
Graz University of Technology

Balancing Central Pattern
Generator based Humanoid

Robot Gait using Reinforcement
Learning

A thesis submitted in partial fulfilment of the

requirements for the degree of Diplom-Ingenieur by

Florian Hackenberger Bakk. rer. soc. oec

4th October 2007

Supervisor

O.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass
Institute for Theoretical Computer Science, Austria

Copyright © 2007 Florian Hackenberger.

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-sa/2.5/

Abstract
This thesis concerns itself with the development of a nonlinear feedback policy
for balancing a humanoid robot during a walking gait. Finding such a policy is
important as active balance control is required for long distance walking and for
rough terrain in general. The system developed during the research consists of
two modules. One module is a Programmable Central Pattern Generator which
reproduces a walking trajectory supplied by the vendor of the robot used for this
thesis. The walking pattern is then modified by the second component, a nonlin-
ear feedback policy derived by a Reinforcement Learning agent. This architecture
is appealing because the use of Programmable Central Pattern Generators enables
the incorporation of feedback into the equations of the system generating the walk-
ing trajectories. Further, the pattern produced by the Central Pattern Generator
is robust to perturbations and most importantly, the speed of the walking gait
can be varied smoothly. Reinforcement Learning is a natural choice, as this task
requires explorative interaction between the robot and the environment and learn-
ing from past experience. The state space chosen for the Reinforcement Learning
task encodes the state of the robot in a single variable (the phase of the first os-
cillator), which enables the task to be solved in reasonable time in the first place.
First we present the theory of Programmable Central Pattern Generators and
introduce a new coupling scheme which improves upon the previously published
approach. The second part of this thesis introduces the reader to Reinforcement
Learning and presents the two algorithms used for deriving the feedback policy.
The thesis concludes by describing the learning task and presenting the results.
The learnt policy is able to make the robot walk for up to 70 seconds on average,
which corresponds to about 42 complete (left and right) steps.

Keywords: humanoid robotics, programmable central pattern generator, rein-
forcement learning, balancing, robot control, walking gait

ii

Kurzfassung
Diese Master Arbeit befasst sich mit der Entwicklung einer nicht-linearen Feed-
back Policy um einen humanoiden Roboter während des Gangs zu stabilisieren.
Solch eine Policy zu finden is insofern wichtig, als eine aktive Stabilitätskontrolle
für das Zurücklegen weiterer Strecken und für unebenen Untergrund unabding-
bar ist. Das entwickelte System besteht aus zwei Modulen. Ein Modul ist ein
Programmable Central Pattern Generator der eine Gang-Trajektorie wiedergibt,
welche vom Hersteller des verwendeten Roboters zur Verfügung gestellt wird.
Diese Trajektorie wird von einer zweiten Komponente, einer nicht-linearen Feed-
back Policy welche mit Reinforcement Learning abgeleitet wurde, modifiziert.
Diese Architektur ist insofern attraktiv, als durch die Verwendung von Pro-
grammable Central Pattern Generatoren das Feedback in die Gleichungen des
Systems zur Generierung der Trajektorien einfließen kann. Weiters ist das von
dem Central Pattern Generator erzeugte Bewegungsmuster robust gegen Störe-
inflüsse und vor allem kann die Geschwindigkeit der Bewegung kontinuierlich
angepasst werden. Reinforcement Learning is eine naheliegende Wahl, da die
Aufgabe eine erforschende Interaktion zwischen dem Agenten und der Umgebung,
sowie das Lernen aus Erfahrung erfordert. Die verwendete Zustandsrepräsenta-
tion für die Reinforcement Learning Aufgabe kodiert den Zustand des Roboters in
einer einzigen Variable (der Phase des ersten Oszillators). Die Arbeit beginnt mit
der Theorie von Programmable Central Pattern Generatoren und der Einführung
eines neuen Kopplungschemas, welches den bisher publizierten Ansatz verbessert.
Der zweite Teil beinhaltet eine Einführung in Reinforcement Learning Methoden
sowie die Beschreibung der Algorithmen welche zur Entwicklung der Feedback
Policy verwendet wurden. Die Arbeit schließt mit einer Darstellung der Lernauf-
gabe, sowie der Präsentation der Ergebnisse. Die gelernte Policy stabilisiert den
Roboter während des Gangs für bis zu durchschnittlich 70 Sekunden, was in etwa
42 kompletten Schritten (links und rechts) entspricht.

Stichwörter: Humanoide Robotik, Programmable Central Pattern Generator,
Reinforcement Learning, Stabilitätskontrolle, Roboterkontrolle, Gangart

iii

I hereby certify that the work presented in this thesis is my own and that work
performed by others is appropriately cited.

Ich versichere hiermit, diese Arbeit selbständig verfasst, andere als die angegebe-
nen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten
Hilfsmittel bedient zu haben.

Florian Hackenberger
Graz, Oktober 2007

iv

Acknowledgements
First, I would like to thank my adviser Prof. Wolfgang Maass for his guidance and
for providing me with ideas and suggestions that have made this work possible.
Furthermore, I wish to thank DI Gerhard Neuman for his dedicated support
throughout this thesis. In addition, my thanks go out to all other members of
the robotics group at the Institute for Theoretical Computer Science (IGI) for
including me in their scientific and non-scientific discussions. Last but not least,
I would like to thank Ludovic Righetti from the EPFL for his inspiring preceding
work and for providing me with the source code written for his publications.

v

Contents

1 Introduction 1
1.1 Related Research . 2

2 Programmable Central Pattern Generator Theory 5
2.1 Programming a Hopf Oscillator 6

2.1.1 The dynamics of a simple Hopf oscillator 6
2.1.2 An extended, frequency adaptive Hopf oscillator 6
2.1.3 Making the amplitude adaptive 14

2.2 Combining Programmable Hopf Oscillators 14
2.3 Further aspects of the PCPG system 18

2.3.1 Incorporating Feedback into the System 18
2.3.2 Combining several PCPGs 19
2.3.3 Differences compared to the original approach 19

3 Improving Feedback Pathways using Reinforcement Learning 23
3.1 A Brief Introduction to Reinforcement Learning 23

3.1.1 Elements of Reinforcement Learning Problems 24
3.2 Value based algorithms . 26

3.2.1 Function approximation 31
3.2.2 SARSA(λ)-Learning with RBF centres 33
3.2.3 Extra-Tree-Based Batch mode Reinforcement Learning . . 34

3.3 Designing the Lateral Feedback Task 38

4 Results 41
4.1 Architecture . 42

4.1.1 Extensions for the real Hoap-2 43
4.1.2 Additional Tools developed 45

4.2 Learning Task Setup . 45
4.3 Results . 47

4.3.1 Regression analysis of the policy 55

5 Conclusion 57

Appendix 60

vi

List of Figures

2.1 The limit cycle of a simple Hopf oscillator 7
2.2 The behaviour of the phase point of an autonomous oscillator . . 9
2.3 Conditions for increasing and decreasing the phase velocity 10
2.4 The evolution of a simple, perturbed Hopf oscillator 11
2.5 The structure of a network of coupled oscillators 17
2.6 Error plot of a PCPG learning a periodic input signal 22

3.1 The agent and the environment 25
3.2 A state s and all its possible successor states s′ 28
3.3 The mass distribution of the Hoap-2 robot 39

4.1 The architecture of the Hoap-2 interface software. 44
4.2 The structure of the PCPG system 47
4.3 The results of learning the walking trajectory 48
4.4 The Sarsa(λ) algorithm with three states and 1ms time-step . . 49
4.5 The Sarsa(λ) algorithm with four states and 1ms time-step . . . 50
4.6 The Extra-tree batch algorithm with four states and 1ms time-step 50
4.7 The Sarsa(λ) algorithm with three states and 8ms time-step . . 51
4.8 The output of one PCPG with and without feedback 51
4.9 Scatter plot phase vs. feedback 52
4.10 Scatter plot lateral tilt and lateral linear velocity vs. feedback . . 52
4.11 Graph showing lateral tilt, lateral velocity and feedback during run 2 53
4.12 Graph showing lateral tilt, lateral velocity and feedback during run 3 54
4.13 Walking gait of the Hoap-2 robot 56

vii

1 Introduction

Robotics has been an active research area for decades. Since humans are the
ultimate benchmark for researchers in this area, it seems obvious to mimic their
behaviour. But why bother with the difficulties of a legged robot, if wheeled
robots are available and do not pose as many problems as a machine with legs
does? Not only because researchers enjoy challenging tasks, but also because a
legged robot has significant advantages over a machine with wheels. It is able to
move on uneven ground, step over obstacles and generally has the advantage that
feet provide a lot more friction with the surface compared to a wheel. Furthermore
a wheeled robot is in general limited to horizontal movements, while a machine
with legs can climb a ladder or use steps to travel up- or downwards. Another
advantage is that existing infrastructure can be harnessed by a humanoid robot.

While the preceding arguments justify the choice of a legged robot, choosing
a humanoid instead of a machine modelled on an animal with more than two
legs entails many complications. The choice of a humanoid robot for this thesis
was influenced by the availability of a Hoap-2 robot at a partner university, the
availability of and experience with a model of this robot on the Webots platform
and of course by the challenge and excitement of trying to teach a humanoid robot
how to maintain balance while walking.

Creating a controller producing a robust walking gait for a humanoid robot is
a very tough problem and balancing the robot during the walk is essential for
longer distances, according to [Mcgeer 2007]. This is obvious when looking at
a challenge with a 20,000$ reward announced in 20061. According to [Mcgeer
2007], there are over 170 participants and no winner yet (as of September 2007).
The challenge requires a robot to walk over a distance of 10km, while meeting an
energy consumption constraint and avoiding several obstacles. The course is easily
completed by a human. The obstacles are a size limiting arch at the beginning,
twenty unevenly spaced stepping stones with a minimum height of 39cm, three
panels with a minimum height of 5cm in a row (a judge may remove the middle
panel at will) and a staircase which has to be climbed and descended.

This thesis isolates a sub-problem from the broad area of robust walking. It
tries to solve the task of actively balancing a humanoid during a walking gait. The
main hypothesis of this work is that a nonlinear feedback policy on the lateral hip
and ankle joints, with the lateral tilt and velocity of the upper body and the phase

1http://www.wprize.org/

1

http://www.wprize.org/

1 Introduction

of a periodic walking trajectory as parameters, can improve the robustness of the
walking gait significantly compared to a linear policy based on the same variables.
The main findings of this thesis are empiric results supporting the hypothesis in
the context of a simulation of a particular humanoid robot, the improvement of
an existing learning framework for a Programmable Central Pattern Generator
(PCPG) system and the successful application of two Reinforcement Learning
(RL) algorithms to balancing a humanoid during a walking gait.

The most important improvement of the PCPG system is a new feedback for
maintaining a certain phase offset between the individual oscillators. This ap-
proach simplifies the dynamics of the system and makes it more robust towards
external perturbations. The linear feedback path for balancing the walking gait
of the Hoap-2 robot proposed in [Righetti and Ijspeert 2006] is replaced by a RL
system in this work. The advantages over the linear feedback, apart from being
nonlinear, is that while the linear system is a reactive policy, the RL system can
act anticipatory. This is made possible by the inclusion of variables such as the
phase of the walking pattern as well as the linear lateral velocity of the upper
body into the state space of the system. The system could, for example, deduce
in advance that the lateral tilt is going to exceed a critical limit later if the angular
velocity exceeds certain thresholds.

1.1 Related Research
There are numerous publications on designing controllers for humanoid robot gait.
Among the earliest works in this area are [Kun and Miller 1996] and [Taga 1997],
but the roots of research on controllers for legged robot date back even further.
[Raibert 1986] is an early book introducing the reader to legged robots, mostly
in the form of single leg hopping machines and quadrupeds. Several researchers
explore the possibilities of Central Pattern Generator (CPG)s in this area. Some
contributions use RL2, but very few combine the two approaches. To the best of
my knowledge this thesis is the first work to explore the approach of using a RL
method in order to obtain a feedback policy for actively balancing a humanoid
robot gait generated by a CPG system.

The foundation of this thesis is the idea of using a CPG based controller,
as published in [Righetti and Ijspeert 2006], to generate a walking gait for a
humanoid robot. They place their controller into a feedback loop in order to

2While it certainly is not an accurate measurement, searching for ‘humanoid AND robotics’
on IEEEXplore, Springerlink and ACM Digital Library and comparing the results to the
response from ‘humanoid AND robotics AND reinforcement AND learning’ leads to the
conclusion that 6.98% of the humanoid robotics publications are related to reinforcement
learning. Results as of Oct. 1, 2007.

2

1 Introduction

keep the robot upright during the walk using a linear feedback policy relative to
the torso tilt acting in lateral3 and sagittal4 direction. In addition they reset the
phase of the oscillators whenever the right leg touches the ground, which creates
entrainment of the controller with the body dynamics of the robot according to
them.

[Ogino et al. 2004] propose a two layer controller, consisting of a CPG based
system which controls the actual movements as the lower layer and a RL learning
system which chooses the parameters of the lower layer appropriately to create a
walking trajectory towards a goal. The generated trajectory seems to be statically
stable. Their work is in the context of the Robocup humanoid league challenge.
One of the tasks in this challenge is to approach a football preparing for a kick
towards a goal. Their Hoap-1 robot is equipped with a fish-eye-lens camera for
tracking the position of the ball and the goal. The lower layer of their controller
consists of two modules: a trajectory controller and a phase controller. The
trajectory controller calculates the output sent to the robot using equations based
on the sinus function and elliptic foot trajectories (using inverse kinematics for
calculating the actual joint positions). The phase controller is comprised of two
oscillators, one for each leg, which provide the phase to the trajectory controller.
A feedback term ensures that the phase of the oscillator has a predefined value
just as the foot touches the ground. The upper layer system consists of a Dynamic
Programming based RL system mapping a state consisting of visual information
and robot posture to actions setting the step direction and -height variables of
the trajectory controller. The visual information provided to the learning system
consists of the direction of and distance to a football as well as the direction of
the goal. Their result is a controller which is able to position the Hoap-1 robot
in front of the football, facing the goal reliably.

The work published in [Matsubara et al. 2006] is a controller capable of opti-
mising a walking trajectory created by CPGs based on neural networks with a
policy gradient RL method. The walking trajectory steers the movements of a
5-link biped robot, which is restricted to the sagittal plane by a support. Their
controller generates a stable, and even robust walking trajectory for the under-
actuated (no ankles) robot. However, due to the restricted number of degrees of
freedom of the feet, active balance control is not included in their controller.

[Stilman et al. 2005] explore the applicability of Dynamic Programming RL
methods to biped locomotion control. Their controller steers a planar 5-link
walking machine using a policy generated by a grid-based Dynamic Programming
algorithm. In order to make DP techniques applicable to such a high dimensional

3Latin lateralis; ‘to the side’
4According to the Anatomical terms of location article on [Collaborative authorship 2007], the

sagittal plane divides the body into sinister and dexter (left and right) portions.

3

1 Introduction

control problem, they use a reduced dimensional state-action space by manually
selecting the important dimensions. Reducing the number of dimensions is en-
abled by dividing the walking gait into a single- and double support phase. They
assume a no-slip model for the double-, and a compass 2-link model for the single-
support phase. Additionally using action discretisation, they managed to reduce
the state-action space to 24,810,660 cells. The most impressive result of their
work is the fact that their policy for walking is robust against an increase of 200%
in thigh mass, among other disturbances like an up to 6% incline.

Choosing a feedback approach to balance control for this thesis was interesting
and challenging as there have been great results with optimising trajectories but
few publications focusing on feedback. Combining PCPGs with RL for solving
the task was appealing because it was quite novel at the time of writing.

4

2 Programmable Central Pattern
Generator Theory

This chapter will introduce the reader to the concept of a PCPG. The term PCPG
first appeared in [Righetti and Ijspeert 2006], while the concept was previously
referred to under the name Adaptive Central Pattern Generator in [Righetti,
Buchli, and Ijspeert 2005]. According to [Ijspeert and Kodjabachian 1999], a CPG
is a distributed biological neural network which can produce coordinated rhythmic
signals without oscillating input from the brain or from sensory feedback. As an
example, they mention that a cat exhibits a walking gait as soon as a simple
signal is sent to its brain stem. By changing the amplitude of the signal, the cat’s
movements can be changed from a trotting- to a walking- and even a running
gait. In this example the nervous cell in the cats brain stem and spinal chord are
the neural network forming the CPG. The nervous signals required to make the
cats leg joints produce the trajectories of the gait are the output of the neural
network. According to [Righetti and Ijspeert 2006] a PCPG is a system of coupled
nonlinear dynamic oscillators, which is able to encode a given rhythmic input
signal into the limit cycles of the oscillators. While theoretically many different
types of oscillators could be used in a PCPG, a modified version of the original
Hopf oscillator has been chosen for simplicity. The modified oscillator is able to
adapt its frequency and amplitude in response to a target signal. Using oscillators
is interesting because they have the ability to synchronise with external driving
signals, a property which can be useful in many ways. In this work, a coupling
scheme is used to coordinate the movement of several joints of a robot. See section
2.3 for more details.

The system introduced in [Righetti and Ijspeert 2006] is defined in Cartesian
coordinates which may be harder to grasp compared to an oscillatory system in
polar coordinates and has several drawbacks regarding learning speed and cou-
pling between individual oscillators, as well as between individual PCPGs. The
system described in the following sections solves some of the problems. It was
developed as a result of the research conducted for this thesis and solves a few dif-
ficulties of the original approach concerning the coupling of individual oscillators.
The new system improves the results for the application to humanoid robotics.

5

2 Programmable Central Pattern Generator Theory

2.1 Programming a Hopf Oscillator
The following sections will introduce the reader to the concept of dynamic Hebbian
learning in adaptive frequency oscillators as described in [Righetti et al. 2005].
The authors developed an extended version of the Hopf oscillator which is able to
adapt its frequency to the frequency of a driving signal and embeds the learning
process into the dynamics of the oscillator.

2.1.1 The dynamics of a simple Hopf oscillator
The simple Hopf oscillator in polar coordinates is defined by the following differ-
ential equations1:

ṙ = γ(µ− r2)r (2.1)
φ̇ = ω

Where r(t) is the radius, φ(t) is the phase of the two dimensional output of the
system at time t (in seconds) and γ defines the strength of the attracting limit
cycle i. e. how fast the oscillator returns to the limit cycle after a perturbation.
The oscillator has a stable limit cycle defined by the constant value µ. It can be
easily seen that √µ corresponds to the radius of the limit cycle relative to the
coordinate frame of the system. ω defines the frequency of the oscillation in units
of Hz · 2π. The output of r and φ during several sample runs with varying initial
conditions can be seen in Figure 2.1.

A Hopf oscillator has the nice property to forget perturbations acting on r after
a while. This is due to the limit cycle being an attractor acting against the per-
turbation. Perturbations on the phase φ, however, are remembered indefinitely.
According to [Righetti, Buchli, and Ijspeert 2006], the phase is marginally stable,
whereas the system is damped perpendicularly to the limit cycle. This property
can be easily recognised by looking at the system equations. If r is suddenly
changed while the system is running (assuming that the perturbation vanishes
immediately and r differs from √µ after the perturbation), the absolute value of
the term µ − r2 increases and drives r towards √µ. If, however, φ is perturbed
by an external force the system does not correct the change. This is easy to see
because φ̇ does not depend on φ, hence it cannot even detect the change.

2.1.2 An extended, frequency adaptive Hopf oscillator
The following sections will explain a modification to the simple Hopf oscillator
introduced in section 2.1.1 which will enable the oscillator to learn a simple (one

1The widely known dot notation ḟ refers to df
dt

6

2 Programmable Central Pattern Generator Theory

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2.1: The limit cycle (red, dashed) of a simple Hopf oscillator with µ =
4; ω = 0.2 · 2π and a few evolutions of the system with varying initial
conditions in a phase plot (φ plotted against r).

frequency component) periodic input signal. In order to be able to understand
how the adaptation mechanism works, some synchronisation theory is required.
The basics of this theory are introduced as well.

Synchronisation basics

The following section will explain some basic principles of synchronisation required
to understand the frequency adaptive Hopf oscillator, based on [Pikovsky, Rosen-
blum, and Kurths 2001]. According to [Pikovsky et al. 2001], synchronous means
sharing the common time or occurring in the same time and the related term
synchronisation refers to a variety of phenomena found in almost all branches of
natural sciences, engineering and social life, obeying universal laws. They define
the adjustment of rhythms due to an interaction as the essence of synchronisation.
As they show later on, even if the interaction is very weak synchronisation can
nevertheless occur.

This section assumes that there are two oscillators present in the system. One
oscillator (the forced or perturbed oscillator) receives an input from the other
oscillator. This input is proportional to the output of the other oscillator and
is applied to the phase as well as the amplitude, but just in either the x or y

7

2 Programmable Central Pattern Generator Theory

direction, when thinking in Cartesian coordinates. In the examples below we
consider the case where the force acts in the x direction. Therefore the force
is multiplied by sin(φ) when being applied to the phase φ and is multiplied by
cos(φ) when being applied to the radius r. The forced oscillator (the oscillator
the force acts upon) as well as the oscillator producing the force are assumed to
be quasilinear2.

In order to understand how an external force applied to the phase and the
amplitude acts on an autonomous oscillator, it is best to think in terms of a
rotating coordinate system. The coordinate system is polar and its origin is equal
to the origin of the coordinate system of the external force. The new coordinate
frame rotates about its centre with frequency ωe, the frequency of the force. For
reasons of simplicity we assume that both ωe > 0 and ω > 0 holds. Now imagine
how the output of the autonomous oscillator would be represented within this new
coordinate system if the force had zero amplitude and the autonomous oscillator
would run with frequency ω, where ω < ωe. It would be a point rotating clockwise
with frequency ωe − ω. Similarly if ω > ωe the point would rotate counter-
clockwise with frequency ω − ωe. In case of ω = ωe, the point would not move at
all.

The average external force acting on the autonomous oscillator can be rep-
resented as a constant force vector acting on the moving point (see Figure 2.2).
Assuming that the way in which the coupling is implemented does not change over
time, the direction and length of this vector is always the same, it just depends on
the initial phase of the force and on the nature of the force (how exactly the cou-
pling acts on the oscillator). In this case the force is assumed to be cos(t · ωe+φ̄e),
where φ̄e is the initial phase of the force. Please note that the vector in Figure
2.2 represents the direction of the force on average. In fact the force at each point
consists of a constant component and a rotating vector. This is depicted by the
ellipsis around the tip of one of the force vectors in Figure 2.2.

In order to make it easier to understand why the average force can be repre-
sented by a vector with a fixed direction let us consider the following example:
The force is defined by F (t) = cos(t · ωe + φ̄e) and is applied to the phase by
subtracting εF sin(φ) from φ̇, where ε is a small value < 1. It is also applied to
the amplitude velocity by adding εF cos(φ). We focus on the component of the
force acting on the phase, since it is not forgotten over time as opposed to the
component acting on the radius (see section 2.1.1). The component acting on the
radius of the system therefore does not have any influence on synchronisation.

2An oscillator is called quasilinear (or quasi-harmonic), if the oscillation it exhibits is similar
to a sine wave. When looking at the oscillation in a phase plot the limit cycle would be close
to a circle.

8

2 Programmable Central Pattern Generator Theory

180 0

270

90

Figure 2.2: The phase point of the autonomous oscillator in a polar reference
frame rotating with ωe. The phase point has a stable (marked with a
circle) as well as an unstable equilibrium point (marked with a dashed
circle). The big arrows denote the average direction of the external
force, whereas the smaller arrows indicate the direction on the limit
cycle in which the phase point is dragged by the force.

The system equations become:

ṙ = γ(µ− r2)r + εF cos(φ)

φ̇ = ω − εF sin(φ).

The two systems run with the same frequency, hence ω = ωe and φ as well as
φe are running counter clockwise. The initial phase of the autonomous oscillator
is φ0 = π

2
and the initial phase of the force is φ̄e = 0. In order to simplify the

notation, let us define φe = t · ωe + φ̄e. Let us now check which conditions have
to be satisfied in order to increase or decrease the phase velocity. In order to
decrease the velocity the following condition has to be satisfied (note the ‘−’ in
φ̇ = ω − εF sin(φ)):

cos(φe) · sin(φ) > 0

which expands to:

(cos(φe) > 0 AND sin(φ) > 0) OR (cos(φe) < 0 AND sin(φ) < 0)

and further to:

(φe =

(
3π

2
,
π

2

)
AND φ = (0, π)) OR (φe =

(
π

2
,
3π

2

)
AND φ = (π, 2π)) (2.2)

9

2 Programmable Central Pattern Generator Theory

cos(φe) > 0

180 0

270

90

AND

sin(φ) > 0

180 0

270

90

OR

cos(φe) < 0

180 0

270

90

AND

sin(φ) < 0

180 0

270

90

cos(φe) < 0

180 0

270

90

AND

sin(φ) > 0

180 0

270

90

OR

cos(φe) > 0

180 0

270

90

AND

sin(φ) < 0

180 0

270

90

Figure 2.3: The upper part of the figure shows the conditions to be satisfied by
the systems in order to decrease the phase velocity. The lower part
shows the conditions for increasing the velocity.

We can proceed analogous for increasing the velocity which leads to:

(cos(φe) < 0 AND sin(φ) > 0) OR (cos(φe) > 0 AND sin(φ) < 0)

and further to:

(φe =

(
π

2
,
3π

2

)
AND φ = (0, π)) OR (φe =

(
3π

2
,
π

2

)
AND φ = (π, 2π)). (2.3)

Please refer to Figure 2.3 for a visual representation of these conditions. Let us go
back to the example. The initial value of φ is φ0 = π

2
and the initial phase of the

external force is set to φ̄e = 0. In order for the two oscillations to be synchronised
the phase of the driven oscillator would have to decrease by π

2
. After the first

integration step (assuming ∆t and ω = ωe are small) the first part of equation
2.2 is satisfied by the current phase values (φ = π

2
+ ω · ∆t ⇒ φ = (0, π) and

φe = ∆t · ωe ⇒ φe = (3π
2

, π
2
)). Therefore the velocity of the oscillators phase is

decreased by the force. The condition is satisfied until φe = π
2
. At this point φ

satisfies φ < π, because ω = ωe holds and φ̇ was decreased by the force up to
this point (we assumed ε > 0). One integration step later the situation changes.
The phase states satisfy the first condition of equation 2.3. The result is that the
phase velocity increases. However, assuming that ε is small it increases only for

10

2 Programmable Central Pattern Generator Theory

0 5 10 15 20 25 30
0

0.5

1

1.5

er
ro

r
(

F
(t

)
−

 c
os

(φ
(t

))
 *

 r
(t

)
)

time (s)

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

time (s)

F(t)
cos(φ(t)) ⋅ r(t)
−ε F sin(φ(t))
sin(φ(t))

Figure 2.4: The evolution of a simple, perturbed Hopf oscillator. ε = 0.3; µ =
1; φo = π

2
; ω = ωe = 0.2 · 2π. The upper plot depicts the error

between the force and the output of the oscillator. The lower plot
shows the force F (t), the output of the oscillator cos(φ(t))− r(t), the
coupling −ε · F · sin(φ(t)) acting on the phase velocity and sin(φ(t)).

a short amount of time, until φ > π is satisfied and therefore the second part
of equation 2.2 holds. The next condition would be the second part in 2.3 for
a short time and after that the initial condition would hold again. Therefore it
decreases on average and in turn decreases the phase offset φ− φe. As the phase
offset decreases, the ratio of the average amount subtracted and added to the
phase during one revolution approaches 1. As soon as the phase offset is close
to zero (in the general case of ω 6= ωe the offset would remain constant), the
oscillators are phase locked. At this time the net feedback added to φ becomes
zero. Please note that the phase offset oscillates indefinitely, while the amplitude
of the oscillation depends on the strength of the force, which is proportional to ε
in this example. See Figure 2.4 for an illustration of the evolution of the coupled
oscillator.

After studying the case ω = ωe, how do the systems behave if ω > ωe? The
case of ω 6= ωe is called detuning. If the coupling strength is zero the phase point
will, instead of staying at a certain point, rotate either clockwise or anti-clockwise.
As we have seen in the previous paragraph, the coupling is a force which rotates
the phase point in the reference frame towards a specific position. Therefore the

11

2 Programmable Central Pattern Generator Theory

frequency difference is nothing more than a force acting against the coupling force.
Therefore, for small detuning the coupling strength out-weights the detuning force
and the oscillators synchronise. Since the strength of the coupling force changes
with the phase offset, it is easy to see that there is an equilibrium point where the
counteracting forces vanish. This point defines the phase offset from the theoretic
equilibrium point if ω = ωe would hold. If synchronisation occurs, the frequency
of the forced oscillator is equivalent to the frequency of the oscillator exhibiting
the force. It important to note that for large frequency difference, synchronisation
does not occur at all. The region of ωe where synchronisation is possible is called
the Arnold region of the driven oscillator.

Adapting the frequency of a Hopf oscillator

This section is based on [Righetti et al. 2006]. The frequency adaptive Hopf os-
cillator has the ability to dynamically adapt its frequency to any periodic or even
pseudo periodic3 signals. The adaptive mechanism is called dynamic Hebbian
learning because it is similar to correlation based learning, called Hebbian learn-
ing, observed in biological neural networks. The learning process is completely
embedded in the system equations. The principle of the method (a perturbed
oscillator, with its frequency state variable being coupled to the driving signal)
can be applied to different kinds of oscillators, like relaxation oscillators and even
strange attractors4. For the application of learning a humanoid walking gait,
however, the Hopf oscillator is perfectly suitable. Therefore this work does not
expand on applying dynamic Hebbian learning to other classes of oscillators.

In order to learn a given input signal, it is necessary to feed this signal into the
system. The input signal (driving signal) is denoted F . The equation system 2.1
is then changed to:

ṙ = γ(µ− r2)r + εF · cos(φ) (2.4)
φ̇ = ω − ε

r
F · sin(φ)

ω̇ = −εF · sin(φ)

The output of the system is defined as G = r ·cos(φ). The term εF ·cos(φ), added
to ṙ is just for completeness and does not play a role in the frequency adaptation
process. The coupling to the phase φ is compensated for the perturbation on r (by

3In [Righetti et al. 2006] they choose the z variable of the Lorenz attractor as a chaotic,
pseudo-periodic input signal. Please refer to the paper for details on learning such a signal.

4According to the Attractor article on [Collaborative authorship 2007], ‘an attractor is in-
formally described as strange if it has non-integer dimension or if the dynamics on it are
chaotic’. Examples of strange attractors are the Hénon-, Rössler- and Lorenz attractors.

12

2 Programmable Central Pattern Generator Theory

dividing the coupling by r) because it is undesirable for the radius to influence the
coupling on φ. Hence the only difference between this system and the perturbed
Hopf oscillator from section 2.1.2 is the additional equation ω̇ = −εF · sin(φ).
Assuming an input signal F with just a single frequency component, this equation
changes ω towards ωe. In order to understand why this scheme actually works
(without going through a lengthy mathematical proof5), consider three cases while
assuming an input signal of F (t) = cos(φe):

1. The system is running with the same frequency as the input signal ωe = ω0

and the two systems are in-phase.
This is the desired result of the learning process. In this case the term
sin(φ) is at its maximum, when F is at zero (at φ = φe = {π

2
, 3π

2
}). In

the interval φ = φe = [3π
2

, π
2
] the term sin(φ) is as much positive as it

is negative and therefore F · sin(φ) is zero on average. Alternatively just
consider

∫ 2π

0
cos(φe) · sin(φ) = 0 assuming ωe = ω and φe(t) = φ(t). The

same holds for the interval φ = [π
2
, 3π

2
]. The result is that the frequency

as well as the phase offset between the input signal and the system output
oscillate a little bit about their target values. Because of the oscillations
about the target value of ω it is clear that ε should not be too large, as the
amount of oscillation directly depends on it.

2. The system is running with a different frequency compared to the input
signal ωe 6= ω0.
As explained in section 2.1.2 and assuming ε = 0, the phase point in the
rotating reference frame would uniformly rotate either clockwise or counter-
clockwise with frequency ‖ωe−ω0‖. While the frequency adaptive oscillator
does not depend on synchronisation itself, it does depend on a coupling
between the oscillator and the external force. Assuming that ε > 0 and the
frequency ωe is too different from ω0 for synchronisation to kick in (hence
ω0 is not in the Arnold region of ωe and ε), what would the effect of the
external force be? It would change the evolution of φ. Splitting the limit
circle in the rotating reference frame in Figure 2.2 in two halves along the
dotted line, instead of rotating uniformly the phase point would spend more
time on one side of the circle compared to the other. It would rotate slower
at the side where the force acts against the rotation and faster at the other
side. Considering the equation ω̇ = −εF · sin(φ) in 2.4, the effect would be
that the amount added to ω while the phase point is at one side of the circle
is different from the amount added while being at the other side. Therefore,
on average ω is decreased if ωe < ω0 and increased if ωe > ω0.

5The proof is available in [Righetti et al. 2006].

13

2 Programmable Central Pattern Generator Theory

3. The system is running with a sightly different frequency compared to the
input signal, but is synchronised to it.
In this case, the phase point in the rotating reference frame will stay at a
certain point within the reference frame, depending on the initial conditions
and the strength of the coupling to the driving signal. At each integration
step, the force acting on the frequency ω will change it a little bit towards
ωe until ωe = ω holds and the two systems are in phase, leading to the first
case.

2.1.3 Making the amplitude adaptive
The system described in section 2.1.2 is able to adapt its frequency to one fre-
quency component of a periodic input signal F . Our goal, however, requires the
system to learn the frequency as well as the amplitude of F , assuming F con-
sists of just one frequency component and is zero-centred. Righetti et al. [2005]
described such a system in the Cartesian coordinate system. For this thesis we
change their equations to match the previously introduced oscillator in the polar
coordinate system.

The state variable α is added to the equation system, which becomes:

ṙ = γ(µ− r2)r + εF · cos(φ) (2.5)
φ̇ = ω − ε

r
F · sin(φ)

ω̇ = −εF · sin(φ)

α̇ = ηF · cos(φ) · r

The input signal is renamed to Pteach and F is redefined as F (t) = Pteach−α cos(φ).
Therefore, F now acts as a kind of error signal, which decreases as the system
starts to replicate the input Pteach. The output of the system is redefined as
G = αr · cos(φ), therefore α acts as an amplification term of the systems output.
The learning rule for α is based on Hebbian learning. The value of α increases if
F correlates with the output r · cos(φ) of the system, while η acts as a learning
variable which prevents oscillation of α. Of course, η should be chosen to satisfy
0 < η < 1, during the learning process.

2.2 Combining Programmable Hopf Oscillators
The adaptive Hopf oscillator, introduced in the previous section, is able to adapt
its frequency and amplitude to a single frequency component of a driving signal.
Reproducing an arbitrary periodic signal consisting of multiple frequency com-

14

2 Programmable Central Pattern Generator Theory

ponents, however, requires a more sophisticated system. The system consists of
coupled PCPGs and was introduced in [Righetti et al. 2005].

Before describing the system in detail it is necessary to establish the mathemat-
ical foundation in order to explain why the system actually works. The theory
behind combining oscillators in order to represent an arbitrary periodic input
signal is the widely known Fourier decomposition. According to [Bartsch 2001],
any unique, piecewise monotone and continuous over the interval [0, 2π], periodic
Function f(x) with a period of 2π can be expressed as a trigonometric series s(x),
the Fourier series defined as

f(x) = s(x) =
a0

2
+

∞∑
k=1

[ak cos(kx) + bk sin(kx)] . (2.6)

The Fourier coefficients ak and bk are then defined as

ak =
1

π

∫ 2π

0

f(x) cos(kx) dx; k = [0,∞]

bk =
1

π

∫ 2π

0

f(x) sin(kx) dx; k = [1,∞].

The function f(x) is decomposed into a sum of harmonic vibrations with discrete
frequencies. Each element of the sum in equation 2.6 therefore represents one
frequency component. Further, if the Fourier series is aborted after a finite
number of members k = n, the result is equal to an approximation of f by a
trigonometric polynomial of rank n. The rest of this section explains why Fourier
series aborted after n members can be represented by a system of n amplitude
adaptive oscillators.

The output of the modified Hopf oscillator defined in section 2.1.3 is G =
αr · cos(φ), which is very similar to ak cos(kx). In equation 2.6, the term kx
defines the frequency of each component. The frequency of one oscillator on the
other hand is defined by ω relative to the time t which in turn is represented by x
in the above equations. When looking at equation 2.5 it becomes clear that once
the input signal has been learnt6, the output of the oscillator becomes αr ·cos(ωt),
since F (t) = 0 and therefore

∫
φ̇ dt = φ = ωt holds. The term a0

2
is unnecessary if

the requirement that the input function has to be zero-centred is fulfilled. That
leaves ak sin(kx) to be represented by an oscillator within a PCPG.

If it is possible to maintain a certain phase offset between two oscillators within
a system, representing a sinus function with an oscillator based on a cosine func-
tion is trivial, because sin(φ) = cos(π

2
− φ) holds. As long as the input signal

is present, the coupling term ηF · cos(φ) · r applied to ω̇ in combination with
6For simplicity it is assumed that the fit is perfect.

15

2 Programmable Central Pattern Generator Theory

εF · cos(φ) added to φ̇ takes care that the oscillators retain the correct phase
difference. If the input signal is switched off, however, the oscillators drift apart
with respect to their phase offset. The solution is the introduction of a coupling
term between the individual oscillators of a PCPG. Please note that the coupling
scheme presented in the rest of this section is different compared to the work pre-
sented in [Righetti et al. 2005] and improves the published method as explained
in section 2.3.3.

Apart from the phase offset φi,∆, each component of the sum f(t) = α0r0 ·
cos(ω0t)+

∑N
i=1 [αiri · cos(φi,∆ + ωit)] can be represented by an amplitude-adaptive

Hopf oscillator as introduced in section 2.5. The phase offset can be kept by
introducing a coupling scheme. In order to use the phase of the first oscilla-
tor as a coupling term for the subsequent systems, it is necessary to scale it to
match the frequency of the driven oscillator. Therefore we introduce the term
Ri = ωi

ω0
φ0 for each oscillator but the first. The coupling term is then defined as

τ sin(Ri − φi,∆ − φi) and added to φ̇i. It is important to note that τ should be
set to zero until the learning process is finished. Enabling the coupling during
adaptation has a negative impact on the process and could lead to oscillations
in the worst case. Assuming that all oscillators already converged to their target
values of ωi and αi, the term Ri − φi,∆ defines the target value for φi. The term
τ sin(Ri − φi,∆ − φi) therefore speeds up the revolution of φi if the error is in the
interval (0, π) and decreases its speed for (π, 2π). After a perturbation, the oscil-
lator i therefore returns to a certain phase offset from the first oscillator within
a time-frame depending on the value of τ . The remaining issue is how to obtain
the required phase offset in the first place. This can easily be achieved by adding
φi,∆ as a state variable to the equation system of each oscillator and defining it
as φ̇i,∆ = λ sin(Ri − φi,∆ − φi). Assuming converged oscillators and τ = 0, the
term Ri−φi defines the target value for the phase offset. The state φi,∆ will then
converge to the required phase offset for the same reason as the coupling term
works. The constant λ controls the speed of adaptation. Although a proof of the
convergence properties of this scheme is beyond the scope of this thesis and has
not yet been published else-were, the system works as expected in practise.

The following system is an extension of the equation system 2.5 with the changes

16

2 Programmable Central Pattern Generator Theory

−
∑

αi cos(φi)

...

α
0 cosφ

0

αN
cos

φN

τPN Qlearned(t)Pteach(t)

Figure 2.5: The structure of a network of coupled oscillators representing a PCPG.
The term Pi is defined as Pi = sin(Ri − φi,∆ − φi) for layout reasons.
Adjusted from [Righetti et al. 2005].

discussed above added to it.

ṙi = γ(µ− r2
i)ri + εF · cos(φi) (2.7)

φ̇0 = ωi −
ε

ri

F · sin(φi)

φ̇i = ωi −
ε

ri

F · sin(φi) + [τ sin(Ri − φi,∆ − φi)]

ω̇i = −εF · sin(φi)

α̇i = ηF · cos(φi) · ri

φ̇i,∆ = λ sin(Ri − φi,∆ − φi); ∀i > 0

Ri =
ωi

ω0

· φ0

The equation system represents one oscillator in a network of N coupled systems
as illustrated in Figure 2.5. The output of the network is defined as Qlearned =∑N

i=0 Gi =
∑N

i=0 αiri · cos(φi). The error signal F (t) is redefined as F (t) =

Pteach−
∑N

i=0 αiri ·cos(φi) in order to take the output of all oscillators into account.
The variable γ controls how strong the attraction of the limit circle is. The higher
γ is, the faster the oscillators recover from perturbations on the radius.

17

2 Programmable Central Pattern Generator Theory

2.3 Further aspects of the PCPG system
The preceding sections have introduced the basic concepts and inner workings of
PCPGs. This section discusses details related to applying the general approach
to humanoid robotics, in particular to learning a walking gait for a humanoid
robot. As the previously outlined approach is a modified version of the original
approach, published in [Righetti et al. 2005, Righetti and Ijspeert 2006, Righetti
et al. 2006], the changes compared to the published method are discussed as well.

2.3.1 Incorporating Feedback into the System
In order to create a robot controller which is able to react to changes in the
environment or compensate for dynamic effects, it is necessary to modulate the
movements of the robot. When using PCPGs for control, the oscillators itself
can be modulated in order to apply feedback to the system. This approach has
been outlined in [Righetti and Ijspeert 2006]. They propose to apply a feedback
term (in their case a linear feedback relative to the lateral/saggital tilt of the
robot) directly to the radius of all oscillators within a PCPG. Translating their
equations to the polar coordinate system used to describe the oscillators in the
previous sections leads to

ṙ = γ(µ− r2)r + εF · cos(φ)+g · f

where g is the feedback gain and f is the actual feedback value. This approach,
however, has one significant disadvantage. At each integration step, the feedback
is added to the current radius. That means the feedback policy has to compensate
for the integration of the feedback over time if it wants to add a specific amount
to the radius. In order to simplify the feedback task for the RL controller7, the
original feedback pathway was changed in order to represent a percentage added
to the radius of the system. The following equation defines the modified feedback
pathway:

ṙ = γ(µ− r2)r + εF · cos(φ)+g · [(1 + f) · √µ− r].

If the RL controller decides to add 30% to the radius of the system, it just sets
f = 0.3 and the oscillator will smoothly adapt its oscillations to have a radius
of r = 1.3 · √µ. The parameter g controls how fast the oscillator adapts to
the given feedback. With the RL controller this schemes works better compared
to the original approach, but one problem remains. Since the output of the
oscillator is defined as G = αr · cos(φ), both feedback paths do not have any
effect if either φ = φ

2
or φ = 3π

2
holds. In the context of balancing the Hoap-2 is

problematic, because it means that the feedback is sometimes ineffective and the
7The controller is described in section 4.2

18

2 Programmable Central Pattern Generator Theory

intensity in general depends on the current phase of the oscillators. Therefore,
another feedback pathway was devised which avoids this problem altogether. The
feedback in this case simply represents an absolute value which is added to the
output of one PCPG before sending the result to the robot. In this case f simply
represents an angular value in radiant and is added to the output, which becomes
Qlearned = f+

∑N
i=0 αiri · cos(φi). Unfortunately this scheme does not have the

advantage of tight integration with the oscillators. Therefore the controller has
to take care to produce smooth movements.

2.3.2 Combining several PCPGs
The system defined in section 2.2 is able to learn a single periodic input signal.
The system required for the robot, however, has to reproduce ten input signals.
Just using an array of isolated PCPGs would not work for the same reasons as
combining several Hopf oscillators without feedback does not work. The signal
learnt by the oscillators is always an approximation of the original trajectory and
without feedback the phase offset between the individual oscillators or individual
PCPGs would drift apart over time. Fortunately, the same scheme used for the
oscillators can also be used for maintaining a phase difference between PCPGs.
Although many different system layouts can be used, the PCPGs driving the
Hoap are arranged in two chains. There is one chain for each leg and the first
oscillator of each chain is anti-phase coupled to the first oscillator of the other
chain. Each oscillator in these chains is coupled to its predecessor. Without a
coupling between PCPGs the first oscillator of each network neither has a state
variable φi,∆ nor the coupling term τ sin(Ri − φi − φi,∆) added to φ̇i, according
to equation system 2.7. The inter-PCPG coupling system adds both terms to the
first oscillator. But instead of defining Ri according to equation 2.7, it is defined
as Ri = ωi

ωk
0
· φk

0, where k denotes the index of the PCPG the system is coupled
to. The coupling strength τ is change to τext in order to be able to adjust it
independently from the coupling within the PCPGs. Figure 4.2 illustrates the
structure of the coupling system used for the Hoap-2 controller.

2.3.3 Differences compared to the original approach
The following section will sum up the changes of the proposed approach compared
to the approach as published in [Righetti et al. 2005] and [Righetti and Ijspeert
2006].

The most obvious change is that while the original system is defined in the XY
coordinate space, the modified equations are in the polar coordinate system for
easier analysis. This brings them closer to the equation system of the frequency-
adaptive oscillator proposed in [Righetti et al. 2006]. Additionally, it makes the

19

2 Programmable Central Pattern Generator Theory

design of feedback easier because it can be directly applied to either the phase φ
(where it does not vanish) or the radius r (where it decays over time), without
splitting it in order to apply it to x and y which represent the state of the oscillator
written in Cartesian coordinates. The simple amplitude- and frequency adaptive
systems are mathematically equivalent as shown in the Appendix.

One of the problems with the system as published in [Righetti et al. 2005,
Righetti and Ijspeert 2006] is the coupling scheme. The following discussion refers
to the system defined by the following equations:

ẋi = (µ− r2
i)xi − ωiyi + εF + τ sin(Ri − φi,∆) (2.8)

ẏi = (µ− r2)yi + ωxi

ω̇i = −εF · yi

ri

α̇i = ηF · xi

φ̇i,∆ = sin(Ri − φi − φi,∆)

Ri =
ωi

ω0

· φ0

φi = sgn(xi) arccos(−yi

ri

)

ri =
√

x2
i + y2

i .

The system is equivalent to the one published in [Righetti et al. 2005] as the
equations stated in [Righetti and Ijspeert 2006] are incorrect as confirmed by one
of the authors. Some variables were renamed in order to match the terminology
previously used in this thesis. While the system works fine in general, the coupling
scheme has room for improvement. The state variable φi,∆ fits the purpose and
works as expected. The term τ sin(Ri−φi,∆), however, while being similar to the
Kuramoto coupling scheme8 is not a good choice for this task. The problem is
that it is modelled on a synchronisation scheme, while its purpose is just to keep
a certain phase relationship between two oscillators. The term τ sin(Ri − φi,∆)
produces a sinusoidal signal which entrains the driven oscillator. The scheme
works in principle, but it recovers from perturbations quite slowly. To a certain
extent this slowness could be compensated for by increasing the coupling strength.
The side effect would be a distorted output, because the coupling is not strictly
Kuramoto-like. A Kuramoto coupling would apply to the phase only, while the
coupling proposed in [Righetti et al. 2005] acts on x, which changes the radius
of the oscillator in addition to the phase. While it would be easy to change the

8According to [Pikovsky et al. 2001, p. 280], the Kuramoto scheme is defined as a cou-
pling between N mutually coupled oscillators with different frequencies. The coupling term
ε
N

∑N
j=1 sin(φj − φk) is added to φ̇k of each oscillator k. The coupling scheme is discussed

in further detail in [Pikovsky et al. 2001] and [Daniels 2005].

20

2 Programmable Central Pattern Generator Theory

coupling to a strictly Kuramoto-like scheme, the approach defined in equation 2.7
works even better.

The term Ri in the coupling τ sin(Ri − φi − φi,∆) is the phase signal of the
first oscillator scaled to match the frequency of the ith oscillator. Ri − φi there-
fore denotes the current phase difference between the first and the ith oscillator.
Subtracting φi,∆, the desired phase offset, from the current phase difference gives
the phase offset error. The sin function makes sure that the phase of the ith
oscillator is accelerated if the error is in the interval (0, π) and slowed down if
the error is within (π, 2π). Without applying the sin function it could happen
that the oscillator e. g. tries to gain a complete revolution while its phase offset is
correct already.

Apart from an improved coupling and therefore faster recovery from pertur-
bations, the new coupling scheme has another advantage. Learning the phase
differences can be done while the coupling term is disabled, which is impossible
with the original system. The original phase coupling is basically a random per-
turbation as long as φi,∆ has not been learnt correctly and may slow down the
learning process. This is even more evident when using several coupled PCPGs,
because in addition to the perturbations caused by the coupling between individ-
ual oscillators, there are perturbances caused by the coupling between the PCPGs.
With the new scheme the coupling strength between individual oscillators and be-
tween PCPGs is adjustable after learning the input signal, which is not the case
with the original coupling. Adjusting the coupling may be desirable if a controller
changes the trajectories on the fly and want to adjust how fast the network con-
verges back to the encoded pattern. This is impossible with the original scheme,
because adjusting the coupling strength would change the pattern being produced
by the system. Even if an on-line adaption of the coupling strength is not needed,
it is impossible to set the coupling strength above a certain threshold, because
the coupling would perturb the oscillators so much that they would not be able
to produce the patterns required for learning the input signal. Figure 2.6 shows
the improved reaction to random external perturbations affecting both the phase
and the radius of all, but the first oscillator.

As it can be seen in Figure 2.6, the error of the original system increases toward
the end of the simulation. This is due to parameters of the system being suddenly
frozen just before the first perturbation begins. In order to compensate for this
effect, the learning variables ε, η and λ of the new system are gradually decreased
over a certain amount of time by simply multiplying them with ct, where c is a
cooling constant close to, but smaller than one.

21

2 Programmable Central Pattern Generator Theory

0 200 400 600 800 1000 1200
−5

0

5
Polar coordinates

time (s)

Q
lle

ar
ne

d −
 P

te
ac

h

0 200 400 600 800 1000 1200
−5

0

5
XY coordinates

time (s)

Q
lle

ar
ne

d −
 P

te
ac

h

Figure 2.6: Error plot of a PCPG learning a periodic input signal and later during
several perturbances. The upper plot is the version in polar coordi-
nates with the improvements discussed in the text added to it, while
the lower graph is the system as published in [Righetti et al. 2005].
The perturbations were applied to all but the first oscillator, in order
to make plotting the error easier.

22

3 Improving Feedback Pathways using
Reinforcement Learning

While having a PCPG representing a periodic function may be quite useful for
robotics in general, it is not sufficient for the task of biped walking. The dynamics
of a humanoid are complex and modelling them for one particular robot is already
a huge task. Even if an accurate model is provided, manually designing a feedback
policy for a PCPG which keeps the robot upright during walking seems quite
tedious. Therefore, applying Machine Learning (ML) techniques in order to learn
a nonlinear control policy is appealing. Among the numerous ML algorithms
which are available, RL is a well suited approach for learning a feedback policy.
RL has been applied in the field of robotics e. g. in [Morimoto et al. 2005], [Peters,
Vĳayakumar, and Schaal 2003] and [Ogino et al. 2004].

The following sections introduce the reader to the basics of RL in 3.1, outline
the specific algorithms used for learning the feedback for the humanoid robot in
sections 3.2.2 and 3.2.3 and finally describe the RL task for balancing the Hoap-2
during a walking gait in section 3.3.

3.1 A Brief Introduction to Reinforcement Learning
According to [Sutton and Barto 1998], RL means learning how to map situations
to actions in order to maximise a numerical reward signal. It aims at enabling
autonomous agents to learn how to behave in some appropriate fashion in some
environment, from their interaction with this environment or from observations
gathered from the environment, according to [Ernst, Geurts, and Wehenkel 2005].
It is an unsupervised learning approach and therefore it does not require input–
desired output tuples. Reinforcement Learning does not define a learning method,
but rather a learning problem. An RL setup consists of an agent and the envi-
ronment the agent interacts with.

The agent interacts with the environment according to its current policy. In a
particular state it chooses the next action from a set of available actions according
to the policy. The policy can be expressed in terms of a mapping from state to
action and completely defines the behaviour of the agent. The reward function
is used to indirectly define the goal of the learning problem, since the agents
sole objective is to maximise the reward it gets over time. The reward is the

23

3 Improving Feedback Pathways using Reinforcement Learning

only measure of success for the agent and its choice is therefore crucial for the
quality of the learning result. This stems from the fact that all RL methods aim
at maximising the return, which is the cumulated reward over time and defined
as
∑∞

k=0 rt+k+1, starting at time t. In contrast to the reward function, the value
function indicates what is good in the long term. According to [Sutton and Barto
1998], the value function is the total (discounted) reward an agent can expect to
accumulate over the future, starting at a specific state. In other words, values are
predictions of future reward. While the reward function is specified by the user,
the value function is implicit and has to be learnt by the agent, although this is
not compulsory. The environment model is an optional component which predicts
the behaviour of the environment. It maps from a given state and an action to
the next state and the given reward. According to [Sutton and Barto 1998] an
environment model is an optional component within a Reinforcement Learning
setup which is used for planning. Using a model, the agent can predict possible
future situations before choosing a course of action. [Kaelbling and Moore 1996]
depict two main strategies for solving a reinforcement learning problem:

• Searching in the behaviour space for a policy which performs well in the
given environment (policy search algorithms)

• Using statistical- and dynamic programming1 techniques, which estimate
the return, to derive a good policy (value based algorithms)

Both strategies are widely used and can be applied to a variety of learning prob-
lems.

3.1.1 Elements of Reinforcement Learning Problems
The following section is based on [Sutton and Barto 1998] and will introduce
the reader to the elements and important properties of a Reinforcement Learning
problem in order to better understand the context of the algorithms used for
learning the feedback to the CPGs.

The agent and the environment

In the context of Reinforcement Learning, the agent is the learner and the decision
maker. It is responsible for inspecting its environment in terms of the state, for
receiving the reward for the current state and for choosing the next action (see

1According to the Dynamic Programming article on [Collaborative authorship 2007], dynamic
programming in mathematics and computer science, is a method of solving problems exhibit-
ing the properties of overlapping sub-problems and optimal substructure that takes much
less time than naive methods.

24

3 Improving Feedback Pathways using Reinforcement Learning

Agent

Environment

action atstate st reward rt

Figure 3.1: At each interaction step, the environment presents the state informa-
tion stand the reward rt for the current state to the agent. The agent
chooses an action at, leading to state st+1.

Figure 3.1). The agent’s choice of an action is the only interaction which influences
the environment. An action can be abstract such as turning to the left, or concrete
instructions such as the torque applied to a joint, depending on the problem at
hand. However, all actions have to be part of an action set and some actions may
not be available in certain states. Therefore the available actions are a function
of the state and are defined as a ∈ A(st). The mapping from states to action
probabilities is called the policy and is denoted as πt(s, a). It is defined as the
probability of choosing action a ∈ A(st), when being in state s = st. The specific
Reinforcement Learning algorithm chosen is responsible for evolving the policy
towards the optimal policy over time.

The environment constitutes everything the agent cannot control, including the
reward function. The agent may still have thorough knowledge of the dynamics of
its environment. This is especially true for Reinforcement Learning tasks involving
board games like chess. The agent may have a perfectly accurate model predicting
the next state for a specific action, however, it does not have any control over the
dynamics of the environment. The definition of the reward function is therefore
part of the environment. It maps states s ∈ S (where S is the set of possible
states) and optionally actions a ∈ A to numeric values r ∈ R. In simple terms, the
agent’s goal is to maximise the cumulative reward it gets from the environment.
Consequently the reward function is used to formalise the goal of the task. This
provides a lot of flexibility for the definition of the task compared to supervised
learning algorithms.

The Markov Decision Process

According to the Markov property article on [Collaborative authorship 2007], ‘a
stochastic process has the Markov property if the conditional probability distri-
bution of future states of the process, given the present state and all past states,

25

3 Improving Feedback Pathways using Reinforcement Learning

depends only upon the present state and not on any past states, i.e. it is condi-
tionally independent of the past states (the path of the process) given the present
state’. The chess game, for example, satisfies the Markov property, because the
future progression (and outcome) of the game only depends on the current board
configuration and not on the history of the game. Processes exhibiting the Markov
property are very convenient candidates for RL. Apart from a process, a state sig-
nal can have the Markov property as well. A Markov state completely retains all
relevant information which influences the evolution of the process to the next
state. It actually contains all information relevant to the whole future of the
process, assuming all future state signals have the Markov property as well. If
the agent perceives a state which has the Markov property, an optimal policy for
the state is also an optimal policy for the complete history. Mathematically the
Markov property for a state signal holds if the probability distribution

Pr {st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, . . . , r1, s0, a0}

equals
Pr {st+1 = s′, rt+1 = r|st, at} .

That is if the probability distribution of ending up in state s′ at time t + 1, after
choosing action at at time t and knowing all state, action, reward tuples before
that is equal to the probability distribution if only the previous state st and action
at are known. It is obvious that for many environments it is impossible to pass
a state signal exhibiting the Markov property to the agent, because either this
signal would consist of too many dimensions or the process itself does not have
the Markov property. Nevertheless, it is appropriate to think of the state signal
as an approximation to a Markov state. Otherwise the RL method would have
no chance finding a good policy.

If the state signal of a process has the Markov property, the process itself is
Markovian too. A Markov decision process with a finite state and action space is
called a finite Markov decision process. The probability of each possible next state
s′, given any current state s and action a, is defined by the transition probability
function

Pa
ss′ = Pr {st+1 = s′|st = s, at = a} .

The expected reward for any current state s, action a and successor state s′ is
then given by

Ra
ss′ = E {rt+1 | st = s, at = a, st+1 = s′} .

3.2 Value based algorithms
The central element of value-based Reinforcement Learning algorithms is the esti-
mation of a value function. According to [Sutton and Barto 1998], value functions

26

3 Improving Feedback Pathways using Reinforcement Learning

are functions of states or state-action pairs with respect to a particular policy.
For Reinforcement Learning tasks satisfying the Markov property, the state-value
function for following policy π is defined as

V π(s) = Eπ {Rt | st = s} = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s

}

where Eπ{.} denotes the expected return (cumulated rewards) with respect to
policy π and Rt denotes the function calculating the return (in this case the
infinite-horizon discounted reward). The value function is intended to quantify
how good it is to follow a particular policy π starting in state s.

The value for taking action a in state s and following policy π thereafter is
called the action-value function and is defined as:

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{
∞∑

k=0

γkrt+k+1 | st = a, at = a

}

The Qπ function can be used to quantify how good it would be to change the
policy π, choosing a in state s and following the original policy thereafter. If
Qπ(s, a) > V π(s) holds, it would be better to change the policy. Otherwise the
current policy should be kept. Both equations are expressed in terms of infinite
sums of future reward, which is quite inconvenient. Fortunately these equations
satisfy recursive relationships.

The Bellman equation for V π defines the relationship between the value of a
state and the value of its successor state. [Sutton and Barto 1998] derive the
Bellman equation for V π as

V π(s) = Eπ

{
∞∑

k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 +

∞∑
k=0

γkrt+k+2 | st = s

}

=
∑

a

π(s, a)
∑

s′

Pa
ss′

[
Ra

ss′ + γEπ

{
∞∑

k=0

γkrt+k+2 | st = s

}]
=

∑
a

π(s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)] (3.1)

where Ra
ss′ is the expected value of the next reward given any current state s,

action a and successor state s′, and Pa
ss′ is the probability of each possible successor

27

3 Improving Feedback Pathways using Reinforcement Learning

s

a1

s11 s12

a2

s21 s22 s23

a3

s31 s32

r

Pa3

ss′
1

(
Ra3

ss′
32

+ γV π(s′32)
)

Figure 3.2: A state s and all its possible successor states s′, resulting from the
available actions A(s). Please note that the leafs may not be unique
(e. g. two different actions may lead to the same successor state).

state s′ given the current state s and action a, as previously stated. The equation
3.1 calculates the value of a state s by weighting each possible path to a successor
state by its probability of occurring. Figure 3.2 shows one such path in red. The
Qπ function can be written in terms of V π and has a corresponding Bellman
equation as well:

Qπ(s, a) = Eπ {rt+1 + γV π(st+1)|st = s, at = a}

=
∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)] =
∑

s′

Pa
ss′

[
Ra

ss′ + γ
∑

a

π(s′, a) ·Qπ(s′, a)

]
.

Dynamic Programming

Dynamic Programming RL algorithms can be used to compute optimal policies,
given a perfect model of the environment as a Markov Decision process. They
combine policy evaluation and policy improvement algorithms to compute opti-
mal policies. Policy evaluation computes the value V π of a policy by iterating
the Bellman equation which is guaranteed to converge to V π. Policy improve-
ment changes the current policy to a new greedy policy π′ with respect to V π by
calculating

π′(s) = arg max
a

Qπ(s, a) = arg max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s′)] .

Policy iteration is a Dynamic Programming algorithm which alternately applies
policy evaluation and policy improvement to yield an optimal policy. Value it-
eration is an extension of policy iteration. It just aborts policy evaluation after

28

3 Improving Feedback Pathways using Reinforcement Learning

one iteration, which is computationally cheaper compared to policy iteration, but
can be proved to converge towards the optimal policy as well. Classical Dynamic
Programming algorithms are of limited utility in practise, because of their restric-
tive requirement of an environment model and because of being computationally
expensive. However, they are of theoretic importance, because many other RL
methods are attempts to achieve the same effect, just more efficiently and without
perfect environment models.

Temporal-Difference Learning

Temporal-Difference Learning estimates both the V π and the Qπ function from
experience. According to [Sutton and Barto 1998], ‘Temporal Difference methods
update estimates based in part on other learnt estimates, without waiting for a
final outcome’ and ‘can learn directly from raw experience without a model of
the environments dynamics’. The simplest TD(0) algorithm updates the value
function as follows:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] .

According to [Sutton and Barto 1998, p. 134], the TD(0) target is an estimate
because it samples the expected return as well as using the estimated value V (st+1)
instead of the true value V π(st+1). TD learning uses experienced samples of
the transition model instead of a predefined transition model as required by DP
techniques. Usually one has to estimate the Q(s, a) function. Sarsa and Q-
Learning are two well known algorithms based on such an estimate. As stated
in [Sutton and Barto 1998], Sarsa is an on-policy TD control method which
estimates the action-value function according to

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] .

The name of the algorithm stems from the fact that the update rule uses the
4-tuple (st, at, rt+1, st+1, at+1). An on-policy method estimates Qπ for the current
policy π and changes the policy π towards greediness with respect to the action-
value function Qπ. On-policy methods therefore estimate the value of the policy
while applying it. Q-Learning on the other hand, is a well known off-policy
TD algorithm. The simplest variant is one-step Q-Learning, which updates the
action-value function as defined in [Sutton and Barto 1998]:

Q(st, at)← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
.

The difference to Sarsa learning, is that the Q function is updated independently
from the current policy. One important aspect of TD algorithms is that they are
guaranteed to converge to an optimal policy, if every state-action pair is visited
infinitely often.

29

3 Improving Feedback Pathways using Reinforcement Learning

Eligibility traces

Temporal Difference methods, as already mentioned, update the value function
based on value estimates of successor states. Monte Carlo methods on the other
hand, update the function based on the future reward. Therefore a Monte Carlo
method can update the value function only after a completed episode, while Tem-
poral Difference methods can update the function after each step. Eligibility
traces are a very important part of Reinforcement Learning, as they are used to
bridge the gap between Temporal Difference- and Monte Carlo methods. They
can be seen as a way of updating a value function towards an average of the
returns of all succeeding states and not towards the return of only the next step
as it is the case with ordinary Temporal Difference methods. As mentioned in
the previous section, TD algorithms update their value function using rt+1, the
reward for the state following st after taking action at. Using eligibility traces,
the update of the value function is performed using Rλ

t instead of rt+1.

Rλ
t = (1− λ)

∞∑
n=1

λn−1 ·R(n)
t

R
(n)
t =

n∑
i=1

(
γi−1rt+i

)
+ γn ·Qt(st+n, at+1)

[Sutton and Barto 1998] call R
(n)
t the ‘corrected n-step truncated return’, be-

cause it is an n-step return corrected by the estimated value for all the truncated
steps after the nth step. Since it is impossible to know the returns following the
current state in advance, an alternative but equivalent method is used. In the
case of action-value methods, for each state s and action a encountered during an
episode, an eligibility trace et(s, a) is introduced.

et(s, a) =

{
γλet−1(s, a) + 1 if s = st ∧ a = at

γλet−1(s, a) else (3.2)

Hence the eligibility trace for a state s and action a is increased by 1 each time
the state s is encountered and a is taken and is decayed by multiplication with
γ, the discount rate, otherwise. Informally an eligibility trace keeps track of how
recently a particular action in state s has been taken. They can also be thought
of propagating TD information back in time. A proof of equivalence for the case
of state-value functions can be found in [Sutton and Barto 1998].

The policy

A central element of the RL agent is its policy. The policy defines which action
the agent chooses in a particular state, or for stochastic policies, how likely each

30

3 Improving Feedback Pathways using Reinforcement Learning

possible action is to be chosen. The most obvious policy is the greedy policy.
In terms of the action-value function it is defined as π(s) = arg maxa Qt(s, a).
The greedy policy means that the agent always chooses the action leading to the
highest return with respect to its current action-value function. Obviously this
policy is only useful if the Q function is accurate already. In terms of a trade-
off between exploiting current knowledge and exploring in order to obtain new
knowledge, the greedy policy is obviously the most exploitative policy imaginable.
In order to successfully learn a good policy, balancing this trade-off is essential.
Instead of always choosing the best action, one could choose a random action
with a certain probability in order balance the trade-off a bit. The ε-greedy
policy does just that. It chooses a random action with probability ε and is greedy
with probability 1 − ε. While adjusting the exploitation/exploration balance is
easy with the ε-greedy policy, it has one significant disadvantage. If not being
greedy it chooses among the other available actions with equal probability, which
can be harmful if the worst actions are very bad compared to the ones with higher
Q function values. Policies following the softmax rule rank actions according to
their value estimates. There are several ways to implement a softmax policy. As
an example and according to [Sutton and Barto 1998] the softmax policy using a
Gibbs distribution defines the probability of choosing action a as

exp(Qt(a)
τ

)∑n
b=1 exp(Qt(b)

τ
)

where τ is called the temperature. In the limit τ → 0 it approaches the greedy
policy, while high values cause actions to approach equiprobability. Both ε-greedy,
as well as softmax policies are suitable for adjusting the exploitation/exploration
trade-off and the choice usually depends on the task at hand.

3.2.1 Function approximation
Instead of storing the value function in a table, function approximation — or more
general, most supervised machine learning methods can be used to store the value
function. The possible advantages are better generalisation and lower storage
requirements. Most continuous tasks do not visit exactly the same state twice,
although it would be convenient to treat different states as equivalent, because
they are similar enough. Function approximation algorithms can provide this
kind of generalisation. They enable a RL algorithm to generalise from previously
experienced states to ones not experienced in the past. For continuous tasks
using a table for storing the value function often becomes infeasible, because the
algorithm would have to visit a huge amount of states and in some cases it would
not work at all because one state may never be experienced again with exactly

31

3 Improving Feedback Pathways using Reinforcement Learning

the same values. A solution would be to discretise the state space, with the
disadvantage that the partitioning, which has a high impact on the quality of the
result, has to be done manually. A disadvantage of using function approximation
with Temporal Difference methods is that the proof for convergence no longer
holds.

There are numerous function approximation algorithms to choose from, both
linear and nonlinear methods. Nonlinear methods are quite powerful, but often
difficult to analyse. Feed-forward Neural Networks, for example, are according to
[Neumann 2005, p.99] ‘not used as often as linear approximators because . . . they
have a poor locality, learning can be trapped in local minima and after all we have
very few convergence guarantees’. Linear methods on the other hand are simple
to use and most of the time flexible enough. Linear methods like Rbf-networks
and tile codings are among the well known function approximation schemes used
in RL and both are covered in [Sutton and Barto 1998].

Sarsa(λ), one of the algorithms applied to learning the walking feedback is
used with an Rbf network as a function approximation scheme for the action-
value function, therefore the rest of the section will concentrate on the linear case
for the Q function. The Qt(s, a) function for each action a is represented as a
parametrised function with the vector ~θt as the only parameter. This is a generic
description, allowing various function approximation schemes to be used. The
vector ~θt could be anything from the weights of several basis functions to the
split points and leaf values of a decision tree. In section 3.2, it was explained
how the various algorithms update the value function. The Sarsa algorithm, for
example, updates Q(st, at) towards rt+1 + γQ(st+1, at+1). To be able to explain
function approximation in the general case this value is denoted v. One of these
updates would be presented to the function approximation algorithm as a sample
mapping st, at → vt. A gradient descent algorithm would then update the feature
action-value function according to

~θt+1 = ~θt + α [vt −Qt(st, at)]∇~θt
Qt(st, at) (3.3)

where ∇~θt
f (~θt) for any function f is the vector of partial derivatives,

(
∂f (~θt)

∂θt(1)
,
∂f (~θt)

∂θt(2)
, . . . ,

∂f (~θt)

∂θt(n)

)

and n is the number of entries in ~θt. Please note that the update rule above is
specific for gradient descent methods and cannot be stated in general as it depends
on the algorithm used.

32

3 Improving Feedback Pathways using Reinforcement Learning

Linear Function Approximation

A special case of gradient descent is linear function approximation with features.
The Qt function in this case is represented by a weighted sum over the response
of n predefined features φi:

Qt(s, a) = ~θT
t · ~φt =

n∑
i=1

θt(i)φi(s, a).

where the feature function could be anything from a binary feature as used for
coarse coding to a Radial Basis Function as used in section 3.2.2. In order to
represent the changing Qt function, the weights ~θt are adjusted by the standard
gradient descent update rule 3.3, where the gradient ∇~θt

Qt(st, at) in this case is
simply ~φ(s, a). .

3.2.2 SARSA(λ)-Learning with RBF centres
Sarsa(λ) is an extension of the on-policy Sarsa algorithm using eligibility traces,
which is denoted by λ. The Qπ function of this algorithm is updated according
to

Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

where δt is the Temporal Difference error for action-value prediction. Please note
that in the case of gradient function approximation algorithms, the eligibility
traces 3.2 are changed towards the gradient of the Q function∇~θt

Qt(st, at), instead
of adding 1.

This thesis uses a linear function approximation with radial basis functions to
represent the action-value function of the Sarsa(λ) algorithm. The Rbf defi-
nition, adapted from [Sutton and Barto 1998], is wrapped in order to make it
depend on a specific action. This is useful for cases where there is just a small set
of predefined actions available and it is therefore beneficial to have one separate
function approximator per action.

φi(s, a) =

{
Φi(s) if a = A(i)

0 else

Φi(s) = exp

(
−‖ s− µi ‖2

2σ2
i

)
In this case σ and µ are single values in the one dimensional case and a covari-

ance matrix and a vector in the multi-dimensional case respectively. In order to

33

3 Improving Feedback Pathways using Reinforcement Learning

represent the changing Qt function, the weights ~θt are adjusted by the standard
gradient descent algorithm using eligibility traces. The update rule is therefore

~θt+1 = ~θt + αδt~et

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

~et = γλ~et−1 +∇~θt
Qt(st, at).

In the case of Rbfs ∇~θt
Qt(st, at) for each entry i of ~θ is simply the basis function

φi(s, a). This algorithm has two major drawbacks. The first disadvantage is the
curse of dimensionality, as the complexity of the algorithm depends exponentially
on the number of state variables. Apart from computational complexity in higher
dimensional tasks it has the inconvenience that the number of basis functions
as well as σ and µ for each of them have to be manually chosen and affect the
performance of the algorithm significantly.

Algorithm 1 Linear, gradient-descent SARSA(λ), an on-policy TD control algo-
rithm adapted from [Sutton and Barto 1998, p. 212]. The algorithm implements
an ε-greedy policy.

Initialise ~θ = 0
for each episode do

Set ~e = ~0
s← initial state of episode
a← π(s, a)
for each step of episode do

~e← γλ~e + ∆Q(s, a)
Qt ←

∑
i θ(i) · φi(s, a)

Take action a, observe reward r and next state s′

a′ ← π(s′, a′)
Qt+1 ←

∑
i θ(i) · φi(s

′, a′)
δ ← r + γQt+1 −Qt
~θ ← ~θ + αδ~e
a← a′

end for
end for

3.2.3 Extra-Tree-Based Batch mode Reinforcement Learning
Batch mode Reinforcement Learning [Ernst et al. 2005] learn a control policy from
a set of four-tuples (st, at, rt+1, st+1). This set of tuples is usually obtained from

34

3 Improving Feedback Pathways using Reinforcement Learning

recordings of an interaction between the agent and the environment. It simply
represents a recording of all states visited along with the action taken and the
reward received after reaching the next state. Compared to on-line RL methods
it uses all available training data at once, as opposed to continuously updating
an approximation of the value function with one tuple at a time. Being an offline
learning algorithm, a batch mode reinforcement algorithm can harness supervised
learning methods which cannot be used on-line. Some algorithms like artificial
neural networks usually require several passes over a given training set to converge
properly. These algorithms become available for RL methods in batch mode.

The rest of this section describes the Extra-tree based batch mode Reinforce-
ment Learning algorithm as published in [Ernst et al. 2005]. The algorithm is used
as an alternative approach to the Sarsa(λ) with Rbf centres method, described
in section 3.2.2, for addressing the feedback task.

We use fitted Q-iteration as a form of batch mode Reinforcement Learning
which enables the application of any regression algorithm, to the Reinforcement
Learning task as stated in [Ernst et al. 2005]. This framework makes it possible to
fit (using a set of four-tuples (st, at, rt+1, st+1)) any parametric or non-parametric
approximation method to the Q-function. With each iteration the algorithm ex-
tends the horizon of the optimisation. After the Nth iteration, the approximation
represents a QN function which corresponds to an N -step optimisation horizon.
Consistent with [Ernst et al. 2005], just rewritten to match the previously used
terminology, the QN function is defined as follows:

Q0(s, a) ≡ 0

QN(s, a) ← rt+1 + γQN−1(st+1, π(st+1)), ∀N > 0.

QN is proven to converge, but not necessarily to the optimal Q function, as stated
in the paper. At each iteration, QN is calculated using any regression algorithm.
For the experienced transitions the equations above match the DP equations.
Therefore fitted Q-iteration is an approximate DP method.A pseudo code version
for obtaining QN is printed in Algorithm 2. After stopping the algorithm (e. g.
after a predefined number of iterations) an approximation of the optimal control
policy can be derived by

µ̂∗
N(s) = arg max

a∈A
Q̂N(s, a).

A performance comparison of five different tree-based regression algorithms in
the context of the batch-mode Reinforcement Learning framework is available in
[Ernst et al. 2005]. The Extra-tree algorithm was chosen for this thesis simply
because its implementation within the RL toolbox at the institute has already
been used during research and the results from [Ernst et al. 2005] and [Geurts,

35

3 Improving Feedback Pathways using Reinforcement Learning

Algorithm 2 The fitted Q iteration algorithm, adapted from [Ernst et al. 2005]
Let F be a set of four-tuples (st, at, rt+1, st+1)
Set N = 0
Let Q̂N be a function equal to zero everywhere on S ×A
repeat

N ← N + 1
Build the training set T = {(il, ol), l = 1, . . . , #F} based on Q̂N−1 and on
the full set of four-tuples F :

il = (sl
t, a

l
t)

ol = rl
t + γmax

a∈A
Q̂N−1(s

l
t+1, a)

Use the regression algorithm to induce the function Q̂N(s, a) from T
until stopping condition is met

Ernst, and Wehenkel 2006] looked promising.The algorithm published in [Geurts
et al. 2006] can be used for classification, as well as regression tasks. In the case
of batch mode Reinforcement Learning, only the regression version is useful.

According to [Geurts et al. 2006] the algorithm ‘builds an ensemble of un-pruned
decision or regression trees according to the classical top-down procedure’. They
further note that it differentiates itself from other tree based ensemble methods,
because it splits nodes by choosing cut-points independently of the target vari-
able. An ensemble in this case consists of a certain number of trees which are
chained together by averaging their output. According to the paper, the explicit
randomisation of the cut-point and attribute combined with averaging the output
over several trees should be able to reduce variance further than the randomi-
sation schemes of other methods. The authors state that, assuming a balanced
tree, the complexity of the tree growing procedure is O(N · log N), where N is the
size of the learning sample. Algorithm 3 shows the pseudo-code of the Extra-tree
regression splitting algorithm. The algorithm has three tunable parameters. K
denotes the number of attributes which are selected at random at each node, nmin

specifies the minimum sample size to split a node and M sets the number of trees
for averaging over samples.

The algorithm starts with M empty trees, each tree is then built recursively.
The recursive tree-building algorithm adds a leaf to the tree if a stopping criterion
is met or otherwise adds a node which splits the training set into a left and a right
side. After splitting the algorithm recurses down both paths. The most important
part of the algorithm is the splitting procedure. This procedure consist of two
parts. The first part chooses K random splits, while the second part weights each

36

3 Improving Feedback Pathways using Reinforcement Learning

Algorithm 3 The Extra-tree regression splitting algorithm, adapted from [Geurts
et al. 2006]

Build_extra_tree_ensemble(S)
Input: A training set S of tuples (il, ol) as provided by fitted Q-iteration
Output: A tree ensemble T = {t1, . . . , tM}
for i = 1 . . . M do

ti = Build_extra_tree(S)
end for
return T

Build_extra_tree(S)
Input: A training set S of tuples (il, ol)
Output: A tree t
if |S| < nmin OR all candidate variables are constant in S OR the output
value is constant in S then

return a leaf with the average output in S
else

Randomly select K attributes {a1, . . . , ak} without replacement, among all
(non constant in S) candidate attributes
Draw K splits {s1, . . . , sK},
where si = Pick_a_random_split(S, ai),∀i = 1, . . . , K

Select a split s∗, such that Score(s∗, S) = maxi=1,...,K Score(si, S)
Split S into subsets Sl and Sr according to s∗
Build tl = Build_extra_tree(Sl) and tr accordingly
Create a node with the split s∗, attach tl and tr as left and right subtrees
and return a tree t with this node as its root

end if

Pick_a_random_split(S, a)
Input: A subset S and an attribute a
Output: A split
Let aS

max and aS
min denote the maximal and minimal value of a ∈ S

Draw a random cut-point ac uniformly in [aS
min, a

S
max]

return the split [a < ac]

Score(s, S)
Input: A split s and samples S
Output: The score of the split

return
var{y|S}− |Sl|

|S| var{y|Sl}− |Sr |
|S| var{y|Sr}

var{y|S}

37

3 Improving Feedback Pathways using Reinforcement Learning

split and chooses the best among them. Choosing the splits involves selecting K
attributes from all available attributes. An attribute in this case is a particular
dimension of the training samples. For each of these attributes a random value
between [amin, amax] is chosen as the splitting threshold. The attribute and the
random value together define a split. Each split is then assigned a score. The
split with the highest value is chosen and applied. The score is defined as

Score(s, S) =
var {y|S} − |Sl|

|S| var {y|Sl} − |Sr|
|S| var {y|Sr}

var {y|S}

where s is a split point, S is training set, Sl and Sr are the left and right subsets
of S after splitting, respectively and var {y|S} is the variance of the output in the
samples S. The score is highest if the sum of the variances of the output variable in
each split is at its minimum. Intuitively it tries to minimise the output variances
of the sub-trees.

A significant advantage of batch-mode reinforcement algorithms is their efficient
use of the experienced state-action tuples, as opposed to Temporal Difference
methods which throw away a tuple after using it to add a small increment to
their value function. In the general case, batch mode reinforcement algorithms
therefore usually require a lower number of episodes compared to TD methods.
In order to improve a policy learnt using a batch mode reinforcement algorithm,
additional samples can be generated by applying the the preliminary policy to the
learning task. An advantage of the Extra-tree based approach compared to the
Rbf network is the fact that there is no need to specify anything manually. The
partitions are chosen automatically by the Extra-tree algorithm, as opposed to
the Rbf linear approximation method where the centres and covariance matrices
have to be selected by hand. Therefore, the Extra-tree based batch mode approach
should yield a better approximation of the value function compared to the on-line
Sarsa(λ)-Rbf approach.

3.3 Designing the Lateral Feedback Task
Unfortunately, the simulated robot using the Fujitsu trajectories learnt with
PCPGs does not walk at all without lateral feedback to its ankles and hip joints.
Although the trajectory produced by the CPGs is a walking pattern, it does not
fit the dynamics of the robot within the Webots environment. Looking at Figure
3.3, it is obvious that the weight of the upper body of the Hoap-2 dominates.
Therefore, its movements have to be very carefully generated in order to keep the
robot upright.

The RL system has to learn a mapping from the input states to a lateral feed-
back on the ankle and hip joints. Mathematically it learns a non-linear function

38

3 Improving Feedback Pathways using Reinforcement Learning

Link Mass in kg
Head 0.0669886
Neck 0.0208892
Body 2.37622

Lower body 0.49768
Shoulder 0.199031
Shoulder2 0.201439
Upper arm 0.218287
Lower arm 0.167592

Hand 0.0472
Hip 0.039388
Hip2 0.172696
Thigh 0.438537
Shin 0.285827

Ankle 0.171128
Foot 0.136753

Figure 3.3: The mass distribution of the Hoap-2 robot. The size of the red circles
is linear with respect to the mass of the link it is drawn upon. The
centre of the circles roughly represent the centre of mass of the link
in question. Please note that the links Head and Neck, Shoulder and
Shoulder2, Hip and Hip2 as well as Ankle and Foot have been grouped
in the drawing and that the values represent the left part of the robot
where applicable. The values have been taken from [Cominoli 2005].

39

3 Improving Feedback Pathways using Reinforcement Learning

g : s ∈ S 7→ ∆f , where ∆f is the change of the feedback value applied to the
hip and ankle joints. In essence it has to learn a subset of the dynamics of the
robot and has to suppress the excitation of left/right movements during the walk.
The reason for the left/right instability of the walking gait partly stems from the
fact that the trajectory does not place the front foot evenly on the ground while
taking a step forward and is further increased by a higher walking velocity (150%
of the original walking trajectory speed).

The input state for the RL algorithm consists of the following values:

• Phase φ of the first oscillator (the hip joints run in anti-phase)

• Lateral (sidewards) tilt of the upper body of the robot

• Feedback signal of the previous learning step

• Optional: Linear lateral velocity of the upper body of the robot

The action consists of a single value which represents the change of the feedback
applied to the PCPG system. Alternatively one could have used an absolute
feedback action, but the relative feedback is more convenient because it is possible
to use a discrete action set which improves performance, while still being able
to reach every possible feedback value. Additionally, it has the advantage of
producing a smooth feedback. The feedback applies to the lateral hip and ankle
joints and makes the robot move its upper body to the left or right while keeping
it mostly upright. In detail, the feedback represents a percentage of √µ added
to the ṙ in equation 2.7 of all oscillators of one DoF. Each given feedback value
is added to the previous one (there are negative values as well) and is applied to
the radius of the oscillator at each integration step. An offset feedback, simply
representing a value added to the output of the systems (not integrated with the
CPG equations) was briefly tried as well, but turned out to be inferior. To be
fair, with a bit more tuning the offset feedback would probably have produced
results comparable to the radius feedback.

The Webots system runs in a loop with the Webots controller. Each time
the Webots controller is called, it can set the joints angles of the robot. After
returning from the call, Webots integrates the physics equations of the simulation
and therefore advances the time. The amount of time which passes between two
successive controller steps is set to 8ms. Therefore, the equations of the PCPGs
are integrated at the same rate. The RL system can only determine the difference
between two states if a certain amount of time passes between them. Therefore
it is invoked at a lower rate of 64ms. That means the RL system can inspect
its state and apply an action every 64ms. After an action has been chosen, the
Webots controller interpolates it linearly until the RL system is invoked again
and chooses the next action.

40

4 Results

This chapter describes the applied research conducted, the setup used to teach a
simulated humanoid robot how to walk and the results of simulation runs with
Webots. During the research an attempt was made to apply the framework on the
real Hoap-2 robot as well. Unfortunately writing and testing the basic software
infrastructure necessary for interfacing the learning framework to the real robot
took much longer than expected and there was not enough time left to conduct
the planned experiments.

A variety of problems have been solved during the applied research. Solutions
to these problems have been proposed by other researchers in the past and results
have been published, but nevertheless the solutions had to be implemented for
this thesis. The first problem to be solved was learning arbitrary periodic input
signals using the PCPG system proposed by [Righetti and Ijspeert 2006]. While
working on the implementation of the PCPG system, few improvements which
have been mentioned above and are described in further detail in chapter 2 have
been added. The next step was the integration of the PCPG system with the
Hoap-2 library.1 During this integration work, several bugs have been fixed and
support for the gyroscope sensor needed for the active feedback has been written.
From that point on, the interface between the PCPG system and the simulated
Hoap-2 worked and steering the robot using the output of the Pattern Generators
was possible.

Due to differences between the Webots versions used it was unfortunately not
possible to reproduce the results from [Righetti and Ijspeert 2006]. The simulated
robot was unable to walk because of lateral instabilities. After several unsuccessful
attempts of optimising the input trajectory to the learning system and changing
the variables of the walking system, implementing the RL feedback framework
first seemed like the most promising path. After solving several technical difficul-
ties involving the integration of the RL library with the PCPG Webots controller,
the robot was finally able to walk one or two steps without tipping over. How-
ever, the results obtained so far left a lot to be desired. Before finally having
a controller which produced stable walking trajectories for the Hoap-2, several
different RL algorithms were tried, the feedback pathways were changed and the
input trajectory to the PCPG system were further optimised. The final feedback
policy is able to actively balance the simulated robot during the walk and even

1This library as well as the RL library was written by DI Gerhard Neuman.

41

4 Results

recovers from excitations of the left–right movements. Still, sometimes the policy
fails and the robot tips over. It is, however, quite certain that the excitation of
the dynamics which makes the policy fail are due to the strictly stiff physics of
the simulated joints and do not occur on the real robot because of motor backlash
which has a damping effect.

4.1 Architecture
This section describes the architecture of the software used for the the lateral
feedback task and additional components which were designed for interfacing
with the real Hoap-2 robot.

On a high level the setup consists of a stand-alone program for learning the
input trajectory with the PCPG system, and a Webots controller for steering the
robot during the simulation. The stand-alone tool is invoked by a Matlab script
for easy adjustment of the parameters and simple visualisation of the results. It
takes a Fujitsu pulse trajectory2 as an input and uses this trajectory as Pteach for
the system described in chapter 2. The system is run for a configurable amount of
time and the results are stored in a file which can be read by the Webots controller
later on.

There are two versions of the Webots controller, one for each RL algorithm
described in chapter 3, but apart from the necessary changes due to the differ-
ent RL algorithm they are identical. The controllers use the Hoap-2 library and
the RL Toolbox3 developed at the Institute for Theoretical Computer Science.
The Hoap-2 library provides an abstract interface to the Hoap-2 robot and can
be switched from interfacing with a simulated robot to steering the real robot
without having to develop a new controller. The integration work for the real
robot interface in collaboration with Gerhard Neumann was part of this thesis.
The architecture of the interface is described in section 4.1.1. The RL Toolbox
provides a collection of RL related classes which can be combined in various ways.
According to [Neumann 2005] nearly all common RL algorithms such as TD(λ)
learning for the V- and Q-Function, discrete Actor-Critic learning, dynamic pro-
gramming approaches and prioritised sweeping as well as specialised algorithms
for continuous state and action spaces are included.

Depending on the RL algorithm, learning takes place during the simulation
run or after several completed runs (called episodes) as a batch process for the
Sarsa(λ) and the Extra-trees based batch mode approaches respectively. How-

2The trajectories supplied by Fujitsu are defined in pulses. One degree corresponds to 209
pulses according to [Fuj 2004].

3The toolbox was written by DI Gerhard Neumann and is available at http://www.igi.
tugraz.at/ril-toolbox.

42

http://www.igi.tugraz.at/ril-toolbox
http://www.igi.tugraz.at/ril-toolbox

4 Results

ever, the RL policy is always active during a simulation run. Every n simulation
steps, the RL system receives a new state and calculates the action to execute for
the next n steps. At each simulation step, the equation systems of the PCPGs
are integrated and the feedback from the RL system is added. The result of the
integration is then applied to the robot joints under control.

4.1.1 Extensions for the real Hoap-2
The Hoap-2 platform from Fujitsu consists of a Linux PC with the RTLinux ker-
nel extensions version 3.2-pre1 from http://www.rtlinux-gpl.org interfacing
to the robot itself via an USB 1.1 interface. Fujitsu’s intention was to let the
controller run in user- or kernel-mode on the supplied Linux PC. For today’s
standards, however, the computer is just not powerful enough for running so-
phisticated learning setups, which posed several challenges in order to create an
interface to the platform. The first problem was that the robot expects a new
position every 1ms in order to produce smooth motion. Secondly, there was no
useful interface for conveniently writing positions and reading sensor information
from user-space. Third, there were no means for debugging kernel modules on
the PC (i.e. there was no serial interface cable attached to it). Fourth, I had no
physical access to the machine while developing the interface, which is problem-
atic when trying to develop kernel-mode software. Another challenge was that
the posture sensor consists of a linear acceleration sensor and a gyroscope without
any provided routines for converting the raw sensor readings to a posture.

In order to simplify the development of controllers for the Hoap-2 robot and to
make the transition from a Webots controller to a Hoap-2 controller smooth, a
system consisting of the following components was designed an implemented for
this thesis.

• Extensions to the Hoap-2 library

• A server mediating between the controller and the kernel module

• An RTLinux kernel module

See Figure 4.1 for a diagram of the systems architecture. The Hoap-2 library is
used as an abstraction layer by the controller and can either send commands to
Webots or to the real robot. It provides facilities for reading sensor information
and for setting the next positions. The Hoap-2 server forwards the commands
received over TCP/IP from the controller (typically on another machine) to the
RTLinux kernel module via a kernel pipe and pushes sensor information from
the module to the controller. The real-time kernel module is responsible for
driving the robot via the USB interface every 1ms, for calculating intermediate

43

http://www.rtlinux-gpl.org

4 Results

Hoap-2 RT module

Hoap2 server

Controller PC

user-space

kernel-space

Fujitsu PC

TCP/IP

USB

Figure 4.1: The architecture of the Hoap-2 interface software.

positions from the commands received from the controller and for reading sensor
information from the robot and forwarding it to the controller via the server.

Apart from writing the interface for controlling the robot using the Hoap-2
library, the raw gyroscope values had to be integrated in order to provide the tilt
of the trunk to the Webots controller. The implementation which was previously
used did not provide satisfactory results. The authors calculated a moving average
of the raw sensor values at start-up and subtracted the obtained value from the
sensor readings thereafter. For some time it seemed that without implementing a
Kalman filtering system using the accelerometer and the gyroscope, it would be
impossible to obtain reliable measurements for more than a few seconds. However,
after discovering that the existing implementation used integer values for the
average (the authors probably assumed the precision would be adequate since
the sensors readings are integers as well) and replacing it with a floating point
variable, the measurements improved by magnitudes and were accurate enough.
The integration method used is simple Euler integration whenever sensor values
are sent to the controller. Using e. g. Runge-Kutta integration at the same rate
as the routine sending values to the robot runs (1ms) would probably improve
the results. Unfortunately the limited amount of time spent at the Epfl did not
permit testing this approach. The control PC could, however, be too slow for this
task anyway.

One problem of the architecture outlined above is the lag introduced by the
kernel scheduler for the processes running the network server and the controller.
This lag can be as high as 100ms in certain cases. In order to minimise the effect
it is crucial to run these processes with the highest priority available4, put the

4The highest priority on Linux systems is −20.

44

4 Results

system into single-user mode and optionally set the scheduling policy to either
SCHED_FIFO or SCHED_RR and the real-time priority to its maximum using
the sched_setscheduler syscall and/or decrease the duration of the standard time
slice.5 See [Bovet and Cesati 2005] for more information about the Linux kernel
and its scheduler.

Although it was not possible to run the experiments described in section 4.2,
the system was implemented and tested with a controller from a project with the
Hoap-2 robot by DI Helmut Hauser.

4.1.2 Additional Tools developed
An implementation of the PCPG system in Matlab for easier experimentation
has been written. The scripts produce an analysis of the results of learning an
arbitrary periodic input signal. Having an implementation of the PCPG system
in Matlab enables a thorough study of its properties. A tool in Matlab for ma-
nipulating and refitting a trajectory with cubic splines in order to facilitate the
manual optimisation of the walking trajectory was written, because the original
trajectories from Fujitsu were quite difficult to learn with a function approxima-
tion scheme based on trigonometric functions. The reason is that these function
approximations are not particularly good at modelling discontinuities with a low
number of primitives. Keeping the original trajectories would have put a sig-
nificant burden on the speed of the controller, as a higher number of oscillators
would have had to be used. In order to make this tool useful for the trajectories
from Fujitsu, a converter between Fujitsu pulse- and angular format was required.
A converter for each direction of conversion has been developed in the course of
completing this thesis. A yet unfinished library for plotting trajectories during a
debugging session using the Kst tool6 has been written as well.

The complete source code developed during the research is available under the
GPL v27 upon request.

4.2 Learning Task Setup
The simulated robot used for the learning task is a model of the Hoap-2 research
robot manufactured and sold by Fujitsu Automation. The real robot is about
50cm tall and weights approximately 7kg. The system has four joints in each arm
and six joints in each leg and a total of 25 degrees of freedom. The simulation

5Changing the time slice usually requires a kernel patch and rebuild.
6From the project’s website http://kst.kde.org/: ‘Kst is the fastest real-time large-dataset

viewing and plotting tool available and has basic data analysis functionality.’
7http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

45

http://kst.kde.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

4 Results

software used is Webots 5.0.6, a proprietary package sold by Cyberbotics8. It in-
cludes a model of the Hoap-2 robot developed during the research for the Diploma
thesis [Cominoli 2005]. The author tried very hard to make the model as accurate
as possible, but stated ‘Concerning the evaluation of the current version of the
simulator, I do not think that the results are excellent’. One particular aspect of
the model is that it cannot simulate motor backlash, which results from wear and
manufacturing circumstances and is nonlinear in the servo angle. While motor
backlash reduces the ability of the robot to follow trajectories exactly, it has the
convenient property of damping movements. The Webots model on the other
hand is strictly stiff and any disturbances are passed along the kinematic chain
without any damping.

The Webots scene used for learning the feedback consists of the robot model
and a huge level floor plate. The initial position of the robot closely matches a
position along the walking trajectory supplied by Fujitsu.

Compared to [Righetti and Ijspeert 2006], the context of the problem this thesis
solves is more difficult because the software used for simulation has been improved
meanwhile and the approach from the original publication does not make the
robot walk using the newer version. However, the realism of both simulation
environments is discussible and it remains unclear which one fits the dynamics of
the real robot better.

The system for controlling the joints of the robot consists of a network of PCPGs
as shown in Figure 4.2. Each PCPG contains five oscillators and is trained with
the Fujitsu walking trajectory for the corresponding joint as the target signal.
After the learning phase the system is able to reproduce the walking pattern with
a maximum error of 0.1430, 100 seconds after switching off the driving signal,
while the error was at a maximum of 0.1356 between seconds 200–250. Please see
Figure 4.3 for details.

The reward function of the RL system assigns a big negative reward to the
‘failed’ state (robot tipped over) and a small negative reward relative to the
lateral tilt as soon as it is higher than 0.05 rad. The feedback is the improved
version on the radius as defined in section 2.3.1 and the action a chosen by the
agent is applied as follows (the gain is set to g = 1):

fleft,2 = fright,2 = at−1 + a · sgn(φleft,2)

fleft,6 = fright,6 = at−1 − a · sgn(φleft,2).

8http://www.cyberbotics.com

46

http://www.cyberbotics.com

4 Results

P

P

P

P

PP

P

P

P

P

LLEG JOINT[2]

LLEG JOINT[3]

LLEG JOINT[4]

LLEG JOINT[5]

LLEG JOINT[6]

RLEG JOINT[2]

RLEG JOINT[3]

RLEG JOINT[4]

RLEG JOINT[5]

RLEG JOINT[6]

Right Leg Left Leg

Figure 4.2: The structure of the PCPG system. Taken from [Righetti and Ijspeert
2006].

4.3 Results

This sections presents the results from four different RL runs on the task of
balancing a simulated Hoap-2 robot during a walking gait. Three runs with the
Sarsa(λ) algorithm using an Rbf network for Q function approximation and
one run with the batch-mode Extra-tree based algorithm were conducted. The
state signal consists of either three our four values, namely the lateral tilt of the
upper body, the previously given feedback and the phase in the first case and in
addition to the aforementioned states, the linear lateral velocity of the upper body
in the four dimensional case. Table 4.1 shows various properties of the conducted
simulation runs and the corresponding figure containing the results. The average
number of steps shown in the table have a duration of 64ms each, therefore the
best result obtained with a 1ms Webots time-step is an average walking duration
of 70.4 seconds. Sometimes, however, the policy still fails and the robot tips
over. As far as visual analysis of the simulation runs have shown it is due to an
excitation of the left-right motion, which the policy sometimes fails to suppress
properly. The remaining section will refer to the individual simulation runs by
the index in table 4.1. The movements of the robot during an episode of run 2
can be seen in Figure 4.13.

Figure 4.8 confirms that the learnt Fujitsu trajectory does not fit the dynamics
of the robot walking at 150% of the original speed. Generating a new input

47

4 Results

0 50 100 150 200 250 300 350
0

1

2

Time (s)

er
ro

r

0 50 100 150 200 250 300 350
0

10

20

Time (s)

ω
i

0 50 100 150 200 250 300 350
−0.5

0

0.5

Time (s)

α i

0 50 100 150 200 250 300 350
−5

0

5

Time (s)

φ i

0 50 100 150 200 250 300 350
−2

0

2

Time (s)

la
st

φ i

Figure 4.3: The results of learning the walking trajectory with the PCPG network.
One cycle of the trajectory is 2.514 seconds long. Each PCPG contains
5 oscillators and learning stops after 250 seconds. After that the
oscillators are free running for 100 seconds. The variables are set to:
τ = 1, ε = 4, η = 0.9, µ = 1, γ = 1, λ = 0.4, τext = 10, ωi,0 = 2.5 · i.
The first row represents the error Pteach −G. The last row shows the
evolution of the external phase offset state.

48

4 Results

run index algorithm # states # episodes (≈) # steps (≈) webots ts figure
1 Sarsa(λ) 3 6000 1100 1ms 4.4
2 Sarsa(λ) 4 9000 820 1ms 4.5
3 Extra-trees 4 3540 360 1ms 4.6
4 Sarsa(λ) 3 4500 1210 8ms 4.7

Table 4.1: The simulation runs, their results and parameters. The number of steps
is the maximum average number of RL steps during the run averaged
over 150 episodes. The Webots time-step denotes how often the physics
equations are integrated in Webots and affects the complexity of the
task significantly.

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

episode

av
g.

 R
L

st
ep

s

Figure 4.4: The Sarsa(λ) algorithm with a three dimensional state vector and a
Webots time-step of 1ms running for 5935 episodes. The error bars
show the standard error of the number of steps per episode averaged
over 150 episodes.

49

4 Results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

episode

av
g.

 R
L

st
ep

s

Figure 4.5: The Sarsa(λ) algorithm with a four dimensional state vector and a
Webots time-step of 1ms running for 9052 episodes. The error bars
show the standard error of the number of steps per episode averaged
over 150 episodes.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

300

350

400

episode

av
g.

 R
L

st
ep

s

Figure 4.6: The Extra-tree based batch mode algorithm with a four dimensional
state vector and a Webots time-step of 1ms running for 3540 episodes.
The error bars show the standard error of the number of steps per
episode averaged over 150 episodes.

50

4 Results

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400

episode

av
g.

 R
L

st
ep

s

Figure 4.7: The Sarsa(λ) algorithm with a three dimensional state vector and a
Webots time step of 8ms running for 4542 episodes. The error bars
show the standard error of the number of steps per episode averaged
over 150 episodes.

102 104 106 108 110 112 114 116 118 120
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
PCPG output with and without feedback

time (s)

jo
in

t a
ng

le
 (

ra
d)

Figure 4.8: The output of the first PCPG without any feedback (green dash-
dotted) and with the radius feedback applied (blue) during an episode
of run 1.

51

4 Results

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

feedback value

ph
as

e
(r

ad
)

Figure 4.9: A scatter plot of the phase vs. the absolute feedback during an episode
of run 2. The blue dots are the feedback as learnt by the RL agent,
while the red dots represent a linear model of the feedback.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

lateral tilt (rad)

fe
ed

ba
ck

 v
al

ue

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

linear velocity

fe
ed

ba
ck

 v
al

ue

Figure 4.10: A scatter plot of the absolute feedback vs. the lateral tilt on the left
and the linear velocity on the right during an episode of run 2. The
blue dots are the feedback as learnt by the RL agent, while the red
dots represent a linear model of the feedback.

52

4 Results

0 2 4 6 8 10 12 14 16 18

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (sec)

Figure 4.11: A plot of the feedback the policy acquired during simulation run 2
applied to the robot vs. the lateral tilt and linear velocity. The blue,
solid line shows the absolute feedback applied. The red, dashed plot
is the lateral linear velocity of the upper body and the green dash-
dotted line represents the lateral tilt.

trajectory for the PCPG framework based on the old movements with an average
feedback added to it would probably simplify the learning task and improve the
overall stability of the walk. An interesting result is that the learnt policy from
run 2 works for a slower walk at the original speed as well. It also works for a
different Webots integration step (8ms instead of the learnt 1ms). This suggests
that the feedback policy generalised quite well. When comparing Figures 4.4 and
4.7, please keep in mind that the task is much simpler with the 8ms integration
time-step as the physics model is less accurate. When comparing Figure 4.6 to
4.5 and 4.4 it is obvious that the batch mode algorithm finds a good policy after
recording a small number of additional episodes. It reaches an average number of
steps per episode of 250 after just 1000 episodes compared to 5500 for the four-
and 4500 episodes for the three-states Sarsa(λ) algorithm. On the other hand,
when taking the number of loaded episodes (5900) into account the batch mode
algorithm seems to be slower, but the algorithm would probably work with fewer
initial episodes as well, because many of the loaded episodes are duplicates or at
least very similar to other episodes within the training set. Another difference
between the on-line and batch mode results is the fact that the batch mode task
was run with a maximum of 500 steps per episode up to episode 2800, while all
on-line tasks were allowed to take up to 2500 steps per episode from the beginning.

53

4 Results

0 2 4 6 8 10 12 14 16 18

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (sec)

Figure 4.12: A plot of the feedback the policy acquired during simulation run 3
applied to the robot vs. the lateral tilt and linear velocity. The blue,
solid line shows the absolute feedback applied. The red, dashed plot
is the lateral linear velocity of the upper body and the green dash-
dotted line represents the lateral tilt.

The batch mode task has a slightly different reward function as well. Instead of
receiving a reward of -10 in case the robot tips over, the batch mode task assigns
a value of -50 to the failed state.

Figures 4.9 and 4.10 show the evaluation of the learnt policy during one episode.
It can easily be deduced from Figure 4.9 that the policy is in large parts responsi-
ble for compensating for the dynamic effects of the left/right swinging pattern of
the upper body. The trajectory as learnt by the PCPGs does not place the front
foot evenly on the ground at the moment it touches the floor. Without feedback,
the upper body of the robot accelerates in the lateral direction and the robot tips
sidewards. The feedback reduces this effect by firmly applying a force counter-
acting the side-ward acceleration. Figure 4.10 shows the relationship between the
feedback and the lateral tilt as well as the linear lateral velocity. Especially the
left plot nicely shows that the linear model cannot correctly reproduce the feed-
back policy. The right part of the plot shows why the policy learnt without the
linear lateral velocity works as well. There are large clusters of points producing
a different feedback for the same lateral velocity. This suggests that the feedback
does not have a strong dependency on the lateral velocity, which is also supported
by the parameters of the second linear model.

Finally, Figures 4.11 and 4.12 show the lateral tilt, the liner velocity and the

54

4 Results

applied feedback during an episode of run 2 an 3 respectively.

4.3.1 Regression analysis of the policy
In order to confirm the hypothesis that a nonlinear policy is required to make
the robot walk, a multivariate linear regression analysis of the policy learnt by
Sarsa(λ) with an Rbf network was performed. The learnt policy is the result
of a simulation run with 9000 RL episodes with a state vector including the
linear lateral velocity of the upper body. The regression analysis tries to fit a
linear model y = Xβ + ε to the learnt policy. Two versions of a fitted linear
policy were tried. The first version with an observation vector of y = [feedback]
and regressors X = [lateral tilt, previous feedback, φ, lateral linear velocity]. The
parameters b turned out to be b = [−0.6516,−0.2071,−0.0038,−0.2295]T with a
mean squared error of MSE =

Pn
i=1(yi−[X·b]i)2

n
= 0.0041. While this seems like the

most obvious thing to do, it cannot work because the prediction is a value which
is continuously added up during the simulation. Therefore, while the MSE on the
observation is small, the error on the actual feedback applied to the joints becomes
huge after a few steps because it is added up as well. For the second version
the linear model was changed to produce absolute feedback values, instead of a
relative feedback like the RL policy and the first linear model. The observation
vector was set to be y = cumsum(feedback) and the regressors were set to be
X = [lateral tilt, φ, lateral linear velocity], where cumsum(a) calculates a vector
containing the cumulative sum of the elements of a given column vector, that is
cumsum(a) = [a0, a0 + a1, a0 + a1 + a2, . . . ,

∑
i ai]

T . The regression analysis led
to the parameter vector b = [−5.1971,−0.0063,−0.2904] with a MSE = 0.0139.
Neither of those models managed to make the robot walk a single step, which
supports the hypothesis that a nonlinear model is required. Nevertheless they
provide interesting results. The parameter vector of the first analysis divided by
the vector of standard deviations of the regressors [0.0299, 0.2171, 1.8131, 0.1668]
gives [−21.79,−0.95,−0.0021,−1.38], while the same procedure applied to the
results of the second analysis gives [−173.82,−0.0035,−1.74]. This result clearly
shows that the most important state is the lateral tilt. This explains why the
policy learnt without the linear velocity produces good results as well.

55

4 Results

Figure 4.13: Walking gait of the Hap-2 robot during an episode of run 2. The
frames are evenly spaced. The distance the robot moves from one
frame to the next is therefore linearly related to the distance moved
in the simulation. 56

5 Conclusion

Balancing a simulated humanoid robot while walking is a difficult task because
simulations mostly use stiff models. This thesis successfully applied two Rein-
forcement Learning approaches to the task. Both algorithms were able to find
a usable policy which managed to make the robot walk for up to 70 seconds on
average without tipping over. Although the resulting policies could not be eval-
uated on the real robot due to time constraints, it is very likely that they would
work because the dynamics of the robot compared to its simulation are easier to
handle, because of the damping effect introduced by motor backlash.

The contribution of this thesis to the Programmable Central Pattern Generator
approach is a new coupling term for keeping the phase difference which improves
the robustness of the system to external perturbations, simplifies the dynamics
and increases the flexibility of the system. The system is more robust because
the coupling term acts only on the phase of the oscillators instead of perturbing
the oscillator as a whole. It simplifies the dynamics because the system does
not have to compensate for the perturbations of the coupling while learning the
input signal. The system is more flexible due to the ability to adjust the speed of
recovery from perturbations while the system is running.

Working on the PCPG system was challenging and fun, while finding a working
RL approach, tuning the system and running the simulations was a bit tedious
mostly because of endless technical difficulties involving the Webots software, the
controllers and the integration with the RL library. Working with Webots was
very time consuming because it is proprietary software and apart from being un-
able to debug it there is only a limited number of licences available at the institute,
which prevented parallel execution of several simulation runs. An Open Source
simulation software would probably have saved weeks of time. Due to limitations
of the Webots software, the simulation runs took a very long time to complete and
it was therefore not possible to try many different learning parameter settings in
order to optimise the results. This is especially true for the batch mode run which
took over a week to complete. The results from the batch mode and the on-line
runs cannot be directly compared. Given enough time to optimise the learning
parameters, it is very likely that the Extra-tree based batch mode approach would
have led to better results compared to the on-line approach because it is superior
with respect to approximating the value function.

57

5 Conclusion

Further Work One of the weaknesses of the approach outlined in this thesis is
the learnt trajectory which does not fit the dynamics of the robot. There are sev-
eral publications available aiming at evolving a controller to generate a walking
trajectory which exploits the dynamics of the walking machine, rather than work-
ing against them. One possible approach may be to entrain the oscillators with
the robot. The load sensors on the feet could, for example, generate a driving
signal which is coupled to the oscillators producing the trajectories. This could
potentially be used to create entrainment between the robot and the oscillators.
An appropriate feedback signal would have to be defined, in order to synchronise
the PCPGs with the feedback from the foot sensors. One could probably use
ideas from research on synchronisation between a normal oscillator and a relax-
ation oscillator. Another, more promising, approach would be to optimise the
parameters of the PCPGs using evolutionary algorithms starting from the cur-
rent values. [Hein, Hild, and Berger 2007], for example, evolve a controller based
on a neural oscillator. The feedback policy from this thesis could be used as one
component of an error function, by increasing the error if the policy has to apply
a high feedback to keep the robot upright.

The task solved in this thesis could be supplemented with further challenges by
applying external forces to the robot, or changing the walking speed during the
task. The addition of a slope for walking up or downwards would be especially
interesting. This would probably require a modification of the feedback system
in order to compensate for the saggital tilt. The current system could probably
compensate for a small tilt of the ground in the lateral direction, while this has
not been confirmed. Another interesting simulation run would be an evaluation
of the policy with a modified weight distribution of the robot. One could, for
example, increase the mass of one arm until a threshold is found which makes the
policy starts to fail.

There are further opportunities to improve learning system. With the current
implementation, the on-line algorithms are able to create a usable policy within
two days of computation time, while the batch mode system is much slower.
The problem is not the algorithm itself but the amount of data which has to be
saved and reloaded after each simulation run. It is minimal in the on-line case
because the algorithm does not need data from past experiences, as opposed to
the batch mode approach additional episodes are recorded. The limitation comes
from Webots which requires the controller to be reloaded after a reset of the
simulation. One possible solution would be to split the controller into one small
part which is reloaded by Webots upon reset and another process which holds the
data and does the actual computation. These processes could then communicate
via IPC1 mechanisms. This approach would speed up the learning process for the

1Inter-Process Communication mechanisms are either provided by the operating system or

58

5 Conclusion

batch mode algorithm significantly and would probably lead to improvements in
the on-line case as well.

After solving the performance problems it would be feasible to introduce addi-
tional variables to the state signal. These variables could, for example, include
values derived from touch sensor information on the feet. On the other hand, the
action space could be widened as well. It would be interesting to introduce a sag-
gital feedback term as well as splitting the current lateral feedback into separate
variables for the hip and ankle joints. Maybe the RL system could further im-
prove the stability of the walk if it were able to change the walking speed on the fly.

by separate libraries and enable two or more running programs to share data and/or pass
messages to each other.

59

Appendix

This chapter includes material which did not fit into the main text.

Proof of equivalence of the adaptive Hopf oscillator
in Polar- and XY-coordinate systems
This section will prove that the frequency and amplitude adaptive Hopf oscillators
in the XY- and polar coordinate system are equivalent. The following equations
define the two systems. The first set of equations is the system in polar coordinates
while the second set defines the oscillator in the XY coordinate space.

ṙ = (µ− r2)r + εF · cos(φ) (5.1)
φ̇ = ω − ε

r
F · sin(φ) (5.2)

ω̇ = −εF · sin(φ) (5.3)
α̇ = ηF · cos(φ) · r (5.4)

ẋ = (µ− r2)x− ωy + εF (5.5)
ẏ = (µ− r2)y + ωx (5.6)
ω̇ = −εF · y

r
(5.7)

α̇ = ηF · x (5.8)
r =

√
x2 + y2 (5.9)

The functions

x = cos(φ)r (5.10)
y = sin(φ)r (5.11)

which transform into

ẋ = ṙ cos(φ)− r sin(φ)φ̇ (5.12)
ẏ = ṙ sin(φ) + r cos(φ)φ̇ (5.13)

60

Appendix

when derived by dx
dt

and dy
dt

respectively, will be useful for the proof. The proof
for the functions ω̇ and α̇ is short. Substituting 5.11 for y in 5.7 leads directly to
5.3 and replacing x in 5.8 by 5.10 results in 5.4. Transforming equations 5.5 and
5.6 requires substituting 5.12, 5.13, 5.10 and 5.11 for ẋ, ẏ, x and y respectively,
which leads to

ṙ cos(φ)− r sin(φ) · φ̇ = (µ− r2) · r cos(φ)− ωr · sin(φ) + εF

ṙ sin(φ) + r cos(φ) · φ̇ = (µ− r2) · r sin(φ) + ωr · cos(φ).

Solving the first equation for ṙ and the second for φ̇ leads to

ṙ =
1

cos(φ)

(
µr · cos(φ)− r3 cos(φ)− ωr · sin(φ) + εF + r sin(φ) · φ̇

)
φ̇ =

1

r

[
1

cos(φ)

(
µr · sin(φ)− r3 sin(φ) + ωr · cos(φ)− sin(φ) · ṙ

)]
.

Substituting these two equations into each other and simplifying the results finally
leads to the result:

ṙ + r3 = µr + cos(φ) · εF =⇒ ṙ = (µ− r2)r + εF · cos(φ)

ω =
1

r
sin(φ) · εF + φ̇ =⇒ φ̇ = ω − ε

r
F · sin(φ) �

61

Bibliography

Hans Jochen Bartsch. Taschenbuch Mathematischer Formeln. Fachbuchverlag
Leipzig, 19th edition, 2001.

Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly
Media, Inc., third edition, 2005.

Collaborative authorship. Wikipedia, the free encyclopedia. http://www.
wikipedia.org, 2007.

Pascal Cominoli. Development of a physical simulation of a real humanoid robot.
Diploma thesis, Swiss Federal Institute of Technology, Lausanne, 2005.

Bryan C. Daniels. Synchronization of globally coupled nonlinear oscillators:
The rich behavior of the kuramoto model. Technical report, Ohio Wesleyan
University, 2005. URL http://physics.owu.edu/StudentResearch/2005/
BryanDaniels/kuramoto_paper.pdf.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research, 6:503–
556, 2005. URL http://www.montefiore.ulg.ac.be/services/stochastic/
pubs/2005/EGW05/ernst05a.pdf.

Hoap-2 Instruction Manual. Fujitsu Automation Co., Ltd., 3rd edition,
2004. URL http://jp.fujitsu.com/group/automation/downloads/en/
services/humanoid-robot/hoap2/instructions.pdf.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine Learning, 63:3–42, 2006.

Daniel Hein, Manfred Hild, and Ralf Berger. Evolution of biped walking us-
ing neural oscillators and physical simulation. In Proceedings of the Robocup
International Symposium, 2007.

Auke Jan Ijspeert and Jérome Kodjabachian. Evolution and development of a
central pattern generator for the swimming of a lamprey. Artificial Life, 5
(3):247–269, 1999. URL http://birg2.epfl.ch/publications/fulltext/
ijspeert99.ps.gz.

62

http://www.wikipedia.org
http://www.wikipedia.org
http://physics.owu.edu/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
http://physics.owu.edu/StudentResearch/2005/BryanDaniels/kuramoto_paper.pdf
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2005/EGW05/ernst05a.pdf
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2005/EGW05/ernst05a.pdf
http://jp.fujitsu.com/group/automation/downloads/en/services/humanoid-robot/hoap2/instructions.pdf
http://jp.fujitsu.com/group/automation/downloads/en/services/humanoid-robot/hoap2/instructions.pdf
http://birg2.epfl.ch/publications/fulltext/ijspeert99.ps.gz
http://birg2.epfl.ch/publications/fulltext/ijspeert99.ps.gz

Bibliography

Leslie P. Kaelbling and Andrew W. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research, 4:237–285,
1996. URL http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/
kaelbling96a-html/rl-survey.html.

Andrĳa Kun and W. Thomas Miller, III. Adaptive dynamic balance of a biped
robot using neural networks. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, volume 1, pages 240–245, 1996. doi:
10.1109/ROBOT.1996.503784.

Takamitsu Matsubara, Jun Morimoto, Jun Nakanishi, Masa-aki Sato, and Kenji
Doya. Learning cpg-based biped locomotion with a policy gradient method.
Robotics and Autonomous Systems, 54:911–920, 2006.

T. Mcgeer. Dynamic walking robots and the w prize. IEEE Robotics & Automa-
tion Magazine, 14(2):13–15, 2007.

Jun Morimoto, Jun Nakanishi, Gen Endo, G. Cheng, C. G. Atkeson, and
G. Zeglin. Poincaré-map-based reinforcement learning for biped walk-
ing. In Proc. of the 2005 IEEE International Conference on Robotics and
Automation (ICRA), 2005. URL http://www.cs.cmu.edu/~cga/walking/
xmorimo-icra05.pdf.

Gerhard Neumann. The reinforcement learning toolbox, reinforcement learning
for optimal control tasks. Master thesis, Graz University of Technology, Graz,
Austria, 2005.

Masaki Ogino, Yutaka Katoh, Masahiro Aono, Minoru Asada, and Koh Hosod.
Reinforcement learning of humanoid rhythmic walking parameters based on
visual information. Advanced Robotics, 18:677–697, 2004. URL http://www.
er.ams.eng.osaka-u.ac.jp/Paper/.

J. Peters, S. Vĳayakumar, and S. Schaal. Reinforcement learning for hu-
manoid robotics. In Third IEEE-RAS International Conference on Hu-
manoid Robots, Karlsruhe, 9 2003. URL http://citeseer.ist.psu.edu/
peters03reinforcement.html.

Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths. Synchronization.
Cambridge Nonlinear Sciences Series 12. Cambridge University Press, Cam-
bridge, UK, 2003 edition, 2001.

Marc H. Raibert. Legged Robots That Balance. MIT Press, Cambridge, MA, 1986.

63

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html
http://www.cs.cmu.edu/~cga/walking/xmorimo-icra05.pdf
http://www.cs.cmu.edu/~cga/walking/xmorimo-icra05.pdf
http://www.er.ams.eng.osaka-u.ac.jp/Paper/
http://www.er.ams.eng.osaka-u.ac.jp/Paper/
http://citeseer.ist.psu.edu/peters03reinforcement.html
http://citeseer.ist.psu.edu/peters03reinforcement.html

Bibliography

Ludovic Righetti and Auke Jan Ijspeert. Programmable central pattern genera-
tors: an application to biped locomotion. In Proceedings of the 2006 IEEE In-
ternational Conference on Robotics and Automation, pages 1585–1590, Orlando,
Florida, May 2006. URL http://birg2.epfl.ch/publications/fulltext/
righetti06.pdf.

Ludovic Righetti, Jonas Buchli, and Auke J. Ijspeert. From dynamic hebbian
learning for oscillators to adaptive central pattern generators. In Proceedings of
the 3rd International Symposium on Adaptive Motion in Animals and Machines,
Ilmenau, 2005. Verlag ISLE. URL http://birg2.epfl.ch/users/righetti/
amam05.pdf.

Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Dynamic hebbian learning
in adaptive frequency oscillators. Physica D, 216:269–281, 2006.

Mike Stilman, Christopher G. Atkeson, James J. Kuffner, and Garth Zeglin.
Dynamic programming in reduced dimensional spaces: Dynamic planning for
robust biped locomotion. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, 2005. URL http://www.cs.cmu.edu/~cga/
walking/stilman-icra05.pdf.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. URL http://www.cs.ualberta.ca/~sutton/
book/the-book.html.

G. Taga. A model of integration of posture and locomotion. In Proceedings of
International Symposium on Computer Simulation in Biomechanics., 1997.

64

http://birg2.epfl.ch/publications/fulltext/righetti06.pdf
http://birg2.epfl.ch/publications/fulltext/righetti06.pdf
http://birg2.epfl.ch/users/righetti/amam05.pdf
http://birg2.epfl.ch/users/righetti/amam05.pdf
http://www.cs.cmu.edu/~cga/walking/stilman-icra05.pdf
http://www.cs.cmu.edu/~cga/walking/stilman-icra05.pdf
http://www.cs.ualberta.ca/~sutton/book/the-book.html
http://www.cs.ualberta.ca/~sutton/book/the-book.html

List of Acronyms

CPG Central Pattern Generator A distributed biological neural net-
work which can produce coordinated rhythmic signals without
oscillating input from the brain or from sensory feedback.

ML Machine Learning The process of developing mathematical
and biologically inspired algorithmns and techniques which en-
able computers to learn.

PCPG Programmable Central Pattern Generator Encodes a given ry-
thmic trajectories as limit cycles of nonlinear dynamic systems.

RL Reinforcement Learning Learning how to map situations to
actions in order to maximise a numerical reward signal.

65

	Introduction
	Related Research

	Programmable Central Pattern Generator Theory
	Programming a Hopf Oscillator
	The dynamics of a simple Hopf oscillator
	An extended, frequency adaptive Hopf oscillator
	Making the amplitude adaptive

	Combining Programmable Hopf Oscillators
	Further aspects of the PCPG system
	Incorporating Feedback into the System
	Combining several PCPGs
	Differences compared to the original approach

	Improving Feedback Pathways using Reinforcement Learning
	A Brief Introduction to Reinforcement Learning
	Elements of Reinforcement Learning Problems

	Value based algorithms
	Function approximation
	SARSA()-Learning with RBF centres
	Extra-Tree-Based Batch mode Reinforcement Learning

	Designing the Lateral Feedback Task

	Results
	Architecture
	Extensions for the real Hoap-2
	Additional Tools developed

	Learning Task Setup
	Results
	Regression analysis of the policy

	Conclusion
	Appendix

