
Master’s Thesis

Decision Making in a
Multi-Agent System -

Planning versus Learning

Monika Schubert

Graz, January 2008

Supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa
Evaluator: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Institute for Softwaretechnology
Graz, University of Technology

Abstract

Within the research field of autonomous agents, decision making is a cen-
tral topic. In this thesis two different approaches - one by planning and an
alternative one via learning - are described in their application. While the
current implementation of the planning system is based on a Prolog back-
end, the learning approach is implemented with a reinforcement Q-learning
algorithm. The environment of the application is the system of KickOff-
TUG, the RoboCup 2D Soccer Simulation League team of Graz, University
of Technology.
Within this work both approaches are compared and evaluated to discover
their strengths and weaknesses. It is shown that the main advantage of
the planning system is that the plans are built and reviewed by humans.
Unfortunately the dependency on the human is the biggest problem of this
system as well. On the other hand the learning system is more adaptable,
but its main disadvantage lies in the specification of the target function and
the creation of training examples.
This work shows that both algorithms, planning and learning, can be applied
to the decision making process, as they are equally appropriate.

I hereby certify that the work presented in this thesis is my own and that
work performed by others is appropriately cited.

Contents

1 Introduction 1
1.1 Goal . 1
1.2 Multi-Agent Systems . 2
1.3 Decision Making . 3

2 RoboCup 5
2.1 Introducing the RoboCup . 5
2.2 The Different Leagues . 6

2.2.1 RoboCup Soccer . 6
2.2.2 RoboCup Rescue . 7
2.2.3 RoboCup@Home . 7
2.2.4 RoboCup Junior . 8

2.3 2D Simulation League . 8
2.3.1 The environment . 8
2.3.2 Actions . 9
2.3.3 Cooperation in a Team 12
2.3.4 Common Approaches 13

2.4 KickOffTUG . 13
2.4.1 The Team History . 14
2.4.2 Technical Details . 14
2.4.3 The Software Architecture 15

3 Planning 17
3.1 Definition . 17
3.2 Logic . 18

3.2.1 First-Order Logic . 19
3.2.2 Fuzzy Logic . 21

3.3 Current Implementation . 22
3.3.1 System Overview . 22
3.3.2 Knowledge Representation 23
3.3.3 Plans . 23
3.3.4 Decision Making Algorithm 25

iii

CONTENTS

4 Learning 28
4.1 Definition . 28
4.2 Design Decisions . 29

4.2.1 Type of Training Experience 30
4.2.2 Target Function . 31
4.2.3 Representation of the Target Function 31
4.2.4 Choosing a Learning Algorithm 32
4.2.5 The Resulting Design Models 33

4.3 Learning Methods . 34
4.3.1 Decision Trees . 34
4.3.2 Genetic Learning . 37
4.3.3 Neural Nets . 40
4.3.4 Reinforcement Learning 43

4.4 The Resulting System . 47
4.4.1 Target Function . 47
4.4.2 Learning Method . 48
4.4.3 Design Modules . 52

5 Analysis - Learning versus Planning 54
5.1 Basic Analysis . 54

5.1.1 Planning . 55
5.1.2 Learning . 55
5.1.3 Way of Analysis . 55

5.2 Analysis of Games . 56
5.2.1 Games with the Same Instance 56
5.2.2 Games Learning versus Planning 57
5.2.3 Games with Brainstormers 57

5.3 Standard Situations . 58
5.3.1 Kick-Off . 58
5.3.2 Throw-In . 59
5.3.3 Free-Kick . 60
5.3.4 Goal Kick . 61
5.3.5 Corner . 61

5.4 Player Types . 62
5.4.1 Goalie . 62
5.4.2 Defender . 64
5.4.3 Midfield . 64
5.4.4 Striker . 65

5.5 Analysis of Influencing Factors 65
5.5.1 Formation . 66
5.5.2 Stamina . 66
5.5.3 Basic Actions . 67
5.5.4 Y-Position of the Players 69

iv

CONTENTS

6 Summary 71
6.1 Future Work . 72

v

List of Figures

1.1 Interaction between an agent and the environment 3
1.2 A multi-agent system with agents interacting 4

2.1 The official logo of the RoboCup 6
2.2 Interaction between the soccer server and the two teams com-

peting . 9
2.3 Actions that can be performed by an agent and senses which

an agent can use to observe the environment. 10
2.4 The agents vision sensor model 12
2.5 An overview of the software architecture of the team Kick-

OffTUG . 16

3.1 Interaction between the environment and the agent 20
3.2 Example for fuzzy functions 22
3.3 Interaction between the environment and the agent 23
3.4 Plan of a striker for the regular game 24
3.5 Example for the derivation of an action from a plan 27

4.1 Interaction between the environment and the agent 31
4.2 The interaction of the program modules of a learning system 33
4.3 The representation of a decision tree with test cases, test

results and decisions . 34
4.4 Example for a simple application of a decision tree. 37
4.5 Example for the crossover of a string with a crossover mask

of 11100001 . 37
4.6 Example for the mutation of a string with the mutation rate

of two. 38
4.7 Example of a single neuron 40
4.8 Example of a neural net with an input layer, one hidden layer

and an output layer . 41
4.9 Interaction between an agent and the environment with rein-

forcement learning . 44
4.10 Different action pools for the players of the learning system . 48

vi

LIST OF FIGURES

4.11 Interaction between the agent, the trainer and the environment 50
4.12 Simplified environment of the agent 50

5.1 Screenshot from a game between the learning system and the
Brainstormers . 58

5.2 A sample kick-off for the planning and the learning system . 59
5.3 A sample throw-in for the learning system 60
5.4 A sample free-kick performed by the planning system 60
5.5 Corner performed by the planning system in a game against

the learning system . 62
5.6 Display of the predominant moving path of the goalie 63
5.7 Overplay of the defenders of the planning system 64
5.8 Attack of the midfield . 65
5.9 Analysis of the formation during a game 66
5.10 Diagram of the staminas of the planning system during a game 67
5.11 Diagram of the staminas of the learning system during a game 67
5.12 Diagram of the y-position of the planning system during a game 69
5.13 Diagram of the y-position of the learning system during a game 70

vii

List of Tables

3.1 Example of a truth-table. 18
3.2 Predicates and their values for a sample state of environment 26

4.1 Advantages and disadvantages of different learning methods . 49

5.1 High-level actions performed by the goalie during a game . . 63
5.2 Counter of the basic actions that were performed by the goalies 68
5.3 Counter of the basic actions that were performed by the dif-

ferent player types . 68

viii

Chapter 1

Introduction

In a certain environment agents have to cooperate in order to reach a certain
goal. The ways how agents can cooperate are different. For example one
agent can be charged with the responsibility to coordinate the other agents,
and the other agents just do whatever the planning agent tells them to do.
This is called a centralised way of cooperation. The centralised cooperation
is quite easy to implement but the disadvantage is that if this central agent
fails, everything fails.

Another possibility to implement coordination is to give every agent a single
decision making instance to plan its next action. This has the advantage,
that the common goal does not depend on one single agent. But the problem
is that the agents have to have a possibility to communicate with each
other. This communication can be verbal with a protocol that is transmitted
between the agents or non-verbal. In a non-verbal communication the agents
have to interpret the actions of the other agents. The finding of the next
action or actions is called decision making. This decision making can be
implemented in different ways for example through planning or learning.

1.1 Goal

The goal of this work is to find out what way of decision making is better
suited for an agent - planning or learning. Therefore, a highly dynamic
environment, the RoboCup Soccer Simulation League, is chosen. In this
environment it is not possible to implement a centralised decision making
process because the communication is limited. The RoboCup including the
different leagues, especially the RoboCup 2D Simulation League and the
team KickOffTUG are described in Chapter 2.

1

1.2. Multi-Agent Systems

The system of the RoboCup 2D Soccer Simulation League team KickOff-
TUG has currently a decision making based on a planning algorithm. The
basic knowledge about logic, logical closuring, planning and the current im-
plementation of the planning system are described in Chapter 3. The sys-
tem, which should be compared with the planning one is based on a learning
algorithm. This learning approach is implemented during the master’s the-
sis course. To have a basic for the implementation, the different learning
methods and critical design issues are outlined in Chapter 4.

In Chapter 5 the different analysing methods and their outcomes are de-
scribed. These methods include a comparison of the different systems through
games and special situations. Furthermore the systems are compared accord-
ing to their types and finally the different approaches to influencing factors
are evaluated. This analysis should show which system is better suited for
the decision making process.

1.2 Multi-Agent Systems

The term agent was already used, but what exactly does it mean? Woolridge
defines an agent as:

”An agent is a computer system that is situated in some envi-
ronment, and that is capable of autonomous action in this en-
vironment in order to meet its design objectives.” ([Woo02], p.
15)

This means an agent can perform some action in an environment and fur-
thermore every agent has a goal. In this context the term agent is used as
an instance of a software program. The environment is the RoboCup Soccer
Simulation League, for a detailed description about the environment and
the actions that can be performed take a look at Section 2.3. The objective
of a soccer playing agent is obviously scoring goals to win the game.

It is evident that the environment and the agent have to have some kind
of interaction, as Figure 1.1 shows. For this interaction the agent has some
sensors to observe the environment and some actuators to perform actions.

As already pointed out there usually is more than one single agent in an
environment. An environment where more than one agent is acting is also
called a multi-agent system. A clearer definition is given by Woolridge:

”The system contains a number of agents, which interact with
one another through communication. The agents are able to act
in an environment; different agents have different ’spheres of
influence’, in the sense that they will have control over - or at

2

1.3. Decision Making

Figure 1.1: Interaction between an agent and the environment

least be able to influence - different parts of the environment.”
([Woo02], p. 105)

The most important aspect of a multi-agent system is, that there is more
than one agent acting. There are three main elements that influence the
interaction between agents [Fer01]: the agent’s goals, the accessibility of re-
sources and the capability of the agents. If all permutations are considered
then there are eight different classes of interaction types. The main distinc-
tion depends on the compatibility of the goals of the agents. If the goals are
compatible, this depends on the other influences like the resources or the
agents’ capabilities, the agents can work alone or together. Otherwise, if the
goals are not compatible, there will be a competition between the agents.

In Figure 1.2 there are agents that act in an environment. The elliptic
middle green round areas on the field are the spheres of influence of the
agents. The sphere of influence of the agent on the left hand side has no
intersection with another sphere of influence of an agent in the environment.
Thus this agent has no interaction with others and works on his own. The
other red agents have an intersection with the yellow agents. Thus it is
called their interaction. It is marked as dark green area.

1.3 Decision Making

Decision making is the process of the derivation of an action from the current
situation. There are many different ways of how to derive an action - it can
be done either by probabilistic methods, potential fields methods, planning
or learning. In all cases the basics for a good decision is the knowledge

3

1.3. Decision Making

Figure 1.2: A multi-agent system with agents interacting

about the environment and the knowledge representation. This is the reason
why artificial intelligence systems are often classified by their knowledge
representation [Sav85].

The knowledge that is represented is built up from the environment. This
environment can either be fully visible or partly visible to the agent. In a
fully visible environment it is easy to model the environment because every
information is available. In a partly visible environment the agent has to
create his own view of the environment, that can contain unknown or un-
certain information. But no matter how much information is available this
information has to be stored and represented. Retti [Ret86] distinguishes
two methods of knowledge representation [Ret86]: declarative and proce-
dural. In the declarative representation the knowledge consists of a set of
facts. This allows logical closures and is problem orientated. But it says
nothing about how the knowledge should be applied. In the procedural
method the knowledge is no longer represented as elements of the world but
as an application of the knowledge. The knowledge base consists a set of pro-
cedures that have the capability to apply the knowledge. Minsky [Min74]
has developed the frames as a third system of knowledge representation.
This approach comes from image processing. Every frame has some typical
slots and every element of the world can be assigned to such a slot. This
third representation is a combination of the declarative and the procedural
knowledge representation.

4

Chapter 2

RoboCup

In this chapter the RoboCup is presented. The different leagues of this In-
ternational Federation will be outlined and the 2D Soccer Simulation League
will be described in more details. Beside that the team KickOffTUG of the
University of Technology, Graz, is introduced.

2.1 Introducing the RoboCup

The word RoboCup derives from the Robot World Cup Initiative and is
an international project that supports the research on artificial intelligence
and robotics. Therefore conferences and competitions are arranged between
teams from different universities and countries. The original goal was to
introduce a new standard environment for researchers. The operation field
is a soccer game. One reason for choosing a soccer game is that it includes
more than one agent. The agents have to interact and cooperate with each
other in order to reach their common goal. Furthermore a soccer game is a
highly dynamic environment. During the last two years new leagues beside
the soccer field have been introduced. But everything is still under the vision
of the RoboCup and under the corporate identity. Figure 2.1 shows the logo
and thus the visual identity of the RoboCup.

The vision and the declared official goal of the RoboCup is:

”By the year 2050 develop a team of fully autonomous humanoid
robots that can win against the human world soccer champion
team.” [Rob07a]

Today the goal still seems to be far away, but every year the robots improve
their performance. Apart from that researches distributed all over the world
work on the simulators, the leagues and try to improve the rules every year.

5

2.2. The Different Leagues

The number of leagues increased in the last years. This continuous progress
is the reason why more people get involved into the research of autonomous
agents.

Figure 2.1: The official logo of the RoboCup [Rob07a]

2.2 The Different Leagues

A robot consists of a lot of different components and techniques. In order to
focus on only one main part of these components and techniques RoboCup
introduced different leagues. Every league emphasises a different main point,
although the basic questions are the same. Not every league deals with
soccer, some of them deal with the usage of robots in another environment.
An overview over the different leagues is given here. Further information
can be found on the official website of the RoboCup [Rob07a].

2.2.1 RoboCup Soccer

In these leagues the environment is a soccer field. Most of these leagues were
introduced at the start of the RoboCup. These leagues are called historic
leagues.

Middle Size League:
This is the top class of all leagues. The prerequisition to be able to take part
and be competitive in this league is a well working combination of hardware
and software. But in these days more than this is needed - a high level of
artificial intelligence and cooperation between the robots are necessary as
well. Thus a good integration of all parts of the robots is the goal of the
Middle Size League. In this league two teams are playing and each team
consists of six players.

Small Size League:
This league focuses on the coordination and controlling of a multi-agent sys-
tem. The robots are quite small (max. 18 cm diameter) and they have only
a few sensors. To simplify the environment two external cameras are observ-
ing the playfield and send the information to an external computer. This

6

2.2. The Different Leagues

computer calculates the tactics and other things and sends the commands
to the players.

Four Legged League:
In this league all participating teams have the same hardware. Until now
this was the artificial Sony AIBO dog. As a result of the dismissal of the
production of these dogs the new common hardware is the Aldebaran Nao.
The main goal of the Four Legged League is to develop and apply software
components on a well working hardware.

Humanoid League:
Robots like humans are the agents in the Humanoid League. The focus of
this league lies on dynamic walking and kicking the ball while maintaining
balance. The league exists in two types: the KidSize (30-60cm height) and
the TeenSize (80-130cm height).

Soccer Simulation:
In the Simulation League there are no real robots present. The goal is to
provide a research platform that is nearly independent of the hardware. The
focus lies on the artificial intelligence and on the cooperation and coordi-
nation between the agents. The league has two facets: the 2D and the 3D
Simulation League. The 2D Simulation League is described in more detail
in Section 2.3.

2.2.2 RoboCup Rescue

RoboCup Rescue focuses on the rescue of people after a disaster. To achieve
this many heterogeneous agents have to work together - physical robots to
search and rescue people, information agents, that collect all information
and decision support systems. The different leagues in the rescue domain
are:

• Standard Robot-League

• RoboCupRescue Robot League

• Rescue Agent Simulation

• Rescue Virtual Robot Simulation

Further information about the rescue systems can be found at [Rob07b].

2.2.3 RoboCup@Home

This league has been introduced in 2006 and focuses on the application in
a real-world environment. This includes self-localisation in the environment

7

2.3. 2D Simulation League

and the human-computer interaction. The goal of this league is to create
robots that can help people in everyday life. Further information about this
League can be found online at [Rob07c].

2.2.4 RoboCup Junior

The RoboCup Junior is for pupils up to the age of 19. It supports the
education and the understanding of new technologies. The students can
participate in three different leagues:

• Soccer: This league takes part in two types of tournaments, the one-
against-one tournament and the two-against-two tournament.

• Rescue: This follows the model of the RoboCup Rescue. The student’s
robots have to follow a path through a special environment represent-
ing a one-family house and find victims.

• Dance: Beside the technical skills creativity is requested, when the
robots perform the selected dance performance. Beside the techni-
cal challenge the aim is to enhance female students enthusiasm about
technical issues and studies.

2.3 2D Simulation League

In the Soccer Simulation leagues there are no real robots competing with
each other, but programs. The Simulation league implements only on the
essentials of the physical features, which are represented by the soccer server.
Thus the planning and the strategies are the main focus. In the future
the programs and algorithms developed in the simulation leagues should
be transported to the real robots in order to improve their cooperation.
The problem that occurs with the translation is the adaptation for the real
environment. A main advantage of the Soccer Simulation league is that
limited hardware is needed. The hardware of a robot is expensive and this
league opens the research area to a broader field of students. To perform a
game of the simulation league one personal computer is sufficient.

2.3.1 The environment

The environment of the 2D Soccer Simulation League is based on a sim-
ulator called soccer server, and two teams. Each team consists of eleven
independent programs. Each program connects itself via UDP to the soccer

8

2.3. 2D Simulation League

Figure 2.2: Interaction between the soccer server and the two teams com-
peting

server that provides the physical environment. The setup of a game can be
seen in Figure 2.2.

The interaction between an agent and the server is defined by a certain
protocol. This protocol consists of basic messages for connecting, setting
the team names and so on. But the important commands especially for the
game that can be sent are catch, dash, kick, say, turn, turn-neck, change-
view, hear, see and sense. A more detailed description of these actions can
be found in Section 2.3.2. Another point to mention is that if the agent
sends a command to the server then the server applies this action to the
environment, if the command is valid. Otherwise the command is skipped.

In order to follow a game it can be displayed with a special monitor running
on a personal computer that is connected to the soccer server. Games can
also be stored and reviewed. This is very important for the analysis of the
games.

2.3.2 Actions

Everything about the interaction between an agent and the server and all
possible actions can be found in the official soccer server manual [CFH+02].
The basic actions an agent can perform on the environment (server) are:
catch, dash, kick, say, turn, turn-neck and change-view. The main messages
between the agent and the server can be seen in Figure 2.3. These actions
are now described:

Catch:
Catch can only be performed by the goalie. The parameter for this command
is a direction. The ball is caught if it is in the catchable area this cycle. The

9

2.3. 2D Simulation League

Figure 2.3: Actions that can be performed by an agent and senses which an
agent can use to observe the environment.

area in which the ball can be caught is defined by a rectangle with a standard
length and width.

Dash:
The command dash moves the agent with a certain power that is given as a
parameter. The agent moves into the direction of its body, or backwards if
the power is negative. The dashing uses a certain amount of the stamina of
an agent. Every agent has a stamina that can be used for dashing and that
recovers over time. The effective dash power with which the agent is moved
is calculated by a multiplication of the effort and the stamina management
of the player, with the dash power rate and the power.

Kick:
With the kick command a player can kick the ball into a certain direction
with a certain power. The direction specified by an angle and the power are
given as parameters. The command is only performed if the ball is within a
limited distance to the player. Otherwise it has no effect.

Say:
Every player can distribute say messages to other players. The size of every
message is limited. The characters a message can include are numbers,
letters and some special characters like ”+”. The broadcast messages can
be heard by players and the coaches of both teams.

Turn:
The turn command turns an agent’s body by the agents movement that is
given as a parameter. The resulting angle the agent actually turns depends
not only on the movement, but also on the current agent’s speed. If the

10

2.3. 2D Simulation League

agent is moving it is more difficult to turn than when the agent is standing.

Turn-neck:
Every agent can be seen as splitable into a body part and a head part.
These parts can be turned independently of each other. With the turn-
neck command, the agent can turn its head part relative to its body. The
parameter angle gives the relation between the body and the head.

Change-view:
The Change-view command can change the vision of an agent. It can be
decided on the quality, the width and the frequency. While the width and
the quality are given as parameters, the frequency is calculated by the server.
With this frequency see messages are sent to the agent.

The agent observes the current state of the environment by getting messages
from the server. These messages are hear, see and sense.

Hear:
With the aural sensor all messages that are sent by other players, the coaches
or the referee are heard. Whether a message from another player is received
depends on the distance between these two agents. When a message is heard
the receiver gets information about the time, the sender and the message
itself. The time is given in cycles of the game. The sender can either be the
agent itself, a player of the own team, a player of the opponent team, one
of the coaches or the referee.

See:
The see message represents the vision sensor. With that sensor the agent
can observe every object that is on the field. These objects can be flags,
other players or the ball. Flags are certain points on the field that facilitate
the agent to calculate its own position. The maximum information that
can be observed from one object are the name, the distance and direction
relative to the agent, the changing of the distance and the direction and
the body facing direction and the head facing direction. Whether all this
information is transferred depends on the distance of the object and the
object itself. The vision of an agent can be seen in Figure 2.4. In this figure
there is one yellow player that is close to the red player. From this player all
information is transferred to the red agent. From the other yellow player in
sight of the red player the information is limited, there is no facing direction
and probably no changing of the distance and direction. The yellow player
which is below the red player is not in sight of the agent, thus no information
about this agent is transferred him. In addition to all informations about
the objects the time is transferred.

Sense:
With the sense command the agent can observe its own physical status.
This includes the view mode, the stamina, the speed, the head angle and

11

2.3. 2D Simulation League

Figure 2.4: The agents vision sensor model

some counters. The view mode indicates the distance, the quality and the
frequency of the see commands. The stamina represents the power condition
of an agent by the current stamina and the effort. The speed gives an
approximation of the current velocity and the direction. The head angle
is the relative angle of the head in relation to the body. The counters are
variables that indicate how often a command has been performed. Thus
there is a counter for every command.

In order to know what action to perform the agent needs information about
the environment and about itself. A characteristic of the Soccer Simulation
league is that every agent can only partly observe the environment. In the
agent’s view there are informations about the ball, the own players and
the opponent players. If a player is close enough to the agent the uniform
number and the team can be identified. But if the player is far away it can
be only identified as a player.

2.3.3 Cooperation in a Team

The cooperation between the agents in a team is essential, especially in the
2D Soccer Simulation League. The cooperation includes that not all agents
from one team should go towards the ball at the same time. But what is the
optimal position and behaviour of an agent? When should an agent dribble
to the goal, when play a pass?

These questions are answered by the type of the decision making that derives
the next action for an agent. The decision making algorithm has most of
the time a reactive component that reacts on certain inputs. But it also has

12

2.4. KickOffTUG

a strategic component to improve the reactivity and reach a more complex
behaviour.

2.3.4 Common Approaches

There are a lot of different approaches how the setting-up of a team can be
fulfilled. In this part different strategies of several teams are outlined.

Brainstormers:
The main motivation of the team of the University of Osnabrück is on re-
inforcement learning. They try to develop new variants and practical algo-
rithms for a complex domain. The reason for using reinforcement learning is
that the success or failure of the agent is provided by the environment. The
long term goal of the Brainstormers is to have a team of learning agents,
where the only directive is ”win the match” and the agents learn the appro-
priate behaviour. [RG08]

Virtual Werder Bremen:
The main focus of the students of Bremen was the 2D Simulation League
until 2004. Since 2005 they focus only on the development of their 3D team.
Nevertheless they had an interesting approach in the 2D Soccer Simula-
tion League. They implemented the decision making process with potential
fields. Thus every action of an agent was based on the position of players of
the own team, the position of the players of the opponent team and the ball.
All these influencing factors were represented by a potential field. [MAS+07]

UvA Trilearn:
In the early stages the goal of the team of the University of Amsterdam was
to build a good foundation. After this huge step the research was focused on
the interaction between the agents. The base of UvA Trilearn is still used
by top-teams, like Dainamite [EWK+08]. Especially for young teams who
build up everything from scratch the thesis ”The Incremental Development
of a Synthetic Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer
Simulation Team” is a good start [BK02].

2.4 KickOffTUG

KickOffTUG is the RoboCup 2D Soccer Simulation League team of Graz,
University of Technology. It is one of the few RoboCup teams in Austria
with international experience. The last international competition the team
participated in was the RoboCup World Championship in Atlanta, USA, in
July 2007. Everything that is implemented in order to be analysed in this
document is part of the team KickOffTUG.

13

2.4. KickOffTUG

2.4.1 The Team History

The team was founded in 2004 by three students named Stephan Gspandl,
Michael Reip and Monika Schubert. These students implemented the basic
skills of the team as their bachelor project. The students wanted to com-
bine their acquired skills during their studies of Software-Development and
Knowledge Management in a project. The goal at that time was to create a
conceptual design and to implement it after the design phase. The focus was
to build up the team from scratch in order to gain a better understanding.

The resources of these three students were not enough and thus new students
were acquired. The new group of students divided the work into projects
like revision of the world model, introducing a communication system, per-
forming automatic testing, working on public relations and others. Since the
beginning the team has grown and now it incorporates about 10 students
from Graz, University of Technology. These students are in different stages
of their studies. By now it reaches from optional courses and projects to
bachelor and master’s theses. The track record reaches from the first in-
ternational participation at the RoboCup German Open in 2005 to a lot of
local activities like workshops, recruiting days and so on. Another partic-
ipation at the RoboCup German Open followed in 2007 and the highlight
until now was the RoboCup World Championship in 2007.

2.4.2 Technical Details

The programming language of the team is Java. Java is an object-oriented
programming language that is compiled to a byte code. This byte code runs
on a virtual machine which makes it platform independent. The tool for the
decision making process is yprolog [Sch07] which is integrated into the java
code. The coding standard used for the implementation in Java is mainly
influenced by the coding standard described and used in the book [Sch01].
Beside that a system to control the versions of the source code is used.
This versioning system is integrated into the project management tool Trac
[Tra07]. This tool also has the possibility to assign tickets, enter bug reports,
support the communication in the team via a WikiWeb and manage working
times of team members. Furthermore the tool Cruise Control [Cru07] is used
for automatic builds and the automatic execution of JUnit tests. For the
external representation of the team we have a homepage [kic07] running
with the content management system Joomla [Joo07].

14

2.4. KickOffTUG

2.4.3 The Software Architecture

The software architecture of the team can be divided into three different
layers: the basic, the midlevel and the abstraction layer. The basic layer
is responsible for the communication with the server, which runs via UDP.
When the server sends commands to the agent they are received by the
ServerInterface. The useful information is passed from the ServerInterface
to the WorldModel. This WorldModel is the representation of the environ-
ment for the agent. It calculates the own position with filters and stores
the information about the other players and the ball on the field. Because
of the included filters and the calculation the WorldModel is situated in the
midlevel layer.

The abstraction layer consists of the DecisionMaking part, provided by the
included Prolog and the Strategy modul. The Strategy covers the commu-
nication between the players, the positioning of each player depending on
the other players and the models. This domain has implemented parts,
but also a high abstraction. This is the reason why it is situated between
the mid-level and the abstraction layer. Furthermore, it passes the basic
actions that should be sent to the server in order to realize the strategy to
the Synchronisation. In the DecisionMaking module the logical closure takes
place. It uses the Conditions for the representation of the world. With these
Conditions and some facts about the world the DecisionMaking derives an
Action that should be executed. This selected Action is then passed to the
Execution. This implements the action and generates the sequence of basic
actions that should be executed on the server. These actions are forwarded
to the Synchronisation. The Synchronisation builds the command that is
sent to the server by the ServerInterface. An overview of the design can be
seen in Figure 2.5.

15

2.4. KickOffTUG

Figure 2.5: An overview of the software architecture of the team KickOff-
TUG

16

Chapter 3

Planning

Like machine learning, planning is a part of artificial intelligence. There
are lots of old stories based on artificial life, but the real beginning of the
artificial intelligence was in the year 1956 with the Dartmouth-Conference,
where a first definition of Artificial Intelligence (AI) was given. One of
the researches that took part in this conference was McCarthy. He defines
artificial intelligence on his homepage as follows:

”It is the science and engineering of making intelligent machines,
especially intelligent computer programs. It is related to the sim-
ilar task of using computers to understand human intelligence,
but AI does not have to confine itself to methods that are biolog-
ically observable.” [McC04]

Another definition more specific for robots says, that AI is the possibility
to gain useful information out of raw sensor data [Hau07]. This intelligence
can be implemented with a knowledge representation and a decision making
algorithm. How such an implementation can work is described in this sec-
tion of the work. Another possibility to implement intelligence into a robot
is with a learning method, where the robot learns the knowledge through
training examples or through acting in the environment and gaining a feed-
back (try and error). The learning methods as well as the implementation
of the learning system are described in Chapter 4.

3.1 Definition

In this section a definition of and description about planning is given. A
simple, but satisfying definition is given by Russel and Norvig:

17

3.2. Logic

”The task of coming up with a sequence of actions that will
achieve a goal is called planning.” ([RN03], p. 375)

The planning is performed by a planning system which is part of an agent.
Every agent can perform actions that change the environment. The selection
of the next action the agent performs is done by the planning instance and
specified by the agent’s goal. When this goal is reached, the agent has
nothing to do until it defines another goal. The sequence of actions or the
action trace is built up of single actions. How these actions are chosen
and the action trace is built up is defined by the planning system and the
implemented planning algorithm.

3.2 Logic

Logic is a main part of artificial intelligence. There are three main fields
of applications that logic is used for. The first one is as an analytic tool
for checking if anything is true or false. Beside that logic can be used
for knowledge representation and as a reasoning system. With a reasoning
system new requests can be handled and an answer based on logical closure
is derived. Most of the applications used as reasoning systems are based
on the work of Nilsson ([Nil86] and [Nil71]). The third field is to apply
logic as a programming language [Moo95]. The most common programming
languages in the field of logic are Prolog and Lisp.

a b a ∧ b a ∨ b a ⇒ b

true true true true true
true false false true false
false true false true true
false false false false true

Table 3.1: Example of a truth-table.

Logic in the way of reasoning was first introduced by Aristoteles. This
classical logic was a two value logic with the values true and false. Nowadays
the starting point for students to apply logic are truth-tables. These tables
date back to Philo of Megara [San89]. In Table 3.1 an example is shown. In
the first two columns all possible variations of the symbols are listed. The
third one shows the boolean AND operator and the forth one the boolean
OR. The output of two variables that are combined by an AND is only true
if both are true. The operator OR is true, if at least one symbol is set to
true. About the implication that is used in the last column Hilbert says:

”X ⇒ Y is always true if X is false and also if Y is true” [HA50]

18

3.2. Logic

The expansion of this propositional logic is first-order logic. This is described
in Section 3.2.1.

3.2.1 First-Order Logic

First-order logic is, as well as classic logic based, on the boolean values
true and false. While in the propositional logic every symbol represents a
complete statement, in first-order logic predicates can be used [Lug02]. A
symbol in the propositional logic could be the phrase ”the ball is in the right
goal”. This statement can be either true or false. The same sentence can
be represented in first-order logic by the predicate ballInGoal(right). The
more abstracted predicate is ballInGoal(X), where the parameter X stands
for the goal. In a soccer match this would be right or left. In this example
the syntax of first-order logic has already been used. The complete syntax
consists of [EET01]:

• Constants: a constant is a defined object

• Variables: a variable stands for an object, that has not yet been
defined

• Functions: a function specifies an object determined by the function
out of all parameters o = f(o1, o2, ..., on)

• Predicates: a predicate with one parameter specifies an attribute; if
it has more parameters it represents a relation between the objects

With this syntax terms, facts, literals and formulas can be described. In
order to prove if a sentence is true or false, the modus-ponens rule

A ∧A → B

B

can be applied. This rule says if A is true and the implication from A to
B is true then B is true as well. Another possibility to prove the truth is
the resolution, which has been first introduced by Robinson [Rob65]. An
example of a proof with resolution can be found in Figure 3.1. The goal of
this example is to find out if another player is a possible partner for a pass.
The predicates that will be used to describe the situation are:

• HasBall(X): describes if the player X has the ball

• Member(X, T): describes if the player X is from team T

• SameTeam(T1, T2): describes if team T1 is same as team T2

• PossiblePassPartner(X, Y): describes if the player Y is a possible
pass partner for X

19

3.2. Logic

Figure 3.1: Interaction between the environment and the agent

These are just abstracted predicates. In order to perform the resolution
a knowledge base is needed. All facts about the environment are stored
in the knowledge base. Furthermore it can contain informations about the
relationships between objects. The first entry in the knowledge base is the
rule, that if the player x has the ball and if he is from the same team as
the player y, then the player y is a possible pass partner for the player x.
This is just a simple definition. In a real game for example it would be
checked if the pass partner is in an area that is close enough for passing and
the player should not be covered by an opponent player and so on. Other
entries in the knowledge base are describing the situation. For example that
the player player1 has the ball and that both the players player1 and player2
are from the team kickofftug. Beside that the predicate SameTeam is used
to specify that the team kickofftug is the same as kickofftug. This is just a
formalisation that is needed. The complete knowledge base of our example
is:

20

3.2. Logic

• ∀X∀Y ∀T1∀T2 (HasBall(X) ∧ Member(X, T1) ∧ Member(Y, T2) ∧
SameTeam(T1, T2)) → PossiblePassPartner(X,Y)

• HasBall(player1)

• Member(player1, kickofftug)

• Member(player2, kickofftug)

• SameTeam(kickofftug, kickofftug)

The goal of the resolution is to find out if the player player2 is a possible pass
partner for the player1. This is formalised by PossiblePassPartner(player1,
player2). For the resolution this theorem is negated. The complete resolu-
tion can be found in Figure 3.1.

3.2.2 Fuzzy Logic

The main difference between fuzzy logic and all other types of logic is that
in fuzzy logic not only the boolean values false (0) and true (1) are available,
but also values that lie in between. Thus it is possible to express statements
like in between (0.5), nearly true (0.75) or nearly false (0.25). This makes
fuzzy logic more complicated to understand, but increases the expressiveness
considerably. Beside that it is closer to human thinking than any other logic.

An example, that shows why fuzzy logic is needed is the sentence: ”I am
lying”. Can this sentence be true? If it would be true, the person would be
lying, and thus implicates that the sentence is false. This is not possible.
On the other hand if the sentence would be false, the person tells the truth.
But the statement can never be true. Thus boolean logic is not expressive
enough for this example.

As already mentioned fuzzy logic is an extension of classical boolean logic,
which uses the values true and false. A fuzzy set is described over a set X,
which is a subset of X × [0, 1]. This fuzzy set can be described through the
function [LC01]:

µ → [0, 1]

Figure 3.2 shows an example for two fuzzy functions. On the x-axes the
temperature is assigned and on the vertical y-axes the resulting fuzzy values
can be read. The function drawn in blue symbolises a function for the
attribute cold and the red one for hot. The relative values can be seen in
both functions as a changeover between the states 0 and 1. Functions like
the ones in Figure 3.2 are common for fuzzy attributes.

Although the logical closuring can be applied for fuzzy logic, the rules are
different from the ones used for boolean logic. The rules for logic closuring

21

3.3. Current Implementation

Figure 3.2: Example for fuzzy functions

of fuzzy logic are:

T (a ∧ b) = min(T (a), T (b))

T (a ∨ b) = max(T (a), T (b))

T (¬a) = 1− T (a)

where T is the fuzzy-truth of a complex sentence [RN03]. The problem with
fuzzy logic is that the correlations between the two sentences combined can
not be represented. A suitable application of fuzzy controls lies in automatic
gearboxes and video cameras [Elk93].

3.3 Current Implementation

In the current system of KickOffTUG the decision making is implemented
with a planning variant. This planning system and everything combined
with it is described in this section.

3.3.1 System Overview

In Section 2.4.3 the architecture of the team KickOffTUG has been de-
scribed. Now the focus of the system description lies on how the artificial
intelligence is implemented. The algorithm to derive an action from the
current state of environment is based on a planning algorithm. More about
this algorithm can be found in Section 3.3.4. The planning system consists
of the AI-Level and a backend. This backend is implemented in Prolog and
is responsible for the resolution of decisions. The knowledge that is needed
for the logic closures is provided by the AI-Level. This AI-Level consists
of actions, conditions and plans. A plan itself is based on actions and con-
ditions. The conditions provide the knowledge to choose an action. This
abstracted knowledge about the environment is derived from the informa-
tion provided by the WorldModel which is a part of the system level. The

22

3.3. Current Implementation

pool of all actions provides all possible actions that can be performed in the
environment. The actions as well as the conditions are in an abstract form
to ensure portability. Thus the real implementation of the actions lies in
the Execution which is a part of the system level, too. An overview of the
system can be seen in Figure 3.3.

Figure 3.3: Interaction between the environment and the agent

3.3.2 Knowledge Representation

The knowledge agents needs for a closure consists of facts and conditions.
Facts are statements that are always true in the environment. Conditions
describe a certain state of the environment. For example the condition
hasBall is true, when the agent has the ball in the current state, otherwise
it is false. Thus the value of a condition changes over time.

Every Prolog action can have preconditions and postconditions. Precondi-
tions are conditions which have to be true before the action can take place.
A post condition is a condition indicating something about the state after
the action was performed. For example in order to perform the action kick-
Ball the agent has to have the ball - hasBall is the precondition. If this
precondition is not true, the agent is not able to execute the action success-
fully. After the action has taken place the ball is somewhere else than in the
area of the agent - thus the post condition is notHasBall.

3.3.3 Plans

The planning algorithm derives its decision based on static plans. Every
plan consists of actions and every action consists of preconditions and post-
conditions. An example plan can be found in Figure 3.4. This plan is from

23

3.3. Current Implementation

Figure 3.4: Plan of a striker for the regular game

24

3.3. Current Implementation

a striker for a regular game. Every plan is built up like a tree. Every node
in the tree holds an action. Every leaf is an action as well, but beside that it
is a goal. As already mentioned we have more than one plan. There are four
different player types: goalie, defender, midfield and striker. Every player
type has a plan for the regular game (regular plan) and a plan for standard
situations (standard plan). As the midfield is divided into a central midfield
and a wing midfield, there are plans for:

• Goalie

Regular plan

Standard plan

• Defender

Regular plan

Standard plan

• Central midfield

Regular plan

Standard plan

• Wing midfield

Regular plan

Standard plan

• Striker

Regular plan

Standard plan

It is obvious that the plan of a striker is much more offensive than the one
of a defender. Beside that the main focus of a striker is to get the ball
and score a goal, while a defender should cover the opponent or close open
space. The defenders are built up in a straight four-man backfield so it does
not make sense to split the defenders into a centre and a wing. All players
should try to stay in a line which makes the plans similar.

3.3.4 Decision Making Algorithm

The decision making algorithm describes how an action is derived from a
plan. This algorithm is based on a combination of the STRIPS (Stand-
ford Research Institute Problem Solver) [NF71] and the Teleo-Reactive-
Formalism by Nilsson [Nil94]. STRIPS is a planner that uses a set of

25

3.3. Current Implementation

actions to decide upon. Every action consists of preconditions and post-
conditions. The STRIPS algorithm chooses an action for which the pre-
conditions are true and postconditions are false. The idea of the Teleo-
Reactive-Formalism is used to assign more flexibility to the agents. Every
Teleo-Reactive-Formalism has a goal (teleo) which should be reached under
dynamically changing conditions. The agent has to react on this changing
environment (reactive). In the current implementation the observation of
the environment is done by the conditions, which are evaluated every time
a decision should be taken.

The plans on which this decision making depends on have already been
described in Section 3.3.3. The sequence of the elements in these plans
are crucial as the tree is traversed by a depth-first search. This makes
an assignment of a reward, as proposed in [BN95] redundant. Although
the algorithm of implementation has already been described in [Gsp07] and
[Rei07], it is fundamental to describe it here again:

decide(root_node)

FOR all children of root_node
retrieve action from actual child
IF postcondition of action is true
IF root_node is a leaf node return,

because a goal has been reached
ELSE decide(actual child)

ELSE
IF precondition of action is true
execute the action

An example how this could work in a tree is shown in Figure 3.5. The
assumption of this example is that in the current state the predicates have
the values listed in Table 3.2.

Predicate Value

seeBall true
hasBall true

freeShotPossible false
closeToGoal true
goalScored false

Table 3.2: Predicates and their values for a sample state of environment

The starting point for the algorithm is the root node. The first child (In-
tercept) is considered. The action Intercept has seeBall as a precondition
and hasBall as a post condition. As the post condition is true, the current

26

3.3. Current Implementation

node (Intercept) is the new root node and the nodes in the next level are
examined. Now the post condition of the action ScoreGoal is considered.
This is false and thus the preconditions freeShotPossible and closeToGoal
are checked. One of these is false and thus the next action in the same level
is the current one. This action (Dribble) does not have any post condition.
By default the post condition is always false, because otherwise the action
would never ever be considered. This stands in contrast to the precondi-
tions. If a precondition is not set, it means that it is true, thus the action
can always be performed. The precondition of Dribble is obviously true,
because otherwise we would not be in this branch. For this plan and the
specified state of environment the action Dribble is derived.

Figure 3.5: Example for the derivation of an action from a plan

The logical closure of the system is implemented in Prolog. A program
written in Prolog is based on the Horn clauses. In comparison to this a Lisp
program is based on the Lambda calculus. Prolog was chosen because it
is expressive and flexible enough to correspond to the requirements of the
system.

27

Chapter 4

Learning

In comparison to planning, which is based on logical closure, the field of
machine learning is founded on probabilities. The main research goals of the
machine learning community is to analyse the different principles of machine
learning in order to apply them in many different fields. The application
fields of machine learning reach from data mining programs to information
filtering systems that learn the users preferences, to autonomous robots or
vehicles [Mit97]. RoboCup is an environment created to enforce the research
of machine learning. Researchers are applying and analysing algorithms in
order to improve them and to gain more information about the test and
learning environment.

In this chapter a definition of machine learning is given. Afterwards the
main principles of design decisions that need to be taken when applying an
algorithm to a specific problem are described. This leads to the design of
the implementation of a learning algorithmn the team KickOffTUG. A fun-
damental question of a learning system concerns different learning methods.
These are presented and analysed in this chapter.

4.1 Definition

Learning is one of the main differences between a creature and a machine.
The combination of increasing computing power and different learning algo-
rithms closes the gap between machine and creature. But the term learning
is quite huge if the different applications are considered. The different learn-
ing classes are [Maa07]:

• Classification learning: The input data has to be classified into
different categories. An example is to learn the recognition of faces of
different people or to learn the understanding of a language.

28

4.2. Design Decisions

• Regression: This deals with the prediction of the future, for example
how long will the rain remain or how long will it take until a patient
gets well again.

• Unsupervised learning: Knowing something that has not been
taught. For example if a car makes strange noises, human will recog-
nize them without having heard them before.

• Reinforcement learning: Learning a strategy in order to achieve a
predefined goal or to survive.

• Adaptive control, motor learning: Learn how to control different
parts of a machine for example in order to stand up.

• Memory management: For a machine this deals mainly with sorting
algorithms, but for humans it is much harder to recognize learned
entities such as vocabularies.

• Imitation learning: Learn to imitate another person or another
machine.

Although the different types of learning have already been listed, the term
learning has not yet been defined. Mitchell has a good definition for a
learning task. He says:

”A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.” ([Mit97], p. 3)

This means every learning task consists of three main features. First of all
the task: In the studies for this work the task will be playing soccer. This is
just an abstract description. The task is much more complex, but in order
to give an example it is enough. The second feature is the measurement of
the performance. The performance can be measured in games won or goals
shot for example. The last but not least feature is the training experience.
It describes how the training is situated. In this paper it will be games
played against another team.

4.2 Design Decisions

The design of how the learning is implemented to an agent is crucial for the
success. There are different design decisions to make. These are described
in this section. For further informations take a look at [Mit97].

29

4.2. Design Decisions

4.2.1 Type of Training Experience

The type of training experiences deals mainly with the feedback that is
provided by the environment. This feedback can either be direct or indirect.
If the environment provides direct feedback every turn can be analysed. If
only indirect feedback can be returned to the agent, the agent has to analyse
a sequence of turns leading it to success or failure. The indirect feedback
is harder to analyse because it can contain optimal movements, but still
having a negative outcome due to other non-optimal movements performed
in the same period. Therefore direct feedback is easier to handle.

An alternative to distinguish the training is by availability of a trainer or
a master. Basically there are three different types of trainings: supervised,
self-supervised and unsupervised [Neh03]. Supervised learning means that
the training information is provided externally. This external trainer can be
a human. The supervised learning mechanism is often applied with neural
nets. In case of the self-supervised training the learning mechanism stays
the same, but the external feedback is replaced by an internal feedback. The
training agent needs a control structure to generate that internal feedback
from the state of the environment. Reinforcement learning is a method that
uses mostly self-supervised control. Unsupervised learning is not based on
input-output pairs, but by exploring and analysing the underlying structure.
This is mainly used for classification or self-organising feature maps [Koh88].

Another important issue is how the training is situated. There can be a
teacher controlling the training. For example the trainer controls the optimal
sequence of states. It can also provide the optimal action for every state of
the environment. In the Soccer Simulation League this is infeasible, because
there are too many states and furthermore for every state the best action
is not unambiguous. If there is no omniscient trainer available, the agent
can perform the training against another team. This opponent team can
be either an instance of the own team or another team. No matter which
team is chosen, it must be considered that the learned behaviour is nearly
independent of the other team. Otherwise the learned team will just be
specified to win against the team of the training. This leads to another
crucial aspect of the machine learning design process - the distribution of
the training examples. This distribution is responsible to learn an abstract
behaviour, thus it has a high impact on the final outcome.

The training is built up in a way that the agent performs an action on the
environment. The environment changes the state and with that state the
agent can analyse if the action that it performed was good or not. Thus the
agent is experimenting with the states of the environment. The interaction
of the environment and the agent is shown in Figure 4.1.

30

4.2. Design Decisions

Figure 4.1: Interaction between the environment and the agent

4.2.2 Target Function

The target function tells exactly what type of knowledge will be learned and
how it will be used by the performance measurement tool. The knowledge
can be a mapping of the environmental state to the best action: T : S → A.
Another approach says that the target function assigns a real value to every
state of the environment: T : S → <. This real value describes how good
the state is [Mit97]. In all cases the target function tries to find the best
legal action or move for the agent.

The considered state of the environment is important for the performance
of the learning application. In a real world environment this can be very
complex. Therefore the observation of the environment has to be simplified.
This is reached by a reduction of the observed parameters, meaning not the
whole world needs to be modeled, but only the area that can be influenced
by the agent.

4.2.3 Representation of the Target Function

The target function can be represented in different ways. Nearly every
mathematical function that takes a state of an environment as an input can
serve as a target function. The most popular functions are linear functions,
polynomial functions and artificial neural networks. The input can either
be a single value or a vector describing the environment. In the formulas
described in this context x is the input. Beside that every function has some
weights represented by w. The linear function can look like

31

4.2. Design Decisions

T (x) = w0 + w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + w4 ∗ x4 (4.1)

The advantage of a linear function is that it is easily approximated, because
it is quite simple. But the disadvantage is that its expression is limited. The
polynomial function like

T (x) = w0 + w1 ∗ x + w2 ∗ x2 + w3 ∗ x3 + w4 ∗ x4 (4.2)

is more expressive then the linear one. Bishop shows the expressiveness of
different functions in [Bis02]. In his example a noisy sin(2πx) function is
approximated with different polynomial target functions. While the linear
function was not expressive enough the third order polynomial worked out
fine in the training set as well as in the latter behaviour. The problem with
higher polynomial was that the function was too accurate and thus it was
only appropriate for the training set, but not for the final performance. This
is called overfitting.

Another possibility is to represent the target function as an artificial neural
network. A single neuron can be modeled by the Heaviside-Function:

T (x) = HF (wT ∗ x−Θ) =

{
1 : wT ∗ x−Θ
0 : else

(4.3)

This function checks if the input vector multiplied by the weights is greater
than a certain threshold Θ. If the condition is true, the output is 1 otherwise
the output of the neuron is 0. Neural networks can be very expressive
depending on the layers. These networks are described in more detail in
Section 4.3.3. In order to get the perfect target function a very expressive
representation is needed. But the more expressive a representation is, the
more training examples are needed to choose among the hypotheses.

4.2.4 Choosing a Learning Algorithm

The learning algorithm describes the approximation of the target function.
This is done by a set of training examples that are performed. After each
training session the weights of the target function are adjusted. Usually
this is done by minimizing an error function [Bis02]. Such an error func-
tion normally measures the difference between the function and the training
example. An error function for this example would be:

E(x) = (VTrain(x)− VPredict(x))2 (4.4)

32

4.2. Design Decisions

where x is the training value. VTrain is the value of the training set and
VPredict is the predicted value of the algorithm. Since the error should
always be positive the resulting value is squared.

It is nearly impossible to learn a perfect target function. Usually the tar-
get function is an approximation. This approximation is easier to reach and
serves the purpose as well, sometimes better. A too accurate target function
can be specified to the training examples, but does not have the flexibility to
serve the real environment. This problem is called overfitting. A more de-
tailed description about the different learning algorithms and approximation
methods can be found in Section 4.3.

4.2.5 The Resulting Design Models

The design of the learning system consists of four different modules. These
modules are the Performance System, the Critics or Analyser, the Gener-
aliser and the Experiment Generator. The interaction between these mod-
ules is shown in Figure 4.2.

Figure 4.2: The interaction of the program modules of a learning system

Performance System:
The performance system implements the task. It takes a new experiment as
an input and produces a single action or a trace of actions as an output. The
mapping from the input state to the output is done by the target function.

Analyser:
The analyser gets the action trace from the performance system as an input
and analyses the impact of these actions on the environment. With the new
state of the environment it generates a reward as an output.

Generaliser:
The generaliser implements the main part of the learning algorithm. It takes
the reward of the analyser and adjusts the weights of the target function for
the whole learning system. This is often done by an algorithm which is

33

4.3. Learning Methods

based on the gradient decent approach of the target function. The adapted
target function is forwarded to the experiment generator.

Experiment Generator:
This module generates a new experiment and starts the learning cycle again.
In every cycle the target function is updated and thus more trained.

4.3 Learning Methods

In this section different learning methods are described and analysed. It
gives an overview of the most common techniques used.

4.3.1 Decision Trees

The input of a decision tree algorithm is a vector describing an object or
situation. The elements of this vector are also called attributes. The output
is a decision that is derived after performing a sequence of tests. An internal
test is represented by an internal tree node and checks the value of one of
the properties of an attribute. [RN03]

An example decision tree can be found in Figure 4.3. The input vector
enters the decision tree in the root node and is tested there. Every internal
tree node represented by a yellow circle is a test case. As a result of this
test regarding to the input vector one of the edges is taken. A link between
the nodes can be interpreted as a test result. These test results can either
be a numerical split or a nominal split. The tree is traversed by performing
the internal tests until a leaf is reached. This leaf represents the decision or
the class an input vector can be classified into.

Figure 4.3: The representation of a decision tree with test cases, test results
and decisions

34

4.3. Learning Methods

Example of an Algorithm

There are some different learning algorithms for decision trees. The basic
one is ID3 [Lug02]. It is the basis of more expand ones like C4.5 [Qui03].
Therefore the ID3 algorithm is described in pseudo code here:

Function ID3 (Examples, Target_Attribute, Attributes):

Create a root node for the tree;
IF all Examples are positive

RETURN the single-node tree root with a positive label;
IF all Examples are negative

RETURN the single-node tree root with a negative label;
IF Attributes is empty

RETURN the single-node tree root with the label of the
most common value of the Target_Attribute;

BEGIN
A = an attribute that best classifies the examples
Decision tree attribute for root = A
FOR EACH value vi of A
add a new tree branch below root,
corresponding to the test A = vi

let Examples(vi) be the subset of Examples
that have the value vi for A

IF Examples(vi) is empty
below this new branch add a leaf node with label = most common

value of the Target_Attribute in Example
ELSE
below this new branch add the subtree

ID3(Examples(vi), Target_Attribute, Attributes-{A})
END

This algorithm builds decision trees using a top-down technique. All the
training examples have to be classified. These classes are called decision
in Figure 4.3. This classification is done by choosing an attribute of the
training example that splits all examples into two classes. If all examples
are in one class the algorithm terminates. Otherwise a new subtree with
another splitting test is added. Finally the algorithm builds a concept by
eliminating candidates out of the training examples. The main advantage of
this algorithm is the representation in decision trees. These trees can easily
be reviewed by a human. Furthermore the classification of the decision is
suitable if the incoming data is noisy. [Lug02]

35

4.3. Learning Methods

A problem occurs if the resulting tree gets big, because in a huge tree it
is hard to preserve the overview. A possibility to shrink a decision tree is
pruning. Pruning compares subtrees and eliminates redundant entries. The
pruning algorithm can either be applied during the training phase or after
the complete training.

Application in the RoboCup

Virtual Werder, a RoboCup 2D Simulation League team, used decision trees
to analyse the behaviour of the opponent players. The research group im-
plemented the learning algorithm into the online coach. With this algorithm
the coach evaluates the formation, the preferred defensive behaviour and the
offensive play of the opponent team over a certain time. The values recorded
over the interval are the input for the decision tree algorithm. This algorithm
generates rules and out of these rules the coach sends commands regarding
the opponent behaviour to the players. With this information the players
can adapt and improve their behaviour. In order to get better rules for the
learning algorithm the decision tree is evaluated after the game by a human.
[DHVW02]

Evaluation

A simple example of how the decision tree learning can be introduced in
the soccer domain is shown in Figure 4.4. In this example the internal tree
nodes represent some kind of condition. In most cases this condition has
two outcomes, either it is fulfilled or not. Only the distance of the ball
has more possible solutions: nearby, far and too far. After performing the
tests a decision is derived. Every leaf node represents an action that can
be performed. The possible actions in this example are: Find Ball, Dribble,
Run to Strategic Position, Run to Pass Position and Cover Enemy.

As every internal test node represents a condition, this learning method
is appropriate to evaluate the conditions and how they are suited for the
actions. For this evaluation some conditions can be combined in such a way
that their outcome is not boolean anymore. The path from the root node to
the leaf defines a conjunction of conditions under which the action should
be executed.

The main problem of the decision tree is its size. If a lot of different ac-
tions and a high number of conditions are used in the training examples
the decision tree gets huge. Another problem is that the algorithm needs
training examples. Because it is hard to automatically create these training

36

4.3. Learning Methods

Figure 4.4: Example for a simple application of a decision tree.

examples all the training examples have to be built by hand. This is not
applicable in the team KickOffTUG, thus this learning method is not used.

4.3.2 Genetic Learning

The genetic learning method is inspired by biological evolution and natural
selection. The idea behind is, that there exists a population of hypotheses
and these hypotheses are updated by crossover and mutation at each step.
The goal is to find the best hypothesis over a given search space. How
appropriate a hypothesis is for a given task is determined by the fitness
function. The fitness depends on how the chromosome behaves according to
the problem [Lug02]. In this context a chromosome is a string containing
important information coded into bits.

Figure 4.5: Example for the crossover of a string with a crossover mask of
11100001

One advantage of this learning method is that the evolution on which it is
based has been a successful and robust method within biological systems.
Another one is that the hypotheses can contain complex and interacting
data that are difficult to model. This connection between the different parts

37

4.3. Learning Methods

of the data can be automatically improved by the algorithm. Beside that
it is easy to parallelize the calculating and therefore increase the resulting
computing power [Mit97].

Figure 4.6: Example for the mutation of a string with the mutation rate of
two.

The different genetic learning implementations vary in details, but the basic
concept is the same. The algorithm deals with a pool of hypotheses. Out
of this pool some are selected and used for reproduction. These selected
ones are used for the new generation which is produced by crossover and
mutation. Crossover is the exchange of substrings. How the substring is
created depends on the crossover mask. An example is shown in Figure
4.5. A mutation is the invertion of single bits. The amount of these bits is
called mutation rate and it is usually quite small to ensure consistency in
the population. An example of mutation is shown in Figure 4.6.

Example of an Algorithm

The algorithm is based on the main steps of evolution: selection, crossover
and mutation. The input data for the algorithm on one hand is the fitness
function that assigns a value to a given hypothesis. On the other hand values
that specify the learning have to be defined. First of all a threshold that is
responsible for the termination. Beside that the algorithm takes a parameter
that declares the number of hypotheses, another one for the fraction that
should be replaced by the crossover at each step and the mutation rate.
Another important issue of the algorithm is the probability criteria for the
selection. This is given by

Pr(hi) =
Fitness(hi)∑p

j=1 Fitness(hj)
(4.5)

This formula calculates the probability that a hypothesis hi is selected out
of all given hypotheses.

GeneticAlgorithm(fitness, threshold, p, r, m)
P <- Generate p hypotheses at random // init population
FOR EACH h in P compute fitness(h) // evaluate

WHILE(max fitness(h) < threshold) do

38

4.3. Learning Methods

create a new generation Ps
// Selection
probabilistically select (1-r)p members of P to add
to Ps the probability of the selection is given
by Pr(hi)

// Crossover
probabilistically select r*p/2 pairs of hypotheses
from P, according Pr(hi)
for each pair <h1,h2>, produce two offspring by
applying the crossover operator
add all offspring to Ps

// Mutation
choose m percent of members of Ps with uniform
probability for each invert one randomly
selected bit

// Update
P <- Ps
// Evaluate
FOR EACH h in P compute fitness(h)

RETURN the hypothesis from P that has the highest fitness

Each iteration in this algorithm is called generation. The set of performed
generations is called a run. After a run there should be fitter chromosomes
in the population. But the problem is that this algorithm highly depends
on the random function. Thus it can happen, that the chromosomes are less
fit after a run than before. Another aspect of the random function is that
two runs with different random functions produce a different behaviour.

Application in the RoboCup

One of the first applications with genetic programming in the RoboCup was
done by Sean Luke ([LHF+97], [Luk98a] and [Luk98b]). In his experiments
he found out that homogeneous players, all players have the same source
code, performed better than heterogeneous teams. These heterogeneous
teams had almost the same implementation, just the sub trees differed. Luke
figured out that the problem was the complexity. If more computation time
would have been available, the heterogeneous teams would have performed
better.

39

4.3. Learning Methods

Evaluation

Klepper [Kle99] already implemented a decision making algorithm with ge-
netic programming. This decision making was based on high level actions,
which should be selected by the genetic algorithm. The problem he expe-
rienced in his experiments was that it was hard for the agents to learn any
defensive behaviours. Klepper also analysed the performance of low level ac-
tions in comparison to high level actions and he figured out that the usage
of high level actions was always better than the low level ones.

The genetic learning method is a general approach that has a satisfying
outcome if the period of searching is long enough. But the problem is
that the algorithm strongly depends on the accuracy of the fitness function
and on the encoding of the problem into chromosomes. Finding these two
parameters can be very time consuming especially in a complex environment.

4.3.3 Neural Nets

Neural nets are inspired by biology, like the genetic learning method. In
comparison to the chromosomes of the genetic learning method the neural
nets are based on the human brain. Our brain consists of millions of con-
nected neurons. A schematic of a single neuron can be seen in Figure 4.7.
This neuron consists of the input values xi and the weights wi. In the neu-
ron itself the Heaviside function (Formula 4.3 on page 32) is implemented.
The output of a neuron is a single value. The problem with a single neuron
is that it is not expressive. It can be used to represent linear functions like
the boolean AND operator (the example can be found in [Wal05], page 2).

Figure 4.7: Example of a single neuron

For more complex applications a net of neurons is used. An example neural
net can be seen in Figure 4.8. This neural net consists of three layers: the
input layer, one hidden layer and the output layer. Every neuron that takes
one or more input values is part of the input layer. The hidden layer has
neither direct input nor direct output, thus it is not visible to the application.
The optimal number of hidden layers is an unsolved problem. Bailey and

40

4.3. Learning Methods

Thompson [BT90] created a ”thumb”-rule that recommends that the number
of hidden neurons should not exceed 75% of the number of input neurons.
The output layer incorporates all neurons that produce a result for the input
values. More complex architectures of neural nets can be found in [LC01].

Figure 4.8: Example of a neural net with an input layer, one hidden layer
and an output layer

The main advantage of neural nets is that it is possible to learn complex
patterns without learning the rules. The benefit of a neural net compared to
traditional probabilistic methods is that the nonlinearity in the dataset can
be used. Another strength of the neural net is that they are fault-tolerant
and still applicable if the data is inconsistent. On the other hand neural nets
are not appropriate for applications that are based on structured problems
with corresponding theories [Wal05]. This is based on the fact that there
are better learning methods if a model is available.

Example of an Algorithm

The most common algorithm to train neural nets is the backpropagation
algorithm. This algorithm is based on the gradient descent. The gradient
descent is an iterative method for finding the local minimum in a certain
space. The backpropagation algorithm is suitable for multilayer networks
with a fixed size of input, output and hidden neurons. Furthermore the
connections between the neurons must be fixed in advance. The weights
of the net are adjusted by the squared error between the output value and
the target value. Due to a higher number of outputs the sum over all these

41

4.3. Learning Methods

output values must be taken for calculating the error. The resulting formula
for the error is:

E(~w) ≡ 1
2

∑
d∈D

∑
k∈outputs

(tkd − okd)2 (4.6)

The input for the backpropagation algorithm is a set of training examples.
Each training example is a pair of the input vector ~x and the target vector
~t. The learning rate specifies how much each weight will be adapted. As
already mentioned the algorithm needs to be specified by the number of
neurons and connections between these neurons. The following algorithm
defines the neural network by the number of inputs nin, the number of
hidden neurons nhidden and the number of output units nout.

Backpropagation
(training_examples, learning_rate, n_in, n_out, n_hidden)

create a feed-forward network with n_in inputs,
n_hidden hidden neurons and n_out output units

init the network with small random weights

until the termination condition is met
for each <x,t> in training_examples

//feed forward
input the instance x to the net and

calculate the output o_u for every unit u

//propagate backwards
for each network output unit k calculate the error
for each hidden unit h calculate the error
update each network weight w_ji

The error of the output units is calculated with the formula:

δk = ok(1− ok)(tk − ok) (4.7)

where ok is the resulting output by the feed forward and tk is the target out-
put of the training examples. The error of the hidden units differs, because
all outputs have to be taken into consideration. The formula for the hidden
units is:

δk = ok(1− ok)
∑

k∈outputs

(wkhδk) (4.8)

The weights wji are updated by

wji = wji + ∆wji = wji + ηδjxji (4.9)

42

4.3. Learning Methods

where η is the learning rate.

Application in the RoboCup

The neural networks have different applications in the RoboCup community.
For example they are used in the Sony Aibo League to control the motion
on a given trajectory close to the physical limits [GSS07]. In this paper it
is described how they use one neural network for the whole motion control
and how they use one neural network for each hinge.

Rojas and Atkinson describe in [RA08] how they use a neural network for
the game strategies. The game is classified with parameters, so new game
situations can be appointed. The experiments were performed in 10-minutes
games and every 30 seconds the game was stopped and an expert had to
evaluate the situation and assign a fitness value. The algorithm Rojas and
Atkinson are using is Backpropagation.

Evaluation

Artificial neural nets are powerful and the advantages have already been
pointed out in the description. The main problem with the neural nets is
that a set of training examples is needed. These training examples depend
on the specific usage of the algorithm. For example neural nets can be used
for a mapping from every state of the environment to a value giving an
evaluation of the current situation. The goal of this work is to reimplement
the decision making algorithm in order to compare it with the existing one.
This can be done by a mapping of a state of the environment to a single
action that fits best this current state. But these training examples have to
be created by a human. And neither the rating of the environment nor the
choice of the best action is trivial or well defined.

4.3.4 Reinforcement Learning

The main difference of reinforcement learning compared to other learning
methods is that the agents learn through a reward. This reward can be given
by a trainer that evaluates the state of the environment after an action or
a sequence of actions have been performed. Another possibility to estimate
the reward is by the agent itself. In many applications the reward is granted
for a sequence of actions and tells if the goal has been reached or not. In
any kind of games this goal is to win the game. Thus if the game is won the
reward will be positive and if the game is lost the reward will be negative.
In a draw it will be zero. The reward is the reason why...

43

4.3. Learning Methods

”...reinforcement learning is much more focused on goal-directed
learning from interaction than other approaches to machine learn-
ing.” ([SB98], p. 3)

The main difference between the reinforcement learning and supervised
learning is correctness of the input. In the supervised training examples
it is assured that the training examples have a correct training output for
every training input. But in the reinforcement algorithm there can be ac-
tions that are not optimal for the global goal, but have a positive reward,
because the state of the environment or the current outcome is good.

One general problem of reinforcement learning is that the actions an agent
performs on the environment do not determine an immediate reward. There-
fore the agent needs a model of the environment in order to predict the
reward for the next state of the environment. A common method to model
the environment is the Markov decision process (MDP). As described in
[KLM96], the MDP consists of:

• a set of states S

• a set of actions A

• a reward function R : S ×A → < and

• a state transition function TS×A → Π(S) and Π(S) is the probability
distribution of S

The most probable next state of the environment is described by the state
transition function depending on the current state. This function is often
used to estimate the maximum reward that can be gained after performing
actions.

Figure 4.9: Interaction between an agent and the environment with rein-
forcement learning

An overview how the reinforcement learning is working can be seen in Figure
4.9. This figure shows the agent, performing actions in an environment. This

44

4.3. Learning Methods

environment is observed by the agent, giving the agent a current state of
the environment. The reward is a value that is assigned according to the
current state of the environment. In this figure it is drawn as a number
given by the environment, which is not always correct.

Example of an Algorithm

In the field of reinforcement learning three learning approaches can be identi-
fied. The dynamic programming ideas, Monte Carlo and temporal-difference
(TD). The dynamic programming methods use the calculated states after
the performance for the next decision. This following decision is based on
a value function. The dynamic programming approach needs a model of all
states for its performance. In comparison to that the Monte Carlo method
does not need a complete model, because it learns through the whole trace of
states. Thus experience is used for the update of the value function. [Lug02]

The TD approach is based on a combination of the Monte Carlo and the
dynamic programming approach. Like Monte Carlo, TD can learn from raw
experience and does not need a model of the environment. The analogy be-
tween TD and dynamic programming is that their estimate is based on other
learning estimates without waiting for the final outcome [SB98]. The main
character of the TD algorithm is that it is based on the difference between
the current state of the environment and the next state. For every state
of the environment an action is selected and performed in the environment.
After this the reward is observed. Finally the function V (s) is updated with
the formula

V (s) = V (s) + α[r + γV (s′)− V (s)] (4.10)

whereas α is the learning rate and γ is the discount factor. Both parameters
are chosen in the interval [0; 1]. The learning rate is accountable for how
much the current function V is adjusted. If the learning rate is low it takes
more time to learn, but it is more accurate. The discount factor models the
fact that the next state of the environment is worth less than the current
state. The algorithm for the temporal difference is:

TD
Init V(s) arbitrarily, P to the policy to be evaluated
For each episode
Init s
For each step in the episode
a = action given by P for s
Perform action a
Observe the reward and the next state s’
V(s) = V(s) + alpha [r + gamma V(s’) - V(s)]
s = s’

45

4.3. Learning Methods

This algorithm is an on-line learning algorithm which can be implemented
in a fully incremental fashion. Other algorithms that are based on the TD
are Sarsa and Q-Learning [SB98]. A design issue which is not covered by
this algorithm is the dilemma of exploration. On one hand actions that had
performed well in the past should be used in the present. But on the other
hand new actions should be chosen, to find out if they are better.

Application in the RoboCup

Reinforcement learning is probably the most commonly used learning tech-
nique in the RoboCup. The reason is that agents can gain experience
through the environment. One application of the Q-Learning algorithm is
described in [KSL08]. It figures out how model-based reinforcement learning
can be used in a complex domain. The domain is the simulated RoboCup
soccer, especially the subtask of keeping the ball from the opponent.

The teams at the University of Osnabrück are focusing on reinforcement
learning. They are developing new variants and practical algorithms for a
complex domain in the simulation league as well as in the middle size league.
Especially for the simulation league the reason for reinforcement learning is
that the success or failure of the agent is provided by the environment. The
long term goal of the Brainstormers - the 2D Simulation league team of the
University of Osnabrück - is to have a team of learning agents, where the
only parameter is ”win the match” and the agents learn the appropriate
behaviour. [RG08]

Evaluation

As already pointed out the reinforcement learning method is the only one
that uses the interaction with the environment for adjusting the target func-
tion. The only problem that occurs during the learning phase is that the
learning process takes a lot of runs. Tesauro [Tes95] described a backgam-
mon game, trained with the temporal-difference (TD) algorithm. The goal
of this trained game was to become a world-class player. For the training
1.5 million self-generated games where used until it was competitive with
the best human players. The target function of this learning algorithm is a
multilayer perceptron. A perceptron is an artificial neural net, which was
first introduced by Rosenblatt [Ros88]. The complexity of this multilayer
perceptron is another reason for the high number of trainings used.

46

4.4. The Resulting System

4.4 The Resulting System

It is hard to find the most appropriate learning method for the RoboCup
Soccer Simulation, because it is a platform that allows a lot of different
learning approaches. Nevertheless a design for the implementation of the
learning system is needed.

4.4.1 Target Function

The target function describes what will be learned through the experiments.
In this work the accuracy of a single action for a certain state of environment
is learned. This is realised by implementing a target function in every single
action. This function is a polynomial function of third order, like:

f(x) = w0 + w1 ∗ x + w2 ∗ x2 + w3 ∗ x3 (4.11)

where x is the vector of the considered state of the environment. w0, w1, w2

and w3 are the weights that are adjusted during the training phase. The
polynomial of three is chosen as this function has the possibility for an inflec-
tion point and extreme points. The advantage of this polynomial function
compared to a linear function is the higher expressiveness. In comparison
to a neural network the polynomial function has a shorter training time in
order to get satisfying results.

The best action for a certain state of the environment is chosen by the
ActionSelector. This ActionSelector has different pools of actions it chooses
from. These pools are distinguished by the player types into the action
pool for the goalie and the one for the other players. The pools for the
field players are divided according to the different play modes, into the pool
with the actions for the regular game with the ball, the one for the regular
activities without the ball, the one for the standard situations in which the
own team has the ball and the pool with the actions for defensive standard
situations in which the opponent team has the ball. The different pools and
the interaction with the ActionSelector is shown in Figure 4.10.

After the ActionSelector has chosen a pool, the state of environment is
forwarded to all actions of this pool. For every action the approximated
reward is calculated by the target function. The action with the highest
value is chosen and executed. After this execution the weights of this action
are adopted.

47

4.4. The Resulting System

Figure 4.10: Different action pools for the players of the learning system

4.4.2 Learning Method

The advantages and disadvantages which have been already described in
Section 4.3 are summarized in Table 4.1.

All described and analysed learning methods can be applied in the RoboCup
Soccer Simulation League. But not all methods are equal useful for a cer-
tain application. The ambition of the implementation was to reimplement
the decision making. As there are no current training examples available,
a learning method without training examples was chosen. The available
methods with this restriction are: genetic learning and reinforcement learn-
ing. Because the reinforcement learning has a better performance compared
to the genetic learning it was decided to implement reinforcement learning.
The main problem with reinforcement learning is the observation and eval-
uation of the environment. Since this can be done by the trainer who has a
complete world model the disadvantage vanishes.

Environment

The simulation is set up as shown in Figure 4.11. In this figure the right
part shows the agent that observes the environment and builds up its own
incomplete WorldModel. From this WorldModel the current state of the
environment is passed to the LearningAlgorithm. This LearningAlgorithm
holds the value function that selects an action depending on the state of
the environment. This action is passed to the Execution, that generates
the performance of the action in the environment. For the reinforcement
learning it is essential that the LearningAlgorithm gets a reward from the
environment. As the RoboCup soccer server does not provide a reward by its
own, a trainer is used. This trainer observes the environment and builds its
WorldModel. This is a complete one, because the trainer can see everything

48

4.4. The Resulting System

Learning
Method

Advantages Disadvantages

Decision Trees understandable repre-
sentation of the trees;
good classification if
the incoming data is
noisy

it is hard to get a gen-
eral idea of a big deci-
sion tree;
training examples are
needed

Genetic Learn-
ing

suitable for complex
and interacting data

high computational
power is needed;
depends on the ac-
curacy of the fitness
function

Neural Nets provides a possibility
to learn complex pat-
terns without learning
the rules

not applicable for struc-
tured problems;
training examples are
needed

Reinforcement
Learning

learns through an inter-
action with the environ-
ment

a possibility for the ob-
servation and evalua-
tion has to exist

Table 4.1: Advantages and disadvantages of different learning methods

that takes place in the environment. With this WorldModel a reward is
calculated by the trainer and passed to the agent.

The most important objects of the environment of the RoboCup soccer
server are eleven agents for each team and the ball. Every object has a
position and a velocity. Beside that every agent has a facing direction of its
head and body. Another important information about each agent includes
the view mode, the current speed and the available stamina. One possibility
for the learning algorithm is to take all this information as an input. This
is not feasible, because the model of the world for an agent is incomplete. If
all elements of the world are considered the parameters of the input would
explode. Another problem is that a higher number of input values has a
high impact on the runtime of the training. Thus a simplification of the
environment is used. This simplification includes the position of the agent
itself, its velocity and its stamina. The ball can be seen as the main object in
the soccer environment. Thus in the simplified state of the environment only
the relative position of the ball and its velocity to the agent are considered.
In the area around the agent the four closest own players and the two closest
opponent players are considered. This simplified environment still has 22
different parameters to be described.

49

4.4. The Resulting System

Figure 4.11: Interaction between the agent, the trainer and the environment

Figure 4.12: Simplified environment of the agent

In Figure 4.12 a simplified environment is shown. It points out the players of
the two teams, the red ones and the yellow ones. The black dot symbolises
the ball. The simplified environment of the red agent, focused by the arrow,
contains everything that is in the circle.

Learning Actions

The basic actions an agent can perform have already been described in
Section 2.3.2. These actions are just the commands the agent can send to the
server. Case studies have been made to apply a decision making algorithm
to these basic actions [Kle99], but the outcome was not satisfying. In these
studies the created system was based on the learning of high level actions.

This is similar to the approach that is implemented in the team KickOff-

50

4.4. The Resulting System

TUG. The actions used in the learning decision making are high level actions.
These learning-high-level actions are similar to the planning-high-level ac-
tions. Both are executed by the Execution instance. The main difference
between a learning- and a planning-high-level action is that the learning ac-
tion has a target function, while the planning action has preconditions and
postconditions. In order to give the players the possibility for an offensive
and a defensive behaviour actions like RunToOwnGoal and RunToEnemy-
Goal were introduced in the learning system.

Learning Algorithm

The learning algorithm implemented in this context is based on the rein-
forcement Q-learning. The algorithm introduces an action value function,
that takes a state of environment and an action as an input and produces a
value how adequate this action is for the state as an output. In every run
the Q-function is adjusted according to the formula:

Q(st, at) = Q(st, at) + α[rt + γmaxaQ(st+1, a)−Q(st, at)] (4.12)

where α is the learning rate. It is set between 0 and 1 and describes how
much the function is updated. A learning rate of 0 tells that the Q-function
is never updated. γ is the discount factor, that is also chosen between 0
and 1. It considers the fact that the future value is less worth than the
current. The reward of the action is taken into account with the variable
rt. Furthermore the estimation of the reward for the next possible action is
calculated and assigned to maxa.

The algorithm for the Q-learning is an extension of the temporal-difference
algorithm described in Section 4.3.4. The main difference between these
two algorithms is the updating of the value function. The algorithm of
Q-learning written in pseudo code is:

Q-Learning

Init Q(s,a)
For each episode
Init s
For each step in the episode
choose an action a using Q depending on s
Perform action a
Observe the reward and the next state s’
Q(s,a) = Q(s,a) + alpha [r + gamma max_a Q(s’,a) - Q(s,a)]
s = s’

51

4.4. The Resulting System

As already mentioned the Q-function is a mapping from every state of the
environment to the best action. In the implementation this Q-function is
divided. Every action implements a function that takes a state of environ-
ment as an input and returns a value indicating how accurate this action is
according to this input state. The Q-function asks every action that can be
taken in the current state, how accurate it is and returns the one with the
highest value. This selected action is performed in the environment using
the Execution.

The reward function defines the task of the learning process. It maps the
actual state of the environment to a single reward number to specify the
state [SB98]. In the implementation the reward is given by the trainer,
which is the only agent that has a complete model of the world and can
perform a reasonable calculation of the reward. A reward is given if

• the own team has scored a goal (reward of 100)

• the opponent team has scored a goal (reward of -100)

• the own team is in ball possession (reward of 0.1)

• the opponent team is in ball possession (reward of -0.5)

The reward for the goals is high, because the achievement of a goal has a
high impact on the result of the game - if it is won or lost. The problem of
the reward of the goal is that a goal score occurs seldom and infrequently.
This leads to the idea to evaluate the current situation of the game. This
evaluation is done by the analysis which team has the ball. All values used
for the reward are just the first initialization and can be easily adjusted.
This is important for the different experiments which need to be taken for
the analysis of the learning implementation.

4.4.3 Design Modules

In this section the different design issues mentioned in Section 4.2.5 are
described in the context of this work.

Performance System:
In every cycle the agent should perform an action. For the selection of the
action the Q-function is used, in order to get the best action for the current
state of the environment. But depending on the parameters of the agent,
this selection can also result in a random action. This is used to try new
actions for a state.

Analyser:
The analysis how appropriate the action was, is done by the trainer who

52

4.4. The Resulting System

passes the reward to the agent. A more detailed description of the trainer
and the reward can be found in Section 4.4.2 (Environment).

Generaliser:
The duty of the Generaliser is to update the target function. The Formula
4.12 on page 51 is used for that. This goes along with the description of the
algorithm which is placed in Section 4.4.2 (Learning Algorithm).

Experiment Generator:
The server can be seen as the experiment generator, because the server
increments the cycles. Beside that it simulates the environment in which
the actions are performed. Thus in each cycle the target function is updated.

53

Chapter 5

Analysis - Learning versus
Planning

The problem in the RoboCup soccer simulation league is that there are
approximately

346000
00

different positions where a player or the ball can be. This value is calculated
with the formula ((2 ∗ 52) ∗ (2 ∗ 34))n. As the field has the length 2 ∗ 52
and the width 2 ∗ 34 the area for one position is one square meter. n is the
number of considered instances like players and the ball. In a normal game
the number for n is 23. Beside the positions, there are more parameters to
be considered - for example the stamina and the velocity.

Based on this information a decision must be derived by every agent. If
all commands including the parameterised ones are examined, there are
about 30011 different commands an agent can decide upon. This problem
is handled in the RoboCup Soccer Simulation League team KickOffTUG
by a decision making that is based on a planning algorithm. In order to
evaluate this planning system in comparison to a machine learning approach
a decision making based on reinforcement learning has been implemented.
These two different approaches are compared in this chapter.

5.1 Basic Analysis

In this section basic points of the two different systems are outlined and the
further analysis is described.

54

5.1. Basic Analysis

5.1.1 Planning

The planning algorithm was implemented by Michael Reip and Stephan
Gspandl. It was already described in Chapter 3 and in [Gsp07] and [Rei07].
The main advantage of the planning algorithm is that it is easy to understand
for humans and thus the human responsible can reconstruct the actions of
the agent. The main advantage of the planning system is that it does not
need any training time, like learning algorithms do.

5.1.2 Learning

In comparison to planning, the learning algorithm has been implemented
during the master studies. The first implementation which is described in
Chapter 4 was quite successful. The idea behind it was to learn from games
only with the reward function that returns a positive or negative reward if
the ball is hold by the own team or opponent team or if a goal is scored.

In order to improve the learning system two additional rewards were intro-
duced. The first reward is based on the idea that the players should try to
get the ball. Thus if the distance between the player and the ball decreases
a small reward is assigned. Experiments with rewards between 0.1 and 1
were performed. The experiments showed that the values near the min and
max limit are suboptimal and a suitable value lies in the middle. Another
improvement should address the problem that the learning system is too
defensive. To gain better results the trainer calculates a reward, based on
the x-coordinate of the ball. If the ball is on the center line the reward is 0.
If it is on the own half a small negative reward and in the opponent half a
positive reward is sent to the player.

5.1.3 Way of Analysis

Every system can be described with the PEAS-method described in [RN03].
PEAS stands for:

• Performance

• Environment

• Actuators

• Sensors

These components, especially the environment, the actuators and the sen-
sors, have already been described in Chapter 2. But now the focus lies on the
measurement of the performance. The setup for the performance tests is the

55

5.2. Analysis of Games

simulation of games. The main advantage of the RoboCup Soccer Simula-
tion league is the possibility of simulating games and thus these simulations
are used for the analysis. After every world championship the binary code
of every team is published. Thus for simulating games the top teams can be
used to play against the team KickOffTUG.

By now only the decision that the performance is measured by playing games
is taken. The considered components of the systems are divided into four
main sections.

1. Games (Section 5.2): As the performance measurement is based on
games, these games are observed.

2. Situations (Section 5.3): In every game standard situations occur.
Comparing these situations is another possibility to demonstrate the
differences between the systems.

3. Player Types (Section 5.4): The players of a team can be divided into
different types. In the analysis these player types are described and
the differences in the implementation of the planning and the learning
system are outlined.

4. Factors (Section 5.5): Every player is influenced by critical factors.
These factors are pointed out and analysed.

A tool that helped during the analysis phase is the Loganalyser [Log04].
This is a tool for the visualisation of the RoboCup log files.

5.2 Analysis of Games

The main possibility how the different approaches can be analysed is playing
games. In this work there are four different kinds of games that are evalu-
ated. Games with the examined instance either with planning or learning.
Games against each other and furthermore games against the reigning World
Champion - the Brainstormers from Osnabrück.

5.2.1 Games with the Same Instance

The games with the same instance of the system are useful just to a certain
extension. In these games the relation of the strikers to the defenders can
be analysed. Beside that it can be evaluated if a team is more offensive -
thus a game against the same system has a high rate of goals. Or if a team
plays more defensive with a low ratio of goals.

56

5.2. Analysis of Games

The main difference between the planning system and the learning system
in this kind of games was that the players of the learning system got stuck in
the middle of the field concerning the length as well as the width. The result
of the games learning against learning normally ended low - like 0:0, 1:0 or
1:1. In comparison to that the games with two instances of the planning
system were wider in both dimensions of length and width. This is based
on the different types of players that are used in the planning system, but
not in the learning system.

To sum up the gained awareness out of these games: it is interesting to
simulate these kind of games in order to demonstrate the difference of the
attacking and defending part. But if a team is balanced no important knowl-
edge for the analysis can be extracted.

5.2.2 Games Learning versus Planning

The games of the learning system against the planning system are the most
interesting ones as these both systems should be evaluated against each
other. The first thing that catches one’s eye is that the learning system is
much more ball focused. The reason is the reward function that assigns a
reward connected to the ball. In comparison to this observation the planning
system has plans that tells the agents to stand there if the ball is not in the
area around. This is indispensable for the defense zone.

Another ambition of these games was to improve the learning model. Thus,
for example, the reward function was adopted in order to take the x-coordinate
of the ball into account. With this additional feature a more offensive behav-
iour should be enforced. This has been worked out but is still not feasible to
make the game broader. Thus the learning system will always try to make
its way through the middle.

The outcome of these games was normally a win by the planning system.
The problem of the learning model was not the normal play, but in the end
of the game when the learning agents run out of stamina. At that time the
planning system had more resources to score a goal.

5.2.3 Games with Brainstormers

The Brainstormers from the University of Osnabrück are the reigning World
Champion and thus a strong, but welcomed opponent for the test games.
The system of the Brainstormers is based on a reinforcement learning algo-
rithm as well [RG08]. Furthermore their strategy for covering the enemies
is based on an assignment of every opponent player to a player of the team
of the Brainstormers.

57

5.3. Standard Situations

In the games between the Brainstormers and the planning system it could
be observed that the Brainstormers normally attack with passes through
the center. In these attacking situations the planning team has problems
with defense as the defending formation is to slow to react. In comparison
to this the games between the learning system and the Brainstormers had
an unexpected effect on the formation of the World Champion. As the
learning system is focused on the ball nearly all agents run to the ball. The
Brainstormers followed because their enemies to cover where all close to the
ball. Such an example can be seen in Figure 5.1. In this example the learning
system is the yellow team playing from left to right and the Brainstormers
are the red team.

Figure 5.1: Screenshot from a game between the learning system and the
Brainstormers

5.3 Standard Situations

In this section different situations that occur during a game are described.
Typical situations are the kick-off, a throw in, the normal playing with the
ball and the positioning without the ball.

5.3.1 Kick-Off

The kick-off is the begin of every game. If the opponent team gets the ball
right after the kick-off, this team can go into an offensive game and has a
higher chance to score a goal.

In the planning system every player has a plan for all standard situations.
In these plans it can be identified, for example that always Player 10 and
Player 11 perform the kick-off. This is feasible if all players are in the game.

58

5.3. Standard Situations

But if one of these both kick-off-players is not able to kick the ball before
the kick-off-time, the kick-off is lost and the other team gets the kick-off.

In the learning system every player is able to perform the kick-off. Thus it is
not important that all players are on the field or working. The disadvantage
of this method is that all players start to move before the kick-off. Most of
these motions are unnecessary and decrease the stamina of the agents. This
does not effect the agents in the current moment, but in the end of the game
when the stamina will be low.

Figure 5.2: A sample kick-off for the planning and the learning system

In Figure 5.2 a sample kick-off of both systems is shown. In the left picture
the planning system’s agents are colored yellow and perform the kick-off. It
can be seen that all the other players are still in the formation. In comparison
to that the learning system’s agents in the right picture in yellow, too, have
left their formation and start an offensive game.

Both types of the kick-off are not optimal. While the learning system has
too much flexibility the planning system is too stiff. The perfect way would
be in the middle. At least the defenders should stay on their position, but it
should be possible to perform the kick-off with another player than Player
11, if it is necessary.

5.3.2 Throw-In

The throw-in differs in the RoboCup 2D soccer simulation league in com-
parison to the real soccer. In the simulation league it is performed with a
normal kick command, because there is no third dimension so robots cannot
use their hands.

In most cases a throw-in is not decisive for the outcome of a game. The
problem with the throw-in is that the robot has to run around the ball in
order to kick it. Otherwise it can happen that the agent moves the ball over
the outline again and then the other team gets the ball.

59

5.3. Standard Situations

Figure 5.3: A sample throw-in for the learning system

The behaviour of the learning and the planning system is similar to the
behaviour in any other standard situation. In the planning system the player
that performs the throw-in is defined in the plan while in the learning system
any player can execute the throw-in. In Figure 5.3 it is the learning system
that has to throw in the ball. It can be seen that two of the yellow learning
players are at the ball in order to perform the throw in. This is a result of the
missing assignment from the players to the standard situation. Obviously
it is not optimal that both players are running to the ball, but it does not
have a big effect on the game. The more important issue is that the throw-in
results in a successful pass to Player 5.

5.3.3 Free-Kick

A free-kick can lead to a goal if it is close to the opponent penalty area. In
Figure 5.4 an example for a free kick is shown. This free-kick is performed by
the planning system and the learning system is defending. First the analysis
of the attack: Player 8 performs the free-kick. He has the choice either to
pass to another player of the own team or to shoot directly a goal. The first
choice is not applicable because just one other player from the same team
(Player 7) is around, who is not in a position to be safely passed to. The
direct way to the goal is not completely free, but the chance for scoring a
goal is better with a direct shot.

Figure 5.4: A sample free-kick performed by the planning system

60

5.3. Standard Situations

The defense of the learning team is fine, but it could be better. A lot of
players are defending and positioning themselves around the free-kick point.
Unfortunately the line from the ball to the goal is free. An improvement
would be if the goalie (Player 1) moves more into the middle of the goal
because the closer goal post is already covered by the players. Another
problem is that the Player 7 from the opponent team is uncovered.

5.3.4 Goal Kick

The goal kick is performed after the opponent team has tried to score a goal,
but missed it and instead has shot into the out. This standard situation
is normally performed by the goalie. The other players have the task to
position themselves in a favourable strategic way.

If the play mode is goal-kick the standard plans tell the players - except
the goalie - to position themselves in a strategic position. This strategic
position is calculated with a potential field. If the goalie finds a pass partner
the pass to this player is performed. The problem is, if this pass partner
is not far enough away from the opponent players the goalie performs the
action clearBall. In most cases with this action the goalie shoots the ball
into the out and the opponent team gets a corner. It is obvious that this is
a solution that can be good if the opponent team plays in an offensive way.
But against a defensively prepared team this is rarely an optimal choice.

The goal kick in the learning system is not always performed by the goalie.
Every agent that is close to the ball can decide to perform an action to kick
the ball. This is an advantage if the opponent team is offensive and the
goalie stays in the goal. But unfortunately the games have shown that the
outcome of the goal kicks is similar to the outcome of the planning system.
Thus the ball is lost too often after the goal kick.

5.3.5 Corner

With a corner kick the possibility to score a goal is quite high for the at-
tacking team. Thus the defending team has to defend well in order to block
the attack. In Figure 5.5 the learning system is playing in yellow dresses
against the planning system having red dresses. The situation results from a
one-player attack. Thus only Player 11 is in the opponent half. This player
is responsible to perform the corner kick. All the other players of the red
planning team run to their strategic position.

The problem in this situation lies in the calculation of the strategic position.
Instead of moving to the direction of the opponent goal - like the black arrow
in the figure shows, the agents are moving back into the direction of the own

61

5.4. Player Types

Figure 5.5: Corner performed by the planning system in a game against the
learning system

goal. This decision is based on the potential field. This potential field is
based on the positions of the players and the ball and has two different pos-
sibilities to calculate the strategic position. One for the defensive behaviour
and one for the offensive behaviour, depending on the current situation on
the field. Although the potential field works fine in most cases, in this one
it fails.

As the current situation in Figure 5.5 is observed to be offensive, the imple-
mentation of the potential field results in all opponent players being repulsive
as well as the own players. This should ensure that the players are free and
well distributed over the field. But the players started already in the own
half and thus they distributed themselves in this area. The attraction of the
ball was not strong enough in this case. The learning system which is in
the defending position is placed in an adequate way. Only the goalie should
move backwards.

5.4 Player Types

The players in the planning system are divided into goalie, defender, midfield
and striker. It makes sense to split the players into these types in order to
ensure different behaviours on the different positions. In the learning system
the player types are just split into the goalie and normal players.

5.4.1 Goalie

The goalie is different from all other players. First of all only one goalie can
be started for a team. Beside that a goalie can perform other commands

62

5.4. Player Types

compared to normal players - like catch. Thus it makes sense for all decision
making systems to split the goalie from the rest of the team.

Figure 5.6: Display of the predominant moving path of the goalie

The goalie in the planning system moves along an ellipse like Figure 5.6
shows. This is not optimal because in some situations the strategic position
is not on this ellipse. Furthermore if an attacker overplays the defenders
and strikes alone towards the goal, the goalie should leave the ellipse and
should run to the attacker. This is the only possibility to defend the goal
because the angle between the goal and the attacker shrinks.

In comparison to this the goalie of the learning system has a pool of actions
he can choose upon. At the moment this pool consists of catchBall, find-
Ball, intercept and turnAround. This is not a lot, but it is feasible. These
commands cover all actions a goalie should perform. During an example
game the actions the goalie performed where counted. In Table 5.1 it can
be seen that the action intercept was performed most frequently. The way
this high-level action is executed depends on the distance to the ball and on
the player type. If the ball is close and the player is connected as a goalie,
it is checked if a catch command is suitable. If so it is executed otherwise if
the ball is further away, the player runs toward the calculated intersection
point of the ball and itself.

Action Times performed

intercept 1888
catchBall 1755

turnAround 1710
findBall 643

Table 5.1: High-level actions performed by the goalie during a game

The frequency the actions turnAround and findBall are chosen depends on
the offensiveness of the game. This is based on the fact that the goalie
performs these actions if the ball is far away. In this context the word ”far”
means at the center line.

63

5.4. Player Types

5.4.2 Defender

The player type defender only exists in the planning system. The defenders
are placed in a 4-formation. The idea of this formation is copied from the real
soccer tactics. In a lot of situations this works fine to defend the goal. But
during the studies some problems occurred. For example that sometimes
the central players are placed according to the ball and not in connection
with the opponent players. Thus it can appear that the opponent players
are uncovered in the defender zone. Another problem is that the defenders
can be overplayed. Figure 5.7 shows such an overplay, where the defenders
formation is too slow to react and furthermore the defenders are not on an
optimal place. Player 5 should cover opponent Player 9. But the position
of Player 5 is calculated in dependency only to the ball without any respect
to the opponent players.

Figure 5.7: Overplay of the defenders of the planning system

An experiment to gain a more defensive behaviour in the learning system
did not work well. In this experiment the reward function assigned a re-
ward according to the ball. The effect was that all own players positioned
themselves in the own penalty area. This is neither a good behaviour for
defenders during the game nor for other players.

5.4.3 Midfield

The midfield is the type of the players that have to run a lot. This is based
on the fact that they have to support the strikers if the game is offensive,
but also support the defenders, when the game is in a defensive phase. In
the learning system the midfield has the same homogenous player type as
any other field player. In the planning system heterogeneous player types
are assigned by the coach.

Another thing to point out is that the planning system distinguishes the
midfield players into the central midfield players and the wing players. This
is based on the idea that the wing players support an attack by center passes

64

5.5. Analysis of Influencing Factors

Figure 5.8: Attack of the midfield

from the outer side of the field. In contrast to this the central midfield players
support an attack of the wing players in the center of the field. An example
attack is outlined in Figure 5.8. There can be seen that the wing players are
on the outside and the central players support the strikers. The wing player
with the number 9 holds the ball until the Player 11 runs toward the goal,
then a running pass is played in order to overplay the defenders.

5.4.4 Striker

The main goal of a striker is to score a goal. In the planning system the
plans describe the possibility for players to score a goal. Compared to that
in the learning system every player, except the goalie, has all possible actions
in the action pool he can choose among. Thus in the learning system every
player is able to score a goal. But this is just in theory - in order to shoot
a goal the player has to be in the area around the goal.

In the planning system the action scoreGoal is in all plans, but the position
is another one. The plans and thus as well the preference of a striker is a
completely different one in comparison to a defender. For a striker the main
aim is to score a goal and this is reflected in its plan. Among the players of
the learning system the player which is close to the goal shoots. Although the
player type is not assigned in the learning system the behaviour is adapted.

5.5 Analysis of Influencing Factors

There are different factors that influence a game or occur during a game.
Such an influencing factor would be the formation of the team and an exam-
ple for a factor that occurs during a game is the stamina of the agents. In
this section some of these factors are examined in respect to both systems -
the planning and the learning one.

65

5.5. Analysis of Influencing Factors

5.5.1 Formation

Although the formation of the players is the same in the planning system
and in the learning system, it is an important point to discuss. The standard
formation of the team KickOffTUG is 4-4-2. Thus in the planning system
the team plays with four defenders, four midfield players and two strikers. In
the learning system the formation is just for the setup and for some standard
situations like a kick-off.

In former days the KickOffTUG team had three lines of three players and
one striker. This did not work because cross passes overplayed these lines. A
more detailed description of the already introduced and analysed formations
can be found in [Zeh07]. This work outlines that the current formation is
the most applicable one for the team.

Figure 5.9: Analysis of the formation during a game

During a game the formation of the planning system can be observed. This
can be seen in Figure 5.9. In this game the planning system is in red playing
from right to left and the learning system plays in yellow. Although both
systems are playing with the formation 4-4-2, it can only be recognised in the
planning system - like the figure shows. The agents of the learning system
only perform actions that have a limited connection to the formation and
thus the formation of the learning system cannot be identified. This makes
the team more flexible if the opponent team assigns every own player to an
opponent player.

5.5.2 Stamina

One of the main differences between the learning system and the planning
system is the stamina model. While the planning system has a stamina
implemented the learning system has the stamina just as a parameter in

66

5.5. Analysis of Influencing Factors

the considered state of the environment. Thus the stamina of the planning
system is intentionally restricted with a value of 2500. On the contrary
the learning agents do not reserve stamina for actions. How the different
staminas look like during a game can be seen in Figure 5.10 for the planning
system and in Figure 5.11 for the learning one.

Figure 5.10: Diagram of the staminas of the planning system during a game

Figure 5.11: Diagram of the staminas of the learning system during a game

The only way the stamina is taken into account in the learning system is
as a parameter in the state of the environment. Like every parameter this
has a target function with weights that are adjusted after every decision.
The disadvantage of the learning system concerning the stamina is that if
the stamina is low the agents can not win duels. But on the other hand the
agents appear more present on the field.

5.5.3 Basic Actions

The basic actions are the commands that are sent to the server. These
commands are: catch, dash, kick, say, turn, turn-neck and change-view. A
description of these commands can be found in Section 2.3.2.

The command say is used for the strategy and to exchange information
between the players. As this is isolated from the decision making algorithm
and in both the learning and the planning system the performance of the say

67

5.5. Analysis of Influencing Factors

command is nearly the same. A player normally executes the say command
in every cycle.

The catch can only be performed by the goalie. During a session of games
it was observed which commands where performed by the goalie. The only
important commands are catch, dash and kick. The counter of these basic
actions can be identified in Table 5.2. These values are just an average
normalized to a game with 6000 cycles. The dash command is the one that
is performed most often. This is based on the fact that the goalie has to
position itself often. This explains the low frequency of the other two actions
catch and kick. The catch command as well as the kick is only performed if
the ball is close to the goalie.

Learning Goalie Planning Goalie

dash 1263 2387
catch 49 23
kick 31 19

Table 5.2: Counter of the basic actions that were performed by the goalies

For the other players only the commands kick and dash are compared. This
is based on the idea that only these commands are representative because
with these commands the agents can kick the ball and move around. To
analyse the difference between the planning and the learning system all main
player types, defenders, midfield and strikers are considered. The results are
listed in Table 5.3.

Defender Midfield Strikers
Learning Planning Learning Planning Learning Planning

kick 38 25 120 124 180 215
dash 2386 1805 2351 2299 2687 2246

Table 5.3: Counter of the basic actions that were performed by the different
player types

From this table it can be identified that the defenders seldom kick the ball.
As the main goal of a defender is to reduce the space for the opponent players
they do not often have the ball. Furthermore the defenders try to get rid
of the ball and pass it to the midfield in order to facilitate an attack. The
frequency of the performance of the kick command for the midfield is higher.
These players try to pass if it is possible, while the strikers dribble and shoot
to the goal. This is just the basic intention of these players, certainly they
all can perform other actions if the situation requires a different behaviour.

On the field there is just one ball and 22 players. This justifies the different

68

5.5. Analysis of Influencing Factors

frequency between the commands dash and kick. As the kick command
is only possible if the player has the ball, the dash command needs to be
performed to get the ball in most situations.

The dash is performed more often by the learning system than by the plan-
ning system. The reason therefore lies in the stamina model of the planning
agents. For the learning agents it is no problem to consume all their available
stamina as described in Section 5.5.2.

5.5.4 Y-Position of the Players

The coordination system of a soccer field defines the x-axis between the two
goals. The other one orthogonal to the x-axis is called the y-axis. Thus the
analysis of the width of a play can be done by considering the y-position.
The origin of both axes lies in the middle of the field - at the kick-off point.

The y-position of the players of the planning system over a whole game is
drawn in Figure 5.12 with the cycles on the horizontal axis and the width
of the field on the vertical axis. In this diagram it can be identified that
nearly all players are moving from one part of the field to the other at the
same moment. Only the player with the red line stays close to the center of
the field. This line belongs to the goalie who does not need to move away
from his goal area.

Figure 5.12: Diagram of the y-position of the planning system during a game

Figure 5.13 charts the y-position of players of the learning system. In the
learning system this position does not have any regularity. This makes it
harder for the opponent team to assign a part of the field to certain players
for the covering. Similar to the planning system the red line which belongs
to the goalie is close to the center line of the diagram. Another interesting
point is that in the beginning of the game all players are on the upper part
of the field. The reason for this was a throw-in which was blocked for several
times. Furthermore all lines are closer to the axis which means that the play
is more centralized.

69

5.5. Analysis of Influencing Factors

Figure 5.13: Diagram of the y-position of the learning system during a game

If a team is playing with a narrow strategy its play is based on short passes
which have to be very accurate in order to reach the pass partner. If the
game is more distributed every player has more space and thus basic actions
like dribbling have a higher possibility to succeed. If the team chooses a
narrow game - thus the players are close to the y-axis an opponent team
often tries to score a goal over the wing.

70

Chapter 6

Summary

In this work two different approaches for the decision making process are
analysed. The selected environment is KickOffTUG - the RoboCup 2D
Simulation League team from Graz, University of Technology.

In this team the current decision making algorithm is implemented through a
planning algorithm, which is described and evaluated. The learning system,
which is compared to the existing planning system, was implemented during
the studies for this work. This machine learning approach is based on the
reinforcement Q-learning algorithm, with a target function which is specific
for each single action. The target function takes a state of the environment
as an input and produces a value indicating how appropriate the action is
for this state. A certain action selector chooses the best action according to
the player type, the play mode and the current state of the environment.

The analysis in Chapter 5 is based on simulated games between different op-
ponents. In these games the regular flow of the game can be observed. This
observation shows that the planning system sticks to its formation while
the learning system is more focused to the ball. Another aspect to analyse
the different decision making approaches is to evaluate the behaviour in the
standard situations that occur during a game. These standard situations
include: kick-off, throw-in, free-kick, goal-kick and corner. This analysis
points out that the learning system is more flexible in these situation. In
comparison to that the planning system is more organised and static. An-
other point that can be outlined in the analysis of the games is that the
planning system is based on different player types. These player types are
implemented in the planning system, but disregarded in the learning ap-
proach. Beside that there are factors that have an impact of the outcome
of a game, for example the stamina. The stamina model of the planning
approach is the reason why the planning system scores more goals in the
end of a game compared to the learning system. In contrast to this is the

71

6.1. Future Work

learning system more active in the beginning of the game.

The formation of planning system is the same as in learning system 4-4-2.
But during a game this formation is only kept by the planning system. This
has the advantage to cover players and space. In comparison to that the
learning system has the advantage to react more flexible. The analysis in
5 shows, both approaches, planning and machine learning, are appropriate
for the decision making process of a multi-agent system.

6.1 Future Work

The future work should focus on the evaluation of the high level actions.
With an increasing performance of these actions the whole team would im-
prove its competitiveness. For the most commonly used high level actions it
would be suitable to implement a second approach with machine learning.
The already implemented Q-learning algorithm can be used for this purpose.

Considering decision making, the planning system is more suitable for testing
the high level actions. In this period there is no need to perform trainings
for the decision making of the learning system. Including the improved high
level functions a new training phase can start. A further improvement of
the learning system could by reached when different various player types are
implemented with the planning system as a paradigm.

72

Bibliography

[Bis02] Bishop, Christoph M.: Pattern Recognition and Machine
Learning. Wiley, 2002

[BK02] de Boer, Remco ; Kok, Jelle: The Incremental Development
of a Synthetic Multi-Agent System: The UvA Trilearn 2001 Ro-
botic Soccer Simulation Team. The Netherlands, University of
Amsterdam, Diplomarbeit, February 2002

[BN95] Benson, Scott ; Nilsson, Nils J.: Reacting, Planning, and
Learning in an Autonomous Agent. In: Furukawa, K. (Hrsg.)
; Michie, Donald (Hrsg.) ; Muggleton, S. (Hrsg.): Machine
Intelligence 14 - Applied Machine Intelligence, Oxford Univer-
sity Press, 1995, S. 29–64

[BT90] Bailey, David L. ; Thompson, Donna: Developing neural-
network applications. In: AI Expert 5 (1990), Nr. 9, S. 34–41

[CFH+02] Cheny, Mao ; Foroughi, Ehsan ; Heintz, Fredrik ; Huangy,
ZhanXiang ; Kapetanakis, Spiros ; Kostiadis, Kostas ;
Kummeneje, Johan ; Noda, Itsuki ; Obst, Oliver ; Riley,
Pat ; Steffens, Timo ; Wangy, Yi ; Yin, Xiang: RoboCup
Soccer Server Manual, 2002

[Cru07] CruiseControl Home. Online at http://cruisecontrol .source-
forge.net/. 2007. – last visited 17 October 2007

[DHVW02] Drücker, Christian ; Hüber, Sebastian ; Visser, Ubbo ; We-
land, Hans-Georg: ”As time goes by” - Using time series
based decision tree induction to analyse the behaviour of op-
ponent players. In: RoboCup 2001: Robot Soccer World Cup V,
Springer-Verlag, 2002, S. 325–330

[EET01] Egly, Uwe ; Eiter, Thomas ; Tompits, Hans. Skriptum zur
Lehrveranstaltung Wissensbasierte Systeme. Technische Univer-
sität Wien. 2001

73

BIBLIOGRAPHY

[Elk93] Elkan, Charles: The paradoxical success of fuzzy logic. In:
In Proceedings of the Eleventh National Conference of Artificial
Intelligence (1993), S. 689–703

[EWK+08] Endert, Holger ; Wetzker, Robert ; Karbe, Thomas ;
Hessler, Axel ; Brossmann, Felix: The Dainamite 2007 Team
Description. In: Proceedings of RoboCup 2007: Robot Soccer
World Cup XI, Springer-Verlag, 2008. – To appear

[Fer01] Ferber, Jacques: Multiagentensysteme - Eine Einführung in
die Verteilte Künstliche Intelligenz. Addison-Wesley, 2001

[Gsp07] Gspandl, Stephan: KickOffTUG: Eine KI-Lehr- und For-
schungsplattform. Graz, Austria, Graz University of Technol-
ogy, Diplomarbeit, October 2007

[GSS07] Grasemann, Uli ; Stronger, Daniel ; Stone, Peter: A
Neural Network-Based Approach to Robot Motion Control. In:
RoboCup 2002, Lecture Notes in Artificial Intelligence, 2007

[HA50] Hilbert, David ; Ackermann, W.: Principles of Mathemati-
cal Logic. Chelsea, 1950

[Hau07] Haun, Matthias: Handbuch Robotik. Springer, 2007

[Joo07] Joomla. Online at http://www.joomla.de/. 2007. – last visited
17 October 2007

[kic07] KickOffTUG. Online at http://kickofftug.tugraz.at. 2007. – last
visited 4 January 2008

[Kle99] de Klepper, Nathan. Genetic Programming with High-Level
Functions in the RoboCup Domain. 1999

[KLM96] Kaelbling, Leslie P. ; Littman, Michael L. ; Moore, An-
drew W.: Reinforcement Learning: A Survey. In: Journal of
Artificial Intelligence Research 4 (1996), S. 237–285

[Koh88] Kohonen, Teuvo: Self Organization and Associative Memory.
Second Edition. Springer, 1988

[KSL08] Kalyanakrishnan, Shivaram ; Stone, Peter ; Liu, Yaxin:
Model-based Reinforcement Learning in a Complex Domain.
In: Proceedings of RoboCup 2007: Robot Soccer World Cup XI,
Springer-Verlag, 2008. – To appear

[LC01] Lämmel, Uwe ; Cleve, Jürgen: Künstliche Intelligenz: Lehr-
und Übungsbuch. Fachbuchverlag Leipzig, 2001

[LHF+97] Luke, Sean ; Hohn, Charles ; Farris, Jonathan ; Jackson,
Gary ; Hendler, James: Co-evolving soccer softbot team co-

74

BIBLIOGRAPHY

ordination with genetic programming. In: Proceedings of the
RoboCup-97 Workshop at the 15th International Joint Confer-
ence on Artificial Intelligence, 1997, S. 398–411

[Log04] Andraz Bezek: A RoboCup visualization and analysis tool. On-
line at http://dis.ijs.si/andraz/logalyzer/. 2004. – last visited
4 January 2008

[Lug02] Luger, George F.: Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Forth Edition.
Addison-Wesley, 2002

[Luk98a] Luke, Sean: Evolving soccerbots: A retrospective. In: Pro-
ceedings of 12th Annual Conference of the Japanese Society of
Artificial Intelligence, 1998

[Luk98b] Luke, Sean: Genetic programming produced competitive soc-
cer softbot teams for robocup97. In: Proceedings of the Third
Annual Genetic Programming Conference, 1998, S. 204–222

[Maa07] Maass, Wolfgang. Computational Intelligence. Graz, Univer-
sity of Technology. March 2007

[MAS+07] Meyer, Jens ; Adolph, Robert ; Stephan, Daniel ; Daniel,
Andreas ; Seekamp, Matthias ; Weinert, Volker ; Visser,
Ubbo: Decision-Making and Tactical Behavior With Potential
Fields. In: RoboCup 2002, Lecture Notes in Artificial Intelli-
gence, 2007

[McC04] McCarthy, John: What is Artificial Intelligence? Online at
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html.
2004. – last visited 15 October 2007

[Min74] Minsky, Marvin: A Framework for Representing Knowledge.
Memo 306. MIT-AI Laboratory, 1974

[Mit97] Mitchell, Tom M.: Machine Learning. McGraw-Hill, 1997

[Moo95] Moore, Robert C.: Logic and Representation. Second Edition.
CSLI, 1995

[Neh03] Nehmzow, Ulrich: Mobile Robotics: A Practical Introduction.
Second Edition. Springer, 2003

[NF71] Nilsson, Nils J. ; Fikes, Richard E.: STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem Solv-
ing. In: Artifical Intelligence 2 (1971), Nr. 3-4, S. 189–208

[Nil71] Nilsson, Nils: Principles of Artificial Intelligence. McGraw-
Hill Book Co., 1971

75

BIBLIOGRAPHY

[Nil86] Nilsson, Nils: Problem-Solving Methods in Artificial Intelli-
gence. Morgan Kaufmann Publishers, 1986

[Nil94] Nilsson, Nils J.: Teleo-Reactive Programs for Agent Control.
In: Journal of Artificial Intelligence Research 1 (1994), S. 139–
158

[Qui03] Quinlan, John R.: C4.5. Kaufmann, 2003

[RA08] Rojas, Dario ; Atkinson, John: Generating Dynamic Forma-
tion Strategies based on Human Experience and Game Condi-
tions. In: Proceedings of RoboCup 2007: Robot Soccer World
Cup XI, Springer-Verlag, 2008. – To appear

[Rei07] Reip, Michael: KickOffTUG: Multiagentensystem der RoboCup
Simulation League. Graz, Austria, Graz University of Technol-
ogy, Diplomarbeit, October 2007

[Ret86] Retti, Johannnes: Artificial Intelligence: Eine Einführung. B.
G. Teubner Stuttgart, 1986

[RG08] Riedmiller, Martin ; Gabel, Thomas: Brainstormers 2D
Team Description 2007. In: Proceedings of RoboCup 2007: Ro-
bot Soccer World Cup XI, Springer-Verlag, 2008. – To appear

[RN03] Russel, Stuart ; Norvig, Peter: Artificial Intelligence: A
Modern Approach. Second Edition. Prentice Hall International,
2003

[Rob65] Robinson, John A.: A Machine-Oriented Logic Based on the
Resolution Principle. In: Journal of the ACM 12 (1965), Nr.
1, S. 23–41

[Rob07a] The RoboCup Federation: RoboCup Official Site. Online at
http://www.robocup.org. 2007. – last visited 5 October 2007

[Rob07b] The RoboCup Federation: Online at http://www. rescuesys-
tem.org. 2007. – last visited 19 September 2007

[Rob07c] The RoboCup Federation: RoboCup@Home Official Site. On-
line at http://www.ai.rug.nl/robocupathome/. 2007. – last vis-
ited 6 September 2007

[Ros88] Rosenblatt, Frank: The perceptron: a probabilistic model
for information storage and organization in the brain. In: Neu-
rocomputing: foundations of research (1988), S. 89–114

[San89] Sanford, David H.: If P, then Q: Conditionals and the Foun-
dations of Reasoning. Routledge, 1989

76

BIBLIOGRAPHY

[Sav85] Savory, Stuart E.: Künstliche Intelligenz und Expertensys-
teme: Ein Forschungsbericht der Nixdorf AG. Oldenbourg, 1985

[SB98] Sutton, Richard S. ; Barto, Andrew G.: Reinforcement
Learning: An Introduction. The MIT Press, 1998

[Sch01] Schmaranz, Klaus: Softwareentwicklung in C. Springer, 2001

[Sch07] van Schooten, Boris: YProlog Home. Online at
http://www.vf.utwente.nl/ schooten/yprolog. 2007. – last vis-
ited 10 January 2008

[Tes95] Tesauro, Gerald: Temporal difference learning and TD-
Gammon. In: Communications of the ACM 38 (1995), S. 58–68

[Tra07] Edgewall Software: The Trac Project. Online at http://trac.
edgewall.org/. 2007. – last visited 17 October 2007

[Wal05] Walde, Janette F.: Design Künstlicher Neuronaler Netze: Ein
Leitfaden zur effizienten Handhabung mehrschichtiger Perzep-
trone. Deutscher Universitäts-Verlag, 2005

[Woo02] Woolridge, Michael: An Introduction to Multiagent Systems.
Wiley, 2002

[Zeh07] Zehentner, Christoph. Teamstrategie KickOffTUG. Bakkalau-
reatsarbeit. Graz, University of Technology. 2007

77

	Introduction
	Goal
	Multi-Agent Systems
	Decision Making

	RoboCup
	Introducing the RoboCup
	The Different Leagues
	RoboCup Soccer
	RoboCup Rescue
	RoboCup@Home
	RoboCup Junior

	2D Simulation League
	The environment
	Actions
	Cooperation in a Team
	Common Approaches

	KickOffTUG
	The Team History
	Technical Details
	The Software Architecture

	Planning
	Definition
	Logic
	First-Order Logic
	Fuzzy Logic

	Current Implementation
	System Overview
	Knowledge Representation
	Plans
	Decision Making Algorithm

	Learning
	Definition
	Design Decisions
	Type of Training Experience
	Target Function
	Representation of the Target Function
	Choosing a Learning Algorithm
	The Resulting Design Models

	Learning Methods
	Decision Trees
	Genetic Learning
	Neural Nets
	Reinforcement Learning

	The Resulting System
	Target Function
	Learning Method
	Design Modules

	Analysis - Learning versus Planning
	Basic Analysis
	Planning
	Learning
	Way of Analysis

	Analysis of Games
	Games with the Same Instance
	Games Learning versus Planning
	Games with Brainstormers

	Standard Situations
	Kick-Off
	Throw-In
	Free-Kick
	Goal Kick
	Corner

	Player Types
	Goalie
	Defender
	Midfield
	Striker

	Analysis of Influencing Factors
	Formation
	Stamina
	Basic Actions
	Y-Position of the Players

	Summary
	Future Work

