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Zusammenfassung

In dieser Arbeit wird eine Entwicklungsumgebung für prozedurales Mo-
dellieren sowie eine neue Programmiersprache mit dem Namen Euclides
präsentiert. Die Syntax sowie die Sprachkonstrukte sind von der Program-
miersprache Pascal abgeleitet. Euclides führt neue Konzepte wie Vektoren
und Matrizen ein, die sehr oft in der Computergrafik Verwendung finden.
Fehlerträchtige Techniken wie Pointer werden vermieden. Das führt zu einer
leichtgewichtigen Programmiersprache, die man für prozedurales Modellie-
ren verwenden kann. Die Hauptvorteile dieser Sprache sind ihre einsteiger-
freundliche Syntax sowie die Unabhängigkeit der Engine was die Erzeug-
nung von Output betrifft. So kann eine Vielzahl verschiedener Outputre-
präsentationen implementiert werden.

Diese Arbeit gliedert sich in einen Teil der die Programmiersprache selbst
beschreibt, sowie die implementierten Outputrepräsentationen. Zu Beginn
wird eine Einleitung in die Sprachkonzepte gegeben, gefolgt von einer Be-
schreibung der syntaktischen und semantischen Validierung des Quelltextes.
Das Ergebnis dieses Vorgangs ist eine Zwischenrepräsentation die als Basis
für die Erzeugung von Output dient. Die Entwicklungsumgebung unterstützt
eine Reihe von Outputrepräsentationen.

Eine erste Outputrepräsentation stellt generierter Text mit Verlinkungen
dar. Er besteht aus Euclides Quelltext auf dem man eine Quelltextanalyse
durchführen kann. Metainformationen sind im Quelltext eingebettet um eine
erweiterte Ansicht auf den Quelltext zu ermöglichen. Verweise von Variablen
und Konstanten im Quelltext zu einem Übersichtsbereich, der wiederum
aus einer Liste aller im Quelltext vorkommenden Variablen und Konstanten
besteht, steigern die Lesbarkeit.

Generierter Euclides Quelltext dient als zweite Outputrepräsentation. Er
wird für die Umgestaltung des Quelltextes verwendet und unterstützt zum
Beispiel das Umbenennen von Variablen sowie das Rücksetzen von Werten
von Konstanten.

Eine dritte Outputrepräsentation wird durch die Generierung von Java
Quelltext erreicht. Sie bietet Interpretation und Inspektion des Quelltex-
tes durch die Verwendung einer Laufzeitumgebung die als Basis für den
generierten Quelltext dient. Die Entwicklungsumgebung ist vorbereitet um
zusätzliche Outputrepräsentationen sowie Zielsprachen zu unterstützen. Die
Generative Modeling Language (GML) kann als eine weitere Zielsprache in
Betracht gezogen werden. Das würde es dem System ermöglichen 3D Objek-
te darzustellen und zugleich als zusätzliches Interface für die GML Quelltext
Generierung dienen.





Abstract

This master thesis presents an integrated development environment (IDE)
for procedural modeling including a new programming language called
Euclides. Its syntax and language constructs are derived from the program-
ming language Pascal. Euclides introduces new concepts like vector and
matrix data types needed very often in computer graphics while omitting
error-prone techniques like pointers. This leads to a lightweight language
to be used for procedural modeling. The main advantages of the language
are its beginner friendly syntax and the independence of the engine concern-
ing output generation. A variety of different output representations can be
implemented.

The thesis is divided in a description of the programming language and
the implemented output representations. Initially, an introduction to the
language concepts is given, followed by a description of syntactical and se-
mantical validation of created source code. The result of these processes is
an intermediate representation which serves as a basis for output generation.
The IDE supports a number of output representations.

A first output representation is a generated text incorporating links.
It features Euclides source code to perform a source code analysis. Meta
information is embedded in the source code in an attempt to obtain an
extended view of the code. Links from variables and constants in the source
code to an overview section consisting of a collection of all variables and
constants used promote readability.

Generated Euclides code itself serves as a second output representation.
It is used for the task of source code refactoring and supports for example
renaming of variables and resetting values of constants.

A third output representation is acquired through the generation of Java
code. It offers source code interpretation and inspection through a runtime
environment which serves as a basis for the generated code. The IDE is
prepared to support additional output representations and target program-
ming languages. The generative modeling language (GML) can be thought
of as another target language. This would enable the framework to output
3D objects and on the other hand would serve as an additional interface for
generating GML code.
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Chapter 1

Introduction

This work describes an integrated development environment (IDE) for pro-
cedural modeling. The idea behind procedural modeling is to create a gen-
eralized representation of a model. Not the model itself, but the model class
is described. For example not a specific tree is generated during procedural
modeling, but a pattern of a tree. This is done by creating a set of rules
used as a representation instead of directly working with geometric primi-
tives on a rather low level of abstraction. Usually this set of rules can be
parameterized to allow variability. This leads to a main advantage of pro-
cedural modeling. The ability to create models that are too complex for a
person to build using classical modeling approaches like polygonal model-
ing. For example one can think of a forest consisting of a large number of
different trees. Using such techniques, a single tree pattern in combination
with different sets of parameters can be applied to model the entire forest.
As a side effect the scene can be stored efficiently because only one rule is
used for tree generation. There is no need to store large amounts of data in
the form of polygonal meshes because they are generated out of rule sets.
However, this is not generally applicable since it requires a certain amount
of redundancy to be found in the nature of the object.

A possibility to describe a model procedurally is to use shape grammars.
They consist of rules that define shapes and usually a generation engine
that selects and processes rules. One can compare the learning curve to use
shape grammars with that of other scripting languages.

Another approach is to use specialized programming languages to obtain
a procedural description of a model. Havemann proposes a simple stack
based programming language called Generative Modeling Language (GML).
It incorporates principles of Postscript to form a language to describe 3D
objects. This means that the GML employs a postfix notation and therefore
requires a certain training period to understand the language constructs.
However, results can be obtained without much effort as shown in Figure
1.1 and Listing 1.1.
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1 / p i l l a r s { 1 3 15 {
2 o f f s e t 0 vector3 (0 , 0 , 1 ) 0 . 5 16 c i r c l e
3 / steinwand s e t cu r r en tma t e r i a l
4 5 po ly2doub l e face
5 (0 , 4 , 1 ) extrude
6 } f o r } de f
7
8 / o f f s e t 0 de f
9 p i l l a r s

10 / o f f s e t 5 de f
11 p i l l a r s
12
13 % roo f
14 ( 7 , 2 . 5 , 4 ) ( 6 . 5 , 3 , 0 ) 2 quad
15 5 po ly2doub l e face
16 (0 , 1 , 1 ) extrude
17 [ ( 0 . 5 , −0 . 5 , 5 ) ( 0 . 5 , 5 . 5 , 5 ) ( 0 . 5 , 2 . 5 , 7 ) ] 5 po ly2doub l e face
18 (0 , 13 , 0 ) extrude

Listing 1.1: This listing represents a simple GML example program
generating the temple shown in Figure 1.1. One can see that
only a few lines of code are needed to obtain useful output.

In contrast to classical modeling approaches several differences can be
found:

• Procedural modeling is accompanied by a paradigm shift from objects
to operations. Consequently the process of shape design becomes rule
design.

• Values are replaced by parameters, which leads to a separation from
data and operations.

• Complex objects can be created using special libraries that require
only a few input parameters.

What all these concepts have in common is that compared to classical
modeling approaches using sophisticated tools it is rather difficult to learn
a special programming language or apply shape grammars. This work aims
for beginners to be able to quickly produce reasonable results without a long
training period.
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Figure 1.1: This figure illustrates the output of the GML example
program shown in Listing 1.1. In order to identify the
structures used to create the temple, it is printed with the
control mesh.
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Chapter 2

Related Work

Procedural techniques are a major topic in computer graphics nowadays.
Describing a model with a set of rules and parameters is a very efficient way
of storing it. The idea to trade processing effort for data size came up with
the availability of modern hardware capable of profiting from that trade.
Nevertheless, a lot of work has been done on this topic in the past as well.

Paoluzzi describes the use of a functional language in the context of geo-
metric design programming [13]. The idea is to associate geometric shapes
to generating functions and to pass geometric expressions as function para-
meters. This allows generation of methods describing geometric shape, as
well as utilizing such methods for the purpose of modeling specific geome-
try. The generated objects are always consistent in geometry because the
validity is guaranteed at a syntactical level.

Nevertheless, in modern CAD software products geometric validity is a
subject when using parametric tools. For a given parametric model certain
combinations of parameter values may not result in valid shapes. Hoffmann
and Kim propose an algorithm [7] that computes valid parameter ranges for
geometric elements in a plane, given a set of constraints.

In today’s systems used for procedural modeling, grammars are often
used as a set of rules to achieve a description. Early systems based on
grammars were Lindenmayer systems [8], or L-systems for short. They were
successfully applied to the process of modeling plants. Given a set of string
rewriting rules, complex strings are created by applying these rules to sim-
pler strings. This means that starting with an initial string, a predefined
set of rules is applied to the string forming a new, possibly larger string.
The L-systems approach 0 a parallel application of string rewriting rules
in order to reflect their biological motivation. In order to use L-systems
to model geometry an interpretation of the generated strings is necessary.
Early results [4] used L-systems to determine branching of modeled plants.
The modeling power of these early geometric interpretations of L-systems
was limited to creating fractals and plant-like branching structures. This
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lead to the introduction of parametric L-systems [17]. The idea is to as-
sociate numerical parameters with L-system symbols to address continuous
phenomena which were not covered satisfactorily by L-systems alone. Later
on, L-systems and shape grammars were successfully used in procedural
modeling of cities [14]. Parish and Müller presented a system that, given a
number of image maps as input, generates a street map including geometry
for buildings. For that purpose L-systems have been extended to allow the
definition of global objectives as well as local constraints. However, the use
of procedurally generated textures to represent facades of buildings limits
the level of detail in the results. In later work, Müller describes a system [12]
to create detailed facades based on the split grammar called CGA shape.

Finkenzeller presented another approach for detailed building facades [3]
based on a hierarchical description of an entire building. The user provides a
coarse outline as well as a basic style of the building including distinguished
parts and the system generates a graph representing the building. In the
next step, the system traverses the graph and generates geometry for every
element of the graph. This results in a detailed building facade with the
limitation that it can handle common building structures only. Organic
structures, inclined walls and details on the roofs are yet to be implemented.

Another modeling approach presented by Lipp et al. [9] following the
notation of Müller [11] deals with the aspects of more direct local control
of the underlying grammar by introducing visual editing. The idea is to
allow modification of elements selected directly in a 3d-view, rather than
editing rules in a text based environment. Therefore principles of semantic
and geometric selection are combined as well as functionality to store local
changes persistently over global modifications.

Lintermann et al. proposed a modeling method as well as a graphical user
interface for the creation of natural branching structures [2]. A structure
tree represents the modeling process and can be altered using specialized
components describing geometry as well as structure. Another type of com-
ponents can be used for defining global and partial constraints. Components
are described procedurally using creation rules which include recursion. The
generation of geometric data according to the structure tree is done via a
tree traversal where the components generate their geometrical output.

The procedural modeling approach [5] proposed by Ganster et al. de-
scribes an integrated framework based on a visual language. The infix nota-
tion of the language requires the use of variables which are stored on a heap.
A graph structure allows variable assignments to be performed by special
nodes. Directed edges between nodes only define the order of execution, in
contrast to a visual data flow pipeline where data is transported between
the different stages. The framework allows fast creation of complex scenes
with the limitation that geometry has to be modeled on a rather low level
using polygon lists.
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Havemann proposes a stack based language for creating polygonal meshes
called GML. The postfix notation of the language is very similar to that of
Adobe’s Postscript. It allows the creation of high-level shape operators from
low-level shape operators. The GML serves as a platform for a number of
applications because it is extensible and comes with an integrated visualiza-
tion engine. Havemann et al. presented a system for generative parametric
design of Gothic window tracery [6]. Its complex geometric shape which
consists of only a few basic geometric patterns is a property of Gothic archi-
tecture. The procedural approach relies on the combination of elementary
operations and constructions to obtain an efficient parametric representa-
tion.

Another system presented by Mendez et al. combines semantic scene-
graph markups with generative modeling in the context of generating se-
mantic three dimensional models of underground infrastructure [10]. The
idea is to connect a geospatial database and a rendering engine in order to
create an interactive application. The GML is used for on-the-fly generation
of procedural models in combination with a conventional scene graph with
semantic markup. An augmented reality view of underground infrastructure
like water or gas distribution systems serves as a demo application.

Day et al. presented a system combining polygonal and subdivision sur-
face approaches in the context of modeling urban environments [1]. A mod-
eler based on shells representing basic building units as well as a multi resolu-
tion surface modeling approach incorporating progressive meshes and com-
bined boundary representations (B-reps) are discussed. Progressive meshes
are a level of detail technique starting with a coarse description of the mesh
while progressively refining it. A B-rep is a representation of a shape us-
ing its boundaries usually used in solid modeling. Ideas to combine both
approaches consist of combining parts of the shell modeler with generative
methods to increase efficiency.
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Chapter 3

Designing a programming
language

The motivation behind this work is to create a beginner friendly program-
ming language for procedural modeling. In particular the requirements for
such a language can be summarized as follows:

• The specification of the language regarding the syntax should be be-
ginner friendly. A user with little or no experience in programming
should be able to learn the language in a short time.

• Specific details like easy to handle vector and matrix data types needed
for procedural modeling should be included in the specification. Tech-
niques of a language that are error-prone, like pointers, can be left out.
As Niklaus Wirth stated: “The most important decision in language
design concerns what is to be left out.”

During an examination of current programming languages it became
clear that none of them could comply with the requirements in a satis-
factory way. Because of the fact that designing and implementing a new
programming language would go beyond the scope of this work, the idea to
design a syntax and transpile it into an already existing programming lan-
guage was born. For that purpose it is reasonable to take an existing syntax
as a reference. Each programming language is tailored for a specific purpose
which leads to variations in syntax. Although, one can constrain the amount
of programming languages by applying the previously stated requirements
there is still a lot of choice left. The programming language Pascal repre-
sents the most important property mentioned in the requirements. It was
designed to teach students structured, procedural programming and there-
fore has a rather intuitive syntax. Taking an already existing scripting en-
gine as a starting point would lack the benefit of being able to independently
choose the output representation. Consequently a good starting point for a
language is a variation of the Pascal syntax.
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In order to define the syntax of a programming language a grammati-
cal description is needed. This description itself is written using ANother
Tool for Language Recognition (ANTLR). ANTLR provides a framework for
constructing recognizers, interpreters, compilers, and translators from gram-
matical descriptions [15]. Figure 3.1 illustrates the data flow when parsing
source code of a programming language starting with an input string.

Figure 3.1: The image shows the data flow when parsing source code of a
computer programming language. Starting with an input
string the parser performs a lexical analysis in order to get
tokens. In the next step a syntactical analysis processes the
tokens to determine their grammatical structure. A parse
tree is generated as a result and serves as data structure for
interpreters, translators or compilers.

A collection of descriptions, called grammar, is needed to determine
whether input sentences conform to that language, or not. Sentences in
terms of language recognition are similar to sentences in a natural language.
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It is an expression following certain grammatical and lexical rules forming a
meaningful command. The most basic part of a sentence is a character like
“a” or “b”. In a natural language a sequence of characters is called a word,
whereas in terms of language recognition it is called a token. Starting with a
sequence of characters on an input stream a lexical analysis is performed to
generate tokens. In a next step, these tokens are analyzed to determine their
grammatical structure. This process, called parsing, involves the grammar
mentioned above. A convenient way of creating such grammars is to use
the graphical development environment ANTLRWorks, which is a tool for
developing and debugging such grammars.

Starting with the most abstract concepts of a language down to the
elemental parts, one recognizes sentences of a language by defining their
implicit tree structure using a grammar. Abstract concepts define the root
of the tree and elemental parts represent the leaves. In order to simplify the
generation of a parser it is necessary to allow a natural description of the
language. However, there are a number of things to consider:

• Allowing a large number of grammars usually leads to parsers that are
less efficient and difficult to understand [18].

• It is possible to generate grammar rules that are ambiguous for certain
input. This happens when input can be matched by more than one
rule defined in the grammar.

Usually the parsing strategy provides a lookahead of finite length in
order to identify the correct path through the grammar. Such a recognizer
is called top-down or LL because it recognizes the input from Left to right,
and constructs a Leftmost derivation of the sentence. ANTLR introduces a
strategy called LL(*) parsing which extends the LL(k) parsing strategy with
lookahead of arbitrary length without explicitly specifying it.

ANTLR is not only capable of creating recognizers which decide whether
a sentence is correct or not, but it is capable of creating parsers. A parser
checks a sentence for correct syntax and generates a parse tree. For that pur-
pose actions written in the target language can be embedded in the grammar
which are then passed over to the resulting translator or interpreter. These
actions can be embedded almost anywhere in the grammar and contain class
member variables and methods as well as statements executed depending on
the recognized input symbols. ANTLR generates recognizers and parsers in
a specified target language from a collection of methods derived from gram-
mar rules. As shown in Listing 3.1 these rules contain a description of what
to do depending on what they see on the input stream. Possible actions are
either matching a symbol or invoking other rules. The grammar in List-
ing 3.1 matches simple assignment statements for integer values. Figure 3.2
shows the parse tree of the assignment statement “count := 34;”. One can
see the tree structure resulting from the nested rules of the grammar.
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1 grammar statement ;
2
3 statement
4 : statementAssignment
5 ;
6
7 statementAssignment
8 : v a r i a b l e ’ := ’ INT ’ ; ’
9 ;

10
11 va r i ab l e
12 : IDENT
13 ;
14
15 INT
16 : ’ 0 ’ . . ’ 9 ’+
17 ;
18
19 IDENT
20 : ( ’ a ’ . . ’ z ’ | ’A’ . . ’ Z ’ )+
21 ;

Listing 3.1: This listing shows a grammar defining a simple assignment
statement for integer values. Starting with more abstract
rules like statement defining the root of the tree structure
the grammar follows the top-down approach. Elemental
rules represent identifiers as well as integer values with their
respective rules IDENT and INT.

Usually the process of translating a language is not accomplished in a
single pass of parsing the input sentences. Variable references for example
may require a first pass of collecting the definitions and a second pass of
resolving the references. An appropriate intermediate representation enables
the translator to efficiently execute multiple passes of parsing. For that
purpose ANTLR allows the creation of abstract syntax trees (AST). An
AST represents input structure in a compact tree form containing only the
information needed for further processing. Using a tree walker it is possible
to extract information from a tree as well as alter the tree if needed for the
next pass of processing. The last step usually emits output considering all
the information previously gathered.

For the purpose of creating a suitable programming language meeting the
requirements mentioned at the beginning of this chapter it is necessary to
create a translator. Going through each grammatical rule of the translator
will not benefit the understanding of the language as much as an introduc-
tion. Although a complete listing of all grammar rules can be found in the
addendum. The resulting programming language is called Euclides, follow-
ing the origin of the name of the Pascal programming language to which
it is related. The next chapter features an introduction of the language
constructs.
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Figure 3.2: The image shows the parse tree of the statement: “count :=
34;” obtained using the grammar of Listing 3.1. One can see
that the parse tree represents the tree structure of the
grammar.

3.1 Euclides

The Hello World example shown in Listing 3.2 is the entry point for all
programming language introductions. I do not wish to break with that
practice. As one can see a program starts with the keyword program followed
by its name. The main statement block of a program is delimited by the
keywords begin and end. The full stop after the keyword end defines the
end of the program. To bring the Hello World string on the screen the
write command is used. It takes a string as argument and prints it to the
standard output. The write command itself is defined within a library called
io. Libraries in Euclides are implemented in so called units in order to be
included in a program. As can be seen in line 3 of the example, the keyword
uses followed by the unit’s name includes it in the program. Units can be
listed comma separated after the keyword uses in case more than one needs
to be included. Two things are noticeable when looking at the example:

• A string is always delimited by single quotes.

• The semi-colon at the end of a line represents a statement delimiter.

The use of comments is shown in Listing 3.3. Euclides supports two
types of comments:

• A long comment is delimited by curly brackets and can span over
several lines. It can be placed anywhere in the source code.
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• The tilde symbol introduces short, single line comments. It repre-
sents a rotated half of a curly bracket and therefore suggests short
comments.

1 program h e l l o ;
2
3 uses i o ;
4
5 begin
6 wr i t e ( ’ He l l o world ’ ) ;
7 end .

Listing 3.2: This listing shows a Hello World example program. The
string Hello World is printed to standard output using the a
unit called io. The unit itself is included using the keyword
uses.

1 program comments ;
2
3 {This i s a long and of course very u s e f u l comment
4 and i t can span over more than one l i n e . }
5
6 begin
7 ˜This i s a ra ther shor t comment .
8 end .

Listing 3.3: This listing demonstrates the use of the two types of
comments in an example program. Comments that possibly
span over more than one line are delimited by the curly
brackets whereas short comments are introduced by the tilde
symbol.

In Euclides one must always declare a variable before using it. This is
done in a special section introduced by the keyword var. A variable cannot
be declared outside a var section. Each variable declaration consists of an
identifier followed by a colon and a type. The following variable types are
predefined:

• boolean: can either be true or false

• integer: represents positive and negative integer numbers including
zero

• real: represents positive and negative real numbers including zero

• vector: represents a vector holding integer or real values

• matrix: represents a vector of vectors
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• string: represents a sequence of characters

• reference: refers to an object

• void: represents a unit type that allows only one value and thus holds
no information

• error: represents an Euclides error

• array: holds items of any unique variable type available in Euclides

• set: represents a collection of items of any unique variable type avail-
able in Euclides

• record: aggregates several items of possibly different variable types
available in Euclides

• user-defined: represents one of the above mentioned types

In Euclides it is possible to declare user-defined types. This is done
in a special section introduced by the keyword type. Once declared it can
be used like a built-in type with all its properties. Each type declaration
consists of an identifier followed by a colon and a type. Constants are defined
in a special section introduced by the keyword const. Only a small set of
types can be used for constants: string, matrix, vector, real, integer and
boolean. Because of the small set of possible types, there is no need to
declare a constant. The type of the constant can be uniquely identified with
the value. As with variables, types and constants can only be declared or
defined in their special sections. Listing 3.4 shows declaration and definition
of variables as well as the use of constants and types. A few things are
noticeable when looking at the example:

• A var, const or type block precedes a main statement block.

• The operators for variable declaration and definition are distinct to
eliminate obscurities. The operator for variable declaration is (’:’)
whereas the operator for variable definition is (’:=’).

• A var, const or type block has no delimiting begin or end because it
has a well-defined and distinguishable position in a Euclides program
and therefore needs no delimiters.

Variables and constants can be connected with operators. Euclides sup-
ports the following operators:

• ’and’: infix operator, represents a logical and

• ’:=’: infix operator, represents an assignment operator
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• ’==’: infix operator, tests the equivalence of two values

• ’>=’: infix operator, tests if the value of the left expression is greater
than or equal to that of the right

• ’>’: infix operator, tests if the value of the left expression is greater
than that of the right

• ’in’: infix operator, tests if the value of the left expression is in that of
the right

• ’<=’: infix operator, tests if the value of the left expression is less than
or equal to that of the right

• ’<’: infix operator, tests if the value of the left expression is less than
that of the right

• ’-’: prefix or infix operator, represents a sign or a subtraction

• ’not’: prefix operator, represents a logical not

• ’ !=’: infix operator, tests the negated equivalence of two values

• ’or’: infix operator, represents a logical or

• ’+’: prefix or infix operator, represents a sign or an addition

• ’#’: prefix operator, represents a sizeof operator

• ’/’: infix operator, represents a division

• ’*’: infix operator, represents a multiplication

In contrast to Pascal there is no distinction between procedures not re-
turning a value and functions returning a value in Euclides, methods always
return a value. The definition of methods resides outside the main state-
ment block of a program like shown in Listing 3.5. A method can have
their own blocks for variables, types and constants. The return value type
of a method is specified after the end of the parameter list. By definition a
return value gets named after the method itself. The syntax of some of the
control structures supported by Euclides is demonstrated in the method’s
body.
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1 program va r i a b l e s ;
2
3 const
4 c := ’ constant ’ ;
5
6 type
7 i : i n t e g e r ;
8
9 var

10 v : i ;
11 s : s t r i n g ;
12 b : boolean ;
13
14 begin
15 v := −3;
16 s := c ;
17 b := true ;
18 end .

Listing 3.4: This listing demonstrates the use of variables, constants and
types. Constants are created within a const block as can be
seen in line 3 and 4. Variables and types are defined in a var
respectively type block. It is important to note that
constants, variables and types can only be created
respectively defined in their particular blocks.

Another important construct is the unit. A unit represents a collection of
methods which can be utilized in programs. In other programming languages
it is often referred to as library. Similar to a program, the keyword unit
followed by an identifier introduces a unit. In order to be able to use a unit
in a program it is necessary to include it. This is done by using the keyword
uses followed by the name of the unit.
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1 program bubble sor t ;
2
3 type
4 i n t a r r a y : array o f i n t e g e r ;
5
6 var
7 a : i n t a r r a y ;
8
9 method bubb le sor t ( numbers : array o f i n t e g e r ) : i n t a r r a y ;

10 var
11 i , j , temp : i n t e g e r ;
12
13 begin
14 bubb le sor t := numbers ;
15 f o r i := (#(numbers )−1) downto 1 do
16 begin
17 f o r j := 2 to i do
18 begin
19 i f ( bubb le sor t [ j −1] > bubb le sor t [ j ] ) then
20 begin
21 temp := bubb le sor t [ j −1] ;
22 bubb le sor t [ j −1] := bubb le sor t [ j ] ;
23 bubb le sor t [ j ] := temp ;
24 end
25 end
26 end
27 end
28
29 begin
30 a [ 1 ] := 23 ;
31 a [ 2 ] := 45 ;
32 a [ 3 ] := 34 ;
33
34 bubb le sor t ( a ) ;
35 end .

Listing 3.5: This listing shows the use of methods by implementing the
bubble sort algorithm. The algorithm itself is implemented
in the method bubblesort. In the main block of the program
example values are created and the bubblesort method is
called.
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3.2 Parsing Euclides

As depicted earlier, a grammar describes the syntax of a language using a set
of rules. In order to match input to a set of rules it is necessary to group the
input into tokens and consecutively to sentences. A lexer reads characters
from the input stream and groups them into tokens. On this rather low level
it is possible to discover lexical errors, such as erroneous characters. Listing
3.6 shows a rule defining possible characters of an identifier. An error is
emitted when the input character does not match the rule. The rule itself
is grouped into 2 subrules delimited by brackets. The first subrule matches
the first character which can be any letter from a to z including upper
case letters. Alternatives are separated by the pipe character describing a
disjunction. A modifier at the end of line 2 enables the second subrule to
be matched 0 or more times ensuring a variable length of an identifier. In
contrast to the first subrule, additional characters like numbers or underlines
are allowed.

1 IDENT
2 : ( ’ a ’ . . ’ z ’ | ’A’ . . ’ Z ’ ) ( ’ a ’ . . ’ z ’ | ’A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ ’ ) ∗
3 ;

Listing 3.6: A rule that defines the characters allowed for an identifier.
The first character can be any letter from a to z including
upper case letters. Any other following character can
additionally be a number or an underline.

Input sentences are matched by more abstract rules and errors emitted
when no viable alternatives are found. During parsing, an AST is generated
according to the matched input. Listing 3.7 shows a rule that matches
program or unit heading. Several things are noticeable in this example:

• A rule can also have one or more alternatives introduced by a pipe
character (line 5).

• The call sign modifier (’ !’) omits the token in the AST.

• The circumflex modifier (’ˆ’) sets the token as AST root node.

• Anything that needs to be done beyond recognizing the syntax of
Euclides is performed by so called actions. Embedded actions are
delimited by curly brackets and can be placed anywhere in a rule.
They are written in the target language and usually refer to token
attributes.
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1 programHeading
2 : PROGRAMˆ i d e n t i f i e r {
3 environment . currentScope . setScope ( NamingStandard .

getProgramString ( $ i d e n t i f i e r . t ex t ) ) ;
4 } SEMI !
5 | UNITˆ u n i t i d e n t i f i e r {
6 environment . currentScope . setScope ( NamingStandard . ge tUn i tS t r ing (

$ u n i t i d e n t i f i e r . t ex t ) ) ;
7 } SEMI !
8 ;

Listing 3.7: Rule programHeading matches either the heading of a
program or a unit. The embedded Java code sets the root
scope for both alternatives.

Often it is necessary to pass information from elemental rules to more
abstract rules. Therefore tokens have a set of attributes like the text matched
for the token or the line number in which the token occurs. ANTLR also
allows arbitrary return values for rules when the token attributes do not
suffice. Listing 3.8 shows the rule matching a constant value of type string.
It returns value and type to the parent rule(s) in the hierarchy. One can
see that the return value type is a user-defined class whereas the returned
string is obtained through a token attribute.

1 cons tan tS t r ing r e tu rn s [ S t r ing value , Type type ]
2 : STRING LITERAL
3 { $value = $STRING LITERAL . getText ( ) ;
4 $type = new StringType ( ) ; }
5 ;

Listing 3.8: Rule constantString returns value and type of the string
constant to the parent rule(s) in the hierarchy.

Another important aspect is the collection of information needed for
further processing. This is done using actions. The following information is
collected during parsing:

• Symbols are collected and stored in a data structure called symbol
table. In this context a symbol is either a constant, a variable, a type
or a method. To simplify the validation process, references to symbols
are also stored in the AST. In order to be able to store references in
the AST the standard tree node CommonTree is extended to fit the
needs of the task.

• The scope of a token is also determined and stored in the appropriate
node of the tree. It represents the visibility of the token and is used in
the validation process. The idea behind scoping is the keep variables

20



and methods in different parts of a program distinct from one another.
In Euclides it is possible to define and use two variables with the
same name in different methods, as long as the methods are in the
same scope. Beginning with the root scope, every method definition
represents a new scope. The scope of the new method contains all
symbols defined in the surrounding scope but no symbol of the new
scope can be referenced outside.

The naming standard of symbols collected in the symbol table is an
important aspect. It is used to identify the scope of a symbol. First of all it
is crucial to know that all characters defined in the naming standard are in
upper case. In order to be uniquely identifiable, all other strings, like names
defined in a Euclides program, are converted to lower case. The following
list describes the naming standard for each symbol:

• A program string gets the prefix “P”.

• A unit string gets the prefix “U”.

• A method string gets the prefix “M” and the list of parameters as
suffix.

• A variable string gets the prefix “V”.

• A constant string gets the prefix “C”.

• A type string gets the prefix “T”.

The list of parameters when creating a method string is delimited by the
characters “X” and “Y”. In case more than one parameter is defined, they
are separated using the “Z” character. All implemented types as well as the
user-defined type have their own representations in the naming standard:

• boolean: “EBN”

• integer: “EIR”

• real: “ERL”

• vector: “EVR”

• matrix: “EMX”

• string: “ESG”

• reference: “ERE”

• void: “EVD”
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• error: “EER”

• array: “SAR”

• set: “SST”

• record: “SRD”

• user-defined: “EUF”

The leading characters “E” and “S” stand for elementary respectively
structured. For example, when creating a variable a in a var block inside the
method foo (with no parameters) of the program test it will get the name
PtestMfooXYVa. Given the name alone it is therefore possible to identify
the variable’s location. Furthermore, the Euclides source code file extension
“ecs” as well as the Euclides unit file extension “ecu” are also defined in the
naming standard.

When collecting symbols the following information is stored for the dif-
ferent symbols:

• A constant consists of a name, a trace indicating its scope, a refer-
ence to a type, a value and references to its definition as well as its
occurrences in the source code.

• A variable consists of a name, a trace, a reference to a type and refer-
ences to its definition as well as its occurrences in the source code. In
contrast to a constant there is no need to store a value.

• A data type consists of a name, a trace, a reference to a type and
references to its definition as well as its occurrences in the source code.

• A method consists of a name, a trace, references to its parameters and
the return value, references to its definition as well as its occurrences
in the source code and references to all symbols defined within the
method.

In Listing 3.9 a rule matching a constant definition is shown. The action
block inside the rule handles the following tasks:

• Creating a new constant holding name, scope, type and value.

• Setting a reference of the constant in the AST as well as a reference
of the AST in the constant.

• Adding the constant to the symbol table.

• If defined inside a method, the constant is added to the method as
well.
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1 con s t an tDe f i n i t i on
2 : i d e n t i f i e r EQUALˆ c=constant {
3 Constant tmp = new Constant ( NamingStandard . normal ize (

$ i d e n t i f i e r . t ex t ) , environment . currentScope . getScope ( ) +
NamingStandard . getConstantStr ing ( $ i d e n t i f i e r . t ex t ) , $c . type
, $c . va lue ) ;

4 environment . symtab . addConstant (tmp) ;
5 c r o s sRe f e r enc e (tmp , ( EuclidesAST ) $ i d e n t i f i e r . t r e e ) ;
6 // i f de f ined i n s i d e a method , then add to appropr ia te method
7 i f ( environment . currentScope != environment . g loba lScope ) {
8 Method m = (Method ) environment . symtab . getMethodByTrace (

environment . currentScope . getScope ( ) ) ;
9 m. addConstant (tmp) ;

10 }
11 }
12 ;

Listing 3.9: Rule constantDefinition matches a constant definition and
stores name, scope, type and value in a symbol table. It also
stores a reference of the constant in the AST and a reference
of the AST node in the constant for easy access. When the
definition of a constant occurs inside a method, the constant
is added to the appropriate method.

Similar actions handle the storage of information for variables, types,
and methods.

When deciding whether to include a token in the AST or not it is often
necessary to create a certain hierarchical structure for a tree walker to work
efficiently. The usage of modifiers to obtain a suitable hierarchical structure
does not always work out. Therefore tree rewrite syntax is used in order to
have more control over the structure. In Listing 3.10 the imaginary token
METHOD CALL is introduced as subtree root node. Imaginary tokens are
not associated with input characters and are specified in a special section in
the grammar. When using tree rewrite syntax no modifiers are allowed to
be set in the rule itself. Instead, there is a section after the rule introduced
by the arrow operator (’->’) that allows modification of the tree structure.
A tree walker can now easily detect a method call by evaluating the first
node of the subtree.

The AST generated by the parser is used in the validation process de-
scribed in the following chapter.

3.3 Validating syntax and semantics

While a grammar checks input for syntactical correctness, there are no con-
trol constructs for semantic correctness in ANTLR. Before transpiling source
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1 statementMethodCall
2 : i d e n t i f i e r LPAREN ( expr e s s i on (COMMA expr e s s i on ) ∗) ? RPAREN −>

ˆ(METHOD CALL i d e n t i f i e r exp r e s s i on ∗)
3 ;

Listing 3.10: Rule statementMethodCall shows the use of rewrite syntax
to change the structure of the AST. The imaginary token
METHOD CALL is introduced as a subtree root node to
simplify the detection of a method call.

code it is needed to perform as many checks as possible to make sure the
next instance gets widely error less input. These checks have to be performed
relying on actions that acquire information. However, this information has
to be validated in a second step. Therefore the generated AST is processed
using a tree walker. Missing information is acquired using the AST as well
as the generated data structures. A validation process checks the input for
semantic correctness.

Validating Euclides

Input is usually generated in the form of source code. Before starting to vali-
date source code, it is necessary to collect information from all included files.
For example this is crucial when referencing symbols defined in units. In
case a unit is not parsed in before a referencing source code file is validated,
it will certainly result in errors. It is important to note that information
from different files is stored in one instance of the symbol table.

In advance of validating Euclides source code it is necessary to check the
symbol table for missing information. For example it is possible to define
a type in a unit and then use it in another unit or in the program file. At
the time the program file is parsed in, the information regarding the user-
defined type is yet to be parsed in. At this point it is not possible to set the
reference to the user-defined type. Therefore it is imperative to check the
symbol table for missing references and set them. Similar reasons lead to the
emergence of duplicate symbols. Methods, types, constants and variables
are therefore checked for duplicates in advance.

Euclides source code is validated using the class Validator. The AST
generated by the parser, as well as a reference to the symbol table are
handed over to the class as arguments. The entry point of the class is a tree
walker that serves as a dispatcher for the following validation tasks:

• Method calls

• Variable assignments

• Variable definitions
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• Type definitions

• If statements

• While statements

• Case statements

• For statements

• Repeat statements

• Try, catch statements

Whenever the tree walker recognizes a token that introduces one of the
language constructs mentioned above, it invokes the appropriate validation
method. An AST subtree representing the entry point for the validation
process is handed over to every method. The methods itself evaluate every
node of the subtree and report possible errors using a ValidationException
which includes filename, line, position, error code and error text. The vali-
dation process is then stopped and the error is displayed.

Method calls

A method call like shown in Listing 3.11 line 12 can be rather complex to
validate. In the example only 2 parameters of type real are passed over as
arguments, but every possible combination and type representing a parame-
ter has to be considered. One can think of a return value of a method call,
or an element of an array.

1 program methodCall ;
2
3 var
4 r e s u l t : r e a l ;
5
6 method pow(a , b : r e a l ) : r e a l ;
7 begin
8 pow := a + b ;
9 end

10
11 begin
12 r e s u l t := pow (2 . 0 , 2 . 0 ) ;
13 end .

Listing 3.11: A small program showing the definition of a method as well
as a method call.
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The first step is a loop over the child nodes to validate the parameters
which can be of the following types:

• A variable.

• A constant.

• An anonymous type, e.g. an integer number.

• The return value of another method call.

• An operator combining any of the types mentioned above.

In case the child node is of the type identifier, a lookup in the symbol
table is invoked to get the appropriate symbol which can be a variable
or a constant. When a variable or a constant is found, the type and the
scope of the symbol are stored for further processing. However, records and
arrays have to be handled in a different way. They are identified by either
a square bracket in case of an array or a dot in case of a record. In order
to be validated they are dereferenced using their own methods. Whenever a
symbol is used in the source code, a reference of the tree node representing
the symbol is stored in the symbol itself to be able to track the occurrences.
Another possible parameter can be an anonymous type. They are treated
like symbols only they are much easier to handle. Finding type and scope
is a trivial task. In case a parameter is another method call it is handled
via a recursive call of the validating method itself. The return value of the
method call represents the parameter. When an operator is identified as
parameter it has to be resolved down to the resulting data type in order to
be evaluated in the next step.

The last step is to find a method definition that matches with the col-
lected information. Only now that all parameter types are known it is pos-
sible to search for a matching method. This is necessary because methods
can differ only in their parameters and therefore all parameter types have to
be known in order to find the correct method. Finally scope checks ensure
that the method call as well as all parameters are visible.

Variable assignments

The first step when validating a variable assignment is a lookup in the symbol
table to get the appropriate left-hand variable. The type of the variable is
stored as a target type to be used to match the right-hand variable type
later on. In case the left-hand variable type is either a record or an array,
they have to be validated and dereferenced first. A loop over the child nodes
validates the right-hand types which can be:
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• A variable.

• A constant.

• An anonymous type, e.g. an integer number.

• The return value of a method call.

• An operator combining any of the types mentioned above.

The checks performed for the appropriate right-hand types are similar to
the checks for the method parameters mentioned earlier. The only difference
is that the right-hand type is evaluated directly because only one variable can
be assigned a value at a time. When the type of the right-hand expression
is determined a lookup whether an assignment operator is defined for the
two types or not is performed.

Variable definitions

As mentioned in section 3.2, a variable has to be defined in a variable block.
A subtree representing a variable block is handed over to this method. In
a loop, every variable definition in a variable block is validated. The first
step is a lookup in the symbol table to get the variable. In case the type of
the variable is user-defined, e.g. a record type, a lookup in the symbol table
clarifies whether this type exists or not. Finally, the scope of the variable is
matched against the type.

Type definitions

Similar to the checks performed for variable definitions, every type definition
in a type block is validated. Therefore a subtree representing a type block
is handed over to the method. In case a user-defined type is found, a lookup
in the symbol table is issued to check whether this type exists or not. A
final check matches the scope of the types.

If statements

As shown in Listing 3.12 an if statement begins with the keyword if followed
by the condition in brackets. The keyword then introduces the first branch
of the condition, whereas else introduces the optional second branch. In
case several statements are needed in a branch the keywords begin and end
are used as delimiters.

The condition of the statement should be of type boolean, therefore
the target type is set to boolean. The following statements can be of type
boolean and are validated:
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• A variable.

• A constant.

• The return value of a method call.

• An operator combining any of the types mentioned above.

1 i f ( a > b)
2 then
3 a := max ;
4 e l s e
5 begin
6 ˜ j u s t a comment
7 b := max ;
8 end

Listing 3.12: This fragment of code represents an if statement. It is
introduced by the keyword if followed by the condition and
the keyword then. The branch introduced by the keyword
else is optional.

When the type is determined a lookup whether an equal operator is
defined for the two types or not is performed.

While statements

A while statement begins with the keyword while followed by the condition
in brackets. The keyword do introduces the statement block. In case several
statements are needed in the block the keywords begin and end are used as
delimiters. The while statement is handled very similar to an if statement
because of the boolean condition. Therefore it needs no extra explanation.

Case statements

A case statement like shown in Listing 3.13 begins with the keyword case
followed by the statement to be switched. The different branches are intro-
duced by the values of the statement and usually enclosed by the keywords
begin and end.

For the validation of a case statement it is necessary to determine the
type of the case. Only variables, method calls and operators represent
switchable cases. Once the type of the case is validated, it is set as tar-
get type. A loop over all branches determines whether an equal operator is
defined for the target type and the actual branch type, or not. Possible types
for branches can be any of the implemented data types or return values of
method calls.
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1 case number o f
2 1 : begin
3 ˜code
4 end
5 2 : begin
6 ˜code
7 end
8 end

Listing 3.13: This listing shows a fragment of code representing a case
statement. It is introduced by the keyword case followed by
the statement to switch through and the keyword of.
Subsequently the different cases are defined. An optional
else branch represents the default case.

For statements

Listing 3.14 shows a for statement beginning with the keyword for followed
by the iteration of the loop variable.

1 f o r i := 1 to 3 do
2 begin
3 element [ i ] := 0 ;
4 end

Listing 3.14: This fragment of code represents a for statement. It is
introduced by the keyword for followed by the numeric
ranges and the keyword do. A for statement can either go
from a starting value to an end value, or downto.

The loop variable of a for statement must be declared in a var block
like every other variable that is used in a program. Therefore it should be
in the symbol table which is validated with a lookup. Once the variable is
obtained a match against the scope of the for statement is conducted. A
loop variable can either be of type integer or type real. That applies to the
numerical ranges as well. With the target type set to either integer or real
it is determined whether an equal operator exists for the given numerical
limits, or not. Besides the standard types real and integer the limits can be:

• A variable.

• An element of an array.

• A part of a record.

• The return value of a method call.
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Repeat statements

Listing 3.15 shows a repeat statement which is introduced by the keyword
repeat followed by the code to be evaluated an arbitrary number of times.
The conditional expression at the end of the statement has to be of type
boolean.

1 repeat
2 begin
3 count := count + 1 ;
4 end
5 un t i l
6 count <= max ;

Listing 3.15: This listing shows a fragment of code representing a repeat
statement. It is introduced by the keyword repeat followed
by the statements to execute until a certain condition is
met.

Therefore the target type of a repeat statement is set to boolean. For
the conditional expression the following types are allowed:

• A variable.

• A constant.

• An element of an array.

• A part of a record.

• The return value of a method call.

• A boolean type.

When the type is determined a lookup whether an equal operator is
defined for the two types or not is performed.

Try, catch statements

Listing 3.16 shows the use of try, catch statements. A try, catch statement
is for exception handling similar to Java. The target type is set to error
and represents the only statement that needs to be validated. Types like
variables, an element of an array, a part of a record or return values of
method calls can be of type error. After determining the type it is matched
against the target type.
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1 try
2 begin
3 read ( input ) ;
4 end
5 catch ( e r r )
6 begin
7 wr i t e ( ’ e r r o r read ing input ’ ) ;
8 end
9 end

Listing 3.16: This fragment of code shows a try, catch statement. It is
introduced by the keyword try followed by the statements
that may produce an error. The error is handled in the
catch part of the statement.

3.4 Transpiling Euclides

The generation of output is the last step in the processing pipeline. Output is
generated using transpilers which translate Euclides source code into source
code of another programming language, e.g. Java or even Euclides itself.
A symbol table along with a collection of ASTs represents the input of a
transpiler. In order to generate output the ASTs have to be processed using
tree walkers and information has to be handed over to a template engine.
The template engine StringTemplate [16] is used to generate source code due
to the fact that ANTLR uses this template engine and that it is available as
a separate product. Another mentionable property is that it strictly enforces
model-view separation. The Hello World example in Listing 3.17 shows the
use of StringTemplate. A new template hello is generated in line 6. The
delimiter “$” is used to specify an attribute called name. In the next line
the string “World” is assigned to the attribute name using the setAttribute
method. The output of the program is “Hello, World”.

Two things are noticeable when working with StringTemplate:

• It is possible to nest templates to simplify the handling of possibly
complicated strings.

• Templates can be defined in a file and are therefore separated from
the source code.

Three different transpilers are implemented to be used as views for the
modeling process on the one hand and to actually produce executable code
on the other hand:

• Euclides transpiler: generates Euclides code

• HyperText Markup Language (HTML) transpiler: generates a HTML
page displaying Euclides code
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• Java transpiler: generates executable Java code

1 import org . an t l r . s t r i ng t emp la t e . ∗ ;
2 import org . an t l r . s t r i ng t emp la t e . language . ∗ ;
3
4 public class HelloWorld {
5 public stat ic void main ( St r ing [ ] a rgs ) {
6 StringTemplate h e l l o = new StringTemplate ( ”Hel lo , $name$” ,

DefaultTemplateLexer . class ) ;
7 h e l l o . s e tAt t r i bu t e ( ”name” , ”World” ) ;
8 System . out . p r i n t l n ( h e l l o . t oS t r i ng ( ) ) ;
9 }

10 }

Listing 3.17: This listing shows a Hello World example using
StringTemplate. The template hello is defined in line 6. It
requires a parameter called name. In the following lines the
parameter is set and the template is printed to standard
output.

In the following chapter the Euclides transpiler used for source code
refactoring is described.

Euclides Transpiler

The Euclides transpiler generates Euclides code directly from a collection
of ASTs. In this case no symbol table is needed because all the required
information is contained in the ASTs. The generation of Euclides code is an
important part of the modeling process. Every time a change in the source
code happens, it is necessary to rerun the parser and the validator to alert
possible errors. The source code as well as the internal data structures have
to be consistent at any time. As mentioned earlier an AST is generated
during parsing and is highly interlinked with the input stream. Nodes of an
AST reference the token stream while the token stream itself references the
character stream. Therefore it is not easily possible to change the AST’s
structure and then generate new Euclides code out of it. It is necessary to
incorporate changes in the source code during the generation of the Euclides
code and subsequently generate new ASTs and new source code.

The next important detail are comments in the source code. Usually
comments can be disregarded when generating executable code, but for the
purpose of generating Euclides code they must be preserved. Therefore the
CommonTree node is extended by another reference that stores all hidden
tokens including comments. Because of the fact that hidden tokens are not
included in the AST it is essential to set them in a node that is included,
otherwise they are lost. By definition this is the next node that was created
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out of a non hidden token. Several tokens are declared hidden during the
lexical analysis:

• native code: is inserted when emitting output

• annotations: are inserted when emitting output

• whitespaces: are disregarded for the moment

• comments: are inserted when emitting output

The task of walking a tree and generating output is handled by a class
called EuclidesWriter. A node introducing a statement is evaluated by
its own method. In such a method the whole subtree of the statement is
processed and the resulting output is then passed on to next method in the
tree hierarchy as argument to be included in the evaluation. A StringTem-
plate for every statement handles the generation of Euclides code. This
means that every template is somehow contained within the outermost tem-
plate called program to reflect the tree structure of the AST. Accordingly
the program template consists of templates for program heading, constant
definitions, variable definitions and so on. All these templates are collected
in a single StringTemplate group file. Listing 3.18 shows parts of the group
file for Euclides output.

1 group Euc l idesWri te r ;
2
3 program ( item ) : := ”<item >.”
4
5 programHeading (x ) : := ”program <x>;<\n>”
6
7 unitHeading (x ) : := ” un i t <x>;<\n>”
8
9 usesPart ( x ) : := ” uses <x ; s epa ra to r =\”, \”>;<\n>”

10
11 con s t an tDe f i n i t i on ( statement ) : := <<const
12 <statement>
13 >>
14
15 statementBlockBegin ( item ) : := <<begin
16 <item>end
17 >>

Listing 3.18: This listing shows parts of the StringTemplate group file for
Euclides output. One can see the definition of templates
representing the structure of the language. In order to
create meaningful output the templates are called nested.

One can see that a template definition consists of a template name fol-
lowed by attributes in brackets. Single line templates are delimited by double
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quotes, whereas multi-line templates are delimited by double angle brackets.
Within a template, attributes can be referenced by their names delimited by
angle brackets. It is interesting to note that multi-valued attributes are pos-
sible. This means that one can set the same attribute multiple times. When
working with multi-valued attributes it may become necessary to separate
values. This can be achieved by using a separator that can be customized.

Before the output of a StringTemplate is passed on to the next one in the
hierarchy it is checked whether there are hidden tokens to be considered or
not. In case there are, they are inserted in front of the evaluated statement.

In order to change a symbols name, or reset a constants value a data
structure called AlteredSymbols needs to be filled with the changes. Dur-
ing the process of generating output this data structure is pulled up to
incorporate possible changes. Once these changes are taken into account,
re-evaluation of the generated source code leads to stable results. Figure 3.3
shows the output of a generated Euclides file using a small text editor with
syntax highlighting.
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Figure 3.3: This figure shows a small text editor with syntax highlighting
displaying the Euclides bubblesort example file generated out
of its AST.
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Chapter 4

Views

Displaying source code alone often does not contribute to a better under-
standing. Therefore different views of the source code are necessary. As a
first view an HTML version of the source code is presented in order to allow
source code analysis. It makes use of hyper links in order to simplify the
navigation in the source code. Additionally it introduces an overview sec-
tion displaying a list of important symbols. In order to enable source code
interpretation and inspection, a Java transpiler serves as a second view. For
that purpose the Euclides source code is transpiled to Java code. A runtime
environment developed for that purpose provides the corresponding data
types and operators. It also allows for a framework to control the execu-
tion of transpiled programs for example to implement a debugger. The two
different views of the source code are introduced in this chapter.

4.1 HTML Transpiler

The HTML transpiler generates Euclides code embedded in a HTML page.
Similar to the Euclides transpiler, the code is directly generated from ASTs.
Additionally a collection of all variables and constants is also generated to
provide an overview. This overview is generated using the symbol table.

The generation of the source code is handled by the same templates
used for the Euclides transpiler. To benefit from the possibilities that arise
when using HTML code, symbols in the Euclides code link to the equivalent
symbols in the overview. Therefore all symbols in the overview are extended
with anchors. In order to be able to insert HTML code in the output it is
necessary to exchange templates used to generate Euclides output. Listing
4.1 shows the StringTemplate linkitem that is called whenever a variable or
constant occurs in the Euclides code. One can see the link to the appropriate
anchor that is defined using the templates constantAssign and variableColon.

Another important aspect when looking at source code is to be able to

37



1 constantAss ign ( item ) : := <<\<a name=”< f i r s t ( item )>”\>< f i r s t ( item )
>\</a\> := < l a s t ( item )>

2 >>
3
4 var iab l eCo lon ( item ) : := <<\<a name=”< f i r s t ( item )>”\>< f i r s t ( item )

>\</a\> : < l a s t ( item )>
5 >>
6
7 l i nk i t em ( item ) : := ”\<a h r e f=\”#<item>\”\><item>\</a\>”

Listing 4.1: This listing shows parts of the StringTemplate group file for
HTML output that generates anchors as well as links to
anchors.

Usage :
java − j a r ECSCompiler . j a r i n f i l e . e c s [ opt i ons ] o u t f i l e . j a r

Options :
−Ipath , / Ipath add inc lude path
−Lpath , /Lpath add l i b r a r y path
−Tpath , /Tpath s e t temporary path
−Plog , /Plog s e t p ro to co l l og f i l e

Listing 4.2: This listing shows the help text when starting the
ECSCompiler with the argument “-h”.

determine line numbers. For this purpose the output of the HTML transpiler
is extended with line numbers. In order to preserve the layout of the code
line numbers are zero padded to be of the same length. Figure 4.1 shows
the bubblesort example as a generated HTML file.

4.2 Java Transpiler

Unlike Euclides and HTML transpiler, the Java transpiler generates exe-
cutable code. In fact it generates a jar file. The process of generating Java
code from Euclides code is rather complex. A class called ECSCompiler
handles the process. Starting the ECSCompiler with the argument “-h”
displays the help text as shown in Listing 4.2. One has to define the input
file, several options concerning paths as well as the output jar file.

Calling the ECSCompiler with meaningful parameters starts the compi-
lation process:

1. The Euclides file is parsed in as well as all units associated with it.

2. The resulting symbol table is checked for duplicate symbols and all
missing references are set.

38



Figure 4.1: This figure shows the bubblesort example as a generated
HTML file used for source code analysis.

3. Hidden tokens are acquired and referenced in the appropriate nodes
of the AST.

4. All generated ASTs are validated.

5. The Java transpiler is called to generate Java files.

6. The Java files are compiled and the output is packed in a jar file.

The Euclides code in Listing 4.3 is a test program used to illustrate the
process of creating Java code. It consists of a method foo which takes an
integer x as argument and returns an integer. In the main statement block
the method is called with the argument “1” represented by the constant c.
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The result is then assigned to the variable v.

1 program t e s t ;
2
3 const
4 c := 1 ;
5
6 var
7 v : i n t e g e r ;
8
9 method foo (x : i n t e g e r ) : i n t e g e r ;

10
11 begin
12 foo := x ;
13 end
14
15 begin
16 v := foo ( c ) ;
17 end .

Listing 4.3: This listing shows an example program to be used to
illustrate the Java transpilation process.

The Java transpiler generates four Java files out of a Euclides file:

• Main.java

• Constants.java

• Variables.java

• Methods.java

Main.java represents the entry point for a program. Listing 4.4 shows
parts of the file representing the entry point of the transpiled Euclides pro-
gram. The first thing to notice are the two member variables factory and
controller which hold a reference to ECSCompilerFactory respectively EC-
SCompilerController. The factory is used to create constants, variables and
operators, to initialize variables with default values as well as to store in-
formation about methods. The idea behind the factory is to make certain
operations exchangeable. When the Java transpiler is used in the context of
a user interface, it may be necessary to know when an operator is used or
a variable is initialized. In case it is used as a stand-alone application there
is no need to alert such operations. Basically the same idea can be applied
to the controller as well. Its purpose is to allow debugging generated Java
code. Therefore it is necessary to know whenever a method is entered or
left as well as to set markers in the call stack to allow handling of excep-
tions. When used as a stand-alone application such operations need not be
implemented.
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Another important thing is the method execute(). The try block is pop-
ulated with calls to the execute() methods of all transpiled Euclides source
files associated with the program. That means calls to the main statement
blocks of the program and all units. In this case it is the call to the execute()
method of the class Ptest.

Every method and main statement block of a Euclides source file has
its own subclass in the class Methods. The classes are located in the file
Methods.java. Listing 4.5 shows the file generated using the example pro-
gram mentioned above. One can see that the class Methods consists of two
subclasses called MfooXEIRY and Ptest. MfooXEIRY is the subclass that
represents the Euclides method foo, hence the name. Whereas Ptest is the
subclass that represents the main statement block of the Euclides example
program. Every subclass consists of three methods:

• begin(): This method calls the enterMethod method of the controller
to indicate that the program now enters this method. In case variables
are defined in a var block inside the method, the enterScope method
is called for each variable to initialize it.

• end(): This method calls the exitMethod method of the controller to
indicate that the program now exits this method. For each variable
defined in a var block inside the method, the exitScope method is called
to indicate that they are no longer needed.

• execute(): This method represents the statement block of the method.
In case the Euclides method has parameters they are passed to this
method. After the begin method is called the return value is created
and initialized. The controller is indicated that this method is ready
to be started using the startMethod call. Consecutively the transpiled
statements of the Euclides statement block are inserted. Finally the
end method is called and the return value is specified in a return
statement.

The static part of each subclass contains a call to the factory method
createMethod. This call provides the method with three parameters. The
first one is an instance of ASTInformation which will be discussed later.
The other two parameters are an array of the parameters of the method
respectively its return value.

Variables are declared static in a special class called Variables. This class
includes variables of all var blocks found in the Euclides code. However,
parameters and return values are not included. This results in a problem
when a method is defined inside a method itself. The inner method should
have access to all variables in its scope including the parameters of the outer
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1 package ec s ;
2
3 import cgv . e u c l i d e s . runtime . Con t r o l l e r ;
4 import cgv . e u c l i d e s . runtime . Factory ;
5 import cgv . e u c l i d e s . runtime . implementation . ECSCompilerControl ler ;
6 import cgv . e u c l i d e s . runtime . implementation . ECSCompilerFactory ;
7
8 public class Main {
9 private stat ic Factory f a c t o r y = new ECSCompilerFactory ( ) ;

10 private stat ic Cont r o l l e r c o n t r o l l e r = new ECSCompilerControl ler
( ) ;

11 private stat ic St r ing [ ] arguments = null ;
12
13 . . .
14
15 public stat ic St r ing [ ] getArguments ( ) {
16 i f ( arguments == null )
17 return new St r ing [ ] {} ;
18 S t r ing [ ] copy = new St r ing [ arguments . l ength ] ;
19 for ( int i = 0 ; i < arguments . l ength ; i++)
20 copy [ i ] = arguments [ i ] ;
21 return copy ;
22 }
23
24 . . .
25
26 public stat ic void main ( St r ing args [ ] ) {
27 arguments = args ;
28 execute ( ) ;
29 }
30
31 private stat ic void execute ( ) {
32 try {
33 Methods . Ptest . execute ( ) ;
34 } catch ( Exception except ion ) {
35 System . e r r . p r i n t l n ( ”Runtime Error : ” + except ion ) ;
36 }
37 }
38
39 . . .
40
41 }

Listing 4.4: This listing shows parts of the class Main representing the
entry point for a program. The method execute() is
populated with calls to the execute() methods of all
transpiled Euclides source files associated with the example
program.
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method. Therefore the parameters of the outer method are also passed to
the inner method using the execute method.

The file Variables.java holds the class Variables. The sole purpose of
this class is to hold variables defined in var blocks of an Euclides program.
Listing 4.6 shows the class generated for the example program. It holds the
variable Vv.

The purpose of the class Constants shown in Listing 4.7 is similar. The
class generated for the example program holds the constant Cc.

Transpiling Euclides code to Java code is straight forward most of the
time. However, certain control structures require special handling. The
switch statement introduced in Euclides is different from the one used in
Java. In contrast to the switch statement in Euclides, the one in Java works
only with byte, short, char and int primitive data types. The Euclides
version works for all type combinations where an equal operator is defined.
In order to implement an equivalent control structure in Java, a template
converts the switch statement into a variety of if and else statements. Since
the type of the switch statement is not known at that time, control structures
using the Java instanceof operator are created to resolve the concrete type
at runtime of the Java code. The branch with the correct type carries out
the switch statement by using a number of if and else statements.

Another difference in control structures arises between Euclides’s repeat
until statement and Java’s do while. The condition of the Java control
structure has to be negated in order to behave equally to Euclides’s repeat
until.

Throughout the listings of this chapter a call to the constructor of the
class ASTInformation is often found. This class basically holds all informa-
tion that can be extracted from the AST:

• The symbol’s name

• The symbol’s scope.

• The name of the program or unit the symbol is defined in.

• The line in the Euclides source code.

• The position in the line.

• Comments attached to this symbol.

• Annotations attached to this symbol.

• Other occurrences of this symbol in the Euclides code defined as line
numbers.
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1 package ec s ;
2 public class Methods {
3 public stat ic class MfooXEIRY {
4 stat ic {
5 Main . getFactory ( ) . createMethod (new cgv . e u c l i d e s . runtime .

ASTInformation ( . . ) , new cgv . e u c l i d e s . runtime . types .
Type [ ] {Main . getFactory ( ) . d e f a u l t I n t e g e r ( ) } , Main .
getFactory ( ) . d e f a u l t I n t e g e r ( ) ) ;

6 }
7
8 public stat ic void begin ( ) {
9 Main . g e tCon t r o l l e r ( ) . enterMethod (new cgv . e u c l i d e s . runtime .

ASTInformation ( . . ) ) ;
10 }
11
12 public stat ic void end ( ) {
13 Main . g e tCon t r o l l e r ( ) . exitMethod ( ) ;
14 }
15
16 public stat ic cgv . e u c l i d e s . runtime . types . p r im i t i v e .

IntegerType execute ( cgv . e u c l i d e s . runtime . types . p r im i t i v e .
IntegerType Vx) {

17 begin ( ) ;
18 cgv . e u c l i d e s . runtime . types . p r im i t i v e . IntegerType Vfoo =

Main . getFactory ( ) . c r e a t e I n t e g e r (new cgv . e u c l i d e s .
runtime . ASTInformation ( . . ) ) ;

19 Vfoo . setValue (Main . getFactory ( ) . d e f a u l t I n t e g e r ( ) . getValue
( ) ) ;

20 Main . g e tCon t r o l l e r ( ) . startMethod ( ) ;
21 Main . getFactory ( ) . c reateOperatorAss ign ( ) . op (Vfoo , Vx) ;
22 end ( ) ;
23 return Vfoo ;
24 }
25 }
26 public stat ic class Ptest {
27 stat ic {
28 Main . getFactory ( ) . createMethod (new cgv . e u c l i d e s . runtime .

ASTInformation ( . . ) , new cgv . e u c l i d e s . runtime . types .
Type [ ] {} , Main . getFactory ( ) . de fau l tVo id ( ) ) ;

29 }
30
31 . . .
32
33 }
34 public stat ic void execute ( ) {
35 begin ( ) ;
36 Main . g e tCon t r o l l e r ( ) . startMethod ( ) ;
37 Main . getFactory ( ) . c reateOperatorAss ign ( ) . op ( Var i ab l e s .Vv ,

Methods .MfooXEIRY . execute ( Constants . Cc) ) ;
38 end ( ) ;
39 return ;
40 }
41 }
42 }

Listing 4.5: This listing shows parts of the class Methods representing all
method blocks as well as all main statement blocks of the
example Euclides program.
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1 package ec s ;
2
3 public class Var iab l e s {
4 public stat ic cgv . e u c l i d e s . runtime . types . p r im i t i v e . IntegerType

Vv = Main . getFactory ( ) . c r e a t e I n t e g e r (new cgv . e u c l i d e s .
runtime . ASTInformation ( ”Vv” , ”” , ” Ptest ” , 7 , 2 , new St r ing [ ]
{”” } , new St r ing [ ] {”” } , new int [ ] {16}) ) ;

5 }

Listing 4.6: This listing shows the class Variables holding the variable Vv
defined in a var block of the example Euclides program.

1 package ec s ;
2
3 public class Constants {
4 public stat ic cgv . e u c l i d e s . runtime . types . p r im i t i v e . IntegerType

Cc = Main . getFactory ( ) . c r ea t eCons tant In tege r (new cgv .
e u c l i d e s . runtime . ASTInformation ( ”Cc” , ”” , ” Ptest ” , 4 , 2 , new
St r ing [ ] {”” } , new St r ing [ ] {”” } , new int [ ] {16 , 16}) , ”1” )

;
5 }

Listing 4.7: This listing shows the class Constants holding the constant
Cc defined in a const block of the example program.

Having generated the Java files out of a Euclides program, the other files
needed for execution are discussed. All generated java files associated with
the example program can be found in Listing 4.8. One can see the already
mentioned files ECSCompilerController.java and ECSCompilerFactory.java
with it’s respective interfaces Controller.java and Factory.java. ASTIn-
formation.java as well as all interfaces for operators and types with their
respective implementations ECSCompilerOperators.java and ECSCompil-
erTypes.java can also be found. All files mentioned above are part of the
runtime environment needed for execution. The class ECSCompilerOpera-
tors holds subclasses for all operators defined on the implemented runtime
data types. For example the operator and is defined for the following type
combinations:

• boolean, boolean

• boolean, error

• error, boolean

• error, error
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e u c l i d e s \ runtime\ASTInformation . java
e u c l i d e s \ runtime\Cont r o l l e r . java
e u c l i d e s \ runtime\Factory . java
e u c l i d e s \ runtime\ implementation \ECSCompilerControl ler . java
e u c l i d e s \ runtime\ implementation \ECSCompilerFactory . java
e u c l i d e s \ runtime\ implementation \ECSCompilerOperators . java
e u c l i d e s \ runtime\ implementation \ECSCompilerTypes . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorAnd . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorAssign . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorEqual . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorGreaterEqual . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorGreaterThan . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorIn . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorLessEqual . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorLessThan . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorMinus . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorNot . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorNotEqual . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorOr . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorPlus . java
e u c l i d e s \ runtime\ ope ra to r s \Operato rS i zeo f . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorSlash . java
e u c l i d e s \ runtime\ ope ra to r s \OperatorStar . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \BooleanType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \ErrorType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \ IntegerType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \MatrixType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \RealType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \ReferenceType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \StringType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \VectorType . java
e u c l i d e s \ runtime\ types \ p r im i t i v e \VoidType . java
e u c l i d e s \ runtime\ types \ s t ruc tu r ed \ArrayType . java
e u c l i d e s \ runtime\ types \ s t ruc tu r ed \RecordType . java
e u c l i d e s \ runtime\ types \ s t ruc tu r ed \SetType . java
e u c l i d e s \ runtime\ types \Type . java
Constants . java
Var i ab l e s . java
Methods . java
Main . java

Listing 4.8: This listing shows the list of generated java files for the
example program. One can see the runtime files need for
execution as well as the transpiled Java files.
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Runtime types are implemented as subclasses of the ECSCompilerTypes
class. Euclides types are mapped to Java types using the following scheme:

• Boolean: Boolean

• Error: Long

• Integer: Long

• Matrix: ArrayList<ArrayList<Double>>

• Real: Double

• Reference: Object

• String: String

• Vector: ArrayList<Double>

• Void: Void

• Array: ArrayList<ECSType<?>>

• Set: HashSet<ECSType<?>>

• Record: ArrayList<ECSType<?>>

Basic functionality of all runtime types is defined in an abstract tem-
plate class called ECSType. The methods getValue, setValue, enterScope,
exitScope and getSize are common to all runtime types. Each concrete type
class extends the abstract class ECSType and implements its interface.

In order to be able to compile the Java runtime files they are put together
into one class called Runtime. This class holds all the Java classes as strings.
A special creator class called RuntimeCreator generates this class. It is
necessary to call the creator each time changes to the runtime environment
are made in order to reflect the changes. In the ECSCompiler the Strings
of the Runtime class are put together in an ArrayList together with the
generated Java files from the Java transpiler. In a next step this ArrayList
is processed by the Java compiler to generate class files. Finally these class
files are packed into a jar file in order to be executed.
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Chapter 5

Future Work

In this work, an IDE for procedural modeling including a new programming
language called Euclides has been presented. Views for source code analysis,
refactoring and interpretation form the tools to generate meaningful output.
Currently executable output is generated in the form of Java code. However,
there are a number of ideas to implement new output representations as
well as to extend the programming language Euclides with new language
constructs.

5.1 GML integration

The GML is a very simple stack based programming language. In combi-
nation with its OpenGL-based runtime engine the GML can be seen as a
viewer with an integrated modeler. The idea is to integrate the GML as an
additional target language for the IDE. This would enable the generation of
GML code out of a Euclides program. The advantages of such an approach
would be to following:

• The possibility to output 3D objects would be introduced to the IDE.

• A more beginner friendly programming language would be available
for the GML.

5.2 Maya integration

Another possibility to generate output would be the integration in Maya.
Maya is a 3D modeling software package used for architectural visualization
and design. The idea is to develop a plug-in that enables Maya to use
Euclides as an output format. One would be able to create 3D models
using a sophisticated modeling environment while experiencing the benefits
of procedural techniques.
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5.3 New language constructs

The programming language Euclides incorporates a variety of language con-
structs. During the creation of this work some ideas were born to make the
language more flexible. A first idea is to introduce a new data type to
the language. It is a special data type for which type checking is partially
disabled.

Another idea is to allow the definition of methods as data types. This
would enable methods to be assigned to variables. It would make the lan-
guage more flexible.
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Chapter 6

Addendum

program

programHeading

usesUnitsPart

identifier

identifierList

unitidentifier
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unitidentifierList

block

constantDefinitionPart

constantDefinition

constant

constantString

constantMatrix
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constantVector

constantVectorElement

constantReal

constantInteger

constantBoolean

typeDefinitionPart

typeDefinition

type
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typeSimple

typeStructured

typeArray

typeSet

typeRecord

typeRecordSection

variableDefinitionPart
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variableDefinition

methodDefinitionPart

methodParameterList

methodParameterSection

statement

statementBeginBlock

statementAssignment

statementMethodCall

55



statementConditional

statementIf

statementCase

statementCaseListElement

statementRepetetive

statementFor

statementForElement

statementRepeat
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statementWhile

statementTry

variable

expression

expressionLogical

expressionLogicalAnd

expressionEquational

expressionRelational
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expressionArithmetical

expressionMultiplicative

expressionSigned

expressionPrimitive

expressionMethodInvocation

PROGRAM

USES
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UNIT

TYPE

CONST

VAR

VOID

BOOLEAN

INTEGER

REAL

VECTOR
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MATRIX

STRING

REFERENCE

ERROR

SET

RECORD

ARRAY

OF

IN
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METHOD

BEGIN

END

TRY

CATCH

AND

NOT

OR

TRUE
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FALSE

IF

THEN

ELSE

CASE

FOR

TO

DO

DOWNTO
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WHILE

REPEAT

UNTIL

PLUS

MINUS

STAR

SLASH

ASSIGN

COMMA
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SEMI

COLON

EQUAL

NOT EQUAL

LESS THAN

LESS EQUAL

GREATER EQUAL

GREATER THAN

LPAREN
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RPAREN

LBRACK

RBRACK

DOT

SIZEOF

HEX DIGIT

NUMBER REAL

NUMBER INTEGER

DIGITS
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EXPONENT

STRING LITERAL

CHARACTER
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ESCAPE SEQUENCE

IDENT

NATIVE CODE

ANNOTATION

WHITESPACES

COMMENTS LONG

COMMENTS SHORT
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