,00                     | 50,05                  | 54,05                  | 58,05                  | 117,03                 | 121,03                 | 125,03                 | 184,00                 | 188,00                 | 192,00                 | 250,98               | 254,98               | 258,98               | 1,550         | 401,42                                |
| WX8       | 5,79       | 5,79       | 5,79        | 0,00                     | 40,59                  | 44,59                  | 48,59                  | 96,41                  | 100,41                 | 104,41                 | 152,24                 | 156,24                 | 160,24                 | 208,06               | 212,06               | 216,06               | 1,975         | 426,73                                |
| WX9       | 3,37       | 2,12       | 2,12        | 0,69                     | 16,25                  | 20,05                  | 23,84                  | 41,35                  | 45,15                  | 48,94                  | 66,45                  | 70,25                  | 74,04                  | 91,55                | 95,35                | 99,14                | 1,625         | 161,11                                |
| WX10      | 4,83       | 3,35       | 3,35        | 0,69                     | 25,00                  | 28,80                  | 32,59                  | 60,26                  | 64,06                  | 67,85                  | 95,52                  | 99,32                  | 103,11                 | 130,79               | 134,59               | 138,38               | 1,380         | 190,96                                |
| WX11      | 3,73       | 2,71       | 2,71        | 0,69                     | 20,26                  | 24,06                  | 27,85                  | 50,23                  | 54,03                  | 57,82                  | 80,21                  | 84,01                  | 87,80                  | 110,18               | 113,98               | 117,77               | 0,820         | 96,57                                 |
| WX12      | 3,73       | 2,71       | 2,71        | 0,69                     | 20,26                  | 24,06                  | 27,85                  | 50,23                  | 54,03                  | 57,82                  | 80,21                  | 84,01                  | 87,80                  | 110,18               | 113,98               | 117,77               | 0,820         | 96,57                                 |
| WX13      | 4,83       | 3,35       | 3,35        | 0,69                     | 25,00                  | 28,80                  | 32,59                  | 60,26                  | 64,06                  | 67,85                  | 95,52                  | 99,32                  | 103,11                 | 130,79               | 134,59               | 138,38               | 1,380         | 190,96                                |
| WX14      | 3,37       | 2,12       | 2,12        | 0,69                     | 16,25                  | 20,05                  | 23,84                  | 41,35                  | 45,15                  | 48,94                  | 66,45                  | 70,25                  | 74,04                  | 91,55                | 95,35                | 99,14                | 1,625         | 161,11                                |
| WX15      | 6,11       | 2,63       | 2,63        | 16,80                    | 37,19                  | 40,99                  | 44,78                  | 66,50                  | 70,30                  | 74,09                  | 95,81                  | 99,61                  | 103,40                 | 125,13               | 128,93               | 132,72               | 0,400         | 53,09                                 |
| WX16      | 6,11       | 2,63       | 2,63        | 16,80                    | 37,19                  | 40,99                  | 44,78                  | 66,50                  | 70,30                  | 74,09                  | 95,81                  | 99,61                  | 103,40                 | 125,13               | 128,93               | 132,72               | 0,400         | 53,09                                 |
| WY1       | 2,33       | 1,51       | 1,51        | 4,80                     | 15,84                  | 19,64                  | 23,43                  | 35,91                  | 39,71                  | 43,50                  | 55,97                  | 59,77                  | 63,56                  | 76,03                | 79,83                | 83,62                | 6,050         | 505,91                                |
| WY2       | 2,23       | 1,41       | 1,41        | 4,54                     | 14,88                  | 18,68                  | 22,47                  | 34,12                  | 37,92                  | 41,71                  | 53,36                  | 57,16                  | 60,95                  | 72,59                | 76,39                | 80,18                | 5,650         | 453,03                                |
| WY3       | 1,62       | 3,71       | 3,06        | 3,59                     | 28,43                  | 32,23                  | 36,02                  | 61,29                  | 65,09                  | 68,88                  | 94,16                  | 97,96                  | 101,75                 | 127,02               | 130,82               | 134,61               | 1,450         | 195,19                                |
| WY4       | 3,28       | 1,82       | 2,55        | 3,78                     | 17,36                  | 21,36                  | 25,36                  | 46,42                  | 50,42                  | 54,42                  | 75,48                  | 79,48                  | 83,48                  | 104,54               | 108,54               | 112,54               | 4,600         | 517,71                                |
| WY5       | 4,73       | 4,73       | 4,73        | 0,00                     | 33,16                  | 37,16                  | 41,16                  | 80,23                  | 84,23                  | 88,23                  | 127,30                 | 131,30                 | 135,30                 | 174,37               | 178,37               | 182,37               | 0,450         | 82,07                                 |
| WY6       | 2,82       | 2,82       | 2,82        | 0,00                     | 19,77                  | 23,77                  | 27,77                  | 51,06                  | 55,06                  | 59,06                  | 82,35                  | 86,35                  | 90,35                  | 113,65               | 117,65               | 121,65               | 5,650         | 687,31                                |
| WY7       | 1,62       | 0,72       | 0,72        | 3,59                     | 9,14                   | 12,94                  | 16,73                  | 22,68                  | 26,48                  | 30,27                  | 36,22                  | 40,02                  | 43,81                  | 49,75                | 53,55                | 57,34                | 1,450         | 83,15                                 |
| WY8       | 3,28       | 3,2        | 3,2         | 3,78                     | 26,26                  | 30,26                  | 34,26                  | 60,69                  | 64,69                  | 68,69                  | 95,12                  | 99,12                  | 103,12                 | 129,55               | 133,55               | 137,55               | 4,600         | 632,74                                |
| WY9       | 4,73       | 4,73       | 4,73        | 0,00                     | 33,16                  | 37,16                  | 41,16                  | 80,23                  | 84,23                  | 88,23                  | 127,30                 | 131,30                 | 135,30                 | 174,37               | 178,37               | 182,37               | 0,450         | 82,07                                 |
| WY10      | 2,33       | 1,51       | 1,51        | 4,80                     | 15,84                  | 19,64                  | 23,43                  | 35,91                  | 39,71                  | 43,50                  | 55,97                  | 59,77                  | 63,56                  | 76,03                | 79,83                | 83,62                | 6,050         | 505,91                                |
| WY11      | 2,23       | 1,41       | 1,41        | 4,54                     | 14,88                  | 18,68                  | 22,47                  | 34,12                  | 37,92                  | 41,71                  | 53,36                  | 57,16                  | 60,95                  | 72,59                | 76,39                | 80,18                | 5,650         | 453,03                                |
|           |            |            |             |                          |                        |                        |                        |                        |                        |                        |                        |                        |                        |                      |                      |                      | Summe         | 8717,68                               |

Tabelle 6.9: Bemessungswerte der Vertikalkraft für die Lastfallkombination 2

|           |      | Sta      | ab 1   |        |       | Sta      | b 2  |        |         |           |      | Stab 3 |                      |                      |     |        |      | Stab 4 |                      |                      |                |      | Sta                 | ab 1                | Sta                 | ab 2                |
|-----------|------|----------|--------|--------|-------|----------|------|--------|---------|-----------|------|--------|----------------------|----------------------|-----|--------|------|--------|----------------------|----------------------|----------------|------|---------------------|---------------------|---------------------|---------------------|
| Wandquer- | n    | E        | t      | h      | n     | E        | t    | h      | n       | E         | t    | 1      | W <sub>d.LC1</sub>   | W <sub>d.LC2</sub>   | n   | E      | t    | -      | W <sub>d.LC1</sub>   | W <sub>d.LC2</sub>   | k <sub>m</sub> | η    | M <sub>id.LC1</sub> | M <sub>id.LC2</sub> | M <sub>id.LC1</sub> | M <sub>id.LC2</sub> |
| schnitt   |      | in MPa   | in m   | in m   |       | in MPa   | in m | in m   |         | in MPa    | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |     | in MPa | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |                |      | in kNm/m            | in kNm/m            | in kNm/m            | in kNm/m            |
|           |      |          |        |        |       | -        |      |        |         | -         |      |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |
| WX1       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX2       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX3a      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX3b      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX4       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX5       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | -2,53               | -2,72               | 0,00                | 0,00                |
| WX6       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,23               | -0,24               | 0,00                | 0,00                |
| WX7a      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,23               | -0,24               | 0,00                | 0,00                |
| WX7b      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 1,5 | 0      | 0,00 | 1,650  | 0,00600              | 0,00645              | 2,00           | 0,50 | 1,23                | 1,33                | 0,00                | 0,00                |
| WX7c      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,23               | -0,24               | 0,00                | 0,00                |
| WX7d      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,23               | -0,24               | 0,00                | 0,00                |
| WX8       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 5,650  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,23               | -0,24               | 0,00                | 0,00                |
| WX9       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX10      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX11      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX12      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX13      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX14      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00600              | 0,00645              | 2,00           | 0,50 | -3,04               | -3,26               | 0,00                | 0,00                |
| WX15      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 1,5 | 0      | 0,00 | 1,450  | 0,00600              | 0,00645              | 0,00           | 1,00 | -6,31               | -6,78               | 0,00                | 0,00                |
| WX16      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 7,500  | 0,00600              | 0,00645              | 1,62           | 0,59 | -6,36               | -6,84               | 0,00                | 0,00                |
| WY1       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 1,90           | 0,53 | -3,75               | -4,03               | 0,00                | 0,00                |
| WY2       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 7,875  | 0,00600              | 0,00645              | 1,55           | 0,61 | -7,47               | -8,03               | 0,00                | 0,00                |
| WY3       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 2,900  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,40               | -0,43               | 0,00                | 0,00                |
| WY4       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 1,5     | 0         | 0,00 | 0,125  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 1,90           | 0,53 | -3,74               | -4,02               | 0,00                | 0,00                |
| WY5       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 2,900  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 2,00           | 0,50 | -1,16               | -1,24               | 0,00                | 0,00                |
| WY6       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 7,875  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 7,875  | 0,00600              | 0,00645              | 2,00           | 0,50 | 0,00                | 0,00                | 0,00                | 0,00                |
| WY7       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 2,900  | 0,00600              | 0,00645              | 2,00           | 0,50 | -0,40               | -0,43               | 0,00                | 0,00                |
| WY8       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 1,5     | 0         | 0,00 | 1,475  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 1,90           | 0,53 | -2,56               | -2,76               | 0,00                | 0,00                |
| WY9       | 4    | 5150     | 0,25   | 2,97   |       |          |      |        | 4       | 31000     | 0,22 | 2,900  | 0,00600              | 0,00645              | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 2,00           | 0,50 | -1,16               | -1,24               | 0,00                | 0,00                |
| WY10      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 6,425  | 0,00600              | 0,00645              | 1,90           | 0,53 | -3,75               | -4,03               | 0,00                | 0,00                |
| WY11      | 4    | 5150     | 0,25   | 2,97   |       |          |      |        |         |           |      |        |                      |                      | 4   | 31000  | 0,22 | 7,875  | 0,00600              | 0,00645              | 1,55           | 0,61 | -7,47               | -8,03               | 0,00                | 0,00                |
| Anmerkung | Fall | s Stab 3 | bzw. 4 | gleich | Kragt | räger: E | =0 t | =0  =1 | Krantrā | oer n=1,5 | 5    |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |

Tabelle 6.10: Wand-Decken-Knotenmomente für die Decke über dem OG 3

|           |     | Sta       | ıb 1   |        |       | Sta      | ıb 2 |         |          |                     |      | Stab 3 |                      |                      |     |        |      | Stab 4 |                      |                      |                |      | Sta                 | b 1                 | Sta                 | ıb 2                |
|-----------|-----|-----------|--------|--------|-------|----------|------|---------|----------|---------------------|------|--------|----------------------|----------------------|-----|--------|------|--------|----------------------|----------------------|----------------|------|---------------------|---------------------|---------------------|---------------------|
| Wandquer- | n   | Е         | t      | h      | n     | Е        | t    | h       | n        | E                   | t    | -      | W <sub>d,LC1</sub>   | W <sub>d,LC2</sub>   | n   | E      | t    | 1      | W <sub>d,LC1</sub>   | W <sub>d,LC2</sub>   | k <sub>m</sub> | η    | M <sub>id,LC1</sub> | M <sub>id,LC2</sub> | M <sub>id,LC1</sub> | M <sub>id,LC2</sub> |
| schnitt   |     | in MPa    | in m   | in m   |       | in MPa   | in m | in m    |          | in MPa              | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |     | in MPa | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |                |      | in kNm/m            | in kNm/m            | in kNm/m            | in kNm/m            |
|           |     |           |        |        |       |          |      |         |          |                     |      |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |
| WX1       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -3,41               | -3,86               | 3,41                | 3,86                |
| WX2       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -3,41               | -3,86               | 3,41                | 3,86                |
| WX3a      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 1,5      | 0                   | 0,00 | 2,425  | 0,00550              | 0,00670              | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -0,57               | -0,40               | 0,57                | 0,40                |
| WX3b      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 1,5      | 0                   | 0,00 | 2,425  | 0,00550              | 0,00670              | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -0,57               | -0,40               | 0,57                | 0,40                |
| WX4       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -3,41               | -3,86               | 3,41                | 3,86                |
| WX5       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | -3,41               | -3,86               | 3,41                | 3,86                |
| WX6       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,23               | -0,26               | 0,23                | 0,26                |
| WX7a      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,23               | -0,26               | 0,23                | 0,26                |
| WX7b      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 1,5 | 0      | 0,00 | 1,650  | 0,00730              | 0,00826              | 1,08           | 0,73 | 1,67                | 1,89                | -1,67               | -1,89               |
| WX7c      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,23               | -0,26               | 0,23                | 0,26                |
| WX7d      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,23               | -0,26               | 0,23                | 0,26                |
| WX8       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 5,650  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,23               | -0,26               | 0,23                | 0,26                |
| WX9       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX10      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX11      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX12      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX13      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX14      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,050  | 0,00730              | 0,00826              | 1,01           | 0,75 | -4,15               | -4,70               | 4,15                | 4,70                |
| WX15      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 1,5 | 0      | 0,00 | 1,450  | 0,00730              | 0,00826              | 0,00           | 1,00 | -3,84               | -4,34               | 3,84                | 4,34                |
| WX16      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 7,500  | 0,00730              | 0,00826              | 0,81           | 0,80 | -7,52               | -8,51               | 7,52                | 8,51                |
| WY1       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 0,95           | 0,76 | -4,92               | -5,56               | 4,92                | 5,56                |
| WY2       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 7,875  | 0,00730              | 0,00826              | 0,77           | 0,80 | -8,58               | -9,71               | 8,58                | 9,71                |
| WY3       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 2,900  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,41               | -0,47               | 0,41                | 0,47                |
| WY4       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 1,5      | 0                   | 0,00 | 0,125  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 0,95           | 0,76 | -4,91               | -5,55               | 4,91                | 5,55                |
| WY5       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 2,900  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 2,00           | 0,50 | -1,23               | -1,40               | 1,23                | 1,40                |
| WY6       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 7,875  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 7,875  | 0,00730              | 0,00826              | 1,55           | 0,61 | 0,00                | 0,00                | 0,00                | 0,00                |
| WY7       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 2,900  | 0,00730              | 0,00826              | 2,00           | 0,50 | -0,41               | -0,47               | 0,41                | 0,47                |
| WY8       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 1,5      | 0                   | 0,00 | 1,475  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 0,95           | 0,76 | -3,36               | -3,80               | 3,36                | 3,80                |
| WY9       | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    | 4        | 31000               | 0,22 | 2,900  | 0,00730              | 0,00826              | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 2,00           | 0,50 | -1,23               | -1,40               | 1,23                | 1,40                |
| WY10      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 6,425  | 0,00730              | 0,00826              | 0,95           | 0,76 | -4,92               | -5,56               | 4,92                | 5,56                |
| WY11      | 4   | 5150      | 0,25   | 2,97   | 4     | 5150     | 0,25 | 2,97    |          |                     |      |        |                      |                      | 4   | 31000  | 0,22 | 7,875  | 0,00730              | 0,00826              | 0,77           | 0,80 | -8,58               | -9,71               | 8,58                | 9,71                |
| Anmerkung | Fal | ls Stab 3 | bzw. 4 | gleich | Kragt | räger: E | =0 t | =0 I=I, | Kragträg | <sub>er</sub> n=1,5 | 5    |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |

Tabelle 6.11: Wand-Decken-Knotenmomente für die Regelgeschoßdecke

# Ermittlung der Knotenmomente der Wand-Decken-Knoten gemäß Anhang C der [ÖNORM EN 1996-1-1]

Um in Abschnitt 6.3.1 die Lastausmitte ermitteln zu können, muss neben dem Bemessungswert der angreifenden Last  $N_{Ed,i}$  auch der Bemessungswert des Biegemomentes, resultierend aus der Exzentrizität der Deckenauflagerkraft, bestimmt werden. In Tab. 6.10, Tab. 6.11 und Tab. 6.12 sind die Knotenmomente für beide Lastfallkombinationen dargestellt.

## 6.2.3 Schnittkräfte für den Nachweis unbewehrter Mauerwerkswände unter Schubbelastung

Um in Abschnitt 6.3.2 sämtliche Wandquerschnitte nachweisen zu können, muss die aus der Erdbebeneinwirkung resultierende Gesamterdbebenkraft auf die einzelnen Wandquerschnitte eines jeden Geschoßes verteilt werden. Für die Aufteilung der Gesamterdbebenkraft wird das Verfahren aus Anhang B der [ÖNORM B 1998-1] gewählt, da dieses zusätzlich die Torsionswirkung infolge der unterschiedlichen Lage von Steifigkeits- und Massenmittelpunkt

|           |     | Sta      | ab 1   |        |      | Sta       | ab 2 |         |          |                     |      | Stab 3 |                      |                      |     |        |      | Stab 4 |                      |                      |                |      | Sta                 | b 1                 | Sta                 | ıb 2                |
|-----------|-----|----------|--------|--------|------|-----------|------|---------|----------|---------------------|------|--------|----------------------|----------------------|-----|--------|------|--------|----------------------|----------------------|----------------|------|---------------------|---------------------|---------------------|---------------------|
| Wandquer- | n   | E        | t      | h      | n    | Е         | t    | h       | n        | E                   | t    | -      | W <sub>d,LC1</sub>   | W <sub>d,LC2</sub>   | n   | Е      | t    | 1      | W <sub>d,LC1</sub>   | W <sub>d,LC2</sub>   | k <sub>m</sub> | η    | M <sub>id,LC1</sub> | M <sub>id,LC2</sub> | M <sub>id,LC1</sub> | M <sub>id,LC2</sub> |
| schnitt   |     | in MPa   | in m   | in m   |      | in MPa    | in m | in m    |          | in MPa              | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |     | in MPa | in m | in m   | in MN/m <sup>2</sup> | in MN/m <sup>2</sup> |                |      | in kNm/m            | in kNm/m            | in kNm/m            | in kNm/m            |
|           |     |          |        |        |      |           |      |         |          |                     |      |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |
| WX1       | 4   | 31000    | 0,25   | 2,9    | i 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -12,24              | -13,91              | 2,03                | 2,31                |
| WX2       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -12,24              | -13,91              | 2,03                | 2,31                |
| WX3a      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 1,5      | 0                   | 0,00 | 2,425  | 0,00550              | 0,00670              | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -1,61               | -0,97               | 0,27                | 0,16                |
| WX3b      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 1,5      | 0                   | 0,00 | 2,425  | 0,00550              | 0,00670              | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -1,61               | -0,97               | 0,27                | 0,16                |
| WX4       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -12,24              | -13,91              | 2,03                | 2,31                |
| WX5       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 5,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | -12,24              | -13,91              | 2,03                | 2,31                |
| WX6       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,44           | 0,89 | -1,44               | -1,64               | 0,24                | 0,27                |
| WX7a      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,44           | 0,89 | -1,44               | -1,64               | 0,24                | 0,27                |
| WX7b      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 1,5 | 0      | 0,00 | 1,650  | 0,00700              | 0,00796              | 0,23           | 0,94 | 5,97                | 6,79                | -0,99               | -1,13               |
| WX7c      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,44           | 0,89 | -1,44               | -1,64               | 0,24                | 0,27                |
| WX7d      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,44           | 0,89 | -1,44               | -1,64               | 0,24                | 0,27                |
| WX8       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 5,650  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,44           | 0,89 | -1,44               | -1,64               | 0,24                | 0,27                |
| WX9       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX10      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX11      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX12      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX13      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX14      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,050  | 0,00700              | 0,00796              | 0,21           | 0,95 | -14,26              | -16,22              | 2,37                | 2,69                |
| WX15      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 1,5 | 0      | 0,00 | 1,450  | 0,00700              | 0,00796              | 0,00           | 1,00 | -6,31               | -7,18               | 1,05                | 1,19                |
| WX16      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 7,500  | 0,00700              | 0,00796              | 0,17           | 0,96 | -22,94              | -26,09              | 3,81                | 4,33                |
| WY1       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,20           | 0,95 | -16,31              | -18,54              | 2,71                | 3,08                |
| WY2       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 7,875  | 0,00700              | 0,00796              | 0,17           | 0,96 | -25,53              | -29,03              | 4,24                | 4,82                |
| WY3       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 2,900  | 0,00700              | 0,00796              | 0,45           | 0,89 | -2,58               | -2,93               | 0,43                | 0,49                |
| WY4       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 1,5      | 0                   | 0,00 | 0,125  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,20           | 0,95 | -16,27              | -18,50              | 2,70                | 3,07                |
| WY5       | 4   | 31000    | 0,25   | 2,96   | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 2,900  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,65           | 0,84 | -8,34               | -9,49               | 1,39                | 1,58                |
| WY6       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 7,875  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 7,875  | 0,00700              | 0,00796              | 0,33           | 0,92 | 0,00                | 0,00                | 0,00                | 0,00                |
| WY7       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 2,900  | 0,00700              | 0,00796              | 0,45           | 0,89 | -2,58               | -2,93               | 0,43                | 0,49                |
| WY8       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 1,5      | 0                   | 0,00 | 1,475  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,20           | 0,95 | -11,15              | -12,68              | 1,85                | 2,11                |
| WY9       | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    | 4        | 31000               | 0,20 | 2,900  | 0,00700              | 0,00796              | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,65           | 0,84 | -8,34               | -9,49               | 1,39                | 1,58                |
| WY10      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 6,425  | 0,00700              | 0,00796              | 0,20           | 0,95 | -16,31              | -18,54              | 2,71                | 3,08                |
| WY11      | 4   | 31000    | 0,25   | 2,9    | 6 4  | 5150      | 0,25 | 2,96    |          |                     |      |        |                      |                      | 4   | 31000  | 0,20 | 7,875  | 0,00700              | 0,00796              | 0,17           | 0,96 | -25,53              | -29,03              | 4,24                | 4,82                |
| Anmerkung | Fal | s Stab 3 | bzw. 4 | gleich | Krag | träger: E | =0 t | =0  = , | Cragtrag | <sub>er</sub> n=1,5 | 5    |        |                      |                      |     |        |      |        |                      |                      |                |      |                     |                     |                     |                     |

Tabelle 6.12: Wand-Decken-Knotenmomente für die Decke über dem KG

| Wandquer- | t             | I           | A <sub>yi</sub>  | A <sub>xi</sub>   | yi     | Xi     | A <sub>yi</sub> · y <sub>i</sub> | $A_{xi} \cdot x_i$ |
|-----------|---------------|-------------|------------------|-------------------|--------|--------|----------------------------------|--------------------|
| schnitt   | in m          | in m        | in m²            | in m <sup>2</sup> | in m   | in m   | in m <sup>3</sup>                | in m³              |
| WX1       | 0,250         | 0,890       | 0,223            |                   | 0,125  |        | 0,028                            |                    |
| WX2       | 0,250         | 2,310       | 0,578            |                   | 0,125  |        | 0,072                            |                    |
| WX3       | 0,250         | 1,750       | 0,438            |                   | 0,125  |        | 0,055                            |                    |
| WX4       | 0,250         | 2,310       | 0,578            |                   | 0,125  |        | 0,072                            |                    |
| WX5       | 0,250         | 0,890       | 0,223            |                   | 0,125  |        | 0,028                            |                    |
| WX6       | 0,250         | 1,975       | 0,494            |                   | 5,775  |        | 2,851                            |                    |
| WX7       | 0,250         | 6,000       | 1,500            |                   | 5,775  |        | 8,663                            |                    |
| WX8       | 0,250         | 1,975       | 0,494            |                   | 5,775  |        | 2,851                            |                    |
| WX9       | 0,250         | 1,625       | 0,406            |                   | 11,825 |        | 4,804                            |                    |
| WX10      | 0,250         | 1,380       | 0,345            |                   | 11,825 |        | 4,080                            |                    |
| WX11      | 0,250         | 0,820       | 0,205            |                   | 11,825 |        | 2,424                            |                    |
| WX11'     | 0,250         | 0,400       | 0,100            |                   | 13,275 |        | 1,328                            |                    |
| WX12      | 0,250         | 0,820       | 0,205            |                   | 11,825 |        | 2,424                            |                    |
| WX12'     | 0,250         | 0,400       | 0,100            |                   | 13,275 |        | 1,328                            |                    |
| WX13      | 0,250         | 1,380       | 0,345            |                   | 11,825 |        | 4,080                            |                    |
| WX14      | 0,250         | 1,625       | 0,406            |                   | 11,825 |        | 4,804                            |                    |
| WY1       | 0,250         | 11,700      |                  | 2,925             |        | 0,125  |                                  | 0,366              |
| WY2       | 0,250         | 6,050       |                  | 1,513             |        | 6,550  |                                  | 9,907              |
| WY2'      | 0,250         | 0,450       |                  | 0,113             |        | 6,550  |                                  | 0,737              |
| WY3       | 0,250         | 5,650       |                  | 1,413             |        | 8,000  |                                  | 11,300             |
| WY4       | 0,250         | 6,050       |                  | 1,513             |        | 9,450  |                                  | 14,293             |
| WY4'      | 0,250         | 0,450       |                  | 0,113             |        | 9,450  |                                  | 1,063              |
| WY5       | 0,250         | 11,700      |                  | 2,925             |        | 15,875 |                                  | 46,434             |
| Summe     |               |             | 6,638            | 10,513            |        |        | 39,890                           | 84,100             |
|           |               |             |                  |                   |        |        |                                  |                    |
|           |               |             |                  |                   |        | l.     |                                  |                    |
|           | Steifigkeits  | mittelpunkt | y <sub>s</sub> = | 6,010             | m      |        |                                  |                    |
|           | 212.lightente |             | x <sub>s</sub> = | 8,000             | m      |        |                                  |                    |
|           |               |             |                  |                   |        |        |                                  |                    |

Tabelle 6.13: Ermittlung des Steifigkeitsmittelpunktes S

berücksichtigt.

## Ermittlung des Steifigkeitsmittelpunktes

Der Steifigkeitsmittelpunkt S kann mit Hilfe von Gl. 3.15 und Gl. 3.16 berechnet werden. Da beim vorliegenden Gebäude sämtliche Wände aus Mauerwerk sind, müssen die Trägheitsmomente in obigen Gleichungen durch die Schubflächen (ohne Gurte) ersetzt werden. Die Koordinaten des Steifigkeitsmittelpunktes ergeben sich zu (Tab. 6.13):

- $x_s = 8,000 \,\mathrm{m}$
- $y_s = 6,010 \,\mathrm{m}$

| Wandquer- | t        | Ι          | A                 | y <sub>i</sub> | x      | A <sub>i</sub> · y <sub>i</sub> | A <sub>i</sub> · x <sub>i</sub> |
|-----------|----------|------------|-------------------|----------------|--------|---------------------------------|---------------------------------|
| schnitt   | in m     | in m       | in m <sup>2</sup> | in m           | in m   | in m <sup>3</sup>               | in m <sup>3</sup>               |
| WX1       | 0,250    | 0,890      | 0,525             | 0,125          | 0,570  | 0,066                           | 0,299                           |
| WX2       | 0,250    | 2,310      | 1,363             | 0,125          | 3,470  | 0,170                           | 4,729                           |
| WX3       | 0,250    | 1,750      | 1,033             | 0,125          | 8,000  | 0,129                           | 8,260                           |
| WX4       | 0,250    | 2,310      | 1,363             | 0,125          | 12,530 | 0,170                           | 17,077                          |
| WX5       | 0,250    | 0,890      | 0,525             | 0,125          | 15,430 | 0,066                           | 8,102                           |
| WX6       | 0,250    | 1,975      | 1,165             | 5,775          | 1,113  | 6,729                           | 1,296                           |
| WX7       | 0,250    | 6,000      | 3,540             | 5,775          | 8,000  | 20,444                          | 28,320                          |
| WX8       | 0,250    | 1,975      | 1,165             | 5,775          | 14,888 | 6,729                           | 17,348                          |
| WX9       | 0,250    | 1,625      | 0,959             | 11,825         | 0,938  | 11,337                          | 0,899                           |
| WX10      | 0,250    | 1,380      | 0,814             | 11,825         | 3,740  | 9,628                           | 3,045                           |
| WX11      | 0,250    | 0,820      | 0,484             | 11,825         | 6,140  | 5,721                           | 2,971                           |
| WX11'     | 0,250    | 0,400      | 0,236             | 13,275         | 6,750  | 3,133                           | 1,593                           |
| WX12      | 0,250    | 0,820      | 0,484             | 11,825         | 9,860  | 5,721                           | 4,770                           |
| WX12'     | 0,250    | 0,400      | 0,236             | 13,275         | 9,250  | 3,133                           | 2,183                           |
| WX13      | 0,250    | 1,380      | 0,814             | 11,825         | 12,260 | 9,628                           | 9,982                           |
| WX14      | 0,250    | 1,625      | 0,959             | 11,825         | 15,063 | 11,337                          | 14,441                          |
| WY1       | 0,250    | 11,700     | 6,903             | 5,975          | 0,125  | 41,245                          | 0,863                           |
| WY2       | 0,250    | 6,050      | 3,570             | 10,250         | 6,550  | 36,587                          | 23,380                          |
| WY2'      | 0,250    | 0,450      | 0,266             | 6,000          | 6,550  | 1,593                           | 1,739                           |
| WY3       | 0,250    | 5,650      | 3,334             | 2,950          | 8,000  | 9,834                           | 26,668                          |
| WY4       | 0,250    | 6,050      | 3,570             | 10,250         | 9,450  | 36,587                          | 33,732                          |
| WY4'      | 0,250    | 0,450      | 0,266             | 6,000          | 9,450  | 1,593                           | 2,509                           |
| WY5       | 0,250    | 11,700     | 6,903             | 5,975          | 15,875 | 41,245                          | 109,585                         |
| A1        | 8,250    | 2,300      | 85,388            | -1,150         | 8,000  | -98,196                         | 683,100                         |
| A2        | 16,000   | 11,950     | 1051,600          | 5,975          | 8,000  | 6283,310                        | 8412,800                        |
| A3        | 3,150    | 1,450      | 25,121            | 12,675         | 8,000  | 318,412                         | 200,970                         |
| A4        | 1,300    | 4,400      | 11,669            | 9,625          | 7,325  | 112,312                         | 85,474                          |
| Summe     |          |            | 1214,252          |                |        | 6878,665                        | 9706,136                        |
|           |          |            |                   |                |        |                                 |                                 |
| [         | Massenm  | ittelnunkt | y <sub>m</sub> =  | 5,665          | m      |                                 |                                 |
|           | maaaciin | nioiponki  | x <sub>m</sub> =  | 7,994          | m      |                                 |                                 |
| -         |          |            |                   |                |        |                                 |                                 |

Tabelle 6.14: Ermittlung des Massenmittelpunktes M

#### Ermittlung des Massenmittelpunktes

Bei der Berechnung des Massenmittelpunktes wird nicht nur die Masse der Geschoßdecke, sondern auch die Massen der vertikalen Tragelemente (hier sämtliche Außen- und Innenwände) berücksichtigt. Die Wandquerschnittsflächen werden dabei mit 2,36 kN/m<sup>2</sup>, die Fläche der Geschoßdecke (Aufteilung gem. Abb. 6.6) mit 5,5 kN/m<sup>2</sup> und die Fläche der Balkonplatte mit 4,5 kN/m<sup>2</sup> gewichtet. Die Koordinaten des Massenmittelpunktes ergeben sich zu (Tab. 6.14):

• 
$$x_m = 7,994 \,\mathrm{m}$$

• 
$$y_m = 5,665 \,\mathrm{m}$$

# Berechnung der Ausmitten $e_{max}$ und $e_{min}$

## Erdbeben in x-Richtung

$$\begin{aligned} e_{0y} &= y_m - y_s = 5,665 - 6,010 = -0,345 \,\mathrm{m} \\ e_{1y} &= 0,1 \cdot (l+b) \cdot \left(10 \cdot (e_{0y}/l)\right)^{0,5} \leq 0,1 \cdot (l+b) \\ e_{1y} &= 0,1 \cdot (11,95 + 16,00) \cdot \left(10 \cdot (0,345/11,95)\right)^{0,5} = \\ &= -1,502 \,\mathrm{m} < 2,795 \,\mathrm{m} \\ e_{2y} &= 0,05 \cdot l = 0,05 \cdot 11,95 = -0,598 \,\mathrm{m} \\ e_{max,y} &= e_{0y} + e_{1y} + e_{2y} = -0,345 - 1,502 - 0,598 = -2,445 \,\mathrm{m} \\ e_{min,y} &= e_{0y} - e_{2y} = -0,345 + 0,598 = 0,253 \,\mathrm{m} \end{aligned}$$



Abbildung 6.6: Unterteilung der Regelgeschoßdecke und Bezeichnung der Wandquerschnitte für den Nachweis unter Schubbelastung

#### Erdbeben in y-Richtung

$$e_{0x} = x_m - x_s = 7,994 - 8,000 = -0,006 \text{ m}$$

$$e_{1x} = 0,1 \cdot (l+b) \cdot \left(10 \cdot (e_{0x}/l)\right)^{0.5} \le 0,1 \cdot (l+b)$$

$$e_{1x} = 0,1 \cdot (16,00 + 11,95) \cdot \left(10 \cdot (0,006/16,00)\right)^{0.5} =$$

$$= -0,171 \text{ m} < 2,795 \text{ m}$$

$$e_{2x} = 0,05 \cdot l = 0,05 \cdot 16,00 = -0,800 \text{ m}$$

$$e_{max,x} = e_{0x} + e_{1x} + e_{2x} = -0,006 - 0,171 - 0,800 = -0,977 \text{ m}$$

$$e_{min x} = e_{0x} - e_{2x} = -0,006 + 0,800 = 0,794 \text{ m}$$

#### Aufteilung der Gesamterdbebenkraft auf alle Wandquerschnitte in x- und y- Richtung

Mit den soeben berechneten Ausmitten  $e_{max}$  und  $e_{min}$  kann die Gesamterdbebenkraft mit Hilfe der in Abschnitt 7.5.2 angegebenen Gleichungen auf sämtliche Wandquerschnitte aufgeteilt werden (Tab. 6.15).

#### Aufteilung der Wandbeanspruchung über die Höhe

Da in Tab. 6.15 lediglich eine Aufteilung der Gesamterdbebenkraft auf die einzelnen Wandquerschnitte erfolgt, ist abschließend die Aufteilung der Wandbeanspruchung über die Höhe erforderlich. Exemplarisch wird dies für die Lastfallkombination 1 und eine Erdbebeneinwirkung in x-Richtung in Tab. 6.16 gezeigt.  $F_{h,i}$  ist die am Stockwerk *i* angreifende Horizontalkraft zufolge Erdbebeneinwirkung und  $V_{Ed,EG}$  stellt den Bemessungswert der Schubbeanspruchung des jeweiligen Wandquerschnitts im Erdgeschoß dar ( $V_{Ed,EG} = F_{h,3.OG} + F_{h,2.OG} + F_{h,1.OG} + F_{h,EG}$ ). Das in der Auflagerfuge zufolge der angreifenden Horizontalkräfte hervorgerufene Moment wird als  $M_{Ed,EG}$  bezeichnet.

# 6.3 Bemessung

Dieser Abschnitt umfasst die Nachweise für unbewehrte Mauerwerkswände unter vorwiegend vertikaler Belastung sowie unter Schubbelastung. Die hierfür erforderlichen Bemessungseinwirkungen können Abschnitt 6.2 entnommen werden.

## 6.3.1 Nachweis unbewehrter Mauerwerkswände unter vorwiegend vertikaler Belastung

Da die Darstellung sämtlicher Bemessungsergebnisse eines jeden Wandquerschnitts aufgrund der großen Datenmenge nicht möglich ist, wird hier der Nachweis des Außenwandquerschnitts WX1 für beide Lastfallkombinationen in Tab. 6.17 und Tab. 6.18 exemplarisch dargestellt<sup>4</sup>. Die einzelnen Spalten werden im Folgenden erklärt.

- /1/ ... Nachweisebene i; Die Nachweise sind am Wandkopf (K), in Wandmitte (M) und am Wandfuß (F) im jeweiligen Geschoß zu führen. Hier werden Wandkopf und Wandfuß nachgewiesen.
- /2/ ...  $N_{Ed,i}$  als Bemessungswert der einwirkenden vertikalen Last aus Tab. 6.8 bzw. Tab. 6.9

 $<sup>^4</sup>$ Die Bemessungsergebnisse aller übrigen Wandquerschnitte können der beigelegten CD entnommen werden.

/3/ ...  $M_{id}$  als Bemessungswert des Biegemomentes (Knotenmoment), resultierend aus der Exzentrizität der Deckenauflagerkraft am Kopf bzw. Fuß der Wand; siehe Tab. 6.10, Tab. 6.11 und Tab. 6.12

/4/ ... Ausmitte  $e_{M,i}$  (Vorzeichenkonvention gemäß Abb. 6.7):

$$e_{M,i} = \frac{M_{id}}{N_{Ed,i}} \tag{6.8}$$

- /5/ ... Wert für nachfolgende Abfrage in Spalte /7/
- /6/ ... Betrag des Werts aus Spalte /4/
- /7/ ... Abfrage, ob die Ausmitte aus Spalte /6/ größer oder kleiner als das 0,45-fache der Wanddicke ist.

/8/ ... kleinste erforderliche Auflagertiefe  $t_{a,i}$  gemäß [ÖNORM EN 1996-1-1] Anhang C:

$$t_{a,i} = \frac{N_{Ed,i} \cdot \gamma_m}{f_k} \tag{6.9}$$

- /9/ ... Abfrage, ob die Auflagertiefe aus Spalte /8/ kleiner oder größer als das 0,10fache der Wanddicke ist.
- /10/ ... Ausmitte  $e_{M2,i}$  (Vorzeichenkonvention gemäß Abb. 6.7):

$$e_{M2,i} = \frac{1}{2} \cdot (t - t_{a,i}) \tag{6.10}$$

- /11/ ... wenn  $e_{M2,i} = 0$ , dann entspricht  $e_{M1,i}$  dem Wert aus Spalte /4/
- /12/ ... Ausmitte  $e_{a,i}$  (Vorzeichenkonvention gemäß Abb. 6.7); Die ungewollte Ausmitte  $e_{a,i}$  ist über die ganze Höhe einer Wand anzunehmen, um Ungenauigkeiten bei der Ausführung zu berücksichtigen. Sie errechnet sich wie folgt:

$$e_{a,i} = \frac{h_{ef}}{450} = \frac{\rho_n \cdot h}{450} \tag{6.11}$$

Der Knicklängenfaktor  $\rho_n$  ist dem Bereich "Werte für die tabellarische Berechnung" zu entnehmen und wird gemäß [ÖNORM EN 1996-1-1] berechnet.

/13/ ... Ausmitte  $e_{d,i}$ ; Die Entwurfsausmitte  $e_{d,i}$  erlaubt die Berücksichtigung von manuellen Eingriffen, wie z. B. dem Einlegen von Randstreifen aus Polystyrol mit der Breite  $b_{d,i}$  am Auflagerrand zur Korrektur der Gesamtausmitte:

$$e_{d,i} = \pm \frac{b_{d,i}}{2}$$
 (6.12)

- /14/ ... Darstellung des maßgebenden Werts aus Spalte /10/ bzw. /11/
- /15/ ...  $e_i$  stellt die Lastexzentrizität am Kopf bzw. Fuß der Wand dar, und ergibt sich durch Aufsummierung der einzelnen Ausmitten zu:

$$e_i = e_{M2,i}$$
 bzw.  $e_{M1,i} + e_{a,i} + e_{d,i} \ge 0,05 \cdot t$  (6.13)

/16/ ...  $\phi_i$  als Abminderungsfaktor zur Berücksichtigung der Schlankheit und Lastausmitte; Berechnung wie folgt:

$$\phi_i = 1 - 2 \cdot \frac{e_i}{t} \tag{6.14}$$

/17/ ...  $N_{Rd,i}$  stellt den Bemessungswert des Tragwiderstandes einer vertikal belasteten einschaligen Wand dar, und beträgt je Längeneinheit:

$$N_{Rd,i} = \frac{\phi_i \cdot t \cdot f_k}{\gamma_m} \tag{6.15}$$

/18/ ... Nachweis; Im Grenzzustand der Tragfähigkeit muss der Bemessungswert der angreifenden Last  $N_{Ed,i}$  einer vertikal belasteten Wand kleiner oder gleich dem Bemessungswert des Tragwiderstandes  $N_{Rd,i}$  sein, d. h.:

$$N_{Ed,i} \le N_{Rd,i} \tag{6.16}$$

/18'/ ...  $N_{Ed,i}/N_{ud,i}$ ; Falls der Nachweis in Spalte /18/ nicht erfüllt wird, der Bemessungswert der einwirkenden Vertikallast jedoch kleiner als 25 % des Maximalwerts der vertikalen Traglast  $N_{ud,i}$  ist, kann der Nachweis im Grenzzustand der Tragfähigkeit dennoch als erbracht angesehen werden<sup>5</sup>:

$$N_{ud,i} = \frac{b \cdot f_k}{\gamma_m} \dots$$
 je Längeneinheit (6.17)

- /19/ ... Nachweisebene i; Die Nachweise sind am Wandkopf (K), in Wandmitte (M) und am Wandfuß (F) im jeweiligen Geschoß zu führen; hier wird die Wandmitte nachgewiesen.
- /20/ ...  $N_{Ed,i}$  als Bemessungswert der einwirkenden vertikalen Last aus Tab. 6.8 bzw. Tab. 6.9
- /21/ ...  $M_{md,i}$  als Bemessungswert des größten Momentes in halber Wandhöhe, resultierend aus den Momenten am Kopf und Fuß der Wand (siehe Tab. 6.10, Tab. 6.11 und Tab. 6.12), einschließlich der Biegemomente aus allen anderen ausmittig angreifenden Lasten (z. B. Wandschränke); Berechnung wie folgt:

 $<sup>^5 \</sup>mathrm{Die}$ der Spaltenerklärung folgende Anmerkung ist zu beachten.

$$M_{md,i} = M_{id,(K)} + \frac{1}{2} \cdot \left( M_{id,(F)} - M_{id,(K)} \right)$$
(6.18)

/22/ ... Ausmitte  $e_{M,i}$ :

$$e_{M,i} = \frac{M_{md,i}}{N_{Ed,i}} \tag{6.19}$$

- /23/ ... Berechnung analog Spalte /12/
- /24/ ...  $e_{m,i}$  stellt die Ausmitte infolge der Lasten dar; Berechnung wie folgt:

$$e_{m,i} = e_{M,i} + e_{hm,i} + e_{a,i} \tag{6.20}$$

Die Ausmitte in halber Wandhöhe infolge horizontaler Lasten  $e_{hm}$  (z. B. Wind) wird bei der Berechnung vernachlässigt.

/25/ ... 0,05-fache der Wanddicke /26/ ...  $e_{mk,i}$  stellt die Ausmitte der Last in halber Wandhöhe dar; Berechnung wie folgt:

$$e_{mk,i} = e_{m,i} + e_{k,i} \ge 0,05 \cdot t \tag{6.21}$$

Die Ausmitte infolge Kriechens  $e_k$  darf bei der Berechnung vernachlässigt werden, da sie bis zu einer effektiven Wandhöhe von 3,75 m bei 25 cm starken Wänden gemäß [ÖNORM EN 1996-1-1] gleich Null gesetzt wird.

/27/ ... Faktor  $A_{1,i}$ ; Zur Ermittlung des Abminderungsfaktors  $\phi_m$  errechnet sich der Faktor  $A_{1,i}$  gemäß Anhang G der [ÖNORM EN 1996-1-1] wie folgt:

$$A_{1,i} = 1 - 2 \cdot \frac{e_{mk,i}}{t} \tag{6.22}$$

/28/ ... Faktor  $u_i$ ; Zur Ermittlung des Abminderungsfaktors  $\phi_m$  errechnet sich der Faktor  $u_i$  gemäß Anhang G der [ÖNORM EN 1996-1-1] wie folgt:

$$u_i = \frac{\frac{h_{ef}}{t_{ef}} - 2}{23 - 37 \cdot \frac{e_{mk,i}}{t}}$$
(6.23)

Der Annahme von  $E = 1000 \cdot f_k$  liegt Gl. 6.23 zugrunde.

/29/ ...  $\phi_{m,i}$  als Abminderungsfaktor zur Berücksichtigung von Schlankheit und Ausmitte; Berechnung wie folgt:

$$\phi_{m,i} = A_{1,i} \cdot e^{-\frac{u_i^2}{2}} \tag{6.24}$$

mit e als dem natürlichen Logarithmus

/30/ ... Berechnung analog Spalte /17/

/31/ ... Berechnung analog Spalte /18/

Die in Spalte /18'/ angegebene Begrenzung ist nicht Bestandteil von [ÖNORM EN 1996-1-1]. Im Fall von kleinen Normalkräften und mittleren bis hohen Knotenmomenten (meist im Bereich der oberen Geschoße) führt aber eine strikte Einhaltung der Nachweise laut [ÖNORM EN 1996-1-1] zu keinen brauchbaren Ergebnissen. Die sich bei dieser Einwirkungskonstellation bildenden plastischen Gelenke mit großer Rotationsfähigkeit schließen jedoch ein Materialversagen aus. Dieser Effekt wurde in Versuchen an der ETH Zürich beobachtet und ausführlich analysiert. Es sei jedoch darauf hingewiesen, dass die dabei entstehenden Rissbreiten (insbesondere bei Risskonzentration) ein Gebrauchstauglichkeitsproblem sein können [Sch06].

## 6.3.2 Nachweis unbewehrter Mauerwerkswände unter Schubbelastung

Die Vorgehensweise der Nachweisführung wird in Tab. 6.20 für eine Erdbebeneinwirkung in x-Richtung mit der anzusetzenden Exzentrizität  $e_{max,y}$  dargestellt. Die einzelnen Spalten werden im Folgenden erklärt.

| /1/ | W            | Vandquerschnitt $i$                                                                                                                  |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------|
| /2/ | $\ldots t_i$ | als Dicke des Wandquerschnitts                                                                                                       |
| /3/ | $\ldots l_i$ | als Länge des Wandquerschnitts; entnommen aus Abb. 6.6                                                                               |
| /4/ | $\dots h_i$  | als Höhe des Wandquerschnitts                                                                                                        |
| /5/ | $\dots N$ La | $E_{Ed,i,F}$ als Bemessungswert der einwirkenden vertikalen Last je<br>ängeneinheit am Wandfuß; entnommen aus Tab. 6.8 bzw. Tab. 6.9 |
| /6/ | N            | $'_{Ed,i,F}$ als Bemessungswert der einwirkenden vertikalen Last:                                                                    |

$$N'_{Ed,i,F} = N_{Ed,i,F} \cdot l_i \dots \text{ in kN}$$
(6.25)

- /7/ ...  $V_{Ed,i}$  als Bemessungswert der Schubbeanspruchung des Wandquerschnitts i
- /8/  $\dots$   $M_{Ed,i,EG}$  als Moment in der Auflagerfuge des Ergeschoßes zufolge der angreifenden Horizontalkräfte (siehe Tab. 6.16)
- /9/ ...  $e_i$  als Exzentrizität; Berechnung wie folgt:

$$e_i = \frac{M_{Ed,i,EG}}{N'_{Ed,i,F}} \tag{6.26}$$

/10/ bis /12/ ... Ausmittigkeitsgrenzen; Ist 
$$e_i$$
 kleiner als  $l_i/6$ , liegt die Resultierende  $N'_{Ed,i,F}$  innerhalb des Kerns und es treten an keiner Stelle der Fuge Zugspannungen auf. Wird jedoch die Kernweite überschritten, klafft die Fuge zum Teil auf, da die Zugfestigkeit von Mauerwerk senkrecht zu den Lagerfugen gemäß [ÖNORM EN 1996-1-1] nicht in Rechnung gestellt werden darf.

- /13/ ...  $\sigma_d$  als Bemessungsdruckspannung rechtwinklig zur Schubkraft in der betrachteten Querschnittsebene des Bauteils unter der entsprechenden Lastkombination als Mittelwert der Vertikalspannungen im überdrückten Bereich, der den Schubwiderstand sicherstellt.
- /14/ ...  $l_{c,i}$  als Länge des überdrückten Teiles der Wand unter Vernachlässigung auf Zug beanspruchter Teile der Wand; Berechnung wie folgt:

$$l_{c,i} = l_i \text{ wenn } e_i < l_i/6 \tag{6.27}$$

$$l_{c,i} = (l_i/2 - e_i) \cdot 3 \text{ wenn } l_i/6 < e_i < l_i/3$$
(6.28)

$$l_{c,i} = (l_i/2 - e_i) \cdot 3 \text{ wenn } l_i/3 < e_i < l_i/2$$
(6.29)

$$l_{c,i} = 0 \text{ wenn } e_i > l_i/2 \tag{6.30}$$

/15/  $\dots$  0, 5· $f_{vk0}$  (für unvermörtelte Stoßfugen);  $f_{vk0}$  stellt die charakteristische Haftscherfestigkeit ohne Auflast dar.

$$/16/$$
 ...  $0, 4 \cdot /13/$ 

/17/  $\dots$   $f_{vd,i}$  als Bemessungswert der Schubfestigkeit von Mauerwerk unter Zugrundelegung des Mittelwertes der vertikalen Druckspannung im überdrückten Teil der schubbeanspruchten Wand unter Vernachlässigung der Zugfestigkeit des Mauerwerks; Berechnung für unvermörtelte Stoßfugen wie folgt:

$$f_{vd,i} = \frac{0, 5 \cdot f_{vk0} + 0, 4 \cdot \sigma_d}{\gamma_m} \le \frac{0, 045 \cdot f_b}{\gamma_m}$$
(6.31)

/18/ ...  $V_{Rd,i}$  als Bemessungswert der Schubtragfähigkeit wird errechnet aus:

$$V_{Rd,i} = f_{vd,i} \cdot t_i \cdot l_{c,i} \tag{6.32}$$

/19/ ... Nachweis; Im Grenzzustand der Tragfähigkeit muss der Bemessungswert der aufgebrachten Schubkraft  $V_{Ed,i}$  kleiner oder gleich dem Bemessungswert der Schubtragfähigkeit  $V_{Rd,i}$  sein:

$$V_{Ed,i} \le V_{Rd,i} \tag{6.33}$$

| LC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wandquer-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A <sub>iy</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>ix</sub>                                                                                             | yi'                                                                                                                                                                                                                  | x,'                                                                                         | A <sub>iy</sub> · y'                                                                                                                                   | $A_{ix} \cdot x_i$                                                                                                                                                                                            | A <sub>iy</sub> · y <sub>i</sub> ' <sup>2</sup>                                                                                     | $A_{ix}\cdot x_i{}^{\prime 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| schnitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in m                                                                                                         | in m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in m <sup>2</sup>                                                                                           | in m                                                                                                                                                                                                                 | in m                                                                                        | in m <sup>3</sup>                                                                                                                                      | in m <sup>3</sup>                                                                                                                                                                                             | in m <sup>4</sup>                                                                                                                   | in m <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 0,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -5,885                                                                                                                                                                                                               |                                                                                             | -1,309                                                                                                                                                 |                                                                                                                                                                                                               | 7,705                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 2,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -5,885                                                                                                                                                                                                               |                                                                                             | -3,398                                                                                                                                                 |                                                                                                                                                                                                               | 19,999                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 1,750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -5,885                                                                                                                                                                                                               |                                                                                             | -2,575                                                                                                                                                 |                                                                                                                                                                                                               | 15,151                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 2,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -5,885                                                                                                                                                                                                               |                                                                                             | -3,398                                                                                                                                                 |                                                                                                                                                                                                               | 19,999                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 0,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -5,885                                                                                                                                                                                                               |                                                                                             | -1,309                                                                                                                                                 |                                                                                                                                                                                                               | 7,705                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 1,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -0,235                                                                                                                                                                                                               |                                                                                             | -0,116                                                                                                                                                 |                                                                                                                                                                                                               | 0,027                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -0,235                                                                                                                                                                                                               |                                                                                             | -0,352                                                                                                                                                 |                                                                                                                                                                                                               | 0,083                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 1,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | -0,235                                                                                                                                                                                                               |                                                                                             | -0,116                                                                                                                                                 |                                                                                                                                                                                                               | 0,027                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 1,625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5,815                                                                                                                                                                                                                |                                                                                             | 2,362                                                                                                                                                  |                                                                                                                                                                                                               | 13,738                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 1,380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5,815                                                                                                                                                                                                                |                                                                                             | 2,006                                                                                                                                                  |                                                                                                                                                                                                               | 11,667                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 0,820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5,815                                                                                                                                                                                                                |                                                                                             | 1,192                                                                                                                                                  |                                                                                                                                                                                                               | 6,932                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 0,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 7,265                                                                                                                                                                                                                |                                                                                             | 0,727                                                                                                                                                  |                                                                                                                                                                                                               | 5,278                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 0,820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5,615                                                                                                                                                                                                                |                                                                                             | 1,192                                                                                                                                                  |                                                                                                                                                                                                               | 6,932                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 1 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5 815                                                                                                                                                                                                                |                                                                                             | 2,006                                                                                                                                                  |                                                                                                                                                                                                               | 11 667                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WX13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 5,815                                                                                                                                                                                                                |                                                                                             | 2,000                                                                                                                                                  |                                                                                                                                                                                                               | 13 738                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WY1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 11 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 925                                                                                                       | 0,010                                                                                                                                                                                                                | -7 875                                                                                      | 2,002                                                                                                                                                  | -23.03                                                                                                                                                                                                        | 4                                                                                                                                   | 181 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 6 050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 513                                                                                                       |                                                                                                                                                                                                                      | -1 450                                                                                      |                                                                                                                                                        | -2 19                                                                                                                                                                                                         | 3                                                                                                                                   | 3 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WY2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 0,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 113                                                                                                       |                                                                                                                                                                                                                      | -1 450                                                                                      |                                                                                                                                                        | -0.16                                                                                                                                                                                                         | 3                                                                                                                                   | 0,237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WY3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 5.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,413                                                                                                       | 3                                                                                                                                                                                                                    | 0.000                                                                                       |                                                                                                                                                        | 0.00                                                                                                                                                                                                          | 0                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WY4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.250                                                                                                        | 6.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.513                                                                                                       | 3                                                                                                                                                                                                                    | 1,450                                                                                       |                                                                                                                                                        | 2,19                                                                                                                                                                                                          | 3                                                                                                                                   | 3,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WY4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,250                                                                                                        | 0,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,113                                                                                                       | 3                                                                                                                                                                                                                    | 1,450                                                                                       |                                                                                                                                                        | 0,16                                                                                                                                                                                                          | 3                                                                                                                                   | 0,237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WY5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,250                                                                                                        | 11,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,925                                                                                                       | 5                                                                                                                                                                                                                    | 7,875                                                                                       |                                                                                                                                                        | 23,03                                                                                                                                                                                                         | 4                                                                                                                                   | 181,396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,513                                                                                                      | 3                                                                                                                                                                                                                    |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                               | 145,928                                                                                                                             | 369,625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                               | 515                                                                                                                                 | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Erdbeben in x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Richtung                                                                                                  |                                                                                                                                                                                                                      | I                                                                                           | Erdbeben in y -                                                                                                                                        | Richtung                                                                                                                                                                                                      |                                                                                                                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [                                                                                                            | $\Sigma \; A_{iy} \cdot y_i'^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Erdbeben in x<br>e <sub>max,y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Richtung                                                                                                  | e <sub>min,y</sub>                                                                                                                                                                                                   | 1                                                                                           | Erdbeben in y -<br>e <sub>max,x</sub>                                                                                                                  | Richtung                                                                                                                                                                                                      | e <sub>min,x</sub>                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ΣA <sub>iy</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΣΑ <sub>ix</sub>                                                                                             | $\begin{array}{l} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Richtung<br>F <sub>k</sub>                                                                                | e <sub>min,y</sub><br>F <sub>r</sub>                                                                                                                                                                                 | F <sub>k</sub>                                                                              | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub>                                                                                                | Richtung<br>Fr                                                                                                                                                                                                | e <sub>min,x</sub><br>F <sub>k</sub>                                                                                                | F <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Σ A <sub>iy</sub><br>in m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $ \begin{split} & \Sigma \; A_{iy} \cdot y_i^{\prime 2} + \\ & \Sigma \; A_{ix} \cdot x_i^{\prime 2} \\ & \text{ in } m^4 \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN                                                                                                                                                                        | l<br>F <sub>k</sub><br>in kN                                                                | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>F <sub>r</sub><br>in kN                                                                                                                                                                           | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F <sub>r</sub><br>in kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $ \begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 \; + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 515,553 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>54,357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987                                                                                                                                                              | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>Fr<br>-3,421                                                                                                                                                                                            | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F <sub>r</sub><br>in kN<br>2,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 \; + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>54,357<br>141,084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763                                                                                                                                                   | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>9 <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>Fr<br>-3,421<br>-8,880                                                                                                                                                                                  | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F <sub>r</sub><br>in kN<br>2,757<br>7,157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Erdbeben in x<br>e <sub>max.y</sub><br>F <sub>r</sub><br>in kN<br>54,357<br>141,084<br>106,882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763<br>88,457                                                                                                                                         | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>P <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727                                                                                                                                                                     | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F <sub>r</sub><br>in kN<br>2,757<br>7,157<br>5,422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ $                                                                                                           | Erdbeben in x<br>e <sub>max.y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fk                                                                                                          | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763<br>88,457<br>116,763                                                                                                                              | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>P <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880                                                                                                                                                           | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F <sub>r</sub><br>in kN<br>2,757<br>7,157<br>5,422<br>7,157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 51$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F <sub>k</sub>                                                                                              | e <sub>min,y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987                                                                                                                    | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-3,421                                                                                                                           | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 515,555 \\ 5$                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>244400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>Fr<br>144,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700                                                                                                                             | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,200                                                                                                                          | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Σ A <sub>hy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{yy} \cdot y'^2 + \\ \Sigma \; A_{1x} \cdot x'^2 \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,$                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>Fr<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700                                                                                                                  | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br><sup>9</sup> maxx<br>F <sub>k</sub><br>in kN                                                                                        | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>0,202                                                                                                        | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Σ A <sub>by</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{ij} \cdot y_i^{12} + \\ \Sigma \; A_{ix} \cdot x_i^{12} \\ \text{ in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,555 \\ 515,5$                                                                                                            | Erdbeben in x<br>e <sub>max.y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>88,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,225                                                                                     | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>-0,920<br>-0,303<br>-0,920                                                                         | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244<br>0,244<br>0,244<br>0,244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ $                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min,y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460                                                                           | F <sub>K</sub><br>in KN                                                                     | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242                                                                                     | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in KN<br>2,757<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>-4,975<br>4,225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Σ A <sub>hy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{ in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\$                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>88,457<br>101,700<br>308,962<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056                               | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>Pmax.x<br>F <sub>k</sub><br>in kN                                                                                                   | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115                                                                            | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in kN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>4,975<br>-4,225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Σ A <sub>ly</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{ijj} \cdot y_i^{1/2} + \\ \Sigma \; A_{ijk} \cdot x_i^{1/2} \\ \text{ in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 5$                                                                                                            | Erdbeben in x<br>e <sub>max,y</sub><br>Fr.<br>141,084<br>106,882<br>141,084<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>Fr<br>144,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21100                                                                | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>e <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898                                                                   | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F,<br>in KN<br>2.757<br>7.157<br>5.422<br>7.157<br>2.757<br>0.244<br>0.742<br>0.244<br>4.975<br>-4.225<br>-4.225<br>-2.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Σ Α <sub>1</sub> ,<br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΣA <sub>x</sub><br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot x^{i^2} \\ \text{in } m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 5$                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>F <sub>r</sub><br>116,763<br>88,457<br>116,763<br>88,457<br>116,763<br>14,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>43,056                               | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>Pmax.x<br>F <sub>k</sub><br>in kN                                                                                                   | Richtung<br>Fr<br>in KN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,115                                      | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Fr<br>in KN<br>2.757<br>7.157<br>5.422<br>7.157<br>0.244<br>0.742<br>0.244<br>-4.975<br>-4.225<br>-2.510<br>-1.530<br>-2.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} \Sigma \ A_{h \psi} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,63$ | Σ A <sub>IX</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot x_i^2 \\ in \; m^4 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,55$   | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>34,525<br>15,901<br>34,525<br>15,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Richtung<br>F <sub>k</sub><br>in kN                                                                       | e <sub>min.y</sub><br>Fr<br>in KN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>308,962<br>101,700<br>43,056<br>21,100<br>43,056<br>21,100                                 | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>9 <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>F,<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,115<br>1,898                                                          | e <sub>min.x</sub><br>F <sub>k</sub><br>in KN                                                                                       | Fr<br>in KN<br>7,157<br>5,422<br>7,157<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,745<br>0,244<br>0,245<br>0,244<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,255<br>0,245<br>0,255<br>0,245<br>0,245<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,2 |
| Σ A <sub>hy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΣA <sub>IX</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot xi^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,55$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr.<br>141,084<br>106,882<br>141,084<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>58,103<br>34,525<br>15,901<br>58,103<br>34,525<br>15,901<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>54,525<br>15,000<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103     | Richtung<br>Fk<br>in KN                                                                                     | e <sub>min.y</sub><br>Fr<br>144,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>43,056<br>21,100<br>72,460                                 | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>e <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>Fr<br>3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,115<br>1,898<br>5,242                                                  | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F,<br>in KN<br>2.757<br>7.157<br>5.422<br>7.157<br>2.757<br>0.244<br>0.742<br>0.244<br>4.975<br>-4.225<br>-2.510<br>-1.530<br>-2.510<br>-1.530<br>-2.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Σ A <sub>1</sub> ,<br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{by} \cdot y'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>15,810<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,901<br>15,810<br>15,810<br>15,810<br>15,901<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,810<br>15,8 | Richtung<br>F <sub>k</sub><br>in kN                                                                         | e <sub>min.y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>14,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>72,460<br>85,325                                   | F <sub>k</sub><br>in kN                                                                     | Erdbeben in y -<br>e <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | Richtung<br>F,<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,888<br>3,115<br>1,888<br>5,242<br>6,173 | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                       | F,<br>in KN<br>2,757<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>-4,975<br>-4,225<br>-2,510<br>-1,530<br>-2,510<br>-1,530<br>-4,225<br>-4,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} \Sigma \ A_{h \psi} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,63$ | Σ A <sub>IX</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot x_i^2 \\ in \; m^4 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.553 \\ 5 \; 15.55$   | $\begin{array}{c} \hline Erdbeben in x\\ e_{max,y}\\ \hline F_r\\ in kN\\ 54,357\\ 141,084\\ 106,882\\ 141,084\\ 54,357\\ 102,530\\ 311,482\\ 102,530\\ 311,482\\ 102,530\\ 311,482\\ 102,530\\ 34,525\\ 15,901\\ 34,525\\ 15,901\\ 34,525\\ 15,901\\ 58,103\\ 68,418\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Richtung<br>F k<br>in kN<br>-149,401                                                                      | e <sub>min.y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>72,460<br>85,325                                   | F <sub>k</sub><br>in kN<br>15,441                                                           | Erdbeben in y -<br>9max.x<br>Fk<br>in kN<br>440,877                                                                                                    | Richtung<br>F,<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,115<br>1,898<br>5,242<br>6,173                                        | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182                                                                            | Fr<br>in KN<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0,25<br>0                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} \Sigma \ A_{hy} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638$    | Σ A <sub>IX</sub><br>in m <sup>2</sup><br>10,513<br>10,513                                                   | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot xi^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,55$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>102,530<br>311,482<br>102,530<br>081,488<br>102,530<br>084,103<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>38,103<br>68,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Richtung<br>Fk<br>in kN<br>-149,401<br>-14,225                                                            | e <sub>min.y</sub><br>Fr<br>116.763<br>88.457<br>116.763<br>44.987<br>101.700<br>308.962<br>101.700<br>85.325<br>72.460<br>43.056<br>21,100<br>43.056<br>21,100<br>72.460<br>85.325                                  | <br>F <sub>k</sub><br>in kN<br>15,441<br>1,470                                              | Erdbeben in y -<br><sup>g</sup> max.x<br>F <sub>k</sub><br>in kN<br>440,877<br>202,582                                                                 | Richtung<br>Fr<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,030<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,215<br>1,898<br>5,242<br>6,173                                        | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233                                                                 | F,<br>in KN<br>2.757<br>7.157<br>5.422<br>7.157<br>2.757<br>0.244<br>0.742<br>0.244<br>4.975<br>-4.225<br>-2.510<br>-1.530<br>-1.530<br>-4.225<br>-4.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} \Sigma \ A_{hy} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638$    | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,513<br>10,513<br>10,513                                         | $\begin{array}{c} \Sigma \; A_{by} \cdot y^{i2} + \\ \Sigma \; A_{ix} \cdot x^{i2} \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 51$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>58,103<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>68,418<br>58,103<br>68,418<br>58,103<br>68,418<br>58,103<br>68,418<br>58,103<br>68,418<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58,103<br>58 | Richtung<br>F <sub>k</sub><br>in kN<br>-149,401<br>-14,225<br>-1,058                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>72,460<br>85,325 | F <sub>k</sub><br>in kN<br>15,441<br>1,470<br>0,109                                         | Erdbeben in y -<br><sup>9</sup> max.x<br>Fk<br>in kN<br>440,877<br>202,582<br>15,068                                                                   | Richtung<br>F,<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-6,727<br>-8,880<br>-0,303<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>5,242<br>6,173                             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233<br>14,298                                                       | F,<br>in KN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>-4,975<br>-4,225<br>-4,225<br>-2,510<br>-1,530<br>-2,510<br>-1,530<br>-4,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} \Sigma \ A_{hy} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638$    | Σ A <sub>IX</sub><br>in m <sup>2</sup><br>10,513<br>10,513<br>10,513<br>10,513                               | $\begin{array}{c} \Sigma \; A_{yy} \cdot y^{12} + \\ \Sigma \; A_{1x} \cdot x_{1}^{2} \\ \text{in } m^4 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5 \; 15,553 \\ 5$ | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>58,103<br>68,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Richtung<br>F <sub>k</sub><br>in kN<br>-149,401<br>-14,225<br>-1,058<br>0,000                             | e <sub>min.y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>72,460<br>85,325                                   | F <sub>k</sub><br>in kN<br>15,441<br>1,470<br>0,109<br>0,000                                | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN<br>440,877<br>202,582<br>15,068<br>183,837                                            | Richtung<br>F,<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>3,115<br>1,898<br>3,115<br>1,898<br>5,242<br>6,173                                                 | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233<br>14,298<br>183,837                                            | Fr<br>in KN<br>5,422<br>7,157<br>2,757<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,245<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-4,975<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} \Sigma \ A_{hy} \\ \text{in } m^2 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638 \\ 6,638$    | Σ A <sub>IX</sub><br>in m <sup>2</sup><br>10,513<br>10,513<br>10,513<br>10,513<br>10,513                     | $\begin{array}{c} \Sigma \; A_{iy} \cdot yi^2 + \\ \Sigma \; A_{ix} \cdot x_i^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,5$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>106,882<br>141,084<br>104,357<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>58,103<br>68,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Richtung<br>Fk<br>in kN<br>-149,401<br>-14,225<br>-1,058<br>0,000<br>14,225                               | e <sub>min.y</sub><br>Fr<br>116.763<br>88,457<br>116.763<br>44,987<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>43,056<br>21,100<br>72,460<br>85,325                                  | F <sub>k</sub><br>in kN<br>15,441<br>1,470<br>0,009<br>0,000<br>-1,470                      | Erdbeben in y -<br><sup>g</sup> max.x<br>F <sub>k</sub><br>in kN<br>440,877<br>202,582<br>15,068<br>183,837<br>191,121                                 | Richtung<br>Fr<br>-3,421<br>-8,880<br>-3,421<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>3,242<br>6,173                                                                              | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233<br>14,298<br>183,837<br>201,470                                 | Fr<br>in KN<br>2.757<br>7.157<br>5.4222<br>7.157<br>2.757<br>0.244<br>0.742<br>0.244<br>4.975<br>-4.225<br>-2.510<br>-1.530<br>-1.530<br>-4.225<br>-4.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Σ A <sub>1</sub> ,<br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,513<br>10,513<br>10,513<br>10,513<br>10,513<br>10,513           | $\begin{array}{l} \Sigma \; A_{iy} \cdot y^{i^2} + \\ \Sigma \; A_{ix} \cdot x^{i^2} \\ m \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 5$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>54,357<br>141,084<br>106,882<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>68,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>58,103<br>68,418<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,901<br>15,803<br>15,905<br>15,901<br>15,803<br>15,905<br>15,901<br>15,803<br>15,905<br>15,901<br>15,803<br>15,905<br>15,901<br>15,803<br>15,805<br>15,901<br>15,805<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,905<br>15,9 | Richtung<br>Fk<br>in kN<br>-149,401<br>-14,225<br>-1,058<br>0,000<br>14,225<br>-1,058                       | e <sub>min.y</sub><br>F <sub>r</sub><br>in KN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>308,962<br>101,700<br>85,325<br>72,460<br>43,056<br>21,100<br>72,460<br>85,325 | F <sub>k</sub><br>in kN<br>15,441<br>1,470<br>0,109<br>0,000<br>-1,470<br>-0,109            | Erdbeben in y -<br><sup>9</sup> max.x<br>Fk<br>in kN<br>440,877<br>202,582<br>15,068<br>183,837<br>191,121<br>14,216                                   | Richtung<br>F,<br>in kN<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-6,727<br>-8,880<br>-0,303<br>-0,303<br>-0,920<br>-0,303<br>6,173<br>5,242<br>3,115<br>1,898<br>5,242<br>6,173                             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233<br>14,298<br>183,837<br>201,470<br>14,985                       | F,<br>in KN<br>2,757<br>7,157<br>5,422<br>7,157<br>2,757<br>0,244<br>4,975<br>-4,225<br>-2,510<br>-1,530<br>-2,510<br>-1,530<br>-4,225<br>-4,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638<br>6,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Σ A <sub>lx</sub><br>in m <sup>2</sup><br>10,513<br>10,513<br>10,513<br>10,513<br>10,513<br>10,513<br>10,513 | $\begin{array}{c} \Sigma \; A_{yy} \cdot y'^2 + \\ \Sigma \; A_{ix} \cdot x_i^2 \\ in \; m^4 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,553 \\ 515,5$                                                                                                              | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>54,357<br>141,084<br>141,084<br>54,357<br>102,530<br>311,482<br>102,530<br>08,418<br>58,103<br>34,525<br>15,901<br>34,525<br>15,901<br>34,525<br>15,901<br>58,103<br>68,418<br>08,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Richtung<br>F <sub>k</sub><br>in kN<br>-149,401<br>-14,225<br>-1,058<br>0,000<br>14,225<br>1,058<br>149,401 | e <sub>min.y</sub><br>Fr<br>in kN<br>44,987<br>116,763<br>88,457<br>116,763<br>44,987<br>101,700<br>308,962<br>101,700<br>308,962<br>101,700<br>43,056<br>21,100<br>43,056<br>21,100<br>72,460<br>85,325             | F <sub>k</sub><br>in kN<br>15,441<br>1,470<br>0,109<br>0,000<br>-1,470<br>-0,109<br>-15,441 | Erdbeben in y -<br><sup>g</sup> max.x<br>F <sub>k</sub><br>in kN<br>440,877<br>202,582<br>15,068<br>183,837<br>191,121<br>14,216<br>320,500<br>199,020 | Richtung<br>F,<br>-3,421<br>-8,880<br>-6,727<br>-8,880<br>-3,421<br>-0,303<br>6,173<br>3,115<br>1,898<br>3,115<br>1,898<br>5,242<br>3,115<br>1,898<br>5,242<br>6,173                                          | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>332,182<br>192,233<br>14,298<br>183,837<br>201,470<br>14,985<br>429,195<br>429,955 | Fr<br>in KN<br>5,422<br>7,157<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,244<br>0,742<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,245<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,255<br>0,2 |

Tabelle 6.15: Aufteilung der Gesamterdbebenkraft auf die einzelnen Wandquerschnitte in x- und y-Richtung

| LC 1      | Erdbeben in x       | -Richtung; e <sub>ma</sub> | x,y                 |                   |                    |                    |
|-----------|---------------------|----------------------------|---------------------|-------------------|--------------------|--------------------|
| Wandquer- | F <sub>h,3.OG</sub> | F <sub>h,2.OG</sub>        | F <sub>h,1.OG</sub> | F <sub>h,EG</sub> | V <sub>Ed,EG</sub> | M <sub>Ed,EG</sub> |
| schnitt   | in kN               | in kN                      | in kN               | in kN             | in kN              | in kNm             |
| WX1       | 19,47               | 17,55                      | 11,63               | 5,70              | 54,36              | 467,74             |
| WX2       | 50,53               | 45,56                      | 30,18               | 14,81             | 141,08             | 1214,02            |
| WX3       | 38,28               | 34,52                      | 22,87               | 11,22             | 106,88             | 919,71             |
| WX4       | 50,53               | 45,56                      | 30,18               | 14,81             | 141,08             | 1214,02            |
| WX5       | 19,47               | 17,55                      | 11,63               | 5,70              | 54,36              | 467,74             |
| WX6       | 36,72               | 33,11                      | 21,94               | 10,76             | 102,53             | 882,26             |
| WX7       | 111,56              | 100,59                     | 66,64               | 32,69             | 311,48             | 2680,29            |
| WX8       | 36,72               | 33,11                      | 21,94               | 10,76             | 102,53             | 882,26             |
| WX9       | 24,51               | 22,09                      | 14,64               | 7,18              | 68,42              | 588,74             |
| WX10      | 20,81               | 18,76                      | 12,43               | 6,10              | 58,10              | 499,97             |
| WX11      | 12,37               | 11,15                      | 7,39                | 3,62              | 34,52              | 297,09             |
| WX11'     | 5,70                | 5,13                       | 3,40                | 1,67              | 15,90              | 136,83             |
| WX12      | 12,37               | 11,15                      | 7,39                | 3,62              | 34,52              | 297,09             |
| WX12'     | 5,70                | 5,13                       | 3,40                | 1,67              | 15,90              | 136,83             |
| WX13      | 20,81               | 18,76                      | 12,43               | 6,10              | 58,10              | 499,97             |
| WX14      | 24,51               | 22,09                      | 14,64               | 7,18              | 68,42              | 588,74             |
| WY1       | 53,51               | 48,25                      | 31,96               | 15,68             | 149,40             | 1285,59            |
| WY2       | 5,09                | 4,59                       | 3,04                | 1,49              | 14,22              | 122,40             |
| WY2'      | 0,38                | 0,34                       | 0,23                | 0,11              | 1,06               | 9,10               |
| WY3       | 0,00                | 0,00                       | 0,00                | 0,00              | 0,00               | 0,00               |
| WY4       | 5,09                | 4,59                       | 3,04                | 1,49              | 14,22              | 122,40             |
| WY4'      | 0,38                | 0,34                       | 0,23                | 0,11              | 1,06               | 9,10               |
| WY5       | 53,51               | 48,25                      | 31,96               | 15,68             | 149,40             | 1285,59            |

Tabelle 6.16: Aufteilung der Wandbeanspruchung über die Höhe



Abbildung 6.7: Vorzeichenkonvention für  $e_{M,i}$  (links) und für  $e_{a,i}$  (rechts) [Sch06]

| archweie unbewe    | ue Marter Mar     | ionwarkewignd,             | unter voru       | viocond vort | Italar Balact    | -juoy me bui                                                | haw Engr           | nukt domäß E                    | C 6 Toil 1-1                     |                   |                   |                  |                                          |         |              |                     |          |
|--------------------|-------------------|----------------------------|------------------|--------------|------------------|-------------------------------------------------------------|--------------------|---------------------------------|----------------------------------|-------------------|-------------------|------------------|------------------------------------------|---------|--------------|---------------------|----------|
|                    |                   |                            |                  |              |                  |                                                             |                    |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
| Nachweis           |                   | Geometrie d                | es Wandque       | erschnitts   | Werte 1          | ür die tabellari                                            | sche Berec         | bnung                           | Werte für o                      | die Bemessu       | bu                |                  |                                          |         |              |                     |          |
| Wandabsch. A4-C    | 54; WX1           | Länge:                     | 0,89             | E            | 5                | /andbreite: t=                                              | 0,25 n             | ,                               | f <sub>k</sub> =                 | 5,151             | V/mm <sup>2</sup> |                  |                                          |         |              |                     |          |
| LC 1               |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E            | Knickl.          | faktor: p <sub>3.06</sub> =                                 | 0,48524            |                                 | -γ <sub>M</sub> =                | 1,5               |                   |                  |                                          |         |              |                     |          |
| Variante 1         |                   | Höhe:                      | 2,75             | E            | Knickl.          | faktor: p <sub>2.06</sub> =                                 | 0,48524            | 1                               | Auflagerbreite: t <sub>s</sub> = | 0,25 1            | F                 |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  |              | Knickl.<br>Knick | faktor: p <sub>1.06</sub> =<br>tl.faktor: p <sub>FG</sub> = | 0,46972<br>0,46972 |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  | 4            |                  |                                                             |                    |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
| Nachweis-          | N <sub>Ed.i</sub> | Mid                        | e <sub>M.i</sub> | 0,45 · t     | e <sub>M,i</sub> | > 0,45 · t → 1                                              | t <sub>a,i</sub>   | $c 0, 10 \cdot t \rightarrow 1$ | e <sub>M2,i</sub>                | e <sub>M1,i</sub> | e <sub>a,i</sub>  | e <sub>d,i</sub> | e <sub>M2,i</sub> bzw. e <sub>M1,i</sub> | ē       | <del>.</del> | N <sub>Rd,i</sub> N | Jachweis |
| ebene i in         | n kN/m            | in kNm/m                   | in m             | in m         | , m n            | < 0,45 $\cdot$ t $\rightarrow$ 0                            | m ui               | $0,10 \cdot t \rightarrow 0$    | in m                             | in m              | in m              | m ni             | in m                                     | in m    | 191          | KN/m ر              | 101      |
| 3.0G (K)           | 17,69             | -2.53                      | -0,1430          | 0.1125       | 0,1430           | 1                                                           | 0,0052             | 1                               | 0.0974                           |                   | 0.0030            | 0.0250           | -0.0974                                  | -0.0754 | 0.40         | 340,66              | ð<br>Xo  |
| 3.0G (F)           | 25,28             | 3,41                       | 0,1349           | 0,1125       | 0,1349           | ~                                                           | 0,0074             | ~                               | 0,1063                           | '                 | 0,0030            | 0,0150           | 0,1063                                   | 0,0943  | 0,25         | 210,92              | ð        |
| 2.0G (K)           | 43,16             | -3,41                      | -0,0790          | 0,1125       | 0,0790           | 0                                                           | 0,0126             | -                               | 0,0000                           | -0,0790           | 0,0030            | 0,0150           | -0,0790                                  | -0,0970 | 0,22         | 192,45              | ð        |
| 2.0G (F)           | 50,75             | 3,41                       | 0,0672           | 0,1125       | 0,0672           | 0                                                           | 0,0148             | -                               | 0,0000                           | 0,0672            | 0,0030            | 0,0000           | 0,0672                                   | 0,0702  | 0,44         | 376,59              | Ş        |
| 1.0G (K)           | 68,64             | -3,41                      | -0,0497          | 0,1125       | 0,0497           | 0                                                           | 0,0200             | -                               | 0,0000                           | -0,0497           | 0,0029            | 0,0000           | -0,0497                                  | -0,0525 | 0,58         | 497,49              | Ş        |
| 1.0G (F)           | 76,23             | 3,41                       | 0,0447           | 0,1125       | 0,0447           | 0                                                           | 0,0222             | -                               | 0,0000                           | 0,0447            | 0,0029            | 0,0000           | 0,0447                                   | 0,0476  | 0,62         | 531,46              | Ś        |
| EG (K)             | 94,11             | -3,41                      | -0,0362          | 0,1125       | 0,0362           | 00                                                          | 0,0274             | 00                              | 0,0000                           | -0,0362           | 0,0029            | 0,0000           | -0,0362                                  | -0,0391 | 0,69         | 589,81<br>701 EE    | ξŞ       |
| сч (r)             | 101,10            | 2,03                       | 0,0200           | 0,1120       | 0,0200           | 0                                                           | 0,0290             | D                               | nnnn                             | 0,0200            | 0,0028            | 0,000            | 0,0200                                   | 0,0220  | 0,0Z         | 00,107              | 5        |
| lachweis unbewe    | shrter Mau        | uerwerkswände              | e unter vorw     | viegend vert | ikaler Belasti   | ung in Wandn                                                | nitte gemäf        | SEC 6 Teil 1-1                  |                                  |                   |                   |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  |              |                  |                                                             |                    |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
| Nachweis           |                   | Geometrie d                | es Wandque       | erschnitts   | Werte f          | ür die tabellari                                            | sche Berec         | hnung                           | Werte für o                      | die Bemessu       | bu                |                  |                                          |         |              |                     |          |
| Wandabsch. A4-C    | 54; WX1           | Länge:                     | 0,89             | E            | M                | /andbreite: t=                                              | 0,25 n             |                                 | f <sub>k</sub> =                 | 5,151             | V/mm²             |                  |                                          |         |              |                     |          |
| LC 1               |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E            | Knickl.          | faktor: p <sub>3.06</sub> =                                 | 0,48524            |                                 | Y <sub>M</sub> =                 | 1,5               |                   |                  |                                          |         |              |                     |          |
| Variante 1         |                   | Höhe:                      | 2,75             | E            | Knickl.          | faktor: p <sub>2.06</sub> =                                 | 0,48524            |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  |              | Knickl.          | faktor: p <sub>1.06</sub> =                                 | 0,46972            |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  |              | Knick            | tl.faktor: ρ <sub>EG</sub> =                                | 0,46972            |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
|                    |                   |                            |                  |              |                  |                                                             |                    |                                 |                                  |                   |                   |                  |                                          |         |              |                     |          |
| Nachweis-          | N <sub>Ed.i</sub> | M <sub>md,i</sub>          | e <sub>M.i</sub> | $e_{a,i}$    | e <sub>m,i</sub> | 0,05 · t                                                    | e <sub>mk,i</sub>  | $A_{1,i}$                       | 'n                               | $\Phi_{m,i}$      | N <sub>Rd,i</sub> | Nachweis         |                                          |         |              |                     |          |
| ebene i in<br>/19/ | n kN/m<br>/20/    | in kNm/m<br>/21/           | in m<br>/22/     | in m<br>/23/ | in m<br>/24/     | /25/                                                        | in m<br>/26/       | 1271                            | /28/                             | /29/              | in kN/m<br>/30/   | /31/             |                                          |         |              |                     |          |
| 3.0G (M)           | 21,49             | 0,44                       | 0,0205           | 0,0030       | 0,0234           | 0,0125                                                      | 0,0234             | 0,8125                          | 0,1709                           | 0,80              | 687,27            | y                |                                          |         |              |                     |          |
| 2.0G (M)           | 46,96             | 0,0                        | 0,0000           | 0,0030       | 0,0030           | 0,0125                                                      | 0,0125             | 0,9000                          | 0,1578                           | 0,89              | 762,94            | ξŞ               |                                          |         |              |                     |          |
| EG (M)             | 97,91             | 0,00                       | -0,0070          | 0,0029       | 0,0099           | 0,0125                                                      | 0,0125             | 0006'0                          | 0,1497                           | 0,89              | 763,89            | 5ð               |                                          |         |              |                     |          |

Tabelle 6.17: Nachweisblatt für unbewehrte Mauerwerkswände unter vorwiegend vertikaler Belastung (Nachweis des Wandquerschnitts WX1 infolge LC1)

| lachweis unb | awahrter Ma       | nerwerkswänd               | le unter vor     | wiedend ver | ≁ikaler Belas    | stund am Kon                   | f- hzw. Fuf       | nunkt demäß                      | t EC 6 Teil 1-1   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|--------------|-------------------|----------------------------|------------------|-------------|------------------|--------------------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|--------------------|------------------------------------------|-------------|--------------|---------------------|------------------------|--------------------------|
|              |                   |                            |                  |             |                  |                                |                   |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
| Nachwe       | eis               | Geometrie de               | es Wandque       | rschnitts   | Werte            | für die tabellar               | ische Berec       | gunuk                            | Werte f           | ür die Bemess     | bun               |                    |                                          |             |              |                     |                        |                          |
| Nandabsch. A | 4-C4; WX1         | Länge:                     | 0,89             | æ           | 5                | Vandbreite: t=                 | 0,25 r            | ц                                | f <sub>k</sub> =  | 5,151             | V/mm²             |                    |                                          |             |              |                     |                        |                          |
| LC 2         |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E           | Knickl.          | .faktor: p <sub>3.06</sub> =   | 0,4852            |                                  | -M <sup>M</sup> = | 1,5               |                   |                    |                                          |             |              |                     |                        |                          |
| Variante 1   |                   | Höhe:                      | 2,75             | ш           | Knickl.          | .faktor: p <sub>2.06</sub> =   | 0,4852            |                                  | Auflagerbreite:   | 0,25 r            | п                 |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             | Knickl.          | .faktor: p <sub>1.0G</sub> =   | 0,4697            |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             | NIIC             | KI.IAKIOF. PEG=                | 0,4097            |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             |                  |                                |                   |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
| Nachweis-    | N <sub>Ed,i</sub> | M <sub>id</sub>            | e <sub>M,i</sub> | 0,45 · t    | e <sub>M,i</sub> | $> 0,45 \cdot t \rightarrow 1$ | t <sub>a,i</sub>  | < 0,10 $\cdot$ t $\rightarrow$ 1 | e <sub>M2,i</sub> | e <sub>M1,i</sub> | e <sub>a,i</sub>  | $\mathbf{e}_{d,i}$ | e <sub>M2,i</sub> bzw. e <sub>M1,i</sub> | ē           | <del>0</del> | N <sub>rd,i</sub> N | achweis N <sub>f</sub> | ≣d,i / N <sub>ud,i</sub> |
| ebene i      | in kN/m           | in kNm/m                   | in m             | in m<br>/5/ | in m             | $< 0,45 \cdot t \rightarrow 0$ | in m              | $> 0,10 \cdot t \rightarrow 0$   | in m              | in m<br>74        | in m              | in m<br>/13/       | in m<br>/11/                             | in m<br>/5/ | ir<br>/16/   | /7 kN/m             | 118/                   | /18'/                    |
| 3.0G (K)     | 18.79             | -2.72                      | -0.1448          | 0.1125      | 0.1448           | 1                              | 0.0055            | 19                               | 0.1223            | -                 | 0.0030            | 0.0000             | -0.1223                                  | -0.1252     | 0.00         | -1.57 N             | OT OK                  | 0.02                     |
| 3.0G (F)     | 26,38             | 3,86                       | 0,1463           | 0,1125      | 0,1463           |                                | 0,0077            | -                                | 0,1212            | '                 | 0,0030            | 0,0000             | 0,1212                                   | 0,1241      | 0,01         | 6,02 N              | OT OK                  | 0,03                     |
| 2.0G (K)     | 46,62             | -3,86                      | -0,0828          | 0,1125      | 0,0828           | 0                              | 0,0136            | -                                | 0,0000            | -0,0828           | 0,0030            | 0,0000             | -0,0828                                  | -0,0858     | 0,31         | 269,38              | QK                     | 0,05                     |
| 2.0G (F)     | 54,21             | 3,86                       | 0,0712           | 0,1125      | 0,0712           | 0                              | 0,0158            | -                                | 0,0000            | 0,0712            | 0,0030            | 0,0000             | 0,0712                                   | 0,0742      | 0,41         | 348,99              | УÓ                     | 0,06                     |
| 1.0G (K)     | 74,44             | -3,86                      | -0,0519          | 0,1125      | 0,0519           | 0                              | 0,0217            | -                                | 0,0000            | -0,0519           | 0,0029            | 0,0000             | -0,0519                                  | -0,0547     | 0,56         | 482,57              | УÓ                     | 0,09                     |
| 1.0G (F)     | 82,03             | 3,86                       | 0,0471           | 0,1125      | 0,0471           | 0                              | 0,0239            | -                                | 0,0000            | 0,0471            | 0,0029            | 0,0000             | 0,0471                                   | 0,0499      | 0,60         | 515,51              | У                      | 0,10                     |
| EG (K)       | 102,27            | -3,86                      | -0,0377          | 0,1125      | 0,0377           | 0                              | 0,0298            | 0                                | 0,0000            | -0,0377           | 0,0029            | 0,0000             | -0,0377                                  | -0,0406     | 0,68         | 579,45              | оĶ                     | 0,12                     |
| EG (F)       | 109,86            | 2,31                       | 0,0210           | 0,1125      | 0,0210           | 0                              | 0,0320            | 0                                | 0,0000            | 0,0210            | 0,0029            | 0,0000             | 0,0210                                   | 0,0239      | 0,81         | 694,24              | QK                     | 0,13                     |
|              |                   |                            |                  |             |                  |                                |                   |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
| lachweis unb | ewehrter Ma       | uerwerkswäno               | le unter vor-    | wiegend vel | rtikaler Belas   | stung in Wand                  | Imitte gem        | äß EC 6 Teil 1                   | -1                |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             |                  |                                |                   |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
| Nachwe       | eis               | Geometrie de               | es Wandque       | rschnitts   | Werte            | für die tabellar               | ische Berec       | shnung                           | Werte f           | ür die Bemess     | bun               |                    |                                          |             |              |                     |                        |                          |
| Nandabsch. A | 4-C4; WX1         | Länge:                     | 0,89             | E           | X                | Vandbreite: t=                 | 0,25 r            | u                                | f <sub>k</sub> =  | 5,151             | V/mm²             |                    |                                          |             |              |                     |                        |                          |
| LC 2         |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E           | Knickl.          | .faktor: ρ <sub>3.0G</sub> =   | 0,4852            |                                  | −M                | 1,5               |                   |                    |                                          |             |              |                     |                        |                          |
| Variante 1   |                   | Höhe:                      | 2,75             | E           | Knickl.          | .faktor: ρ <sub>2.0G</sub> =   | 0,4852            |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             | Knickl.          | .faktor: p <sub>1.06</sub> =   | 0,4697            |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  |             | Knich            | kl.faktor: p <sub>EG</sub> =   | 0,4697            |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
|              |                   |                            |                  | I           |                  |                                |                   |                                  |                   |                   |                   |                    |                                          |             |              |                     |                        |                          |
| Nachweis-    | N <sub>Ed,i</sub> | M <sub>md,i</sub>          | e <sub>M,i</sub> | $e_{a,i}$   | e <sub>m,i</sub> | 0,05 · t                       | e <sub>mk,i</sub> | $A_{1,i}$                        | 'n                | Φ <sub>mi</sub>   | N <sub>Rd,i</sub> | Nachweis           |                                          |             |              |                     |                        |                          |
| ebene i      | in kN/m           | in kNm/m                   | in m             | in m        | in m             | DEI                            | in m              | 1201                             | 1901              | 1001              | in kN/m<br>/30/   | 1241               |                                          |             |              |                     |                        |                          |
| 13/          | 1021              | 1 7                        | 1221             | 1021        | 124/             | 1070 0                         | 1071              | 1171                             | 1071              | 1231              | 100/              | 110/               |                                          |             |              |                     |                        |                          |
| 3.0G (M)     | ZZ,59             | 0,57                       | 0,0000           | 0,0030      | 0,0282           | 0,0125                         | 0,0282            | 0,7744                           | 0,1773            | 0,76              | 654,33<br>762 94  | Śč                 |                                          |             |              |                     |                        |                          |
| 1 0G (M)     | 78.24             | 0.00                       | 0,0000           | 0.0029      | 0.0029           | 0.0125                         | 0.0125            | 0.9000                           | 0.1497            | 0.89              | 763.89            | έð                 |                                          |             |              |                     |                        |                          |
| EG (M)       | 106,07            | -0,78                      | -0,0073          | 0,0029      | 0,0102           | 0,0125                         | 0,0125            | 0,9000                           | 0,1497            | 0,89              | 763,89            | ð                  |                                          |             |              |                     |                        |                          |

Tabelle 6.18: Nachweisblatt für unbewehrte Mauerwerkswände unter vorwiegend vertikaler Belastung (Nachweis des Wandquerschnitts WX1 infolge LC2)

| Nachweis ur | nbewehrter N | lauerwerksv | vände unte  | r Schubbel   | astung gemi          | äß EC 6 Te         | șil 1-1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                         |                    |                |       |                      |                        |                   |                   |            |
|-------------|--------------|-------------|-------------|--------------|----------------------|--------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|--------------------|----------------|-------|----------------------|------------------------|-------------------|-------------------|------------|
| Lastfall    | combination: | LC 1        | Richtung de | er Erdbeben  | einwirkung:          | ×                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gescho             | ßanzahl:                | 4                  |                |       |                      |                        |                   |                   |            |
|             | Geschoß:     | ß           | anzı        | usetzende Ex | xzentrizität:        | e <sub>max,y</sub> | Beme                 | ssungsbodenb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peschleuni         | jung a <sub>g</sub> = ( | ),99 m/s²          |                |       |                      |                        |                   |                   |            |
|             |              |             |             |              |                      |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Υ <sup>m</sup> =        | 1,5                |                |       |                      |                        |                   |                   |            |
|             | Competito    | doo Mondau  | o mochaitte | Ğ            | 00000100000          |                    |                      | الا بالمالية المالية مالية المالية مالية مالية مالية المالية | A remain           |                         | 0010               |                |       | Doctor               |                        |                   |                   | olochiucio |
|             | Geometrie    | ues wanudu  | erschnius   | ň            | emessungser          | inwirkunge         | _                    | EXZENITZILAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Austri             | uigkeitsgre             | uzeu               |                |       | peanspru             | Cribal Kelt            |                   |                   | vacriwers  |
| Wandquer-   | £            |             | Ē           | NEd.i.F      | N' <sub>Edil,F</sub> | V <sub>Ed,i</sub>  | M <sub>Ed,i,EG</sub> | ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l <sub>i</sub> / 6 | l <sub>i</sub> /3       | l <sub>i</sub> / 2 | $\sigma_{d,i}$ | lc.i  | $0.5 \cdot f_{Vk0}$  | 0,4 · σ <sub>d,i</sub> | f <sub>vd,i</sub> | V <sub>Rd,i</sub> |            |
| schnitt     | in m         | in m        | in m        | in kN/m      | in kN                | in kN              | in kNm               | in m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in m               | п                       | n<br>B             | in kN/m²       | in m  | in kN/m <sup>2</sup> | in kN/m²               | in kN/m²          | in kN             |            |
| /1/         | 121          | /3/         | /4/         | /5/          | /9/                  | 121                | /8/                  | /6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /10/               | /11/                    | /12/               | /13/           | /14/  | /15/                 | /16/                   | 117/              | /18/              | /19/       |
| WX1         | 0,25         | 0,890       | 2,75        | 101,70       | 90,51                | 54,36              | 467,74               | 5,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,15               | 0,30                    | 0,45               | 00'0           | 00'0  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX2         | 0,25         | 2,310       | 2,75        | 178,34       | 411,97               | 141,08             | 1214,02              | 2,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,39               | 0,77                    | 1,16               | 0,00           | 00'0  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX3         | 0,25         | 1,750       | 2,75        | 226,29       | 396,00               | 106,88             | 919,71               | 2,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,29               | 0,58                    | 0,88               | 0,00           | 0,00  | 150                  | 0,00                   | 100,00            | 0,00              | NOT OK     |
| WX4         | 0,25         | 2,310       | 2,75        | 178,34       | 411,97               | 141,08             | 1214,02              | 2,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,39               | 0,77                    | 1,16               | 0,00           | 0,00  | 150                  | 0,00                   | 100,00            | 0,00              | NOT OK     |
| WX5         | 0,25         | 0,890       | 2,75        | 101,70       | 90,51                | 54,36              | 467,74               | 5,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,15               | 0,30                    | 0,45               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX6         | 0,25         | 1,975       | 2,75        | 196,78       | 388,65               | 102,53             | 882,26               | 2,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,33               | 0,66                    | 0,99               | 0,00           | 00'0  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| VX7         | 0,25         | 6,000       | 2,75        | 166,43       | 998,56               | 311,48             | 2680,29              | 2,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00               | 2,00                    | 3,00               | 4215,46        | 0,95  | 150                  | 1686,18                | 1224,12           | 289,97            | NOT OK     |
| WX8         | 0,25         | 1,975       | 2,75        | 196,78       | 388,65               | 102,53             | 882,26               | 2,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,33               | 0,66                    | 0,99               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| 6XW         | 0,25         | 1,625       | 2,75        | 92,09        | 149,64               | 68,42              | 588,74               | 3,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,27               | 0,54                    | 0,81               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX10        | 0,25         | 1,380       | 2,75        | 127,22       | 175,56               | 58,10              | 499,97               | 2,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,23               | 0,46                    | 0,69               | 00'0           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX11        | 0,25         | 0,820       | 2,75        | 108,75       | 89,17                | 34,52              | 297,09               | 3,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,14               | 0,27                    | 0,41               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX11'       | 0,25         | 0,400       | 2,75        | 123,96       | 49,58                | 15,90              | 136,83               | 2,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,07               | 0,13                    | 0,20               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX12        | 0,25         | 0,820       | 2,75        | 108,75       | 89,17                | 34,52              | 297,09               | 3,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,14               | 0,27                    | 0,41               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX12'       | 0,25         | 0,400       | 2,75        | 123,96       | 49,58                | 15,90              | 136,83               | 2,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,07               | 0,13                    | 0,20               | 00'0           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX13        | 0,25         | 1,380       | 2,75        | 127,22       | 175,56               | 58,10              | 499,97               | 2,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,23               | 0,46                    | 0,69               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WX14        | 0,25         | 1,625       | 2,75        | 92,09        | 149,64               | 68,42              | 588,74               | 3,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,27               | 0,54                    | 0,81               | 0,00           | 0,00  | 150                  | 00'0                   | 100,00            | 0,00              | NOT OK     |
| WY1         | 0,25         | 11,700      | 2,75        | 77,09        | 902,00               | 149,40             | 1285,59              | 1,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,95               | 3,90                    | 5,85               | 308,38         | 11,70 | 150                  | 123,35                 | 182,23            | 533,03            | ð          |
| WY2         | 0,25         | 6,050       | 2,75        | 109,15       | 660,34               | 14,22              | 122,40               | 0,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,01               | 2,02                    | 3,03               | 436,59         | 6,05  | 150                  | 174,64                 | 216,42            | 327,34            | ş          |
| WY2'        | 0,25         | 0,450       | 2,75        | 166,62       | 74,98                | 1,06               | 9,10                 | 0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,08               | 0,15                    | 0,23               | 965,21         | 0,31  | 150                  | 386,09                 | 357,39            | 27,76             | ş          |
| WY3         | 0,25         | 5,650       | 2,75        | 112,26       | 634,25               | 00'0               | 00'00                | 00'00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,94               | 1,88                    | 2,83               | 449,03         | 5,65  | 150                  | 179,61                 | 219,74            | 310,38            | ş          |
| WY4         | 0,25         | 6,050       | 2,75        | 109,65       | 663,40               | 14,22              | 122,40               | 0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,01               | 2,02                    | 3,03               | 438,61         | 6,05  | 150                  | 175,44                 | 216,96            | 328,16            | ð          |
| WY4'        | 0,25         | 0,450       | 2,75        | 166,62       | 74,98                | 1,06               | 9,10                 | 0,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,08               | 0,15                    | 0,23               | 965,21         | 0,31  | 150                  | 386,09                 | 357,39            | 27,76             | ð          |
| WY5         | 0,25         | 11,700      | 2,75        | 77,09        | 902,00               | 149,40             | 1285,59              | 1,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,95               | 3,90                    | 5,85               | 308,38         | 11,70 | 150                  | 123,35                 | 182,23            | 533,03            | Ş          |

Tabelle 6.20: Nachweisblatt für unbewehrte Mauerwerkswände unter Schubbelastung (Nachweis sämtl. Wandquerschnitte für eine Erdbebeneinwirkung in x-Richtung (LC1;  $e_{max,y}$ )

## 6.3.3 Schubnachweis mit Verfüllziegelmauerwerk

Da in der Erdbeben-Bemessungssituation ( $a_g = 0,99 \text{ m/s}^2$ ; 4 Stockwerke) fast alle Wandquerschnitte in *x*-Richtung eine zu geringe Schubtragfähigkeit aufweisen, kann der Nachweis gegen Schubversagen gemäß [ÖNORM EN 1996-1-1] nicht erbracht werden. Um für das vorliegende Gebäude dennoch die erforderlichen Nachweise erbringen zu können, bestehen u. a. folgende Möglichkeiten:

- Anordnung von aussteifenden Stahlbetonwänden bzw. Betonkernen
- Erhöhung der Mauerziegeldicke (z. B. POROTHERM 30 Plan)
- Reduktion der Geschoßanzahl
- Ausführung ausgewählter Wände mit Verfüllziegeln (z. B. POROTHERM 25-50 SBZ Plan)

Im Folgenden wird auf die Vorgehensweise der Nachweisführung bei Verwendung des Verfüllziegels POROTHERM 25-50 SBZ Plan näher eingegangen.

#### Allgemeines

Bisher wurden alle Wandquerschnitte in x- und y-Richtung zur Abtragung von Horizontalkräften herangezogen. In [Bac94] ist jedoch eine Faustregel angegeben, bei der nur all jene Wandquerschnitte berücksichtigt werden, die länger sind als die Hälfte des längsten Wandquerschnittes in der betrachteten Richtung ( $l_i > l_{max}/2$ ). Dabei muss sichergestellt werden, dass die übrigen, kurzen Wandquerschnitte die Schubverformungen mitmachen können, ohne dass ihr Normalkrafttragwiderstand dadurch vermindert wird. Diese Voraussetzung ist i. A. erfüllt. Für den vorliegenden Wohnbau bedeutet diese Faustregel, dass in x-Richtung nur der Wandquerschnitte kürzer als 3 m sind. Um die in x-Richtung auftretende Gesamterdbebenkraft von ca. 1500 kN abtragen zu können, ist eine Verstärkung des Wandquerschnitts WX7 erforderlich. In y-Richtung werden hingegen nur die Wandquerschnitte WY2' und WY4' nicht zur Abtragung von Horizontalkräften berücksichtigt (siehe Abb. 6.8 und Abb. 6.9).

## Materialkennwerte

Die wesentlichsten Materialkennwerte des Verfüllziegels, entnommen aus den Herstellerunterlagen, sind folgende:

| Mauerziegel: | POROTHERM 25-50 SBZ Plan (Abb. 6.10)                             |
|--------------|------------------------------------------------------------------|
|              | Abmessungen $B/L/H: 250/500/249$ in mm                           |
|              | Stückgewicht: ca. 21,2 kg                                        |
|              | Ziegelbedarf: $8  \text{Stk/m}^2$                                |
|              | empfohlene Mörtelart: Dünnbettmörtel                             |
|              | Mörtelbedarf: ca. $115  \text{l/m}^2$                            |
|              | Festigkeitsklasse: $\bar{f}_b = 12, 5 \mathrm{N/mm^2}$           |
|              | Form-Korrekturfaktor: $\delta = 1, 15$                           |
|              | Normierte Steindruckfestigkeit: $f_b = 14, 4 \mathrm{N/mm^2}$    |
|              | Mauersteingruppe: 1 (gilt für mit Beton verfüllten SBZ)          |
|              | Steinkategorie: I                                                |
|              | charakteristische Anfangsscherfestigkeit: $0,30 \mathrm{N/mm^2}$ |
|              |                                                                  |



Abbildung 6.8: Darstellung der berücksichtigten Wandquerschnitte in x-Richtung



Abbildung 6.9: Darstellung der berücksichtigten Wandquerschnitte in y-Richtung



Abbildung 6.10: POROTHERM 25-50 SBZ Plan

## Bauwerksmasse und Gesamterdbebenkraft zufolge LC2

Stockwerkslast des 3.OG:

 $V_{3,OG} = 1785, 68 + 2, 21 \cdot 8, 25 = 1803, 91 \text{ kN}$ 

Stockwerkslast des  $2. \text{ OG}^6$ :

 $V_{2.OG} = 2256,08 + 2,21 \cdot 16,50 = 2292,55 \text{ kN}$ 

Die Masse des gesamten Bauwerks ergibt sich zufolge der Lastkombination 2 zu:

$$m_{LC2} = 1803, 91 + 2292, 55 \cdot 3 + \frac{71,88}{2} \cdot 2, 91 + \frac{125,85}{2} \cdot 2, 76 + 2, 21 \cdot 8, 25 = 8978, 05 \text{ kN} \cong 897, 81 \text{ t}$$

Die in den beiden horizontalen Richtungen anzusetzende Gesamterdbebenkraft ergibt sich zu:

$$F_b = S_d(T_1) \cdot m_{LC2} \cdot \lambda = 1,98 \cdot 897,81 \cdot 0,85 = 1511 \text{ kN}$$

#### Ermittlung des Steifigkeitsmittelpunktes

Die höhere Schubsteifigkeit des Wandquerschnittes WX7 gegenüber allen anderen Wandquerschnitten muss für die Berechnung des Steifigkeitsmittelpunktes berücksichtigt werden. Für die weitere Berechnung wird angenommen, dass die Tragwirkung des Wandquerschnitts WX7 über den Betonkern erfolgt ( $t_{\text{eff}} = 17 \text{ cm}$ ) und die Ziegelschale lediglich der Formgebung dient. Die diesem Berechnungs- bzw. Bemessungsvorschlag zugrunde gelegten Annahmen beruhen auf dem derzeitigen Kenntnisstand und sind weder durch Experimente noch durch daraus abgeleitete Materialmodelle gestützt. Mit Hilfe der Schubmoduln von Beton und Mauerwerk

$$G_B = \frac{E_B}{2 \cdot (1 + \nu_B)} = \frac{31000}{2 \cdot (1 + 0, 2)} = 12916 \,\mathrm{N/mm^2}$$
  

$$G_M = 0, 4 \cdot E_M = 0, 4 \cdot 5150 = 2060 \,\mathrm{N/mm^2}$$

 $\operatorname{mit}$ 

| $G_B$   | <br>Schubmodul des Betons            |
|---------|--------------------------------------|
| $E_B$   | <br>Elastizitätsmodul des Betons     |
| $\nu_B$ | <br>Querdehnzahl des Betons          |
| $G_M$   | <br>Schubmodul des Mauerwerks        |
| $E_M$   | <br>Elastizitätsmodul des Mauerwerks |

 $<sup>^6\</sup>mathrm{Die}$  Stockwerkslast des 1. OG und des EG ist gleich der Stockwerkslast des 2. OG

kann der Faktor  $\lambda$ , mit welchem die Schubfläche des Wandquerschnittes WX7 zu multiplizieren ist, wie folgt ermittelt werden:

$$\lambda = \frac{G_B}{G_M} = \frac{12916}{2060} = 6,27$$

Die Koordinaten des Steifigkeitsmittelpunktes ergeben sich somit zu:

- $x_s = 8,000 \,\mathrm{m}$
- $y_s = 5,775 \,\mathrm{m}$

#### Ermittlung des Massenmittelpunktes

Da bei der Berechnung des Massenmittelpunktes auch die Massen der vertikalen Tragelemente berücksichtigt werden, ist im Gegensatz zu allen übrigen Wandquerschnitten die Fläche des Wandquerschnitts WX7 mit 1,94 zu gewichten. Die Koordinaten des Massenmittelpunktes ergeben sich zu:

- $x_m = 7,994 \,\mathrm{m}$
- $y_m = 5,665 \,\mathrm{m}$

#### Ermittlung der Exzentrizitäten zur näherungsweisen Torsionsberücksichtigung

Mit den Koordinaten des Steifigkeits- und Massenmittelpunktes ergeben sich für die anzusetzenden Exzentrizitäten  $e_{max}$  und  $e_{min}$ , wie in Abschnitt 3.1.3 beschrieben, die folgenden Werte:

#### Erdbeben in *x*-Richtung

$$\begin{aligned} e_{0y} &= y_m - y_s = 5,665 - 5,775 = -0,110 \,\mathrm{m} \\ e_{1y} &= 0,1 \cdot (l+b) \cdot \left(10 \cdot (e_{0y}/l)\right)^{0,5} \leq 0,1 \cdot (l+b) \\ e_{1y} &= 0,1 \cdot (11,95 + 16,00) \cdot \left(10 \cdot (0,11/11,95)\right)^{0,5} = \\ &= -0,848 \,\mathrm{m} < 2,795 \,\mathrm{m} \\ e_{2y} &= 0,05 \cdot l = 0,05 \cdot 11,95 = -0,598 \,\mathrm{m} \\ e_{max,y} &= e_{0y} + e_{1y} + e_{2y} = -0,110 - 0,848 - 0,598 = -1,556 \,\mathrm{m} \\ e_{min,y} &= e_{0y} - e_{2y} = -0,110 + 0,598 = 0,488 \,\mathrm{m} \end{aligned}$$

#### Erdbeben in y-Richtung

$$\begin{array}{rcl} e_{0x} &=& x_m - x_s = 7,994 - 8,000 = -0,006 \,\mathrm{m} \\ e_{1x} &=& 0,1 \cdot (l+b) \cdot \left(10 \cdot (e_{0x}/l)\right)^{0,5} \leq 0,1 \cdot (l+b) \\ e_{1x} &=& 0,1 \cdot (16,00+11,95) \cdot \left(10 \cdot (0,006/16,00)\right)^{0,5} = \\ &=& -0,171 \,\mathrm{m} < 2,795 \,\mathrm{m} \\ e_{2x} &=& 0,05 \cdot l = 0,05 \cdot 16,00 = -0,800 \,\mathrm{m} \\ e_{max,x} &=& e_{0x} + e_{1x} + e_{2x} = -0,006 - 0,171 - 0,800 = -0,977 \,\mathrm{m} \\ e_{min,x} &=& e_{0x} - e_{2x} = -0,006 + 0,800 = 0,794 \,\mathrm{m} \end{array}$$

Mit den soeben ermittelten Exzentrizitäten kann die Gesamterdbebenkraft auf die einzelnen Wandquerschnitte unter Mitberücksichtigung der Torsionswirkung, wie in Tab. 6.23 dargestellt,

| LC 2                                                                                                                                                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wandquer-                                                                                                                                                                                               | t                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A <sub>iy</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A <sub>ix</sub>                                                                                              | yi'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x'                                                                              | A <sub>iy</sub> · y'                                                                                                                      | A <sub>ix</sub> · x'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A <sub>iy</sub> · y' <sup>2</sup>                                                                                                  | A <sub>ix</sub> · x <sup>'2</sup>                                                                                                                           |
| schnitt                                                                                                                                                                                                 | in m                                                                                                         | in m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in m <sup>2</sup>                                                                                            | in m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in m                                                                            | in m <sup>3</sup>                                                                                                                         | in m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in m <sup>4</sup>                                                                                                                  | in m <sup>4</sup>                                                                                                                                           |
| WX1                                                                                                                                                                                                     | 0,000                                                                                                        | 0,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | -5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX2                                                                                                                                                                                                     | 0,000                                                                                                        | 2,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | -5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX3                                                                                                                                                                                                     | 0,000                                                                                                        | 1,750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | -5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX4                                                                                                                                                                                                     | 0,000                                                                                                        | 2,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | -5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX5                                                                                                                                                                                                     | 0,000                                                                                                        | 0,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | -5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| VVX6                                                                                                                                                                                                    | 0,000                                                                                                        | 1,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
|                                                                                                                                                                                                         | 0,170                                                                                                        | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WXO                                                                                                                                                                                                     | 0,000                                                                                                        | 1,975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX10                                                                                                                                                                                                    | 0,000                                                                                                        | 1,025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 6,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX10                                                                                                                                                                                                    | 0,000                                                                                                        | 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 6,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX11'                                                                                                                                                                                                   | 0,000                                                                                                        | 0,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 7 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX12                                                                                                                                                                                                    | 0,000                                                                                                        | 0,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 6,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              |                                                                                                                                                             |
| WX12'                                                                                                                                                                                                   | 0.000                                                                                                        | 0,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 7.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0,000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                              |                                                                                                                                                             |
| WX13                                                                                                                                                                                                    | 0.000                                                                                                        | 1.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 6.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0.000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                              |                                                                                                                                                             |
| WX14                                                                                                                                                                                                    | 0.000                                                                                                        | 1.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              | 6.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 0.000                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                              |                                                                                                                                                             |
| WY1                                                                                                                                                                                                     | 0,250                                                                                                        | 11,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,925                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7,875                                                                          | - ,                                                                                                                                       | -23,034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                  | 181,396                                                                                                                                                     |
| WY2                                                                                                                                                                                                     | 0,250                                                                                                        | 6,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,513                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,450                                                                          |                                                                                                                                           | -2,193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                  | 3,180                                                                                                                                                       |
| WY2'                                                                                                                                                                                                    | 0,000                                                                                                        | 0,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,000                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,450                                                                          |                                                                                                                                           | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                  | 0,000                                                                                                                                                       |
| WY3                                                                                                                                                                                                     | 0,250                                                                                                        | 5,650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,413                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,000                                                                           |                                                                                                                                           | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                  | 0,000                                                                                                                                                       |
| WY4                                                                                                                                                                                                     | 0,250                                                                                                        | 6,050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,513                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,450                                                                           |                                                                                                                                           | 2,193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                  | 3,180                                                                                                                                                       |
| WY4'                                                                                                                                                                                                    | 0,000                                                                                                        | 0,450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,000                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,450                                                                           |                                                                                                                                           | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                  | 0,000                                                                                                                                                       |
| WY5                                                                                                                                                                                                     | 0,250                                                                                                        | 11,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,925                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,875                                                                           |                                                                                                                                           | 23,034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                  | 181,396                                                                                                                                                     |
| Summe                                                                                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,288                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,000                                                                                                                              | 369,151                                                                                                                                                     |
|                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 369.                                                                                                                               | .151                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                             |
|                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Erdbeben in x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Richtung                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E                                                                               | Erdbeben in y-                                                                                                                            | Richtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    |                                                                                                                                                             |
|                                                                                                                                                                                                         |                                                                                                              | $\Sigma A_{iy} \cdot y_i^{\prime 2} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Erdbeben in x<br>e <sub>max,y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Richtung                                                                                                   | e <sub>min,y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ē                                                                               | Erdbeben in y -<br>9 <sub>max,x</sub>                                                                                                     | - Richtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e <sub>min,x</sub>                                                                                                                 |                                                                                                                                                             |
| ΣA <sub>iy</sub>                                                                                                                                                                                        | ΣA <sub>ix</sub>                                                                                             | $\frac{\Sigma \; A_{iy} \cdot y_i'^2 +}{\Sigma \; A_{ix} \cdot x_i'^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Richtung<br>F <sub>k</sub>                                                                                 | e <sub>min,y</sub><br>F <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F <sub>k</sub>                                                                  | Erdbeben in y -<br>P <sub>max,x</sub><br>F <sub>k</sub>                                                                                   | - Richtung<br>F <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e <sub>min,x</sub><br>F <sub>k</sub>                                                                                               | Fr                                                                                                                                                          |
| ΣA <sub>iy</sub><br>in m <sup>2</sup>                                                                                                                                                                   | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $ \begin{split} & \Sigma \; A_{iy} \cdot y_i'^2 + \\ & \Sigma \; A_{ix} \cdot x_j'^2 \\ & \text{ in } m^4 \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F <sub>r</sub><br>in kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN                                                                                                                                     |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395                                                                                                                                                         | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $ \begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2  + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{ in } m^4 \\ 369,151 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E<br>F <sub>k</sub><br>in kN                                                    | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F <sub>r</sub><br>in kN<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000                                                                                                                            |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395                                                                                                                                                | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 \; + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 369,151 \\ 369,151 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br>P <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                          | F <sub>r</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000                                                                                                                   |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395                                                                                                                                       | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000                                                                                                          |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395                                                                                                                              | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br>e <sub>max,x</sub><br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                 |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                                                                                     | ΣA <sub>bx</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ in \; m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 36$          | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br><sub>9max,x</sub><br>F <sub>k</sub><br>in kN                                                                           | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                    |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                                                                            | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_1'^2 + \\ \Sigma \; A_{ix} \cdot x_i'^2 \\ \text{in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <sub>k</sub>                                                                  | Erdbeben in y -<br><sup>g</sup> <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                               | Richtung<br>Fr<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                           |
| Σ A <sub>iy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                                                          | $\Sigma A_{tx}$ in $m^2$                                                                                     | $\begin{array}{c} \Sigma \; A_{yy} \cdot y'^2 + \\ \Sigma \; A_{yx} \cdot x'^2 \\ \text{ in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369$       | Erdbeben in x<br>e <sub>max.y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br>9 <sub>max.x</sub><br>F <sub>k</sub><br>in kN                                                                          | Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e <sub>min,x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                      |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                                                           | $\Sigma A_x$<br>in m <sup>2</sup>                                                                            | $\begin{array}{c} \Sigma \ A_{yy} \cdot y_{1}^{y_{2}} + \\ \Sigma \ A_{xx} \cdot x_{1}^{y_{2}} \\ \text{in } m^{4} \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 150 \\ 369, 150 \\ 369, 150 \\ 369, 150 \\ 369, 150 \\ 369, 150 \\ 369, 1$                             | Erdbeben in x<br>e <sub>maxy</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E<br>F <sub>k</sub><br>in kN                                                    | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                          | Richtung<br>F,<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                      |
| Σ A <sub>yy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                                        | $\Sigma A_{ix}$<br>in m <sup>2</sup>                                                                         | $\begin{array}{c} \Sigma \ A_{yy} \cdot y_{1}^{\prime 2} + \\ \Sigma \ A_{tx} \cdot x_{1}^{\prime 2} \\ \text{in } m^{4} \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\$                  | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>1511,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E<br>F <sub>k</sub><br>in kN                                                    | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F,<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                |
| Σ A <sub>hy</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                               | $\Sigma A_x$<br>in m <sup>2</sup>                                                                            | $\begin{array}{c} \Sigma \ A_{yy} \cdot y_{1}^{\prime 2} + \\ \Sigma \ A_{yx} \cdot x_{1}^{\prime 2} \\ \text{ in } m^{4} \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151$ | Erdbeben in x<br>e <sub>max.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0 | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                          | Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000   | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                       |
| Σ A <sub>by</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                                      | ΣA <sub>tx</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_1^{12} + \\ \Sigma \; A_{yx} \cdot x_1^{12} \\ in \; m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 $                             | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000           | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F <sub>k</sub><br>Fk<br>in kN                                                   | Erdbeben in y -                                                                                                                           | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in KN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                       |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                              | $\Sigma A_{ix}$ in m <sup>2</sup>                                                                            | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i^{12} + \\ \Sigma \; A_{ix} \cdot x_i^{12} \\ \text{in } m^4 \\ \hline 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, $                     | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0 | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -                                                                                                                           | Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000   | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                              |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i^{12} + \\ \Sigma \; A_{ix} \cdot x_i^{12} \\ in \; m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 $                             | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in KN                                                                                      | F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                |
| Σ Α <sub>ψ</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395 | $\Sigma A_{ix}$<br>in $m^2$                                                                                  | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_1^{12} + \\ \Sigma \; A_{yx} \cdot x_1^{12} \\ in \; m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 $                             | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00 | F <sub>k</sub><br>in kN                                                         | Erdbeben in y -                                                                                                                           | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in KN                                                                                      | F <sub>r</sub><br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                         |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395          | ΣA <sub>ix</sub><br>in m <sup>2</sup>                                                                        | $\begin{array}{c} \Sigma  A_{yy} \cdot y'^2 + \\ \Sigma  A_{xx} \cdot x_t'^2 \\ \text{in } m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 36$                             | Erdbeben in x<br>e <sub>max,y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0 | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>mn.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F <sub>κ</sub>                                                                  | Erdbeben in y -<br><sup>9</sup> max.x<br>F <sub>k</sub><br>in kN                                                                          | - Richtung<br>F,<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                            |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ix</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i^{\prime 2} + \\ \Sigma \; A_{ix} \cdot x_i^{\prime 2} \\ in \; m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 15$                   | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN                                                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fk<br>in KN<br>45.922                                                           | Erdbeben in y -<br>Bmax.x<br>F <sub>k</sub><br>in kN                                                                                      | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN                                                                                      | Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000 |
| Σ Α <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ls</sub><br>in m <sup>2</sup>                                                                       | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_1'^2 + \\ \Sigma \; A_{xx} \cdot x_1'^2 \\ \text{in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ 360,151 \\ $       | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0         | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564                                                            | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000   | 45,982                                                                          | Erdbeben in y -<br>Brack -<br>Fk in kN<br>522,448<br>230,900                                                                              | - Richtung<br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00 | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,020                                                                | F <sub>r</sub><br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000       |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,288<br>10,288<br>10,288                                         | $\begin{array}{c} \Sigma  A_{yy} \cdot y'^2 + \\ \Sigma  A_{ix} \cdot x_i^2 \\ in  m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, $                                  | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45,982                                                                          | Erdbeben in y -<br><sup>3</sup> max.x<br>F <sub>k</sub><br>in kN<br>522,448<br>230,990<br>0,000                                           | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000                                                       | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                   |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,288<br>10,288<br>10,288<br>10,288                               | $\begin{array}{c} \Sigma \; A_{iy} \cdot y_i^{\prime 2} + \\ \Sigma \; A_{ix} \cdot x_i^{\prime 2} \\ in \; m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 15$                   | Erdbeben in x           e <sub>max,y</sub> Fr           in kN           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000                                        | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00 | F <sub>k</sub><br>in kN<br>45,982<br>4,378<br>0,000                             | Erdbeben in y -<br><sup>5</sup> max.x<br>F <sub>k</sub><br>in kN<br>522,448<br>230,990<br>0,000<br>207.464                                | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000<br>207,464                                            | Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000          |
| Σ Α <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ls</sub><br>in m <sup>2</sup><br>10.288<br>10.288<br>10.288<br>10.288<br>10.288<br>10.288           | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_1'^2 + \\ \Sigma \; A_{xx} \cdot x_1'^2 \\ \text{in } m^4 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ 360, 151 \\ $                         | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000<br>0,000<br>13,954                     | e <sub>mn.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45,982<br>4,378<br>0,000<br>4,378                                               | Erdbeben in y<br><sup>3</sup> max.x<br>F <sub>k</sub><br>in kN<br>522,448<br>230,990<br>0,000<br>207,464<br>213,313                       | - Richtung<br>F,<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000<br>207,644<br>229,275                                 | F <sub>r</sub><br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                   | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,288<br>10,288<br>10,288<br>10,288<br>10,288<br>10,288<br>10,288 | $\begin{array}{c} \Sigma \; A_{yy} \cdot y_{1}^{y} + \\ \Sigma \; A_{1x} \cdot x_{1}^{y} \\ in \; m^{4} \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, $                             | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000<br>0,000<br>13,954<br>0,000            | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F <sub>k</sub><br>in kN<br>45,982<br>4,378<br>0,000<br>0,000<br>-4,378<br>0,000 | Erdbeben in y -<br><sup>3</sup> max.x<br>F <sub>k</sub><br>in kN<br>522,448<br>230,990<br>0,000<br>207,464<br>213,313<br>0,000            | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000<br>207,464<br>229,275<br>0,000                        | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                            |
| Σ A <sub>w</sub><br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                     | Σ A <sub>ix</sub><br>in m <sup>2</sup><br>10,288<br>10,288<br>10,288<br>10,288<br>10,288<br>10,288<br>10,288 | $\begin{array}{c} \Sigma \ A_{yy} \cdot y_{1}^{*2} + \\ \Sigma \ A_{xy} \cdot x_{1}^{*2} \\ in \ m^{4} \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369, 151 \\ 369$                                | Erdbeben in x           e <sub>max,y</sub> Fr           in kN           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000           0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000<br>13,954<br>0,000<br>146,564          | e <sub>min.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00 | 45,982<br>4,378<br>0,000<br>-4,378<br>0,000<br>-4,378                           | Erdbeben in y -<br><sup>3</sup> max.x<br>F <sub>k</sub><br>in kN<br>522,448<br>230,990<br>0,000<br>207,464<br>213,313<br>0,000<br>336,784 | - Richtung<br>Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000             | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000<br>207,464<br>229,275<br>0,000<br>504,430             | Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000          |
| Σ Α <sub>i</sub> ,<br>in m <sup>2</sup><br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395<br>6,395                                   | Σ A <sub>ls</sub><br>in m <sup>2</sup><br>10.288<br>10.288<br>10.288<br>10.288<br>10.288<br>10.288<br>10.288 | $\begin{array}{c} \Sigma \; A_{yy} \cdot y'^2 + \\ \Sigma \; A_{xx} \cdot x_t'^2 \\ \text{in } m^4 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 369,151 \\ 36$       | Erdbeben in x<br>e <sub>max,y</sub><br>Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,0000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,00           | - Richtung<br>F <sub>k</sub><br>in kN<br>-146,564<br>-13,954<br>0,000<br>0,000<br>13,954<br>0,000<br>146,564 | e <sub>mn.y</sub><br>F <sub>r</sub><br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>1511,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45,982<br>45,982<br>4,378<br>0,000<br>-4,378<br>0,000<br>-4,378                 | Erdbeben in y<br><sup>3</sup> max.x<br>Fk<br>in kN<br>522,448<br>230,990<br>0,000<br>207,464<br>213,313<br>0,000<br>336,784<br>1511,000   | - Richtung<br>Fr<br>in KN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e <sub>min.x</sub><br>F <sub>k</sub><br>in kN<br>354,802<br>215,029<br>0,000<br>207,464<br>229,275<br>0,000<br>504,430<br>1511,000 | Fr<br>in kN<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000                                     |

Tabelle 6.23: Aufteilung der Gesamterdbebenkraft auf die einzelnen Wandquerschnitte in x-und y-Richtung

aufgeteilt werden. Um den Nachweis gegen Schubversagen gemäß [ÖNORM EN 1996-1-1] führen zu können, hat anschließend noch eine Aufteilung des auf den Wandquerschnitt *i* einwirkenden Anteils der Gesamterdbebenkraft auf die einzelnen Geschoßebenen zu erfolgen. Da die Darstellung sämtlicher Nachweisblätter aufgrund der großen Datenmenge nicht möglich ist, wird hier nur das Nachweisblatt für Wandquerschnitte im Erdgeschoß<sup>7</sup>, die durch eine Erdbebeneinwirkung in *x*-Richtung mit der anzusetzenden Exzentrizität  $e_{max,y}$  beansprucht werden, angeführt (siehe Tab. 6.24). Bis auf den Wandquerschnitt WX7, der mit Hilfe eines Fachwerkmodells im Folgenden bemessen und nachgewiesen wird, können sämtliche Nachweise erbracht werden.

## Entwicklung eines Fachwerkmodells zur Bemessung der "SBZ-Wand" WX7

Um die durch Erdbebeneinwirkung hervorgerufenen, horizontalen Ersatzlasten (siehe Abb. 6.11) bis in die Gründung abtragen zu können, muss für den Wandquerschnitt WX7 ein geeignetes Fachwerkmodell entwickelt werden. Bei der Wahl des Fachwerkmodelles ist darauf

<sup>&</sup>lt;sup>7</sup>Alle übrigen Nachweisblätter können der beigelegten CD entnommen werden.

| Nachweis unb | ewehrter Mau | erwerkswänc | le unter Schu | ibbelastung ge | emäß EC 6 Teil |                    |          |               |              |                        |          |                      |       |                        |                        |          |                   |          |
|--------------|--------------|-------------|---------------|----------------|----------------|--------------------|----------|---------------|--------------|------------------------|----------|----------------------|-------|------------------------|------------------------|----------|-------------------|----------|
| Lastfall     | kombination: | LC 2        | Richtur       | ng der Erdbebe | sneinwirkung:  | ×                  |          |               | Geschol      | sanzahl:               | 4        |                      |       |                        |                        |          |                   |          |
|              | Geschoß:     | EG          |               | anzusetzende   | Exzentrizität: | e <sub>max,y</sub> | Berr     | Iessungsboder | nbeschleunig | ung a <sub>g</sub> = 0 | ,99 m/s² |                      |       |                        |                        |          |                   |          |
|              |              |             |               |                |                |                    |          |               |              | Υ <sup>m</sup> =       | 1,5      |                      |       |                        |                        |          |                   |          |
|              | Geometrie    | des Wandque | rschnitts     |                | Bemessungsei   | nwirkungen         |          | Exzentrizität | Ausmitti     | gkeitsgren             | zen      |                      |       | Beanspruct             | barkeit                |          |                   | Nachweis |
| Wandquer-    | ţ            | 1           | ŗ             | NEdiliF        | NEdu,F         | V <sub>Ed,i</sub>  | MEdilEG  | ē             | 9/1          | 1/3                    | I,/2     | $\sigma_{d,i}$       | Ic,i  | 0,5 · f <sub>vk0</sub> | 0,4 · σ <sub>d,i</sub> | fvdi     | V <sub>Rd,i</sub> |          |
| schnitt      | n<br>T       | 'n          | n<br>n        | in kN/m        | in kN          | in kN              | in kNm   | n<br>T        | n n          | 'n                     | 'n       | in kN/m <sup>2</sup> | in m  | in kN/m <sup>2</sup>   | in kN/m <sup>2</sup>   | in kN/m² | in kN             |          |
| /1/          | 12/          | /3/         | /4/           | /5/            | /6/            | 171                | /8/      | /6/           | /10/         | /11/                   | /12/     | /13/                 | /14/  | /15/                   | /16/                   | /17/     | /18/              | /19/     |
| WX1          | 0,25         | 0,890       | 2,75          | 109,86         | 97,77          | 00'0               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX2          | 0,25         | 2,310       | 2,75          | 199,21         | 460,17         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX3          | 0,25         | 1,750       | 2,75          | 259,33         | 453,83         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX4          | 0,25         | 2,310       | 2,75          | 199,21         | 460,17         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX5          | 0,25         | 0,890       | 2,75          | 109,86         | 97,77          | 0,00               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX6          | 0,25         | 1,975       | 2,75          | 216,06         | 426,73         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX7          | 0,17         | 6,000       | 2,75          | 206,47         | 1238,85        | 1511,00            | 12912,81 | 10,42         | 1,00         | 2,00                   | 3,00     | 00'0                 | 0,00  | 150                    | 0,00                   | 100,00   | 0,00              | NOT OK   |
| WX8          | 0,25         | 1,975       | 2,75          | 216,06         | 426,73         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX9          | 0,25         | 1,625       | 2,75          | 99,14          | 161,11         | 00'0               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX10         | 0,25         | 1,380       | 2,75          | 138,38         | 190,96         | 0,00               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX11         | 0,25         | 0,820       | 2,75          | 117,77         | 96,57          | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX11'        | 0,25         | 0,400       | 2,75          | 132,72         | 53,09          | 0,00               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX12         | 0,25         | 0,820       | 2,75          | 117,77         | 96,57          | 0,00               | 0,00     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX12'        | 0,25         | 0,400       | 2,75          | 132,72         | 53,09          | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX13         | 0,25         | 1,380       | 2,75          | 138,38         | 190,96         | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WX14         | 0,25         | 1,625       | 2,75          | 99,14          | 161,11         | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WY1          | 0,25         | 11,70       | 2,75          | 81,96          | 958,95         | 146,56             | 1252,52  | 1,31          | 1,95         | 3,90                   | 5,85     | 327,85               | 11,70 | 150                    | 131,14                 | 187,43   | 548,22            | ş        |
| WY2          | 0,25         | 6,050       | 2,75          | 117,83         | 712,90         | 13,95              | 119,25   | 0,17          | 1,01         | 2,02                   | 3,03     | 471,34               | 6,05  | 150                    | 188,53                 | 225,69   | 341,36            | ş        |
| WY2'         | 0,25         | 0,450       | 2,75          | 182,37         | 82,07          | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WY3          | 0,25         | 5,650       | 2,75          | 121,65         | 687,31         | 0,00               | 00'0     | 00'0          | 0,94         | 1,88                   | 2,83     | 486,59               | 5,65  | 150                    | 194,64                 | 229,76   | 324,53            | ş        |
| WY4          | 0,25         | 6,050       | 2,75          | 118,33         | 715,89         | 13,95              | 119,25   | 0,17          | 1,01         | 2,02                   | 3,03     | 473,32               | 6,05  | 150                    | 189,33                 | 226,22   | 342,15            | ð        |
| WY4'         | 0,25         | 0,450       | 2,75          | 182,37         | 82,07          | 0,00               | 00'0     |               |              |                        |          |                      |       |                        |                        |          |                   |          |
| WY5          | 0,25         | 11,700      | 2,75          | 81,96          | 958,95         | 146,56             | 1252,52  | 1,31          | 1,95         | 3,90                   | 5,85     | 327,85               | 11,70 | 150                    | 131,14                 | 187,43   | 548,22            | У        |

Tabelle 6.24: Nachweisblatt für unbewehrte Mauerwerkswände unter Schubbelastung (Nachweis sämtl. Wandquerschnitte für eine Erdbebeneinwirkung in x-Richtung (LC2;  $e_{max,y}$ )



Abbildung 6.11: Beanspruchungen der SBZ-Wand

zu achten, dass sich Zug- und Druckstäbe nicht unter einem sehr spitzen Winkel schneiden. Winkel unter  $30^{\circ}$  führen zu Inkompatibilitäten in der Verformung und sind deshalb zu vermeiden [Spa05]. Das gewählte Fachwerkmodell ist in Abb. 6.12 dargestellt. Für eine Erdbebeneinwirkung in negativer x-Richtung ist das Fachwerkmodell um die vertikale Achse zu spiegeln.

#### Nachweis der Fachwerkstäbe

Mit den in Abb. 6.13 angegebenen Einwirkungen können die – für die anschließende Bemessung der Druck- und Zugstäbe erforderlichen – Stabnormalkräfte berechnet werden. Zur Ermittlung wird das Statikprogramm [SW1] verwendet.

#### Bemessung des maßgebenden Druckstabes

Die maximale Druckkraft im Erdgeschoß ergibt sich aus dem Fachwerkmodell zu:

 $N_{Ed,Druck} = -2547 \,\mathrm{kN}$  bzw.  $N_{Ed,Druck} = -364 \,\mathrm{kN}$  pro Lochquerschnitt

Der Spannungsnachweis gilt als erfüllt, wenn nachfolgende Bedingung eingehalten wird:

$$\sigma_c = \frac{N_{Ed,Druck}}{A_c} = \frac{0,364}{0,17 \cdot 0,17} = 12,59 \text{ N/mm}^2 < 19,23 \text{ N/mm}^2 = f_{cd}$$
$$f_{cd} = \frac{f_{ck}}{\gamma_c} = \frac{25}{1,3} = 19,23 \text{ N/mm}^2$$

 $\operatorname{mit}$ 



Abbildung 6.12: Entwurf des Fachwerkmodells



Abbildung 6.13: Darstellung der Belastung und der Stabnormalkräfte des Fachwerks

| $\sigma_c$     | <br>Spannung im Beton                                                  |
|----------------|------------------------------------------------------------------------|
| $N_{Ed,Druck}$ | <br>Bemessungswert der einwirkenden Drucknormalkraft; siehe Abb. 6.13  |
| $A_c$          | <br>Fläche des Betonkerns                                              |
| $f_{cd}$       | <br>Bemessungswert der einaxialen Druckfestigkeit des Betons           |
| $f_{ck}$       | <br>charakteristische Zylinderdruckfestigkeit des Betons nach 28 Tagen |
| $\gamma_c$     | <br>Teilsicherheitsbeiwert für Beton; hier $\gamma_c = 1, 3$           |

# Mindestbewehrung gemäß [ÖNORM EN 1992-1-1]

$$\begin{split} A_{s,vmin} &= 0,002 \cdot A_c = 0,002 \cdot (0,17 \cdot 0,17) \cdot 10^4 = 0,58 \, \mathrm{cm}^2 \\ \text{gewählt: } 2 \oslash 8 \; \left( A_{s,vorh} = 1,01 \, \mathrm{cm}^2 \right) \end{split}$$

## Bemessung des vertikalen Zugstabes im EG

Die maximale Zugkraft ergibt sich aus dem Fachwerkmodell zu:

 $N_{Ed,Zuq} = 2830 \,\mathrm{kN}$ 

Die erforderliche Bewehrungsfläche kann wie folgt berechnet werden:

$$A_{s,erf} = \frac{N_{Ed,Zug}}{f_{yd}} = \frac{2,830}{550} = 51,45 \,\mathrm{cm}^2$$
$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{550}{1,0} = 550 \,\mathrm{N/mm}^2$$

 $\operatorname{mit}$ 

| $A_{s,erf}$  | <br>erforderliche Bewehrungsfläche                                  |
|--------------|---------------------------------------------------------------------|
| $N_{Ed,Zug}$ | <br>Bemessungswert der einwirkenden Zugnormalkraft; siehe Abb. 6.13 |
| $f_{yd}$     | <br>Bemessungswert der Streckgrenze des Betonstahls                 |
| $f_{yk}$     | <br>charakteristischer Wert der Streckgrenze des Betonstahls        |
| $\gamma_s$   | <br>Teilsicherheitsbeiwert für Betonstahl                           |
|              |                                                                     |

Werden die ersten sieben, vollen Lochquerschnitte zur Bewehrungsanordnung herangezogen, ergeben sich pro Lochquerschnitt im Erdgeschoß (siehe Abb. 6.14):

$$A_{s,erf} = \frac{51,45}{7} = 7,35 \,\mathrm{cm}^2$$
gewählt: 4 \angle 16 (A<sub>s,vorh</sub> = 8,04 \,\mathrm{cm}^2)

In den übrigen Geschoßen ist pro Lochquerschnitt im Bereich A (siehe Abb. 6.17) folgende vertikale Bewehrung anzuordnen:

- $4 \otimes 14 \rightarrow 1.$  OG
- $2 \otimes 14 \rightarrow 2.$  OG
- $2 \otimes 8 \rightarrow 3.$  OG

Eine ausreichende Verankerung sämtlicher Bewehrungsstäbe ist gemäß [ÖNORM EN 1992-1-1] zu gewährleisten.



Abbildung 6.14: Bewehrungsskizze EG



Abbildung 6.15: Ausführungsskizze

### Bemessung der horizontalen Zugstäbe

- Berechnung der erforderlichen Bewehrung wie bei vertikalem Zugstab
- Anordnung einer Zusatzbewehrung in der Decke mit entsprechender Verankerung

## Horizontale Lagerfugenbewehrung

Der Bemessungswert des Querkraftwiderstandes ohne Querkraftbewehrung kann für den vorliegenden Wandquerschnitt gemäß [ÖNORM EN 1992-1-1] wie folgt berechnet werden:

$$V_{Rd,c} = \left[ C_{Rd,c} \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d$$
(6.36)

bzw. mindestens

$$V_{Rd,c} = (\nu_{min} + k_1 \cdot \sigma_{cp}) \cdot b_w \cdot d \tag{6.37}$$

$$C_{Rd,c} = \frac{0,18}{\gamma_c} = \frac{0,18}{1,3} = 0,14 \tag{6.38}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2,0 \quad (d \text{ in mm})$$
 (6.39)

$$k = 1 + \sqrt{\frac{200}{5000}} = 1,20 < 2,0$$

$$\rho_l = \frac{n_{s_l}}{b_w \cdot d} \le 0,02 \tag{6.40}$$

$$\rho_l = \frac{50, 28}{17 \cdot 500} = 0,0066 < 0,02$$
  
$$f_{ck} = 25,00 \,\mathrm{N/mm^2}$$

$$k_1 = 0, 15$$

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0, 2 \cdot f_{cd} \tag{6.41}$$

$$\sigma_{cp} = \frac{2546000}{170 \cdot 6000} = 2,50 < 0,2 \cdot 19,23 = 3,85$$

$$\nu_{min} = 0,035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

$$\nu_{min} = 0,035 \cdot 1,20^{3/2} \cdot 25^{1/2} = 0,23$$

$$V_{Rd,c} = \left[0,14 \cdot 1,20 \cdot (100 \cdot 0,0066 \cdot 25,00)^{1/3} + 0,15 \cdot 2,50\right] \cdot 0,17 \cdot 5,00 =$$

$$= 0,68 \text{ MN} < 1,51 \text{ MN} = V_{Ed}$$
bzw. mindestens
$$V_{Rd,c} = (0,23 + 0,15 \cdot 2,50) \cdot 0,17 \cdot 5 = 0,51 \text{ MN}$$
(6.42)

 $\operatorname{mit}$ 

| $V_{Rd,c}$ | <br>Bemessungswert des Querkraftwiderstandes                                          |
|------------|---------------------------------------------------------------------------------------|
| $f_{ck}$   | <br>charakteristische Zylinderdruckfestigkeit des Betons nach 28 Tagen in             |
|            | $ m N/mm^2$                                                                           |
| $A_{sl}$   | <br>die Fläche der Zugbewehrung, die mindestens $\geq (l_{bd} + d)$ über den betrach- |
|            | teten Querschnitt hinausgeführt wird                                                  |
| $N_{Ed}$   | <br>die Normalkraft im Querschnitt infolge Lastbeanspruchung                          |
| $A_c$      | <br>die Gesamtfläche des Betonquerschnitts in $mm^2$                                  |
| $b_w$      | <br>die kleinste Querschnittsbreite innerhalb der Zugzone des Querschnitts in         |
|            | mm                                                                                    |
| d          | <br>statische Nutzhöhe                                                                |

Da der Nachweis nicht erfüllt wird, ist eine Querkraftbewehrung erforderlich. Bei Bauteilen mit vertikaler Querkraftbewehrung ist der Querkraftwiderstand  $V_{Rd}$  gemäß [ÖNORM EN 1992-1-1] der kleinere Wert aus:

$$V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot f_{ywd} \cdot \cot\theta \tag{6.43}$$

$$V_{Rd,max} = \frac{\alpha_{cw} \cdot b_w \cdot z \cdot \nu_1 \cdot f_{cd}}{\cot\theta + \tan\theta}$$
(6.44)

$$\alpha_{cw} = 1 + \frac{\sigma_{cp}}{f_{cd}} \quad \text{für } 0 < \sigma_{cp} \le 0, 25 \cdot f_{cd} \tag{6.45}$$

$$\alpha_{cw} = 1 + \frac{2,50}{19,23} = 1,13 < 0,25 \cdot 19,23 = 4,81$$

$$V_{Rd,max} = \frac{1,13 \cdot 0,17 \cdot 4,00 \cdot 0,6 \cdot 19,23}{\cot 31 + \tan 31} = 3,91 \,\mathrm{MN}$$
(6.46)

 $\operatorname{mit}$ 

| $A_{sw}$      | <br>Querschnittsfläche der Querkraftbewehrung                                |
|---------------|------------------------------------------------------------------------------|
| s             | <br>der Abstand der Bügel untereinander                                      |
| $\theta$      | <br>Winkel zwischen Betondruckstreben und der rechtwinklig zur Querkraft     |
|               | verlaufenden Bauteilachse; $\theta = 31^{\circ}$                             |
| z             | <br>Hebelarm der inneren Kräfte; $z = 4,00 \mathrm{m}$                       |
| $f_{ywd}$     | <br>Bemessungswert der Streckgrenze der Querkraftbewehrung;                  |
| 0             | $f_{ywd} = 550 \mathrm{MN/m^2}$                                              |
| $\nu_1$       | <br>ein Festigkeitsabminderungsbeiwert für unter Querkraft gerissenen Beton; |
|               | $\nu_1 = 0, 6$                                                               |
| $\alpha_{cw}$ | <br>ein Beiwert zur Berücksichtigung des Spannungszustandes im Druckgurt     |

Die maximale Tragfähigkeit der Druckstrebe ist größer als der Bemessungswert der Querkraft aus externer Belastung:

$$V_{Rd,max} \ge V_{Ed} \tag{6.48}$$
  
3,91 MN > 1,51 MN  $\checkmark$ 

Die erforderliche Bügelbewehrung errechnet sich aus Gl. 6.43 wie folgt:

$$a_{sw} = \frac{V_{Ed}}{z \cdot f_{ywd} \cdot \cot \theta}$$

$$a_{sw} = \frac{1,51}{4,00 \cdot 550 \cdot \cot 31} \cdot 10^4 = 4,12 \,\mathrm{cm}^2/\mathrm{m}$$
(6.49)

gewählt: 
$$2 \oslash 8/25 \left( a_{s,vorh} = 4,02 \,\mathrm{cm}^2/\mathrm{m} \right)$$
 (6.50)



Abbildung 6.16: Bewehrungsskizze (horizontale Lagerfugenbewehrung)

Die Anordnung der gewählten horizontalen Lagerfugenbewehrung im Wandquerschnitt kann Abb. 6.16 entnommen werden.

# Mindestquerkraftbewehrung gemäß [ÖNORM EN 1992-1-1] sowie [ÖNORM B 1992-1-1]

$$\rho_{w,min} = 0, 15 \cdot \frac{f_{ctm}}{f_{yd}}$$

$$\rho_{w,min} = 0, 15 \cdot \frac{2, 6}{550} = 0,00071$$

$$\rho_{w,vorh} = \frac{A_{sw}}{s \cdot b_w \cdot \sin \alpha} \ge \rho_{w,min}$$

$$\rho_{w,vorh} = \frac{4,02}{100 \cdot 17 \cdot 1} = 0,00236 > 0,00071 \sqrt{}$$
(6.51)
(6.52)

mit

| $ ho_w$   |     | der Bewehrungsgrad der Querkraftbewehrung                                     |
|-----------|-----|-------------------------------------------------------------------------------|
| $f_{ctm}$ |     | Mittelwert der zentrischen Zugfestigkeit des Betons                           |
| $f_{yd}$  |     | Bemessungswert der Streckgrenze des Betonstahls                               |
| $A_{sw}$  |     | Querschnittsfläche der Querkraftbewehrung je Länge $\boldsymbol{s}$           |
| s         |     | der Abstand der Querkraftbewehrung gemessen entlang der Balkenachse           |
| $b_w$     |     | die Stegbreite des Bauteils                                                   |
| $\alpha$  | ••• | der Winkel zwischen Querkraftbewehrung und der Balkenachse; $\alpha=90^\circ$ |



Abbildung 6.17: Ausführungsskizze
# 7 Musterstatik "Multimodales Antwortspektrumverfahren"

# 7.1 Allgemeines

Im Folgenden wird der in Kapitel 6 beschriebene, viergeschoßige Wohnbau mittels der Tragwerksplanungssoftware [SW2] räumlich analysiert. Zur Berechnung der Erdbebeneinwirkung wird das multimodale Antwortspektrumverfahren herangezogen. Die generelle Vorgehensweise umfasst folgende Punkte [Inf07]:

- Beschreiben des Problems mit Modellobjekten
- Lagerungen und Querschnitte festlegen
- Elementnetz generieren
- Lastfälle definieren
- Einwirkungen und Bemessungssituationen einstellen
- Berechnungen durchführen
- Ausgabe der Ergebnisse

# 7.2 Systemgeometrie mittels Modellobjekten

Modellobjekte beschreiben die Geometrie und die Eigenschaften einzelner Tragwerksteile. Sie bilden die Grundlage zur programmgesteuerten Erzeugung des Finite-Element-Netzes und werden von dem automatischen Netzgenerierer berücksichtigt. Zur Beschreibung der Geometrie des vorliegenden Wohnbaus finden die folgenden Modellobjekte Verwendung (Abb. 7.1):

- **Rand** Ränder definieren den Rand von Tragwerksteilen. Abhängig von ihren Eigenschaften können sie zusätzlich eine Linienlagerung oder einen Stabzug definieren.
- Loch Löcher definieren Aussparungen im Elementnetz.
- **Fläche** Flächen beschreiben Gebiete, die von dem Netzgenerierer automatisch vernetzt werden. Ränder und Löcher bilden deren äußere Begrenzung. Alle Modellobjekte im Inneren der Fläche werden bei der Netzgenerierung berücksichtigt. Der Fläche können Eigenschaften für das FEM-Netz zugeordnet werden.

# 7.3 Baustoffe

## 7.3.1 Materialkennwerte

Die für die nachfolgende Berechnung erforderlichen Materialkennwerte können der Tab. 7.1 entnommen werden. Gemäß [ÖNORM EN 1998-1] werden die elastischen Biege- und Schubsteifigkeitseigenschaften sämtlicher Beton- und Mauerwerksbauteile als die Hälfte der zugehörigen



Abbildung 7.1: Darstellung der Modellobjekte Ränder, Löcher (links) sowie Flächen (rechts)

| Bauteile      | Material <sup>1</sup> | Elastizitätsmodul | Querdehn- | Schubmodul  | Dichte      |
|---------------|-----------------------|-------------------|-----------|-------------|-------------|
|               |                       | in $N/mm^2$       | zahl      | in $N/mm^2$ | in $kg/m^3$ |
| Außenwände    | Mauerwerk             | 2575              | 0,175     | 1096        | 950         |
| Innenwände    | Mauerwerk             | 2575              | 0,175     | 1096        | 950         |
| Geschoßdecken | Stahlbeton            | 15500             | 0,200     | 6458        | 2500        |
| Balkonplatten | Stahlbeton            | 15500             | 0,200     | 6458        | 2500        |
| Dachscheiben  | Holz                  | 1100              | 0,400     | 393         | 500         |

Tabelle 7.1: Materialkennwerte zur Strukturbeschreibung

Steifigkeiten der ungerissenen Bauteile angenommen. Da die Querdehnzahl von Mauerwerk aus Mauerziegeln beträchtlich variieren kann [Sch06], werden Vergleichsrechnungen mit drei unterschiedlichen Querdehnzahlen durchgeführt. Abb. 7.2 kann entnommen werden, dass die Variation der Querdehnzahl einen sehr geringen Einfluß auf die Qualität der Berechnungsergebnisse hat. Für die nachfolgende Berechnung wird aus diesem Grund die Querdehnzahl mit  $\nu = 0,175$  festgelegt.

Die Modellierung des Dachstuhls erfolgt mittels Dachscheiben, Stabzügen in Dachscheibenebene und Stützen. Da diese Modellierung die Steifigkeit des Dachstuhls überschätzt, wird der Elastizitätsmodul der 5 cm dicken Dachscheiben aus Holz näherungsweise mit 1100 N/mm<sup>2</sup> festgelegt. Die vernachlässigbare Änderung der Auflagerreaktionen des Wandquerschnitts WX5, bei Variation des Elastizitätsmoduls der Dachscheiben, ist in Abb. 7.3 ersichtlich. Die Stabzüge und Stützen des Dachstuhls weisen einen Elastizitätsmodul von 11000 N/mm<sup>2</sup> auf.

Die Stiegenlaufplatten sowie die nichttragenden Zwischenwände werden nicht diskretisiert. Da deren Masse das Schwingungsverhalten des Gebäudes jedoch wesentlich beeinflussen kann, werden in den Auflagerbereichen der Stiegenplatten Linienlasten angesetzt und die Zwischenwände durch eine Erhöhung der gleichmäßig verteilten Flächenlasten der Geschoßdecken berücksichtigt.



Abbildung 7.2: Darstellung der Auflagerreaktionen des Wandquerschnittes WX5 bei Variation der Querdehnungszahl des Mauerwerks



Abbildung 7.3: Darstellung der Auflagerreaktionen des Wandquerschnittes WX5 bei Variation des Elastizitätsmoduls von Holz

| Bauteile      | Breite $b$ | Höhe $\boldsymbol{h}$ | Querschnitts-                | Trägheitsmoment         |
|---------------|------------|-----------------------|------------------------------|-------------------------|
|               | in m       | in m                  | fläche $A$ in m <sup>2</sup> | $I_y$ in m <sup>4</sup> |
| Außenwände    | 1,00       | $0,\!25$              | 0,250                        | 1,30E-03                |
| Innenwände    | $1,\!00$   | $0,\!25$              | 0,250                        | 1,30E-03                |
| Geschoßdecken | $1,\!00$   | $0,\!22$              | 0,220                        | 8,87E-04                |
| Balkonplatten | $1,\!00$   | $0,\!18$              | $0,\!180$                    | 4,86E-04                |
| Dachscheiben  | $1,\!00$   | $0,\!05$              | 0,050                        | 1,04E-05                |
| Stabzüge      | $0,\!14$   | $0,\!18$              | 0,025                        | 6,80E-05                |
| Stützen       | $0,\!14$   | $0,\!14$              | 0,020                        | 3,20E-05                |

Tabelle 7.2: Querschnittswerte zur Strukturbeschreibung

### 7.3.2 Querschnittswerte

Die für die nachfolgende Berechnung notwendigen Querschnittswerte können der Tab. 7.2 entnommen werden.

## 7.4 Generierung des Elementnetzes

#### 7.4.1 Berechnungsmethode

Das Grundprinzip zur Lösung von Problemen der Strukturmechanik mit der Methode der Finiten Elemente besteht in der Unterteilung einer Gesamtstruktur in diskrete Elemente, die in den Elementknoten miteinander verbunden sind. Als Unbekannte treten je Knoten die globalen Verformungen  $u_x$ ,  $u_y$ ,  $u_z$ ,  $\phi_x$ ,  $\phi_y$  und  $\phi_z$  auf, welche durch Formulierung der sechs Gleichgewichtsbedingungen am Knoten bestimmbar sind. Dies geschieht durch Aufbau der Elementsteifigkeitsmatrizen im jeweiligen lokalen System, Transformation auf globale Koordinaten und Einsortieren in die Gesamtsteifigkeitsmatrix des Systems. Nach Transformation der Lasten auf globale Koordinaten und Einführung der Lagerungsbedingungen des Tragwerks ergibt sich folgendes lineare Gleichungssystem zur Bestimmung der unbekannten Knotenverformungen [Inf07]:

$$[K] \cdot \{u\} = \{p\} \tag{7.1}$$

 $\operatorname{mit}$ 

[K] $\dots$ Gesamtsteifigkeitsmatrix $\{u\}$  $\dots$ Verformungsvektor der globalen Knotenverformungen $\{p\}$  $\dots$ globaler Lastvektor

### 7.4.2 Elementbeschreibungen

Folgende Elemente werden für die Diskretisierung verwendet (siehe Abb. 7.4):

- räumlicher Fachwerkstab (RF)
- Schalenelement mit drei Knoten (SH36)
- Schalenelement mit vier Knoten (SH46)

Der räumliche Fachwerkstab besitzt drei Elementfreiheitsgrade  $(u_x, u_y, u_z)$ , das Schalenelement hingegen sechs Elementfreiheitsgrade  $(u_x, u_y, u_z, \phi_x, \phi_y, \phi_z)$ .



Abbildung 7.4: Darstellung der verwendeten Elemente



- ◆ - Netzweite Nr.1 (1,00m) - ◆ · Netzweite Nr.2 (0,80m) — Netzweite Nr.3 (0,60m) · · ★ · · Netzweite Nr.4 (0,50m)

Abbildung 7.5: Darstellung der Auflagerreaktionen des Wandquerschnittes WX5 zufolge der vier unterschiedlichen Netzweiten

### 7.4.3 Konvergenzuntersuchung

Zur Generierung des Finite-Element-Netzes wird der vom Programm [SW2] zur Verfügung gestellte "vollautomatische Vernetzer" verwendet, welcher erlaubt, eine aus Modellobjekten konstruierte zwei- oder dreidimensionale Struktur, affin zu den Zwangsbedingungen der zuvor festgelegten Objekte, vollautomatisch zu vernetzen. Vom Programmanwender ist lediglich die Netzweite<sup>2</sup> festzulegen. Für das zu untersuchende Gebäude werden die folgenden vier Netzweiten untersucht (siehe Abb. 7.5):

- Netzweite Nr.  $1 \rightarrow 1,00\,\mathrm{m}$
- Netzweite Nr. 2  $\rightarrow 0,80\,\mathrm{m}$
- Netzweite Nr.  $3 \rightarrow 0, 60\,\mathrm{m}$
- Netzweite Nr. 4  $\rightarrow 0, 50\,\mathrm{m}$

<sup>&</sup>lt;sup>2</sup>Rasterabstand für die Generierung.



Abbildung 7.6: Diskretisierte Gesamtstruktur

| Netz Nr. | Netzweite | 1. Eigen-   | 2. Eigen-   | 3. Eigen-   | Max.wert der    | Elementanzahl |
|----------|-----------|-------------|-------------|-------------|-----------------|---------------|
|          |           | frequenz    | frequenz    | frequenz    | Verschiebung    |               |
|          | in m      | $f_1$ in Hz | $f_2$ in Hz | $f_3$ in Hz | $u_{max}$ in mm |               |
| 1        | 1,00      | 3,64        | 5,71        | 7,23        | $56,\!51$       | 2454          |
| 2        | 0,80      | $3,\!60$    | $5,\!69$    | 7,21        | $56,\!33$       | 3531          |
| 3        | 0,60      | $3,\!54$    | $5,\!66$    | $7,\!15$    | $56,\!23$       | 5666          |
| 4        | 0,50      | $3,\!51$    | $5,\!66$    | 7,11        | $56,\!14$       | 8163          |

Tabelle 7.3: Vergleich der ersten drei Eigenfrequenzen und der maximalen Verschiebungen zufolge der unterschiedlichen Netzweiten

Um beurteilen zu können, welche Netzweite zu verwenden ist, werden die ersten drei Eigenfrequenzen, die maximalen Verschiebungen<sup>3</sup> und die Auflagerreaktionen unter der maßgebenden Einwirkungskombination (siehe Abschnitt 6.2.1) verglichen. Sowohl Abb. 7.5 als auch Tab. 9.1 verdeutlichen, dass zwischen Netzweite Nr. 3 und Netzweite Nr. 4 keine nennenswerten Unterschiede auftreten. Um die Rechenzeit für die dynamische Systemanalyse in annehmbaren Grenzen zu halten, wird für die weitere Berechnung die Netzweite Nr. 3 (0,60 m) gewählt. Die diskretisierte Gesamtstruktur des Gebäudes ist in Abb. 7.6 dargestellt.

# 7.5 Definition sowie Kombination der Lastfälle und Einwirkungen

Es werden die folgenden fünf Lastfälle definiert:

- Eigengewicht (LF 1)
- Ständige Lasten (LF 2)
- Nutzlasten (LF 3)

 $<sup>^{3}\</sup>mathrm{Die}$  Maximalwerte treten an gleicher Stelle und in gleicher Richtung auf.

- Zufällige Torsionseinwirkung in x-Richtung (LF 4)
- Zufällige Torsionseinwirkung in *y*-Richtung (LF 5)

Mit Hilfe der in Abschnitt 5.4 angegebenen Einwirkungen werden die jeweiligen Flächen- und Linienlasten auf die Tragstruktur aufgebracht. Aus den zuvor festgelegten Querschnitten und Materialien wird das Eigengewicht der Tragkonstruktion vom Programm automatisch generiert. In Abb. 7.8 sind die zusätzlich aufgebrachten Linienlasten im Auflagerbereich der Stiegenplatten für den Lastfall "Nutzlasten" dargestellt.

### 7.5.1 Erdbebeneinwirkung

Die Erdbebeneinwirkung wird im Ordner "Berechnungsvorgaben Dynamik" der Datenbasis definiert (siehe Abb. 7.7). Da die Bemessungsspektren der [ÖNORM EN 1998-1] in der Tragwerksplanungssoftware [SW2] noch nicht zur Verfügung stehen, muss das für den Standort Mürzzuschlag maßgebende Bemessungsspektrum vom Programmanwender als "Alternatives Antwortspektrum" eingegeben werden (Abb. 7.7).

Gemäß [ÖNORM EN 1998-1] muss die Antwort aller Modalformen, die wesentlich zur Gesamtantwort beitragen, berücksichtigt werden. Um diese Forderung erfüllen zu können, werden die ersten 100 Eigenwerte für die dynamische Systemberechnung herangezogen. Weiters werden die horizontalen Bodenbeschleunigungen in x- und y-Richtung wie schon im vorangehenden Kapitel mit  $0, 99 \text{ m/s}^2$  festgelegt. Die Vertikalkomponente der Erdbebeneinwirkung wird nicht angesetzt, da diese gemäß [ÖNORM B 1998-1] in Österreich grundsätzlich nicht relevant ist. Als Kombinationsmethode wird die in Abschnitt 3.2.1 angegebene SRSS-Formel gewählt, da die ersten drei Eigenfrequenzen nicht zu eng aneinander liegen (siehe Tab. 9.1).

Im Ordner "Massen aus Lastfällen erzeugen" müssen die Faktoren der jeweiligen Lastfälle  $F_{LFi}$ , woraus zusätzliche Knotenmassen erzeugt werden sollen, wie folgt festgelegt werden:

- Eigengewicht  $\rightarrow F_{LF1} = 1,00$
- Ständige Lasten  $\rightarrow F_{LF2} = 1,00$
- Nutzlasten  $\rightarrow F_{LF3} = 0,30$

## 7.5.2 Lastfall "Zufällige Torsionseinwirkung"

Die zufälligen Torsionseinwirkungen gemäß [ÖNORM EN 1998-1] werden für das vorliegende Tragwerk in Tab. 7.4 für jeden Geschoßdeckenhorizont angegeben. Folgende Gleichungen werden zur Berechnung – wie schon in Abschnitt 3.2.3 beschrieben – benötigt:

$$F_{i} = F_{b} \cdot \frac{s_{i} \cdot m_{i}}{\sum s_{j} \cdot m_{j}}$$

$$M_{ai} = e_{ai} \cdot F_{i} = h_{i} \cdot \frac{L_{i}^{2}}{6}$$

$$h_{i} = \pm 0, 3 \cdot \frac{F_{i}}{L_{i}}$$

$$e_{ai} = \pm 0, 05 \cdot L_{i}$$

$$(7.2)$$

 $\operatorname{mit}$ 

| Berechnungsmodus:                                                          |                                 |  |  |  |  |
|----------------------------------------------------------------------------|---------------------------------|--|--|--|--|
| Alternatives Antwortspektr                                                 | um 🔽                            |  |  |  |  |
| Eigenwerte                                                                 |                                 |  |  |  |  |
| Anzahl Eigenwerte:                                                         | 100                             |  |  |  |  |
| Max. Vektorraum:                                                           | 108                             |  |  |  |  |
| Iterationsgenauigkeit:                                                     | 1 [%]                           |  |  |  |  |
| Bodenbeschleunigungen                                                      |                                 |  |  |  |  |
| ax: 0,99 [m/s²]                                                            | Komponenten getrennt aufbringen |  |  |  |  |
| ay: 0,99 [m/s²]                                                            | Bezugssystemwinkel alpha [*] 0  |  |  |  |  |
| az: 0 [m/s²]                                                               |                                 |  |  |  |  |
| Alternatives Antwortspek                                                   | trum                            |  |  |  |  |
| Kombinationsmethode: Dämpfungsmaß:<br>SRSS-Methode 🗨 0 [1] Antwortspektrum |                                 |  |  |  |  |
| 🔽 Statische Ersatzlasten d                                                 | der Modalbeiträge speichern     |  |  |  |  |



Abbildung 7.7: "Berechnungsvorgaben Dynamik" (links) und Darstellung des "Alternativen Antwortspektrums" (rechts)

| Decke | Höhe  | Masse      |                 | H-Kraft    | Breite   | Tr.last   | Breite   | Tr.last   |
|-------|-------|------------|-----------------|------------|----------|-----------|----------|-----------|
| über  | $z_i$ | $m_i$      | $s_i \cdot m_i$ | $F_i$      | $L_{xi}$ | $h_{xi}$  | $L_{yi}$ | $h_{yi}$  |
|       | in m  | in t       | in tm           | in kN      | in m     | in $kN/m$ | in m     | in $kN/m$ |
| OG 3  | 11,77 | 178,57     | 178,57          | 513,45     | 11,95    | 12,89     | 16,00    | 9,63      |
| OG 2  | 8,80  | $225,\!61$ | 169,21          | 486,53     | 11,95    | $12,\!21$ | 16,00    | $9,\!12$  |
| OG1   | 5,83  | 225,61     | 112,81          | $324,\!35$ | 11,95    | 8,14      | 16,00    | 6,08      |
| EG    | 2,86  | $225,\!61$ | $56,\!40$       | 162,18     | 11,95    | 4,07      | 16,00    | $3,\!04$  |
| Summe |       |            | 516,99          | 1486,50    |          |           |          |           |

Tabelle 7.4: Trapezlasten zur Berücksichtigung der zufälligen Torsionseinwirkungen

| $F_i$      | <br>am Stockwerk $i$ angreifende Horizontalkraft                               |
|------------|--------------------------------------------------------------------------------|
| $F_b$      | <br>Gesamterdbebenkraft nach Gl. 3.7                                           |
| $s_i, s_j$ | <br>Verschiebungen der Massen $m_i, m_j$ in der Grundeigenform                 |
| $m_i, m_j$ | <br>Stockwerksmassen                                                           |
| Mai        | <br>Torsionsmoment, wirkend auf das Geschoß $i$ um seine vertikale Achse       |
| $e_{ai}$   | <br>zufällige Ausmittigkeit der Geschoßmasse $i$ für alle maßgebenden Richtun- |
|            | gen                                                                            |
| $F_i$      | <br>Horizontalkraft, wirkend auf das Geschoß $i$                               |
| $L_i$      | <br>Geschoßabmessung senkrecht zur Richtung der Erdbebeneinwirkung             |
| $h_i$      | <br>Lastordinate der Trapezlast des Geschoßes $i$                              |
|            |                                                                                |

In Abb. 7.9 werden die Trapezlasten exemplarisch für eine Erdbebene<br/>inwirkung in  $x\mbox{-}{\rm Richtung}$  dargestellt.



Abbildung 7.8: Darstellung der auf das Tragsystem aufgebrachten Nutzlasten



Abbildung 7.9: Lastfall "Zufällige Torsionseinwirkung" in x-Richtung

### 7.5.3 Überlagerung der Bebenkomponenten

Die Beanspruchungsgrößen infolge des Zusammenwirkens der Horizontalkomponenten der Erdbebeneinwirkung dürfen mittels der folgenden Kombinationen<sup>4</sup> berechnet werden:

 $E_{Edx}"+"0, 30 \cdot E_{Edy}$  $0, 30 \cdot E_{Edx}"+"E_{Edy}$ 

In der Tragwerksplanungssoftware [SW2] erfolgt die Überlagerung der horizontalen Bebenkomponenten gemäß Abb. 7.10.

#### 7.5.4 Einwirkungskombination

Die Kombination der Erdbebeneinwirkung mit anderen Einwirkungen hat für Bemessungssituationen bei Erdbeben gemäß [ÖNORM EN 1990] mittels nachfolgender Kombinationsregel<sup>5</sup> zu erfolgen:

$$\sum_{j \ge 1} G_{k,j} "+" P "+" A_{Ed} "+" \sum_{i \ge 1} \psi_{2,i} \cdot Q_{k,i}$$

Die für die Erdbeben-Bemessungssituation erforderliche Lastfallkombination ist in Abb. 7.11 dargestellt.

# 7.6 Durchführung der Berechnung

Die Berechnung gliedert sich in folgende drei Schritte [SW2]:

- Finite Elemente  $\rightarrow$  statische Systemanalyse
- Finite Elemente  $\rightarrow$  dynamische Systemanalyse
- Lastfallkombination

## 7.7 Berechnungsergebnisse

Nach Berechnungsende stehen dem Programmanwender neben Knoten- und Stabdeformationen, sämtliche Schnittgrößen, Spannungen und Auflagerreaktionen zur Verfügung. Im Ordner "Ergebnisse-Dynamik" sind die Eigenformen, Eigenkreisfrequenzen sowie die aus den Lasten erzeugten Massen enthalten.

Die berücksichtigten, effektiven modalen Massen betragen in x-Richtung 96,3% und in y-Richtung 93,8% der aufgebrachten Massen (siehe Tab. 7.5). Somit ist die untersuchte Anzahl der ersten 100 Eigenformen gemäß [ÖNORM EN 1998-1] ausreichend. Dabei ist zu erwähnen, dass viele Eigenformen nur einen sehr geringen Anteil beitragen, da es sich dabei um lokale Eigenformen einzelner Geschoßdecken oder Wände handelt.

 $<sup>{}^{4}</sup>$ Die Definition ist in Abschnitt 3.2.3 angegeben.

<sup>&</sup>lt;sup>5</sup>Die Definition ist in Abschnitt 6.2.1 angegeben.

Lastfallkombination 5, Edx "+" 0.3 Edy - 1. veränderliche exklusive Einwirkung

| Antwo | ortspektrum    |     | Faktor |
|-------|----------------|-----|--------|
| *     | <br>Überlagert | (x) | 1.000  |
| *     | Überlagert     | (x) | -1,000 |

Lastfallkombination 5, Edx "+" 0.3 Edy - 2. veränderliche exklusive Einwirkung

| Antwo | rtspektrum |     | Faktor |
|-------|------------|-----|--------|
|       |            |     |        |
| *     | Überlagert | (y) | 0,300  |
| *     | Überlagert | (y) | -0,300 |

Lastfallkombination 5, Edx "+" 0.3 Edy - 3. veränderliche exklusive Einwirkung

| Lastfa | all       |         |     | Faktor |
|--------|-----------|---------|-----|--------|
|        |           |         |     |        |
| 4      | Zufällige | Torsion | (x) | 1,000  |
| 4      | Zufällige | Torsion | (x) | -1,000 |

Lastfallkombination 5, Edx "+" 0.3 Edy - 4. veränderliche exklusive Einwirkung

| Lastfa | 11        |         |     | Fakt | or |
|--------|-----------|---------|-----|------|----|
|        |           |         |     |      |    |
| 5      | Zufällige | Torsion | (Y) | 0,3  | 00 |
| 5      | Zufällige | Torsion | (y) | -0,3 | 00 |

Lastfallkombination 6, 0.3 Edx "+" Edy - 1. veränderliche exklusive Einwirkung

| Antwo | rtspektrum |     | Faktor |
|-------|------------|-----|--------|
|       |            |     |        |
| *     | Überlagert | (x) | -0,300 |
| *     | Überlagert | (x) | 0,300  |

Lastfallkombination 6, 0.3 Edx "+" Edy - 2. veränderliche exklusive Einwirkung

| Antwor | rtspektrum |     | Faktor |
|--------|------------|-----|--------|
| *      | Überlagert | (У) | -1,000 |
| *      | Überlagert | (y) | 1,000  |

Lastfallkombination 6, 0.3 Edx "+" Edy - 3. veränderliche exklusive Einwirkung

| Lastfa | all       |         |     | Faktor |
|--------|-----------|---------|-----|--------|
|        |           |         | ·   |        |
| 4      | Zufällige | Torsion | (x) | 0,300  |
| 4      | Zufällige | Torsion | (x) | -0,300 |

Lastfallkombination 6, 0.3 Edx "+" Edy - 4. veränderliche exklusive Einwirkung

| Lastfa | all       |         |     | Faktor |
|--------|-----------|---------|-----|--------|
|        |           |         |     |        |
| 5      | Zufällige | Torsion | (y) | 1,000  |
| 5      | Zufällige | Torsion | (y) | -1,000 |

Abbildung 7.10: Überlagerung der Bebenkomponenten gemäß [ÖNORM EN 1998-1]



Abbildung 7.11: Kombination der Erdbebeneinwirkung mit anderen Einwirkungen gemäß [ÖNORM EN 1990]

| C                | -lN(                   | (-1-1-1)               |                        |
|------------------|------------------------|------------------------|------------------------|
| Summe der aufg   | ebrachten Massen       | (global)               |                        |
|                  | $m_x$ bzw. $m_{x,eff}$ | $m_y$ bzw. $m_{y,eff}$ | $m_z$ bzw. $m_{z,eff}$ |
|                  | in t                   | in t                   | in t                   |
| Eigenmassen      | 660,532                | 660,532                | 660,532                |
| Punktmassen      | 0,000                  | 0,000                  | 0,000                  |
| Massen aus LF    | $210{,}532$            | 210,532                | 210,532                |
| Summe            | 871,064                | 871,064                | 871,064                |
| Effektive modale | e Massen (global)      |                        |                        |
| Summe            | 838,625                | 816,935                | 657,622                |
|                  | 96,3%                  | 93,8%                  |                        |

Tabelle 7.5: Trapezlasten zur Berücksichtigung der zufälligen Torsionseinwirkungen



Abbildung 7.12: Darstellung der 1. Eigenform (links) sowie der 2. Eigenform (rechts)

#### 7.7.1 Eigenfrequenzen, Eigenformen und Auflagerreaktionen

Die ersten drei Eigenfrequenzen sind Tab. 9.1 zu entnehmen. Die erste Eigenperiode  $T_1$  beträgt 0, 28 s und befindet sich somit im Plateaubereich des Bemessungsspektrums ( $T_1 = 1/f_1$ ). In Abb. 7.12 und Abb. 7.13 werden die ersten drei Eigenformen des Tragsystems gezeigt. Während Eigenform 1 und Eigenform 2 Biegeeigenformen darstellen, wird die dritte Eigenform klar von der Torsionsschwingung dominiert.

Für die Erdbeben-Bemessungssituation werden exemplarisch die maximalen vertikalen Auflagerreaktionen in Abb. 7.13 qualitativ dargestellt. Zur Kontrolle der in Tab. 6.9 angegebenen Summe der Normalkräfte (8717, 68 kN) können die in [SW2] ermittelten Auflagerreaktionen (AR) der einzelnen Lastfälle wie folgt herangezogen werden:

| $\sum$ | = | $6686, 617{ m kN}\!\cdot\!1, 00$ | <br>$AR$ zufolge LF1 · $F_{LF1}$              |     |
|--------|---|----------------------------------|-----------------------------------------------|-----|
|        | + | $1157,998{ m kN}\!\cdot\!1,00$   | <br>$AR$ zufolge LF2 · $F_{LF2}$              |     |
|        | + | $2335,076{ m kN}\!\cdot\!0,30$   | <br>$AR$ zufolge LF3 · $F_{LF3}$              |     |
|        | = | $8545, 138\mathrm{kN}$           | <br>Kontrollsumme (mit den Auflagerreaktionen | aus |
|        |   |                                  | [SW2] ermittelt)                              |     |

Es ist ersichtlich, dass die Summe aus der händischen Berechnung mit der Kontrollsumme beinahe übereinstimmt. Die geringe Differenz ist auf die Tatsache zurückzuführen, dass bei der Handberechnung der Verputz sämtlicher Wandflächen berücksichtigt wird, hingegen bei der FEM-Berechnung vernachlässigt wird.

# 7.8 Bemessung

Im Folgenden werden die Nachweise für unbewehrte Mauerwerkswände unter vorwiegend vertikaler Belastung sowie unter Schubbelastung geführt. Die hierfür erforderlichen Bemessungseinwirkungen können aus [SW2] entnommen werden.

### 7.8.1 Nachweis unbewehrter Mauerwerkswände unter vorwiegend vertikaler Belastung

Da die Darstellung sämtlicher Bemessungsergebnisse eines jeden Wandquerschnitts aufgrund der großen Datenmenge nicht möglich ist, wird hier der Nachweis des Innenwandquerschnitts WX6 (Lage gemäß Abb. 6.3) für die Erdbeben-Bemessungssituation in Tab. 7.6 exemplarisch



Abbildung 7.13: Darstellung der 3. Eigenform (links) sowie der qualitativen Auflagerreaktionen  $R_{z,max}$  zufolge der Erdbeben-Bemessungssituation (rechts)

 $dargestellt^6$ .

Eine ausführliche Erklärung der einzelnen Spalten der Tabelle kann Abschnitt 6.3.1 entnommen werden.

#### 7.8.2 Nachweis unbewehrter Mauerwerkswände unter Schubbelastung

Der Nachweis wird für sämtliche Wandquerschnitte des Erdgeschoßes geführt und ist in Abb. 7.14 ersichtlich. Die Erklärung sämtlicher Spalten des Nachweisblattes ist in Abschnitt 6.3.2 angegeben. Da in der Erdbeben-Bemessungssituation fast alle Wandquerschnitte eine zu geringe Schubtragfähigkeit aufweisen, kann der Nachweis gegen Schubversagen gemäß [ÖNORM EN 1996-1-1] ebenfalls – wie im vorangehenden Kapitel – nicht erbracht werden.

Durch die Modellierung des Wandquerschnitts WX5 als 17,5 cm dicke Stahlbetonscheibe in [SW2], sowie der anschließenden Bemessung mit Hilfe eines Fachwerkmodells können sämtliche Nachweise erbracht werden.

 $<sup>^{6}</sup>$ Die Bemessungsergebnisse aller übrigen Wandquerschnitte können der beigelegten CD entnommen werden.



Abbildung 7.14: Bezeichnung der zur Schubabtragung herangezogenen Wandquerschnitte

| achweis unbe   | wehrter Ma        | uerwerkswänd               | de unter vor     | wiegend ver      | rtikaler Belast  | tung am Kopf-                  | bzw. Fußp         | unkt gemäß E                   | C 6 Teil 1-1      |                   |                   |                  |                                          |              |              |                   |            |                                       |
|----------------|-------------------|----------------------------|------------------|------------------|------------------|--------------------------------|-------------------|--------------------------------|-------------------|-------------------|-------------------|------------------|------------------------------------------|--------------|--------------|-------------------|------------|---------------------------------------|
|                |                   |                            |                  |                  |                  |                                |                   |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
| Nachwei        | s                 | Geometrie d                | tes Wandque      | srschnitts       | Werte            | für die tabellari              | sche Berec        | hnung                          | Werte für         | die Bemest        | Bung              |                  |                                          |              |              |                   |            |                                       |
| Vandabsch. C3  | 3-E3; WX6         | Länge:                     | 1,975            | E                | -                | Wandbreite: t=                 | 0,25 r            | ۴                              | f <sub>k</sub> =  | 5,151             | N/mm <sup>2</sup> |                  |                                          |              |              |                   |            |                                       |
| LC 2           |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E                | Knick            | :l.faktor: ρ <sub>3.0G</sub> = | 0,6689            |                                |                   | 1,5               |                   |                  |                                          |              |              |                   |            |                                       |
| Variante 1     |                   | Höhe:                      | 2,75             | E                | Knick            | :l.faktor: ρ <sub>2.0G</sub> = | 0,6689            |                                | Auflagerbreite:   | 0,25 1            | E                 |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  | Knick            | :l.faktor: p₁.₀₀=              | 0,6689            |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  | Knic             | skl.faktor: ρ <sub>EG</sub> =  | 0,6689            |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  |                  |                                |                   |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
| Nachweis-      | N <sub>Ed.i</sub> | M <sub>id</sub>            | e <sub>M,i</sub> | 0,45 · t         | e <sub>M,i</sub> | $> 0,45 \cdot t \rightarrow 1$ | t <sub>a,i</sub>  | $< 0,10 \cdot t \rightarrow 1$ | e <sub>M2,i</sub> | e <sub>M1,i</sub> | e <sub>a,i</sub>  | e <sub>d,i</sub> | e <sub>M2,i</sub> bzw. e <sub>M1,i</sub> | ē            | φ            | N <sub>Rd,i</sub> | Jachweis N | J <sub>Ed,i</sub> / N <sub>ud,i</sub> |
| ebene i<br>/1/ | in kN/m<br>/2/    | in kNm/m<br>/3/            | in m<br>/4/      | in m<br>/5/      | in m<br>/6/      | $< 0,45 \cdot t \rightarrow 0$ | in m<br>/8/       | $> 0,10 \cdot t \rightarrow 0$ | in m<br>/10/      | in m<br>/1 //     | in m<br>/12/      | in m<br>/13/     | in m<br>/14/                             | in m<br>/15/ | /16/<br>/16/ | n kN/m<br>/17/    | /18/       | /18'/                                 |
| 3.0G (K)       | 14.09             | -0.24                      | -0.0170          | 0.1125           | 0.0170           | 0                              | 0.0041            | 1                              | 0.0000            | -0.0170           | 0.0041            | 0.0000           | -0.0170                                  | -0.0211      | 0.83         | 713.31            | 0K         | 0.02                                  |
| 3.0G (F)       | 21,16             | 0,26                       | 0,0123           | 0,1125           | 0,0123           | 0                              | 0,0062            | -                              | 0,0000            | 0,0123            | 0,0041            | 0,0000           | 0,0123                                   | 0,0164       | 0,87         | 745,88            | УО         | 0,02                                  |
| 2.0G (K)       | 36,96             | -0,26                      | -0,0070          | 0,1125           | 0,0070           | 0                              | 0,0108            | -                              | 0,0000            | -0,0070           | 0,0041            | 0,0000           | -0,0070                                  | -0,0111      | 0,91         | 781,96            | УÓ         | 0,04                                  |
| 2.0G (F)       | 44,03             | 0,26                       | 0,0059           | 0,1125           | 0,0059           | 0                              | 0,0128            | -                              | 0,0000            | 0,0059            | 0,0041            | 0,0000           | 0,0059                                   | 0,0100       | 0,92         | 789,71            | Ş          | 0,05                                  |
| 1.0G (K)       | 62,66             | -0,26                      | -0,0041          | 0,1125           | 0,0041           | 0                              | 0,0183            | -                              | 0,0000            | -0,0041           | 0,0041            | 0,0000           | -0,0041                                  | -0,0082      | 0,93         | 801,77            | Ş          | 0,07                                  |
| 1.0G (F)       | 69,73             | 0,26                       | 0,0037           | 0,1125           | 0,0037           | 0                              | 0,0203            | ~                              | 0,0000            | 0,0037            | 0,0041            | 0,0000           | 0,0037                                   | 0,0078       | 0,94         | 804,66            | Ş          | 0,08                                  |
| EG (K)         | 105,29            | -0,26                      | -0,0025          | 0,1125           | 0,0025           | 00                             | 0,0307            | 00                             | 0,0000            | -0,0025           | 0,0041            | 0,0000           | -0,0025                                  | -0,0066      | 0,95         | 813,31            | Ş Ş        | 0,12                                  |
| EG (F)         | 112,36            | 0,27                       | 0,0024           | 0,1125           | 0,0024           | D                              | 0,0327            | О                              | 0,000             | 0,0024            | 0,0041            | 0,000            | 0,0024                                   | 0,0065       | 0,95         | 813,76            | Ś          | 0,13                                  |
|                |                   |                            |                  |                  |                  |                                |                   |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
| achweis unbe   | wehrter Ma        | uerwerkswän                | de unter vor     | wiegend vei      | rtikaler Belasi  | tung in Wandr                  | nitte gemä        | 3 EC 6 Teil 1-1                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  |                  |                                |                   |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
| Nachwei        | s                 | Geometrie d                | tes Wandqu€      | srschnitts       | Werte            | für die tabellari              | sche Berec        | bunu                           | Werte für         | die Bemess        | bung              |                  |                                          |              |              |                   |            |                                       |
| Wandabsch. C3  | 3-E3; WX6         | Länge:                     | 1,975            | E                | -                | Wandbreite: t=                 | 0,25 r            | -                              | f <sub>k</sub> =  | 5,151             | N/mm <sup>2</sup> |                  |                                          |              |              |                   |            |                                       |
| LC 2           |                   | Dicke: t=t <sub>ef</sub> = | 0,25             | E                | Knick            | ll.faktor: p <sub>3.0G</sub> = | 0,6689            |                                | = <sup>M</sup>    | 1,5               |                   |                  |                                          |              |              |                   |            |                                       |
| Variante 1     |                   | Höhe:                      | 2,75             | E                | Knick            | tl.faktor: ρ <sub>2.0G</sub> = | 0,6689            | •                              |                   |                   | ]                 |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  | Knick            | tl.faktor: ρ <sub>1.0G</sub> = | 0,6689            |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  | Knic             | ckl.faktor: p <sub>EG</sub> =  | 0,6689            |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
|                |                   |                            |                  |                  |                  |                                |                   |                                |                   |                   |                   |                  |                                          |              |              |                   |            |                                       |
| Nachweis-      | N <sub>Ed,i</sub> | M <sub>md,i</sub>          | e <sub>M.i</sub> | e <sub>a,i</sub> | e <sub>m,i</sub> | 0,05 · t                       | e <sub>mk,i</sub> | $A_{1,i}$                      | 'n                | Φ <sub>m,i</sub>  | N <sub>Rd,i</sub> | Nachweis         |                                          |              |              |                   |            |                                       |
| ebene i        | in kN/m           | in kNm/m                   | in m             | in m             | n :              |                                | u<br>i            | į                              |                   | ļ                 | in kN/m           |                  |                                          |              |              |                   |            |                                       |
| /19/           | /20/              | /21/                       | /22/             | /23/             | /24/             | /25/                           | /26/              | 1271                           | /28/              | /29/              | /30/              | /31/             |                                          |              |              |                   |            |                                       |
| 3.0G (M)       | 17,62             | 0,01                       | 0,0006           | 0,0041           | 0,0047           | 0,0125                         | 0,0125            | 0,9000                         | 0,2534            | 0,87              | 748,10            | ОĶ               |                                          |              |              |                   |            |                                       |
| 2.0G (M)       | 40,50<br>66.20    | 0,00                       | 0,0000           | 0,0041           | 0,0041           | 0,0125                         | 0,0125            | 0,9000                         | 0,2534            | 0,87              | 748,10            | 89               |                                          |              |              |                   |            |                                       |
| EG (M)         | 00,2U<br>108.82   | 0.0                        | 0,0000           | 0.0041           | 0,0041           | 0.0125                         | 0.0125            | 0.9000                         | 0.2534            | 0.87              | 748.10            | 58               |                                          |              |              |                   |            |                                       |

Tabelle 7.6: Nachweisblatt für unbewehrte Mauerwerkswände unter vorwiegend vertikaler Belastung (Nachweis des Wandquerschnitts WX6 zufolge der Erdbeben-Bemessungssituation; die Lage im Grundriss ist in Abb. 6.3 ersichtlich)

| rwerkswände unter Schubbelastung gemäß EC 6 Teil 1-1 | dbebensit. Richtung der Erdbebeneinwirkung: X und Y Geschoßanzahl: 4 | EG anzusetzende Exzentrizität: - Bemessungsbodenbeschleunigung ag= 0,99 m/s <sup>2</sup> | γ <sup>m</sup> = 1,5 | es Wandquerschnitts Bernessungseinwirkungen Beanspruchbarkeit Nachweis | li hi N <sub>Ed.J</sub> F V <sub>Ed.i</sub> l <sub>C.i</sub> 0,5·f <sub>VK0</sub> 0,4·σ <sub>d.i</sub> f <sub>Vd.i</sub> V <sub>Rd.i</sub> | in m in m in kN in m in kN/m² in kN/m² in kN/m² in kN/m² | 4,500 2,75 408,45 237,39 3,83 150 170,63 213,75 204,67 NOT OK | 1,760 2,75 313,18 61,81 1,54 150 325,38 316,92 122,01 OK | 4,500 2,75 409,64 124,32 3,81 150 172,03 214,68 204,49 OK | 1,975 2,75 248,45 125,78 1,38 150 288,06 292,04 100,75 NOT OK | 6,000 2,75 796,17 408,00 4,99 150 255,28 270,19 337,06 NOT OK | 1,975 2,75 247,17 20,60 1,38 150 285,68 290,45 100,52 OK | 6,425 2,75 389,45 221,59 4,60 150 135,52 190,35 218,80 NOT OK | 6,425 2,75 404,58 248,16 4,62 150 140,18 193,46 223,33 NOT OK | 0,400 2,75 20,33 8,95 0,00 150 | 0,400 2,75 28,49 3,39 0,00 150 | 11,700 2,75 1085,31 401,85 10,54 150 164,75 209,83 552,91 OK | 6,050 2,75 635,35 67,25 5,53 150 183,68 222,46 307,78 OK | 0,450 2,75 146,82 7,04 0,45 150 522,03 448,02 50,40 OK | 5,650 2,75 971,62 147,39 5,65 150 275,15 283,43 400,35 OK | 6,050 2,75 701,20 133,93 5,74 150 195,34 230,23 330,57 OK | 0,450 2,75 145,94 8,78 0,45 150 518,90 445,93 50,17 OK | 11.700 2.75 1070.98 512.55 10.50 150 163.20 208.80 548.09 OK |
|------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| Inter Schubbelastung gemäß EC 6 Teil                 | Richtung der Erdbebeneinwirkung:                                     | anzusetzende Exzentrizität:                                                              |                      | hnitts Bemessungseinwirkungen                                          | h <sub>i</sub> N <sub>Ed,i,F</sub> V <sub>Ed,i</sub>                                                                                       | in m in kN in kN                                         | 2,75 408,45 237,39                                            | 2,75 313,18 61,81                                        | 2,75 409,64 124,32                                        | 2,75 248,45 125,78                                            | 2,75 796,17 408,00                                            | 2,75 247,17 20,60                                        | 2,75 389,45 221,59                                            | 2,75 404,58 248,16                                            | 2,75 20,33 8,95                | 2,75 28,49 3,39                | 2,75 1085,31 401,85                                          | 2,75 635,35 67,25                                        | 2,75 146,82 7,04                                       | 2,75 971,62 147,39                                        | 2,75 701,20 133,93                                        | 2,75 145,94 8,78                                       | 2,75 1070,98 512,55                                          |
| ewehrter Mauerwerkswände i                           | combination: Erdbebensit.                                            | Geschoß: EG                                                                              |                      | Geometrie des Wandquerso                                               | t, I,                                                                                                                                      | in m<br>in m                                             | 0,25 4,500                                                    | 0,25 1,760                                               | 0,25 4,500                                                | 0,25 1,975                                                    | 0,25 6,000                                                    | 0,25 1,975                                               | 0,25 6,425                                                    | 0,25 6,425                                                    | 0,25 0,400                     | 0,25 0,400                     | 0,25 11,700                                                  | 0,25 6,050                                               | 0,25 0,450                                             | 0,25 5,650                                                | 0,25 6,050                                                | 0,25 0,450                                             | 0,25 11,700                                                  |
| Nachweis unb                                         | Lastfalli                                                            |                                                                                          |                      | 1                                                                      | Wandquer-                                                                                                                                  | schnitt                                                  | WX1                                                           | WX2                                                      | WX3                                                       | WX4                                                           | WX5                                                           | WX6                                                      | WX7                                                           | WX8                                                           | WX9                            | WX10                           | WY1                                                          | WY2                                                      | WY2'                                                   | WY3                                                       | WY4                                                       | WY4'                                                   | WY5                                                          |

Tabelle 7.7: Nachweisblatt für unbewehrte Mauerwerkswände unter Schubbelastung (Nachweis sämtl. Wandquerschnitte zufolge der Erdbeben-Bemessungssituation)

# 8 Musterstatik "Zeitverlaufsverfahren"

# 8.1 Allgemeines

Abschließend wird der viergeschoßige Wohnbau mit Hilfe der Zeitverlaufsberechnungsmethode analysiert. Die Berechnung erfolgt dabei wiederum mit der Tragwerksplanungssoftware [SW2]<sup>1</sup>. Die Vorgehensweise entspricht – bis auf die Definition der Erdbebeneinwirkung – der in Abschnitt 7.1 angegebenen Vorgehensweise.

# 8.2 Erdbebeneinwirkung

Gemäß [ÖNORM EN 1998-1] darf die Erdbebeneinwirkung mit Hilfe von

- künstlichen,
- aufgezeichneten oder
- simulierten

Beschleunigungszeitverläufen dargestellt werden. Die weitere Berechnung wird mit aufgezeichneten Erdbebenaccelerogrammen durchgeführt, da diese der European Strong-Motion Database [URL4] kostenlos entnommen werden können.

### 8.2.1 Auswahl der Beschleunigungszeitverläufe

Um die Bemessungswerte der Beanspruchungsgrößen mitteln zu können, müssen die Berechnungen gemäß [ÖNORM EN 1998-1] mit sieben unterschiedlichen Beschleunigungszeitverläufen erfolgen. Für den Standort Mürzzuschlag werden folgende Gruppen von Zeitverläufen gewählt:

- ZV-Gruppe 964, Wiener Neustadt-Rathaus (Aufzeichnungsstation), 3.11.1997, 21:44:49
- ZV-Gruppe 965, Wiener Neustadt-Rathaus, 3.11.1997, 23:16:59
- ZV-Gruppe 966, Wiener Neustadt-Rathaus, 24.11.1997, 08:48:39
- ZV-Gruppe 969, Wien-Palais Festetics, 9.1.1996, 01:07:22
- ZV-Gruppe 970, Wien-Schaumburgergasse 7 (Hauptschule), 9.1.1996, 01:07:22
- ZV-Gruppe 972, Wiener Neustadt-Rathaus, 9.1.1996, 01:07:22
- ZV-Gruppe 973, Wiener Neustadt-Berufsschule Schneeberggasse, 9.1.1996, 01:07:22

Aus der Datenbank können die aufgezeichneten Zeitverläufe der Nord-Süd-, der Ost-Westund der Vertikalkomponente entnommen werden. Da die Vertikalkomponente in Österreich grundsätzlich nicht relevant ist, wird diese bei der weiteren Berechnung nicht angesetzt. Die Zeitverläufe der Nord-Süd-Komponente (ZV 964 N–S) sowie der Ost-West-Komponente (ZV 964 O–W) des am 3. November 1997 in Wiener Neustadt aufgezeichneten Erdbebens werden in Abb. 8.1 dargestellt.

<sup>&</sup>lt;sup>1</sup>Der Berechnung wird das im vorangehenden Kapitel definierte Tragwerksmodell zugrunde gelegt.



Abbildung 8.1: Zeitverlauf der Nord–Süd-Komponente (oben) sowie Zeitverlauf der Ost–West-Komponente (unten) des Bebens vom 3. November 1997 in Wr. Neustadt

#### 8.2.2 Modifizierung der Beschleunigungszeitverläufe

Die im vorangehenden Abschnitt abgebildeten, aufgezeichneten Zeitverläufe müssen für die weitere dynamische Systemanalyse modifiziert werden (Abb. 8.2). Einerseits sind ihre Werte noch auf den Wert  $a_g \cdot S$  des Standorts Mürzzuschlag zu skalieren, andererseits sollte nur ein gewisser Ausschnitt des gesamten Zeitverlaufs verwendet werden. Somit werden nicht nur sehr kurze Zeitschritte möglich, sondern auch annehmbare Rechenzeiten gewährleistet. Nach erfolgter Modifizierung kann der Ausschnitt des jeweiligen Beschleunigungszeitverlaufs als instationärer Last-Zeit-Verlauf in das Programm [SW2] eingegeben werden.

#### 8.2.3 Theoretischer Hintergrund der Tragwerksplanungssoftware [SW2]

Um die gesuchten Zeitverläufe der Antwortschwingungen eines Systems ermitteln zu können, muss das nachfolgende – in Abschnitt 3.2.1 bereits beschriebene – Gleichungssystem gelöst werden:

$$[M] \cdot \{\ddot{x}\} + [C] \cdot \{\dot{x}\} + [K] \cdot \{x\} = \underbrace{\{P(t)\}}_{\text{Belastungsvektor}}$$

Der Belastungsvektor setzt sich aus folgenden Komponenten zusammen [Inf05]:

$$\{P(t)\} = (\{p\} - [M] \cdot \{\ddot{x}_k\}) \cdot f(t)$$
(8.1)

 $\operatorname{mit}$ 

| $\{p\}$          | <br>Lastvektor                      |
|------------------|-------------------------------------|
| [M]              | <br>Massenmatrix                    |
| $\{\ddot{x}_k\}$ | <br>Vektor der Knotenbeschleunigung |
| f(t)             | <br>Zeitfunktion der Belastung      |

Zur Integration der Bewegungsgleichungen wird das allgemeine Integrationsschema nach Newmark und Wilson verwendet. Dieses ist, unabhängig von der Wahl der Größe des Zeitschrittes, stabil. Es wird von den folgenden Annahmen ausgegangen [Inf05]:

$$\dot{x}(t+\Delta t) = \dot{x}(t) + \frac{1}{2} \cdot \left[\ddot{x}(t) + \ddot{x}(t+\delta t)\right] \cdot \Delta t$$
(8.2)

$$x(t + \Delta t) = x(t) + \dot{x}(t) \cdot \Delta t + \frac{1}{4} \cdot \left[\ddot{x}(t) + \ddot{x}(t + \Delta t)\right] \cdot \Delta t^2$$

$$(8.3)$$

Zur Berechnung der Verschiebungen, Geschwindigkeiten und Beschleunigungen zum Zeitpunkt  $t+\Delta t$  wird zusätzlich Gl. 3.30 herangezogen. Die Zeitschrittlösung wird hiermit nach folgendem Schema durchgeführt:

- Ermittlung von Massen-, Dämpfungs- und Steifigkeitsmatrix
- Vorgabe von x(0),  $\dot{x}(0)$  und  $\ddot{x}(0)$
- Wahl des Zeitschrittes  $\Delta t$
- Berechnung der effektiven Steifigkeitsmatrix und Triangulation
- Berechnung der effektiven Lasten zum Zeitpunkt  $t + \Delta t$
- Bestimmung der Verschiebungen zum Zeitpunkt  $t + \Delta t$  durch Rückwärtsauflösung
- Ermittlung der Geschwindigkeiten und Beschleunigungen zum Zeitpunkt $t+\Delta t$ aus Gl. 8.2 und Gl. 8.3



Abbildung 8.2: Vorgehensweise bei der Modifizierung der Zeitverläufe

|      | Von     | Big     |        | 917     | 97     |
|------|---------|---------|--------|---------|--------|
|      | Knoten  | Knoten  | a.     | [m/==1] | au     |
|      | Innocen | Innocen |        | [, 3]   |        |
| 1    | 1       | 5415    | 1,0000 | 0,3000  | 0,0000 |
| 2    |         |         | ·      |         |        |
| 3    |         |         |        |         |        |
| 4    |         |         |        |         |        |
| 5    |         |         |        |         |        |
| 6    |         |         |        |         |        |
| 7    |         |         |        |         |        |
| 8    |         |         |        |         |        |
| 9    |         |         |        |         |        |
| 10   |         |         |        |         |        |
| 11   |         |         |        |         |        |
| 12   |         |         |        |         |        |
| 13   |         |         |        |         |        |
| 14   |         |         |        |         |        |
| 15   |         |         |        |         |        |
| 16   |         |         |        |         |        |
| 17   |         |         |        |         |        |
| 18   |         |         |        |         |        |
| 19   |         |         |        |         |        |
| 20   |         |         |        |         |        |
| 21   |         |         |        |         |        |
| 22   |         |         |        |         |        |
| 23   |         |         |        |         |        |
| 24   |         |         |        |         |        |
| 25   |         |         |        |         |        |
| 26   |         |         |        |         |        |
| 27   |         |         |        |         |        |
| 28   |         |         |        |         |        |
| 29   |         |         |        |         |        |
| 1 72 |         |         |        |         |        |

Abbildung 8.3: Definition von Knotenbeschleunigungen in [SW2]

Eine Beanspruchung durch eine Bodenbeschleunigung lässt sich mittels Transformation des Bezugssystems durch eine Belastung der nicht gelagerten Tragwerksknoten ersetzen. Die effektive Tragwerksbelastung wird durch folgenden Lastvektor beschrieben [Inf05]:

$$\{p(t)_{eff}\} = \{p_{eff}\} \cdot f(t) = -[M] \cdot ([T_s] \cdot \{\ddot{x}_b\}) \cdot f(t) = -[M] \cdot \{\ddot{x}_k\} \cdot f(t)$$
(8.4)

 $\operatorname{mit}$ 

| f(t)             | <br>Zeitverlauf der Erregung       |
|------------------|------------------------------------|
| $\{\ddot{x}_b\}$ | <br>Vektor der Bodenbeschleunigung |
| $[T_s]$          | <br>Transformationsmatrix          |

Diese Beziehung vernachlässigt die durch die Bodenbeschleunigung erzeugten Dämpfungskräfte sowie die Kopplung zwischen gelagerten und freien Elementen der Massenmatrix. Diese Einflüsse sind jedoch gegenüber den Trägheitskräften von untergeordneter Bedeutung. Die Transformationsmatrix  $[T_s]$  gibt den statischen Einfluss einer Stützenverschiebung auf die übrigen Systemknoten wieder. Bei statisch bestimmt gelagerten Tragwerken oder starrer Bodenscheibe wird diese durch rein kinematische Beziehungen beschrieben [Inf05].

Für die weitere Berechnung muss folglich ein neuer Lastfall (Dummy 1) mit einer Knotenlast eingegeben werden, deren x-, y- und z-Komponente jeweils mit Null festgelegt wird (siehe Gl. 8.1). Zusätzlich sind die Komponenten der Knotenbeschleunigungen – wie aus Abb. 8.3 ersichtlich – in globaler Richtung zu definieren.

### 8.2.4 Berechnungsvorgaben

Die Eingabe der wesentlichen Parameter für die dynamische Systemanalyse erfolgt wiederum im Ordner "Berechnungsvorgaben Dynamik" (siehe Abb. 8.4). Die Berechnung erfolgt mit der modalen Zeitschrittintegration, deren theoretische Grundlagen in Abschnitt 3.3.1 erläutert werden. Die Berücksichtigung der ersten 75 Eigenwerte dient dazu, sämtliche die Systemantwort wesentlich beeinflussenden Eigenformen zu erfassen. Die Speicherung jedes 2-ten Zeitschrittes führt zur Reduzierung der Datenmenge. Die Genauigkeit der Integration wird dadurch nicht beeinträchtigt, jedoch die Qualität der Ergebnisdarstellung. Da jedoch sehr kleine Zeitschritte gewählt werden, wird die Ergebnisdarstellung bei der Speicherung jedes Zeitschrittes unwesentlich besser. Weiters sind die zuvor definierten Knotenbeschleunigungen zu aktivieren. Der für die dynamische Systemanalyse erforderliche instationäre Last-Zeit-Verlauf ist in Abb. 8.4 dargestellt.

| Berechnungsmodus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modale Zeitschrittintegration 🛛 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 |
| Eigenwerte         Anzahl Eigenwerte:       75         Max. Vektorraum:       83         Iterationsgenauigkeit:       1       [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t(s) f(t)(-)<br>1 0.0000 0.0000<br>2 0.0100 0.1527<br>3 0.0200 0.1376                                                                                                                                                                                                                           |
| Zeitschrittintegration Art des Last-Zeit-Verlaufes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 0.0300 0.0323 1.00<br>5 0.0400 0.0121<br>6 0.0500 -0.0104 0.00                                                                                                                                                                                                                                |
| Anzahl Zeitschritte: 780 Instationär am Gesamtsystem 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |
| Dauer des Zeitschrittes:     0.0065     [s]     Instationärer<br>Last-Zeit-Verlauf:     1       Ergebnisse alle n Schritte:     2     Lastfrequenz:     Phasenverschieb.:       0     [H2]     0     [rad]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9         0.0600         -0.0996           10         0.0900         0.0371           11         0.1000         0.1233           12         0.100         0.1233           12         0.100         0.0690           13         0.1200         0.050           14         0.1200         0.0425 |
| Folgende Lastfälle berücksichtigen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 0,1400 -0,0791 -1,00                                                                                                                                                                                                                                                                         |
| 6 Dummy 1<br>C Dummy 1 | 16     0.1500     -0.0871     0.0     1.0     2.0     3.0     4.0     5.0     6.0       17     0.1600     -0.0917     ✓                                                                                                                                                                         |
| Berücksichtigung definierter Knotenbeschleunigungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                 |

Abbildung 8.4: "Berechnungsvorgaben Dynamik" (links) und Darstellung des eingegebenen Zeitverlaufsausschnitts (rechts)

# 8.3 Berechnungsergebnisse

Nach der dynamischen Systemanalyse stehen dem Programmanwender im Ordner "Ergebnisse-Dynamik" sämtliche Stab- und Elementschnittgrößen sowie Auflagerreaktionen in Abhängigkeit von der Zeit zur Verfügung. Für den Auflagerknoten im Ursprung des globalen Koordinatensystems ist die vertikale Auflagerreaktion in Abhängigkeit von der Zeit in Abb. 8.5 dargestellt. Alle bisher in diesem Kapitel vorgestellten Abbildungen und Ergebnisse beziehen sich auf die erste in Abschnitt 8.2.1 angeführte ZV-Gruppe 964. Da jedoch die Bemessung<sup>2</sup> mit den gemittelten Beanspruchungen aus sieben unterschiedlichen Zeitverläufen bzw. Zeitverlaufsgruppen erfolgen sollte, wird nicht nur die maximale Schubkraft exemplarisch für die Wandquerschnitte WX2 und WY3 zufolge der unterschiedlichen Zeitverläufe in den Abbildungen 8.6 und 8.7 dargestellt, sondern auch der Mittelwert der jeweiligen Beanspruchung gezeigt.

 $<sup>^2\</sup>mathrm{Auf}$  die Bemessung des Mauerwerks wird hier nicht näher eingegangen.



Abbildung 8.5: Vertikale Auflagerknotenkraft in Abhängigkeit von der Zeit



Abbildung 8.6: Resultierende Schubkraft des Wandquerschnitts WX2 zufolge der Zeitverlaufsberechnungen



Abbildung 8.7: Resultierende Schubkraft des Wandquerschnitts WY3 zufolge der Zeitverlaufsberechnungen

# 9 Vergleich der Berechnungsverfahren sowie Evaluierung der Ergebnisse

# 9.1 Vergleich der Berechnungsverfahren

### 9.1.1 Bauwerksmodell

Das Bauwerksmodell muss die Verteilung der Steifigkeit und Masse angemessen wiedergeben, so dass alle wesentlichen Verformungen und Trägheitskräfte für die betrachtete Erdbebeneinwirkung ordnungsgemäß erfasst werden.

Der vorliegende Wohnbau erfüllt nicht nur die Regelmäßigkeitskriterien im Grundriss, sondern auch die Regelmäßigkeitskriterien im Aufriss. Beim Berechnungsverfahren "vereinfachtes Antwortspektrumverfahren (vAWS)" wird aufgrund der Grundriss-Regelmäßigkeit angenommen, dass die Erdbebeneinwirkung getrennt und ohne die in Abschnitt 3.2.3 angeführten Kombinationen entlang der beiden senkrecht zueinander stehenden horizontalen Hauptachsen des Bauwerks angreift. Weiters wird die Berechnung anhand von zwei ebenen Modellen, jeweils für eine der beiden Hauptrichtungen, durchgeführt. Eine dreidimensionale Bauwerksmodellierung kann somit beim vAWS entfallen. Für die Ermittlung der Gesamterdbebenkraft müssen jedoch sämtliche Stockwerksmassen per Hand berechnet werden.

Die Verfahren "multimodales Antwortspektrumverfahren (mAWS)" und "Zeitverlaufsverfahren (ZV)" erfordern hingegen für die anschließende dynamische Systemanalyse mittels der Tragwerksplanungssoftware [SW2] eine räumliche Modellierung des vorliegenden Wohngebäudes.

### 9.1.2 Darstellung der Erdbebeneinwirkung

Bei den Berechnungsverfahren vAWS und mAWS wird die Erdbebeneinwirkung durch ein elastisches Beschleunigungs-Antwortspektrum dargestellt. Nach der Bestimmung der Baugrundklasse, des Spektrumtyps und des Verhaltensbeiwertes ist das Bemessungsspektrum durch die in Abschnitt 2.5.2 angegebenen Gleichungen definiert. In Österreich ist gemäß [ÖNORM B 1998-1] jedoch nur die Spektralform Typ 1 anzuwenden. Für das vAWS kann der Plateauwert des Spektrums für die weitere Berechnung herangezogen werden.

Beim ZV wird die Erdbebeneinwirkung hingegen mit Hilfe von aufgezeichneten, auf den Wert  $a_g \cdot S$  skalierten Bodenbeschleunigungszeitverläufen dargestellt. Diese sollten im Hinblick auf die Bodenbeschaffenheit des Standorts ausreichend aussagekräftig sein. An dieser Stelle sei darauf hingewiesen, dass eine Mittelung der Beanspruchungsgrößen nur dann vorgenommen werden kann, wenn Berechnungen mit mindestens sieben unterschiedlichen Beschleunigungszeitverläufen durchgeführt werden.

### 9.1.3 Bestimmung der Eigenschwingungsdauer

Für das vAWS stehen gemäß [ÖNORM EN 1998-1] mehrere Näherungsformeln für die Berechnung der Eigenschwingungsdauer zur Verfügung. Während Gl. 3.8 die Steifigkeit des Tragwerks über einen material- und tragwerkstypbezogenen Faktor berücksichtigt, erfolgt die Berücksichtigung der Tragwerkssteifigkeit in Gl. 3.11 über die horizontale elastische Verschiebung der Gebäudespitze infolge der in Horizontalrichtung angreifend gedachten Gewichtslasten. Weiters können zur Bestimmung der Grundperiode Ausdrücke auf der Grundlage baudynamischer Methoden (z. B. Rayleigh-Methode) herangezogen werden.

Für das mAWS und das ZV können durch Lösung des in Abschnitt 3.2.1 bereits erläuterten Eigenwertproblems grundsätzlich so viele Eigenfrequenzen  $\omega_i$  bestimmt werden, wie Freiheitsgrade n des Tragwerks vorliegen. Bei der dynamischen Systemanalyse mit Hilfe des Programms [SW2] müssen die ersten 75 Eigenwerte berechnet werden, um die in der [ÖNORM EN 1998-1] angegebenen Forderungen erfüllen zu können.

### 9.1.4 Zufällige Torsionswirkungen

Um Unsicherheiten bezüglich der Lage von Massen und der räumlichen Veränderlichkeit der Erdbebenbewegung abzudecken, müssen zufällige Torsionswirkungen bei der Berechnung berücksichtigt werden.

Für das vAWS besteht die Möglichkeit gemäß [ÖNORM EN 1998-1], zufällige Torsionswirkungen dadurch zu berücksichtigen, dass die Beanspruchungen in den einzelnen lastabtragenden Bauteilen mit einem Beiwert  $\delta$  multipliziert werden. Gemäß [ÖNORM B 1998-1] kann die Torsionswirkung bei mehrgeschoßigen Bauwerken, bei denen die lastabtragenden Elemente ohne Unterbrechung über die gesamte Höhe laufen, auch über Näherungsberechnungen abgedeckt werden. Für die Berechnung des vorliegenden Wohngebäudes wird die im Anhang B der [ÖNORM B 1998-1] vorgestellte Näherungsberechnung "Berechnungsmodell 3" verwendet.

Da den Berechnungsverfahren mAWS und ZV ein räumliches Tragwerksmodell zugrundegelegt wird, werden die Torsionswirkungen durch Ansetzen von Torsionsmomenten um die vertikale Achse eines jeden Geschoßes berücksichtigt.

# 9.2 Vergleich der Berechnungsergebnisse

### 9.2.1 Eigenschwingungsdauer

Die aus den unterschiedlichen Berechnungsverfahren (vAWS, mAWS und ZV) ermittelten Eigenperioden bzw. Eigenfrequenzen sind in Tab. 9.1 und Abb. 9.1 ersichtlich. Die Eigenperioden aus Gl. 3.8 liegen im Plateaubereich des Bemessungsspektrums. Wird Gl. 3.8 in Kombination mit Gl. 3.9 und Gl. 3.10 der Ermittlung der Eigenperioden zugrunde gelegt, resultiert daraus eine geringfügige Unterschätzung der Gesamterdbebenkraft in *x*-Richtung ( $\rightarrow$  geringerer Ordinatenwert des Bemessungsspektrums). Die Gl. 3.11 liefert Werte, die sich im ansteigenden Ast des Bemessungsspektrums befinden. Da sämtliche Werte innerhalb bzw. in der Nähe des Plateaubereichs zu liegen kommen, ist die in Abschnitt 6.1.3 getroffene Annahme für das vAWS somit vertretbar.

Die mit Hilfe des Programms [SW2] berechneten Eigenperioden liegen ebenfalls im Plateaubereich des Bemessungsspektrums.

| Berechnungsverfahren |                                  |                    | $T_1$ in s | $f_1$ in Hz |
|----------------------|----------------------------------|--------------------|------------|-------------|
| VAWS-V               | Gl. 3.8                          | <i>x</i> -Richtung | 0,391      | 2,558       |
|                      |                                  | y-Richtung         | 0,391      | 2,558       |
| VAWS-V               | Gl. 3.8 mit Gl. 3.9 und Gl. 3.10 | x-Richtung         | 0,586      | 1,706       |
|                      |                                  | y-Richtung         | 0,227      | 4,405       |
| VAWS-V               | Gl. 3.11                         | x-Richtung         | 0,135      | 7,407       |
|                      |                                  | y-Richtung         | 0,107      | 9,346       |
| MAWS-V, ZV-V         | Berechnung mittels [SW2]         | x-Richtung         | 0,282      | $3,\!544$   |
|                      |                                  | y-Richtung         | 0,177      | $5,\!665$   |

Tabelle 9.1: Vergleich der aus den unterschiedlichen Berechnungsverfahren ermittelten Eigenfrequenzen und Eigenperioden



Abbildung 9.1: Bemessungsspektrum gemäß [ÖNORM EN 1998-1]; Darstellung der berechneten Eigenperioden im Plateaubereich

# 9.3 Evaluierung der Ergebnisse

#### 9.3.1 Normalkraftnachweise

Sämtlichen in den Abschnitten 6.3.1 und 7.8.1 geführten Normalkraftnachweisen für die Erdbeben-Bemessungssituation kann entnommen werden, dass das Verhältnis  $N_{Ed,i}/N_{Rd,i}$  am Wandfuß des Erdgeschoßes maximal den Wert 0,32 erreicht (siehe Abb. 9.2). Um auch für die Grundkombination der Einwirkungen beurteilen bzw. abschätzen zu können, ob der Bemessungswert des Tragwiderstandes größer als der Bemessungswert der angreifenden Last ist, werden die Bemessungswerte der vertikal einwirkenden Last aus der Erdbebenkombination mit 1,75 multipliziert. Dieser Wert wird wie folgt ermittelt:

$$\begin{array}{l} \underbrace{0,70\cdot P}_{Anteil\ Eigengewicht} \cdot \underbrace{1,00}_{TSB} + \underbrace{0,30\cdot P}_{Anteil\ Nutzlast} \cdot \underbrace{0,30}_{TSB} = N_{Ed,EK} \quad \text{,} Erdbebenkombination" \\ \rightarrow P = \frac{N_{Ed,EK}}{0,80} \\ \underbrace{0,65\cdot P}_{Anteil\ Eigengewicht} \cdot \underbrace{1,35}_{TSB} + \underbrace{0,35\cdot P}_{Anteil\ Nutzlast} \cdot \underbrace{1,50}_{TSB} = N_{Ed,GK} \quad \text{,} Grundkombination" \\ \rightarrow P = \frac{N_{Ed,GK}}{1,40} \\ \Rightarrow N_{Ed,GK} = 1,75\cdot N_{Ed,EK} \end{array}$$

mit

| P                  | Belastung in kN/m                                                    |
|--------------------|----------------------------------------------------------------------|
| TSB                | Teilsicherheitsbeiwert bzw. Kombinationsbeiwert                      |
| $N_{Ed,EK} \ldots$ | Bemessungswert der angreifenden Last infolge der Erdbebenkombination |
|                    | in $kN/m$ (bekannt)                                                  |
| $N_{Ed,GK} \dots$  | Bemessungswert der angreifenden Last infolge der Grundkombination in |
|                    | $\rm kN/m$                                                           |

Abb. 9.2 zeigt, dass der Normalkraftnachweis mit den abgeschätzten Einwirkungen der Grundkombination für die dargestellten Wandquerschnitte problemlos erfüllt werden kann.

#### 9.3.2 Schubkraftnachweise

Vorab erfolgt ein Vergleich der aus den unterschiedlichen Berechnungsverfahren ermittelten Gesamterdbebenkräfte in x- und y-Richtung. Der Abb. 9.3 kann entnommen werden, dass sowohl die ermittelten Gesamterdbebenkräfte in den jeweiligen Richtungen als auch die zugehörigen Resultierenden der Normalkräfte annähernd übereinstimmen.

Um die geführten Schubnachweise möglichst transparent zu gestalten, werden neben den Bemessungswerten der einwirkenden Schubkräfte (siehe Abb. 9.4) auch die Bemessungswerte der Schubtragfähigkeit angegeben (siehe Abb. 9.5). Beim vAWS kann für die Wandquerschnitte WX2 und WX4 kein Nachweis erbracht werden, da die berechnete Exzentrizität die halbe Länge der jeweiligen Wandquerschnitte übersteigt.

Aus Abb. 9.6 geht hervor, dass die Schubnachweise aufgrund zu geringer Schubtragfähigkeit – unabhängig vom gewählten Berechnungsverfahren zur Berücksichtigung der Erdbebeneinwirkung – insbesondere in *x*-Richtung nicht erfüllt werden können.



Abbildung 9.2: Normalkraftnachweise der Wandquerschnitte WX2, WX4, WX5, WY1, WY2 und WY3 für die Erdbebenkombination und die Grundkombination



Abbildung 9.3: Vergleich der aus den unterschiedlichen Berechnungsverfahren ermittelten Gesamterdbebenkräfte in x- und y-Richtung



Abbildung 9.4: Maximal auftretende Schubkräfte in Abhängigkeit des Berechnungsverfahrens für die Wandquerschnitte WX2, WX4, WX5, WY1, WY2 und WY3



Abbildung 9.5: Darstellung der Schubtragfähigkeit



Abbildung 9.6: Darstellung des Schubnachweises

# 10 Zusammenfassung, Schlussfolgerungen und Ausblick

# 10.1 Zusammenfassung

Im Auftrag der Wienerberger Ziegelindustrie GmbH wird ein vorgegebenes viergeschoßiges Wohngebäude aus Planziegelmauerwerk für die Erdbeben-Bemessungssituation in Österreich analysiert. Einleitend wird auf die seismologischen Grundlagen und auf die Darstellungsmöglichkeiten der Erdbebeneinwirkung näher eingegangen. Zur Berechnung der Beanspruchungsgrößen infolge Erdbebeneinwirkung stehen gemäß [ÖNORM EN 1998-1] mehrere Möglichkeiten zur Verfügung. In Kapitel 3 werden die theoretischen Grundlagen und deren Verankerung in der [ÖNORM EN 1998-1] für das vereinfachte Antwortspektrumverfahren, das multimodale Antwortspektrumverfahren und das Zeitverlaufsverfahren erarbeitet. Anschließend erfolgt ein Überblick der zusätzlichen Anforderungen für Mauerwerksbauten in Erdbebengebieten gemäß [ÖNORM EN 1998-1].

Nach der theoretischen Einführung wird die Anwendung der unterschiedlichen Berechnungsmethoden zur Berücksichtigung von Erdbebeneinwirkungen für das vorliegende Wohngebäude in Form einer Musterstatik gezeigt. Die generelle Vorgehensweise sowie die Vorstellung des Projekts hinsichtlich Baustoffe, Geometrie, Pläne und allgemeine Lastermittlung sind in Kapitel 6 angegeben. Sämtlichen Berechnungen wird die maximale Bemessungsbodenbeschleunigung der Erdbebenzone 3 zugrunde gelegt. Darauf aufbauend erfolgt nicht nur ein Vergleich der verwendeten Berechnungsverfahren, sondern auch eine Gegenüberstellung der Berechnungsergebnisse. Bei annähernd vergleichbaren Berechnungsergebnissen erweist sich das vereinfachte Antwortspektrumverfahren aufgrund des geringsten Arbeitsaufwandes für das vorliegende Gebäude als besonders empfehlenswert.

Da das Gebäude in einer Gebäuderichtung große Öffnungen bzw. zu geringe Schubwandquerschnitte aufweist, kann der Schubnachweis – unabhängig von der gewählten Berechnungsmethode – nicht erbracht werden. Neben mehreren Lösungsvorschlägen zur Erhöhung der Schubtragfähigkeit, wird insbesondere auf die Substitution von Planziegelmauerwerk einer aussteifenden Ziegelwand durch Verfüllziegelmauerwerk eingegangen. Eine Anleitung zur Nachweisführung wird in Form eines Bemessungsvorschlages erarbeitet.

# 10.2 Schlussfolgerungen

Der Vergleich der drei Berechnungsverfahren (vAWS, mAWS, ZV) zeigt, dass das vereinfachte Antwortspektrumverfahren bei annähernd vergleichbaren Ergebnissen den geringsten Arbeitsaufwand fordert (Abb. 10.3). Einerseits ist durch die Annahme des Plateauwerts die Berechnung der Eigenfrequenzen und der Eigenperioden nicht zwingend notwendig, andererseits kann auf die aufwendige Modellierung eines entsprechenden Bauwerksmodells verzichtet werden, da i. d. R. (bei Erfüllung der Regelmäßigkeitskriterien) die Berechnung anhand von zwei ebenen Modellen durchgeführt werden kann.

Zur Vermeidung eines erhöhten Rechenaufwands wird die Einhaltung konstruktiver Grundregeln empfohlen. Einfache, gedrungene und im Grund- und Aufriss regelmäßige Bauwerksformen



Abbildung 10.1: Vergleich des Arbeits- und Zeitaufwandes (qualitativ)

sind anzustreben. Liegen Steifigkeits- und Massenmittelpunkt sehr nahe beisammen, reduziert sich die zur Berücksichtigung von Torsionseinwirkungen anzusetzende Exzentrizität auf ein Minimum. Entsprechend lange Schubwandquerschnitte sind zur Aufnahme der durch Erdbebeneinwirkung hervorgerufenen Horizontalkräfte vorzusehen. Öffnungen sollten möglichst klein sein und mit genügend Abstand von den Gebäudeecken angeordnet werden. Weitere Grundsätze zum erdbebengerechten Enturf von Hochbauten werden in [Bac02a] gegeben und sollten bereits bei der Planung berücksichtigt werden.

# 10.3 Ausblick

In den folgenden Abschnitten wird auf normativ noch zu klärende Punkte hingewiesen.

## 10.3.1 Normalkraftnachweis gemäß [ÖNORM EN 1996-1-1] Anhang C

Im Fall von kleinen Normalkräften und mittleren bis hohen Knotenmomenten – insbesondere im Bereich der oberen Geschoße – führt eine strikte Einhaltung der Nachweise laut [ÖNORM EN 1996-1-1] zu keinen brauchbaren Ergebnissen, da theoretisch die Lastexzentrizität die halbe Wanddicke übersteigt. Diese beinhaltet nicht nur die Ausmitte der Bemessungslast bei Aufnahme durch den Spannungsblock, sondern auch Ausmitten hervorgerufen durch Imperfektionen und horizontale Lasten (Wind).

Die sich bei dieser Einwirkungskonstellation bildenden plastischen Gelenke mit großer Rotationsfähigkeit schließen jedoch ein Materialversagen aus (siehe Abb. 10.2). Dieser Effekt wurde in Versuchen an der ETH Zürich beobachtet und ausführlich analysiert. Es sei jedoch darauf hingewiesen, dass die dabei entstehenden Rissbreiten (insbesondere bei Risskonzentration) ein Gebrauchstauglichkeitsproblem sein können [Sch06].

Eine Überarbeitung von [ÖNORM EN 1996-1-1] Anhang C wird als notwendig erachtet.

### 10.3.2 Schubnachweis unter Berücksichtigung gerissener Bereiche

Da die Erdbebeneinwirkung eine Wechselbeanspruchung darstellt, kann die Auflagerfuge grundsätzlich in zwei Bereiche eingeteilt werden (siehe Abb. 10.3). Der Bereich  $l_{cI}$  bleibt unabhängig von der Einwirkungsrichtung ständig überdrückt. Hingegen kommt es im Bereich  $l_{cII}$  zum Aufklaffen der Lagerfuge. Folglich sollte in diesem Bereich für die Ermittlung der Schubtragfähigkeit nur der Anteil aus der Bemessungsdruckspannung (Reibung) herangezogen werden. Der Anteil aus der Haftscherfestigkeit (Kohäsion) sollte nicht angesetzt werden. Die entsprechend adaptierten Schubnachweise werden in Abb. 10.4 gezeigt.



Abbildung 10.2: Randbruchstauchung  $\epsilon_{r,U}$  von Ziegelmauerwerk (links); Bruchmechanismus I: Innere Kräfte im Mauerwerk unter exzentrischen Normalkräften (rechts) [Ker02]



Abbildung 10.3: Darstellung der gerissenen Bereiche der Auflagerfuge



Abbildung 10.4: Schubnachweise unter Berücksichtigung gerissener Bereiche

#### 10.3.3 Zeitverlaufsverfahren vs. Verhaltensbeiwert

Die meisten Tragwerke besitzen die Fähigkeit, seismische Energie durch duktiles Verhalten ihrer Bauteile zu dissipieren. Daher darf eine lineare Berechnung auf der Grundlage eines im Vergleich zum elastischen Spektrum abgeminderten Antwortspektrums ( $\rightarrow$  Bemessungsspektrum) durchgeführt werden. Diese Abminderung wird durch die Einführung des Verhaltensbeiwerts q erzielt. Für unbewehrte Mauerwerksbauten darf dieser gemäß [ÖNORM EN 1998-1] mit maximal q = 1, 5 angenommen werden.

Hingegen werden in der [ÖNORM EN 1998-1] bezüglich Verhaltensbeiwerte für Zeitverlaufsberechnungen keine Regelungen getroffen. Werden die Ergebnisse aus der Zeitverlaufsberechnung ebenfalls mit q = 1, 5 abgemindert, ergeben sich deutlich geringere Schubbeanspruchungen und Gesamterdbebenkräfte (siehe Abb. 10.5 und 10.6). In diesem Zusammenhang sei aber auch auf die teils beträchtlichen Schwankungen der Einzelergebnisse hingewiesen.


Abbildung 10.5: Darstellung der abgeminderten Gesamterdbebenkräfte in den entsprechenden Richtungen



Abbildung 10.6: Darstellung der stark streuenden Einzelergebnisse des Zeitverlaufsverfahrens

# Abbildungsverzeichnis

| 2.1  | Schematische Darstellung der Entstehung von Erdbeben [Bac02b]                             | 4  |
|------|-------------------------------------------------------------------------------------------|----|
| 2.2  | Schnitt durch das Herdgebiet [Fle93]                                                      | 4  |
| 2.3  | Isoseistenkarte des Bebens vom 27. Februar 1768 in Brunn am Steinfeld [Ham97]             | 5  |
| 2.4  | Intensitäts-Skala [ÖNORM B 1998-1]                                                        | 7  |
| 2.5  | Verschiedene Arten von Erdbebenwellen [Bac02b]                                            | 8  |
| 2.6  | Epizentrenverteilung in Österreich seit 1900 [Ham97]                                      | 9  |
| 2.7  | Erdbebengefährdungskarte für das österreichische Bundesgebiet [Fle05]                     | 10 |
| 2.8  | Isolinien der Referenzbodenbeschleunigung $a_{gR}$ in m/s <sup>2</sup> [ÖNORM B 1998-1] . | 12 |
| 2.9  | Ermittlung von elastischen Antwortspektren [Bac02b]                                       | 16 |
| 2.10 | Einmassenschwinger mit Fußpunkterregung [Bac02b]                                          | 16 |
| 2.11 | Bewegungsverlauf bei verschiedenen Dämpfungen [Fle93]                                     | 18 |
| 2.12 | Empfohlene elastische Antwortspektren                                                     | 20 |
| 2.13 | Vergleichende Darstellung des horizontalen elastischen Antwortspektrums und               |    |
|      | des Bemessungsspektrums                                                                   | 21 |
| 2.14 | Ansatz zur Abminderung des Tragwiderstandes bzw. der Ersatzkraft [Bac02b] .               | 22 |
| 2.15 | Zeitverläufe der N-S-Komponente "Tolmezzo" des Friaul-Erdbebens 1976                      | 23 |
| 31   | Kriterien für die Begelmäßigkeit von Gehäuden mit Bücksprüngen [ÖNOBM                     |    |
| 0.1  | FN 1008-1]                                                                                | 27 |
| 32   | Exzentrischer Mehrmassenschwinger und äquivalenter Finmassenschwinger                     | 30 |
| 3.3  | Erdbehen in $y$ -Bichtung [ÖNOBM B 1998-1]                                                | 31 |
| 3.4  | Erdbeben in $r$ -Richtung [ÖNORM B 1998-1]                                                | 31 |
| 3.5  | Dreimassenschwinger mit Federsteifigkeiten und Eigenschwingungsformen [Bac02b]            | 34 |
| 3.6  | Rayleigh-Dämpfung [Fle93]                                                                 | 36 |
| 3.7  | Modale Lösung der Bewegungsgleichungen [Fle07]                                            | 37 |
| 3.8  | Aufgezeichneter und skalierter Zeitverlauf der N-S-Komponente des Bebens vom              |    |
|      | 3. November 1997 in Wr. Neustadt                                                          | 42 |
|      |                                                                                           |    |
| 5.1  | Vorder- und Rückansicht des viergeschoßigen Wohnbaues                                     | 52 |
| 5.2  | Vorgehensweise                                                                            | 52 |
| 5.3  | POROTHERM 25-38 Objekt Plan                                                               | 53 |
| 5.4  | Regelgeschoßgrundriss                                                                     | 53 |
| 5.5  | Schnitte A-A, B-B und C-C                                                                 | 54 |
| 6.1  | Bemessungsspektrum: Plateaubereich                                                        | 60 |
| 6.2  | Bezeichnungen für Tragwandsysteme [Bac94]                                                 | 62 |
| 6.3  | Bezeichnung der Wandquerschnitte                                                          | 63 |
| 6.4  | Darstellung der Dachlasteinzugsflächen                                                    | 65 |
| 6.5  | Darstellung der Deckenlasteinzugsflächen                                                  | 66 |
| 6.6  | Unterteilung der Regelgeschoßdecke und Bezeichnung der Wandquerschnitte                   | 75 |
| 6.7  | Vorzeichenkonvention für $e_{M,i}$ und für $e_{a,i}$                                      | 83 |
| 6.8  | Darstellung der berücksichtigten Wandquerschnitte in x-Richtung                           | 87 |
| 6.9  | Darstellung der berücksichtigten Wandquerschnitte in y-Richtung                           | 87 |

| 6.10         | POROTHERM 25-50 SBZ Plan                                                                                                                                    | 88       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 6.11         | Beanspruchungen der SBZ-Wand                                                                                                                                | 93       |
| 6.12         | Entwurf des Fachwerkmodells                                                                                                                                 | 93       |
| 6.13         | Darstellung der Belastung und der Stabnormalkräfte des Fachwerks                                                                                            | 94       |
| 6.14         | Bewehrungsskizze EG                                                                                                                                         | 95       |
| 6.15         | Ausführungsskizze                                                                                                                                           | 96       |
| 6.16         | Bewehrungsskizze (horizontale Lagerfugenbewehrung)                                                                                                          | 99       |
| 6.17         | Ausführungsskizze                                                                                                                                           | 100      |
| 7.1          | Darstellung der Modellobjekte Ränder, Löcher (links) sowie Flächen (rechts) .<br>Darstellung der Auflagerrechtionen des Wandquerschnittes WY5 bei Varietion | 102      |
| 1.2          | der Querdehnungszahl des Mauerwerks                                                                                                                         | 103      |
| 7.3          | Darstellung der Auflagerreaktionen des Wandquerschnittes WX5 bei Variation                                                                                  | 100      |
| - 4          | des Elastizitatsmoduls von Holz                                                                                                                             | 103      |
| $7.4 \\ 7.5$ | Darstellung der verwendeten Elemente                                                                                                                        | 105      |
|              | vier unterschiedlichen Netzweiten                                                                                                                           | 105      |
| 7.6          | Diskretisierte Gesamtstruktur                                                                                                                               | 106      |
| 7.7          | "Berechnungsvorgaben Dynamik" und Darstellung des "Alternativen Antwort-                                                                                    |          |
|              | spektrums"                                                                                                                                                  | 107      |
| 7.8          | Darstellung der auf das Tragsystem aufgebrachten Nutzlasten                                                                                                 | 109      |
| 7.9          | Lastfall "Zufällige Torsionseinwirkung" in <i>x</i> -Richtung                                                                                               | 109      |
| 7.10         | Uberlagerung der Bebenkomponenten gemäß [ONORM EN 1998-1]                                                                                                   | 110      |
| 7.11         | Kombination der Erdbebeneinwirkung mit anderen Einwirkungen gemäß [ONORM EN 1990]                                                                           | 1<br>111 |
| 7.12         | Darstellung der 1. Eigenform sowie der 2. Eigenform                                                                                                         | 112      |
| 7.13         | Darstellung der 3. Eigenform sowie der qualitativen Auflagerreaktionen $R_{z,max}$                                                                          |          |
|              | zufolge der Erdbeben-Bemessungssituation                                                                                                                    | 113      |
| 7.14         | Bezeichnung der zur Schubabtragung herangezogenen Wandquerschnitte                                                                                          | 114      |
| 8.1          | Zeitverlauf der Nord-Süd-Komponente sowie Zeitverlauf der Ost-West-Komponen                                                                                 | te       |
| 0.0          | des Bebens vom 3. November 1997 in Wr. Neustadt                                                                                                             | 118      |
| 8.2          | Vorgehensweise bei der Modifizierung der Zeitverläufe                                                                                                       | 120      |
| $8.3 \\ 8.4$ | "Berechnungsvorgaben Dynamik" und Darstellung des eingegebenen Zeitver-                                                                                     | 121      |
|              | laufsausschnitts                                                                                                                                            | 122      |
| 8.5          | Vertikale Auflagerknotenkraft in Abhängigkeit von der Zeit                                                                                                  | 123      |
| 8.6          | Resultierende Schubkraft des Wandquerschnitts WX2 zufolge der Zeitverlaufs-                                                                                 |          |
|              | berechnungen                                                                                                                                                | 123      |
| 8.7          | Resultierende Schubkraft des Wandquerschnitts WY3 zufolge der Zeitverlaufs-                                                                                 |          |
|              | berechnungen                                                                                                                                                | 124      |
| 9.1          | Bemessungsspektrum                                                                                                                                          | 127      |
| 9.2          | Normalkraftnachweise der Wandquerschnitte WX2 WX4 WX5 WY1 WY2                                                                                               |          |
|              | und WY3 für die Erdbebenkombination und die Grundkombination                                                                                                | 129      |
| 9.3          | Vergleich der aus den unterschiedlichen Berechnungsverfahren ermittelten Ge-                                                                                |          |
| 5.5          | samterdbebenkräfte in $x$ - und $u$ -Richtung                                                                                                               | 129      |
| 9.4          | Maximal auftretende Schubkräfte in Abhängigkeit des Berechnungsverfahrens                                                                                   |          |
|              | für die Wandquerschnitte WX2. WX4. WX5. WY1. WY2 und WY3                                                                                                    | 130      |
| 9.5          | Darstellung der Schubtragfähigkeit                                                                                                                          | 130      |
|              |                                                                                                                                                             |          |

| 9.6  | Darstellung des Schubnachweises                                              | 131 |
|------|------------------------------------------------------------------------------|-----|
| 10.1 | Vergleich des Arbeits- und Zeitaufwandes (qualitativ)                        | 133 |
| 10.2 | Randbruchstauchung $\epsilon_{r,U}$ von Ziegelmauerwerk; Bruchmechanismus I  | 134 |
| 10.3 | Darstellung der gerissenen Bereiche der Auflagerfuge                         | 134 |
| 10.4 | Schubnachweise unter Berücksichtigung gerissener Bereiche                    | 135 |
| 10.5 | Darstellung der abgeminderten Gesamterdbebenkräfte                           | 136 |
| 10.6 | Darstellung der stark streuenden Einzelergebnisse des Zeitverlaufsverfahrens | 136 |

# Tabellenverzeichnis

| $2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6$ | Schadensbeben in Österreich seit 1995Bedeutungskategorien für Hochbauten [ÖNORM EN 1998-1]Weitere Beispiele für Bedeutungskategorien [ÖNORM B 1998-1]Festlegung der $\gamma_i$ -Werte [ÖNORM B 1998-1]Baugrundklassen [ÖNORM EN 1998-1]Parameterwerte zur Beschreibung der empfohlenen elastischen Antwortspektrenvom Typ 1 [ÖNORM EN 1998-1] | 11<br>13<br>13<br>13<br>15<br>21 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| $     4.1 \\     4.2 \\     4.3 $        | Empfohlene geometrische Bedingungen für Schubwände [ÖNORM EN 1998-1] .<br>Bauwerkstypen und Verhaltensbeiwerte                                                                                                                                                                                                                                | 44<br>45<br>48                   |
| $6.1 \\ 6.2$                             | Ermittlung der Eigenschwingungsdauer                                                                                                                                                                                                                                                                                                          | 59<br>60                         |
| 6.3                                      | Aufteilung der Gesamterdbebenkraft für die Lastkombination 2                                                                                                                                                                                                                                                                                  | 60                               |
| 6.5                                      | Spezifische Lasteinzugsflächen für das Dach                                                                                                                                                                                                                                                                                                   | 67                               |
| 6.6                                      | Spezifische Lasteinzugsflächen für die Decke über dem 3. OG                                                                                                                                                                                                                                                                                   | 68                               |
| 6.7                                      | Spezifische Lasteinzugsflächen für die Decken über den Regelgeschoßen                                                                                                                                                                                                                                                                         | 69<br>71                         |
| 6.8<br>C.0                               | Bemessungswerte der Vertikalkraft für die Lastfallkombination 1                                                                                                                                                                                                                                                                               | 71                               |
| 0.9<br>6 10                              | Beinessungswerte der Vertikalkräft für die Lastialikomolination $2$                                                                                                                                                                                                                                                                           | (1<br>70                         |
| 6 11                                     | Wand Decken-Knotenmomente für die Begelgescheßdecke                                                                                                                                                                                                                                                                                           | 12<br>79                         |
| 6.12                                     | Wand-Decken-Knotenmomente für die Decke über dem KG                                                                                                                                                                                                                                                                                           | 73                               |
| 6.13                                     | Ermittlung des Steifigkeitsmittelnunktes S                                                                                                                                                                                                                                                                                                    | 73                               |
| 6.14                                     | Ermittlung des Massenmittelpunktes $M$                                                                                                                                                                                                                                                                                                        | 74                               |
| 6.15                                     | Aufteilung der Gesamterdbebenkraft auf die einzelnen Wandquerschnitte in x-                                                                                                                                                                                                                                                                   |                                  |
|                                          | und $y$ -Richtung                                                                                                                                                                                                                                                                                                                             | 76                               |
| 6.16                                     | Aufteilung der Wandbeanspruchung über die Höhe                                                                                                                                                                                                                                                                                                | 77                               |
| 6.17                                     | Nachweisblatt für unbewehrte Mauerwerkswände unter vorwiegend vertikaler                                                                                                                                                                                                                                                                      |                                  |
|                                          | Belastung (Nachweis des Wandquerschnitts WX1 infolge LC1)                                                                                                                                                                                                                                                                                     | 81                               |
| 6.18                                     | Nachweisblatt für unbewehrte Mauerwerkswände unter vorwiegend vertikaler                                                                                                                                                                                                                                                                      |                                  |
|                                          | Belastung (Nachweis des Wandquerschnitts WX1 infolge LC2)                                                                                                                                                                                                                                                                                     | 82                               |
| 6.20                                     | Nachweisblatt für unbewehrte Mauerwerkswände unter Schubbelastung (Nach-                                                                                                                                                                                                                                                                      |                                  |
|                                          | weis sämtl. Wandquerschnitte für eine Erdbebeneinwirkung in $x$ -Richtung (LC1;                                                                                                                                                                                                                                                               |                                  |
|                                          | $e_{max,y}$ )                                                                                                                                                                                                                                                                                                                                 | 86                               |
| 6.23                                     | Aufteilung der Gesamterdbebenkraft auf die einzelnen Wandquerschnitte in $x$ -                                                                                                                                                                                                                                                                |                                  |
| 0.57                                     | und <i>y</i> -Richtung                                                                                                                                                                                                                                                                                                                        | 91                               |
| 6.24                                     | Nachweisblatt für unbewehrte Mauerwerkswände unter Schubbelastung (Nach-                                                                                                                                                                                                                                                                      |                                  |
|                                          | weis sämtl. Wandquerschnitte für eine Erdbebeneinwirkung in $x$ -Richtung (LC2;                                                                                                                                                                                                                                                               | 0.0                              |
|                                          | $e_{max,y}$ )                                                                                                                                                                                                                                                                                                                                 | 92                               |
| 7.1                                      | Materialkennwerte zur Strukturbeschreibung                                                                                                                                                                                                                                                                                                    | 102                              |

| 104                           |
|-------------------------------|
| len Verschiebungen            |
| 106                           |
| $awirkungen \dots 108$        |
| $awirkungen \dots 112$        |
| rwiegend vertikaler           |
|                               |
| $1$ ubbelastung $\dots$ $116$ |
| ren ermittelten Ei-           |
| ו<br>ו<br>ו                   |

# Literaturverzeichnis

#### Allgemeine Literatur

- [Bac94] Bachmann, Hugo: Hochbau für Ingenieure eine Einführung, vdf, Verl. d. Fachvereine an d. schweizer. Hochschulen u. Techniken, 1994.
- [Bac02a] Bachmann, Hugo: Erdbebengerechter Entwurf von Hochbauten Grundsätze für Ingenieure, Architekten, Bauherren und Behörden, Richtlinien des BWG, Bundesamt für Wasser und Geologie, 2002.
- [Bac02b] Bachmann, Hugo: Erdbebensicherung von Bauwerken 2., überarbeitete Auflage, Birkhäuser Verlag, Basel, Boston, Berlin, 2002.
- [Fle93] Flesch, Rainer: Baudynamik praxisgerecht Band 1 Berechnungsgrundlagen, Bauverlag GmbH, Wiesbaden und Berlin, 1993.
- [Fle05] Flesch, Rainer, Lenhardt, Wolfgang, und Geier, Roman: Schadensbeben in Österreich
   Beurteilung bestehender Bauwerke, Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, Bautechnik 82, Heft 8, 2005.
- [Fle07] Flesch, Rainer: Folien zur Vorlesungsübung Baudynamik und Erdbeben 1, Institut für Betonbau, Technische Universität Graz, 2007.
- [Grü98] Grünthal, Gottfried, Mayer-Rosa, Dieter, und Lenhardt, Wolfgang A.: Abschätzung der Erdbebengefährdung für die D-A-CH-Staaten - Deutschland, Österreich, Schweiz, Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, Bautechnik 75, Heft 10, 1998.
- [Ham97] Hammerl, Wolfgang, Christa und Lenhardt: Erdbeben in Österreich, Leykam Buchverlagsgesellschaft mbH, 1997.
- [Inf05] InfoGraph: *Hilfethemen*, Ingenieurgesellschaft für graphisch unterstützte Datenverarbeitung mbH, 2005.
- [Inf07] InfoGraph: *Einführungsbeispiele*, Ingenieurgesellschaft für graphisch unterstützte Datenverarbeitung mbH, 2007.
- [Ker02] Kernbichler, Karl: Skriptum zur Vorlesung Konstruktiver Mauerwerksbau, Labor für Konstruktiven Ingenieurbau, 2002.
- [Mes03] Meskouris, Konstantin und Hinzen, Klaus-G.: *Bauwerke und Erdbeben*, Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, 2003.
- [Sch06] Schlöglmann, Karl Heinz: Skriptum zur Vorlesungsübung Konstruktiver Mauerwerksbau, Institut für Betonbau, Technische Universität Graz, 2006.
- [Spa05] Sparowitz, Lutz: Skriptum zur Vorlesung Betonbau, Institut für Betonbau, Technische Universität Graz, 2005.

#### Normen

- [ÖNORM B 1992-1-1] ÖNORM B 1992-1-1 (2006-07-01). Eurocode 2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Grundlagen und Anwendungsregeln für den Hochbau - Nationale Festlegungen zu ÖNORM EN 1992-1-1, nationale Erläuterungen und nationale Ergänzungen. Normentwurf, Zurückziehung: 2007-02-01.
- [ÖNORM B 1996-1-1] ÖNORM B 1996-1-1 (2006-07-01). Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk - Nationale Festlegungen zur ÖNORM EN 1996-1-1.
- [ÖNORM B 1998-1] ÖNORM B 1998-1 (2006-07-01). Eurocode 8: Auslegung von Bauwerken gegen Erdbeben - Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten -Nationale Festlegungen zu ÖNORM EN 1998-1 und nationale Erläuterungen.
- [ÖNORM B 4000-3] ÖNORM B 4000-3 (1955-06-30). Berechnung und Ausführung der Tragwerke; allgemeine Grundlagen; Windlasten und Erdbebenkräfte. Zurückziehung: 1956-04-21.
- [ÖNORM B 4015] ÖNORM B 4015 (2006-11-01). Belastungsannahmen im Bauwesen -Außergewöhnliche Einwirkungen - Erdbebeneinwirkungen - Grundlagen und Berechnungsverfahren. Zurückziehung: 2007-02-01.
- [ONORM B 4015-1] ONORM B 4015-1 (1979-04-01). Belastungsannahmen im Bauwesen; Erdbebenkräfte an nicht schwingungsanfälligen Bauwerken. Zurückziehung: 1997-10-01.
- [ÖNORM EN 1990] ÖNORM EN 1990 (2003-03-01). Eurocode Grundlagen der Tragwerksplanung.
- [ÖNORM EN 1991-1-1] ÖNORM EN 1991-1-1 (2003-03-01). Eurocode 1: Einwirkungen auf Tragwerke - Teil 1-1: Allgemeine Einwirkungen - Wichten, Eigengewicht und Nutzlasten im Hochbau.
- [ÖNORM EN 1992-1-1] ÖNORM EN 1992-1-1 (2007-02-01). Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau.
- [ÖNORM EN 1996-1-1] ÖNORM EN 1996-1-1 (2006-03-01). Eurocode 6 Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk.
- [ÖNORM EN 1996-1-2] ÖNORM EN 1996-1-2 (2006-01-01). Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall.
- [ÖNORM EN 1996-2] ÖNORM EN 1996-2 (2006-04-01). Eurocode 6 Bemessung und Konstruktion von Mauerwerksbauten - Teil 2: Planung, Auswahl der Baustoffe und Ausführung von Mauerwerk.

- [ÖNORM EN 1996-3] ÖNORM EN 1996-3 (2006-07-01). Eurocode 6 Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten.
- [ÖNORM EN 1998-1] ÖNORM EN 1998-1 (2005-06-01). Eurocode 8: Auslegung von Bauwerken gegen Erdbeben - Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten.

[ONR 21990] ONR 21990 (2006-01-01). Eurocodes - Anwendung in Österreich.

### Internet

- [URL1] Zentralanstalt für Meteorologie und Geodynamik. URL http://www.zamg.ac.at. Letzter Abruf: 2007-01-23.
- [URL2] Earthquake Hazards Program. URL http://earthquake.usgs.gov. Letzter Abruf: 2007-01-23.
- [URL3] Österreichische Gesellschaft für Erdbebeningenieurwesen und Baudynamik. URL http://www.oge.or.at. Letzter Abruf: 2007-01-23.
- [URL4] The European Strong-Motion Database. URL http://www.isesd.cv.ic.ac.uk/ESD/ frameset.htm. Letzter Abruf: 2007-02-18

### Software

- [SW1] REICHL, Thomas: RuckZuck Version 5.0, Statik- und Bemessungssoftware. Mursoft Wörgötter, Kump OEG, 2004
- [SW2] INFOGRAPH: Ingenieurgesellschaft für graphisch unterstützte Datenverarbeitung mbH. URL http://www.infograph.de. Letzter Abruf: 2007